1
|
Ayyalasomayajula N, Bandaru M, Dixit PK, Ajumeera R, Chetty CS, Challa S. Inactivation of GAP-43 due to the depletion of cellular calcium by the Pb and amyloid peptide induced toxicity: An in vitro approach. Chem Biol Interact 2019; 316:108927. [PMID: 31843630 DOI: 10.1016/j.cbi.2019.108927] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/15/2019] [Accepted: 12/10/2019] [Indexed: 12/21/2022]
Abstract
Environmental pollutant, Lead (Pb) is known to induce neurotoxicity in human. The central nervous system is the most vulnerable to the minute levels of Pb induced toxicity. Pb has been linked to Alzheimer's disease (AD) as a probable risk factor, as it shows epigenetic and developmental link associated with Alzheimer's disease-like pathology. Beta amyloid peptides were considered as the crucial factors in the beta amyloid plaque formation in Alzheimer's disease brain. In this context, we investigated the molecular mechanism involved in the development of Pb induced Alzheimer's disease in in vitro. Previous data from our studies have reported that Pb in the presence of beta Amyloid peptide (1-40) and (25-35) induces more apoptosis than individual exposures. Here, to further evaluate the molecular mechanism underlying Pb induced Alzheimer's disease; we focussed on the involvement of calcium signalling in inducing cell death. Our experimental observations suggesting that Pb in the presence of beta amyloid peptide alters intracellular calcium levels, which leads to the increased beta-secretase activity, which further promotes the generation of beta amyloid peptides. It also showed depression in the levels of GAP-43 expression, inhibition of PKC activity and altering synaptic activity further leads to cell death.
Collapse
Affiliation(s)
- Neelima Ayyalasomayajula
- Department of Cell and Molecular Biology, National Institute of Nutrition (ICMR), Hyderabad, India
| | - Madhuri Bandaru
- Department of Cell and Molecular Biology, National Institute of Nutrition (ICMR), Hyderabad, India
| | | | - Rajanna Ajumeera
- Department of Cell and Molecular Biology, National Institute of Nutrition (ICMR), Hyderabad, India
| | | | - Suresh Challa
- Department of Cell and Molecular Biology, National Institute of Nutrition (ICMR), Hyderabad, India.
| |
Collapse
|
2
|
Antonucci JM, Kim SH, St Gelais C, Bonifati S, Li TW, Buzovetsky O, Knecht KM, Duchon AA, Xiong Y, Musier-Forsyth K, Wu L. SAMHD1 Impairs HIV-1 Gene Expression and Negatively Modulates Reactivation of Viral Latency in CD4 + T Cells. J Virol 2018; 92:e00292-18. [PMID: 29793958 PMCID: PMC6052313 DOI: 10.1128/jvi.00292-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/15/2018] [Indexed: 11/20/2022] Open
Abstract
Sterile alpha motif and HD domain-containing protein 1 (SAMHD1) restricts human immunodeficiency virus type 1 (HIV-1) replication in nondividing cells by degrading intracellular deoxynucleoside triphosphates (dNTPs). SAMHD1 is highly expressed in resting CD4+ T cells, which are important for the HIV-1 reservoir and viral latency; however, whether SAMHD1 affects HIV-1 latency is unknown. Recombinant SAMHD1 binds HIV-1 DNA or RNA fragments in vitro, but the function of this binding remains unclear. Here we investigate the effect of SAMHD1 on HIV-1 gene expression and reactivation of viral latency. We found that endogenous SAMHD1 impaired HIV-1 long terminal repeat (LTR) activity in monocytic THP-1 cells and HIV-1 reactivation in latently infected primary CD4+ T cells. Overexpression of wild-type (WT) SAMHD1 suppressed HIV-1 LTR-driven gene expression at a transcriptional level. Tat coexpression abrogated SAMHD1-mediated suppression of HIV-1 LTR-driven luciferase expression. SAMHD1 overexpression also suppressed the LTR activity of human T-cell leukemia virus type 1 (HTLV-1), but not that of murine leukemia virus (MLV), suggesting specific suppression of retroviral LTR-driven gene expression. WT SAMHD1 bound to proviral DNA and impaired reactivation of HIV-1 gene expression in latently infected J-Lat cells. In contrast, a nonphosphorylated mutant (T592A) and a dNTP triphosphohydrolase (dNTPase) inactive mutant (H206D R207N [HD/RN]) of SAMHD1 failed to efficiently suppress HIV-1 LTR-driven gene expression and reactivation of latent virus. Purified recombinant WT SAMHD1, but not the T592A and HD/RN mutants, bound to fragments of the HIV-1 LTR in vitro These findings suggest that SAMHD1-mediated suppression of HIV-1 LTR-driven gene expression potentially regulates viral latency in CD4+ T cells.IMPORTANCE A critical barrier to developing a cure for HIV-1 infection is the long-lived viral reservoir that exists in resting CD4+ T cells, the main targets of HIV-1. The viral reservoir is maintained through a variety of mechanisms, including regulation of the HIV-1 LTR promoter. The host protein SAMHD1 restricts HIV-1 replication in nondividing cells, but its role in HIV-1 latency remains unknown. Here we report a new function of SAMHD1 in regulating HIV-1 latency. We found that SAMHD1 suppressed HIV-1 LTR promoter-driven gene expression and reactivation of viral latency in cell lines and primary CD4+ T cells. Furthermore, SAMHD1 bound to the HIV-1 LTR in vitro and in a latently infected CD4+ T-cell line, suggesting that the binding may negatively modulate reactivation of HIV-1 latency. Our findings indicate a novel role for SAMHD1 in regulating HIV-1 latency, which enhances our understanding of the mechanisms regulating proviral gene expression in CD4+ T cells.
Collapse
Affiliation(s)
- Jenna M Antonucci
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Sun Hee Kim
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Corine St Gelais
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Serena Bonifati
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Tai-Wei Li
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Olga Buzovetsky
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Kirsten M Knecht
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Alice A Duchon
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Karin Musier-Forsyth
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Li Wu
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
3
|
Xu Q, Huff LP, Fujii M, Griendling KK. Redox regulation of the actin cytoskeleton and its role in the vascular system. Free Radic Biol Med 2017; 109:84-107. [PMID: 28285002 PMCID: PMC5497502 DOI: 10.1016/j.freeradbiomed.2017.03.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/17/2017] [Accepted: 03/06/2017] [Indexed: 12/17/2022]
Abstract
The actin cytoskeleton is critical for form and function of vascular cells, serving mechanical, organizational and signaling roles. Because many cytoskeletal proteins are sensitive to reactive oxygen species, redox regulation has emerged as a pivotal modulator of the actin cytoskeleton and its associated proteins. Here, we summarize work implicating oxidants in altering actin cytoskeletal proteins and focus on how these alterations affect cell migration, proliferation and contraction of vascular cells. Finally, we discuss the role of oxidative modification of the actin cytoskeleton in vivo and highlight its importance for vascular diseases.
Collapse
Affiliation(s)
- Qian Xu
- Division of Cardiology, Department of Medicine, Emory University, 101 Woodruff Circle, 308a WMB, Atlanta, GA 30322, United States; Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Lauren P Huff
- Division of Cardiology, Department of Medicine, Emory University, 101 Woodruff Circle, 308a WMB, Atlanta, GA 30322, United States
| | - Masakazu Fujii
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Kathy K Griendling
- Division of Cardiology, Department of Medicine, Emory University, 101 Woodruff Circle, 308a WMB, Atlanta, GA 30322, United States.
| |
Collapse
|
4
|
Harrington EO, Ware JA. Diversity of the protein kinase C gene family Implications for cardiovascular disease. Trends Cardiovasc Med 2012; 5:193-9. [PMID: 21232259 DOI: 10.1016/1050-1738(95)00058-h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
All eukaryotic cells are capable of responding to a changing intracellular environment and to extracellular stimuli. These functional responses are highly regulated by diverse means; one of the most common mechanisms of regulation requires the covalent phosphorylation of intracellular proteins, which when phosphorylated, mediate many functional events. The general class of enzymes that catalyzes the phosphorylation of effectors (substrates), the protein kinases, may be divided into two broad categories, depending on whether they phosphorylate serine and threonine residues or tyrosine residues. Evidence has accumulated that implicates abnormal activation of protein kinase C (PKC), which is one family of serine-threonine protein kinases, in cells and tissues from patients or models of cardiovascular disease. In this review, we present the molecular and biochemical basis for the diversity of the PKC family, and briefly summarize the evidence that PKC is implicated in cardiovascular pathology and the potential therapeutic implications and approaches.
Collapse
Affiliation(s)
- E O Harrington
- Elizabeth O. Harrington and J. Anthony Ware are at the Cardiovascular Division of the Department of Medicine, Beth Israel Hospital, Harvard Medical School, Boston, MA 02115, USA.; the Harvard-Thorndike Laboratories of the Department of Medicine, Beth Israel Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
5
|
Monti MG, Pernecco L, Moruzzi MS, Battini R, Zaniol P, Barbiroli B. Effect of ELF Pulsed Electromagnetic Fields on Protein Kinase C Activation Process in HL-60 Leukemia Cells. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/15368379109031403] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- M. G. Monti
- Istituto di Chimica Biologica, Via Campi, 287
| | - L. Pernecco
- Istituto di Chimica Biologica, Via Campi, 287
| | | | - R. Battini
- Istituto di Chimica Biologica, Via Campi, 287
| | - P. Zaniol
- Istituto di Radiologia, Via del Pozzo 71, 41100, Modena
| | - B. Barbiroli
- Cattedra di Biologia Molecolare, Via Foscolo 7, 40123, Bologna, Italy
| |
Collapse
|
6
|
Abstract
Amine secretion from electropermeabilized bovine chromaffin cells and human platelets requires Ca2+ and MgATP. There appears to be little correlation between the pH or potential of the interior of the amine storage granules of the chromaffin cells and the Ca2+ sensitivity or extent of secretion. The Ca2+ sensitivities of secretion for both preparations are increased by activators of protein kinase C. In the platelet, thrombin also increases the Ca2+ sensitivity. The thrombin-induced response is further enhanced by micromolar levels of GTP. The non-hydrolysable analogue GTP gamma S also potentiates the Ca2+-dependent secretory response, but this effect is additive to that seen by thrombin rather than synergistic, as is the case with GTP. GTP gamma S inhibits catecholamine secretion from bovine chromaffin cells. In both preparations the effects of GTP gamma S are inhibited by 10 microM GTP, even though GTP concentrations up to 1 mM are without effect when added alone. These results are consistent with there being two sites of action for the guanine nucleotides, one at the level of the agonist receptor and activated by GTP or one of its breakdown products, and the other one activated by GTP gamma S--possibly at the level of protein kinase C itself.
