1
|
Aldrete CA, Call CC, Sant'Anna LE, Vlahos AE, Pei J, Cong Q, Gao XJ. Orthogonalized human protease control of secreted signals. Nat Chem Biol 2025:10.1038/s41589-024-01831-x. [PMID: 39814991 DOI: 10.1038/s41589-024-01831-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/18/2024] [Indexed: 01/18/2025]
Abstract
Synthetic circuits that regulate protein secretion in human cells could support cell-based therapies by enabling control over local environments. Although protein-level circuits enable such potential clinical applications, featuring orthogonality and compactness, their non-human origin poses a potential immunogenic risk. In this study, we developed Humanized Drug Induced Regulation of Engineered CyTokines (hDIRECT) as a platform to control cytokine activity exclusively using human-derived proteins. We sourced a specific human protease and its FDA-approved inhibitor. We engineered cytokines (IL-2, IL-6 and IL-10) whose activities can be activated and abrogated by proteolytic cleavage. We used species specificity and re-localization strategies to orthogonalize the cytokines and protease from the human context that they would be deployed in. hDIRECT should enable local cytokine activation to support a variety of cell-based therapies, such as muscle regeneration and cancer immunotherapy. Our work offers a proof of concept for the emerging appreciation of humanization in synthetic biology for human health.
Collapse
Affiliation(s)
- Carlos A Aldrete
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Connor C Call
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Lucas E Sant'Anna
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Alexander E Vlahos
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Jimin Pei
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qian Cong
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaojing J Gao
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
2
|
Luo X, Luo B, Fei L, Zhang Q, Liang X, Chen Y, Zhou X. MS4A superfamily molecules in tumors, Alzheimer's and autoimmune diseases. Front Immunol 2024; 15:1481494. [PMID: 39717774 PMCID: PMC11663944 DOI: 10.3389/fimmu.2024.1481494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/12/2024] [Indexed: 12/25/2024] Open
Abstract
MS4A (membrane-spanning 4-domain, subfamily A) molecules are categorized into tetraspanins, which possess four-transmembrane structures. To date, eighteen MS4A members have been identified in humans, whereas twenty-three different molecules have been identified in mice. MS4A proteins are selectively expressed on the surfaces of various immune cells, such as B cells (MS4A1), mast cells (MS4A2), macrophages (MS4A4A), Foxp3+CD4+ regulatory T cells (MS4A4B), and type 3 innate lymphoid cells (TMEM176A and TMEM176B). Early research confirmed that most MS4A molecules function as ion channels that regulate the transport of calcium ions. Recent studies have revealed that some MS4A proteins also function as chaperones that interact with various immune molecules, such as pattern recognition receptors and/or immunoglobulin receptors, to form immune complexes and transmit downstream signals, leading to cell activation, growth, and development. Evidence from preclinical animal models and human genetic studies suggests that the MS4A superfamily plays critical roles in the pathogenesis of various diseases, including cancer, infection, allergies, neurodegenerative diseases and autoimmune diseases. We review recent progress in this field and focus on elucidating the molecular mechanisms by which different MS4A molecules regulate the progression of tumors, Alzheimer's disease, and autoimmune diseases. Therefore, in-depth research into MS4A superfamily members may clarify their ability to act as candidate biomarkers and therapeutic targets for these diseases. Eighteen distinct members of the MS4A (membrane-spanning four-domain subfamily A) superfamily of four-transmembrane proteins have been identified in humans, whereas the MS4A genes are translated into twenty-three different molecules in mice. These proteins are selectively expressed on the surface of various immune cells, such as B cells (MS4A1), macrophages (MS4A4A), mast cells (MS4A2), Foxp3+CD4+ regulatory T cells (MS4A4B), type 3 innate lymphoid cells (TMEM176A and TMEM176B) and colonic epithelial cells (MS4A12). Functionally, most MS4A molecules function as ion channels that regulate the flow of calcium ions [Ca2+] across cell membranes. Recent studies have revealed that some MS4A proteins also act as molecular chaperones and interact with various types of immune receptors, including pattern recognition receptors (PRRs) and immunoglobulin receptors (IgRs), to form signaling complexes, thereby modulating intracellular signaling and cellular activity. Evidence from preclinical animal models and human genetic studies suggests that MS4A proteins play critical roles in various diseases (2). Therefore, we reviewed the recent progress in understanding the role of the MS4A superfamily in diseases, particularly in elucidating its function as a candidate biomarker and therapeutic target for cancer.
Collapse
Affiliation(s)
- Xuejiao Luo
- Department of Dermatology, The Affiliated Hospital of the Non-Commissioned Officer (NCO) School, The Army Medical University, Shijiazhuang, Hebei, China
| | - Bin Luo
- Institute of Immunology, Department of Basic Medicine, The Army Military Medical University, Chongqing, China
| | - Lei Fei
- Institute of Immunology, Department of Basic Medicine, The Army Military Medical University, Chongqing, China
| | - Qinggao Zhang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Xinyu Liang
- Department of Otolaryngology, The Second Affiliated Hospital of the Army Military Medical University, Chongqing, China
| | - Yongwen Chen
- Institute of Immunology, Department of Basic Medicine, The Army Military Medical University, Chongqing, China
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Xueqin Zhou
- Department of Otolaryngology, The Second Affiliated Hospital of the Army Military Medical University, Chongqing, China
| |
Collapse
|
3
|
Carter PJ, Quarmby V. Immunogenicity risk assessment and mitigation for engineered antibody and protein therapeutics. Nat Rev Drug Discov 2024; 23:898-913. [PMID: 39424922 DOI: 10.1038/s41573-024-01051-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2024] [Indexed: 10/21/2024]
Abstract
Remarkable progress has been made in recent decades in engineering antibodies and other protein therapeutics, including enhancements to existing functions as well as the advent of novel molecules that confer biological activities previously unknown in nature. These protein therapeutics have brought major benefits to patients across multiple areas of medicine. One major ongoing challenge is that protein therapeutics can elicit unwanted immune responses (immunogenicity) in treated patients, including the generation of anti-drug antibodies. In rare and unpredictable cases, anti-drug antibodies can seriously compromise therapeutic safety and/or efficacy. Systematic deconvolution of this immunogenicity problem is confounded by the complexity of its many contributing factors and the inherent limitations of available experimental and computational methods. Nevertheless, continued progress with the assessment and mitigation of immunogenicity risk at the preclinical stage has the potential to reduce the incidence and severity of clinical immunogenicity events. This Review focuses on identifying key unsolved anti-drug antibody-related challenges and offers some pragmatic approaches towards addressing them. Examples are drawn mainly from antibodies, given that the majority of available clinical data are from this class of protein therapeutics. Plausible and seemingly tractable solutions are in sight for some immunogenicity problems, whereas other challenges will likely require completely new approaches.
Collapse
Affiliation(s)
- Paul J Carter
- Department of Antibody Engineering, Genentech, Inc., South San Francisco, CA, USA.
| | - Valerie Quarmby
- Department of BioAnalytical Sciences, Genentech, Inc., South San Francisco, CA, USA.
| |
Collapse
|
4
|
Hansen JF, Magyari M, Rasmussen ÅK, Sellebjerg F, Feldt-Rasmussen U. Alemtuzumab-induced thyroid disease: A Danish cohort study. Mult Scler Relat Disord 2024; 91:105880. [PMID: 39293122 DOI: 10.1016/j.msard.2024.105880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/20/2024]
Abstract
OBJECTIVES Alemtuzumab, a monoclonal antibody against the cluster of differentiation 52 (CD52) molecule, is used in the treatment of multiple sclerosis (MS). A side effect of the treatment is development of secondary autoimmune thyroid disease. The aim of this study was to evaluate the rate, type and course of thyroid disease in Danish patients with multiple sclerosis (MS) treated with alemtuzumab. METHODS We conducted a retrospective cohort study of patients treated with a first series of alemtuzumab for MS in the Capital and Zealand regions of Denmark (population: 2.6 million) between 2014 and 2018 (n = 60 RESULTS: The duration of follow-up was median 81 months (range 54-105). Thyroid disease occurred in 47 % of the patients with the following distribution: Graves' disease (GD), thyrotropin (TSH) receptor antibody (TRAb) positive hyper- or hypothyroidism 35 %; multinodular goitre 5 %; silent thyroiditis, gestational transient thyrotoxicosis or unclassified hyperthyroidism 7 %. Of patients with GD, 14 % had an additional silent or postpartum thyroiditis before onset or after remission of GD. Unusual courses of GD occurred in 67 %, most commonly fluctuation from hypo- to hyperthyroidism or vice versa, mainly treated with antithyroid drug alone or thyroxine substitution regime but switched to concomitant block and replace treatment in 25 % and/or subsequent total thyroidectomy in less than 25 %. CONCLUSION Data from the largest Danish MS center supports previous observations of unusual, long-lasting and unpredictable courses of alemtuzumab-induced GD. Thus, follow-up of these patients may require long lasting and more frequent biochemical measurements compared to other patients with GD. Also, concomitant block and replace treatment or definitive treatment, such as thyroidectomy, should be considered in a subgroup of patients.
Collapse
Affiliation(s)
- Juliana Frohnert Hansen
- Copenhagen University Hospital Amager and Hvidovre, Department of Endocrinology Amager, Copenhagen S, Denmark; Copenhagen University Hospital, Rigshospitalet, Department of Endocrinology and Metabolism, Copenhagen, Denmark.
| | - Melinda Magyari
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Åse Krogh Rasmussen
- Copenhagen University Hospital, Rigshospitalet, Department of Endocrinology and Metabolism, Copenhagen, Denmark
| | - Finn Sellebjerg
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ulla Feldt-Rasmussen
- Copenhagen University Hospital, Rigshospitalet, Department of Endocrinology and Metabolism, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Aldrete CA, Call CC, Sant'Anna LE, Vlahos AE, Pei J, Cong Q, Gao XJ. Orthogonalized human protease control of secreted signals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576308. [PMID: 39484520 PMCID: PMC11526856 DOI: 10.1101/2024.01.18.576308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Synthetic circuits that regulate protein secretion in human cells could support cell-based therapies by enabling control over local environments. While protein-level circuits enable such potential clinical applications, featuring orthogonality and compactness, their non-human origin poses a potential immunogenic risk. Here, we developed Humanized Drug Induced Regulation of Engineered CyTokines (hDIRECT) as a platform to control cytokine activity exclusively using human-derived proteins. We sourced a specific human protease and its FDA-approved inhibitor. We engineered cytokines (IL-2, IL-6, and IL-10) whose activities can be activated and abrogated by proteolytic cleavage. We utilized species specificity and re-localization strategies to orthogonalize the cytokines and protease from the human context that they would be deployed in. hDIRECT should enable local cytokine activation to support a variety of cell-based therapies such as muscle regeneration and cancer immunotherapy. Our work offers a proof of concept for the emerging appreciation of humanization in synthetic biology for human health.
Collapse
Affiliation(s)
- Carlos A Aldrete
- Department of Chemical Engineering, Stanford University, Stanford CA 94305, USA
| | - Connor C Call
- Department of Chemical Engineering, Stanford University, Stanford CA 94305, USA
| | - Lucas E Sant'Anna
- Department of Bioengineering, Stanford University, Stanford CA 94305, USA
| | - Alexander E Vlahos
- Department of Chemical Engineering, Stanford University, Stanford CA 94305, USA
| | - Jimin Pei
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qian Cong
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaojing J Gao
- Department of Chemical Engineering, Stanford University, Stanford CA 94305, USA
| |
Collapse
|
6
|
Rodriguez SMB, Tataranu LG, Kamel A, Turliuc S, Rizea RE, Dricu A. Glioblastoma and Immune Checkpoint Inhibitors: A Glance at Available Treatment Options and Future Directions. Int J Mol Sci 2024; 25:10765. [PMID: 39409094 PMCID: PMC11477435 DOI: 10.3390/ijms251910765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Glioblastoma is known to be one of the most aggressive and fatal human cancers, with a poor prognosis and resistance to standard treatments. In the last few years, many solid tumor treatments have been revolutionized with the help of immunotherapy. However, this type of treatment has failed to improve the results in glioblastoma patients. Effective immunotherapeutic strategies may be developed after understanding how glioblastoma achieves tumor-mediated immune suppression in both local and systemic landscapes. Biomarkers may help identify patients most likely to benefit from this type of treatment. In this review, we discuss the use of immunotherapy in glioblastoma, with an emphasis on immune checkpoint inhibitors and the factors that influence clinical response. A Pubmed data search was performed for all existing information regarding immune checkpoint inhibitors used for the treatment of glioblastoma. All data evaluating the ongoing clinical trials involving the use of ICIs either as monotherapy or in combination with other drugs was compiled and analyzed.
Collapse
Affiliation(s)
- Silvia Mara Baez Rodriguez
- Neurosurgical Department, Bagdasar-Arseni Clinical Emergency Hospital, 041915 Bucharest, Romania; (S.M.B.R.); (A.K.); (R.E.R.)
| | - Ligia Gabriela Tataranu
- Neurosurgical Department, Bagdasar-Arseni Clinical Emergency Hospital, 041915 Bucharest, Romania; (S.M.B.R.); (A.K.); (R.E.R.)
- Neurosurgical Department, Carol Davila University of Medicine and Pharmacy, 020022 Bucharest, Romania
| | - Amira Kamel
- Neurosurgical Department, Bagdasar-Arseni Clinical Emergency Hospital, 041915 Bucharest, Romania; (S.M.B.R.); (A.K.); (R.E.R.)
| | - Serban Turliuc
- Medical Department, University of Medicine and Pharmacy “G. T. Popa”, 700115 Iasi, Romania;
| | - Radu Eugen Rizea
- Neurosurgical Department, Bagdasar-Arseni Clinical Emergency Hospital, 041915 Bucharest, Romania; (S.M.B.R.); (A.K.); (R.E.R.)
