1
|
Prange SE, Bhakta IN, Sysoeva D, Jean GE, Madisetti A, Le HHN, Duong LU, Hwu PT, Melton JG, Thompson-Peer KL. Dendrite injury triggers neuroprotection in Drosophila models of neurodegenerative disease. Sci Rep 2024; 14:24766. [PMID: 39433621 PMCID: PMC11494097 DOI: 10.1038/s41598-024-74670-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
Dendrite defects and loss are early cellular alterations observed across neurodegenerative diseases that play a role in early disease pathogenesis. Dendrite degeneration can be modeled by expressing pathogenic polyglutamine disease transgenes in Drosophila neurons in vivo. Here, we show that we can protect against dendrite loss in neurons modeling neurodegenerative polyglutamine diseases through injury to a single primary dendrite branch. We find that this neuroprotection is specific to injury-induced activation of dendrite regeneration: neither injury to the axon nor injury just to surrounding tissues induces this response. We show that the mechanism of this regenerative response is stabilization of the actin (but not microtubule) cytoskeleton. We also demonstrate that this regenerative response may extend to other neurodegenerative diseases. Together, we provide evidence that activating dendrite regeneration pathways has the potential to slow-or even reverse-dendrite loss in neurodegenerative disease.
Collapse
Affiliation(s)
- Sydney E Prange
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, Irvine, CA, USA
| | - Isha N Bhakta
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Daria Sysoeva
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Grace E Jean
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Anjali Madisetti
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Hieu H N Le
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Ly U Duong
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Patrick T Hwu
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Jaela G Melton
- Center for the Neurobiology of Learning and Memory, Irvine, CA, USA
| | - Katherine L Thompson-Peer
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA.
- Center for the Neurobiology of Learning and Memory, Irvine, CA, USA.
- Sue and Bill Gross Stem Cell Research Center, Irvine, CA, USA.
- Reeve-Irvine Research Center, Irvine, CA, USA.
| |
Collapse
|
2
|
Deo A, Ghosh R, Ahire S, Marathe S, Majumdar A, Bose T. Two novel DnaJ chaperone proteins CG5001 and P58IPK regulate the pathogenicity of Huntington's disease related aggregates. Sci Rep 2024; 14:20867. [PMID: 39242711 PMCID: PMC11379882 DOI: 10.1038/s41598-024-71065-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/23/2024] [Indexed: 09/09/2024] Open
Abstract
Huntington's disease (HD) is a rare neurodegenerative disease caused due to aggregation of Huntingtin (HTT) protein. This study involves the cloning of 40 DnaJ chaperones from Drosophila, and overexpressing them in yeasts and fly models of HD. Accordingly, DnaJ chaperones were catalogued as enhancers or suppressors based on their growth phenotypes and aggregation properties. 2 of the chaperones that came up as targets were CG5001 and P58IPK. Protein aggregation and slow growth phenotype was rescued in yeasts, S2 cells, and Drosophila transgenic lines of HTT103Q with these overexpressed chaperones. Since DnaJ chaperones have protein sequence similarity across species, they can be used as possible tools to combat the effects of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ankita Deo
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Rishita Ghosh
- Indian Institute of Science and Educational Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Snehal Ahire
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Sayali Marathe
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Amitabha Majumdar
- National Centre for Cell Sciences, Inside Savitribai Phule Pune University Campus, Ganeshkhind, Pune, 411007, India.
| | - Tania Bose
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India.
| |
Collapse
|
3
|
Zhang H, Wang X. The Role of Protein Quantity Control in Polyglutamine Spinocerebellar Ataxias. CEREBELLUM (LONDON, ENGLAND) 2024:10.1007/s12311-024-01722-w. [PMID: 39052145 DOI: 10.1007/s12311-024-01722-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Polyglutamine spinocerebellar ataxias (polyQ SCAs) represent the most prevalent subtype of SCAs. The primary pathogenic mechanism is believed to be the gain-of-function neurotoxicity of polyQ proteins. Strategies such as enhancing the degradation or inhibiting the accumulation of these mutant proteins are pivotal for reducing their toxicity and slowing disease progression. The protein quality control (PQC) system, comprising primarily molecular chaperones and the ubiquitin‒proteasome system (UPS), is essential for maintaining protein homeostasis by regulating protein folding, trafficking, and degradation. Notably, polyQ proteins can disrupt the PQC system by sequestering its critical components and impairing its proteasomal functions. Therefore, restoring the PQC system through genetic or pharmacological interventions could potentially offer beneficial effects and alleviate the symptoms of the disease. Here, we will provide a review on the distribution, expression, and genetic or pharmacological intervention of protein quality control system in cellular or animal models of PolyQ SCAs.
Collapse
Affiliation(s)
- Hongfeng Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361005, Fujian, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, Guangdong, China.
| | - Xin Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361005, Fujian, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, Guangdong, China.
| |
Collapse
|
4
|
Sujkowski A, Ranxhi B, Bangash ZR, Chbihi ZM, Prifti MV, Qadri Z, Alam N, Todi SV, Tsou WL. Progressive degeneration in a new Drosophila model of spinocerebellar ataxia type 7. Sci Rep 2024; 14:14332. [PMID: 38906973 PMCID: PMC11192756 DOI: 10.1038/s41598-024-65172-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 06/18/2024] [Indexed: 06/23/2024] Open
Abstract
Spinocerebellar ataxia type 7 (SCA7) is a progressive neurodegenerative disorder resulting from abnormal expansion of an uninterrupted polyglutamine (polyQ) repeat in its disease protein, ataxin-7 (ATXN7). ATXN7 is part of Spt-Ada-Gcn5 acetyltransferase (SAGA), an evolutionarily conserved transcriptional coactivation complex with critical roles in chromatin remodeling, cell signaling, neurodifferentiation, mitochondrial health and autophagy. SCA7 is dominantly inherited and characterized by genetic anticipation and high repeat-length instability. Patients with SCA7 experience progressive ataxia, atrophy, spasticity, and blindness. There is currently no cure for SCA7, and therapies are aimed at alleviating symptoms to increase quality of life. Here, we report novel Drosophila lines of SCA7 with polyQ repeats in wild-type and human disease patient range. We find that ATXN7 expression has age- and polyQ repeat length-dependent reduction in fruit fly survival and retinal instability, concomitant with increased ATXN7 protein aggregation. These new lines will provide important insight on disease progression that can be used in the future to identify therapeutic targets for SCA7 patients.
Collapse
Affiliation(s)
- Alyson Sujkowski
- Department of Pharmacology, Wayne State University School of Medicine, 540 E Canfield, Scott Hall Rm 3108, Detroit, MI, 48201, USA
| | - Bedri Ranxhi
- Department of Pharmacology, Wayne State University School of Medicine, 540 E Canfield, Scott Hall Rm 3108, Detroit, MI, 48201, USA
| | - Zoya R Bangash
- Department of Pharmacology, Wayne State University School of Medicine, 540 E Canfield, Scott Hall Rm 3108, Detroit, MI, 48201, USA
| | - Zachary M Chbihi
- Department of Pharmacology, Wayne State University School of Medicine, 540 E Canfield, Scott Hall Rm 3108, Detroit, MI, 48201, USA
| | - Matthew V Prifti
- Department of Pharmacology, Wayne State University School of Medicine, 540 E Canfield, Scott Hall Rm 3108, Detroit, MI, 48201, USA
| | - Zaina Qadri
- Department of Pharmacology, Wayne State University School of Medicine, 540 E Canfield, Scott Hall Rm 3108, Detroit, MI, 48201, USA
| | - Nadir Alam
- Department of Pharmacology, Wayne State University School of Medicine, 540 E Canfield, Scott Hall Rm 3108, Detroit, MI, 48201, USA
| | - Sokol V Todi
- Department of Pharmacology, Wayne State University School of Medicine, 540 E Canfield, Scott Hall Rm 3108, Detroit, MI, 48201, USA
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Wei-Ling Tsou
- Department of Pharmacology, Wayne State University School of Medicine, 540 E Canfield, Scott Hall Rm 3108, Detroit, MI, 48201, USA.
| |
Collapse
|
5
|
Stahl A, Tomchik SM. Modeling neurodegenerative and neurodevelopmental disorders in the Drosophila mushroom body. Learn Mem 2024; 31:a053816. [PMID: 38876485 PMCID: PMC11199955 DOI: 10.1101/lm.053816.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/01/2024] [Indexed: 06/16/2024]
Abstract
The common fruit fly Drosophila melanogaster provides a powerful platform to investigate the genetic, molecular, cellular, and neural circuit mechanisms of behavior. Research in this model system has shed light on multiple aspects of brain physiology and behavior, from fundamental neuronal function to complex behaviors. A major anatomical region that modulates complex behaviors is the mushroom body (MB). The MB integrates multimodal sensory information and is involved in behaviors ranging from sensory processing/responses to learning and memory. Many genes that underlie brain disorders are conserved, from flies to humans, and studies in Drosophila have contributed significantly to our understanding of the mechanisms of brain disorders. Genetic mutations that mimic human diseases-such as Fragile X syndrome, neurofibromatosis type 1, Parkinson's disease, and Alzheimer's disease-affect MB structure and function, altering behavior. Studies dissecting the effects of disease-causing mutations in the MB have identified key pathological mechanisms, and the development of a complete connectome promises to add a comprehensive anatomical framework for disease modeling. Here, we review Drosophila models of human neurodevelopmental and neurodegenerative disorders via the effects of their underlying mutations on MB structure, function, and the resulting behavioral alterations.