Collapse
|
7
|
Exton JH. The roles of calcium and phosphoinositides in the mechanisms of alpha 1-adrenergic and other agonists. Rev Physiol Biochem Pharmacol 2005; 111:117-224. [PMID: 2906170 DOI: 10.1007/bfb0033873] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
8
|
Bamberger AM, Briese J, Götze J, Erdmann I, Schulte HM, Wagener C, Nollau P. Stimulation of CEACAM1 expression by 12- O -tetradecanoylphorbol-13-acetate (TPA) and calcium ionophore A23187 in endometrial carcinoma cells. Carcinogenesis 2005; 27:483-90. [PMID: 16332726 DOI: 10.1093/carcin/bgi275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Downregulation of carcinoembryonic antigen-related cell adhesion molecule (CEACAM1), a cell adhesion molecule with tumor suppressing properties has been observed in a high percentage of carcinomas of the endometrium and other malignancies. The mechanisms for the dysregulation and the role of hormones and cytokines on the expression of CEACAM1 in endometrial carcinomas is unknown. We therefore studied the effect of estradiol, medroxyprogesterone acetate (MPA), RU486, gamma-interferon (IFN-gamma), tumor necrosis factor alpha (TNF-alpha), 12-O-tetradecanoylphorbol-13-acetate (TPA) and calcium ionophore A23187 on the expression in the non-expressing endometrial tumor cell lines Hec1B and Skut1B, respectively. No induction of CEACAM1 expression was observed in Hec1B endometrial adenocarcinoma cells in response to hormones and cytokines whereas treatment with TPA and calcium ionophore A23187 resulted in the strong expression of endogenous CEACAM1 on the mRNA and protein levels. In contrast, no induction of CEACAM1 expression was observed in endometrial mixed mesenchymal Skut1B cells. Studies of other members of the CEACAM family revealed that the re-expression in Hec1B carcinoma cells is restricted to CEACAM1 suggesting a cell type-specific and cell type-independent mechanism of CEACAM1 activation via the protein kinase C (PKC) pathway. Induction of CEACAM1 expression was dependent on protein kinase C protein synthesis and luciferase reporter assays with CEACAM1 promoter constructs demonstrated that the re-expression of CEACAM1 is regulated at the transcriptional level. This is the first report demonstrating that activators of PKC are able to specifically induce the expression of CEACAM1 in human carcinoma cells and our findings may provide a basis for the therapeutic inhibition of tumor growth in malignancies in which CEACAM1 is downregulated.
Collapse
|
9
|
Williams SA, Chen LF, Kwon H, Fenard D, Bisgrove D, Verdin E, Greene WC. Prostratin antagonizes HIV latency by activating NF-kappaB. J Biol Chem 2004; 279:42008-17. [PMID: 15284245 DOI: 10.1074/jbc.m402124200] [Citation(s) in RCA: 258] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A subset of quiescent memory CD4 T cells harboring integrated but transcriptionally silent proviruses poses a currently insurmountable barrier to the eradication of the human immunodeficiency virus (HIV) in infected patients. Induction of HIV gene expression in these latently infected cells by immune activating agents has been proposed as one approach to confer sensitivity to antiretroviral therapy. Interest has recently focused on the non-tumor-promoting phorbol ester, prostratin, as a potential agent to activate latent HIV proviruses. Using multiple Jurkat T cell lines containing integrated but transcriptionally latent HIV proviruses (J-Lat cells), we now demonstrate that prostratin effectively activates HIV gene expression in these latently infected cells. We further show that prostratin acts by stimulating IKK-dependent phosphorylation and degradation of IkappaBalpha, leading to the rapid nuclear translocation of NF-kappaB and activation of the HIV-1 long terminal repeat in a kappaB enhancer-dependent manner. In contrast, NFAT and AP-1 are not induced by prostratin. Using chromatin immunoprecipitation assays to identify host transcription factors recruited to the latent HIV-1 promoter in living cells, we find that prostratin induces RelA binding. Analysis of potential upstream signal transducers demonstrates that prostratin stimulates membrane translocation of classical, novel, and atypical protein kinase C (PKC) isoforms. Studies with isoform-specific PKC inhibitors suggest that the novel PKCs play a particularly prominent role in the prostratin response. These findings provide new insights into the molecular pathway through which prostratin antagonizes HIV latency highlighting a central role for the action of NF-kappaB.
Collapse
Affiliation(s)
- Samuel A Williams
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, San Francisco, California 94141, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Lee W, Boo JH, Jung MW, Park SD, Kim YH, Kim SU, Mook-Jung I. Amyloid beta peptide directly inhibits PKC activation. Mol Cell Neurosci 2004; 26:222-31. [PMID: 15207847 DOI: 10.1016/j.mcn.2003.10.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2002] [Revised: 10/14/2003] [Accepted: 10/30/2003] [Indexed: 10/26/2022] Open
Abstract
A putative protein kinase C (PKC) pseudosubstrate domain in beta amyloid (Abeta) suggests a potential interaction between Abeta and PKC. In this study, we investigated whether and how Abeta interacts with PKC. Abeta peptides inhibited PKC phosphorylation in a dose-dependent manner in cell-free in vitro condition, suggesting a direct interaction between Abeta and PKC. Experiments involving deletion of the Abeta sequence indicated that the putative PKC pseudosubstrate domain (Abeta 28-30) is critical for Abeta-PKC interaction. Addition of Abeta peptides to cultured B103 cells reduced the activated forms of PKCalpha and PKCepsilon. It also inhibited phorbol-12,13-dibutyrate (PDBu)-induced membrane translocation of PKCalpha and PKCepsilon without altering their expression levels, indicating that activation of intracellular PKC is inhibited by treatment of Abeta peptides. These results suggest that Abeta peptides inhibit PKC activation via direct interactions, which may play a role in pathogenesis of AD.
Collapse
Affiliation(s)
- Woojin Lee
- Department of Biology, College of Natural Sciences, Seoul National University, South Korea
| | | | | | | | | | | | | |
Collapse
|
11
|
Oesch-Bartlmowicz B, Oesch F. Modulation of mutagenicity by phosphorylation of mutagen-metabolizing enzymes. Arch Biochem Biophys 2004; 423:31-6. [PMID: 14989261 DOI: 10.1016/j.abb.2003.11.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this Minireview, we discuss our findings on phosphorylation of cytochromes P450 (CYP) and influence of this modification on metabolic toxification and/or detoxification of a variety of mutagens. We show that phosphorylation drastically interferes with the mutagenicity of several classes of compounds which are of high human relevance (cytostatic drugs of the cyclophosphamide type, aromatic amines/amides, and nitrosamines). We illustrate this by describing the consequences of the stimulation of protein kinase A (with the example of CYP2B1 and CYP2E1), stimulation of protein kinase C, and inhibition of protein phosphatases PP1 and PP2A (with the example of CYP1A1 and CYP1A2). We discuss a possible mechanism governing these phosphorylation events.
Collapse
|
12
|
Harish OE, Role LW. Activation of phosphoinositide turnover and protein kinase C by neurotransmitters that modulate calcium channels in embryonic chick sensory neurons. Int J Dev Neurosci 2003; 10:421-33. [PMID: 1362856 DOI: 10.1016/0736-5748(92)90032-u] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Gamma aminobutyric acid (GABA) and norepinephrine modulate the excitability of primary chick sensory neurons by decreasing the voltage dependent Ca current. Although previous electrophysiological studies indicate that neurotransmitter modulation of the Ca current in these neurons involves protein kinase C, the biochemical aspects of this mechanism have not been examined directly. We find that both norepinephrine (via a unique alpha receptor subtype) and GABA (via GABAb receptors) linked to pertussis toxin sensitive pathways, stimulate the metabolism of membrane phosphatidylinositol phospholipids in primary chick sensory neurons. In addition, norepinephrine causes the rapid translocation of C kinase activity from cytosolic to membrane associated distribution, consistent with its rapid activation in response to applied neurotransmitter. The pharmacology, pertussis toxin sensitivity and time course of the biochemical changes due to neurotransmitter treatment parallel the effects of these transmitters on calcium current modulation. These biochemical studies confirm the hypothesis that activation of protein kinase C is critically involved in calcium channel modulation in embryonic chick sensory neurons.