- Neurosurgical Department, Carol Davila University of Medicine and Pharmacy, 020022 Bucharest, Romania
| | - Anica Dricu
- Biochemistry Department, Carol Davila University of Medicine and Pharmacy, 020022 Bucharest, Romania;
| |
Collapse
|
7
|
Wang Y, Chen YL, Xu H, Rana GE, Tan X, He M, Jing Q, Wang Q, Wang G, Xie Z, Wang C. Comparison of "framework Shuffling" and "CDR Grafting" in humanization of a PD-1 murine antibody. Front Immunol 2024; 15:1395854. [PMID: 39076979 PMCID: PMC11284016 DOI: 10.3389/fimmu.2024.1395854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/26/2024] [Indexed: 07/31/2024] Open
Abstract
Introduction Humanization is typically adopted to reduce the immunogenicity of murine antibodies generated by hybridoma technology when used in humans. Methods Two different strategies of antibody humanization are popularly employed, including "complementarity determining region (CDR) grafting" and "framework (FR) shuffling" to humanize a murine antibody against human programmed death-1 (PD-1), XM PD1. In CDR-grafting humanization, the CDRs of XM PD-1, were grafted into the human FR regions with high homology to the murine FR counterparts, and back mutations of key residues were performed to retain the antigen-binding affinities. While in FR-shuffling humanization, a combinatorial library of the six murine CDRs in-frame of XM PD-1 was constructed to a pool of human germline FRs for high-throughput screening for the most favorable variants. We evaluated many aspects which were important during antibody development of the molecules obtained by the two methods, including antibody purity, thermal stability, binding efficacy, predicted humanness, and immunogenicity, along with T cell epitope prediction for the humanized antibodies. Results While the ideal molecule was not achieved through CDR grafting in this particular instance, FR-shuffling proved successful in identifying a suitable candidate. The study highlights FR-shuffling as an effective complementary approach that potentially increases the success rate of antibody humanization. It is particularly noted for its accessibility to those with a biological rather than a computational background. Discussion The insights from this comparison are intended to assist other researchers in selecting appropriate humanization strategies for drug development, contributing to broader application and understanding in the field.
Collapse
Affiliation(s)
- Yongmei Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi-Li Chen
- Dartsbio Pharmaceuticals Ltd., Zhongshan, Guangdong, China
- Shanghai Mabstone Biotechnology Ltd., Shanghai, China
| | - Hui Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Gul E. Rana
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaorong Tan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Mengying He
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qingqing Jing
- Antibody Development Department, Shanghai Genechem Co., Ltd., Shanghai, China
| | - Qi Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Guifeng Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zuoquan Xie
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunhe Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Dartsbio Pharmaceuticals Ltd., Zhongshan, Guangdong, China
| |
Collapse
|
8
|
Strazza V, Rossi M, Avati A, Tiseo G, Falcone M, Cusi MG, Menichetti F, Ricciardi-Castagnoli P, Tinti C, Pileri P. Rapid generation of human recombinant monoclonal antibodies from antibody-secreting cells using ferrofluid-based technology. Front Immunol 2024; 15:1341389. [PMID: 38698845 PMCID: PMC11064063 DOI: 10.3389/fimmu.2024.1341389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/06/2024] [Indexed: 05/05/2024] Open
Abstract
Monoclonal antibodies (mAbs) are one of the most important classes of biologics with high therapeutic and diagnostic value, but traditional methods for mAbs generation, such as hybridoma screening and phage display, have limitations, including low efficiency and loss of natural chain pairing. To overcome these challenges, novel single B cell antibody technologies have emerged, but they also have limitations such as in vitro differentiation of memory B cells and expensive cell sorters. In this study, we present a rapid and efficient workflow for obtaining human recombinant monoclonal antibodies directly from single antigen-specific antibody secreting cells (ASCs) in the peripheral blood of convalescent COVID-19 patients using ferrofluid technology. This process allows the identification and expression of recombinant antigen-specific mAbs in less than 10 days, using RT-PCR to generate linear Ig heavy and light chain gene expression cassettes, called "minigenes", for rapid expression of recombinant antibodies without cloning procedures. This approach has several advantages. First, it saves time and resources by eliminating the need for in vitro differentiation. It also allows individual antigen-specific ASCs to be screened for effector function prior to recombinant antibody cloning, enabling the selection of mAbs with desired characteristics and functional activity. In addition, the method allows comprehensive analysis of variable region repertoires in combination with functional assays to evaluate the specificity and function of the generated antigen-specific antibodies. Our approach, which rapidly generates recombinant monoclonal antibodies from single antigen-specific ASCs, could help to identify functional antibodies and deepen our understanding of antibody dynamics in the immune response through combined antibody repertoire sequence analysis and functional reactivity testing.
Collapse
Affiliation(s)
- Veronica Strazza
- Hyper Antibody Research & Development (HARD) -Lab, Toscana Life Sciences Foundation, Siena, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Marco Rossi
- Hyper Antibody Research & Development (HARD) -Lab, Toscana Life Sciences Foundation, Siena, Italy
| | - Andrea Avati
- Hyper Antibody Research & Development (HARD) -Lab, Toscana Life Sciences Foundation, Siena, Italy
| | - Giusy Tiseo
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Marco Falcone
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Maria Grazia Cusi
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Francesco Menichetti
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
| | | | - Cristina Tinti
- Hyper Antibody Research & Development (HARD) -Lab, Toscana Life Sciences Foundation, Siena, Italy
| | - Piero Pileri
- Hyper Antibody Research & Development (HARD) -Lab, Toscana Life Sciences Foundation, Siena, Italy
| |
Collapse
|
9
|
Harris CT, Cohen S. Reducing Immunogenicity by Design: Approaches to Minimize Immunogenicity of Monoclonal Antibodies. BioDrugs 2024; 38:205-226. [PMID: 38261155 PMCID: PMC10912315 DOI: 10.1007/s40259-023-00641-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 01/24/2024]
Abstract
Monoclonal antibodies (mAbs) have transformed therapeutic strategies for various diseases. Their high specificity to target antigens makes them ideal therapeutic agents for certain diseases. However, a challenge to their application in clinical practice is their potential risk to induce unwanted immune response, termed immunogenicity. This challenge drives the continued efforts to deimmunize these protein therapeutics while maintaining their pharmacokinetic properties and therapeutic efficacy. Because mAbs hold a central position in therapeutic strategies against an array of diseases, the importance of conducting comprehensive immunogenicity risk assessment during the drug development process cannot be overstated. Such assessment necessitates the employment of in silico, in vitro, and in vivo strategies to evaluate the immunogenicity risk of mAbs. Understanding the intricacies of the mechanisms that drive mAb immunogenicity is crucial to improving their therapeutic efficacy and safety and developing the most effective strategies to determine and mitigate their immunogenic risk. This review highlights recent advances in immunogenicity prediction strategies, with a focus on protein engineering strategies used throughout development to reduce immunogenicity.
Collapse
Affiliation(s)
- Chantal T Harris
- Department of BioAnalytical Sciences, Genentech Inc., South San Francisco, CA, 94080-4990, USA
| | - Sivan Cohen
- Department of BioAnalytical Sciences, Genentech Inc., South San Francisco, CA, 94080-4990, USA.
| |
Collapse
|
10
|
Hariharan P, Shi Y, Katsube S, Willibal K, Burrows ND, Mitchell P, Bakhtiiari A, Stanfield S, Pardon E, Kaback HR, Liang R, Steyaert J, Viner R, Guan L. Mobile barrier mechanisms for Na +-coupled symport in an MFS sugar transporter. eLife 2024; 12:RP92462. [PMID: 38381130 PMCID: PMC10942615 DOI: 10.7554/elife.92462] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Abstract
While many 3D structures of cation-coupled transporters have been determined, the mechanistic details governing the obligatory coupling and functional regulations still remain elusive. The bacterial melibiose transporter (MelB) is a prototype of major facilitator superfamily transporters. With a conformation-selective nanobody, we determined a low-sugar affinity inward-facing Na+-bound cryoEM structure. The available outward-facing sugar-bound structures showed that the N- and C-terminal residues of the inner barrier contribute to the sugar selectivity. The inward-open conformation shows that the sugar selectivity pocket is also broken when the inner barrier is broken. Isothermal titration calorimetry measurements revealed that this inward-facing conformation trapped by this nanobody exhibited a greatly decreased sugar-binding affinity, suggesting the mechanisms for substrate intracellular release and accumulation. While the inner/outer barrier shift directly regulates the sugar-binding affinity, it has little or no effect on the cation binding, which is supported by molecular dynamics simulations. Furthermore, the hydron/deuterium exchange mass spectrometry analyses allowed us to identify dynamic regions; some regions are involved in the functionally important inner barrier-specific salt-bridge network, which indicates their critical roles in the barrier switching mechanisms for transport. These complementary results provided structural and dynamic insights into the mobile barrier mechanism for cation-coupled symport.
Collapse
Affiliation(s)
- Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, School of MedicineLubbockUnited States
| | - Yuqi Shi
- Thermo Fisher ScientificSan JoseUnited States
| | - Satoshi Katsube
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, School of MedicineLubbockUnited States
| | - Katleen Willibal
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2BrusselsBelgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2BrusselsBelgium
| | - Nathan D Burrows
- Division of CryoEM and Bioimaging, Stanford Synchrotron Radiation Light Source, SLAC National Accelerator LaboratoryMenlo ParkUnited States
| | - Patrick Mitchell
- Division of CryoEM and Bioimaging, Stanford Synchrotron Radiation Light Source, SLAC National Accelerator LaboratoryMenlo ParkUnited States
| | | | - Samantha Stanfield
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, School of MedicineLubbockUnited States
| | - Els Pardon
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2BrusselsBelgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2BrusselsBelgium
| | - H Ronald Kaback
- Department of Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Ruibin Liang
- Department of Chemistry and Biochemistry, Texas Tech UniversityLubbockUnited States
| | - Jan Steyaert
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2BrusselsBelgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2BrusselsBelgium
| | - Rosa Viner
- Thermo Fisher ScientificSan JoseUnited States
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, School of MedicineLubbockUnited States
| |
Collapse
|
11
|
Kesireddy M, Kothapalli SR, Gundepalli SG, Asif S. A Review of the Current FDA-Approved Antibody-Drug Conjugates: Landmark Clinical Trials and Indications. Pharmaceut Med 2024; 38:39-54. [PMID: 38019416 DOI: 10.1007/s40290-023-00505-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2023] [Indexed: 11/30/2023]
Abstract
Despite considerable treatment progress, cancer remains among the leading causes of death worldwide. Antibody-drug conjugates (ADCs), a rapidly growing class of systemic therapy, show promise by combining the properties of conventional chemotherapy and targeted therapy. Antibody-drug conjugates have been shown to be more efficacious than traditional chemotherapy. To date, there are 13 ADCs approved by the United States Food and Drug Administration (FDA) for treating various hematological and solid organ cancers. There are several new promising ADCs that are being developed and are in clinical trials. This review provides an overview of the current FDA-approved ADCs, the landmark clinical trials that led to their approval, the common toxicities seen in the landmark trials, the challenges associated with ADCs, and the potential future directions.
Collapse
Affiliation(s)
- Meghana Kesireddy
- Division of Hematology-Oncology, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 986840 Nebraska Medical Center, Omaha, NE, 68198-6840, USA.
| | | | | | - Samia Asif
- Division of Hematology-Oncology, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 986840 Nebraska Medical Center, Omaha, NE, 68198-6840, USA
| |
Collapse
|
12
|
Gupta P, Horspool AM, Trivedi G, Moretti G, Datar A, Huang ZF, Chiecko J, Kenny CH, Marlow MS. Matrixed CDR grafting: A neoclassical framework for antibody humanization and developability. J Biol Chem 2024; 300:105555. [PMID: 38072062 PMCID: PMC10805677 DOI: 10.1016/j.jbc.2023.105555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 01/02/2024] Open
Abstract
Discovery and optimization of a biotherapeutic monoclonal antibody requires a careful balance of target engagement and physicochemical developability properties. To take full advantage of the sequence diversity provided by different antibody discovery platforms, a rapid and reliable process for humanization of antibodies from nonhuman sources is required. Canonically, maximizing homology of the human variable region (V-region) to the original germline was believed to result in preservation of binding, often without much consideration for inherent molecular properties. We expand on this approach by grafting the complementary determining regions (CDRs) of a mouse anti-LAG3 antibody into an extensive matrix of human variable heavy chain (VH) and variable light chain (VL) framework regions with substantially broader sequence homology to assess the impact on complementary determining region-framework compatibility through progressive evaluation of expression, affinity, biophysical developability, and function. Specific VH and VL framework sequences were associated with major expression and purification phenotypes. Greater VL sequence conservation was correlated with retained or improved affinity. Analysis of grafts that bound the target demonstrated that initial developability criteria were significantly impacted by VH, but not VL. In contrast, cell binding and functional characteristics were significantly impacted by VL, but not VH. Principal component analysis of all factors identified multiple grafts that exhibited more favorable antibody properties, notably with nonoptimal sequence conservation. Overall, this study demonstrates that modern throughput systems enable a more thorough, customizable, and systematic analysis of graft-framework combinations, resulting in humanized antibodies with improved global properties that may progress through development more quickly and with a greater probability of success.
