1
|
Rassier DE, Månsson A. Mechanisms of myosin II force generation: insights from novel experimental techniques and approaches. Physiol Rev 2025; 105:1-93. [PMID: 38451233 DOI: 10.1152/physrev.00014.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
Myosin II is a molecular motor that converts chemical energy derived from ATP hydrolysis into mechanical work. Myosin II isoforms are responsible for muscle contraction and a range of cell functions relying on the development of force and motion. When the motor attaches to actin, ATP is hydrolyzed and inorganic phosphate (Pi) and ADP are released from its active site. These reactions are coordinated with changes in the structure of myosin, promoting the so-called "power stroke" that causes the sliding of actin filaments. The general features of the myosin-actin interactions are well accepted, but there are critical issues that remain poorly understood, mostly due to technological limitations. In recent years, there has been a significant advance in structural, biochemical, and mechanical methods that have advanced the field considerably. New modeling approaches have also allowed researchers to understand actomyosin interactions at different levels of analysis. This paper reviews recent studies looking into the interaction between myosin II and actin filaments, which leads to power stroke and force generation. It reviews studies conducted with single myosin molecules, myosins working in filaments, muscle sarcomeres, myofibrils, and fibers. It also reviews the mathematical models that have been used to understand the mechanics of myosin II in approaches focusing on single molecules to ensembles. Finally, it includes brief sections on translational aspects, how changes in the myosin motor by mutations and/or posttranslational modifications may cause detrimental effects in diseases and aging, among other conditions, and how myosin II has become an emerging drug target.
Collapse
Affiliation(s)
- Dilson E Rassier
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Alf Månsson
- Physiology, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
2
|
Slater B, Jung W, Kim T. Emergence of diverse patterns driven by molecular motors in the motility assay. Cytoskeleton (Hoboken) 2024; 81:902-912. [PMID: 37947256 PMCID: PMC11082065 DOI: 10.1002/cm.21808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/09/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
Actomyosin contractility originating from interactions between F-actin and myosin motors in the actin cytoskeleton generates mechanical forces and drives a wide range of cellular processes including cell migration and cytokinesis. To probe the interactions between F-actin and myosin motors, the myosin motility assay has been popularly employed, which consists of myosin heads attached to a glass surface and F-actins gliding on the surface via interactions with the heads. Several experiments have shown that F-actins move in a collective fashion due to volume-exclusion effects between neighboring F-actins. Furthermore, Computational models have shown how changes in key parameters lead to diverse pattern formation in motility assay. However, in most of the computational models, myosin motors were implicitly considered by applying a constant propulsion force to filaments to reduce computational cost. This simplification limits the physiological relevance of the insights provided by the models and potentially leads to artifacts. In this study, we employed an agent-based computational model for the motility assay with explicit immobile motors interacting with filaments. We rigorously account for the kinetics of myosin motors including the force-velocity relationship for walking and the binding and unbinding behaviors. We probed the effects of the length, rigidity, and concentration of filaments and repulsive strength on collective movements and pattern formation. It was found that four distinct types of structures-homogeneous networks, flocks, bands, and rings-emerged as a result of collisions between gliding filaments. We further analyzed the frequency and morphology of these structures and the curvature, alignment, and rotational motions of filaments. Our study provides better insights into the origin and properties of patterns formed by gliding filaments beyond what was shown before.
Collapse
Affiliation(s)
- Brandon Slater
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIndianaUSA
| | - Wonyeong Jung
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIndianaUSA
| | - Taeyoon Kim
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIndianaUSA
- Faculty of Science and TechnologyKeio UniversityYokohamaJapan
| |
Collapse
|
3
|
Spudich JA. From amoeboid myosin to unique targeted medicines for a genetic cardiac disease. Front Physiol 2024; 15:1496569. [PMID: 39529926 PMCID: PMC11550953 DOI: 10.3389/fphys.2024.1496569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
The importance of fundamental basic research in the quest for much needed clinical treatments is a story that constantly must be retold. Funding of basic science in the USA by the National Institutes of Health and other agencies is provided under the assumption that fundamental research eventually will lead to improvements in healthcare worldwide. Understanding how basic research is connected to clinical developments is important, but just part of the story. Many basic science discoveries never see the light of day in a clinical setting because academic scientists are not interested in or do not have the inclination and/or support for entering the world of biotechnology. Even if the interest and inclination are there, often the unknowns about how to enter that world inhibit taking the initial step. Young investigators often ask me how I incorporated biotech opportunities into my otherwise purely academic research endeavors. Here I tell the story of the foundational basic science and early events of my career that led to forming the biotech companies responsible for the development of unique cardiac drugs, including mavacamten, a first in class human β-cardiac myosin inhibitor that is changing the lives of hypertrophic cardiomyopathy patients.
Collapse
Affiliation(s)
- James A. Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
4
|
Melbacke A, Salhotra A, Ušaj M, Månsson A. Improved longevity of actomyosin in vitro motility assays for sustainable lab-on-a-chip applications. Sci Rep 2024; 14:22768. [PMID: 39354041 PMCID: PMC11445438 DOI: 10.1038/s41598-024-73457-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/17/2024] [Indexed: 10/03/2024] Open
Abstract
In the in vitro motility assay (IVMA), actin filaments are observed while propelled by surface-adsorbed myosin motor fragments such as heavy meromyosin (HMM). In addition to fundamental studies, the IVMA is the basis for a range of lab-on-a-chip applications, e.g. transport of cargoes in nanofabricated channels in nanoseparation/biosensing or the solution of combinatorial mathematical problems in network-based biocomputation. In these applications, prolonged myosin function is critical as is the potential to repeatedly exchange experimental solutions without functional deterioration. We here elucidate key factors of importance in these regards. Our findings support a hypothesis that early deterioration in the IVMA is primarily due to oxygen entrance into in vitro motility assay flow cells. In the presence of a typically used oxygen scavenger mixture (glucose oxidase, glucose, and catalase), this leads to pH reduction by a glucose oxidase-catalyzed reaction between glucose and oxygen but also contributes to functional deterioration by other mechanisms. Our studies further demonstrate challenges associated with evaporation and loss of actin filaments with time. However, over 8 h at 21-26 °C, there is no significant surface desorption or denaturation of HMM if solutions are exchanged manually every 30 min. We arrive at an optimized protocol with repeated exchange of carefully degassed assay solution of 45 mM ionic strength, at 30 min intervals. This is sufficient to maintain the high-quality function in an IVMA over 8 h at 21-26 °C, provided that fresh actin filaments are re-supplied in connection with each assay solution exchange. Finally, we demonstrate adaptation to a microfluidic platform and identify challenges that remain to be solved for real lab-on-a-chip applications.
Collapse
Affiliation(s)
- Andreas Melbacke
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 39182, Kalmar, Sweden
| | - Aseem Salhotra
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 39182, Kalmar, Sweden
| | - Marko Ušaj
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 39182, Kalmar, Sweden.
| | - Alf Månsson
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 39182, Kalmar, Sweden.
| |
Collapse
|
5
|
Ceron RH, Báez-Cruz FA, Palmer NJ, Carman PJ, Boczkowska M, Heuckeroth RO, Ostap EM, Dominguez R. Molecular mechanisms linking missense ACTG2 mutations to visceral myopathy. SCIENCE ADVANCES 2024; 10:eadn6615. [PMID: 38820162 PMCID: PMC11141634 DOI: 10.1126/sciadv.adn6615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/29/2024] [Indexed: 06/02/2024]
Abstract
Visceral myopathy is a life-threatening disease characterized by muscle weakness in the bowel, bladder, and uterus. Mutations in smooth muscle γ-actin (ACTG2) are the most common cause of the disease, but the mechanisms by which the mutations alter muscle function are unknown. Here, we examined four prevalent ACTG2 mutations (R40C, R148C, R178C, and R257C) that cause different disease severity and are spread throughout the actin fold. R178C displayed premature degradation, R148C disrupted interactions with actin-binding proteins, R40C inhibited polymerization, and R257C destabilized filaments. Because these mutations are heterozygous, we also analyzed 50/50 mixtures with wild-type (WT) ACTG2. The WT/R40C mixture impaired filament nucleation by leiomodin 1, and WT/R257C produced filaments that were easily fragmented by smooth muscle myosin. Smooth muscle tropomyosin isoform Tpm1.4 partially rescued the defects of R40C and R257C. Cryo-electron microscopy structures of filaments formed by R40C and R257C revealed disrupted intersubunit contacts. The biochemical and structural properties of the mutants correlate with their genotype-specific disease severity.
Collapse
Affiliation(s)
- Rachel H. Ceron
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Faviolla A. Báez-Cruz
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas J. Palmer
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peter J. Carman
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Malgorzata Boczkowska
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert O. Heuckeroth
- The Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - E. Michael Ostap
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Roberto Dominguez
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Spudich JA. One must reconstitute the functions of interest from purified proteins. Front Physiol 2024; 15:1390186. [PMID: 38827995 PMCID: PMC11140241 DOI: 10.3389/fphys.2024.1390186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/01/2024] [Indexed: 06/05/2024] Open
Abstract
I am often asked by students and younger colleagues and now by the editors of this issue to tell the history of the development of the in vitro motility assay and the dual-beam single-molecule laser trap assay for myosin-driven actin filament movement, used widely as key assays for understanding how both muscle and nonmuscle myosin molecular motors work. As for all discoveries, the history of the development of the myosin assays involves many people who are not authors of the final publications, but without whom the assays would not have been developed as they are. Also, early experiences shape how one develops ideas and experiments, and influence future discoveries in major ways. I am pleased here to trace my own path and acknowledge the many individuals involved and my early science experiences that led to the work I and my students, postdoctoral fellows, and sabbatical visitors did to develop these assays. Mentors are too often overlooked in historical descriptions of discoveries, and my story starts with those who mentored me.
Collapse
Affiliation(s)
- James A. Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
7
|
Sakamoto R, Murrell MP. F-actin architecture determines the conversion of chemical energy into mechanical work. Nat Commun 2024; 15:3444. [PMID: 38658549 PMCID: PMC11043346 DOI: 10.1038/s41467-024-47593-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/03/2024] [Indexed: 04/26/2024] Open
Abstract
Mechanical work serves as the foundation for dynamic cellular processes, ranging from cell division to migration. A fundamental driver of cellular mechanical work is the actin cytoskeleton, composed of filamentous actin (F-actin) and myosin motors, where force generation relies on adenosine triphosphate (ATP) hydrolysis. F-actin architectures, whether bundled by crosslinkers or branched via nucleators, have emerged as pivotal regulators of myosin II force generation. However, it remains unclear how distinct F-actin architectures impact the conversion of chemical energy to mechanical work. Here, we employ in vitro reconstitution of distinct F-actin architectures with purified components to investigate their influence on myosin ATP hydrolysis (consumption). We find that F-actin bundles composed of mixed polarity F-actin hinder network contraction compared to non-crosslinked network and dramatically decelerate ATP consumption rates. Conversely, linear-nucleated networks allow network contraction despite reducing ATP consumption rates. Surprisingly, branched-nucleated networks facilitate high ATP consumption without significant network contraction, suggesting that the branched network dissipates energy without performing work. This study establishes a link between F-actin architecture and myosin energy consumption, elucidating the energetic principles underlying F-actin structure formation and the performance of mechanical work.