Collapse
Affiliation(s)
- Aaron Stahl
- Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa 52242, USA
| | - Seth M Tomchik
- Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa 52242, USA
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, Iowa 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242, USA
- Hawk-IDDRC, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
6
|
McNamee SM, Chan NP, Akula M, Avola MO, Whalen M, Nystuen K, Singh P, Upadhyay AK, DeAngelis MM, Haider NB. Preclinical dose response study shows NR2E3 can attenuate retinal degeneration in the retinitis pigmentosa mouse model Rho P23H+/. Gene Ther 2024; 31:255-262. [PMID: 38273095 PMCID: PMC11090815 DOI: 10.1038/s41434-024-00440-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/26/2023] [Accepted: 01/03/2024] [Indexed: 01/27/2024]
Abstract
Retinitis pigmentosa (RP) is a heterogeneous disease and the main cause of vision loss within the group of inherited retinal diseases (IRDs). IRDs are a group of rare disorders caused by mutations in one or more of over 280 genes which ultimately result in blindness. Modifier genes play a key role in modulating disease phenotypes, and mutations in them can affect disease outcomes, rate of progression, and severity. Our previous studies have demonstrated that the nuclear hormone receptor 2 family e, member 3 (Nr2e3) gene reduced disease progression and loss of photoreceptor cell layers in RhoP23H-/- mice. This follow up, pharmacology study evaluates a longitudinal NR2E3 dose response in the clinically relevant heterozygous RhoP23H mouse. Reduced retinal degeneration and improved retinal morphology was observed 6 months following treatment evaluating three different NR2E3 doses. Histological and immunohistochemical analysis revealed regions of photoreceptor rescue in the treated retinas of RhoP23H+/- mice. Functional assessment by electroretinogram (ERG) showed attenuated photoreceptor degeneration with all doses. This study demonstrates the effectiveness of different doses of NR2E3 at reducing retinal degeneration and informs dose selection for clinical trials of RhoP23H-associated RP.
Collapse
Affiliation(s)
- Shannon M McNamee
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Natalie P Chan
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Monica Akula
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Marielle O Avola
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Maiya Whalen
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Kaden Nystuen
- University of Massachusetts Amherst, Amherst, MA, USA
| | | | | | - Margaret M DeAngelis
- Department of Ophthalmology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Neena B Haider
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Perlegos AE, Durkin J, Belfer SJ, Rodriguez A, Shcherbakova O, Park K, Luong J, Bonini NM, Kayser MS. TDP-43 impairs sleep in Drosophila through Ataxin-2-dependent metabolic disturbance. SCIENCE ADVANCES 2024; 10:eadj4457. [PMID: 38198547 PMCID: PMC10780954 DOI: 10.1126/sciadv.adj4457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024]
Abstract
Neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal dementia are associated with substantial sleep disruption, which may accelerate cognitive decline and brain degeneration. Here, we define a role for trans-activation response element (TAR) DNA binding protein 43 (TDP-43), a protein associated with human neurodegenerative disease, in regulating sleep using Drosophila. Expression of TDP-43 severely disrupts sleep, and the sleep deficit is rescued by Atx2 knockdown. Brain RNA sequencing revealed that Atx2 RNA interference regulates transcripts enriched for small-molecule metabolic signaling in TDP-43 brains. Focusing on these Atx2-regulated genes, we identified suppressors of the TDP-43 sleep phenotype enriched for metabolism pathways. Knockdown of Atx2 or treatment with rapamycin attenuated the sleep phenotype and mitigated the disruption of small-molecule glycogen metabolism caused by TDP-43. Our findings provide a connection between toxicity of TDP-43 and sleep disturbances and highlight key aspects of metabolism that interplay with TDP-43 toxicity upon Atx2 rescue.
Collapse
Affiliation(s)
- Alexandra E. Perlegos
- Neuroscience Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jaclyn Durkin
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- National Institute of Neurological Disorders & Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Samuel J. Belfer
- Neuroscience Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anyara Rodriguez
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Oksana Shcherbakova
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristen Park
- Neuroscience Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jenny Luong
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nancy M. Bonini
- Neuroscience Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew S. Kayser
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Chronobiology Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Olmos V, Thompson EN, Gogia N, Luttik K, Veeranki V, Ni L, Sim S, Chen K, Krause DS, Lim J. Dysregulation of alternative splicing in spinocerebellar ataxia type 1. Hum Mol Genet 2024; 33:138-149. [PMID: 37802886 PMCID: PMC10979408 DOI: 10.1093/hmg/ddad170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/08/2023] Open
Abstract
Spinocerebellar ataxia type 1 is caused by an expansion of the polyglutamine tract in ATAXIN-1. Ataxin-1 is broadly expressed throughout the brain and is involved in regulating gene expression. However, it is not yet known if mutant ataxin-1 can impact the regulation of alternative splicing events. We performed RNA sequencing in mouse models of spinocerebellar ataxia type 1 and identified that mutant ataxin-1 expression abnormally leads to diverse splicing events in the mouse cerebellum of spinocerebellar ataxia type 1. We found that the diverse splicing events occurred in a predominantly cell autonomous manner. A majority of the transcripts with misregulated alternative splicing events were previously unknown, thus allowing us to identify overall new biological pathways that are distinctive to those affected by differential gene expression in spinocerebellar ataxia type 1. We also provide evidence that the splicing factor Rbfox1 mediates the effect of mutant ataxin-1 on misregulated alternative splicing and that genetic manipulation of Rbfox1 expression modifies neurodegenerative phenotypes in a Drosophila model of spinocerebellar ataxia type 1 in vivo. Together, this study provides novel molecular mechanistic insight into the pathogenesis of spinocerebellar ataxia type 1 and identifies potential therapeutic strategies for spinocerebellar ataxia type 1.
Collapse
Affiliation(s)
- Victor Olmos
- Department of Genetics, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, United States
| | - Evrett N Thompson
- Department of Cell Biology, Yale School of Medicine, 10 Amistad Street, New Haven, CT 06510, United States
- Yale Stem Cell Center, Yale School of Medicine, 10 Amistad Street, New Haven, CT 06510, United States
| | - Neha Gogia
- Department of Genetics, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, United States
| | - Kimberly Luttik
- Interdepartmental Neuroscience Program, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, United States
- Department of Neuroscience, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
| | - Vaishnavi Veeranki
- Department of Genetics, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, United States
| | - Luhan Ni
- Department of Genetics, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, United States
| | - Serena Sim
- Yale College, 433 Temple Street, New Haven, CT 06510, United States
| | - Kelly Chen
- Yale College, 433 Temple Street, New Haven, CT 06510, United States
| | - Diane S Krause
- Department of Cell Biology, Yale School of Medicine, 10 Amistad Street, New Haven, CT 06510, United States
- Yale Stem Cell Center, Yale School of Medicine, 10 Amistad Street, New Haven, CT 06510, United States
- Department of Pathology, Yale School of Medicine, 10 Amistad Street, New Haven, CT 06510, United States
- Department of Laboratory Medicine, Yale School of Medicine, 10 Amistad Street, New Haven, CT 06510, United States
| | - Janghoo Lim
- Department of Genetics, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, United States
- Yale Stem Cell Center, Yale School of Medicine, 10 Amistad Street, New Haven, CT 06510, United States
- Interdepartmental Neuroscience Program, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, United States
- Department of Neuroscience, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, United States
- Wu Tsai Institute, Yale School of Medicine, 100 College, New Haven, CT 06510, United States
| |
Collapse
|
9
|
Na D, Lim DH, Hong JS, Lee HM, Cho D, Yu MS, Shaker B, Ren J, Lee B, Song JG, Oh Y, Lee K, Oh KS, Lee MY, Choi MS, Choi HS, Kim YH, Bui JM, Lee K, Kim HW, Lee YS, Gsponer J. A multi-layered network model identifies Akt1 as a common modulator of neurodegeneration. Mol Syst Biol 2023; 19:e11801. [PMID: 37984409 DOI: 10.15252/msb.202311801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/22/2023] Open
Abstract
The accumulation of misfolded and aggregated proteins is a hallmark of neurodegenerative proteinopathies. Although multiple genetic loci have been associated with specific neurodegenerative diseases (NDs), molecular mechanisms that may have a broader relevance for most or all proteinopathies remain poorly resolved. In this study, we developed a multi-layered network expansion (MLnet) model to predict protein modifiers that are common to a group of diseases and, therefore, may have broader pathophysiological relevance for that group. When applied to the four NDs Alzheimer's disease (AD), Huntington's disease, and spinocerebellar ataxia types 1 and 3, we predicted multiple members of the insulin pathway, including PDK1, Akt1, InR, and sgg (GSK-3β), as common modifiers. We validated these modifiers with the help of four Drosophila ND models. Further evaluation of Akt1 in human cell-based ND models revealed that activation of Akt1 signaling by the small molecule SC79 increased cell viability in all models. Moreover, treatment of AD model mice with SC79 enhanced their long-term memory and ameliorated dysregulated anxiety levels, which are commonly affected in AD patients. These findings validate MLnet as a valuable tool to uncover molecular pathways and proteins involved in the pathophysiology of entire disease groups and identify potential therapeutic targets that have relevance across disease boundaries. MLnet can be used for any group of diseases and is available as a web tool at http://ssbio.cau.ac.kr/software/mlnet.