Collapse
Affiliation(s)
- Pankaj Gupta
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut, USA.
| | - Alexander M Horspool
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut, USA
| | - Goral Trivedi
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut, USA
| | - Gina Moretti
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut, USA
| | - Akshita Datar
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut, USA
| | - Zhong-Fu Huang
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut, USA
| | - Jeffrey Chiecko
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut, USA
| | - Cynthia Hess Kenny
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut, USA
| | - Michael S Marlow
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut, USA.
| |
Collapse
|
13
|
Hariharan P, Shi Y, Katsube S, Willibal K, Burrows ND, Mitchell P, Bakhtiiari A, Stanfield S, Pardon E, Kaback HR, Liang R, Steyaert J, Viner R, Guan L. Mobile barrier mechanisms for Na +-coupled symport in an MFS sugar transporter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.558283. [PMID: 37790566 PMCID: PMC10542114 DOI: 10.1101/2023.09.18.558283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
While many 3D structures of cation-coupled transporters have been determined, the mechanistic details governing the obligatory coupling and functional regulations still remain elusive. The bacterial melibiose transporter (MelB) is a prototype of the Na+-coupled major facilitator superfamily transporters. With a conformational nanobody (Nb), we determined a low-sugar affinity inward-facing Na+-bound cryoEM structure. Collectively with the available outward-facing sugar-bound structures, both the outer and inner barriers were localized. The N- and C-terminal residues of the inner barrier contribute to the sugar selectivity pocket. When the inner barrier is broken as shown in the inward-open conformation, the sugar selectivity pocket is also broken. The binding assays by isothermal titration calorimetry revealed that this inward-facing conformation trapped by the conformation-selective Nb exhibited a greatly decreased sugar-binding affinity, suggesting the mechanisms for the substrate intracellular release and accumulation. While the inner/outer barrier shift directly regulates the sugar-binding affinity, it has little or no effect on the cation binding, which is also supported by molecular dynamics simulations. Furthermore, the use of this Nb in combination with the hydron/deuterium exchange mass spectrometry allowed us to identify dynamic regions; some regions are involved in the functionally important inner barrier-specific salt-bridge network, which indicates their critical roles in the barrier switching mechanisms for transport. These complementary results provided structural and dynamic insights into the mobile barrier mechanism for cation-coupled symport.
Collapse
Affiliation(s)
- Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79424, USA
| | - Yuqi Shi
- Thermo Fisher Scientific, San Jose, CA 95134, USA
| | - Satoshi Katsube
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79424, USA
| | | | - Nathan D. Burrows
- Division of CryoEM and Bioimaging, Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Patrick Mitchell
- Division of CryoEM and Bioimaging, Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | | | - Samantha Stanfield
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79424, USA
| | - Els Pardon
- VIB-VUB Center for Structural Biology, 1050 Brussel, Belgium
| | - H. Ronald Kaback
- Department of Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ruibin Liang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Jan Steyaert
- VIB-VUB Center for Structural Biology, 1050 Brussel, Belgium
| | - Rosa Viner
- Thermo Fisher Scientific, San Jose, CA 95134, USA
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79424, USA
| |
Collapse
|
14
|
Sasso J, Tenchov R, Bird R, Iyer KA, Ralhan K, Rodriguez Y, Zhou QA. The Evolving Landscape of Antibody-Drug Conjugates: In Depth Analysis of Recent Research Progress. Bioconjug Chem 2023; 34:1951-2000. [PMID: 37821099 PMCID: PMC10655051 DOI: 10.1021/acs.bioconjchem.3c00374] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/27/2023] [Indexed: 10/13/2023]
Abstract
Antibody-drug conjugates (ADCs) are targeted immunoconjugate constructs that integrate the potency of cytotoxic drugs with the selectivity of monoclonal antibodies, minimizing damage to healthy cells and reducing systemic toxicity. Their design allows for higher doses of the cytotoxic drug to be administered, potentially increasing efficacy. They are currently among the most promising drug classes in oncology, with efforts to expand their application for nononcological indications and in combination therapies. Here we provide a detailed overview of the recent advances in ADC research and consider future directions and challenges in promoting this promising platform to widespread therapeutic use. We examine data from the CAS Content Collection, the largest human-curated collection of published scientific information, and analyze the publication landscape of recent research to reveal the exploration trends in published documents and to provide insights into the scientific advances in the area. We also discuss the evolution of the key concepts in the field, the major technologies, and their development pipelines with company research focuses, disease targets, development stages, and publication and investment trends. A comprehensive concept map has been created based on the documents in the CAS Content Collection. We hope that this report can serve as a useful resource for understanding the current state of knowledge in the field of ADCs and the remaining challenges to fulfill their potential.
Collapse
Affiliation(s)
- Janet
M. Sasso
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Rumiana Tenchov
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Robert Bird
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | | | | - Yacidzohara Rodriguez
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | |
Collapse
|
15
|
Ramapriyan R, Sun J, Curry A, Richardson LG, Ramesh T, Gaffey MA, Gedeon PC, Gerstner ER, Curry WT, Choi BD. The Role of Antibody-Based Therapies in Neuro-Oncology. Antibodies (Basel) 2023; 12:74. [PMID: 37987252 PMCID: PMC10660525 DOI: 10.3390/antib12040074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/16/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
This review explores the evolving landscape of antibody-based therapies in neuro-oncology, in particular, immune checkpoint inhibitors and immunomodulatory antibodies. We discuss their mechanisms of action, blood-brain barrier (BBB) penetration, and experience in neuro-oncological conditions. Evidence from recent trials indicates that while these therapies can modulate the tumor immune microenvironment, their clinical benefits remain uncertain, largely due to challenges with BBB penetration and tumor-derived immunosuppression. This review also examines emerging targets such as TIGIT and LAG3, the potential of antibodies in modulating the myeloid compartment, and tumor-specific targets for monoclonal antibody therapy. We further delve into advanced strategies such as antibody-drug conjugates and bispecific T cell engagers. Lastly, we explore innovative techniques being investigated to enhance antibody delivery, including CAR T cell therapy. Despite current limitations, these therapies hold significant therapeutic potential for neuro-oncology. Future research should focus on optimizing antibody delivery to the CNS, identifying novel biological targets, and discovering combination therapies to address the hostile tumor microenvironment.
Collapse
Affiliation(s)
- Rishab Ramapriyan
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA (A.C.); (L.G.R.); (W.T.C.)
- Harvard Medical School, Boston, MA 02115, USA (E.R.G.)
| | - Jing Sun
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA (A.C.); (L.G.R.); (W.T.C.)
| | - Annabel Curry
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA (A.C.); (L.G.R.); (W.T.C.)
| | - Leland G. Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA (A.C.); (L.G.R.); (W.T.C.)
| | - Tarun Ramesh
- Harvard Medical School, Boston, MA 02115, USA (E.R.G.)
| | - Matthew A. Gaffey
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA (A.C.); (L.G.R.); (W.T.C.)
| | - Patrick C. Gedeon
- Harvard Medical School, Boston, MA 02115, USA (E.R.G.)
- Department of Surgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Elizabeth R. Gerstner
- Harvard Medical School, Boston, MA 02115, USA (E.R.G.)
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - William T. Curry
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA (A.C.); (L.G.R.); (W.T.C.)
- Harvard Medical School, Boston, MA 02115, USA (E.R.G.)
| | - Bryan D. Choi
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA (A.C.); (L.G.R.); (W.T.C.)
- Harvard Medical School, Boston, MA 02115, USA (E.R.G.)
| |
Collapse
|
16
|
Achini-Gutzwiller FR, Schilham MW, von Asmuth EGJ, Jansen-Hoogendijk AM, Jol-van der Zijde CM, van Tol MJD, Bredius RGM, Güngör T, Lankester AC, Moes DJAR. Exposure-response analysis of alemtuzumab in pediatric allogeneic HSCT for nonmalignant diseases: the ARTIC study. Blood Adv 2023; 7:4462-4474. [PMID: 37285798 PMCID: PMC10440472 DOI: 10.1182/bloodadvances.2022009051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 06/09/2023] Open
Abstract
Alemtuzumab (anti-CD52 antibody) is frequently prescribed to children with nonmalignant diseases undergoing allogeneic hematopoietic stem cell transplantation (HSCT) to prevent graft failure (GF) and acute graft-versus-host disease (aGVHD). The aim of this multicenter study was the characterization of alemtuzumab population pharmacokinetics to perform a novel model-based exposure-response analysis in 53 children with nonmalignant immunological or hematological disease and a median age of 4.4 years (interquartile range [IQR], 0.8-8.7). The median cumulative alemtuzumab dose was 0.6 mg/kg (IQR, 0.6-1) administered over 2 to 7 days. A 2-compartment population pharmacokinetics model with parallel linear and nonlinear elimination including allometrically scaled bodyweight (median, 17.50 kg; IQR, 8.76-33.00) and lymphocyte count at baseline (mean, 2.24 × 109/L; standard deviation ± 1.87) as significant pharmacokinetic predictors was developed using nonlinear mixed effects modeling. Based on the model-estimated median concentration at day of HSCT (0.77 μg/mL; IQR, 0.33-1.82), patients were grouped into a low- (≤0.77 μg/mL) or high- (>0.77 μg/mL) exposure groups. High alemtuzumab exposure at day of HSCT correlated with delayed CD4+ and CD8+ T-cell reconstitution (P value < .0001) and increased risk of GF (P value = .043). In contrast, alemtuzumab exposure did not significantly influence the incidence of aGVHD grade ≥2, mortality, chimerism at 1 year, viral reactivations, and autoimmunity at a median follow-up of 3.3 years (IQR, 2.5-8.0). In conclusion, this novel population pharmacokinetics model is suitable for individualized intravenous precision dosing to predict alemtuzumab exposure in pediatric allogeneic HSCT for nonmalignant diseases, aiming at the achievement of early T-cell reconstitution and prevention of GF in future prospective studies.
Collapse
Affiliation(s)
- Federica R. Achini-Gutzwiller
- Department of Pediatric Stem Cell Transplantation and Hematology, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- Laboratory for Pediatric Immunology, Willem Alexander Children’s Hospital, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pediatric Stem Cell Transplantation, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Marco W. Schilham
- Laboratory for Pediatric Immunology, Willem Alexander Children’s Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Erik G. J. von Asmuth
- Laboratory for Pediatric Immunology, Willem Alexander Children’s Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Anja M. Jansen-Hoogendijk
- Laboratory for Pediatric Immunology, Willem Alexander Children’s Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Cornelia M. Jol-van der Zijde
- Laboratory for Pediatric Immunology, Willem Alexander Children’s Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Maarten J. D. van Tol
- Laboratory for Pediatric Immunology, Willem Alexander Children’s Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Robbert G. M. Bredius
- Department of Pediatric Stem Cell Transplantation, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Tayfun Güngör
- Department of Pediatric Stem Cell Transplantation and Hematology, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Arjan C. Lankester
- Department of Pediatric Stem Cell Transplantation, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Dirk Jan A. R. Moes
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
17
|
Geerlinks AV, Scull B, Krupski C, Fleischmann R, Pulsipher MA, Eapen M, Connelly JA, Bollard CM, Pai SY, Duncan CN, Kean LS, Baker KS, Burroughs LM, Andolina JR, Shenoy S, Roehrs P, Hanna R, Talano JA, Schultz KR, Stenger EO, Lin H, Zoref-Lorenz A, McClain KL, Jordan MB, Man TK, Allen CE, Marsh RA. Alemtuzumab and CXCL9 levels predict likelihood of sustained engraftment after reduced-intensity conditioning HCT. Blood Adv 2023; 7:3725-3734. [PMID: 37042921 PMCID: PMC10368780 DOI: 10.1182/bloodadvances.2022009478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/24/2023] [Accepted: 03/14/2023] [Indexed: 04/13/2023] Open
Abstract
Overall survival after reduced-intensity conditioning (RIC) allogeneic hematopoietic cell transplantation (HCT) using alemtuzumab, fludarabine, and melphalan is associated with high rates of mixed chimerism (MC) and secondary graft failure (GF). We hypothesized that peritransplantation alemtuzumab levels or specific patterns of inflammation would predict these risks. We assessed samples from the Bone Marrow Transplant Clinical Trials Network 1204 (NCT01998633) to study the impact of alemtuzumab levels and cytokine patterns on MC and impending or established secondary GF (defined as donor chimerism <5% after initial engraftment and/or requirement of cellular intervention). Thirty-three patients with hemophagocytic lymphohistiocytosis (n = 25) and other IEIs (n = 8) who underwent HCTs with T-cell-replete grafts were included. Patients with day 0 alemtuzumab levels ≤0.32 μg/mL had a markedly lower incidence of MC, 14.3%, vs 90.9% in patients with levels >0.32 μg/mL (P = .008). Impending or established secondary GF was only observed in patients with day 0 alemtuzumab levels >0.32 μg/mL (P = .08). Unexpectedly, patients with impending or established secondary GF had lower CXCL9 levels. The cumulative incidence of impending or established secondary GF in patients with a day 14+ CXCL9 level ≤2394 pg/mL (day 14+ median) was 73.6% vs 0% in patients with a level >2394 pg/mL (P = .002). CXCL9 levels inversely correlated with alemtuzumab levels. These data suggest a model in which higher levels of alemtuzumab at day 0 deplete donor T cells, inhibit the graft-versus-marrow reaction (thereby suppressing CXCL9 levels), and adversely affect sustained engraftment in the nonmyeloablative HCT setting. This trial was registered at www.clinicaltrials.gov as #NCT01998633.