Collapse
Affiliation(s)
- Ryota Sakamoto
- Department of Biomedical Engineering, Yale University, 10 Hillhouse Avenue, New Haven, CT, USA
- Systems Biology Institute, 850 West Campus Drive, West Haven, CT, USA
| | - Michael P Murrell
- Department of Biomedical Engineering, Yale University, 10 Hillhouse Avenue, New Haven, CT, USA.
- Systems Biology Institute, 850 West Campus Drive, West Haven, CT, USA.
- Department of Physics, Yale University, 217 Prospect Street, New Haven, CT, USA.
| |
Collapse
|
8
|
Kekic M, Hanson KL, Perumal AS, Solana G, Rajendran K, Dash S, Nicolau DV, Dobroiu S, Dos Remedios CG, Nicolau DV. Biosensing using antibody-modulated motility of actin filaments on myosin-coated surfaces. Biosens Bioelectron 2024; 246:115879. [PMID: 38056344 DOI: 10.1016/j.bios.2023.115879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/11/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023]
Abstract
Motor proteins, such as myosin and kinesin, are biological molecular motors involved in force generation and intracellular transport within living cells. The characteristics of molecular motors, i.e., their motility over long distances, their capacity of transporting cargoes, and their very efficient energy consumption, recommend them as potential operational elements of a new class of dynamic nano-devices, with potential applications in biosensing, analyte concentrators, and biocomputation. A possible design of a biosensor based on protein molecular motor comprises a surface with immobilized motors propelling cytoskeletal filaments, which are decorated with antibodies, presented as side-branches. Upon biomolecular recognition of these branches by secondary antibodies, the 'extensions' on the cytoskeletal filaments can achieve considerable lengths (longer than several diameters of the cytoskeletal filament carrier), thus geometrically impairing or halting motility. Because the filaments are several micrometers long, this sensing mechanism converts an event in the nanometer range, i.e., antibody-antigen sizes, into an event in the micrometer range: the visualization of the halting of motility of microns-long cytoskeletal filaments. Here we demonstrate the proof of concept of a sensing system comprising heavy-mero-myosin immobilized on surfaces propelling actin filaments decorated with actin antibodies, whose movement is halted upon the recognition with secondary anti-actin antibodies. Because antibodies to the actin-myosin system are involved in several rare diseases, the first possible application for such a device may be their prognosis and diagnosis. The results also provide insights into guidelines for designing highly sensitive and very fast biosensors powered by motor proteins.
Collapse
Affiliation(s)
- Murat Kekic
- Muscle Research Unit, Department of Anatomy, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Kristi L Hanson
- BioNanoEngineering Labs, Faculty of Engineering and Industrial Science, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | | | - Gerardin Solana
- BioNanoEngineering Labs, Faculty of Engineering and Industrial Science, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Kavya Rajendran
- Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, Quebec, H3A 0C3, Canada
| | - Shantoshini Dash
- Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, Quebec, H3A 0C3, Canada
| | - Dan V Nicolau
- BioNanoEngineering Labs, Faculty of Engineering and Industrial Science, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia; Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 1UL, UK
| | - Serban Dobroiu
- Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, Quebec, H3A 0C3, Canada
| | - Cristobal G Dos Remedios
- Muscle Research Unit, Department of Anatomy, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Dan V Nicolau
- BioNanoEngineering Labs, Faculty of Engineering and Industrial Science, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia; Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, Quebec, H3A 0C3, Canada.
| |
Collapse
|
9
|
Liu C, Ruppel KM, Spudich JA. Motility Assay to Probe the Calcium Sensitivity of Myosin and Regulated Thin Filaments. Methods Mol Biol 2024; 2735:169-189. [PMID: 38038849 PMCID: PMC10773985 DOI: 10.1007/978-1-0716-3527-8_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Calcium-dependent activation of the thin filament mediated by the troponin-tropomyosin complex is key in the regulation of actin-myosin based muscle contraction. Perturbations to this system, either physiological (e.g., phosphorylation of myosin light chains) or pathological (e.g., mutations that cause familial cardiomyopathies), can alter calcium sensitivity and thus have important implications in human health and disease. The in vitro motility assay provides a quantitative and precise method to study the calcium sensitivity of the reconstituted myosin-thin filament motile system. Here we present a simple and robust protocol to perform calcium-dependent motility of β-cardiac myosin and regulated thin filaments. The experiment is done on a multichannel microfluidic slide requiring minimal amounts of proteins. A complete velocity vs. calcium concentration curve is produced from one experiment in under 1 h.
Collapse
Affiliation(s)
- Chao Liu
- Department of Biochemistry, Beckman Center B405, Stanford University School of Medicine, Stanford, CA, USA
- Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Kathleen M Ruppel
- Department of Biochemistry, Beckman Center B405, Stanford University School of Medicine, Stanford, CA, USA.
- Cardiovascular Institute, Stanford University, Stanford, CA, USA.
- Department of Pediatrics (Cardiology), Stanford University, Stanford, CA, USA.
| | - James A Spudich
- Department of Biochemistry, Beckman Center B405, Stanford University School of Medicine, Stanford, CA, USA.
- Cardiovascular Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
10
|
Holló A, Billington N, Takagi Y, Kengyel A, Sellers JR, Liu R. Molecular regulatory mechanism of human myosin-7a. J Biol Chem 2023; 299:105243. [PMID: 37690683 PMCID: PMC10579538 DOI: 10.1016/j.jbc.2023.105243] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023] Open
Abstract
Myosin-7a is an actin-based motor protein essential for vision and hearing. Mutations of myosin-7a cause type 1 Usher syndrome, the most common and severe form of deafblindness in humans. The molecular mechanisms that govern its mechanochemistry remain poorly understood, primarily because of the difficulty of purifying stable intact protein. Here, we recombinantly produce the complete human myosin-7a holoenzyme in insect cells and characterize its biochemical and motile properties. Unlike the Drosophila ortholog that primarily associates with calmodulin (CaM), we found that human myosin-7a utilizes a unique combination of light chains including regulatory light chain, CaM, and CaM-like protein 4. Our results further reveal that CaM-like protein 4 does not function as a Ca2+ sensor but plays a crucial role in maintaining the lever arm's structural-functional integrity. Using our recombinant protein system, we purified two myosin-7a splicing isoforms that have been shown to be differentially expressed along the cochlear tonotopic axis. We show that they possess distinct mechanoenzymatic properties despite differing by only 11 amino acids at their N termini. Using single-molecule in vitro motility assays, we demonstrate that human myosin-7a exists as an autoinhibited monomer and can move processively along actin when artificially dimerized or bound to cargo adaptor proteins. These results suggest that myosin-7a can serve multiple roles in sensory systems such as acting as a transporter or an anchor/force sensor. Furthermore, our research highlights that human myosin-7a has evolved unique regulatory elements that enable precise tuning of its mechanical properties suitable for mammalian auditory functions.
Collapse
Affiliation(s)
- Alexandra Holló
- Laboratory of Molecular Physiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA; Department of Biophysics, University of Pécs Medical School, Pécs, Hungary
| | - Neil Billington
- Laboratory of Molecular Physiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA; Department of Biochemistry & Molecular Medicine, School of Medicine, West Virginia University, Morgantown, West Virginia, USA; Microscope Imaging Facility, West Virginia University, Morgantown, West Virginia, USA
| | - Yasuharu Takagi
- Laboratory of Molecular Physiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - András Kengyel
- Department of Biophysics, University of Pécs Medical School, Pécs, Hungary; Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - James R Sellers
- Laboratory of Molecular Physiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | - Rong Liu
- Laboratory of Molecular Physiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA; Department of Biochemistry & Molecular Medicine, School of Medicine, West Virginia University, Morgantown, West Virginia, USA.
| |
Collapse
|
11
|
Singh JP, Mondal PS, Semwal V, Mishra S. Current reversal in polar flock at order-disorder interface. Phys Rev E 2023; 108:034608. [PMID: 37849122 DOI: 10.1103/physreve.108.034608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 09/07/2023] [Indexed: 10/19/2023]
Abstract
We studied a system of polar self-propelled particles (SPPs) on a thin rectangular channel designed into three regions of order-disorder-order. The division of the three regions is made on the basis of the noise SPPs experience in the respective regions. The noise in the two wide regions is chosen lower than the critical noise of order-disorder transition and noise in the middle region or interface is higher than the critical noise. This makes the geometry of the system analogous to the Josephson junction (JJ) in solid-state physics. Keeping all other parameters fixed, we study the properties of the moving SPPs in the bulk as well as along the interface for different widths of the junction. On increasing interface width, the system shows an order-to-disorder transition from coherent moving SPPs in the whole system to the interrupted current for large interface width. Surprisingly, inside the interface, we observed the current reversal for intermediate widths of the interface. Such current reversal is due to the strong randomness present inside the interface, which makes the wall of the interface reflecting. Hence, our study gives new interesting collective properties of SPPs at the interface which can be useful to design switching devices using active agents.
Collapse
Affiliation(s)
- Jay Prakash Singh
- Indian Institute of Technology (BHU), Varanasi 221005, India
- Israel Institute of Technology Technion, Haifa 3200003, Israel
| | | | - Vivek Semwal
- Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Shradha Mishra
- Indian Institute of Technology (BHU), Varanasi 221005, India
| |
Collapse
|
12
|
Fukumoto K, Miyazono Y, Ueda T, Harada Y, Tadakuma H. Evaluating the effect of two-dimensional molecular layout on DNA origami-based transporters. NANOSCALE ADVANCES 2023; 5:2590-2601. [PMID: 37143804 PMCID: PMC10153088 DOI: 10.1039/d3na00088e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/09/2023] [Indexed: 05/06/2023]
Abstract
Cellular transport systems are sophisticated and efficient. Hence, one of the ultimate goals of nanotechnology is to design artificial transport systems rationally. However, the design principle has been elusive, because how motor layout affects motile activity has not been established, partially owing to the difficulty in achieving a precise layout of the motile elements. Here, we employed a DNA origami platform to evaluate the two-dimensional (2D) layout effect of kinesin motor proteins on transporter motility. We succeeded in accelerating the integration speed of the protein of interest (POI) to the DNA origami transporter by up to 700 times by introducing a positively charged poly-lysine tag (Lys-tag) into the POI (kinesin motor protein). This Lys-tag approach allowed us to construct and purify a transporter with high motor density, allowing a precise evaluation on the 2D layout effect. Our single-molecule imaging showed that the densely packed layout of kinesin decreased the run length of the transporter, although its velocity was moderately affected. These results indicate that steric hindrance is a critical parameter to be considered in the design of transport systems.