Collapse
Affiliation(s)
- O E Harish
- Department of Anatomy and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, NY 10032
| | | |
Collapse
|
13
|
Sobiesiak-Mirska J, Nałecz MJ, Nałecz KA. Interaction of palmitoylcarnitine with protein kinase C in neuroblastoma NB-2a cells. Neurochem Int 2003; 42:45-55. [PMID: 12441167 DOI: 10.1016/s0197-0186(02)00067-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
As reported previously [Acta Neurobiol. Exp. 57 (1997) 263], palmitoylcarnitine was observed to promote differentiation of neuroblastoma NB-2a cells with a concomitant inhibition of proliferation and of the phorbol ester stimulated activity of the protein kinase C (PKC). In the present study, palmitoylcarnitine was observed to inhibit phosphorylation of the PKC peptide substrate and to completely diminish binding of phorbol 12-myristate-13-acetate (PMA), although the effect was found to be uncompetitive. The exposure of NB-2a cells to palmitoylcarnitine in the presence of PMA resulted in a dramatic decrease in phosphorylation of the conventional and novel isozymes of PKC, mainly on serine. This effect was observed to be dose dependent. Inhibitors of serine/threonine phosphatases were not influencing the effect of palmitoylcarnitine what can point to an interaction between PKC and palmitoylcarnitine, affecting the process of autophosphorylation. These findings suggest that pamitoylcarnitine could be a natural modulator of PKC activity, thus regulating the process of cell differentiation.
Collapse
Affiliation(s)
- Joanna Sobiesiak-Mirska
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Pasteur Street 3, 02-093 Warsaw, Poland
| | | | | |
Collapse
|
14
|
Laroche S, Redini-Del Negro C, Clements MP, Lynch MA. Long-term Activation of Phosphoinositide Turnover Associated with Increased Release of Amino Acids in the Dentate Gyrus and Hippocampus Following Classical Conditioning in the Rat. Eur J Neurosci 2002; 2:534-543. [PMID: 12106023 DOI: 10.1111/j.1460-9568.1990.tb00444.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The release of amino acids and the hydrolysis of inositol phospholipids were examined in parallel in three hippocampal areas following classical conditioning. Paired or unpaired tone(CS) - shock(US) presentations were given to animals engaged in a previously acquired food-motivated lever-pressing task. Conditioned suppression of lever-pressing was the behavioural measure of conditioning. Twenty-four hours after the last conditioning session, the dentate gyrus and areas CA3 and CA1 of the hippocampus were removed bilaterally from conditioned and pseudoconditioned animals, and slices cut and stored in liquid nitrogen for subsequent analysis. Crude synaptosomal pellets were prepared to investigate: (i) potassium-stimulated release of preloaded [3H]glutamate and [14C]aspartate in the presence and absence of extracellular Ca2+; (ii) [3H]inositol labelling of phosphoinositides and inositol phosphates; and (iii) [14C]arachidonic acid labelling of 1,2-diacylglycerol (1,2-DG). Potassium-stimulated, Ca2+-dependent release of [3H]glutamate in synaptosomes prepared from the dentate gyrus and area CA3 was significantly greater in conditioned animals than in pseudoconditioned animals. In area CA1, K+-stimulated, Ca2+-dependent release of [14C]aspartate was significantly increased in conditioned animals. These results confirm in synaptosomes, and extend to a period of 24 h our previous report of an increased release of transmitter in the dentate gyrus and hippocampus associated with classical conditioning. In parallel with the increased release of amino acids, learning was associated with a significant increase in labelling of phosphoinositides and inositol phosphates by [3H]inositol and a significant increase in labelling of 1,2-DG by [14C]arachidonic acid in the three hippocampal areas examined. It is suggested that a long-lasting presynaptic activation of inositol lipid metabolism may contribute to the learning-dependent increase in the capacity of hippocampal terminals to release transmitter and hence to the maintenance of a neurochemical trace which may, at least in part, underlie lasting changes in synaptic function built up during associative learning.
Collapse
Affiliation(s)
- S. Laroche
- Département de Psychophysiologie, LPN2, C.N.R.S., 91198 Gif-sur-Yvette Cedex, France
| | | | | | | |
Collapse
|
15
|
Abstract
Upon sperm-egg interaction, an increase in intracellular calcium concentration ([Ca(2+)](i)) is observed. Several studies reported that cortical reaction (CR) can be triggered not only by a [Ca(2+)](i) rise but also by protein kinase C (PKC) activation. Because the CR is regarded as a Ca(2+)-dependent exocytotic process and because the calcium-dependent conventional PKCs (cPKC) alpha and beta II are considered as exocytosis mediators in various cell systems, we chose to study activation of the cPKC in the rat egg during in vivo fertilization and parthenogenetic activation. By using immunohistochemistry and confocal microscopy techniques, we demonstrated, for the first time, the activation of the cPKC alpha, beta I, and beta II during in vivo fertilization. All three isozymes examined presented translocation to the egg's plasma membrane as early as the sperm-binding stage. However, the kinetics of their translocation was not identical. Activation of cPKC alpha was obtained by the phorbol ester 12-O-tetradecanoyl phorbol-13-acetate (TPA) or by 1-oleoyl-2-acetylglycerol (OAG) but not by the calcium ionophore ionomycin. PKC alpha translocation was first detected 5-10 min after exposure to TPA and reached a maximum at 20 min, whereas in eggs activated by OAG, translocation of PKC alpha was observed almost immediately and reached a maximum within 5 min. These results suggest that, although [Ca(2+)](i) elevation on its own does not activate PKC alpha, it may accelerate OAG-induced PKC alpha activation. We also demonstrate a successful inhibition of the CR by a myristoylated PKC pseudosubstrate (myrPKCPsi), a specific PKC inhibitor. Our study suggests that exocytosis can be triggered independently either by a [Ca(2+)](i) rise or by PKC.
Collapse
Affiliation(s)
- Efrat Eliyahu
- Department of Embryology and Teratology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | | |
Collapse
|
16
|
Morabito D, Vallotton MB, Lang U. Obesity is associated with impaired ventricular protein kinase C-MAP kinase signaling and altered ANP mRNA expression in the heart of adult Zucker rats. J Investig Med 2001; 49:310-8. [PMID: 11478406 DOI: 10.2310/6650.2001.33895] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND In the obesity model of the Zucker rat, myocardial protein kinase C (PKC) activation by phorbol ester is impaired. The influence of obesity on myocardial cell signaling was investigated by studying the activation of PKC isozymes and MAP kinases (MAPK) p38 and p42/44 as well as the induction of ANP mRNA. METHODS Isolated hearts obtained from 17-week-old lean and obese Zucker rats were perfused with 200 nM phorbol 12-myristate 13-acetate (PMA) at different time periods. Immunodetectable PKC isozymes, phosphorylated-MAPK, and ANP mRNA were determined by Western and Northern blots, respectively. RESULTS PMA promoted a marked transient translocation of ventricular PKCalpha from the cytosol to the membranes within 10 minutes in lean rats, whereas it had a much weaker effect in obese rats. Moreover, PMA induced a significant activation of PKCdelta in lean but not in obese rat hearts. After PKC activation, increases in phosphorylation levels of myocardial p38 and p42 MAPK were approximately 3-fold higher in lean rats than in obese animals. Concerning the induction of ANP, PMA transiently tripled ANP mRNA within 60 minutes in lean but not in obese rats. CONCLUSIONS In the genetically obese Zucker rat, the myocardial signal transduction cascade PKC-MAPK-ANP mRNA seems to be markedly impaired. It can be speculated that this abnormal cardiac cell signaling in obese rats reflects an early phase in the cardiac pathogenesis accompanying obesity.
Collapse
Affiliation(s)
- D Morabito
- Division of Endocrinology and Diabetology, University Hospital, Geneva, Switzerland
| | | | | |
Collapse
|
17
|
Dodd PR, Beckmann AM, Davidson MS, Wilce PA. Glutamate-mediated transmission, alcohol, and alcoholism. Neurochem Int 2000; 37:509-33. [PMID: 10871702 DOI: 10.1016/s0197-0186(00)00061-9] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Glutamate-mediated neurotransmission may be involved in the range of adaptive changes in brain which occur after ethanol administration in laboratory animals, and in chronic alcoholism in human cases. Excitatory amino acid transmission is modulated by a complex system of receptors and other effectors, the efficacy of which can be profoundly affected by altered gene or protein expression. Local variations in receptor composition may underlie intrinsic regional variations in susceptibility to pathological change. Equally, ethanol use and abuse may bring about alterations in receptor subunit expression as the essence of the adaptive response. Such considerations may underlie the regional localization characteristic of the pathogenesis of alcoholic brain damage, or they may form part of the homeostatic change that constitutes the neural substrate for alcohol dependence.
Collapse
Affiliation(s)
- P R Dodd
- Department of Biochemistry, University of Queensland, Qld 4072, Brisbane, Australia.
| | | | | | | |
Collapse
|
18
|
Knapp LT, Klann E. Superoxide-induced stimulation of protein kinase C via thiol modification and modulation of zinc content. J Biol Chem 2000; 275:24136-45. [PMID: 10823825 DOI: 10.1074/jbc.m002043200] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We investigated the effects of mild oxidation on protein kinase C (PKC) using the xanthine/xanthine oxidase system of generating superoxide. Exposure of various PKC preparations to superoxide stimulated the autonomous activity of PKC. Similarly, thiol oxidation increased autonomous PKC activity, consistent with the notion that superoxide stimulates PKC via thiol oxidation. The superoxide-induced stimulation of PKC activity was partially reversed by reducing agents, suggesting that disulfide bond formation contributed to the oxidative stimulation of PKC. In addition, superoxide increased the autonomous activity of the alpha, beta(II), epsilon, and zeta PKC isoforms, all of which contain at least one cysteine-rich region. Taken together, our observations suggested that superoxide interacts with PKC at the cysteine-rich region, zinc finger motif of the enzyme. Therefore, we examined the effects of superoxide on this region by testing the hypothesis that superoxide stimulates PKC by promoting the release of zinc from PKC. We found that a zinc chelator stimulated the autonomous activity of PKC and that superoxide induced zinc release from an PKC-enriched enzyme preparation. In addition, oxidized PKC contained significantly less zinc than reduced PKC. Finally, we have isolated a persistent, autonomously active PKC by DEAE-cellulose column chromatography from hippocampal slices incubated with superoxide. Taken together, these data suggest that superoxide stimulates autonomous PKC activity via thiol oxidation and release of zinc from cysteine-rich region of PKC.