Collapse
Affiliation(s)
- Ashley V. Geerlinks
- Division Hematology and Oncology, Children’s Hospital at London Health Sciences Centre, Western University, London, ON, Canada
| | - Brooks Scull
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Christa Krupski
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Ryan Fleischmann
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Michael A. Pulsipher
- Division of Hematology and Oncology, Primary Children’s Hospital, Huntsman Cancer Institute, Spencer Fox Eccles School of Medicine at the University of Utah, Salt Lake City, UT
| | - Mary Eapen
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - James A. Connelly
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Catherine M. Bollard
- Center for Cancer and Immunology Research, Children's National Hospital and The George Washington University, Washington, DC
| | - Sung-Yun Pai
- National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, MD
| | | | - Leslie S. Kean
- Dana-Farber Cancer Institute, Boston Children's Hospital, Boston, MA
| | - K. Scott Baker
- Clinical Research Division, Fred Hutchinson Cancer Center and Department of Pediatrics, University of Washington School of Medicine, Seattle, WA
| | - Lauri M. Burroughs
- Clinical Research Division, Fred Hutchinson Cancer Center and Department of Pediatrics, University of Washington School of Medicine, Seattle, WA
| | - Jeffrey R. Andolina
- Department of Pediatrics, Golisano Children's Hospital, University of Rochester Medical Center, Rochester, NY
| | - Shalini Shenoy
- Division of Pediatric Hematology-Oncology, Washington University School of Medicine, St. Louis, MO
| | - Philip Roehrs
- Pediatric Hematology/Oncology, Department of Pediatrics, University of Virginia, Charlottesville, VA
| | - Rabi Hanna
- Department of Pediatric Hematology and Oncology and BMT, Cleveland Clinic, Cleveland, OH
| | - Julie-An Talano
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
| | - Kirk R. Schultz
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Elizabeth O. Stenger
- Aflac Center and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University, Atlanta, GA
| | - Howard Lin
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Houston, TX
| | - Adi Zoref-Lorenz
- Hematology Institute, Meir Medical Center, Kfar Saba, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Kenneth L. McClain
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Houston, TX
| | - Michael B. Jordan
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Tsz-Kwong Man
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Houston, TX
| | - Carl E. Allen
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Houston, TX
| | - Rebecca A. Marsh
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
18
|
Arslan M, Uluçay T, Kale S, Kalyoncu S. Engineering of conserved residues near antibody heavy chain complementary determining region 3 (HCDR3) improves both affinity and stability. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140915. [PMID: 37059314 DOI: 10.1016/j.bbapap.2023.140915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Affinity and stability are crucial parameters in antibody development and engineering approaches. Although improvement in both metrics is desirable, trade-offs are almost unavoidable. Heavy chain complementarity determining region 3 (HCDR3) is the best-known region for antibody affinity but its impact on stability is often neglected. Here, we present a mutagenesis study of conserved residues near HCDR3 to elicit the role of this region in the affinity-stability trade-off. These key residues are positioned around the conserved salt bridge between VH-K94 and VH-D101 which is crucial for HCDR3 integrity. We show that the additional salt bridge at the stem of HCDR3 (VH-K94:VH-D101:VH-D102) has an extensive impact on this loop's conformation, therefore simultaneous improvement in both affinity and stability. We find that the disruption of π-π stacking near HCDR3 (VH-Y100E:VL-Y49) at the VH-VL interface cause an irrecoverable loss in stability even if it improves the affinity. Molecular simulations of putative rescue mutants exhibit complex and often non-additive effects. We confirm that our experimental measurements agree with the molecular dynamic simulations providing detailed insights for the spatial orientation of HCDR3. VH-V102 right next to HCDR3 salt bridge might be an ideal candidate to overcome affinity-stability trade-off.
Collapse
Affiliation(s)
- Merve Arslan
- Izmir Biomedicine and Genome Center, Balçova, 35340 Izmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Balçova, 35340 Izmir, Turkey
| | - Tuğçe Uluçay
- Izmir Biomedicine and Genome Center, Balçova, 35340 Izmir, Turkey
| | - Seyit Kale
- Izmir Biomedicine and Genome Center, Balçova, 35340 Izmir, Turkey
| | - Sibel Kalyoncu
- Izmir Biomedicine and Genome Center, Balçova, 35340 Izmir, Turkey.
| |
Collapse
|
19
|
Qian L, Lin X, Gao X, Khan RU, Liao JY, Du S, Ge J, Zeng S, Yao SQ. The Dawn of a New Era: Targeting the "Undruggables" with Antibody-Based Therapeutics. Chem Rev 2023. [PMID: 37186942 DOI: 10.1021/acs.chemrev.2c00915] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The high selectivity and affinity of antibodies toward their antigens have made them a highly valuable tool in disease therapy, diagnosis, and basic research. A plethora of chemical and genetic approaches have been devised to make antibodies accessible to more "undruggable" targets and equipped with new functions of illustrating or regulating biological processes more precisely. In this Review, in addition to introducing how naked antibodies and various antibody conjugates (such as antibody-drug conjugates, antibody-oligonucleotide conjugates, antibody-enzyme conjugates, etc.) work in therapeutic applications, special attention has been paid to how chemistry tools have helped to optimize the therapeutic outcome (i.e., with enhanced efficacy and reduced side effects) or facilitate the multifunctionalization of antibodies, with a focus on emerging fields such as targeted protein degradation, real-time live-cell imaging, catalytic labeling or decaging with spatiotemporal control as well as the engagement of antibodies inside cells. With advances in modern chemistry and biotechnology, well-designed antibodies and their derivatives via size miniaturization or multifunctionalization together with efficient delivery systems have emerged, which have gradually improved our understanding of important biological processes and paved the way to pursue novel targets for potential treatments of various diseases.
Collapse
Affiliation(s)
- Linghui Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xuefen Lin
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xue Gao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Rizwan Ullah Khan
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jia-Yu Liao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shubo Du
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544
| |
Collapse
|
20
|
Bodmer W, Golubovskaya V. Cancer Immunotherapy: Where Next? Cancers (Basel) 2023; 15:cancers15082358. [PMID: 37190286 DOI: 10.3390/cancers15082358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
The fundamental problem of dealing with cancer is that cancer cells are so like normal cells that it is very hard to find differences that can be a basis for treatment without severe side effects. The key to successful cancer immunotherapy will be based on a very careful choice of cancer targets that are sufficiently cancer specific not to cause serious side effects. There are two fundamentally different ways to deploy the immune system for such cancer treatments. One is to increase the efficacy of the cancer patient's own immune system so that it attacks these differences. This has been achieved by "checkpoint blocking" which is very successful but only with a relatively small proportion of cancers. Secondly, one can produce antibodies, or T cells, whose specificity is directed against proteins expressed differentially in cancers. CART cell treatments have proved very effective for some blood cancers but not so far for common solid tumours. Humanised, unmodified monoclonal antibodies have been used extensively for the treatment of certain adenocarcinomas with modest success. However, using antibodies together with the body's own immune system to treat cancers by engineering monoclonal antibodies that are directed at both a target antigen on the cancer cell surface and also against T cells shows promise for the development of novel immunotherapies. Genes can be found which are expressed highly in some cancers but with a low or absent expression on normal tissues and so are good novel targets. It is so far, only immune-based killing that can kill bystander target negative cells, which is essential for successful treatment since hardly ever will all the cells in a cancer express any desired target. We conclude that, while there still may be many hurdles in the way, engineered bispecific T cell attracting monoclonal antibody-mediated killing of cancer cells may be the most promising approach for achieving novel effective cancer immunotherapies.
Collapse
Affiliation(s)
- Walter Bodmer
- Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, UK
| | | |
Collapse
|
21
|
Zwart TC, Bezstarosti S, Achini FR, Reinders MEJ, Schilham MW, Heidt S, Guchelaar HJ, de Fijter JW, Moes DJAR. Population pharmacokinetics of subcutaneous alemtuzumab in kidney transplantation. Br J Clin Pharmacol 2023; 89:1471-1485. [PMID: 36408784 DOI: 10.1111/bcp.15608] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 10/30/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
AIM Alemtuzumab is a monoclonal antibody used as induction immunosuppressive therapy in kidney transplantation. It targets CD52 on lymphocytes, inducing profound immune cell depletion upon administration. Owing to its off-label status in kidney transplantation, its pharmacokinetic characteristics are largely unknown in this setting, and its current fixed dosing algorithm originates from other populations. We developed a population pharmacokinetic model for alemtuzumab in kidney transplant recipients and investigated the potential of personalized alemtuzumab therapy. METHODS In total, 362 pharmacokinetic observations drawn 0-165 days after transplantation were available from 61 adult kidney transplant recipients who received two consecutive doses of 15 mg alemtuzumab subcutaneously. A population pharmacokinetic model was developed using nonlinear mixed-effects modelling and applied to simulate various dosing regimens. RESULTS The alemtuzumab concentration-time data were best described by a two-compartmental model with first-order absorption and parallel first-order and time-varying concentration-dependent elimination, with between-subject variability on the first-order elimination (39.6%) and central distribution volume (39.6%). Alemtuzumab pharmacokinetics varied with body size, rendering lighter individuals exposed to lympholytic alemtuzumab concentrations (>0.1 mg/L) for prolonged durations as compared to their heavier peers. This between-subject variability could be reduced through lean bodyweight-adjusted dosing, showing a twofold to threefold reduction in the slope of the median alemtuzumab exposure over the bodyweight range. CONCLUSION Alemtuzumab displays substantial pharmacokinetic variability in kidney transplant recipients, which may warrant a personalized treatment strategy. Lean bodyweight-adjusted dosing poses an option for individualized dosing, but further evaluation of its potential clinical benefit is warranted.
Collapse
Affiliation(s)
- Tom C Zwart
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Suzanne Bezstarosti
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Federica R Achini
- Department of Paediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marlies E J Reinders
- Department of Internal Medicine (Nephrology) and LUMC Transplant Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Marco W Schilham
- Department of Paediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Johan W de Fijter
- Department of Internal Medicine (Nephrology) and LUMC Transplant Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Dirk Jan A R Moes
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
22
|
Hamdan F, Cerullo V. Cancer immunotherapies: A hope for the uncurable? FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1140977. [PMID: 39086690 PMCID: PMC11285639 DOI: 10.3389/fmmed.2023.1140977] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/07/2023] [Indexed: 08/02/2024]
Abstract
The use of cancer immunotherapies is not novel but has been used over the decades in the clinic. Only recently have we found the true potential of stimulating an anti-tumor response after the breakthrough of checkpoint inhibitors. Cancer immunotherapies have become the first line treatment for many malignancies at various stages. Nevertheless, the clinical results in terms of overall survival and progression free survival were not as anticipated. Majority of cancer patients do not respond to immunotherapies and the reasons differ. Hence, further improvements for cancer immunotherapies are crucially needed. In the review, we will discuss various forms of cancer immunotherapies that are being tested or already in the clinic. Moreover, we also highlight future directions to improve such therapies.
Collapse
Affiliation(s)
- Firas Hamdan
- Laboratory of Immunovirotherapy, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- Drug Delivery, Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Vincenzo Cerullo
- Laboratory of Immunovirotherapy, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- Drug Delivery, Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
- Department of Molecular Medicine and Medical Biotechnology and CEINGE, Naples University Federico II, Naples, Italy
| |
Collapse
|
23
|
Development and Validation of an Efficient and Highly Sensitive Enzyme-Linked Immunosorbent Assay for Alemtuzumab Quantification in Human Serum and Plasma. Ther Drug Monit 2023; 45:79-86. [PMID: 36150715 PMCID: PMC9819214 DOI: 10.1097/ftd.0000000000001037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/12/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Alemtuzumab is a humanized monoclonal antibody that targets the CD52 glycoprotein expressed on most lymphocytes, subsequently inducing complement-mediated and antibody-mediated cytotoxicity. Owing to its ability to induce profound immune depletion, alemtuzumab is frequently used in patients before allogeneic hematopoietic stem cell transplantation to prevent graft rejection and acute graft-versus-host disease. In this clinical context, a stable immunoassay with high sensitivity and specificity to determine alemtuzumab levels is essential for performing pharmacokinetic and pharmacodynamic analyses; however, the available methods have several limitations. Here, we report the successful development and validation of an efficient and highly sensitive enzyme-linked immunosorbent assay technique based on commercially available reagents to quantify alemtuzumab in human serum or plasma. METHODS This enzyme-linked immunosorbent assay technique was developed and validated in accordance with the European Medicines Agency guidelines on bioanalytical method validation. RESULTS The assay sensitivity (lower limit of quantification) is 0.5 ng·mL -1 , and the dynamic range is 0.78-25 ng·mL -1 . To accommodate quantification of peak concentration and concentrations below the lympholytic level (<0.1 mcg·mL -1 ), patients' serum samples were prediluted 20-400 times according to the expected alemtuzumab concentration. The overall within-run accuracy was between 96% and 105%, whereas overall within-run precision (coefficient of variation) was between 3% and 9%. The between-run assessment provided an overall accuracy between 86% and 95% and an overall coefficient of variation between 5% and 14%. CONCLUSIONS The developed assay provides accurate insight into alemtuzumab exposure and its effects on the clinical response to treatment, which is key to optimizing treatment strategies.