Collapse
Affiliation(s)
- Kodai Fukumoto
- Institute for Protein Research, Osaka University Osaka 565-0871 Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University Osaka 560-0043 Japan
| | - Yuya Miyazono
- Graduate School of Frontier Science, The University of Tokyo Chiba 277-8562 Japan
| | - Takuya Ueda
- Graduate School of Frontier Science, The University of Tokyo Chiba 277-8562 Japan
- Graduate School of Science and Engineering, Waseda University Tokyo 162-8480 Japan
| | - Yoshie Harada
- Institute for Protein Research, Osaka University Osaka 565-0871 Japan
- Center for Quantum Information and Quantum Biology, Osaka University Osaka 560-0043 Japan
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University Osaka 565-0871 Japan
| | - Hisashi Tadakuma
- Institute for Protein Research, Osaka University Osaka 565-0871 Japan
- Graduate School of Frontier Science, The University of Tokyo Chiba 277-8562 Japan
- School of Life Science and Technology, ShanghaiTech University Shanghai 201210 People's Republic of China
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University Shanghai 201210 People's Republic of China
| |
Collapse
|
13
|
Yampolskaya DS, Kopylova GV, Shchepkin DV, Nabiev SR, Nikitina LV, Walklate J, Ziganshin RH, Bershitsky SY, Geeves MA, Matyushenko AM, Levitsky DI. Pseudo-phosphorylation of essential light chains affects the functioning of skeletal muscle myosin. Biophys Chem 2023; 292:106936. [PMID: 36436358 DOI: 10.1016/j.bpc.2022.106936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
The work aimed to investigate how the phosphorylation of the myosin essential light chain of fast skeletal myosin (LC1) affects the functional properties of the myosin molecule. Using mass-spectrometry, we revealed phosphorylated peptides of LC1 in myosin from different fast skeletal muscles. Mutations S193D and T65D that mimic natural phosphorylation of LC1 were produced, and their effects on functional properties of the entire myosin molecule and isolated myosin head (S1) were studied. We have shown that T65D mutation drastically decreased the sliding velocity of thin filaments in an in vitro motility assay and strongly increased the duration of actin-myosin interaction in optical trap experiments. These effects of T65D mutation in LC1 observed only with the whole myosin but not with S1 were prevented by double T65D/S193D mutation. The T65D and T65D/S193D mutations increased actin-activated ATPase activity of S1 and decreased ADP affinity for the actin-S1 complex. The results indicate that pseudo-phosphorylation of LC1 differently affects the properties of the whole myosin molecule and its isolated head. Also, the results show that phosphorylation of LC1 of skeletal myosin could be one more mechanism of regulation of actin-myosin interaction that needs further investigation.
Collapse
Affiliation(s)
- Daria S Yampolskaya
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky prosp. 33, Moscow 119071, Russia
| | - Galina V Kopylova
- Institute of Immunology and Physiology of the Russian Academy of Sciences, Yekaterinburg 620049, Russia
| | - Daniil V Shchepkin
- Institute of Immunology and Physiology of the Russian Academy of Sciences, Yekaterinburg 620049, Russia
| | - Salavat R Nabiev
- Institute of Immunology and Physiology of the Russian Academy of Sciences, Yekaterinburg 620049, Russia
| | - Larisa V Nikitina
- Institute of Immunology and Physiology of the Russian Academy of Sciences, Yekaterinburg 620049, Russia
| | - Jonathan Walklate
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
| | - Rustam H Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Sergey Y Bershitsky
- Institute of Immunology and Physiology of the Russian Academy of Sciences, Yekaterinburg 620049, Russia
| | - Michael A Geeves
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
| | - Alexander M Matyushenko
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky prosp. 33, Moscow 119071, Russia
| | - Dmitrii I Levitsky
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky prosp. 33, Moscow 119071, Russia.
| |
Collapse
|
14
|
Lee LA, Barrick SK, Meller A, Walklate J, Lotthammer JM, Tay JW, Stump WT, Bowman G, Geeves MA, Greenberg MJ, Leinwand LA. Functional divergence of the sarcomeric myosin, MYH7b, supports species-specific biological roles. J Biol Chem 2022; 299:102657. [PMID: 36334627 PMCID: PMC9800208 DOI: 10.1016/j.jbc.2022.102657] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/14/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
Myosin heavy chain 7b (MYH7b) is an evolutionarily ancient member of the sarcomeric myosin family, which typically supports striated muscle function. However, in mammals, alternative splicing prevents MYH7b protein production in cardiac and most skeletal muscles and limits expression to a subset of specialized muscles and certain nonmuscle environments. In contrast, MYH7b protein is abundant in python cardiac and skeletal muscles. Although the MYH7b expression pattern diverges in mammals versus reptiles, MYH7b shares high sequence identity across species. So, it remains unclear how mammalian MYH7b function may differ from that of other sarcomeric myosins and whether human and python MYH7b motor functions diverge as their expression patterns suggest. Thus, we generated recombinant human and python MYH7b protein and measured their motor properties to investigate any species-specific differences in activity. Our results reveal that despite having similar working strokes, the MYH7b isoforms have slower actin-activated ATPase cycles and actin sliding velocities than human cardiac β-MyHC. Furthermore, python MYH7b is tuned to have slower motor activity than human MYH7b because of slower kinetics of the chemomechanical cycle. We found that the MYH7b isoforms adopt a higher proportion of myosin heads in the ultraslow, super-relaxed state compared with human cardiac β-MyHC. These findings are supported by molecular dynamics simulations that predict MYH7b preferentially occupies myosin active site conformations similar to those observed in the structurally inactive state. Together, these results suggest that MYH7b is specialized for slow and energy-conserving motor activity and that differential tuning of MYH7b orthologs contributes to species-specific biological roles.
Collapse
Affiliation(s)
- Lindsey A. Lee
- Molecular, Cellular, and Developmental Biology Department, Boulder, Colorado, USA,BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | - Samantha K. Barrick
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Artur Meller
- The Center for Science and Engineering of Living Systems, Washington University in St Louis, St Louis, Missouri, USA
| | - Jonathan Walklate
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Jeffrey M. Lotthammer
- The Center for Science and Engineering of Living Systems, Washington University in St Louis, St Louis, Missouri, USA
| | - Jian Wei Tay
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | - W. Tom Stump
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Gregory Bowman
- The Center for Science and Engineering of Living Systems, Washington University in St Louis, St Louis, Missouri, USA,Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael A. Geeves
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Michael J. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Leslie A. Leinwand
- Molecular, Cellular, and Developmental Biology Department, Boulder, Colorado, USA,BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA,For correspondence: Leslie A. Leinwand
| |
Collapse
|
15
|
Understanding the key functions of Myosins in viral infection. Biochem Soc Trans 2022; 50:597-607. [PMID: 35212367 DOI: 10.1042/bst20211239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 11/17/2022]
Abstract
Myosins, a class of actin-based motor proteins existing in almost any organism, are originally considered only involved in driving muscle contraction, reshaping actin cytoskeleton, and anchoring or transporting cargoes, including protein complexes, organelles, vesicles. However, accumulating evidence reveals that myosins also play vital roles in viral infection, depending on viral species and infection stages. This review systemically summarizes the described various myosins, the performed functions, and the involved mechanisms or molecular pathways during viral infection. Meanwhile, the existing issues are also discussed. Additionally, the important technologies or agents, including siRNA, gene editing, and myosin inhibitors, would facilitate dissecting the actions and mechanisms for described and undescribed myosins, which could be adopted to prevent or control viral infection are also characterized.
Collapse
|
16
|
Pepper I, Galkin VE. Actomyosin Complex. Subcell Biochem 2022; 99:421-470. [PMID: 36151385 PMCID: PMC9710302 DOI: 10.1007/978-3-031-00793-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Formation of cross-bridges between actin and myosin occurs ubiquitously in eukaryotic cells and mediates muscle contraction, intracellular cargo transport, and cytoskeletal remodeling. Myosin motors repeatedly bind to and dissociate from actin filaments in a cycle that transduces the chemical energy from ATP hydrolysis into mechanical force generation. While the general layout of surface elements within the actin-binding interface is conserved among myosin classes, sequence divergence within these motifs alters the specific contacts involved in the actomyosin interaction as well as the kinetics of mechanochemical cycle phases. Additionally, diverse lever arm structures influence the motility and force production of myosin molecules during their actin interactions. The structural differences generated by myosin's molecular evolution have fine-tuned the kinetics of its isoforms and adapted them for their individual cellular roles. In this chapter, we will characterize the structural and biochemical basis of the actin-myosin interaction and explain its relationship with myosin's cellular roles, with emphasis on the structural variation among myosin isoforms that enables their functional specialization. We will also discuss the impact of accessory proteins, such as the troponin-tropomyosin complex and myosin-binding protein C, on the formation and regulation of actomyosin cross-bridges.
Collapse
Affiliation(s)
- Ian Pepper
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Vitold E Galkin
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA.
| |
Collapse
|
17
|
Shen S, Naganuma M, Tomari Y, Tadakuma H. Revisiting the Glass Treatment for Single-Molecule Analysis of ncRNA Function. Methods Mol Biol 2022; 2509:209-231. [PMID: 35796966 DOI: 10.1007/978-1-0716-2380-0_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Single-molecule imaging is a powerful method for unveiling precise molecular mechanisms. Particularly, single-molecule analysis with total internal reflection fluorescence (TIRF ) microscopy has been successfully applied to the characterization of molecular mechanisms in ncRNA studies. Tracing interactions at the single-molecule level have elucidated the intermediate states of the reaction, which are hidden by ensemble averaging in combinational biochemical approaches, and clarified the key steps of the interaction. However, applying a single-molecule technique to ncRNA analysis still remains a challenge, requiring laborious trial and error to identify a suitable glass surface passivation method. In this chapter, we revisit the major glass surface passivation methods using polyethylene glycol (PEG) treatment and summarize a detailed protocol for single-molecule analysis of the dicing process of Dcr-2, which may apply piRNA studies in the future.
Collapse
Affiliation(s)
- Shuting Shen
- School of Life Science and Technology & Gene Editing Center, ShanghaiTech University, Shanghai, China
| | - Masahiro Naganuma
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Yukihide Tomari
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Hisashi Tadakuma
- School of Life Science and Technology & Gene Editing Center, ShanghaiTech University, Shanghai, China.
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
18
|
Rall JA. Investigation of the molecular motor of muscle: from generating life in a test tube to myosin structure over beers. ADVANCES IN PHYSIOLOGY EDUCATION 2021; 45:730-743. [PMID: 34498938 DOI: 10.1152/advan.00077.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
This article traces 60 years of investigation of the molecular motor of skeletal muscle from the 1940s through the 1990s. It started with the discovery that myosin interaction with actin in the presence of ATP caused shortening of threads of actin and myosin. In 1957, structures protruding from myosin filaments were seen for the first time and called "cross bridges." A combination of techniques led to the proposal in 1969 of the "swinging-tilting cross bridge" model of contraction. In the early 1980s, a major problem arose when it was shown that a probe attached to the cross bridges did not move during contraction. A spectacular breakthrough came when it was discovered that only the cross bridge was required to support movement in an in vitro motility assay. Next it was determined that single myosin molecules caused the movement of actin filaments in 10-nm steps. The atomic structure of the cross bridge was published in 1993, and this discovery supercharged the muscle field. The cross bridge contained a globular head or motor domain that bound actin and ATP. But the most striking feature was the long tail of the cross bridge surrounded by two subunits of the myosin molecule. This structure suggested that the tail might act as a lever arm magnifying head movement. Consistent with this proposal, genetic techniques that lengthened the lever arm resulted in larger myosin steps. Thus the molecular motor of muscle operated not by the tilting of the globular head of myosin but by tilting of the lever arm generating the driving force for contraction.