Collapse
Affiliation(s)
- L T Knapp
- Department of Neuroscience and the Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | |
Collapse
|
19
|
Agarwala KL, Kokame K, Kato H, Miyata T. Phosphorylation of RTP, an ER stress-responsive cytoplasmic protein. Biochem Biophys Res Commun 2000; 272:641-7. [PMID: 10860807 DOI: 10.1006/bbrc.2000.2833] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
RTP, also called Drg1/Cap43/rit42/TDD5/Ndr1, was originally identified as a homocysteine-responsive gene product, and is now considered to be involved in stress responses, atherosclerosis, carcinogenesis, differentiation, androgen responses, hypoxia, and N-myc pathways. We raised an antiserum against a recombinant human RTP. Western blot analysis showed that RTP expression was induced in human umbilical vein endothelial cells under conditions causing endoplasmic reticulum stress. RTP was partially phosphorylated at seven or more sites. The phosphorylation was reversible, and was enhanced by an increased level of intracellular cAMP and inhibited by both a protein kinase A inhibitor and a calmodulin kinase inhibitor. Protein kinase A directly phosphorylated recombinant RTP in vitro. The phosphorylated forms were abundant in cells at the early log phase, and then decreased with increasing cell density. These data demonstrated that RTP is a phosphorylated stress-responsive protein, and its phosphorylation may be related to cell growth.
Collapse
Affiliation(s)
- K L Agarwala
- National Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | | | | | | |
Collapse
|
20
|
Muto S, Ebata S, Okada K, Saito T, Asano Y. Glucocorticoid modulates Na+/H+ exchange activity in vascular smooth muscle cells by nongenomic and genomic mechanisms. Kidney Int 2000; 57:2319-33. [PMID: 10844602 DOI: 10.1046/j.1523-1755.2000.00092.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND In vascular smooth muscle cells (VSMCs), Na+/H+ exchange (NHE) plays an important role in intracellular pH (pHi) regulation. The genomic effect of glucocorticoid (GC) on NHE activity has been suggested in VSMCs. However, the nongenomic and genomic effects of GC on NHE activity and the underlying intracellular signaling mechanisms have not yet been demonstrated in VSMCs. Also, it is not known whether there are specific surface-binding sites of GC to the plasma membrane of VSMCs. METHODS The effects of short (3 h)- and long (24 h)-term exposure to corticosterone (CORTI) on NHE activity were studied in cultured rat aortic VSMCs by using pHi measurement with the pH-sensitive fluorescent dye 2'7'-bis(carboxyethyl)-5(6)-carboxyfluorescein. The NHE activity was calculated from the initial rate of Na+-dependent pHi recovery after the acid load. RESULTS Short-term exposure of VSMCs to CORTI (10-6 mol/L) increased NHE activity, whereas long-term exposure to CORTI decreased it. The inhibitors of gene transcription (actinomycin D) and of protein synthesis (cycloheximide) did not affect the short-term effect of CORTI on NHE activity, but inhibited the long-term effect of CORTI on NHE activity. The cytosolic GC receptor (GR) antagonist (RU38486) inhibited both the short- and long-term effects of CORTI on NHE activity, but the cytosolic mineralocorticoid receptor antagonist (spironolactone) did not influence either the short- or long-term CORTI effects. Two protein kinase C (PKC) inhibitors (staurosporine A and calphostin C) and PKC down-regulation [24-h pre-exposure to phorbol 12-myristate 13-acetate (PMA)] inhibited both short- and long-term CORTI effects. Exposure to PMA for three hours mimicked the short-term CORTI effect. The short-term CORTI effect was inhibited by the disruptor of microtubule (colchicine), but not by the disruptor of filamentous-actin (cytochalasin B). The long-term exposure to CORTI decreased NHE (NHE-1) mRNA levels to 0.65 times the control level, whereas the short-term exposure to CORTI caused no effect. Scatchard analysis of [3H]CORTI surface binding to VSMCs showed a single class of CORTI binding sites with a Bmax of 876.2 fmol per mg of cell protein and a Kd of 12.2 nmol/L. RU38486 also inhibited [3H]CORTI surface binding to VSMCs. CONCLUSIONS In VSMCs, NHE activity is stimulated by short-term exposure to CORTI, but is inhibited by long-term exposure to CORTI. The short-term stimulatory effect of CORTI on NHE activity is independent of gene transcription and protein synthesis, is mediated through the CORTI surface receptor, and occurs through a microtubule-dependent process. The long-term inhibitory effect of CORTI on NHE activity requires gene transcription and protein synthesis and occurs only through the cytosolic GR. The short- and long-term effects of CORTI on NHE activity occur via PKC activation. Therefore, CORTI differentially modulates NHE activity in VSMCs by nongenomic and genomic mechanisms.
Collapse
Affiliation(s)
- S Muto
- Departments of Nephrology and Endocrinology and Metabolism, Jichi Medical School, Tochigi, Japan.
| | | | | | | | | |
Collapse
|
21
|
Jadhav AL, Ramesh GT, Gunasekar PG. Contribution of protein kinase C and glutamate in Pb(2+)-induced cytotoxicity. Toxicol Lett 2000; 115:89-98. [PMID: 10802384 DOI: 10.1016/s0378-4274(00)00177-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Activation of protein kinase C (PKC) plays an important role in lead (Pb(2+))-induced cytotoxicity. The effects of low dose exposure to Pb(2+) on cytosolic free calcium (Ca(2+)), PKC activity and mechanisms involved in cell death were studied in PC12 cells. Exposure of PC12 cells to low dose Pb(2+) (0.01 microM) increased PKC activity, while exposure to a higher dose (10 microM) led to decreased PKC activity. Additionally, in normal extracellular medium, low concentration of Pb(2+) (0.01 microM) stimulated increase in cytosolic free calcium while the higher concentrations of Pb(2+) (10 microM) did not. However, the effect of low dose Pb(2+) (0.01 microM) was blocked by removing Ca(2+) from external medium. The role of Pb(2+)-induced changes in PKC activity and its relationship to oxidative stress and related cytotoxicity was also studied. Pb(2+) alone (0.01-10 microM) produced reactive oxygen species (ROS) dose dependently over the period of 24 h. Pb(2+)-induced ROS were potentiated in the presence of 500 microM glutamate. Furthermore, a correlation was observed between ROS generation and the levels of cytotoxicity, which was observed after 24 h exposures to Pb(2+) by trypan blue method, and the cytotoxicity was enhanced by glutamate co-treatment. Pb(2+)-induced cell death was blocked partially by staurosporine (PKC inhibitor, 100 nM) and NMDA antagonist, MK-801 (1 microM). It is concluded that, in Pb-induced cytotoxicity, modulation of PKC and intracellular calcium play significant roles in augmenting glutamate receptor mediated oxidative species formation and subsequent cell death.
Collapse
Affiliation(s)
- A L Jadhav
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
| | | | | |
Collapse
|
22
|
Zapara TA, Simonova OG, Zharkikh AA, Ratushnyak AS. The effects of the dynamic state of the cytoskeleton on neuronal plasticity. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2000; 30:347-55. [PMID: 10970030 DOI: 10.1007/bf02471789] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The effects of degrading and stabilizing microtubules and microfilaments on the formation of plastic reactions were studied in isolated nerve cells from the mollusk Lymnaea stagnalis. Degradation of the cytoskeleton affected the performance, retention, and repeated acquisition of plastic reactions. Stabilization of microtubules led to the appearance of a relationship between the dynamics of the development and retention of plastic reactions and the series of stimulation. Stabilization of microfilaments led to transient plastic reaction, along with long-term reactions. These results show that rearrangements of the cytoskeleton have a key role in the processes of neuronal plasticity.
Collapse
Affiliation(s)
- T A Zapara
- Construction-Technology Institute of Calculating Technology, Siberian Division, Russian Academy of Sciences, Novosibirsk
| | | | | | | |
Collapse
|
23
|
Abstract
BACKGROUND Cisplatin is widely used in cancer treatment. The major disadvantage of this antitumor agent is its nephrotoxicity. The mechanism of cisplatin-induced nephrotoxicity has not been clarified. Recent evidence suggests protein kinase C (PKC)-related signal transduction pathways may modulate cisplatin-induced cytotoxicity. METHODS The effect of cisplatin administration on PKC expression in the kidney and the effect of a PKC inhibitor on cisplatin-induced renal impairment were investigated in rats. RESULTS A single intraperitoneal injection of 8 mg/kg cisplatin induced remarkable damage in the proximal tubules located in the outer medulla, which was associated with impaired renal function, within 48 h. An immunoblotting study revealed marked expression of alpha-PKC in membrane fractions of medullary tubules prepared from cisplatin-treated rats. In addition, pretreatment with the PKC inhibitor (H-7) protected kidneys from cisplatin-induced damage. CONCLUSIONS These findings suggest that the nephrotoxic effects of cisplatin may, in part, be related to PKC activation in the renal tubules.