Collapse
|
24
|
How neutron scattering techniques benefit investigating structures and dynamics of monoclonal antibody. Biochim Biophys Acta Gen Subj 2022; 1866:130206. [PMID: 35872327 DOI: 10.1016/j.bbagen.2022.130206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022]
Abstract
Over the past several decades, great progresses have been made for the pharmaceutical industry of monoclonal antibody (mAb). More and more mAb products were approved for human therapeutics. This review describes the state of art of utilizing neutron scattering to investigate mAbs, in the aspects of structures, dynamics, physicochemical stability, functionality, etc. Firstly, brief histories of mAbs and neutron scattering, as well as some basic knowledges and principles of neutron scattering were introduced. Then specific examples were demonstrated. For the structure and structural evolution investigation of in dilute and concentrated mAbs solution, in situ small angle neutron scattering (SANS) was frequently utilized. Neutron reflectometry (NR) is powerful to probe the absorption behaviors of mAbs on various surfaces and interfaces. While for dynamic investigation, quasi-elastic scattering techniques such as neutron spin echo (NSE) demonstrate the capabilities. With this review, how to utilize and take advantages of neutron scattering on investigating structures and dynamics of mAbs were demonstrated and discussed.
Collapse
|
25
|
Immunotherapy: an alternative promising therapeutic approach against cancers. Mol Biol Rep 2022; 49:9903-9913. [PMID: 35759082 PMCID: PMC9244230 DOI: 10.1007/s11033-022-07525-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/26/2022] [Indexed: 10/26/2022]
Abstract
The immune system interacts with cancer cells in multiple intricate ways that can shield the host against hyper-proliferation but can also contribute to malignancy. Understanding the protective roles of the immune system in its interaction with cancer cells can help device new and alternate therapeutic strategies. Many immunotherapeutic methodologies, including adaptive cancer therapy, cancer peptide vaccines, monoclonal antibodies, and immune checkpoint treatment, have transformed the traditional cancer treatment landscape. However, many questions remain unaddressed. The development of personalized combination therapy and neoantigen-based cancer vaccines would be the avant-garde approach to cancer treatment. Desirable chemotherapy should be durable, safe, and target-specific. Managing both tumor (intrinsic factors) and its microenvironment (extrinsic factors) are critical for successful immunotherapy. This review describes current approaches and their advancement related to monoclonal antibody-related clinical trials, new cytokine therapy, a checkpoint inhibitor, adoptive T cell therapy, cancer vaccine, and oncolytic virus.
Collapse
|
26
|
Abstract
The development of antidrug antibodies (ADAs) is a major problem in several recombinant protein therapies used in the treatment of multiple sclerosis (MS). The etiology of ADAs is multifaceted. The predisposition for a breakdown of immune tolerance is probably genetically determined, and many factors may contribute to the immunogenicity, including structural properties, formation of aggregates, and presence of contaminants and impurities from the industrial manufacturing process. ADAs may have a neutralizing capacity and can reduce or abrogate the bioactivity and therapeutic efficacy of the drug and cause safety issues. Interferon (IFN)-β was the first drug approved for the treatment of MS, and-although it is generally recognized that neutralizing antibodies (NAbs) appear and potentially have a negative effect on therapeutic efficacy-the use of routine measurements of NAbs and the interpretation of the presence of NAbs has been debated at length. NAbs appear after 9-18 months of therapy in up to 40% of patients treated with IFNβ, and the frequency and titers of NAbs depend on the IFNβ preparation. Although all pivotal clinical trials of approved IFNβ products in MS exhibited a detrimental effect of NAbs after prolonged therapy, some subsequent studies did not observe clinical effects from NAbs, which led to the claim that NAbs did not matter. However, it is now largely agreed that persistently high titers of NAbs indicate an abrogation of the biological response and, hence, an absence of therapeutic efficacy, and this observation should lead to a change of therapy. Low and medium titers are ambiguous, and treatment decisions should be guided by determination of in vivo messenger RNA myxovirus resistance protein A induction after IFNβ administration and clinical disease activity. During treatment with glatiramer acetate, ADAs occur frequently but do not appear to adversely affect treatment efficacy or result in adverse events. ADAs occur in approximately 5% of patients treated with natalizumab within 6 months of therapy, and persistent NAbs are associated with a lack of efficacy and acute infusion-related reactions and should instigate a change of therapy. When using the anti-CD20 monoclonal antibodies ocrelizumab and ofatumumab in the treatment of MS, it is not necessary to test for NAbs as these occur very infrequently. Alemtuzumab is immunogenic, but routine measurements of ADAs are not recommended as the antibodies in the pivotal 2-year trials at the population level did not influence lymphocyte depletion or repopulation, efficacy, or safety. However, in some individuals, NAbs led to poor lymphocyte depletion.
Collapse
|
27
|
Merkuleva YA, Shcherbakov DN, Ilyichev AA. Methods to Produce Monoclonal Antibodies for the Prevention and Treatment of Viral Infections. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022; 48:256-272. [PMID: 35637780 PMCID: PMC9134727 DOI: 10.1134/s1068162022020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/07/2021] [Accepted: 06/17/2021] [Indexed: 11/23/2022]
Abstract
A viral threat can arise suddenly and quickly turn into a major epidemic or pandemic. In such a case, it is necessary to develop effective means of therapy and prevention in a short time. Vaccine development takes decades, and the use of antiviral compounds is often ineffective and unsafe. A quick response may be the use of convalescent plasma, but a number of difficulties associated with it forced researchers to switch to the development of safer and more effective drugs based on monoclonal antibodies (mAbs). In order to provide protection, such drugs must have a key characteristic-neutralizing properties, i.e., the ability to block viral infection. Currently, there are several approaches to produce mAbs in the researchers' toolkit, however, none of them may serve as a gold standard. Each approach has its own advantages and disadvantages. The choice of the method depends both on the characteristics of the virus and on time constraints and technical challenges. This review provides a comparative analysis of modern methods to produce neutralizing mAbs and describes current trends in the design of antibodies for therapy and prevention of viral diseases.
Collapse
Affiliation(s)
- Yu. A. Merkuleva
- Vector State Research Center of Virology and Biotechnology, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program for the Development of Genetic Technologies, 630559 Koltsovo, Novosibirsk oblast Russia
| | - D. N. Shcherbakov
- Vector State Research Center of Virology and Biotechnology, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program for the Development of Genetic Technologies, 630559 Koltsovo, Novosibirsk oblast Russia
| | - A. A. Ilyichev
- Vector State Research Center of Virology and Biotechnology, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program for the Development of Genetic Technologies, 630559 Koltsovo, Novosibirsk oblast Russia
| |
Collapse
|
28
|
Kim S, Shukla RK, Kim E, Cressman SG, Yu H, Baek A, Choi H, Kim A, Sharma A, Wang Z, Huang CA, Reneau JC, Boyaka PN, Liyanage NPM, Kim S. Comparison of CD3e Antibody and CD3e-sZAP Immunotoxin Treatment in Mice Identifies sZAP as the Main Driver of Vascular Leakage. Biomedicines 2022; 10:1221. [PMID: 35740248 PMCID: PMC9220018 DOI: 10.3390/biomedicines10061221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 02/03/2023] Open
Abstract
Anti-CD3-epsilon (CD3e) monoclonal antibodies (mAbs) and CD3e immunotoxins (ITs) are promising targeted therapy options for various T-cell disorders. Despite significant advances in mAb and IT engineering, vascular leakage syndrome (VLS) remains a major dose-limiting toxicity for ITs and has been poorly characterized for recent "engineered" mAbs. This study undertakes a direct comparison of non-mitogenic CD3e-mAb (145-2C11 with Fc-silentTM murine IgG1: S-CD3e-mAb) and a new murine-version CD3e-IT (saporin-streptavidin (sZAP) conjugated with S-CD3e-mAb: S-CD3e-IT) and identifies their distinct toxicity profiles in mice. As expected, the two agents showed different modes of action on T cells, with S-CD3e-mAb inducing nearly complete modulation of CD3e on the cell surface, while S-CD3e-IT depleted the cells. S-CD3e-IT significantly increased the infiltration of polymorphonuclear leukocytes (PMNs) into the tissue parenchyma of the spleen and lungs, a sign of increased vascular permeability. By contrast, S-CD3e-mAbs-treated mice showed no notable signs of vascular leakage. Treatment with control ITs (sZAP conjugated with Fc-silent isotype antibodies) induced significant vascular leakage without causing T-cell deaths. These results demonstrate that the toxin portion of S-CD3e-IT, not the CD3e-binding portion (S-CD3e-mAb), is the main driver of vascular leakage, thus clarifying the molecular target for improving safety profiles in CD3e-IT therapy.
Collapse
Affiliation(s)
- Shihyoung Kim
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; (S.K.); (R.K.S.); (E.K.); (S.G.C.); (H.Y.); (A.B.); (H.C.); (A.K.); (A.S.); (P.N.B.); (N.P.M.L.)
| | - Rajni Kant Shukla
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; (S.K.); (R.K.S.); (E.K.); (S.G.C.); (H.Y.); (A.B.); (H.C.); (A.K.); (A.S.); (P.N.B.); (N.P.M.L.)
| | - Eunsoo Kim
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; (S.K.); (R.K.S.); (E.K.); (S.G.C.); (H.Y.); (A.B.); (H.C.); (A.K.); (A.S.); (P.N.B.); (N.P.M.L.)
| | - Sophie G. Cressman
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; (S.K.); (R.K.S.); (E.K.); (S.G.C.); (H.Y.); (A.B.); (H.C.); (A.K.); (A.S.); (P.N.B.); (N.P.M.L.)
| | - Hannah Yu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; (S.K.); (R.K.S.); (E.K.); (S.G.C.); (H.Y.); (A.B.); (H.C.); (A.K.); (A.S.); (P.N.B.); (N.P.M.L.)
| | - Alice Baek
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; (S.K.); (R.K.S.); (E.K.); (S.G.C.); (H.Y.); (A.B.); (H.C.); (A.K.); (A.S.); (P.N.B.); (N.P.M.L.)
| | - Hyewon Choi
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; (S.K.); (R.K.S.); (E.K.); (S.G.C.); (H.Y.); (A.B.); (H.C.); (A.K.); (A.S.); (P.N.B.); (N.P.M.L.)
| | - Alan Kim
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; (S.K.); (R.K.S.); (E.K.); (S.G.C.); (H.Y.); (A.B.); (H.C.); (A.K.); (A.S.); (P.N.B.); (N.P.M.L.)
| | - Amit Sharma
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; (S.K.); (R.K.S.); (E.K.); (S.G.C.); (H.Y.); (A.B.); (H.C.); (A.K.); (A.S.); (P.N.B.); (N.P.M.L.)
- Department of Microbial Immunity and Infection, The Ohio State University, Columbus, OH 43210, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Zhirui Wang
- Department of Surgery, University of Colorado Denver Anschutz Medical Campus, Division of Plastic & Reconstructive Surgery, 12700 East 19th Avenue, Aurora, CO 80045, USA; (Z.W.); (C.A.H.)
- Department of Surgery, University of Colorado Denver Anschutz Medical Campus, Division of Transplant Surgery, 12700 East 19th Avenue, Aurora, CO 80045, USA
| | - Christene A. Huang
- Department of Surgery, University of Colorado Denver Anschutz Medical Campus, Division of Plastic & Reconstructive Surgery, 12700 East 19th Avenue, Aurora, CO 80045, USA; (Z.W.); (C.A.H.)
- Department of Surgery, University of Colorado Denver Anschutz Medical Campus, Division of Transplant Surgery, 12700 East 19th Avenue, Aurora, CO 80045, USA
| | - John C. Reneau
- Division of Hematology, The Ohio State University, Columbus, OH 43210, USA;
| | - Prosper N. Boyaka
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; (S.K.); (R.K.S.); (E.K.); (S.G.C.); (H.Y.); (A.B.); (H.C.); (A.K.); (A.S.); (P.N.B.); (N.P.M.L.)
| | - Namal P. M. Liyanage
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; (S.K.); (R.K.S.); (E.K.); (S.G.C.); (H.Y.); (A.B.); (H.C.); (A.K.); (A.S.); (P.N.B.); (N.P.M.L.)
- Department of Microbial Immunity and Infection, The Ohio State University, Columbus, OH 43210, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Sanggu Kim
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; (S.K.); (R.K.S.); (E.K.); (S.G.C.); (H.Y.); (A.B.); (H.C.); (A.K.); (A.S.); (P.N.B.); (N.P.M.L.)
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
29
|
Griffin JM, Healy FM, Dahal LN, Floisand Y, Woolley JF. Worked to the bone: antibody-based conditioning as the future of transplant biology. J Hematol Oncol 2022; 15:65. [PMID: 35590415 PMCID: PMC9118867 DOI: 10.1186/s13045-022-01284-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022] Open
Abstract
Conditioning of the bone marrow prior to haematopoietic stem cell transplant is essential in eradicating the primary cause of disease, facilitating donor cell engraftment and avoiding transplant rejection via immunosuppression. Standard conditioning regimens, typically comprising chemotherapy and/or radiotherapy, have proven successful in bone marrow clearance but are also associated with severe toxicities and high incidence of treatment-related mortality. Antibody-based conditioning is a developing field which, thus far, has largely shown an improved toxicity profile in experimental models and improved transplant outcomes, compared to traditional conditioning. Most antibody-based conditioning therapies involve monoclonal/naked antibodies, such as alemtuzumab for graft-versus-host disease prophylaxis and rituximab for Epstein–Barr virus prophylaxis, which are both in Phase II trials for inclusion in conditioning regimens. Nevertheless, alternative immune-based therapies, including antibody–drug conjugates, radio-labelled antibodies and CAR-T cells, are showing promise in a conditioning setting. Here, we analyse the current status of antibody-based drugs in pre-transplant conditioning regimens and assess their potential in the future of transplant biology.