Collapse
Affiliation(s)
- Jack A Rall
- Department of Physiology and Cell Biology, College of Medicine, Ohio State University, Columbus, Ohio
| |
Collapse
|
19
|
Kubota H, Ogawa H, Miyazaki M, Ishii S, Oyama K, Kawamura Y, Ishiwata S, Suzuki M. Microscopic Temperature Control Reveals Cooperative Regulation of Actin-Myosin Interaction by Drebrin E. NANO LETTERS 2021; 21:9526-9533. [PMID: 34751025 DOI: 10.1021/acs.nanolett.1c02955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Drebrin E is a regulatory protein of intracellular force produced by actomyosin complexes, that is, myosin molecular motors interacting with actin filaments. The expression level of drebrin E in nerve cells decreases as the animal grows, suggesting its pivotal but unclarified role in neuronal development. Here, by applying the microscopic heat pulse method to actomyosin motility assay, the regulatory mechanism is examined from the room temperature up to 37 °C without a thermal denaturing of proteins. We show that the inhibition of actomyosin motility by drebrin E is eliminated immediately and reversibly during heating and depends on drebrin E concentration. The direct observation of quantum dot-labeled drebrin E implies its stable binding to actin filaments during the heat-induced sliding. Our results suggest that drebrin E allosterically modifies the actin filament structure to regulate cooperatively the actomyosin activity at the maintained in vivo body temperature.
Collapse
Affiliation(s)
- Hiroaki Kubota
- Department of Physics, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shinjuku-ku, Tokyo 169-0073, Japan
| | - Hiroyuki Ogawa
- Department of Physics, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Makito Miyazaki
- Hakubi Center for Advanced Research, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris F-75005, France
| | - Shuya Ishii
- Department of Physics, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, 1233 Watanuki-machi, Takasaki, Gunma 370-1292, Japan
| | - Kotaro Oyama
- Department of Physics, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, 1233 Watanuki-machi, Takasaki, Gunma 370-1292, Japan
| | - Yuki Kawamura
- Department of Physics, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Shin'ichi Ishiwata
- Department of Physics, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Madoka Suzuki
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
20
|
Abstract
Pattern formation processes in active systems give rise to a plethora of collective structures. Predicting how the emergent structures depend on the microscopic interactions between the moving agents remains a challenge. By introducing a high-density actin gliding assay on a fluid membrane, we demonstrate the emergence of polar structures in a regime of nematic binary interactions dominated by steric repulsion. The transition from a microscopic nematic symmetry to a macroscopic polar structure is linked to microscopic polarity sorting mechanisms, including accumulation in wedge-like topological defects. Our results should be instrumental for a better understanding of pattern formation and polarity sorting processes in active matter. Collective motion of active matter is ubiquitously observed, ranging from propelled colloids to flocks of bird, and often features the formation of complex structures composed of agents moving coherently. However, it remains extremely challenging to predict emergent patterns from the binary interaction between agents, especially as only a limited number of interaction regimes have been experimentally observed so far. Here, we introduce an actin gliding assay coupled to a supported lipid bilayer, whose fluidity forces the interaction between self-propelled filaments to be dominated by steric repulsion. This results in filaments stopping upon binary collisions and eventually aligning nematically. Such a binary interaction rule results at high densities in the emergence of dynamic collectively moving structures including clusters, vortices, and streams of filaments. Despite the microscopic interaction having a nematic symmetry, the emergent structures are found to be polar, with filaments collectively moving in the same direction. This is due to polar biases introduced by the stopping upon collision, both on the individual filaments scale as well as on the scale of collective structures. In this context, positive half-charged topological defects turn out to be a most efficient trapping and polarity sorting conformation.
Collapse
|
21
|
Miller MD, Phillips GN. Moving beyond static snapshots: Protein dynamics and the Protein Data Bank. J Biol Chem 2021; 296:100749. [PMID: 33961840 PMCID: PMC8164045 DOI: 10.1016/j.jbc.2021.100749] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 01/02/2023] Open
Abstract
Proteins are the molecular machines of living systems. Their dynamics are an intrinsic part of their evolutionary selection in carrying out their biological functions. Although the dynamics are more difficult to observe than a static, average structure, we are beginning to observe these dynamics and form sound mechanistic connections between structure, dynamics, and function. This progress is highlighted in case studies from myoglobin and adenylate kinase to the ribosome and molecular motors where these molecules are being probed with a multitude of techniques across many timescales. New approaches to time-resolved crystallography are allowing simple “movies” to be taken of proteins in action, and new methods of mapping the variations in cryo-electron microscopy are emerging to reveal a more complete description of life’s machines. The results of these new methods are aided in their dissemination by continual improvements in curation and distribution by the Protein Data Bank and their partners around the world.
Collapse
Affiliation(s)
| | - George N Phillips
- Department of Biosciences, Rice University, Houston, Texas, USA; Department of Chemistry, Rice University, Houston, Texas, USA.
| |
Collapse
|
22
|
Yadav S, Kunwar A. Temperature-Dependent Activity of Motor Proteins: Energetics and Their Implications for Collective Behavior. Front Cell Dev Biol 2021; 9:610899. [PMID: 33732692 PMCID: PMC7959718 DOI: 10.3389/fcell.2021.610899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 01/11/2021] [Indexed: 12/27/2022] Open
Abstract
Molecular motor proteins are an extremely important component of the cellular transport system that harness chemical energy derived from ATP hydrolysis to carry out directed mechanical motion inside the cells. Transport properties of these motors such as processivity, velocity, and their load dependence have been well established through single-molecule experiments. Temperature dependent biophysical properties of molecular motors are now being probed using single-molecule experiments. Additionally, the temperature dependent biochemical properties of motors (ATPase activity) are probed to understand the underlying mechanisms and their possible implications on the enzymatic activity of motor proteins. These experiments in turn have revealed their activation energies and how they compare with the thermal energy available from the surrounding medium. In this review, we summarize such temperature dependent biophysical and biochemical properties of linear and rotary motor proteins and their implications for collective function during intracellular transport and cellular movement, respectively.
Collapse
Affiliation(s)
- Saumya Yadav
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Ambarish Kunwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
23
|
Pertici I, Bianchi G, Bongini L, Cojoc D, Taft MH, Manstein DJ, Lombardi V, Bianco P. Muscle myosin performance measured with a synthetic nanomachine reveals a class-specific Ca 2+ -sensitivity of the frog myosin II isoform. J Physiol 2021; 599:1815-1831. [PMID: 33507554 DOI: 10.1113/jp280976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/25/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS A nanomachine made of an ensemble of seven heavy-meromyosin (HMM) fragments of muscle myosin interacting with an actin filament is able to mimic the half-sarcomere generating steady force and constant-velocity shortening. To preserve Ca2+ as a free parameter, the Ca2+ -insensitive gelsolin fragment TL40 is used to attach the correctly oriented actin filament to the laser-trapped bead acting as a force transducer. The new method reveals that the performance of the nanomachine powered by myosin from frog hind-limb muscles depends on [Ca2+ ], an effect mediated by a Ca2+ -binding site in the regulatory light chain of HMM. The Ca2+ -sensitivity is class-specific because the performance of the nanomachine powered by mammalian skeletal muscle myosin is Ca2+ independent. A model simulation is able to interface the nanomachine performance with that of the muscle of origin and provides a molecular explanation of the functional diversity of muscles with different orthologue isoforms of myosin. ABSTRACT An ensemble of seven heavy-meromyosin (HMM) fragments of myosin-II purified from the hindlimb muscles of the frog (Rana esculenta) is used to drive a synthetic nanomachine that pulls an actin filament in the absence of confounding effects of other sarcomeric proteins. In the present version of the nanomachine the +end of the actin filament is attached to the laser trapped bead via the Ca2+ -insensitive gelsolin fragment TL40, making [Ca2+ ] a free parameter. Frog myosin performance in 2 mm ATP is affected by Ca2+ : in 0.1 mm Ca2+ , the isometric steady force (F0 , 15.25 pN) is increased by 50% (P = 0.004) with respect to that in Ca2+ -free solution, the maximum shortening velocity (V0 , 4.6 μm s-1 ) is reduced by 27% (P = 0.46) and the maximum power (Pmax , 7.6 aW) is increased by 21% (P = 0.17). V0 reduction is not significant for the paucity of data at low force, although it is solidified by a similar decrease (33%, P < 0.0001) in the velocity of actin sliding as indicated by an in vitro motility assay (Vf ). The rate of ATP-hydrolysis in solution (φ) exhibits a similar calcium dependence. Ca2+ titration curves for Vf and φ give Kd values of ∼30 μm. All the above mechanical and kinetic parameters are independent of Ca2+ when HMM from rabbit psoas myosin is used, indicating that the Ca2+ -sensitivity is a class-specific property of muscle myosin. A unique multiscale model allows interfacing of the nanomachine performance to that of the muscle of origin and identifies the kinetic steps responsible for the Ca2+ -sensitivity of frog myosin.
Collapse
Affiliation(s)
- Irene Pertici
- PhysioLab, University of Florence, Sesto Fiorentino, FI, Italy
| | - Giulio Bianchi
- PhysioLab, University of Florence, Sesto Fiorentino, FI, Italy
| | - Lorenzo Bongini
- PhysioLab, University of Florence, Sesto Fiorentino, FI, Italy
| | | | - Manuel H Taft
- Institute for Biophysical Chemistry, Fritz-Hartmann-Centre for Medical Research, Medizinische Hochschule Hannover, Hannover, Germany
| | - Dietmar J Manstein
- Institute for Biophysical Chemistry, Fritz-Hartmann-Centre for Medical Research, Medizinische Hochschule Hannover, Hannover, Germany
| | | | - Pasquale Bianco
- PhysioLab, University of Florence, Sesto Fiorentino, FI, Italy
| |
Collapse
|
24
|
Number Dependence of Microtubule Collective Transport by Kinesin and Dynein. J Indian Inst Sci 2021. [DOI: 10.1007/s41745-020-00212-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Risi C, Schäfer LU, Belknap B, Pepper I, White HD, Schröder GF, Galkin VE. High-Resolution Cryo-EM Structure of the Cardiac Actomyosin Complex. Structure 2021; 29:50-60.e4. [PMID: 33065066 PMCID: PMC7796959 DOI: 10.1016/j.str.2020.09.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/29/2020] [Accepted: 09/25/2020] [Indexed: 12/31/2022]
Abstract
Heart contraction depends on a complicated array of interactions between sarcomeric proteins required to convert chemical energy into mechanical force. Cyclic interactions between actin and myosin molecules, controlled by troponin and tropomyosin, generate the sliding force between the actin-based thin and myosin-based thick filaments. Alterations in this sophisticated system due to missense mutations can lead to cardiovascular diseases. Numerous structural studies proposed pathological mechanisms of missense mutations at the myosin-myosin, actin-tropomyosin, and tropomyosin-troponin interfaces. However, despite the central role of actomyosin interactions a detailed structural description of the cardiac actomyosin interface remained unknown. Here, we report a cryo-EM structure of a cardiac actomyosin complex at 3.8 Å resolution. The structure reveals the molecular basis of cardiac diseases caused by missense mutations in myosin and actin proteins.