Collapse
Affiliation(s)
- S Ikeda
- Department of Urology, Tohoku University School of Medicine, Sendai, Japan
| | | | | | | | | |
Collapse
|
24
|
Edwards AS, Faux MC, Scott JD, Newton AC. Carboxyl-terminal phosphorylation regulates the function and subcellular localization of protein kinase C betaII. J Biol Chem 1999; 274:6461-8. [PMID: 10037738 DOI: 10.1074/jbc.274.10.6461] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein kinase C is processed by three phosphorylation events before it is competent to respond to second messengers. Specifically, the enzyme is first phosphorylated at the activation loop by another kinase, followed by two ordered autophosphorylations at the carboxyl terminus (Keranen, L. M., Dutil, E. M., and Newton, A. C. (1995) Curr. Biol. 5, 1394-1403). This study examines the role of negative charge at the first conserved carboxyl-terminal phosphorylation position, Thr-641, in regulating the function and subcellular localization of protein kinase C betaII. Mutation of this residue to Ala results in compensating phosphorylations at adjacent sites, so that a triple Ala mutant was required to address the function of phosphate at Thr-641. Biochemical and immunolocalization analyses of phosphorylation site mutants reveal that negative charge at this position is required for the following: 1) to process catalytically competent protein kinase C; 2) to allow autophosphorylation of Ser-660; 3) for cytosolic localization of protein kinase C; and 4) to permit phorbol ester-dependent membrane translocation. Thus, phosphorylation of Thr-641 in protein kinase C betaII is essential for both the catalytic function and correct subcellular localization of protein kinase C. The conservation of this residue in every protein kinase C isozyme, as well as other members of the kinase superfamily such as protein kinase A, suggests that carboxyl-terminal phosphorylation serves as a key molecular switch for defining kinase function.
Collapse
Affiliation(s)
- A S Edwards
- Departments of Pharmacology, University of California at San Diego, La Jolla, California 92093-0640, USA
| | | | | | | |
Collapse
|
25
|
Antipenko A, Frías JA, Parra J, Cadefau JA, Cussó R. Effect of chronic electrostimulation of rabbit skeletal muscle on calmodulin level and protein kinase activity. Int J Biochem Cell Biol 1999; 31:303-10. [PMID: 10216962 DOI: 10.1016/s1357-2725(98)00112-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
(a) Chronic electrostimulation of fast-twitch skeletal muscles makes them resemble slow-twitch muscles. The involvement of second-messenger cascades in this muscle reprogramming is not well understood. The goal of this study was to examine protein kinase activities and calmodulin levels as a function of the duration of electrostimulation. (b) Fast-twitch rabbit muscle was subjected to continuous low-frequency electrostimulation for 2 weeks. The extensor digitorum longus was taken and examined for calmodulin concentration and cAMP-dependent (PKA). Ca(2+)-phospholipid-dependent (PKC) and Ca(2+)-calmodulin-dependent (CaM kinase or PKB) protein kinase activities. (c) Electrostimulation for 14 days led to a significant increase in total calmodulin level and PKB activity, both rising in the cytosolic fraction. Protein kinase C translocated to the membrane fraction, although total activity did not change. (d) These changes could be related with electrostimulation-induced changes in excitation-contraction coupling.
Collapse
Affiliation(s)
- A Antipenko
- Departament de Ciències Fisiològiques I, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, Spain
| | | | | | | | | |
Collapse
|
26
|
Alkon DL, Nelson TJ, Zhao W, Cavallaro S. Time domains of neuronal Ca2+ signaling and associative memory: steps through a calexcitin, ryanodine receptor, K+ channel cascade. Trends Neurosci 1998; 21:529-37. [PMID: 9881851 DOI: 10.1016/s0166-2236(98)01277-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Synaptic changes that underlie associative learning and memory begin with temporally related activity of two or more independent synaptic inputs to common postsynaptic targets. In turn, temporally related molecular events regulate cytosolic Ca2+ during progressively longer-lasting time domains. Associative learning behaviors of living animals have been correlated with changes of neuronal voltage-dependent K+ currents, protein kinase C-mediated phosphorylation and synthesis of the Ca2+ and GTP-binding protein, calexcitin (CE),and increased expression of the Ca2+-releasing ryanodine receptor (type II). These molecular events, some of which have been found to be dysfunctional in Alzheimer's disease, provide means of altering dendritic excitability and thus synaptic efficacy during induction, consolidation and storage of associative memory. Apparently, such stages of behavioral learning correspond to sequential differences of Ca2+ signaling that could occur in spatially segregated dendritic compartments distributed across brain structures, such as the hippocampus.
Collapse
Affiliation(s)
- D L Alkon
- Laboratory of Adaptive Systems, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892-4012, USA
| | | | | | | |
Collapse
|
27
|
Newton AC, Johnson JE. Protein kinase C: a paradigm for regulation of protein function by two membrane-targeting modules. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1376:155-72. [PMID: 9748550 DOI: 10.1016/s0304-4157(98)00003-3] [Citation(s) in RCA: 207] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- A C Newton
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093-0640, USA.
| | | |
Collapse
|
28
|
Expression of Protein Kinase C Isozymes in Human Basophils: Regulation by Physiological and Nonphysiological Stimuli. Blood 1998. [DOI: 10.1182/blood.v92.4.1206.416k01_1206_1218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression of protein kinase C (PKC) isozymes in human basophils and the regulation of PKC isozymes during basophil activation by phorbol 12-myristate 13-acetate (PMA) ± ionomycin, f-met-leu-phe (FMLP), and anti-IgE antibody were examined. In human basophils (> 98% purity), PKCβΙ, βΙΙ, δ, and were expressed, PKC was difficult to detect, and PKCγ and η were undetectable. In unstimulated basophils, PKCβI and βII were found primarily in the cytosol fraction (95% ± 3% of total and 98% ± 1%, respectively). Within 5 minutes of stimulation with PMA (100 ng/mL), both PKCβI and βII were translocated to the membrane fraction (85% ± 4% and 83% ± 6%, respectively). In resting cells, 48% ± 3% and 61% ± 10% of PKCδ and , respectively, existed in the membrane fraction. Within 1 minute of stimulation with PMA, 90% ± 6% of PKC was found in the membrane fraction, however, no translocation of PKCδ was apparent. Stimulation with FMLP caused modest translocation (≈20%) of all PKC isozymes by 1 minute, whereas stimulation with anti-IgE antibody led to no detectable changes in PKC location throughout a 15-minute period of measurement. However, concentrations of PMA and ionomycin that alone caused no PKC translocation and little histamine release, together caused significant histamine release but no apparent PKC translocation. Studies with bis-indolylmaleimide analogs showed inhibition of PMA-induced, but not anti–IgE-induced, histamine release. These pharmacological studies suggest that PKC does not play a prodegranulatory role in human basophil IgE-mediated secretion.© 1998 by The American Society of Hematology.
Collapse
|
29
|
Expression of Protein Kinase C Isozymes in Human Basophils: Regulation by Physiological and Nonphysiological Stimuli. Blood 1998. [DOI: 10.1182/blood.v92.4.1206] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe expression of protein kinase C (PKC) isozymes in human basophils and the regulation of PKC isozymes during basophil activation by phorbol 12-myristate 13-acetate (PMA) ± ionomycin, f-met-leu-phe (FMLP), and anti-IgE antibody were examined. In human basophils (> 98% purity), PKCβΙ, βΙΙ, δ, and were expressed, PKC was difficult to detect, and PKCγ and η were undetectable. In unstimulated basophils, PKCβI and βII were found primarily in the cytosol fraction (95% ± 3% of total and 98% ± 1%, respectively). Within 5 minutes of stimulation with PMA (100 ng/mL), both PKCβI and βII were translocated to the membrane fraction (85% ± 4% and 83% ± 6%, respectively). In resting cells, 48% ± 3% and 61% ± 10% of PKCδ and , respectively, existed in the membrane fraction. Within 1 minute of stimulation with PMA, 90% ± 6% of PKC was found in the membrane fraction, however, no translocation of PKCδ was apparent. Stimulation with FMLP caused modest translocation (≈20%) of all PKC isozymes by 1 minute, whereas stimulation with anti-IgE antibody led to no detectable changes in PKC location throughout a 15-minute period of measurement. However, concentrations of PMA and ionomycin that alone caused no PKC translocation and little histamine release, together caused significant histamine release but no apparent PKC translocation. Studies with bis-indolylmaleimide analogs showed inhibition of PMA-induced, but not anti–IgE-induced, histamine release. These pharmacological studies suggest that PKC does not play a prodegranulatory role in human basophil IgE-mediated secretion.© 1998 by The American Society of Hematology.
Collapse
|
30
|
Kuvibidila SR, Baliga BS, Warrier RP, Suskind RM. Iron deficiency reduces the hydrolysis of cell membrane phosphatidyl inositol-4,5-bisphosphate during splenic lymphocyte activation in C57BL/6 mice. J Nutr 1998; 128:1077-83. [PMID: 9649588 DOI: 10.1093/jn/128.7.1077] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Iron deficiency impairs lymphocyte proliferation in humans and laboratory animals by unknown mechanisms. In this study, we investigated whether this alteration can be attributed in part to impaired hydrolysis of cell membrane phosphatidyl inositol-4, 5-bisphosphate (PIP2), a required early event of T-lymphocyte activation. The study involved 46 iron-deficient (ID), 26 control (C) and 23 pair-fed (PF) mice, and ID mice that were repleted for 3 (n = 16), 7 (n = 17) or 14 d (n = 18). Mice were killed after 40-63 d (mean, 48 d) of consuming the test diet (0.09 mmol/kg iron) or the control diet (0.9 mmol/kg). The mean (+/-SEM) hemoglobin concentrations were 57 +/- 16.7, 176 +/- 2.6 and 181 +/- 9.7 g/L for ID, C and PF groups, respectively. After splenic lymphocytes were labeled in vitro with 3H-myoinositol for 3 h, PIP2 hydrolysis was estimated by measuring the radioactivity recovered as a mixture of inositol mono-, di- and triphosphate (IP) from concanavalin A (0, 1, 2.5, 5 and 10 mg/L) activated cells. Although cells from ID mice and those from mice repleted for 3 d incorporated slightly more radioactivity in cellular phospholipids than did cells from C or PF mice, less (P < 0.005) was recovered as IP than in controls, suggesting impaired conversion of the precursor to PIP2. At almost all incubation periods (10-120 min) and mitogen concentrations, the rate of PIP2 hydrolysis expressed as the ratio of radioactivity obtained in Con A-treated to untreated cells was significantly (P < 0.05) reduced in cells from ID mice compared with those obtained from C and PF mice. For cells that were activated for 60 min or less, iron repletion for 14 d significantly (P < 0.05) improved the rate of PIP2 hydrolysis. PIP2 hydrolysis positively and significantly (P < 0.05) correlated (r = 0.27-0.56) with indicators of iron status. Mitogenic response was also significantly (P < 0.05) reduced in ID but not PF mice, and it was corrected by iron repletion for 3, 7 or 14 d. Lymphocyte proliferation positively (r = 0.27-0.37, P < 0.01) correlated with indices of iron status and IP ratios. The data suggest that reduced PIP2 hydrolysis contributes to impaired blastogenesis in iron deficiency.