Collapse
Affiliation(s)
- Dokyun Na
- Department of Biomedical Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Do-Hwan Lim
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea
| | - Jae-Sang Hong
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Hyang-Mi Lee
- Department of Biomedical Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Daeahn Cho
- Department of Biomedical Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Myeong-Sang Yu
- Department of Biomedical Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Bilal Shaker
- Department of Biomedical Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Jun Ren
- Department of Biomedical Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Bomi Lee
- College of Life Sciences, Sejong University, Seoul, Republic of Korea
| | - Jae Gwang Song
- College of Life Sciences, Sejong University, Seoul, Republic of Korea
| | - Yuna Oh
- Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Kyungeun Lee
- Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Kwang-Seok Oh
- Information-based Drug Research Center, Korea Research Institute of Chemical Technology, Deajeon, Republic of Korea
| | - Mi Young Lee
- Information-based Drug Research Center, Korea Research Institute of Chemical Technology, Deajeon, Republic of Korea
| | - Min-Seok Choi
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Han Saem Choi
- College of Life Sciences, Sejong University, Seoul, Republic of Korea
| | - Yang-Hee Kim
- College of Life Sciences, Sejong University, Seoul, Republic of Korea
| | - Jennifer M Bui
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Hyung Wook Kim
- College of Life Sciences, Sejong University, Seoul, Republic of Korea
| | - Young Sik Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jörg Gsponer
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
10
|
Barwell T, Seroude L. Polyglutamine disease in peripheral tissues. Hum Mol Genet 2023; 32:3303-3311. [PMID: 37642359 DOI: 10.1093/hmg/ddad138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023] Open
Abstract
This year is a milestone anniversary of the discovery that Huntington's disease is caused by the presence of expanded polyglutamine repeats in the huntingtin gene leading to the formation of huntingtin aggregates. 30 years have elapsed and there is still no cure and the only FDA-approved treatment to alleviate the debilitating locomotor impairments presents several adverse effects. It has long been neglected that the huntingtin gene is almost ubiquitously expressed in many tissues outside of the nervous system. Growing evidence indicates that these peripheral tissues can contribute to the symptoms of the disease. New findings in Drosophila have shown that the selective expression of mutant huntingtin in muscle or fat is sufficient to cause detrimental effects in the absence of any neurodegeneration. In addition, it was discovered that a completely different tissue distribution of Htt aggregates in Drosophila muscles is responsible for a drastic aggravation of the detrimental effects. This review examines the peripheral tissues that express huntingtin with an added focus on the nature and distribution of the aggregates, if any.
Collapse
Affiliation(s)
- Taylor Barwell
- Department of Biology, Queen's University, 116 Barrie St, Kingston, ON K7L 3N6, Canada
| | - Laurent Seroude
- Department of Biology, Queen's University, 116 Barrie St, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
11
|
Sujkowski AL, Ranxhi B, Prifti MV, Alam N, Todi SV, Tsou WL. Progressive degeneration in a new Drosophila model of Spinocerebellar Ataxia type 7. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566106. [PMID: 37986914 PMCID: PMC10659390 DOI: 10.1101/2023.11.07.566106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Spinocerebellar ataxia type 7 (SCA7) is a progressive neurodegenerative disorder resulting from abnormal expansion of polyglutamine (polyQ) in its disease protein, ataxin-7 (ATXN7). ATXN7 is part of Spt-Ada-Gcn5 acetyltransferase (SAGA), an evolutionarily conserved transcriptional coactivation complex with critical roles in chromatin remodeling, cell signaling, neurodifferentiation, mitochondrial health and autophagy. SCA7 is dominantly inherited and characterized by genetic anticipation and high repeat-length instability. Patients with SCA7 experience progressive ataxia, atrophy, spasticity, and blindness. There is currently no cure for SCA7, and therapies are aimed at alleviating symptoms to increase quality of life. Here, we report novel Drosophila lines of SCA7 with polyQ repeats in wild-type and human disease patient range. We find that ATXN7 expression has age- and polyQ repeat length-dependent reduction in survival and retinal instability, concomitant with increased ATXN7 protein aggregation. These new lines will provide important insight on disease progression that can be used in the future to identify therapeutic targets for SCA7 patients.
Collapse
|
12
|
Yang M, Zinkgraf M, Fitzgerald-Cook C, Harrison BR, Putzier A, Promislow DEL, Wang AM. Using Drosophila to identify naturally occurring genetic modifiers of amyloid beta 42- and tau-induced toxicity. G3 (BETHESDA, MD.) 2023; 13:jkad132. [PMID: 37311212 PMCID: PMC10468303 DOI: 10.1093/g3journal/jkad132] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/15/2023] [Accepted: 05/15/2023] [Indexed: 06/15/2023]
Abstract
Alzheimer's disease is characterized by 2 pathological proteins, amyloid beta 42 and tau. The majority of Alzheimer's disease cases in the population are sporadic and late-onset Alzheimer's disease, which exhibits high levels of heritability. While several genetic risk factors for late-onset Alzheimer's disease have been identified and replicated in independent studies, including the ApoE ε4 allele, the great majority of the heritability of late-onset Alzheimer's disease remains unexplained, likely due to the aggregate effects of a very large number of genes with small effect size, as well as to biases in sample collection and statistical approaches. Here, we present an unbiased forward genetic screen in Drosophila looking for naturally occurring modifiers of amyloid beta 42- and tau-induced ommatidial degeneration. Our results identify 14 significant SNPs, which map to 12 potential genes in 8 unique genomic regions. Our hits that are significant after genome-wide correction identify genes involved in neuronal development, signal transduction, and organismal development. Looking more broadly at suggestive hits (P < 10-5), we see significant enrichment in genes associated with neurogenesis, development, and growth as well as significant enrichment in genes whose orthologs have been identified as significantly or suggestively associated with Alzheimer's disease in human GWAS studies. These latter genes include ones whose orthologs are in close proximity to regions in the human genome that are associated with Alzheimer's disease, but where a causal gene has not been identified. Together, our results illustrate the potential for complementary and convergent evidence provided through multitrait GWAS in Drosophila to supplement and inform human studies, helping to identify the remaining heritability and novel modifiers of complex diseases.
Collapse
Affiliation(s)
- Ming Yang
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Matthew Zinkgraf
- Department of Biology, Western Washington University, Bellingham, WA 98225, USA
| | - Cecilia Fitzgerald-Cook
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Benjamin R Harrison
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Alexandra Putzier
- Department of Biology, Western Washington University, Bellingham, WA 98225, USA
| | - Daniel E L Promislow
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Adrienne M Wang
- Department of Biology, Western Washington University, Bellingham, WA 98225, USA
| |
Collapse
|
13
|
Cembran A, Fernandez-Funez P. Intrinsic determinants of prion protein neurotoxicity in Drosophila: from sequence to (dys)function. Front Mol Neurosci 2023; 16:1231079. [PMID: 37645703 PMCID: PMC10461008 DOI: 10.3389/fnmol.2023.1231079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023] Open
Abstract
Prion diseases are fatal brain disorders characterized by deposition of insoluble isoforms of the prion protein (PrP). The normal and pathogenic structures of PrP are relatively well known after decades of studies. Yet our current understanding of the intrinsic determinants regulating PrP misfolding are largely missing. A 3D subdomain of PrP comprising the β2-α2 loop and helix 3 contains high sequence and structural variability among animals and has been proposed as a key domain regulating PrP misfolding. We combined in vivo work in Drosophila with molecular dynamics (MD) simulations, which provide additional insight to assess the impact of candidate substitutions in PrP from conformational dynamics. MD simulations revealed that in human PrP WT the β2-α2 loop explores multiple β-turn conformations, whereas the Y225A (rabbit PrP-like) substitution strongly favors a 310-turn conformation, a short right-handed helix. This shift in conformational diversity correlates with lower neurotoxicity in flies. We have identified additional conformational features and candidate amino acids regulating the high toxicity of human PrP and propose a new strategy for testing candidate modifiers first in MD simulations followed by functional experiments in flies. In this review we expand on these new results to provide additional insight into the structural and functional biology of PrP through the prism of the conformational dynamics of a 3D domain in the C-terminus. We propose that the conformational dynamics of this domain is a sensitive measure of the propensity of PrP to misfold and cause toxicity. This provides renewed opportunities to identify the intrinsic determinants of PrP misfolding through the contribution of key amino acids to different conformational states by MD simulations followed by experimental validation in transgenic flies.