Collapse
Affiliation(s)
- Cristina Risi
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Luisa U Schäfer
- Institute of Biological Information Processing (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Betty Belknap
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Ian Pepper
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Howard D White
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Gunnar F Schröder
- Institute of Biological Information Processing (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany; Physics Department, Heinrich-Heine Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Vitold E Galkin
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| |
Collapse
|
26
|
Okami M, Sunada Y, Hatori K. Lysozyme-induced suppression of enzymatic and motile activities of actin-myosin: Impact of basic proteins. Int J Biol Macromol 2020; 163:1147-1153. [PMID: 32668307 DOI: 10.1016/j.ijbiomac.2020.07.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/06/2020] [Accepted: 07/06/2020] [Indexed: 10/23/2022]
Abstract
Electrostatic interactions between actin filaments and myosin molecules, which are ubiquitous proteins in eukaryotes, are crucial for their enzymatic activity and motility. Nonspecific electrostatic interactions between proteins are unavoidable in cells; therefore, it is worth exploring how ambient proteins, such as polyelectrolytes, affect actin-myosin functions. To understand the effect of counterionic proteins on actin-myosin, we examined ATPase activity and sliding velocity via actin-myosin interactions in the presence of the basic model protein hen egg lysozyme. In an in vitro motility assay with ATP, the sliding velocity of actin filaments on heavy meromyosin (HMM) decreased with increasing lysozyme concentrations. Actin filaments were completely stalled at a lysozyme concentration above 0.08 mg/mL. Lysozyme decreased the ATP hydrolysis rate of the actin-HMM complex but not that HMM alone. Co-sedimentation assays revealed that lysozyme enhanced the binding of HMM to actin filaments in the presence of ATP. Additionally, lysozyme could bind to actin and myosin filaments. The inhibitory effect of poly-l-lysine, histone mixture, and lactoferrin on the motility of actin-myosin was higher than that of lysozyme. Thus, nonspecific electrostatic interactions of basic proteins are involved in the bundling of actin filaments and modulation of essential functions of the actomyosin complex.
Collapse
Affiliation(s)
- Masaki Okami
- Department of Bio-Systems Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16, Jyonan, Yonezawa, Yamagata 992-8510, Japan
| | - Yuma Sunada
- Department of Bio-Systems Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16, Jyonan, Yonezawa, Yamagata 992-8510, Japan
| | - Kuniyuki Hatori
- Department of Bio-Systems Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16, Jyonan, Yonezawa, Yamagata 992-8510, Japan.
| |
Collapse
|
27
|
Pattanayak S, Singh JP, Kumar M, Mishra S. Speed inhomogeneity accelerates information transfer in polar flock. Phys Rev E 2020; 101:052602. [PMID: 32575321 DOI: 10.1103/physreve.101.052602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/10/2020] [Indexed: 11/07/2022]
Abstract
A collection of self-propelled particles (SPPs) shows coherent motion and exhibits a true long-range-ordered state in two dimensions. Various studies show that the presence of spatial inhomogeneities can destroy the usual long-range ordering in the system. However, the effects of inhomogeneity due to the intrinsic properties of the particles are barely addressed. In this paper we consider a collection of polar SPPs moving at inhomogeneous speed (IS) on a two-dimensional substrate, which can arise due to varying physical strengths of the individual particles. To our surprise, the IS not only preserves the usual long-range ordering present in homogeneous speed models but also induces faster ordering in the system. Furthermore, the response of the flock to an external perturbation is also faster, compared to the Vicsek-like model systems, due to the frequent update of neighbors of each SPP in the presence of the IS. Therefore, our study shows that an IS can promote information transfer in a moving flock.
Collapse
Affiliation(s)
- Sudipta Pattanayak
- S. N. Bose National Centre for Basic Sciences, J D Block, Sector III, Salt Lake City, Kolkata 700106, India
| | - Jay Prakash Singh
- Department of Physics, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Manoranjan Kumar
- S. N. Bose National Centre for Basic Sciences, J D Block, Sector III, Salt Lake City, Kolkata 700106, India
| | - Shradha Mishra
- Department of Physics, Indian Institute of Technology (BHU), Varanasi 221005, India
| |
Collapse
|
28
|
Abstract
This book, a collection of chapters written by some of the leading researchers in the field of molecular motors, highlights the current understanding of the structure, molecular mechanism, and cellular roles of members of the myosin superfamily. Here, I briefly review the discovery of the first myosin motor, skeletal muscle myosin-II, and preview the contents of subsequent chapters.
Collapse
Affiliation(s)
- Lynne M Coluccio
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
29
|
Trivedi DV, Nag S, Spudich A, Ruppel KM, Spudich JA. The Myosin Family of Mechanoenzymes: From Mechanisms to Therapeutic Approaches. Annu Rev Biochem 2020; 89:667-693. [PMID: 32169021 DOI: 10.1146/annurev-biochem-011520-105234] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Myosins are among the most fascinating enzymes in biology. As extremely allosteric chemomechanical molecular machines, myosins are involved in myriad pivotal cellular functions and are frequently sites of mutations leading to disease phenotypes. Human β-cardiac myosin has proved to be an excellent target for small-molecule therapeutics for heart muscle diseases, and, as we describe here, other myosin family members are likely to be potentially unique targets for treating other diseases as well. The first part of this review focuses on how myosins convert the chemical energy of ATP hydrolysis into mechanical movement, followed by a description of existing therapeutic approaches to target human β-cardiac myosin. The next section focuses on the possibility of targeting nonmuscle members of the human myosin family for several diseases. We end the review by describing the roles of myosin in parasites and the therapeutic potential of targeting them to block parasitic invasion of their hosts.
Collapse
Affiliation(s)
- Darshan V Trivedi
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA; , , .,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Suman Nag
- MyoKardia Inc., Brisbane, California 94005, USA;
| | - Annamma Spudich
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560-097, India;
| | - Kathleen M Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA; , , .,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Division of Pediatric Cardiology, Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - James A Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA; , , .,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
30
|
Fujita K, Ohmachi M, Ikezaki K, Yanagida T, Iwaki M. Direct visualization of human myosin II force generation using DNA origami-based thick filaments. Commun Biol 2019; 2:437. [PMID: 31799438 PMCID: PMC6881340 DOI: 10.1038/s42003-019-0683-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 11/07/2019] [Indexed: 11/08/2022] Open
Abstract
The sarcomere, the minimal mechanical unit of muscle, is composed of myosins, which self-assemble into thick filaments that interact with actin-based thin filaments in a highly-structured lattice. This complex imposes a geometric restriction on myosin in force generation. However, how single myosins generate force within the restriction remains elusive and conventional synthetic filaments do not recapitulate the symmetric bipolar filaments in sarcomeres. Here we engineered thick filaments using DNA origami that incorporate human muscle myosin to directly visualize the motion of the heads during force generation in a restricted space. We found that when the head diffuses, it weakly interacts with actin filaments and then strongly binds preferentially to the forward region as a Brownian ratchet. Upon strong binding, the two-step lever-arm swing dominantly halts at the first step and occasionally reverses direction. Our results illustrate the usefulness of our DNA origami-based assay system to dissect the mechanistic details of motor proteins.
Collapse
Affiliation(s)
- Keisuke Fujita
- RIKEN Center for Biosystems Dynamics Research, RIKEN, Osaka, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Masashi Ohmachi
- RIKEN Center for Biosystems Dynamics Research, RIKEN, Osaka, Japan
| | | | - Toshio Yanagida
- RIKEN Center for Biosystems Dynamics Research, RIKEN, Osaka, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Center for Information and Neural Networks, NICT, Osaka, Japan
| | - Mitsuhiro Iwaki
- RIKEN Center for Biosystems Dynamics Research, RIKEN, Osaka, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
31
|
Ishii S, Oyama K, Arai T, Itoh H, Shintani SA, Suzuki M, Kobirumaki-Shimozawa F, Terui T, Fukuda N, Ishiwata S. Microscopic heat pulses activate cardiac thin filaments. J Gen Physiol 2019; 151:860-869. [PMID: 31010810 PMCID: PMC6572001 DOI: 10.1085/jgp.201812243] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 02/20/2019] [Accepted: 03/31/2019] [Indexed: 11/30/2022] Open
Abstract
During the excitation-contraction coupling of the heart, sarcomeres are activated via thin filament structural changes (i.e., from the "off" state to the "on" state) in response to a release of Ca2+ from the sarcoplasmic reticulum. This process involves chemical reactions that are highly dependent on ambient temperature; for example, catalytic activity of the actomyosin ATPase rises with increasing temperature. Here, we investigate the effects of rapid heating by focused infrared (IR) laser irradiation on the sliding of thin filaments reconstituted with human α-tropomyosin and bovine ventricular troponin in an in vitro motility assay. We perform high-precision analyses measuring temperature by the fluorescence intensity of rhodamine-phalloidin-labeled F-actin coupled with a fluorescent thermosensor sheet containing the temperature-sensitive dye Europium (III) thenoyltrifluoroacetonate trihydrate. This approach enables a shift in temperature from 25°C to ∼46°C within 0.2 s. We find that in the absence of Ca2+ and presence of ATP, IR laser irradiation elicits sliding movements of reconstituted thin filaments with a sliding velocity that increases as a function of temperature. The heating-induced acceleration of thin filament sliding likewise occurs in the presence of Ca2+ and ATP; however, the temperature dependence is more than twofold less pronounced. These findings could indicate that in the mammalian heart, the on-off equilibrium of the cardiac thin filament state is partially shifted toward the on state in diastole at physiological body temperature, enabling rapid and efficient myocardial dynamics in systole.
Collapse
Affiliation(s)
- Shuya Ishii
- Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Kotaro Oyama
- Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
- Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, Gunma, Japan
- PRESTO, Japan Science and Technology Agency, Saitama, Japan
| | - Tomomi Arai
- Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Hideki Itoh
- Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Epithelial Biology Laboratory, Institute of Medical Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | | | - Madoka Suzuki
- PRESTO, Japan Science and Technology Agency, Saitama, Japan
- Institute for Protein Research, Osaka University, Osaka, Japan
| | | | - Takako Terui
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
- Department of Anesthesiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Norio Fukuda
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Shin'ichi Ishiwata
- Department of Physics, Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
32
|
Single-molecule pull-out manipulation of the shaft of the rotary motor F 1-ATPase. Sci Rep 2019; 9:7451. [PMID: 31092848 PMCID: PMC6520343 DOI: 10.1038/s41598-019-43903-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 04/29/2019] [Indexed: 01/29/2023] Open
Abstract
F1-ATPase is a rotary motor protein in which the central γ-subunit rotates inside the cylinder made of α3β3 subunits. To investigate interactions between the γ shaft and the cylinder at the molecular scale, load was imposed on γ through a polystyrene bead by three-dimensional optical trapping in the direction along which the shaft penetrates the cylinder. Pull-out event was observed under high-load, and thus load-dependency of lifetime of the interaction was estimated. Notably, accumulated counts of lifetime were comprised of fast and slow components. Both components exponentially dropped with imposed loads, suggesting that the binding energy is compensated by the work done by optical trapping. Because the mutant, in which the half of the shaft was deleted, showed only one fast component in the bond lifetime, the slow component is likely due to the native interaction mode held by multiple interfaces.