Collapse
Affiliation(s)
- James M Griffin
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | - Fiona M Healy
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | - Lekh N Dahal
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | - Yngvar Floisand
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK.,The Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool, UK
| | - John F Woolley
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK.
| |
Collapse
|
30
|
Ledsgaard L, Ljungars A, Rimbault C, Sørensen CV, Tulika T, Wade J, Wouters Y, McCafferty J, Laustsen AH. Advances in antibody phage display technology. Drug Discov Today 2022; 27:2151-2169. [PMID: 35550436 DOI: 10.1016/j.drudis.2022.05.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/24/2022] [Accepted: 05/04/2022] [Indexed: 01/06/2023]
Abstract
Phage display technology can be used for the discovery of antibodies for research, diagnostic, and therapeutic purposes. In this review, we present and discuss key parameters that can be optimized when performing phage display selection campaigns, including the use of different antibody formats and advanced strategies for antigen presentation, such as immobilization, liposomes, nanodiscs, virus-like particles, and whole cells. Furthermore, we provide insights into selection strategies that can be used for the discovery of antibodies with complex binding requirements, such as targeting a specific epitope, cross-reactivity, or pH-dependent binding. Lastly, we provide a description of specialized phage display libraries for the discovery of bispecific antibodies and pH-sensitive antibodies. Together, these methods can be used to improve antibody discovery campaigns against all types of antigen. Teaser: This review provides an overview of the different strategies that can be exploited to improve the success rate of antibody phage display discovery campaigns, addressing key parameters, such as antigen presentation, selection methodologies, and specialized libraries.
Collapse
Affiliation(s)
- Line Ledsgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| | - Anne Ljungars
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Charlotte Rimbault
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Christoffer V Sørensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Tulika Tulika
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Jack Wade
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Yessica Wouters
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - John McCafferty
- Department of Medicine, Addenbrookes Hospital, Box 157, Hills Road, Cambridge, CB2 0QQ, UK; Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| |
Collapse
|
31
|
van der Stoep MYEC, Oostenbrink LVE, Bredius RGM, Moes DJAR, Guchelaar HJ, Zwaveling J, Lankester AC. Therapeutic Drug Monitoring of Conditioning Agents in Pediatric Allogeneic Stem Cell Transplantation; Where do We Stand? Front Pharmacol 2022; 13:826004. [PMID: 35330826 PMCID: PMC8940165 DOI: 10.3389/fphar.2022.826004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is an established curative treatment that has significantly improved clinical outcome of pediatric patients with malignant and non-malignant disorders. This is partly because of the use of safer and more effective combinations of chemo- and serotherapy prior to HSCT. Still, complications due to the toxicity of these conditioning regimens remains a major cause of transplant-related mortality (TRM). One of the most difficult challenges to further improve HSCT outcome is reducing toxicity while maintaining efficacy. The use of personalized dosing of the various components of the conditioning regimen by means of therapeutic drug monitoring (TDM) has been the topic of interest in the last decade. TDM could play an important role, especially in children who tend to show greater pharmacokinetic variability. However, TDM should only be performed when it has clear added value to improve clinical outcome or reduce toxicity. In this review, we provide an overview of the available evidence for the relationship between pharmacokinetic parameters and clinical outcome or toxicities of the most commonly used conditioning agents in pediatric HSCT.
Collapse
Affiliation(s)
- M. Y. Eileen C. van der Stoep
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, Netherlands
- *Correspondence: M. Y. Eileen C. van der Stoep,
| | - Lisa V. E. Oostenbrink
- Willem-Alexander Children’s Hospital, Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Robbert G. M. Bredius
- Willem-Alexander Children’s Hospital, Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Dirk Jan A. R. Moes
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, Netherlands
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, Netherlands
| | - Juliette Zwaveling
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, Netherlands
| | - Arjan C. Lankester
- Willem-Alexander Children’s Hospital, Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
32
|
Ji F, Ren J, Vincke C, Jia L, Muyldermans S. Nanobodies: From Serendipitous Discovery of Heavy Chain-Only Antibodies in Camelids to a Wide Range of Useful Applications. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2446:3-17. [PMID: 35157266 DOI: 10.1007/978-1-0716-2075-5_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The presence of unique heavy chain-only antibodies (HCAbs) in camelids was discovered at Vrije Universiteit Brussel (VUB, Brussels, Belgium) at a time when many researchers were exploring the cloning and expression of smaller antigen-binding fragments (Fv and Fab) from hybridoma-derived antibodies. The potential importance of this discovery was anticipated, and efforts were immediately undertaken to understand the emergence and ontogeny of these HCAbs as well as to investigate the applications of the single-domain antigen-binding variable domains of HCAbs (nanobodies). Nanobodies were demonstrated to possess multiple biochemical and biophysical advantages over other antigen-binding antibody fragments and alternative scaffolds. Today, nanobodies have a significant and growing impact on research, biotechnology, and medicine.
Collapse
Affiliation(s)
- Fangling Ji
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Jun Ren
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Cécile Vincke
- Cellular and Molecular Immunology Laboratory, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Lingyun Jia
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Serge Muyldermans
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China. .,Cellular and Molecular Immunology Laboratory, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
33
|
Basu B, Angeletti A, Islam B, Ghiggeri GM. New and Old Anti-CD20 Monoclonal Antibodies for Nephrotic Syndrome. Where We Are? Front Immunol 2022; 13:805697. [PMID: 35222385 PMCID: PMC8873567 DOI: 10.3389/fimmu.2022.805697] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/25/2022] [Indexed: 12/16/2022] Open
Abstract
Nephrotic proteinuria is the hallmark of several glomerulonephritis determined by different pathogenetic mechanisms, including autoimmune, degenerative and inflammatory. Some conditions such as Minimal Change Nephropathy (MCN) and Focal Segmental Glomerulosclerosis (FSGS) are of uncertain pathogenesis. Chimeric anti-CD20 monoclonal antibodies have been used with success in a part of proteinuric conditions while some are resistant. New human and humanized monoclonal anti-CD 20 antibodies offer some advantages based on stronger effects on CD20 cell subtypes and have been already administered in hematology and oncology areas as substitutes of chimeric molecules. Here, we revised the literature on the use of human and humanized anti-CD 20 monoclonal antibodies in different proteinuric conditions, resulting effective in those conditions resistant to rituximab. Literature on the use of human anti-CD 20 monoclonal antibodies in different proteinuric diseases is mainly limited to ofatumumab, with several protocols and doses. Studies already performed with ofatumumab given in standard doses of 1,500 mg 1.73m2 suggest no superiority compared to rituximab in children and young adults with steroid dependent nephrotic syndrome. Ofatumumab given in very high doses (300 mg/1.73m2 followed by five infusion 2,000 mg/1.73 m2) seems more effective in patients who are not responsive to common therapies. The question of dose remains unresolved and the literature is not concordant on positive effects of high dose ofatumumab in patients with FSGS prior and after renal transplantation. Obinutuzumab may offer some advantages. In the unique study performed in patients with multidrug dependent nephrotic syndrome reporting positive effects, obinutuzumab was associated with the anti-CD38 monoclonal antibody daratumumab proposing the unexplored frontier of combined therapies. Obinutuzumab represent an evolution also in the treatment of autoimmune glomerulonephritis, such as membranous nephrotahy and lupus nephritis. Results of randomized trials, now in progress, are awaited to add new possibilities in those cases that are resistant to other drugs. The aim of the present review is to open a discussion among nephrologists, with the hope to achieve shared approaches in terms of type of antibodies and doses in the different proteinuric renal conditions.
Collapse
Affiliation(s)
- Biswanath Basu
- Division of Pediatric Nephrology, Department of Pediatrics, Nilratan Sircar (NRS) Medical College and Hospital, Kolkata, India
| | - Andrea Angeletti
- Division of Nephrology, Dialysis, Transplantation, IstitutoGianninaGaslini Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Genoa, Italy
- Laboratory on Molecular Nephrology, IstitutoGianninaGaslini Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Genoa, Italy
| | - Bilkish Islam
- Department of Pediatrics, Nil Ratan Sircar Medical College and Hospital, Kolkata, India
| | - Gian Marco Ghiggeri
- Division of Nephrology, Dialysis, Transplantation, IstitutoGianninaGaslini Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Genoa, Italy
- Laboratory on Molecular Nephrology, IstitutoGianninaGaslini Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Genoa, Italy
- *Correspondence: Gian Marco Ghiggeri,
| |
Collapse
|
34
|
Yang B, Zhang Z, Chen X, Wang XY, Qin S, Du L, Yang C, Zhu L, Sun W, Zhu Y, Zheng Q, Zhao S, Wang Q, Zhao L, Lin Y, Huang J, Wu F, Lu L, Wang F, Zheng W, Zhou XH, Zhao X, Wang Z, Sun X, Ye Y, Wang S, Li Z, Qi H, Zhang Z, Kuang DM, Zhang L, Shen Z, Liu W. An Asian-specific variant in human IgG1 represses colorectal tumorigenesis by shaping the tumor microenvironment. J Clin Invest 2022; 132:153454. [PMID: 35133976 PMCID: PMC8920342 DOI: 10.1172/jci153454] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 02/03/2022] [Indexed: 11/17/2022] Open
Abstract
Emerging studies have focused on ways to treat cancers by modulating T cell activation. However, whether B cell receptor signaling in the tumor microenvironment (TME) can be harnessed for immunotherapy is unclear. Here, we report that an Asia-specific variant of human IgG1 containing a Gly396 to Arg396 substitution (hIgG1-G396R) conferred improved survival of patients with colorectal cancer (CRC). Mice with knockin of the murine functional homolog mIgG2c-G400R recapitulated the alleviated tumorigenesis and progression in murine colon carcinoma models. Immune profiling of the TME revealed broad mobilizations of IgG1+ plasma cells, CD8+ T cells, CD103+ DCs, and active tertiary lymphoid structure formation, suggesting an effective antitumor microenvironment in hIgG1-G396R CRC patients. Mechanistically, this variant potentiated tumor-associated antigen–specific (TAA-specific) plasma cell differentiation and thus antibody production. These elevated TAA-specific IgG2c antibodies in turn efficiently boosted the antibody-dependent tumor cell phagocytosis and TAA presentation to effector CD8+ T cells. Notably, adoptive transfer of TAA-specific class-switched memory B cells harboring this variant exhibited therapeutic efficacy in murine tumor models, indicating their clinical potential. All these results prompted a prospective investigation of hIgG1-G396R in patients with CRC as a biomarker for clinical prognosis and demonstrated that manipulating the functionality of IgG1+ memory B cells in tumors could improve immunotherapy outcomes.
Collapse
Affiliation(s)
- Bing Yang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhen Zhang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
| | - Xiangjun Chen
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xu-Yan Wang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shishang Qin
- BIOPIC and School of Life Sciences, Peking University, Beijing, China
| | - Liaoqi Du
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Changjiang Yang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
| | - Liyu Zhu
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
| | - Wenbo Sun
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yongjie Zhu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Qinwen Zheng
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Shidong Zhao
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
| | - Quan Wang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
| | - Long Zhao
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
| | - Yilin Lin
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
| | - Jinghe Huang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Fan Wu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Lu Lu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Fei Wang
- Center for Natural Products Research, Chinese Academy of Sciences,, Chengdu, China
| | - Wenjie Zheng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Beijing, China
| | - Xiao-Hua Zhou
- School of Public Health, Peking University, Beijing, China
| | - Xiaozhen Zhao
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| | - Ziye Wang
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| | - Xiaolin Sun
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| | - Yingjiang Ye
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
| | - Shan Wang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
| | - Zhanguo Li
- Department of Rheumatology and Immunology, People's Hospital Peking University, Beijing, China
| | - Hai Qi
- Department of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Zemin Zhang
- BIOPIC and School of Life Sciences, Peking University, Beijing, China
| | - Dong-Ming Kuang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lei Zhang
- BIOPIC and School of Life Sciences, Peking University, Beijing, China
| | - Zhanlong Shen
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
| | - Wanli Liu
- School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
35
|
James BH, Papakyriacou P, Gardener MJ, Gliddon L, Weston CJ, Lalor PF. The Contribution of Liver Sinusoidal Endothelial Cells to Clearance of Therapeutic Antibody. Front Physiol 2022; 12:753833. [PMID: 35095549 PMCID: PMC8795706 DOI: 10.3389/fphys.2021.753833] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Many chronic inflammatory diseases are treated by administration of “biological” therapies in terms of fully human and humanized monoclonal antibodies or Fc fusion proteins. These tools have widespread efficacy and are favored because they generally exhibit high specificity for target with a low toxicity. However, the design of clinically applicable humanized antibodies is complicated by the need to circumvent normal antibody clearance mechanisms to maintain therapeutic dosing, whilst avoiding development of off target antibody dependent cellular toxicity. Classically, professional phagocytic immune cells are responsible for scavenging and clearance of antibody via interactions with the Fc portion. Immune cells such as macrophages, monocytes, and neutrophils express Fc receptor subsets, such as the FcγR that can then clear immune complexes. Another, the neonatal Fc receptor (FcRn) is key to clearance of IgG in vivo and serum half-life of antibody is explicitly linked to function of this receptor. The liver is a site of significant expression of FcRn and indeed several hepatic cell populations including Kupffer cells and liver sinusoidal endothelial cells (LSEC), play key roles in antibody clearance. This combined with the fact that the liver is a highly perfused organ with a relatively permissive microcirculation means that hepatic binding of antibody has a significant effect on pharmacokinetics of clearance. Liver disease can alter systemic distribution or pharmacokinetics of antibody-based therapies and impact on clinical effectiveness, however, few studies document the changes in key membrane receptors involved in antibody clearance across the spectrum of liver disease. Similarly, the individual contribution of LSEC scavenger receptors to antibody clearance in a healthy or chronically diseased organ is not well characterized. This is an important omission since pharmacokinetic studies of antibody distribution are often based on studies in healthy individuals and thus may not reflect the picture in an aging or chronically diseased population. Therefore, in this review we consider the expression and function of key antibody-binding receptors on LSEC, and the features of therapeutic antibodies which may accentuate clearance by the liver. We then discuss the implications of this for the design and utility of monoclonal antibody-based therapies.