Collapse
Affiliation(s)
- Alessandro Cembran
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, United States
| | - Pedro Fernandez-Funez
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States
| |
Collapse
|
14
|
Barwell T, Raina S, Page A, MacCharles H, Seroude L. Juvenile and adult expression of polyglutamine expanded huntingtin produce distinct aggregate distributions in Drosophila muscle. Hum Mol Genet 2023; 32:2656-2668. [PMID: 37369041 DOI: 10.1093/hmg/ddad098] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/09/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
While Huntington's disease (HD) is widely recognized as a disease affecting the nervous system, much evidence has accumulated to suggest peripheral or non-neuronal tissues are affected as well. Here, we utilize the UAS/GAL4 system to express a pathogenic HD construct in the muscle of the fly and characterize the effects. We observe detrimental phenotypes such as a reduced lifespan, decreased locomotion and accumulation of protein aggregates. Strikingly, depending on the GAL4 driver used to express the construct, we saw different aggregate distributions and severity of phenotypes. These different aggregate distributions were found to be dependent on the expression level and the timing of expression. Hsp70, a well-documented suppressor of polyglutamine aggregates, was found to strongly reduce the accumulation of aggregates in the eye, but in the muscle, it did not prevent the reduction of the lifespan. Therefore, the molecular mechanisms underlying the detrimental effects of aggregates in the muscle are distinct from the nervous system.
Collapse
Affiliation(s)
- Taylor Barwell
- Department of Biology, Queen's University, 116 Barrie St, Kingston, Ontario, K7L 3N6, Canada
| | - Sehaj Raina
- Department of Biology, Queen's University, 116 Barrie St, Kingston, Ontario, K7L 3N6, Canada
| | - Austin Page
- Department of Biology, Queen's University, 116 Barrie St, Kingston, Ontario, K7L 3N6, Canada
| | - Hayley MacCharles
- Department of Biology, Queen's University, 116 Barrie St, Kingston, Ontario, K7L 3N6, Canada
| | - Laurent Seroude
- Department of Biology, Queen's University, 116 Barrie St, Kingston, Ontario, K7L 3N6, Canada
| |
Collapse
|
15
|
Weiner L, Brissette JL. Finding meaning in chaos: a selection signature for functional interactions and its use in molecular biology. FEBS J 2023; 290:3914-3927. [PMID: 35653424 DOI: 10.1111/febs.16542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/18/2022] [Accepted: 06/01/2022] [Indexed: 11/28/2022]
Abstract
A primary goal of biomedical research is to elucidate molecular mechanisms, particularly those responsible for human traits, either normal or pathological. Yet achieving this goal is difficult if not impossible when the traits of interest lack tractable models and so cannot be dissected through time-honoured approaches like forward genetics or reconstitution. Arguably, no biological problem has hindered scientific progress more than this: the inability to dissect a trait's mechanism without a tractable likeness of the trait. At root, forward genetics and reconstitution are powerful approaches because they assay for specific molecular functions. Here, we discuss an alternative way to uncover important mechanistic interactions, namely, to assay for positive natural selection. If an interaction has been selected for, then it must perform an important function, a function that significantly promotes reproductive success. Accordingly, selection is a consequence and indicator of function, and uncovering multimolecular selection will reveal important functional interactions. We propose a selection signature for interactions and review recent selection-based approaches through which to dissect traits that are not inherently tractable. The review includes proof-of-principle studies in which important interactions were uncovered by screening for selection. In sum, screens for selection appear feasible when screens for specific functions are not. Selection screens thus constitute a novel tool through which to reveal the mechanisms that shape the fates of organisms.
Collapse
Affiliation(s)
- Lorin Weiner
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Janice L Brissette
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| |
Collapse
|
16
|
Manto M, Cendelin J, Strupp M, Mitoma H. Advances in cerebellar disorders: pre-clinical models, therapeutic targets, and challenges. Expert Opin Ther Targets 2023; 27:965-987. [PMID: 37768297 DOI: 10.1080/14728222.2023.2263911] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 09/24/2023] [Indexed: 09/29/2023]
Abstract
INTRODUCTION Cerebellar ataxias (CAs) represent neurological disorders with multiple etiologies and a high phenotypic variability. Despite progress in the understanding of pathogenesis, few therapies are available so far. Closing the loop between preclinical studies and therapeutic trials is important, given the impact of CAs upon patients' health and the roles of the cerebellum in multiple domains. Because of a rapid advance in research on CAs, it is necessary to summarize the main findings and discuss future directions. AREAS COVERED We focus our discussion on preclinical models, cerebellar reserve, the therapeutic management of CAs, and suitable surrogate markers. We searched Web of Science and PubMed using keywords relevant to cerebellar diseases, therapy, and preclinical models. EXPERT OPINION There are many symptomatic and/or disease-modifying therapeutic approaches under investigation. For therapy development, preclinical studies, standardization of disease evaluation, safety assessment, and demonstration of clinical improvements are essential. Stage of the disease and the level of the cerebellar reserve determine the goals of the therapy. Deficits in multiple categories and heterogeneity of CAs may require disease-, stage-, and symptom-specific therapies. More research is needed to clarify how therapies targeting the cerebellum influence both basal ganglia and the cerebral cortex, poorly explored domains in CAs.
Collapse
Affiliation(s)
- Mario Manto
- Service des Neurosciences, University of Mons, Mons, Belgium
| | - Jan Cendelin
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Michael Strupp
- Department of Neurology and German Center for Vertigo and Balance Disorders, Ludwig Maximilians University, Munich, Germany
| | - Hiroshi Mitoma
- Department of Medical Education, Tokyo medical University, Tokyo, Japan
| |
Collapse
|
17
|
Santarelli S, Londero C, Soldano A, Candelaresi C, Todeschini L, Vernizzi L, Bellosta P. Drosophila melanogaster as a model to study autophagy in neurodegenerative diseases induced by proteinopathies. Front Neurosci 2023; 17:1082047. [PMID: 37274187 PMCID: PMC10232775 DOI: 10.3389/fnins.2023.1082047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/14/2023] [Indexed: 06/06/2023] Open
Abstract
Proteinopathies are a large group of neurodegenerative diseases caused by both genetic and sporadic mutations in particular genes which can lead to alterations of the protein structure and to the formation of aggregates, especially toxic for neurons. Autophagy is a key mechanism for clearing those aggregates and its function has been strongly associated with the ubiquitin-proteasome system (UPS), hence mutations in both pathways have been associated with the onset of neurodegenerative diseases, particularly those induced by protein misfolding and accumulation of aggregates. Many crucial discoveries regarding the molecular and cellular events underlying the role of autophagy in these diseases have come from studies using Drosophila models. Indeed, despite the physiological and morphological differences between the fly and the human brain, most of the biochemical and molecular aspects regulating protein homeostasis, including autophagy, are conserved between the two species.In this review, we will provide an overview of the most common neurodegenerative proteinopathies, which include PolyQ diseases (Huntington's disease, Spinocerebellar ataxia 1, 2, and 3), Amyotrophic Lateral Sclerosis (C9orf72, SOD1, TDP-43, FUS), Alzheimer's disease (APP, Tau) Parkinson's disease (a-syn, parkin and PINK1, LRRK2) and prion diseases, highlighting the studies using Drosophila that have contributed to understanding the conserved mechanisms and elucidating the role of autophagy in these diseases.
Collapse
Affiliation(s)
- Stefania Santarelli
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
| | - Chiara Londero
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
| | - Alessia Soldano
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Carlotta Candelaresi
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
| | - Leonardo Todeschini
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
| | - Luisa Vernizzi
- Institute of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Paola Bellosta
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
- Department of Medicine, NYU Langone Medical Center, New York, NY, United States
| |
Collapse
|
18
|
Kerkhof LMC, van de Warrenburg BPC, van Roon-Mom WMC, Buijsen RAM. Therapeutic Strategies for Spinocerebellar Ataxia Type 1. Biomolecules 2023; 13:biom13050788. [PMID: 37238658 DOI: 10.3390/biom13050788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant neurodegenerative disorder that affects one or two individuals per 100,000. The disease is caused by an extended CAG repeat in exon 8 of the ATXN1 gene and is characterized mostly by a profound loss of cerebellar Purkinje cells, leading to disturbances in coordination, balance, and gait. At present, no curative treatment is available for SCA1. However, increasing knowledge on the cellular and molecular mechanisms of SCA1 has led the way towards several therapeutic strategies that can potentially slow disease progression. SCA1 therapeutics can be classified as genetic, pharmacological, and cell replacement therapies. These different therapeutic strategies target either the (mutant) ATXN1 RNA or the ataxin-1 protein, pathways that play an important role in downstream SCA1 disease mechanisms or which help restore cells that are lost due to SCA1 pathology. In this review, we will provide a summary of the different therapeutic strategies that are currently being investigated for SCA1.