Collapse
|
33
|
Amrutha AS, Sunil Kumar KR, Tamaoki N. Azobenzene‐Based Photoswitches Facilitating Reversible Regulation of Kinesin and Myosin Motor Systems for Nanotechnological Applications. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Ammathnadu S. Amrutha
- Research Institute for Electronic ScienceHokkaido University Kita 20, Nishi 10, Kita-ku, Sapporo Hokkaido 001-0020 Japan
| | - K. R. Sunil Kumar
- Department of Chemistry and BiotechnologySchool of EngineeringThe University of Tokyo 7-3-1 Hongo, Bunkyo-Ku Tokyo 113-8656 Japan
| | - Nobuyuki Tamaoki
- Research Institute for Electronic ScienceHokkaido University Kita 20, Nishi 10, Kita-ku, Sapporo Hokkaido 001-0020 Japan
| |
Collapse
|
34
|
Anderson RL, Trivedi DV, Sarkar SS, Henze M, Ma W, Gong H, Rogers CS, Gorham JM, Wong FL, Morck MM, Seidman JG, Ruppel KM, Irving TC, Cooke R, Green EM, Spudich JA. Deciphering the super relaxed state of human β-cardiac myosin and the mode of action of mavacamten from myosin molecules to muscle fibers. Proc Natl Acad Sci U S A 2018; 115:E8143-E8152. [PMID: 30104387 PMCID: PMC6126717 DOI: 10.1073/pnas.1809540115] [Citation(s) in RCA: 284] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutations in β-cardiac myosin, the predominant motor protein for human heart contraction, can alter power output and cause cardiomyopathy. However, measurements of the intrinsic force, velocity, and ATPase activity of myosin have not provided a consistent mechanism to link mutations to muscle pathology. An alternative model posits that mutations in myosin affect the stability of a sequestered, super relaxed state (SRX) of the protein with very slow ATP hydrolysis and thereby change the number of myosin heads accessible to actin. Here we show that purified human β-cardiac myosin exists partly in an SRX and may in part correspond to a folded-back conformation of myosin heads observed in muscle fibers around the thick filament backbone. Mutations that cause hypertrophic cardiomyopathy destabilize this state, while the small molecule mavacamten promotes it. These findings provide a biochemical and structural link between the genetics and physiology of cardiomyopathy with implications for therapeutic strategies.
Collapse
Affiliation(s)
| | - Darshan V Trivedi
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Saswata S Sarkar
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| | | | - Weikang Ma
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616
| | - Henry Gong
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616
| | | | - Joshua M Gorham
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | | | - Makenna M Morck
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | | | - Kathleen M Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA 94305
| | - Thomas C Irving
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616
| | - Roger Cooke
- Department of Biochemistry, University of California, San Francisco, CA 94158
| | | | - James A Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305;
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
35
|
Logvinova DS, Levitsky DI. Essential Light Chains of Myosin and Their Role in Functioning of the Myosin Motor. BIOCHEMISTRY (MOSCOW) 2018; 83:944-960. [DOI: 10.1134/s0006297918080060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
Lindberg FW, Norrby M, Rahman MA, Salhotra A, Takatsuki H, Jeppesen S, Linke H, Månsson A. Controlled Surface Silanization for Actin-Myosin Based Nanodevices and Biocompatibility of New Polymer Resists. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8777-8784. [PMID: 29969272 DOI: 10.1021/acs.langmuir.8b01415] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Molecular motor-based nanodevices require organized cytoskeletal filament guiding along motility-promoting tracks, confined by motility-inhibiting walls. One way to enhance motility quality on the tracks, particularly in terms of filament velocity but also the fraction of motile filaments, is to optimize the surface hydrophobicity. We have investigated the potential to achieve this for the actin-myosin II motor system on trimethylchlorosilane (TMCS)-derivatized SiO2 surfaces to be used as channel floors in nanodevices. We have also investigated the ability to supress motility on two new polymer resists, TU7 (for nanoimprint lithography) and CSAR 62 (for electron beam and deep UV lithography), to be used as channel walls. We developed a chemical-vapor deposition tool for silanizing SiO2 surfaces in a controlled environment to achieve different surface hydrophobicities (measured by water contact angle). In contrast to previous work, we were able to fabricate a wide range of contact angles by varying the silanization time and chamber pressure using only one type of silane. This resulted in a significant improvement of the silanization procedure, producing a predictable contact angle on the surface and thereby predictable quality of the heavy meromyosin (HMM)-driven actin motility with regard to velocity. We observed a high degree of correlation between the filament sliding velocity and contact angle in the range 10-86°, expanding the previously studied range. We found that the sliding velocity on TU7 surfaces was superior to that on CSAR 62 surfaces despite similar contact angles. In addition, we were able to suppress the motility on both TU7 and CSAR 62 by plasma oxygen treatment before silanization. These results are discussed in relation to previously proposed surface adsorption mechanisms of HMM and their relationship to the water contact angle. Additionally, the results are considered for the development of actin-myosin based nanodevices with superior performance with respect to actin-myosin functionality.
Collapse
Affiliation(s)
- Frida W Lindberg
- NanoLund and Solid State Physics , Lund University , Box 118, Lund SE-221 00 , Sweden
| | - Marlene Norrby
- Department of Chemistry and Biomedical Sciences , Linnaeus University , Kalmar SE-391 82 , Sweden
| | - Mohammad A Rahman
- Department of Chemistry and Biomedical Sciences , Linnaeus University , Kalmar SE-391 82 , Sweden
| | - Aseem Salhotra
- Department of Chemistry and Biomedical Sciences , Linnaeus University , Kalmar SE-391 82 , Sweden
| | - Hideyo Takatsuki
- Department of Chemistry and Biomedical Sciences , Linnaeus University , Kalmar SE-391 82 , Sweden
| | - Sören Jeppesen
- NanoLund and Solid State Physics , Lund University , Box 118, Lund SE-221 00 , Sweden
| | - Heiner Linke
- NanoLund and Solid State Physics , Lund University , Box 118, Lund SE-221 00 , Sweden
| | - Alf Månsson
- Department of Chemistry and Biomedical Sciences , Linnaeus University , Kalmar SE-391 82 , Sweden
| |
Collapse
|
37
|
Do Actomyosin Single-Molecule Mechanics Data Predict Mechanics of Contracting Muscle? Int J Mol Sci 2018; 19:ijms19071863. [PMID: 29941816 PMCID: PMC6073448 DOI: 10.3390/ijms19071863] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 12/15/2022] Open
Abstract
In muscle, but not in single-molecule mechanics studies, actin, myosin and accessory proteins are incorporated into a highly ordered myofilament lattice. In view of this difference we compare results from single-molecule studies and muscle mechanics and analyze to what degree data from the two types of studies agree with each other. There is reasonable correspondence in estimates of the cross-bridge power-stroke distance (7–13 nm), cross-bridge stiffness (~2 pN/nm) and average isometric force per cross-bridge (6–9 pN). Furthermore, models defined on the basis of single-molecule mechanics and solution biochemistry give good fits to experimental data from muscle. This suggests that the ordered myofilament lattice, accessory proteins and emergent effects of the sarcomere organization have only minor modulatory roles. However, such factors may be of greater importance under e.g., disease conditions. We also identify areas where single-molecule and muscle data are conflicting: (1) whether force generation is an Eyring or Kramers process with just one major power-stroke or several sub-strokes; (2) whether the myofilaments and the cross-bridges have Hookean or non-linear elasticity; (3) if individual myosin heads slip between actin sites under certain conditions, e.g., in lengthening; or (4) if the two heads of myosin cooperate.
Collapse
|
38
|
Menezes HM, Islam MJ, Takahashi M, Tamaoki N. Driving and photo-regulation of myosin-actin motors at molecular and macroscopic levels by photo-responsive high energy molecules. Org Biomol Chem 2018; 15:8894-8903. [PMID: 28902195 DOI: 10.1039/c7ob01293d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We employed an azobenzene based non-nucleoside triphosphate, AzoTP, in a myosin-actin motile system and demonstrated its efficiency as an energy molecule to drive and photo-regulate the myosin-actin motile function at the macroscopic level along with an in vitro motility assay. The AzoTP in its trans state induced shortening of a glycerinated muscle fibre whilst a cis isomer had no significant effect. Direct photoirradiation of a cis-AzoTP infused muscle fibre induced shortening triggered by a locally photo-generated trans-AzoTP in the muscle fibre. Furthermore, we designed and synthesized three new derivatives of AzoTPs that served as substrates for myosin by driving and photo-regulating the myosin-actin motile function at the molecular as well as the macroscopic level with varied efficiencies.
Collapse
Affiliation(s)
- Halley M Menezes
- Research Institute for Electronic Science, Hokkaido University, Kita 20, Nishi 10, Kita-Ku, Sapporo, Hokkaido, 001-0020, Japan.
| | | | | | | |
Collapse
|
39
|
Bujalowski PJ, Nicholls P, Garza E, Oberhauser AF. The central domain of UNC-45 chaperone inhibits the myosin power stroke. FEBS Open Bio 2018; 8:41-48. [PMID: 29321955 PMCID: PMC5757175 DOI: 10.1002/2211-5463.12346] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 11/07/2022] Open
Abstract
The multidomain UNC-45B chaperone is crucial for the proper folding and function of sarcomeric myosin. We recently found that UNC-45B inhibits the translocation of actin by myosin. The main functions of the UCS and TPR domains are known but the role of the central domain remains obscure. Here, we show-using in vitro myosin motility and ATPase assays-that the central domain alone acts as an inhibitor of the myosin power stroke through a mechanism that allows ATP turnover. Hence, UNC-45B is a unique chaperone in which the TPR domain recruits Hsp90; the UCS domain possesses chaperone-like activities; and the central domain interacts with myosin and inhibits the actin translocation function of myosin. We hypothesize that the inhibitory function plays a critical role during the assembly of myofibrils under stress and during the sarcomere development process.