Collapse
Affiliation(s)
- S R Kuvibidila
- Louisiana State University, School of Medicine, Department of Pediatrics, Division of Hematology/Oncology, New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
31
|
Simonis G, Marquetant R, Röthele J, Strasser RH. The cardiac adrenergic system in ischaemia: differential role of acidosis and energy depletion. Cardiovasc Res 1998; 38:646-54. [PMID: 9747432 DOI: 10.1016/s0008-6363(98)00057-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE Acute myocardial ischaemia has been shown to modulate the beta-adrenergic system and to activate protein kinase C. The aim of this study was to investigate if two important components of ischaemia, i.e. energy depletion or acidosis, may contribute to these changes. METHODS Isolated rat hearts were perfused either with anoxia (in the absence of oxygen) or with cyanide in the absence of glucose as models of energy depletion with a loss of high energy phosphates. Alternatively, isolated hearts were perfused with acidic modified Krebs-Henseleit solution to induce acidosis. RESULTS Energy depletion induced by cyanide perfusion leads to an increase of beta-adrenergic receptors (81 +/- 7 vs. 50 +/- 3 fmol/mg protein, p < or = 0.05) comparable to the changes observed in ischaemia, yet without any change of total adenylyl cyclase activity or protein kinase C activity. Similar, yet less pronounced changes were induced by anoxic perfusion. Acidic perfusion, in contrast, promotes a translocation of protein kinase C to the plasma membranes, suggesting its rapid activation. Additionally, an increased total forskolin-stimulated activity of adenylyl cyclase (515 +/- 16 vs. 428 +/- 17 pmol/min/mg, p < or = 0.05) was observed. Both were comparable to the sensitization observed in early ischaemia. In acidosis, the density of beta-adrenergic receptors remained unaltered. CONCLUSIONS These data suggest that the regulation of cardiac beta-adrenergic receptors is susceptible to energy depletion, but not to acidosis, whereas the intracellular enzymes both adenylyl cyclase and protein kinase C may be regulated by intracellular acidosis. This is the first differentiation of distinct components of ischaemia modulating the beta-adrenergic signal transduction pathway. Both components may be operative in concert in acute myocardial ischaemia and may contribute to the regulation of these components of signal transduction observed in acute ischaemia.
Collapse
Affiliation(s)
- G Simonis
- University of Heidelberg, Medical Center, Dept. Cardiology, Germany
| | | | | | | |
Collapse
|
32
|
Gay JC, Raddassi K, Truett AP, Murray JJ. Phosphatase activity regulates superoxide anion generation and intracellular signaling in human neutrophils. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1336:243-53. [PMID: 9305796 DOI: 10.1016/s0304-4165(97)00034-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Phosphorylation of components of the neutrophil NADPH oxidase plays a critical role in activation and maintenance of superoxide anion (O2-) generation. To investigate the role of dephosphorylation by phosphatases in regulating O2- production, human neutrophils were treated with calyculin A, a potent inhibitor of protein phosphatases 1 and 2A, prior to stimulation. Calyculin A alone did not stimulate O2- production. However, neutrophils exposed to 50 nM calyculin A and the chemotactic peptide formyl-met-leu-phe (FMLP, 100 nM) displayed markedly enhanced O2- production in comparison to cells stimulated with FMLP alone (28.63 +/- 7.00 versus 8.69 +/- 3.69 nmol O2-/1.5 x 10(6) neutrophils/5 min, respectively, n = 18, p < 0.001), with an increased duration of O2- production. In contrast, phosphatase-inhibition decreased oxidative responsiveness to phorbol myristate acetate (PMA, > or = 16 nM). We next examined the effect of calyculin A on products of the phosphatidylcholine-specific phospholipase D (PLD) pathway by assaying the mass levels of phosphatidic acid (PA), choline and diacylglycerol (DAG). Calyculin A increased both PA and choline production to 224 +/- 28% and 315 +/- 61% of FMLP-stimulated controls, respectively (p < 0.01, n = 7) without significantly increasing DAG. Also, membrane protein kinase C activity increased more than 10-fold in FMLP-stimulated cells exposed to calyculin A but decreased in cells stimulated with PMA following calyculin A pre-treatment. These results suggest that phosphatases exert variable and stimulus-dependent effects on pathways leading to O2- production. Further, it appears that phospholipase D activity and PA generation represent important steps in the pathway for NADPH activation triggered by FMLP.
Collapse
Affiliation(s)
- J C Gay
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232-2574, USA
| | | | | | | |
Collapse
|
33
|
Ratushnyak AS, Zapara TA, Zharkikh AA, Ratushnyak OA. Effects of changes in dynamic equilibrium in microtubule and microfilament systems on the plastic responses of neurons. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 1997; 27:353-9. [PMID: 9252991 DOI: 10.1007/bf02462935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Studies were carried out on the effects of disruption and stabilization of microtubules and microfilaments on the formation of neuronal plastic responses in isolated nerve cells of the mollusk Lymnaea stagnalis. Disruption of these cytoskeletal elements prevented the development of neuronal plastic responses. Microtubule stabilization produced a dynamic relationship between the development and retention of neuronal plastic responses and series of stimuli. Stabilization of microfilaments blocked the development but promoted the retention of these neuronal responses.
Collapse
Affiliation(s)
- A S Ratushnyak
- Institute of Computer Technology, Russian Academy of Sciences, Siberian Branch, Novosibirsk
| | | | | | | |
Collapse
|
34
|
Coburn RF, Labelle EF, Griffiths T, Baron CB. Smooth muscle sarcolemma-associated phospholipase C-beta 2; agonist-evoked translocation. J Cell Physiol 1997; 171:271-83. [PMID: 9180896 DOI: 10.1002/(sici)1097-4652(199706)171:3<271::aid-jcp5>3.0.co;2-l] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
About 25% of the total cellular PLC beta 2 content was found to be associated with a sarcolemmal fraction (SARC) isolated from unstimulated porcine trachealis smooth muscle. SARC-associated PLC beta 2 was located within two compartments, a detergent-extractable compartment and a nondetergent extractable compartment. SARC PLC beta 2 was measured after extraction with 0.6 M KCI; therefore, PLC beta 2 was not bound solely by electrostatic forces within either of these compartments. PLC beta 2 was shown to translocate from cytosol to SARC during a 20-sec activation of intact muscle with a muscarinic agonist, carbachol (CARB); i.e., cytosolic total PLC beta 2 content decreased significantly to 73 +/- 7% of control and SARC total PLC beta 2 content increased to 180 +/- 15% of control value. This translocation was maintained at 5 min of CARB. CARB-evoked translocation occurred into the detergent-extractable SARC fraction, and PLC beta 2 content in this fraction increased 300% compared with that in unstimulated muscle. After CARB, SARC PLC beta 2 content accounted for > 50% of total cellular PLC beta 2 content. CARB-evoked increase in PLC activity in SARC paralleled the increase in PLC beta 2 content. CARB-induced translocations of PLC beta 2 from the cytosol to SARC were of a similar magnitude as occurred with phorbol ester-induced translocations of PKC alpha.
Collapse
Affiliation(s)
- R F Coburn
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, USA
| | | | | | | |
Collapse
|
35
|
Bagchi D, Wetscher GJ, Bagchi M, Hinder PR, Perdikis G, Stohs SJ, Hinder RA, Das DK. Interrelationship between cellular calcium homeostasis and free radical generation in myocardial reperfusion injury. Chem Biol Interact 1997; 104:65-85. [PMID: 9212776 DOI: 10.1016/s0009-2797(97)03766-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This review describes the interrelationship between two important biological factors, intracellular calcium overloading and oxygen-derived free radicals, which play a crucial role in the pathogenesis of myocardial ischemic reperfusion injury. Free radicals are generated during the reperfusion of ischemic myocardium, and polyunsaturated fatty acids in the membrane phospholipids are the likely targets of the free radical attack. On the other hand, activation of phospholipases can provoke the breakdown of membrane phospholipids which results in the activation of arachidonate cascade leading to the generation of prostaglandins, and oxygen free radicals can be produced during the interconversion of the prostaglandins. In conclusion, it has been emphasized that the two seemingly different causative factors of reperfusion injury, intracellular calcium overloading and free radical generation are, in fact, highly interrelated.
Collapse
Affiliation(s)
- D Bagchi
- Department of Surgery, Creighton University, Omaha, NE, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Mosior M, Epand RM. Protein kinase C: an example of a calcium-regulated protein binding to membranes (review). Mol Membr Biol 1997; 14:65-70. [PMID: 9253765 DOI: 10.3109/09687689709068436] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The location of the calcium-binding domain on protein kinase C is being addressed by mutational and structural studies. This work can be complemented by detailed studies of the properties of the binding of the enzyme to membranes. These binding studies have revealed a number of unique pieces of information about the properties of Ca(2+)-prompted membrane partitioning, including the fact that there is only one Ca(2+)-binding site which regulates the partitioning of the enzyme and that this site is located 0.3 nm from the membrane interface. Furthermore, the binding of protein kinase C to membranes has been shown to enhance the affinity of the enzyme for Ca(2+) by several orders of magnitude. We illustrate how contributions of the interactions of proteins with other molecules also affect the concentration of calcium required to affect membrane partitioning. Only when all of these factors are considered can a quantitative description of Ca(2+)-regulated protein binding to membranes be achieved. Thus conformational studies, together with classical thermodynamic studies, can provide a more detailed understanding of the functional, as well as, the structural, properties of amphitropic proteins.