Collapse
Affiliation(s)
- Laurie M C Kerkhof
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Dutch Center for RNA Therapeutics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Bart P C van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Willeke M C van Roon-Mom
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Dutch Center for RNA Therapeutics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Ronald A M Buijsen
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
19
|
Kim J, de Haro M, Al-Ramahi I, Garaicoechea LL, Jeong HH, Sonn JY, Tadros B, Liu Z, Botas J, Zoghbi HY. Evolutionarily conserved regulators of tau identify targets for new therapies. Neuron 2023; 111:824-838.e7. [PMID: 36610398 DOI: 10.1016/j.neuron.2022.12.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/29/2022] [Accepted: 12/08/2022] [Indexed: 01/09/2023]
Abstract
Tauopathies are neurodegenerative diseases that involve the pathological accumulation of tau proteins; in this family are Alzheimer disease, corticobasal degeneration, and chronic traumatic encephalopathy, among others. Hypothesizing that reducing this accumulation could mitigate pathogenesis, we performed a cross-species genetic screen targeting 6,600 potentially druggable genes in human cells and Drosophila. We found and validated 83 hits in cells and further validated 11 hits in the mouse brain. Three of these hits (USP7, RNF130, and RNF149) converge on the C terminus of Hsc70-interacting protein (CHIP) to regulate tau levels, highlighting the role of CHIP in maintaining tau proteostasis in the brain. Knockdown of each of these three genes in adult tauopathy mice reduced tau levels and rescued the disease phenotypes. This study thus identifies several points of intervention to reduce tau levels and demonstrates that reduction of tau levels via regulation of this pathway is a viable therapeutic strategy for Alzheimer disease and other tauopathies.
Collapse
Affiliation(s)
- Jiyoen Kim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Maria de Haro
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Ismael Al-Ramahi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Center for Alzheimer's and Neurodegenerative Diseases, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Hyun-Hwan Jeong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Jun Young Sonn
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Bakhos Tadros
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Zhandong Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Juan Botas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Alzheimer's and Neurodegenerative Diseases, Baylor College of Medicine, Houston, TX 77030, USA
| | - Huda Yahya Zoghbi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
20
|
Singh AK. Hsrω and Other lncRNAs in Neuronal Functions and Disorders in Drosophila. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010017. [PMID: 36675966 PMCID: PMC9865238 DOI: 10.3390/life13010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/27/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Long noncoding RNAs (lncRNAs) have a crucial role in epigenetic, transcriptional and posttranscriptional regulation of gene expression. Many of these regulatory lncRNAs, such as MALAT1, NEAT1, HOTAIR, etc., are associated with different neurodegenerative diseases in humans. The lncRNAs produced by the hsrω gene are known to modulate neurotoxicity in polyQ and amyotrophic lateral sclerosis disease models of Drosophila. Elevated expression of hsrω lncRNAs exaggerates, while their genetic depletion through hsrω-RNAi or in an hsrω-null mutant background suppresses, the disease pathogenicity. This review discusses the possible mechanistic details and implications of the functions of hsrω lncRNAs in the modulation of neurodegenerative diseases.
Collapse
Affiliation(s)
- Anand Kumar Singh
- Interdisciplinary School of Life Sciences, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
21
|
Nitta Y, Sugie A. Studies of neurodegenerative diseases using Drosophila and the development of novel approaches for their analysis. Fly (Austin) 2022; 16:275-298. [PMID: 35765969 PMCID: PMC9336468 DOI: 10.1080/19336934.2022.2087484] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 02/09/2023] Open
Abstract
The use of Drosophila in neurodegenerative disease research has contributed to the identification of modifier genes for the pathology. The basis for neurodegenerative disease occurrence in Drosophila is the conservation of genes across species and the ability to perform rapid genetic analysis using a compact brain. Genetic findings previously discovered in Drosophila can reveal molecular pathologies involved in human neurological diseases in later years. Disease models using Drosophila began to be generated during the development of genetic engineering. In recent years, results of reverse translational research using Drosophila have been reported. In this review, we discuss research on neurodegenerative diseases; moreover, we introduce various methods for quantifying neurodegeneration in Drosophila.
Collapse
Affiliation(s)
- Yohei Nitta
- Brain Research Institute, Niigata University, Niigata, Japan
| | - Atsushi Sugie
- Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
22
|
Cendelin J, Cvetanovic M, Gandelman M, Hirai H, Orr HT, Pulst SM, Strupp M, Tichanek F, Tuma J, Manto M. Consensus Paper: Strengths and Weaknesses of Animal Models of Spinocerebellar Ataxias and Their Clinical Implications. CEREBELLUM (LONDON, ENGLAND) 2022; 21:452-481. [PMID: 34378174 PMCID: PMC9098367 DOI: 10.1007/s12311-021-01311-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/21/2021] [Indexed: 01/02/2023]
Abstract
Spinocerebellar ataxias (SCAs) represent a large group of hereditary degenerative diseases of the nervous system, in particular the cerebellum, and other systems that manifest with a variety of progressive motor, cognitive, and behavioral deficits with the leading symptom of cerebellar ataxia. SCAs often lead to severe impairments of the patient's functioning, quality of life, and life expectancy. For SCAs, there are no proven effective pharmacotherapies that improve the symptoms or substantially delay disease progress, i.e., disease-modifying therapies. To study SCA pathogenesis and potential therapies, animal models have been widely used and are an essential part of pre-clinical research. They mainly include mice, but also other vertebrates and invertebrates. Each animal model has its strengths and weaknesses arising from model animal species, type of genetic manipulation, and similarity to human diseases. The types of murine and non-murine models of SCAs, their contribution to the investigation of SCA pathogenesis, pathological phenotype, and therapeutic approaches including their advantages and disadvantages are reviewed in this paper. There is a consensus among the panel of experts that (1) animal models represent valuable tools to improve our understanding of SCAs and discover and assess novel therapies for this group of neurological disorders characterized by diverse mechanisms and differential degenerative progressions, (2) thorough phenotypic assessment of individual animal models is required for studies addressing therapeutic approaches, (3) comparative studies are needed to bring pre-clinical research closer to clinical trials, and (4) mouse models complement cellular and invertebrate models which remain limited in terms of clinical translation for complex neurological disorders such as SCAs.
Collapse
Affiliation(s)
- Jan Cendelin
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic.
- Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic.
| | - Marija Cvetanovic
- Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mandi Gandelman
- Department of Neurology, University of Utah, 175 North Medical Drive East, Salt Lake City, UT, 84132, USA
| | - Hirokazu Hirai
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, 3-39-22, Gunma, 371-8511, Japan
- Viral Vector Core, Gunma University Initiative for Advanced Research (GIAR), Gunma, 371-8511, Japan
| | - Harry T Orr
- Department of Laboratory Medicine and Pathology, Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, 175 North Medical Drive East, Salt Lake City, UT, 84132, USA
| | - Michael Strupp
- Department of Neurology and German Center for Vertigo and Balance Disorders, Hospital of the Ludwig-Maximilians University, Munich, Campus Grosshadern, Marchioninistr. 15, 81377, Munich, Germany
| | - Filip Tichanek
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic
- Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic
| | - Jan Tuma
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic
- The Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, MC 7843, San Antonio, TX, 78229, USA
| | - Mario Manto
- Unité des Ataxies Cérébelleuses, Service de Neurologie, CHU-Charleroi, Charleroi, Belgium
- Service des Neurosciences, Université de Mons, UMons, Mons, Belgium
| |
Collapse
|
23
|
Costa MD, Maciel P. Modifier pathways in polyglutamine (PolyQ) diseases: from genetic screens to drug targets. Cell Mol Life Sci 2022; 79:274. [PMID: 35503478 PMCID: PMC11071829 DOI: 10.1007/s00018-022-04280-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/14/2022] [Accepted: 03/30/2022] [Indexed: 12/17/2022]
Abstract
Polyglutamine (PolyQ) diseases include a group of inherited neurodegenerative disorders caused by unstable expansions of CAG trinucleotide repeats in the coding region of specific genes. Such genetic alterations produce abnormal proteins containing an unusually long PolyQ tract that renders them more prone to aggregate and cause toxicity. Although research in the field in the last years has contributed significantly to the knowledge of the biological mechanisms implicated in these diseases, effective treatments are still lacking. In this review, we revisit work performed in models of PolyQ diseases, namely the yeast Saccharomyces cerevisiae, the nematode worm Caenorhabditis elegans and the fruit fly Drosophila melanogaster, and provide a critical overview of the high-throughput unbiased genetic screens that have been performed using these systems to identify novel genetic modifiers of PolyQ diseases. These approaches have revealed a wide variety of cellular processes that modulate the toxicity and aggregation of mutant PolyQ proteins, reflecting the complexity of these disorders and demonstrating how challenging the development of therapeutic strategies can be. In addition to the unbiased large-scale genetic screenings in non-vertebrate models, complementary studies in mammalian systems, closer to humans, have contributed with novel genetic modifiers of PolyQ diseases, revealing neuronal function and inflammation as key disease modulators. A pathway enrichment analysis, using the human orthologues of genetic modifiers of PolyQ diseases clustered modifier genes into major themes translatable to the human disease context, such as protein folding and transport as well as transcription regulation. Innovative genetic strategies of genetic manipulation, together with significant advances in genomics and bioinformatics, are taking modifier genetic studies to more realistic disease contexts. The characterization of PolyQ disease modifier pathways is of extreme relevance to reveal novel therapeutic possibilities to delay disease onset and progression in patients.
Collapse
Affiliation(s)
- Marta Daniela Costa
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, 4710-057, Braga, Portugal
- ICVS/3Bs-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Patrícia Maciel
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, 4710-057, Braga, Portugal.