Collapse
Affiliation(s)
- Paul J Bujalowski
- Department of Biochemistry and Molecular Biology The University of Texas Medical Branch Galveston TX USA
| | - Paul Nicholls
- Baylor College of Medicine The University of Texas Medical Branch Galveston TX USA
| | - Eleno Garza
- Department of Neuroscience and Cell Biology The University of Texas Medical Branch Galveston TX USA
| | - Andres F Oberhauser
- Department of Biochemistry and Molecular Biology The University of Texas Medical Branch Galveston TX USA.,Department of Neuroscience and Cell Biology The University of Texas Medical Branch Galveston TX USA.,Sealy Center for Structural Biology and Molecular Biophysics The University of Texas Medical Branch Galveston TX USA
| |
Collapse
|
40
|
Brizendine RK, Sheehy GG, Alcala DB, Novenschi SI, Baker JE, Cremo CR. A mixed-kinetic model describes unloaded velocities of smooth, skeletal, and cardiac muscle myosin filaments in vitro. SCIENCE ADVANCES 2017; 3:eaao2267. [PMID: 29255801 PMCID: PMC5733112 DOI: 10.1126/sciadv.aao2267] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/17/2017] [Indexed: 06/07/2023]
Abstract
In vitro motility assays, where purified myosin and actin move relative to one another, are used to better understand the mechanochemistry of the actomyosin adenosine triphosphatase (ATPase) cycle. We examined the relationship between the relative velocity (V) of actin and myosin and the number of available myosin heads (N) or [ATP] for smooth (SMM), skeletal (SKM), and cardiac (CMM) muscle myosin filaments moving over actin as well as V from actin filaments moving over a bed of monomeric SKM. These data do not fit well to a widely accepted model that predicts that V is limited by myosin detachment from actin (d/ton), where d equals step size and ton equals time a myosin head remains attached to actin. To account for these data, we have developed a mixed-kinetic model where V is influenced by both attachment and detachment kinetics. The relative contributions at a given V vary with the probability that a head will remain attached to actin long enough to reach the end of its flexible S2 tether. Detachment kinetics are affected by L/ton, where L is related to the tether length. We show that L is relatively long for SMM, SKM, and CMM filaments (59 ± 3 nm, 22 ± 9 nm, and 22 ± 2 nm, respectively). In contrast, L is shorter (8 ± 3 nm) when myosin monomers are attached to a surface. This suggests that the behavior of the S2 domain may be an important mechanical feature of myosin filaments that influences unloaded shortening velocities of muscle.
Collapse
|
41
|
Liu H, Henein M, Anillo M, Dawson JF. Cardiac actin changes in the actomyosin interface have different effects on myosin duty ratio. Biochem Cell Biol 2017; 96:26-31. [PMID: 28972856 DOI: 10.1139/bcb-2017-0136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is an inherited cardiovascular disease (CD) that commonly causes an increased size of cardiomyocytes in the left ventricle. The proteins myosin and actin interact in the myocardium to produce contraction through the actomyosin ATPase cycle. The duty ratio (r) of myosin is the proportion of the actomyosin ATPase cycle that myosin is bound to actin and does work. A common hypothesis is that HCM mutations increase contraction in cardiac sarcomeres; however, the available data are not clear on this connection. Based on previous work with human α-cardiac actin (ACTC), we hypothesize that HCM-linked ACTC variants with alterations near the myosin binding site have an increased r, producing more force. Myosin duty ratios using human ACTC variant proteins were calculated with myosin ATPase activity and in-vitro motility data. We found no consistent changes in the duty ratio of the ACTC variants, suggesting that other factors are involved in the development of HCM when ACTC variants are present.
Collapse
Affiliation(s)
- Haidun Liu
- Department of Molecular and Cellular Biology and the Centre for Cardiovascular Investigations, University of Guelph, Guelph, ON N1G 2W1, Canada.,Department of Molecular and Cellular Biology and the Centre for Cardiovascular Investigations, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Mary Henein
- Department of Molecular and Cellular Biology and the Centre for Cardiovascular Investigations, University of Guelph, Guelph, ON N1G 2W1, Canada.,Department of Molecular and Cellular Biology and the Centre for Cardiovascular Investigations, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Maria Anillo
- Department of Molecular and Cellular Biology and the Centre for Cardiovascular Investigations, University of Guelph, Guelph, ON N1G 2W1, Canada.,Department of Molecular and Cellular Biology and the Centre for Cardiovascular Investigations, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - John F Dawson
- Department of Molecular and Cellular Biology and the Centre for Cardiovascular Investigations, University of Guelph, Guelph, ON N1G 2W1, Canada.,Department of Molecular and Cellular Biology and the Centre for Cardiovascular Investigations, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
42
|
Miao C, Schiffhauer ES, Okeke EI, Robinson DN, Luo T. Parallel Compression Is a Fast Low-Cost Assay for the High-Throughput Screening of Mechanosensory Cytoskeletal Proteins in Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:28168-28179. [PMID: 28795554 PMCID: PMC5891216 DOI: 10.1021/acsami.7b04622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Cellular mechanosensing is critical for many biological processes, including cell differentiation, proliferation, migration, and tissue morphogenesis. The actin cytoskeletal proteins play important roles in cellular mechanosensing. Many techniques have been used to investigate the mechanosensory behaviors of these proteins. However, a fast, low-cost assay for the quantitative characterization of these proteins is still lacking. Here, we demonstrate that compression assay using agarose overlay is suitable for the high throughput screening of mechanosensory proteins in live cells while requiring minimal experimental setup. We used several well-studied myosin II mutants to assess the compression assay. On the basis of elasticity theories, we simulated the mechanosensory accumulation of myosin II's and quantitatively reproduced the experimentally observed protein dynamics. Combining the compression assay with confocal microscopy, we monitored the polarization of myosin II oligomers at the subcellular level. The polarization was dependent on the ratio of the two principal strains of the cellular deformations. Finally, we demonstrated that this technique could be used on the investigation of other mechanosensory proteins.
Collapse
Affiliation(s)
- Chunguang Miao
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230000, China
| | - Eric S. Schiffhauer
- Departments of Cell Biology, Pharmacology and Molecular Medicine, and Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Evelyn I. Okeke
- Departments of Cell Biology, Pharmacology and Molecular Medicine, and Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Douglas N. Robinson
- Departments of Cell Biology, Pharmacology and Molecular Medicine, and Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21211, United States
| | - Tianzhi Luo
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230000, China
- Departments of Cell Biology, Pharmacology and Molecular Medicine, and Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States
- Corresponding Author:
| |
Collapse
|
43
|
Kumar S, Mansson A. Covalent and non-covalent chemical engineering of actin for biotechnological applications. Biotechnol Adv 2017; 35:867-888. [PMID: 28830772 DOI: 10.1016/j.biotechadv.2017.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 08/09/2017] [Accepted: 08/16/2017] [Indexed: 12/26/2022]
Abstract
The cytoskeletal filaments are self-assembled protein polymers with 8-25nm diameters and up to several tens of micrometres length. They have a range of pivotal roles in eukaryotic cells, including transportation of intracellular cargoes (primarily microtubules with dynein and kinesin motors) and cell motility (primarily actin and myosin) where muscle contraction is one example. For two decades, the cytoskeletal filaments and their associated motor systems have been explored for nanotechnological applications including miniaturized sensor systems and lab-on-a-chip devices. Several developments have also revolved around possible exploitation of the filaments alone without their motor partners. Efforts to use the cytoskeletal filaments for applications often require chemical or genetic engineering of the filaments such as specific conjugation with fluorophores, antibodies, oligonucleotides or various macromolecular complexes e.g. nanoparticles. Similar conjugation methods are also instrumental for a range of fundamental biophysical studies. Here we review methods for non-covalent and covalent chemical modifications of actin filaments with focus on critical advantages and challenges of different methods as well as critical steps in the conjugation procedures. We also review potential uses of the engineered actin filaments in nanotechnological applications and in some key fundamental studies of actin and myosin function. Finally, we consider possible future lines of investigation that may be addressed by applying chemical conjugation of actin in new ways.
Collapse
Affiliation(s)
- Saroj Kumar
- Department of Biotechnology, Delhi Technological University, Delhi 110042, India; Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, SE-391 82 Kalmar, Sweden.
| | - Alf Mansson
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, SE-391 82 Kalmar, Sweden.
| |
Collapse
|
44
|
Trivedi DV, Adhikari AS, Sarkar SS, Ruppel KM, Spudich JA. Hypertrophic cardiomyopathy and the myosin mesa: viewing an old disease in a new light. Biophys Rev 2017; 10:27-48. [PMID: 28717924 PMCID: PMC5803174 DOI: 10.1007/s12551-017-0274-6] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/12/2017] [Indexed: 12/15/2022] Open
Abstract
The sarcomere is an exquisitely designed apparatus that is capable of generating force, which in the case of the heart results in the pumping of blood throughout the body. At the molecular level, an ATP-dependent interaction of myosin with actin drives the contraction and force generation of the sarcomere. Over the past six decades, work on muscle has yielded tremendous insights into the workings of the sarcomeric system. We now stand on the cusp where the acquired knowledge of how the sarcomere contracts and how that contraction is regulated can be extended to an understanding of the molecular mechanisms of sarcomeric diseases, such as hypertrophic cardiomyopathy (HCM). In this review we present a picture that combines current knowledge of the myosin mesa, the sequestered state of myosin heads on the thick filament, known as the interacting-heads motif (IHM), their possible interaction with myosin binding protein C (MyBP-C) and how these interactions can be abrogated leading to hyper-contractility, a key clinical manifestation of HCM. We discuss the structural and functional basis of the IHM state of the myosin heads and identify HCM-causing mutations that can directly impact the equilibrium between the 'on state' of the myosin heads (the open state) and the IHM 'off state'. We also hypothesize a role of MyBP-C in helping to maintain myosin heads in the IHM state on the thick filament, allowing release in a graded manner upon adrenergic stimulation. By viewing clinical hyper-contractility as the result of the destabilization of the IHM state, our aim is to view an old disease in a new light.
Collapse
Affiliation(s)
- Darshan V Trivedi
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Arjun S Adhikari
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Saswata S Sarkar
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Kathleen M Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA. .,Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - James A Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
45
|
Scheid LM, Weber C, Bopp N, Mosqueira M, Fink RHA. Extraction Protocols for Individual Zebrafish's Ventricle Myosin and Skeletal Muscle Actin for In vitro Motility Assays. Front Physiol 2017; 8:367. [PMID: 28620318 PMCID: PMC5450195 DOI: 10.3389/fphys.2017.00367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/17/2017] [Indexed: 11/25/2022] Open
Abstract
The in vitro motility assay (IVMA) is a technique that enables the measurement of the interaction between actin and myosin providing a relatively simple model to understand the mechanical muscle function. For actin-myosin IVMA, myosin is immobilized in a measurement chamber, where it converts chemical energy provided by ATP hydrolysis into mechanical energy. The result is the movement of fluorescently labeled actin filaments that can be recorded microscopically and analyzed quantitatively. Resulting sliding speeds and patterns help to characterize the underlying actin-myosin interaction that can be affected by different factors such as mutations or active compounds. Additionally, modulatory actions of the regulatory proteins tropomyosin and troponin in the presence of calcium on actin-myosin interaction can be studied with the IVMA. Zebrafish is considered a suitable model organism for cardiovascular and skeletal muscle research. In this context, straightforward protocols for the isolation and use of zebrafish muscle proteins in the IVMA would provide a useful tool in molecular studies. Currently, there are no protocols available for the mentioned purpose. Therefore, we developed fast and easy protocols for characterization of zebrafish proteins in the IVMA. Our protocols enable the interested researcher to (i) isolate actin from zebrafish skeletal muscle and (ii) extract functionally intact myosin from cardiac and skeletal muscle of individual adult zebrafish. Zebrafish tail muscle actin is isolated after acetone powder preparation, polymerized, and labeled with Rhodamine-Phalloidin. Myosin from ventricles of adult zebrafish is extracted directly into IVMA flow-cells. The same extraction protocol is applicable for comparably small tissue pieces as from zebrafish tail, mouse and frog muscle. After addition of the fluorescently labeled F-actin from zebrafish—or other origin—and ATP, sliding movement can be visualized using a fluorescence microscope and an intensified CCD camera. Taken together, we introduce a method for functional analysis in zebrafish cardiac and skeletal muscle research to study mutations at the molecular level of thick or thin filament proteins. Additionally, preliminary data indicate the usefulness of the presented method to perform the IVMA with myosin extracted from muscles of other animal models.