Collapse
Affiliation(s)
- Bethany H. James
- Centre for Liver and Gastroenterology Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Pantelitsa Papakyriacou
- Centre for Liver and Gastroenterology Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Matthew J. Gardener
- Antibody Pharmacology, Biopharm Discovery, Glaxo Smith Kline Research and Development, Stevenage, United Kingdom
| | - Louise Gliddon
- Antibody Pharmacology, Biopharm Discovery, Glaxo Smith Kline Research and Development, Stevenage, United Kingdom
| | - Christopher J. Weston
- Centre for Liver and Gastroenterology Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Patricia F. Lalor
- Centre for Liver and Gastroenterology Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- *Correspondence: Patricia F. Lalor,
| |
Collapse
|
36
|
Stephen B, Hajjar J. Immune System in Action. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1342:1-43. [PMID: 34972961 DOI: 10.1007/978-3-030-79308-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Tumor exists as a complex network of structures with an ability to evolve and evade the host immune surveillance mechanism. The immune milieu which includes macrophages, dendritic cells, natural killer cells, neutrophils, mast cells, B cells, and T cells is found in the core, the invasive margin, or the adjacent stromal or lymphoid component of the tumor. The immune infiltrate is heterogeneous and varies within a patient and between patients of the same tumor histology. The location, density, functionality, and the crosstalk between the immune cells in the tumor microenvironment influence the nature of immune response, prognosis, and treatment outcomes in cancer patients. Therefore, an understanding of the characteristics of the immune cells and their role in tumor immune surveillance is of paramount importance to identify immune targets and to develop novel immune therapeutics in the war against cancer. In this chapter, we provide an overview of the individual components of the human immune system and the translational relevance of predictive biomarkers.
Collapse
Affiliation(s)
- Bettzy Stephen
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Joud Hajjar
- Assistant Professor, Service Chief of Adult Allergy & Immunology, Division of Immunology, Allergy & Retrovirology, Baylor College of Medicine and Texas Children' Hospital, Houston, TX, USA
| |
Collapse
|
37
|
Abstract
Humanization of therapeutic antibodies derived from animal immunizations is often required to minimize immunogenicity risks in humans, which can cause potentially harmful and serious side effects and reduce antibody efficacy. Humanization is typically applied to conventional monoclonal antibodies derived in rodents as well as single-domain antibodies isolated from camelids and sharks (VHHs and VNARs). A streamlined protocol is described here for sequence humanization of camelid VHHs, which represent a promising biotherapeutic format with many desirable attributes. From human framework selection and complementarity-determining region grafting strategies to empirical scoring for prioritization of back-mutations, step-by-step instructions, and templates are provided along with bioinformatics resources to assist each step of the humanization process. Alternative approaches, warnings, and caveats are also presented.
Collapse
Affiliation(s)
- Traian Sulea
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC, Canada.
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, QC, Canada.
| |
Collapse
|
38
|
Parthasarathy U, Martinelli R, Vollmann EH, Best K, Therien AG. The impact of DAMP-mediated inflammation in severe COVID-19 and related disorders. Biochem Pharmacol 2022; 195:114847. [PMID: 34801526 PMCID: PMC8600760 DOI: 10.1016/j.bcp.2021.114847] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/08/2023]
Abstract
The host response to SARS-CoV-2, the virus that causes COVID-19, is highly heterogeneous, ranging from mild/asymptomatic to severe. The moderate to severe forms of COVID-19 often require hospitalization, are associated with a high rate of mortality, and appear to be caused by an inappropriately exaggerated inflammatory response to the virus. Emerging data confirm the involvement of both innate and adaptive immune pathways both in protection from SARS-CoV-2, and in driving the pathology of severe COVID-19. In particular, innate immune cells including neutrophils appear to be key players in the inflammation that causes the vicious cycle of damage and inflammation that underlies the symptomatology of severe COVID-19. Several recent studies support a link between damage and inflammation, with damage-associated molecular patterns (DAMPs) playing a key role in the pathology of severe COVID-19. In this review, we put into perspective the role of DAMPs and of components of the DAMP-signaling cascade, including Siglecs and their cognate ligands CD24 and CD52, in COVID-19. Further, we review clinical data on proposed therapeutics targeting DAMP pathways to treat SARS-CoV-2 infection and the regulation of these signaling cascades in COVID-19. We also discuss the potential impact of DAMP-mediated inflammation in other indications related to COVID-19, such as ARDS, endothelial dysfunction, hypercoagulation, and sepsis.
Collapse
Affiliation(s)
| | | | | | - Katharine Best
- Exploratory Science Center, MRL, Merck & Co., Inc, Cambridge, MA, USA
| | - Alex G Therien
- Exploratory Science Center, MRL, Merck & Co., Inc, Cambridge, MA, USA.
| |
Collapse
|
39
|
Wang Y, Zheng C, Zhuang C, Fu Q, Qin J, Zhang B, Bian Y, Qi N, Zhu J. Preclinical pharmacology and toxicology evaluation of an anti-CD52 monoclonal antibody produced by perfusion fermentation process. J Ind Microbiol Biotechnol 2021; 48:6406489. [PMID: 34669957 PMCID: PMC8788881 DOI: 10.1093/jimb/kuab078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/10/2021] [Indexed: 12/02/2022]
Abstract
Anti-cluster of differentiation 52 (CD52) monoclonal antibody (mAb) has been employed in the treatment of chronic lymphoblastic leukemia and multiple sclerosis. Previously we developed a perfusion process to produce the biosimilar mAb named “Mab-TH.” A series of quality assessments was conducted in the fields of structural identification, purity analysis, and activity measurement. After these quality researches, this report laid emphasis on preclinical pharmacology and toxicology evaluation. Mab-TH was characterized in biological, pharmacological, and toxicological properties in comparison with the original drug, alemtuzumab. Binding activity and immune-dependent toxicity as in vitro activity were evaluated. Severe immunodeficient mice transplanted with a human leukemia cell line were also used as an in vivo pharmacological model and a 4-week repeated dosing study in cynomolgus monkeys was conducted to evaluate the safety differences. Our results demonstrated that Mab-TH, the anti-CD52 antibody generated by a perfusion process, had high similarity in in vitro and in vivo activities compared with alemtuzumab in relevant preclinical models. The results supported it as a biosimilar candidate for clinical evaluation.
Collapse
Affiliation(s)
- Yanchao Wang
- Engineering Research Center of Cell and Therapeutic Antibody, MOE, China, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chen Zheng
- Shanghai Taiyin Biotechnology Co., Ltd., 781 Cailun Road, Zhangjiang Hi-tech Park, Shanghai 201203, China
| | - Chao Zhuang
- Shanghai Taiyin Biotechnology Co., Ltd., 781 Cailun Road, Zhangjiang Hi-tech Park, Shanghai 201203, China
| | - Qiang Fu
- Shanghai Taiyin Biotechnology Co., Ltd., 781 Cailun Road, Zhangjiang Hi-tech Park, Shanghai 201203, China
| | - Jinyan Qin
- Shanghai Taiyin Biotechnology Co., Ltd., 781 Cailun Road, Zhangjiang Hi-tech Park, Shanghai 201203, China
| | - Baohong Zhang
- Engineering Research Center of Cell and Therapeutic Antibody, MOE, China, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yanling Bian
- Engineering Research Center of Cell and Therapeutic Antibody, MOE, China, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Nianmin Qi
- Shanghai Taiyin Biotechnology Co., Ltd., 781 Cailun Road, Zhangjiang Hi-tech Park, Shanghai 201203, China
| | - Jianwei Zhu
- Engineering Research Center of Cell and Therapeutic Antibody, MOE, China, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
40
|
Antonarelli G, Giugliano F, Corti C, Repetto M, Tarantino P, Curigliano G. Research and Clinical Landscape of Bispecific Antibodies for the Treatment of Solid Malignancies. Pharmaceuticals (Basel) 2021; 14:884. [PMID: 34577584 PMCID: PMC8468026 DOI: 10.3390/ph14090884] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 12/13/2022] Open
Abstract
Solid tumors adopt multiple mechanisms to grow, evade immune responses, and to withstand therapeutic approaches. A major breakthrough in the armamentarium of anti-cancer agents has been the introduction of monoclonal antibodies (mAbs), able to inhibit aberrantly activated pathways and/or to unleash antigen (Ag)-specific immune responses. Nonetheless, mAb-mediated targeted pressure often fails due to escape mechanisms, mainly Ag loss/downregulation, ultimately providing therapy resistance. Hence, in order to target multiple Ag at the same time, and to facilitate cancer-immune cells interactions, bispecific antibodies (bsAbs) have been developed and are being tested in clinical trials, yielding variable safety/efficacy results based on target selection and their structure. While in hematologic cancers the bsAb blinatumomab recently reached the Food and Drug Administration (FDA)-approval for B Cell Acute Lymphoblastic Leukemia, bsAbs use in solid tumors faces considerable challenges, such as target Ag selection, biodistribution, and the presence of an immune-suppressive tumor microenvironment (TME). This review will focus on the state-of-the art, the design, and the exploitation of bsAbs against solid malignancies, delineating their mechanisms of action, major pitfalls, and future directions.
Collapse
Affiliation(s)
- Gabriele Antonarelli
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, 20141 Milan, Italy; (G.A.); (F.G.); (C.C.); (M.R.); (P.T.)
- Department of Oncology and Haematology (DIPO), University of Milan, 20122 Milan, Italy
| | - Federica Giugliano
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, 20141 Milan, Italy; (G.A.); (F.G.); (C.C.); (M.R.); (P.T.)
- Department of Oncology and Haematology (DIPO), University of Milan, 20122 Milan, Italy
| | - Chiara Corti
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, 20141 Milan, Italy; (G.A.); (F.G.); (C.C.); (M.R.); (P.T.)
- Department of Oncology and Haematology (DIPO), University of Milan, 20122 Milan, Italy
| | - Matteo Repetto
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, 20141 Milan, Italy; (G.A.); (F.G.); (C.C.); (M.R.); (P.T.)
- Department of Oncology and Haematology (DIPO), University of Milan, 20122 Milan, Italy
| | - Paolo Tarantino
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, 20141 Milan, Italy; (G.A.); (F.G.); (C.C.); (M.R.); (P.T.)
- Department of Oncology and Haematology (DIPO), University of Milan, 20122 Milan, Italy
| | - Giuseppe Curigliano
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, 20141 Milan, Italy; (G.A.); (F.G.); (C.C.); (M.R.); (P.T.)
- Department of Oncology and Haematology (DIPO), University of Milan, 20122 Milan, Italy
| |
Collapse
|
41
|
Nessler I, Menezes B, Thurber GM. Key metrics to expanding the pipeline of successful antibody-drug conjugates. Trends Pharmacol Sci 2021; 42:803-812. [PMID: 34456094 DOI: 10.1016/j.tips.2021.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 01/18/2023]
Abstract
Although the recent FDA approval of six new antibody-drug conjugates (ADCs) is promising, attrition of ADCs during clinical development remains high. The inherent complexity of ADCs is a double-edged sword that provides opportunities for perfecting therapeutic action while also increasing confounding factors in therapeutic failures. ADC design drives their pharmacokinetics and pharmacodynamics, and requires deeper analysis than the commonly used Cmax and area under the curve (AUC) metrics to scale dosing to the clinic. Common features of current FDA-approved ADCs targeting solid tumors include humanized IgG1 antibody domains, highly expressed tumor receptors, and large antibody doses. The potential consequences of these shared features for clinical pharmacokinetics and mechanism of action are discussed, and key design aspects for successful solid tumor ADCs are highlighted.
Collapse
Affiliation(s)
- Ian Nessler
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bruna Menezes
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Greg M Thurber
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
42
|
Crombie JL, Brown JR. The future of antibody therapy in chronic lymphocytic leukemia. Expert Opin Emerg Drugs 2021; 26:323-336. [PMID: 34375544 DOI: 10.1080/14728214.2021.1966414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Outcomes in chronic lymphocytic leukemia (CLL) have been dramatically improved with the addition of anti-CD20 antibodies to chemotherapy, defining a new standard of care for many years. More recently, therapies targeting fundamental signaling and anti-apoptotic pathways within the CLL cell have demonstrated dramatic clinical responses, including in patients with high-risk prognostic markers, thus emerging as preferred therapy for many patients. While the addition of anti-CD20 antibodies to traditional chemotherapy resulted in significant improvements in outcomes, the role of monoclonal antibodies in the era of targeted agents remains an active area of investigation. Furthermore, since the advent of next-generation anti-CD20 antibodies, the role of specific anti-CD20 antibodies remains an open question. AREAS COVERED In this review, we highlight the important role that anti-CD20 antibody therapy has had in the field of CLL, both when used with chemotherapy and in combination with targeted therapy, as well as the current studies that are further exploring this treatment paradigm in the modern era. EXPERT OPINION While anti-CD20 antibodies have played a pivotal role in the treatment of CLL, additional studies will be required to determine the optimal application of these therapies in combination with targeted therapy.