- ICVS/3Bs-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
24
|
Lee WS, Al-Ramahi I, Jeong HH, Jang Y, Lin T, Adamski CJ, Lavery LA, Rath S, Richman R, Bondar VV, Alcala E, Revelli JP, Orr HT, Liu Z, Botas J, Zoghbi HY. Cross-species genetic screens identify transglutaminase 5 as a regulator of polyglutamine-expanded ataxin-1. J Clin Invest 2022; 132:e156616. [PMID: 35499073 PMCID: PMC9057624 DOI: 10.1172/jci156616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/08/2022] [Indexed: 12/31/2022] Open
Abstract
Many neurodegenerative disorders are caused by abnormal accumulation of misfolded proteins. In spinocerebellar ataxia type 1 (SCA1), accumulation of polyglutamine-expanded (polyQ-expanded) ataxin-1 (ATXN1) causes neuronal toxicity. Lowering total ATXN1, especially the polyQ-expanded form, alleviates disease phenotypes in mice, but the molecular mechanism by which the mutant ATXN1 is specifically modulated is not understood. Here, we identified 22 mutant ATXN1 regulators by performing a cross-species screen of 7787 and 2144 genes in human cells and Drosophila eyes, respectively. Among them, transglutaminase 5 (TG5) preferentially regulated mutant ATXN1 over the WT protein. TG enzymes catalyzed cross-linking of ATXN1 in a polyQ-length-dependent manner, thereby preferentially modulating mutant ATXN1 stability and oligomerization. Perturbing Tg in Drosophila SCA1 models modulated mutant ATXN1 toxicity. Moreover, TG5 was enriched in the nuclei of SCA1-affected neurons and colocalized with nuclear ATXN1 inclusions in brain tissue from patients with SCA1. Our work provides a molecular insight into SCA1 pathogenesis and an opportunity for allele-specific targeting for neurodegenerative disorders.
Collapse
Affiliation(s)
- Won-Seok Lee
- Integrative Molecular and Biomedical Science Program, and
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute, Houston, Texas, USA
| | - Ismael Al-Ramahi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute, Houston, Texas, USA
| | - Hyun-Hwan Jeong
- Jan and Dan Duncan Neurological Research Institute, Houston, Texas, USA
- Department of Pediatrics-Neurology, and
| | - Youjin Jang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute, Houston, Texas, USA
| | - Tao Lin
- Jan and Dan Duncan Neurological Research Institute, Houston, Texas, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - Carolyn J. Adamski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute, Houston, Texas, USA
- Howard Hughes Medical Institute, Houston, Texas, USA
| | - Laura A. Lavery
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute, Houston, Texas, USA
| | - Smruti Rath
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute, Houston, Texas, USA
| | - Ronald Richman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute, Houston, Texas, USA
- Howard Hughes Medical Institute, Houston, Texas, USA
| | - Vitaliy V. Bondar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute, Houston, Texas, USA
| | - Elizabeth Alcala
- Exceptional Research Opportunities Program, Howard Hughes Medical Institute, Houston, Texas, USA
| | - Jean-Pierre Revelli
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute, Houston, Texas, USA
| | - Harry T. Orr
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Zhandong Liu
- Jan and Dan Duncan Neurological Research Institute, Houston, Texas, USA
- Department of Pediatrics-Neurology, and
| | - Juan Botas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute, Houston, Texas, USA
| | - Huda Y. Zoghbi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute, Houston, Texas, USA
- Department of Pediatrics-Neurology, and
- Howard Hughes Medical Institute, Houston, Texas, USA
| |
Collapse
|
25
|
Thackray AM, Lam B, McNulty EE, Nalls AV, Mathiason CK, Magadi SS, Jackson WS, Andréoletti O, Marrero-Winkens C, Schätzl H, Bujdoso R. Clearance of variant Creutzfeldt-Jakob disease prions in vivo by the Hsp70 disaggregase system. Brain 2022; 145:3236-3249. [PMID: 35446941 PMCID: PMC9473358 DOI: 10.1093/brain/awac144] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/10/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
The metazoan Hsp70 disaggregase protects neurons from proteotoxicity that arises from the accumulation of misfolded protein aggregates. Hsp70 and its co-chaperones disassemble and extract polypeptides from protein aggregates for refolding or degradation. The effectiveness of the chaperone system decreases with age and leads to accumulation rather than removal of neurotoxic protein aggregates. Therapeutic enhancement of the Hsp70 protein disassembly machinery is proposed to counter late-onset protein misfolding neurodegenerative disease that may arise. In the context of prion disease, it is not known whether stimulation of protein aggregate disassembly paradoxically leads to enhanced formation of seeding competent species of disease-specific proteins and acceleration of neurodegenerative disease. Here we have tested the hypothesis that modulation of Hsp70 disaggregase activity perturbs mammalian prion-induced neurotoxicity and prion seeding activity. To do so we used prion protein (PrP) transgenic Drosophila that authentically replicate mammalian prions. RNASeq identified that Hsp70, DnaJ-1 and Hsp110 gene expression was downregulated in prion-exposed PrP Drosophila. We demonstrated that RNAi knockdown of Hsp110 or DnaJ-1 gene expression in variant Creutzfeldt–Jakob disease prion-exposed human PrP Drosophila enhanced neurotoxicity, whereas overexpression mitigated toxicity. Strikingly, prion seeding activity in variant Creutzfeldt–Jakob disease prion-exposed human PrP Drosophila was ablated or reduced by Hsp110 or DnaJ-1 overexpression, respectively. Similar effects were seen in scrapie prion-exposed ovine PrP Drosophila with modified Hsp110 or DnaJ-1 gene expression. These unique observations show that the metazoan Hsp70 disaggregase facilitates the clearance of mammalian prions and that its enhanced activity is a potential therapeutic strategy for human prion disease.
Collapse
Affiliation(s)
- Alana M Thackray
- University of Cambridge, Department of Veterinary Medicine, Madingley Road, Cambridge, CB3 0ES, UK
| | - Brian Lam
- Medical Research Council Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Erin E McNulty
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Amy V Nalls
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Candace K Mathiason
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Srivathsa Subramanya Magadi
- Wallenberg Center for Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, 581 83 Linköping, Sweden
| | - Walker S Jackson
- Wallenberg Center for Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, 581 83 Linköping, Sweden
| | - Olivier Andréoletti
- UMR INRA ENVT 1225 -Hôtes-Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076 Toulouse, France
| | - Cristóbal Marrero-Winkens
- Calgary Prion Research Unit, Faculty of Veterinary Medicine, University of Calgary TRW 2D10, 3280 Hospital Drive NW, Calgary, AB, Canada T2N 4Z6
| | - Hermann Schätzl
- Calgary Prion Research Unit, Faculty of Veterinary Medicine, University of Calgary TRW 2D10, 3280 Hospital Drive NW, Calgary, AB, Canada T2N 4Z6
| | - Raymond Bujdoso
- University of Cambridge, Department of Veterinary Medicine, Madingley Road, Cambridge, CB3 0ES, UK
| |
Collapse
|
26
|
Myers RR, Sanchez-Garcia J, Leving DC, Melvin RG, Fernandez-Funez P. New Drosophila models to uncover the intrinsic and extrinsic factors that mediate the toxicity of the human prion protein. Dis Model Mech 2022; 15:dmm049184. [PMID: 35142350 PMCID: PMC9093039 DOI: 10.1242/dmm.049184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 02/01/2022] [Indexed: 11/20/2022] Open
Abstract
Misfolding of the prion protein (PrP) is responsible for devastating neurological disorders in humans and other mammals. An unresolved problem in the field is unraveling the mechanisms governing PrP conformational dynamics, misfolding, and the cellular mechanism leading to neurodegeneration. The variable susceptibility of mammals to prion diseases is a natural resource that can be exploited to understand the conformational dynamics of PrP. Here we present a new fly model expressing human PrP with new, robust phenotypes in brain neurons and the eye. By using comparable attP2 insertions, we demonstrated the heightened toxicity of human PrP compared to rodent PrP along with a specific interaction with the amyloid-β peptide. By using this new model, we started to uncover the intrinsic (sequence/structure) and extrinsic (interactions) factors regulating PrP toxicity. We described PERK (officially known as EIF2AK3 in humans) and activating transcription factor 4 (ATF4) as key in the cellular mechanism mediating the toxicity of human PrP and uncover a key new protective activity for 4E-BP (officially known as Thor in Drosophila and EIF4EBP2 in humans), an ATF4 transcriptional target. Lastly, mutations in human PrP (N159D, D167S, N174S) showed partial protective activity, revealing its high propensity to misfold into toxic conformations.