Collapse
Affiliation(s)
- Lisa-Mareike Scheid
- Medical Biophysics Unit, Medical Faculty, Institute of Physiology and Pathophysiology, University of HeidelbergHeidelberg, Germany
| | - Cornelia Weber
- Medical Biophysics Unit, Medical Faculty, Institute of Physiology and Pathophysiology, University of HeidelbergHeidelberg, Germany
| | - Nasrin Bopp
- Medical Biophysics Unit, Medical Faculty, Institute of Physiology and Pathophysiology, University of HeidelbergHeidelberg, Germany
| | - Matias Mosqueira
- Medical Biophysics Unit, Medical Faculty, Institute of Physiology and Pathophysiology, University of HeidelbergHeidelberg, Germany
| | - Rainer H A Fink
- Medical Biophysics Unit, Medical Faculty, Institute of Physiology and Pathophysiology, University of HeidelbergHeidelberg, Germany
| |
Collapse
|
46
|
Abstract
Striated cardiac and skeletal muscles play very different roles in the body, but they are similar at the molecular level. In particular, contraction, regardless of the type of muscle, is a precise and complex process involving the integral protein myofilaments and their associated regulatory components. The smallest functional unit of muscle contraction is the sarcomere. Within the sarcomere can be found a sophisticated ensemble of proteins associated with the thick filaments (myosin, myosin binding protein-C, titin, and obscurin) and thin myofilaments (actin, troponin, tropomyosin, nebulin, and nebulette). These parallel thick and thin filaments slide across one another, pulling the two ends of the sarcomere together to regulate contraction. More specifically, the regulation of both timing and force of contraction is accomplished through an intricate network of intra- and interfilament interactions belonging to each myofilament. This review introduces the sarcomere proteins involved in striated muscle contraction and places greater emphasis on the more recently identified and less well-characterized myofilaments: cardiac myosin binding protein-C, titin, nebulin, and obscurin. © 2017 American Physiological Society. Compr Physiol 7:675-692, 2017.
Collapse
Affiliation(s)
- Brian Leei Lin
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, USA
| | - Taejeong Song
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, USA.,Department of Internal Medicine, Heart, Lung and Vascular Institute, Division of Cardiovascular Health and Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Sakthivel Sadayappan
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, USA.,Department of Internal Medicine, Heart, Lung and Vascular Institute, Division of Cardiovascular Health and Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
47
|
Manning GS. An ionic-chemical-mechanical model for muscle contraction. Biopolymers 2017; 105:887-97. [PMID: 27603027 DOI: 10.1002/bip.22926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/12/2016] [Indexed: 01/30/2023]
Abstract
The dynamic process underlying muscle contraction is the parallel sliding of thin actin filaments along an immobile thick myosin fiber powered by oar-like movements of protruding myosin cross bridges (myosin heads). The free energy for functioning of the myosin nanomotor comes from the hydrolysis of ATP bound to the myosin heads. The unit step of translational movement is based on a mechanical-chemical cycle involving ATP binding to myosin, hydrolysis of the bound ATP with ultimate release of the hydrolysis products, stress-generating conformational changes in the myosin cross bridge, and relief of built-up stress in the myosin power stroke. The cycle is regulated by a transition between weak and strong actin-myosin binding affinities. The dissociation of the weakly bound complex by addition of salt indicates the electrostatic basis for the weak affinity, while structural studies demonstrate that electrostatic interactions among negatively charged amino acid residues of actin and positively charged residues of myosin are involved in the strong binding interface. We therefore conjecture that intermediate states of increasing actin-myosin engagement during the weak-to-strong binding transition also involve electrostatic interactions. Methods of polymer solution physics have shown that the thin actin filament can be regarded in some of its aspects as a net negatively charged polyelectrolyte. Here we employ polyelectrolyte theory to suggest how actin-myosin electrostatic interactions might be of significance in the intermediate stages of binding, ensuring an engaged power stroke of the myosin motor that transmits force to the actin filament, and preventing the motor from getting stuck in a metastable pre-power stroke state. We provide electrostatic force estimates that are in the pN range known to operate in the cycle.
Collapse
Affiliation(s)
- Gerald S Manning
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ, 08854-8087, USA.
| |
Collapse
|
48
|
Kawana M, Sarkar SS, Sutton S, Ruppel KM, Spudich JA. Biophysical properties of human β-cardiac myosin with converter mutations that cause hypertrophic cardiomyopathy. SCIENCE ADVANCES 2017; 3:e1601959. [PMID: 28246639 PMCID: PMC5302870 DOI: 10.1126/sciadv.1601959] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 01/09/2017] [Indexed: 05/20/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) affects 1 in 500 individuals and is an important cause of arrhythmias and heart failure. Clinically, HCM is characterized as causing hypercontractility, and therapies are aimed toward controlling the hyperactive physiology. Mutations in the β-cardiac myosin comprise ~40% of genetic mutations associated with HCM, and the converter domain of myosin is a hotspot for HCM-causing mutations; however, the underlying primary effects of these mutations on myosin's biomechanical function remain elusive. We hypothesize that these mutations affect the biomechanical properties of myosin, such as increasing its intrinsic force and/or its duty ratio and therefore the ensemble force of the sarcomere. Using recombinant human β-cardiac myosin, we characterize the molecular effects of three severe HCM-causing converter domain mutations: R719W, R723G, and G741R. Contrary to our hypothesis, the intrinsic forces of R719W and R723G mutant myosins are decreased compared to wild type and unchanged for G741R. Actin and regulated thin filament gliding velocities are ~15% faster for R719W and R723G myosins, whereas there is no change in velocity for G741R. Adenosine triphosphatase activities and the load-dependent velocity change profiles of all three mutant proteins are very similar to those of wild type. These results indicate that the net biomechanical properties of human β-cardiac myosin carrying these converter domain mutations are very similar to those of wild type or are even slightly hypocontractile, leading us to consider an alternative mechanism for the clinically observed hypercontractility. Future work includes how these mutations affect protein interactions within the sarcomere that increase the availability of myosin heads participating in force production.
Collapse
Affiliation(s)
- Masataka Kawana
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Saswata S. Sarkar
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shirley Sutton
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kathleen M. Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA 94305, USA
- Corresponding author. (J.A.S.); (K.M.R.)
| | - James A. Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
- Corresponding author. (J.A.S.); (K.M.R.)
| |
Collapse
|
49
|
Chaphalkar AR, Jain K, Gangan MS, Athale CA. Automated Multi-Peak Tracking Kymography (AMTraK): A Tool to Quantify Sub-Cellular Dynamics with Sub-Pixel Accuracy. PLoS One 2016; 11:e0167620. [PMID: 27992448 PMCID: PMC5167257 DOI: 10.1371/journal.pone.0167620] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/17/2016] [Indexed: 11/18/2022] Open
Abstract
Kymographs or space-time plots are widely used in cell biology to reduce the dimensions of a time-series in microscopy for both qualitative and quantitative insight into spatio-temporal dynamics. While multiple tools for image kymography have been described before, quantification remains largely manual. Here, we describe a novel software tool for automated multi-peak tracking kymography (AMTraK), which uses peak information and distance minimization to track and automatically quantify kymographs, integrated in a GUI. The program takes fluorescence time-series data as an input and tracks contours in the kymographs based on intensity and gradient peaks. By integrating a branch-point detection method, it can be used to identify merging and splitting events of tracks, important in separation and coalescence events. In tests with synthetic images, we demonstrate sub-pixel positional accuracy of the program. We test the program by quantifying sub-cellular dynamics in rod-shaped bacteria, microtubule (MT) transport and vesicle dynamics. A time-series of E. coli cell division with labeled nucleoid DNA is used to identify the time-point and rate at which the nucleoid segregates. The mean velocity of microtubule (MT) gliding motility due to a recombinant kinesin motor is estimated as 0.5 μm/s, in agreement with published values, and comparable to estimates using software for nanometer precision filament-tracking. We proceed to employ AMTraK to analyze previously published time-series microscopy data where kymographs had been manually quantified: clathrin polymerization kinetics during vesicle formation and anterograde and retrograde transport in axons. AMTraK analysis not only reproduces the reported parameters, it also provides an objective and automated method for reproducible analysis of kymographs from in vitro and in vivo fluorescence microscopy time-series of sub-cellular dynamics.
Collapse
|
50
|
Spudich JA, Aksel T, Bartholomew SR, Nag S, Kawana M, Yu EC, Sarkar SS, Sung J, Sommese RF, Sutton S, Cho C, Adhikari AS, Taylor R, Liu C, Trivedi D, Ruppel KM. Effects of hypertrophic and dilated cardiomyopathy mutations on power output by human β-cardiac myosin. ACTA ACUST UNITED AC 2016; 219:161-7. [PMID: 26792326 DOI: 10.1242/jeb.125930] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hypertrophic cardiomyopathy is the most frequently occurring inherited cardiovascular disease, with a prevalence of more than one in 500 individuals worldwide. Genetically acquired dilated cardiomyopathy is a related disease that is less prevalent. Both are caused by mutations in the genes encoding the fundamental force-generating protein machinery of the cardiac muscle sarcomere, including human β-cardiac myosin, the motor protein that powers ventricular contraction. Despite numerous studies, most performed with non-human or non-cardiac myosin, there is no clear consensus about the mechanism of action of these mutations on the function of human β-cardiac myosin. We are using a recombinantly expressed human β-cardiac myosin motor domain along with conventional and new methodologies to characterize the forces and velocities of the mutant myosins compared with wild type. Our studies are extending beyond myosin interactions with pure actin filaments to include the interaction of myosin with regulated actin filaments containing tropomyosin and troponin, the roles of regulatory light chain phosphorylation on the functions of the system, and the possible roles of myosin binding protein-C and titin, important regulatory components of both cardiac and skeletal muscles.
Collapse
Affiliation(s)
- James A Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tural Aksel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sadie R Bartholomew
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Suman Nag
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Masataka Kawana
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Elizabeth Choe Yu
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Saswata S Sarkar
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jongmin Sung
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ruth F Sommese
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shirley Sutton
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Carol Cho
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Arjun S Adhikari
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rebecca Taylor
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chao Liu
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Darshan Trivedi
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kathleen M Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|