Collapse
Affiliation(s)
- M Mosior
- Department of Biochemistry, McMaster University Health Sciences Centre, Hamilton, ON, Canada
| | | |
Collapse
|
37
|
Shors TJ, Elkabes S, Selcher JC, Black IB. Stress persistently increases NMDA receptor-mediated binding of [3H]PDBu (a marker for protein kinase C) in the amygdala, and re-exposure to the stressful context reactivates the increase. Brain Res 1997; 750:293-300. [PMID: 9098555 DOI: 10.1016/s0006-8993(96)01369-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The long-term consequences of acute stress on [3H]phorbol 12,13-dibutyrate ([3H]PDBu) binding, a marker for protein kinase C (PKC) activity, were investigated. In the first experiment, exposure to acute restraint and intermittent tail-shock increased [3H]PDBu binding in the amygdala but not in the hippocampus or cerebral cortex. The increase was persistent, lasting at least 24 h after stressor cessation. In the second experiment, it was determined that the stress-induced increase in binding in the amygdala was dependent on NMDA receptor activation; rats injected with a competitive NMDA receptor antagonist prior to the stressor did not exhibit the increased binding in the amygdala 24 h later. In the third experiment, re-exposure to the stressful context 96 h after stressor cessation reactivated the stress-induced increase the binding of [3H]PDBu in the amygdala. Re-exposure to the context also increased binding in the thalamus and area CA1 of the hippocampus. [3H]PDBu binds preferentially to PKC in the membrane and, therefore, these results suggest that stress induces the translocation of PKC from its resting compartments in the cytosol to the membrane. Its dependence on NMDA receptor activation implicates isoforms of PKC that are sensitive to intracellular calcium, such as PKC gamma. The results further suggest that a "psychological' manipulation, viz. context re-exposure, can reactivate the persistent increase in [3H]PDBu binding in the amygdala.
Collapse
Affiliation(s)
- T J Shors
- Department of Psychology, Princepton University, NJ 08544, USA.
| | | | | | | |
Collapse
|
38
|
Abstract
Infection of human erythrocytes with the malaria parasite Plasmodium falciparum induces many morphological and biochemical changes in the host cell. Host serine/threonine protein kinases could be involved in some of these processes. The aim of this study was to determine the effect of infection on red blood cell protein kinase C (PKC) and establish the importance of this enzyme in parasite growth and sexual stage differentiation. Phorbol myristate acetate (PMA)-induced translocation of erythrocyte PKC activity is impaired in erythrocytes enriched for mature asexual stage infected cells. Western blotting shows that this is due to a relative reduction in membrane PKC protein levels rather than inhibition of enzyme activity and analysis of PKC activity isolated from whole cell lysates by DE52 chromatography suggests that total activatable PKC levels are lower in infected erythrocytes. A reduction in PMA-induced activation is also observed in PKC assays performed in situ. Downregulation of erythrocyte PKC by overnight incubation with PMA before infection causes a significant decrease in the rate of the asexual growth, suggesting that the enzyme, although lost later in infection, may be important in the earlier development of the parasite. By contrast, the lack of PKC had no effect on the production of sexual stage parasites.
Collapse
|
39
|
Abstract
AbstractInfection of human erythrocytes with the malaria parasite Plasmodium falciparum induces many morphological and biochemical changes in the host cell. Host serine/threonine protein kinases could be involved in some of these processes. The aim of this study was to determine the effect of infection on red blood cell protein kinase C (PKC) and establish the importance of this enzyme in parasite growth and sexual stage differentiation. Phorbol myristate acetate (PMA)-induced translocation of erythrocyte PKC activity is impaired in erythrocytes enriched for mature asexual stage infected cells. Western blotting shows that this is due to a relative reduction in membrane PKC protein levels rather than inhibition of enzyme activity and analysis of PKC activity isolated from whole cell lysates by DE52 chromatography suggests that total activatable PKC levels are lower in infected erythrocytes. A reduction in PMA-induced activation is also observed in PKC assays performed in situ. Downregulation of erythrocyte PKC by overnight incubation with PMA before infection causes a significant decrease in the rate of the asexual growth, suggesting that the enzyme, although lost later in infection, may be important in the earlier development of the parasite. By contrast, the lack of PKC had no effect on the production of sexual stage parasites.
Collapse
|
40
|
Nilsson N, Wallén-Ohman M, Ohlin M, Borrebaeck CA. Altered gene expression associated with apoptosis in a pre-B-leukemic cell line following cross-linking of MHC class I. Exp Cell Res 1997; 231:190-7. [PMID: 9056426 DOI: 10.1006/excr.1996.3454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The major histocompatibility complex class I (MHC-I) has recently been shown not only to present antigens to the immune system but also to mediate transmembrane signaling, resulting in activation, inactivation, or apoptosis. Such signaling has been observed in both normal and malignant cells of the B and T cell lineage. Cross-linking of MHC-I on the pre-B-acute-lymphocytic cell line KM-3 induces an apoptotic process, which becomes evident after approximately 12 h. In order to better understand the mechanisms regulating this apoptotic process, we have investigated both gene expression and the effect of cross-linking on certain intracellular events. Differential display PCR was used to isolate two gene fragments whose level of expression was associated with the induction of apoptosis as they were downregulated in KM-3 cells following MHC-I cross-linking. These genes encode novel molecules whose function remains to be elucidated. It was further demonstrated that the apoptotic process was not accompanied by changes in [Ca2+]i, the level of activation of NF-kappaB, or changes in protein kinase C activity and that the initiation of apoptosis could be prevented by phorbol ester treatment. It is thus suggested that multiple, fine-tuned molecular events determine the outcome of cross-linking of MHC-I in this pre-B-lymphocytic cell line.
Collapse
Affiliation(s)
- N Nilsson
- Department of Immunotechnology, Lund University, Lund, S-220 07, Sweden
| | | | | | | |
Collapse
|
41
|
Abstract
Interleukin-2 (IL-2), secreted principally by activated helper T-cells, plays a pivotal role in the generation and regulation of the immune response. The various biologic functions of IL-2 have been the focus of intensive study over the years and have been well worked out. By contrast, an understanding of the intracellular signals coupled to the IL-2 receptor and responsible for mediating IL-2 effects in T-cells is far less developed, and the role that protein kinase C (PKC) may play in the various cellular responses to IL-2 receptor activation is unclear. In this article we will discuss IL-2, its receptors, and IL-2 signal transduction in relation to the physiological roles PKC activation may play in IL-2-mediated activation of T-cells and other hematopoietic cells.
Collapse
Affiliation(s)
- Y Lu
- Cellular Neurobiology Group, Institute for Biological Sciences, National Research Council of Canada, Ottawa, Canada
| | | |
Collapse
|
42
|
Bronfman M, Nuñez L, Orellana A, Burzio V, Hidalgo P. Peroxisome proliferators and signal transduction. Ann N Y Acad Sci 1996; 804:403-12. [PMID: 8993559 DOI: 10.1111/j.1749-6632.1996.tb18631.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- M Bronfman
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
43
|
Affiliation(s)
- J P Liu
- Department of Medical Oncology, Newcastle Mater Misericordiae Hospital, New South Wales, Australia
| |
Collapse
|
44
|
Si-Tahar M, Renesto P, Falet H, Rendu F, Chignard M. The phospholipase C/protein kinase C pathway is involved in cathepsin G-induced human platelet activation: comparison with thrombin. Biochem J 1996; 313 ( Pt 2):401-8. [PMID: 8573071 PMCID: PMC1216922 DOI: 10.1042/bj3130401] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cathepsin G, an enzyme released by stimulated polymorphonuclear neutrophils, and thrombin are two human proteinases which potently trigger platelet activation. Unlike thrombin, the mechanisms by which cathepsin G initiates platelet activation have yet to be elucidated. The involvement of the phospholipase C (PLC)/protein kinase C (PKC) pathway in cathepsin G-induced activation was investigated and compared with stimulation by thrombin. Exposure of 5-[14C]hydroxytryptamine-labelled platelets to cathepsin G, in the presence of acetylsalicylic acid and phosphocreatine/creatine kinase, induced platelet aggregation and degranulation in a concentration-dependent manner (0.1-3.0 microM). Time-course studies (0-180 s) comparing equivalent concentrations of cathepsin G (3 microM) and thrombin (0.5 unit/ml) resulted in very similar transient hydrolysis of phosphatidylinositol 4,5-bisphosphate and steady accumulation of phosphatidic acid. In addition cathepsin G, like thrombin, initiated the production of inositol phosphates. The neutrophil-derived proteinase also induced phosphorylation of both the myosin light chain and pleckstrin, a substrate for PKC, to levels similar to those observed in platelets challenged with thrombin. Inhibition of PKC by GF 109203X, a specific inhibitor, suppressed platelet aggregation and degranulation to the same extent for both proteinases. Using fura 2-loaded platelets, the rise in the cytosolic free Ca2+ concentration induced by cathepsin G was shown to result, as for thrombin, from both mobilization of internal stores and Ca2+ entry across the plasma membrane. These findings provide evidence that cathepsin G stimulates the PLC/PKC pathway as potently as does thrombin, independently of thromboxane A2 formation and ADP release, and that this pathway is required for platelet functional responses.