Collapse
Affiliation(s)
- Ryan R. Myers
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, MN 55812, USA
| | | | - Daniel C. Leving
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, MN 55812, USA
| | - Richard G. Melvin
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, MN 55812, USA
| | - Pedro Fernandez-Funez
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, MN 55812, USA
| |
Collapse
|
27
|
Rahul, Siddique YH. Drosophila: A Model to Study the Pathogenesis of Parkinson's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:259-277. [PMID: 35040399 DOI: 10.2174/1871527320666210809120621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/15/2021] [Accepted: 06/13/2021] [Indexed: 12/12/2022]
Abstract
Human Central Nervous System (CNS) is the complex part of the human body, which regulates multiple cellular and molecular events taking place simultaneously. Parkinsons Disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease (AD). The pathological hallmarks of PD are loss of dopaminergic neurons in the substantianigra (SN) pars compacta (SNpc) and accumulation of misfolded α-synuclein, in intra-cytoplasmic inclusions called Lewy bodies (LBs). So far, there is no cure for PD, due to the complexities of molecular mechanisms and events taking place during the pathogenesis of PD. Drosophila melanogaster is an appropriate model organism to unravel the pathogenicity not only behind PD but also other NDs. In this context as numerous biological functions are preserved between Drosophila and humans. Apart from sharing 75% of human disease-causing genes homolog in Drosophila, behavioral responses like memory-based tests, negative geotaxis, courtship and mating are also well studied. The genetic, as well as environmental factors, can be studied in Drosophila to understand the geneenvironment interactions behind the disease condition. Through genetic manipulation, mutant flies can be generated harboring human orthologs, which can prove to be an excellent model to understand the effect of the mutant protein on the pathogenicity of NDs.
Collapse
Affiliation(s)
- Rahul
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh,India
| | - Yasir Hasan Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh,India
| |
Collapse
|
28
|
Sujkowski A, Richardson K, Prifti MV, Wessells RJ, Todi SV. Endurance exercise ameliorates phenotypes in Drosophila models of spinocerebellar ataxias. eLife 2022; 11:e75389. [PMID: 35170431 PMCID: PMC8871352 DOI: 10.7554/elife.75389] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/15/2022] [Indexed: 11/24/2022] Open
Abstract
Endurance exercise is a potent intervention with widespread benefits proven to reduce disease incidence and impact across species. While endurance exercise supports neural plasticity, enhanced memory, and reduced neurodegeneration, less is known about the effect of chronic exercise on the progression of movement disorders such as ataxias. Here, we focused on three different types of ataxias, spinocerebellar ataxias type (SCAs) 2, 3, and 6, belonging to the polyglutamine (polyQ) family of neurodegenerative disorders. In Drosophila models of these SCAs, flies progressively lose motor function. In this study, we observe marked protection of speed and endurance in exercised SCA2 flies and modest protection in exercised SCA6 models, with no benefit to SCA3 flies. Causative protein levels are reduced in SCA2 flies after chronic exercise, but not in SCA3 models, linking protein levels to exercise-based benefits. Further mechanistic investigation indicates that the exercise-inducible protein, Sestrin (Sesn), suppresses mobility decline and improves early death in SCA2 flies, even without exercise, coincident with disease protein level reduction and increased autophagic flux. These improvements partially depend on previously established functions of Sesn that reduce oxidative damage and modulate mTOR activity. Our study suggests differential responses of polyQ SCAs to exercise, highlighting the potential for more extensive application of exercise-based therapies in the prevention of polyQ neurodegeneration. Defining the mechanisms by which endurance exercise suppresses polyQ SCAs will open the door for more effective treatment for these diseases.
Collapse
Affiliation(s)
- Alyson Sujkowski
- Department of Physiology, Wayne State University School of MedicineDetroitUnited States
- Department of Pharmacology, Wayne State University School of MedicineDetroitUnited States
| | - Kristin Richardson
- Department of Physiology, Wayne State University School of MedicineDetroitUnited States
| | - Matthew V Prifti
- Department of Pharmacology, Wayne State University School of MedicineDetroitUnited States
| | - Robert J Wessells
- Department of Physiology, Wayne State University School of MedicineDetroitUnited States
| | - Sokol V Todi
- Department of Pharmacology, Wayne State University School of MedicineDetroitUnited States
- Department of Neurology, Wayne State University School of MedicineDetroitUnited States
| |
Collapse
|
29
|
Macular Morpho-Functional and Visual Pathways Functional Assessment in Patients with Spinocerebellar Type 1 Ataxia with or without Neurological Signs. J Clin Med 2021; 10:jcm10225271. [PMID: 34830553 PMCID: PMC8625180 DOI: 10.3390/jcm10225271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/04/2021] [Accepted: 11/10/2021] [Indexed: 11/21/2022] Open
Abstract
Spinocerebellar ataxia type 1 (SCA-ATXN1) is an autosomal dominant, neurodegenerative disease, caused by CAG repeat expansion in the ataxin-1 gene (ATXN1). In isolated reports of patients with neurological signs [symptomatic patients (SP)], macular abnormalities have been described. However, no reports exist about macular anomalies in SCA1 subjects carrying the ATXN1 mutation without neurological signs [not symptomatic carriers (NSC)]. Therefore, the main aim of our work was to evaluate whether the macular functional and morphological abnormalities could be detectable in SP, genetically confirmed and with neurological signs, as well as in SCA-ATXN1-NSC, harboring pathogenic CAG expansion in ATXN1. In addition, we investigated whether the macular involvement could be associated or not to an impairment of RGCs and of their fibers and of the neural conduction along the visual pathways. Herein, nine SCA-ATXN1 subjects (6 SP and 3 NSC) underwent the following examinations: visual acuity and chromatic test assessments, fundus oculi (FO) examination, macular and peripapillary retinal nerve fiber layer thickness (RNFL-T) analysis by Spectral domain-Optical Coherence Tomography (Sd-OCT) acquisition, multifocal electroretinogram (mfERG), pattern reversal electroretinogram (PERG) and visual evoked potentials (VEP) recordings. In four eyes of two SP, visual acuity reduction and chromatic abnormalities were observed; in three of them FO changes associated with macular thinning and outer retinal defects were also detected. In three NSC eyes, slight FO abnormalities were associated with qualitative macular morphological changes. By contrast, abnormal mfERG responses (exclusively from foveal and parafoveal areas) were detected in all SP and NSC (18 eyes). No abnormalities of PERG values, RNFL-T, and VEP responses were found, but in one SP, presenting abnormal papillo-macular bundle neural conduction. Results from our SCA-ATXN1 cohort suggest that a macular dysfunction, detectable by mfERG recordings, may occur in the overt disorder, and unexpectedly in the stage of the disease in which there is still an absence of neurological signs. In NSC, an exclusive dysfunction of preganglionic macular elements can be observed, and this is associated with both normal RGCs function and neural conduction along the visual pathways.
Collapse
|
30
|
HMGB1 signaling phosphorylates Ku70 and impairs DNA damage repair in Alzheimer's disease pathology. Commun Biol 2021; 4:1175. [PMID: 34635772 PMCID: PMC8505418 DOI: 10.1038/s42003-021-02671-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/14/2021] [Indexed: 02/08/2023] Open
Abstract
DNA damage is increased in Alzheimer's disease (AD), while the underlying mechanisms are unknown. Here, we employ comprehensive phosphoproteome analysis, and identify abnormal phosphorylation of 70 kDa subunit of Ku antigen (Ku70) at Ser77/78, which prevents Ku70-DNA interaction, in human AD postmortem brains. The abnormal phosphorylation inhibits accumulation of Ku70 to the foci of DNA double strand break (DSB), impairs DNA damage repair and eventually causes transcriptional repression-induced atypical cell death (TRIAD). Cells under TRIAD necrosis reveal senescence phenotypes. Extracellular high mobility group box 1 (HMGB1) protein, which is released from necrotic or hyper-activated neurons in AD, binds to toll-like receptor 4 (TLR4) of neighboring neurons, and activates protein kinase C alpha (PKCα) that executes Ku70 phosphorylation at Ser77/78. Administration of human monoclonal anti-HMGB1 antibody to post-symptomatic AD model mice decreases neuronal DSBs, suppresses secondary TRIAD necrosis of neurons, prevents escalation of neurodegeneration, and ameliorates cognitive symptoms. TRIAD shares multiple features with senescence. These results discover the HMGB1-Ku70 axis that accounts for the increase of neuronal DNA damage and secondary enhancement of TRIAD, the cell death phenotype of senescence, in AD.
Collapse
|
31
|
Guzman RM, Howard ZP, Liu Z, Oliveira RD, Massa AT, Omsland A, White SN, Goodman AG. Natural genetic variation in Drosophila melanogaster reveals genes associated with Coxiella burnetii infection. Genetics 2021; 217:6117219. [PMID: 33789347 PMCID: PMC8045698 DOI: 10.1093/genetics/iyab005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/07/2021] [Indexed: 12/16/2022] Open
Abstract
The gram-negative bacterium Coxiella burnetii is the causative agent of Query (Q) fever in humans and coxiellosis in livestock. Host genetics are associated with C. burnetii pathogenesis both in humans and animals; however, it remains unknown if specific genes are associated with severity of infection. We employed the Drosophila Genetics Reference Panel to perform a genome-wide association study to identify host genetic variants that affect host survival to C. burnetii infection. The genome-wide association study identified 64 unique variants (P < 10−5) associated with 25 candidate genes. We examined the role each candidate gene contributes to host survival during C. burnetii infection using flies carrying a null mutation or RNAi knockdown of each candidate. We validated 15 of the 25 candidate genes using at least one method. This is the first report establishing involvement of many of these genes or their homologs with C. burnetii susceptibility in any system. Among the validated genes, FER and tara play roles in the JAK/STAT, JNK, and decapentaplegic/TGF-β signaling pathways which are components of known innate immune responses to C. burnetii infection. CG42673 and DIP-ε play roles in bacterial infection and synaptic signaling but have no previous association with C. burnetii pathogenesis. Furthermore, since the mammalian ortholog of CG13404 (PLGRKT) is an important regulator of macrophage function, CG13404 could play a role in host susceptibility to C. burnetii through hemocyte regulation. These insights provide a foundation for further investigation regarding the genetics of C. burnetii susceptibility across a wide variety of hosts.