Collapse
Affiliation(s)
- Jennifer L Crombie
- Department of Medical Oncology , Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jennifer R Brown
- Department of Medical Oncology , Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
43
|
Baker D, Asardag AN, Quinn OA, Efimov A, Kang AS. Anti-drug antibodies to antibody-based therapeutics in multiple sclerosis. Hum Antibodies 2021; 29:255-262. [PMID: 34397407 DOI: 10.3233/hab-210453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Multiple sclerosis is the major demyelinating autoimmune disease of the central nervous system. Relapsing MS can be treated by a number of approved monoclonal antibodies that currently target: CD20, CD25 (withdrawn), CD49d and CD52. These all target potentially pathogenic memory B cell subsets and perhaps functionally inhibit pathogenic T cell function. These consist of chimeric, humanized and fully human antibodies. However, despite humanization it is evident that all of these monoclonal antibodies can induce binding and neutralizing antibodies ranging from < 1% to over 80% within a year of treatment. Importantly, it is evident that monitoring these allow prediction of future treatment-failure in some individuals and treatment cessation and switching therefore potentially limiting disease breakthrough and disability accumulation. In response to the COVID-19 pandemic and the need to avoid hospitals, shortened infusion times and extended dose intervals have been implemented, importantly, subcutaneous delivery of alternative treatments or formulations have been developed to allow for home treatment. Therefore, hospital-based and remote monitoring of ADA could therefore be advantageous to optimize patient responses in the future.
Collapse
Affiliation(s)
- David Baker
- Blizard Institute, Barts and London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - A Nazli Asardag
- Blizard Institute, Barts and London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Olivia A Quinn
- Blizard Institute, Barts and London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Alex Efimov
- Camstech Limited, Daresbury Laboratory Science and Technology Facilities Council Sci-Tech, Keckwick, Cheshire, UK
| | - Angray S Kang
- Blizard Institute, Barts and London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Centre for Oral Immunobiology and Regenerative Medicine, Dental Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
44
|
Kasarello K, Mirowska-Guzel D. Anti-CD52 Therapy for Multiple Sclerosis: An Update in the COVID Era. Immunotargets Ther 2021; 10:237-246. [PMID: 34268256 PMCID: PMC8273745 DOI: 10.2147/itt.s240890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/22/2021] [Indexed: 01/01/2023] Open
Abstract
CD52 is a small surface glycoprotein composed of 12 amino acids. CD52 is found mostly on the surface of mature immune cells, such as lymphocytes, monocytes, eosinophils, and dendritic cells, as well as the male genital tract: within the epididymis and on the surface of mature sperm. Low CD52 expression is also found in neutrophils. CD52 function is not fully understood, although experiments with anti-CD52 antibodies have shown that CD52 is essential for lymphocyte transendothelial migration and may contribute to costimulation of CD4+ T cells and T-cell activation and proliferation. Although knowledge about exact CD52 function is still poor, CD52 presence on the surface of a broad spectrum of immune cells makes it a therapeutic target, especially in immunomediated diseases, such as multiple sclerosis. In multiple sclerosis, alemtuzumab is registered for adult patients with the relapsing-remitting form of the disease defined by clinical and imaging features. Despite the high efficacy of the drug, the main issue is its safety. The main adverse effects of alemtuzumab are associated with drug infusion due to cytokine release and cytotoxic effects of antibodies associated with lymphocyte depletion, which leads to immunosuppression, and secondary autoimmunity that may be the effect of excessive B-cell repopulation and cancer. This review presents current knowledge on the drug's mechanism of action, efficacy and safety data from clinical trials, and real-world observations, including available though scarce data on using alemtuzumab in the COVID era.
Collapse
Affiliation(s)
- Kaja Kasarello
- Department of Experimental and Clinical Physiology, Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Dagmara Mirowska-Guzel
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
- Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| |
Collapse
|
45
|
Patel V, Efimov A, Baker D, Kang AS. Immunogenicity of biologics used in the treatment of moderate to severe psoriasis. Hum Antibodies 2021; 29:171-178. [PMID: 34151782 DOI: 10.3233/hab-210447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The number of biologic drugs available for the treatment of psoriasis continue to expand. However, being biological proteins and thus potentially immunogenic, there is evidence that anti-drug-antibodies develop against the various therapeutic proteins currently being utilised. Although chimeric antibodies that contain elements of the parental rodent monoclonal antibodies are immunogenic, anti-drug antibodies occur even if the biologic is a fully human protein and these can impact on clinical efficacy and safety. However, there is a wide variation in the reported level of anti-drug-antibodies for the same and different treatments that is highlighting issues with various assays used in anti-drug antibody detection. Here we review the available data on the occurrence of anti-drug antibodies in people with psoriasis treated with biologic agents.
Collapse
Affiliation(s)
- Visha Patel
- Centre for Oral Immunobiology and Regenerative Medicine, Dental Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Alex Efimov
- Camstech Ltd, Campus Technology Hub, Daresbury Laboratory, Science and Technology Facilities Council, Sci-Tech Daresbury, Daresbury, UK
| | - David Baker
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Angray S Kang
- Centre for Oral Immunobiology and Regenerative Medicine, Dental Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
46
|
Miller A, Carr S, Rabbitts T, Ali H. Multimeric antibodies with increased valency surpassing functional affinity and potency thresholds using novel formats. MAbs 2021; 12:1752529. [PMID: 32316838 PMCID: PMC7188389 DOI: 10.1080/19420862.2020.1752529] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The success of therapeutic antibodies is largely attributed for their exquisite specificity, homogeneity, and functionality. There is, however, a need to engineer antibodies to extend and enhance their potency. One parameter is functional affinity augmentation, since antibodies matured in vivo have a natural affinity threshold. Generation of multivalent antibodies is one option capable of surpassing this affinity threshold through increased avidity. In this study, we present a novel platform consisting of an array of multivalent antibody formats, termed Quads, generated using the self-assembling tetramerization domain from p53. We demonstrate the versatility of this tetramerization domain by engineering anti-tumor necrosis factor (TNF) Quads that exhibit major increases in binding potency and in neutralizing TNF-mediated cytotoxicity compared to parental anti-TNF molecules. Further, Quads are amenable to fusion with different binding domains, allowing generation of novel multivalent monospecific and bispecific formats. Quads are thus a novel group of molecules that can be engineered to yield potential therapeutics with novel modalities and potencies.
Collapse
Affiliation(s)
- Ami Miller
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Stephen Carr
- Research Complex at Harwell, Rutherford Appleton Laboratory, Oxon, UK
| | - Terry Rabbitts
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Hanif Ali
- Quadrucept Bio Limited, Cambridge, UK
| |
Collapse
|
47
|
Peplau E, De Rose F, Eichinger A, Reder S, Mittelhäuser M, Scafetta G, Schwaiger M, Weber WA, Bartolazzi A, D'Alessandria C, Skerra A. Effective rational humanization of a PASylated anti-galectin-3 Fab for the sensitive PET imaging of thyroid cancer in vivo. Sci Rep 2021; 11:7358. [PMID: 33795750 PMCID: PMC8016950 DOI: 10.1038/s41598-021-86641-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/17/2021] [Indexed: 02/01/2023] Open
Abstract
The lack of a non-invasive test for malignant thyroid nodules makes the diagnosis of thyroid cancer (TC) challenging. Human galectin-3 (hGal3) has emerged as a promising target for medical TC imaging and diagnosis because of its exclusive overexpression in malignant thyroid tissues. We previously developed a human-chimeric αhGal3 Fab fragment derived from the rat monoclonal antibody (mAb) M3/38 with optimized clearance characteristics using PASylation technology. Here, we describe the elucidation of the hGal3 epitope recognized by mAb M3/38, X-ray crystallographic analysis of its complex with the chimeric Fab and, based on the three-dimensional structure, the rational humanization of the Fab by CDR grafting. Four CDR-grafted versions were designed using structurally most closely related fully human immunoglobulin VH/VL regions of which one-employing the acceptor framework regions of the HIV-1 neutralizing human antibody m66-showed the highest antigen affinity. By introducing two additional back-mutations to the rodent donor sequence, an affinity toward hGal3 indistinguishable from the chimeric Fab was achieved (KD = 0.34 ± 0.02 nM in SPR). The PASylated humanized Fab was site-specifically labelled with the fluorescent dye Cy7 and applied for the immuno-histochemical staining of human tissue sections representative for different TCs. The same protein was conjugated with the metal chelator Dfo, followed by radiolabelling with 89Zr(IV). The resulting protein tracer allowed the highly sensitive and specific PET/CT imaging of orthotopic tumors in mice, which was confirmed by quantitative analysis of radiotracer accumulation. Thus, the PASylated humanized αhGal3 Fab offers clinical potential for the diagnostic imaging of TC.
Collapse
Affiliation(s)
- Emanuel Peplau
- Lehrstuhl für Biologische Chemie, Technische Universität München, 85354, Freising (Weihenstephan), Germany
| | - Francesco De Rose
- Klinikum rechts der Isar, Nuclear Medicine Department, Technical University Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Andreas Eichinger
- Lehrstuhl für Biologische Chemie, Technische Universität München, 85354, Freising (Weihenstephan), Germany
| | - Sybille Reder
- Klinikum rechts der Isar, Nuclear Medicine Department, Technical University Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Markus Mittelhäuser
- Klinikum rechts der Isar, Nuclear Medicine Department, Technical University Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Giorgia Scafetta
- Pathology Research Laboratory, Sant'Andrea Hospital, University Sapienza, via di Grottarossa 1035, 00189, Rome, Italy
| | - Markus Schwaiger
- Klinikum rechts der Isar, Nuclear Medicine Department, Technical University Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Wolfgang A Weber
- Klinikum rechts der Isar, Nuclear Medicine Department, Technical University Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Armando Bartolazzi
- Pathology Research Laboratory, Cancer Center Karolinska, Karolinska Hospital, 17176, Stockholm, Sweden
- Pathology Research Laboratory, Sant'Andrea Hospital, University Sapienza, via di Grottarossa 1035, 00189, Rome, Italy
| | - Calogero D'Alessandria
- Klinikum rechts der Isar, Nuclear Medicine Department, Technical University Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Arne Skerra
- Lehrstuhl für Biologische Chemie, Technische Universität München, 85354, Freising (Weihenstephan), Germany.
| |
Collapse
|
48
|
Laustsen AH, Greiff V, Karatt-Vellatt A, Muyldermans S, Jenkins TP. Animal Immunization, in Vitro Display Technologies, and Machine Learning for Antibody Discovery. Trends Biotechnol 2021; 39:1263-1273. [PMID: 33775449 DOI: 10.1016/j.tibtech.2021.03.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023]
Abstract
For years, a discussion has persevered on the benefits and drawbacks of antibody discovery using animal immunization versus in vitro selection from non-animal-derived recombinant repertoires using display technologies. While it has been argued that using recombinant display libraries can reduce animal consumption, we hold that the number of animals used in immunization campaigns is dwarfed by the number sacrificed during preclinical studies. Thus, improving quality control of antibodies before entering in vivo studies will have a larger impact on animal consumption. Both animal immunization and recombinant repertoires present unique advantages for discovering antibodies that are fit for purpose. Furthermore, we anticipate that machine learning will play a significant role within discovery workflows, refining current antibody discovery practices.
Collapse
Affiliation(s)
- Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Victor Greiff
- Department of Immunology, University of Oslo, Oslo, Norway
| | | | - Serge Muyldermans
- Department of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Timothy P Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
49
|
Rossotti MA, Bélanger K, Henry KA, Tanha J. Immunogenicity and humanization of single‐domain antibodies. FEBS J 2021; 289:4304-4327. [DOI: 10.1111/febs.15809] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Martin A. Rossotti
- Life Sciences Division Human Health Therapeutics Research Centre National Research Council Canada Ottawa Canada
| | - Kasandra Bélanger
- Life Sciences Division Human Health Therapeutics Research Centre National Research Council Canada Ottawa Canada
| | - Kevin A. Henry
- Life Sciences Division Human Health Therapeutics Research Centre National Research Council Canada Ottawa Canada
- Department of Biochemistry, Microbiology and Immunology Faculty of Medicine University of Ottawa Canada
| | - Jamshid Tanha
- Life Sciences Division Human Health Therapeutics Research Centre National Research Council Canada Ottawa Canada
- Department of Biochemistry, Microbiology and Immunology Faculty of Medicine University of Ottawa Canada
| |
Collapse
|
50
|
Ulitzka M, Carrara S, Grzeschik J, Kornmann H, Hock B, Kolmar H. Engineering therapeutic antibodies for patient safety: tackling the immunogenicity problem. Protein Eng Des Sel 2021; 33:5944198. [PMID: 33128053 DOI: 10.1093/protein/gzaa025] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/21/2022] Open
Abstract
Established monoclonal antibodies (mAbs) allow treatment of cancers, autoimmune diseases and other severe illnesses. Side effects either arise due to interaction with the target protein and its biology or result from of the patient's immune system reacting to the foreign protein. This immunogenic reaction against therapeutic antibodies is dependent on various factors. The presence of non-human sequences can trigger immune responses as well as chemical and post-translational modifications of the antibody. However, even fully human antibodies can induce immune response through T cell epitopes or aggregates. In this review, we briefly describe, how therapeutic antibodies can interact with the patient's immune system and summarize recent advancements in protein engineering and in silico methods to reduce immunogenicity of therapeutic monoclonal antibodies.
Collapse
Affiliation(s)
- Michael Ulitzka
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany.,Ferring Darmstadt Labs, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Stefania Carrara
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany.,Ferring Darmstadt Labs, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Julius Grzeschik
- Ferring Darmstadt Labs, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Henri Kornmann
- Ferring International Center S.A., Chemin de la Vergognausaz 50, CH-1162 Saint-Prex, Switzerland
| | - Björn Hock
- Ferring International Center S.A., Chemin de la Vergognausaz 50, CH-1162 Saint-Prex, Switzerland
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| |
Collapse
|