Collapse
Affiliation(s)
- M Si-Tahar
- Unité de Pharmacologie Cellulaire, Unité Associée Institut Pasteur/INSERM U285, Institut Pasteur, Paris, France
| | | | | | | | | |
Collapse
|
45
|
Affiliation(s)
- A C Newton
- Department of Pharmacology, University of California at San Diego, La Jolla 92093-0640, USA
| |
Collapse
|
46
|
Ohkusu K, Isobe K, Hidaka H, Nakashima I. Elucidation of the protein kinase C-dependent apoptosis pathway in distinct subsets of T lymphocytes in MRL-lpr/lpr mice. Eur J Immunol 1995; 25:3180-6. [PMID: 7489761 DOI: 10.1002/eji.1830251129] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
MRL-lpr mice are severely impaired in the Fas pathway of apoptosis induction. We here evaluate another pathway of apoptosis induction in MRL-lpr mice which is protein kinase C (PKC) dependent. Despite the defect of the Fas pathway, apoptosis developed during culture in vitro in splenic T lymphocytes from MRL-lpr mice more extensively than in T lymphocytes from MRL-(+/+) mice. Apoptosis induction in the former cells was then found to be greatly promoted by PKC inhibitor H-7, and partially prevented by PKC activator phorbol 12-myristate 13-acetate (PMA). High sensitivity to H-7, but not to PKA inhibitor HA 1004, of these cells for apoptosis induction was confirmed by detailed time course and dose-dependency experiments of the drug effect. Population analysis showed that both CD4+ T lymphocytes and CD8+ T lymphocytes from MRL-lpr mice were highly sensitive to H-7, whereas CD8+ T lymphocytes, but not CD4+ T lymphocytes, from MRL-(+/+) mice were susceptible to the reagent. Interestingly, B220+ Thy-1+ CD4-CD8- T lymphocytes from MRL-lpr mice were most sensitive to H-7 for apoptosis induction. Correspondingly, the membrane-translocated activated PKC-alpha level in splenic T lymphocytes from MRL-lpr was more extensively up-regulated by PMA than in splenic T lymphocytes from MRL-(+/+). These results suggest that some signal consistently activates PKC in MRL-lpr T lymphocytes, and this event is needed for survival of these cells. On the other hand, CD4+ CD8+ thymocytes were deleted by apoptosis in culture with PMA, whether these thymocytes were from MRL-lpr mice or MRL-(+/+) mice. This finding suggested that the apoptosis induction pathway linked to PKC activation is intact in CD4+ CD8+ thymocytes from the Fas-defective MRL-lpr mice. We conclude from these results that the PKC-dependent signal pathways for either cell death or cell activation are intact or even accelerated in lpr mice, which could both compensate for the loss of the Fas pathway and promote the generation of autoreactive T lymphocytes.
Collapse
Affiliation(s)
- K Ohkusu
- Department of Immunology, Nagoya University School of Medicine, Japan
| | | | | | | |
Collapse
|
47
|
Marsh SJ, Trouslard J, Leaney JL, Brown DA. Synergistic regulation of a neuronal chloride current by intracellular calcium and muscarinic receptor activation: a role for protein kinase C. Neuron 1995; 15:729-37. [PMID: 7546751 DOI: 10.1016/0896-6273(95)90160-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Using perforated patch recordings in combination with intracellular Ca2+ ([Ca2+]i) fluorescence measurements, we have identified a delayed Ca(2+)-dependent Cl- current in a mammalian sympathetic ganglion cell. This Cl- current is induced by the synergistic action of Ca2+ and diacylglycerol (DAG) and is blocked by inhibitors of protein kinase C. As a result, the current can be induced by acetylcholine through the conjoint activation of nicotinic receptors (to produce a rise in [Ca2+]i) and muscarinic receptors (to generate DAG). This demonstrates an unusual form of synergism between the two effects of a single transmitter mediated via separate receptors operating within a time scale that could be of physiological significance.
Collapse
Affiliation(s)
- S J Marsh
- Department of Pharmacology, University College London, England
| | | | | | | |
Collapse
|
48
|
Murphy TL, Sakamoto T, Hinton DR, Spee C, Gundimeda U, Soriano D, Gopalakrishna R, Ryan SJ. Migration of retinal pigment epithelium cells in vitro is regulated by protein kinase C. Exp Eye Res 1995; 60:683-95. [PMID: 7641851 DOI: 10.1016/s0014-4835(05)80010-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The migration of retinal pigment epithelial (RPE) cells is an important step in various pathologic conditions, including subretinal neovascularization (SRN) and proliferative vitreoretinopathy (PVR). Therefore, elucidation of the mechanism of RPE migration may be useful in devising effective treatment for these disorders. Since protein kinase C (PKC) has been shown to regulate the migration of other cell types, we studied the effects of PKC agonists and antagonists on RPE migration. We used an in vitro wound healing model in which a small area of a confluent monolayer of bovine RPE cells was denuded with a razor blade. The cultures were subsequently incubated with agents known to stimulate [phorbol 12-myristate 13-acetate (PMA)] or inhibit (calphostin C, staurosporine) PKC. After 20 hr, migration was measured as the number of cells that had entered the denuded area. We also measured the translocation of PKC from the cytosol to the membrane in order to determine the activation or inhibition of PKC by PMA and calphostin C in the cells. The phorbol ester PMA stimulated migration by 41%, and calphostin C and staurosporine inhibited migration by 38% and 31%, respectively, in a medium supplemented with 10% serum. To determine the requirement for serum in this modulation, we also measured the effects of PMA and calphostin C on RPE migration in serum-free medium. Under these conditions, basal migration was greatly decreased, but PMA stimulated migration by 177% and calphostin C inhibited migration by 93%. Since PKC modulation is known to induce the proliferation of cells, we also tested the effects of these agents on growth-inhibited migration by pretreating the cells with the antiproliferative drug mitomycin C. We found that modulation of PKC under these conditions equally affected growth-inhibited and growth-dependent migration. Therefore, based on the increase in RPE migration induced by a PKC agonist, and the decrease in migration caused by PKC antagonists, it is suggested that PKC-mediated signal transduction plays a crucial role in RPE cell migration. This knowledge may be useful in devising effective treatments for SRN and PVR.
Collapse
Affiliation(s)
- T L Murphy
- Doheny Eye Institute, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Chen CC, Chang J, Lin WW. Differential expression of protein kinase C isoforms in glial and neuronal cells. Translocation and down-regulation of PKC isoforms in C6 glioma and NG 108-15 hybrid cells: effects of extracellular Ca(2+)-depletion. Neurochem Int 1995; 26:455-64. [PMID: 7492943 DOI: 10.1016/0197-0186(94)00157-p] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Protein kinase C (PKC), the major receptor for tumor-promoting phorbol esters, consists of a family of at least 12 distinct lipid-regulated enzymes. We examined the expression and regulation of PKC isoforms in C6-glioma and NG 108-15 hybrid cells. Western blot analysis indicated that both cell lines express four PKC isoforms, PKC alpha, PKC delta, PKC epsilon and PKC zeta. The expression of PKC alpha and PKC delta in C6-glioma cells was more abundant than NG 108-15 cells, however, PKC epsilon in NG 108-15 was more abundant than C6-glioma cells in which PKC epsilon was almost undetectable. Treatment of both cells with TPA for 10 min resulted in the translocation of PKC alpha, PKC delta and PKC epsilon to the membrane fraction. When the intact cells were treated with Ca(2+)-free, EGTA containing physiological saline solution, the membrane bound conventional PKC alpha (cPKC alpha) was greatly reduced and cytosolic cPKC alpha was only slightly increased. However, neither membrane bound nor cytosolic new PKC delta (nPKC delta), nPKC epsilon and atypical PKC zeta (aPKC zeta) was affected by extracellular Ca2+ depletion. In this condition, the translocation of cPKC alpha, nPKC delta and nPKC epsilon induced by TPA still occurred, however, that of cPKC alpha was reduced more than in the normal condition. After long-term treatment (17 h) with TPA, cPKC alpha, nPKC delta and nPKC epsilon were down-regulated both in the cytosol and membrane. The phenomena of cPKC alpha were confirmed by measuring the PKC activity with histone as the substrate. From in vitro endogenous phosphorylation studies, a 31 kDa substrate protein phosphorylation in C6 glioma cell membrane and 31 and 26 kDa proteins in NG 108-15 cell membrane were increased in the translocation but disappeared in the down-regulation of PKC.
Collapse
Affiliation(s)
- C C Chen
- Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei
| | | | | |
Collapse
|
50
|
Pirc-Danoewinata H, Onderka E, Porenta G, Kundi M, Nowotny H, Schlögl E, Heinz R, Kreiner G, Marosi C. Phorbol-12,13-dibutyrate improves the quality of cytogenetic preparation in lymphoid malignancies. CANCER GENETICS AND CYTOGENETICS 1995; 80:129-34. [PMID: 7736430 DOI: 10.1016/0165-4608(94)00179-f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In cytogenetic preparation of lymphoid malignancies we investigated the quantitative and qualitative impact of phorbol-12,-13-dibutyrate (P) and of this tumor promoter in combination with the calcium ionophore A23187 (PA). Using parallel cultures of unstimulated and stimulated preparations, the effect was examined in 13 patients with malignant lymphomas and six patients with acute lymphoblastic leukemias (ALL). Focusing on high-quality analyzable metaphases, the best results were found in seven of 13 cases with lymphomas and five of six patients with ALL in the cultures supplemented with phorbol-12,13-dibutyrate. The yield of metaphases of good quality regarding length, spreading, and banding of chromosomes was regularly better in P-stimulated 24-hour culture (p < 0.05), followed by 48-hour cultures stimulated with P alone. Addition of the calcium-ionophore was of no further benefit. The yield of the unstimulated direct harvest was rather poor in nearly all patients investigated. Because no mutagenic effect of P was observed, the use of this mitogen may offer interesting perspectives in cytogenetic analysis of lymphoid malignancies and perhaps also in other tumors with low mitotic indexes.
Collapse
|