Collapse
Affiliation(s)
- Rosa M Guzman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Zachary P Howard
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Ziying Liu
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Ryan D Oliveira
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Alisha T Massa
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Anders Omsland
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Stephen N White
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA.,USDA-ARS Animal Disease Research, Pullman, WA 99164, USA.,Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| | - Alan G Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA.,Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
32
|
Elsaey MA, Namikawa K, Köster RW. Genetic Modeling of the Neurodegenerative Disease Spinocerebellar Ataxia Type 1 in Zebrafish. Int J Mol Sci 2021; 22:7351. [PMID: 34298970 PMCID: PMC8306488 DOI: 10.3390/ijms22147351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 12/26/2022] Open
Abstract
Dominant spinocerebellar ataxias (SCAs) are progredient neurodegenerative diseases commonly affecting the survival of Purkinje cells (PCs) in the human cerebellum. Spinocerebellar ataxia type 1 (SCA1) is caused by the mutated ataxin1 (Atx1) gene product, in which a polyglutamine stretch encoded by CAG repeats is extended in affected SCA1 patients. As a monogenetic disease with the Atx1-polyQ protein exerting a gain of function, SCA1 can be genetically modelled in animals by cell type-specific overexpression. We have established a transgenic PC-specific SCA1 model in zebrafish coexpressing the fluorescent reporter protein mScarlet together with either human wild type Atx1[30Q] as control or SCA1 patient-derived Atx1[82Q]. SCA1 zebrafish display an age-dependent PC degeneration starting at larval stages around six weeks postfertilization, which continuously progresses during further juvenile and young adult stages. Interestingly, PC degeneration is observed more severely in rostral than in caudal regions of the PC population. Although such a neuropathology resulted in no gross locomotor control deficits, SCA1-fish with advanced PC loss display a reduced exploratory behaviour. In vivo imaging in this SCA1 model may help to better understand such patterned PC death known from PC neurodegeneration diseases, to elucidate disease mechanisms and to provide access to neuroprotective compound characterization in vivo.
Collapse
Affiliation(s)
- Mohamed A. Elsaey
- Division of Cellular & Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany;
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Kazuhiko Namikawa
- Division of Cellular & Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany;
| | - Reinhard W. Köster
- Division of Cellular & Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany;
| |
Collapse
|
33
|
Byrns CN, Saikumar J, Bonini NM. Glial AP1 is activated with aging and accelerated by traumatic brain injury. NATURE AGING 2021; 1:585-597. [PMID: 34723199 PMCID: PMC8553014 DOI: 10.1038/s43587-021-00072-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/30/2021] [Indexed: 01/05/2023]
Abstract
The emergence of degenerative disease after traumatic brain injury is often described as an acceleration of normal age-related processes. Whether similar molecular processes occur after injury and in age is unclear. Here we identify a functionally dynamic and lasting transcriptional response in glia, mediated by the conserved transcription factor AP1. In the early post-TBI period, glial AP1 is essential for recovery, ensuring brain integrity and animal survival. In sharp contrast, chronic AP1 activation promotes human tau pathology, tissue loss, and mortality. We show a similar process activates in healthy fly brains with age. In humans, AP1 activity is detected after moderate TBI and correlates with microglial activation and tau pathology. Our data provide key molecular insight into glia, highlighting that the same molecular process drives dynamic and contradictory glia behavior in TBI, and possibly age, first acting to protect but chronically promoting disease.
Collapse
Affiliation(s)
- China N Byrns
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Janani Saikumar
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nancy M Bonini
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
34
|
Zwaka TP, Skowronska M, Richman R, Dejosez M. Ronin overexpression induces cerebellar degeneration in a mouse model of ataxia. Dis Model Mech 2021; 14:269269. [PMID: 34165550 PMCID: PMC8246265 DOI: 10.1242/dmm.044834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/18/2021] [Indexed: 11/26/2022] Open
Abstract
Spinocerebellar ataxias (SCAs) are a group of genetically heterogeneous inherited neurodegenerative disorders characterized by progressive ataxia and cerebellar degeneration. Here, we used a mouse model to test a possible connection between SCA and Ronin (Thap11), a polyglutamine-containing transcriptional regulator encoded in a region of human chromosome 16q22.1 that has been genetically linked to SCA type 4. We report that transgenic expression of Ronin in mouse cerebellar Purkinje cells leads to detrimental loss of these cells and the development of severe ataxia as early as 10 weeks after birth. Mechanistically, we find that several SCA-causing genes harbor Ronin DNA-binding motifs and are transcriptionally deregulated in transgenic animals. In addition, ectopic expression of Ronin in embryonic stem cells significantly increases the protein level of Ataxin-1, the protein encoded by Atxn1, alterations of which cause SCA type 1. This increase is also seen in the cerebellum of transgenic animals, although the latter was not statistically significant. Hence, our data provide evidence for a link between Ronin and SCAs, and suggest that Ronin may be involved in the development of other neurodegenerative diseases. Summary: Ronin is a polyglutamine protein encoded in a region of human chromosome 16q22.1 linked to spinocerebellar ataxia type 4. Overexpression of Ronin in mouse cerebellar Purkinje cells leads to their loss and ataxia.
Collapse
Affiliation(s)
- Thomas P Zwaka
- Department for Cell, Regenerative and Developmental Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Huffington Center for Cell-Based Research in Parkinson's Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marta Skowronska
- Department for Cell, Regenerative and Developmental Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Huffington Center for Cell-Based Research in Parkinson's Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ronald Richman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Marion Dejosez
- Department for Cell, Regenerative and Developmental Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Huffington Center for Cell-Based Research in Parkinson's Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
35
|
Himalian R, Singh SK, Singh MP. Ameliorative Role of Nutraceuticals on Neurodegenerative Diseases Using the Drosophila melanogaster as a Discovery Model to Define Bioefficacy. J Am Coll Nutr 2021; 41:511-539. [PMID: 34125661 DOI: 10.1080/07315724.2021.1904305] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Neurodegeneration is the destruction of neurons, and once the neurons degenerate they can't revive. This is one of the most concerned health conditions among aged population, more than ∼70% of the elderly people are suffering from neurodegeneration. Among all of the neurodegenerative diseases, Alzheimer's disease (AD), Parkinson's disease (PD) and Poly-glutamine disease (Poly-Q) are the major one and affecting most of the people around the world and posing excessive burden on the society. In order to understand this disease in non-human animal models it is pertinent to examine in model organism and various animal model are being used for such diseases like rat, mice and non-vertebrate model like Drosophila. Drosophila melanogaster is one of the best animal proven by several eminent scientist and had received several Nobel prizes for uncovering mechanism of human related genes and highly efficient model for studying neurodegenerative diseases due to its great affinity with human disease-related genes. Another factor is also employed to act as therapeutic or preventive method that is nutraceuticals. Nutraceuticals are functional natural compounds with antioxidant properties and had extensively showed the neuroprotective effect in different organisms. These nutraceuticals having antioxidant properties act through scavenging free radicals or by increasing endogenous cellular antioxidant defense molecules. For the best benefit, we are trying to utilize these nutraceuticals, which will have no or negligible side effects. In this review, we are dealing with various types of such nutraceuticals which have potent value in the prevention and curing of the diseases related to neurodegeneration.HighlightsNeurodegeneration is the silently progressing disease which shows its symptoms when it is well rooted.Many chemical drugs (almost all) have only symptomatic relief with side effects.Potent mechanism of neurodegeneration and improvement effect by nutraceuticals is proposed.Based on the Indian Cuisine scientists are trying to find the medicine from the food or food components having antioxidant properties.The best model to study the neurodegenerative diseases is Drosophila melanogaster.Many nutraceuticals having antioxidant properties have been studied and attenuated various diseases are discussed.
Collapse
Affiliation(s)
- Ranjana Himalian
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology (ISET) Foundation, Lucknow, India
| | - Mahendra Pratap Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
36
|
Sokpor G, Xie Y, Nguyen HP, Tuoc T. Emerging Role of m 6 A Methylome in Brain Development: Implications for Neurological Disorders and Potential Treatment. Front Cell Dev Biol 2021; 9:656849. [PMID: 34095121 PMCID: PMC8170044 DOI: 10.3389/fcell.2021.656849] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/07/2021] [Indexed: 12/22/2022] Open
Abstract
Dynamic modification of RNA affords proximal regulation of gene expression triggered by non-genomic or environmental changes. One such epitranscriptomic alteration in RNA metabolism is the installation of a methyl group on adenosine [N6-methyladenosine (m6A)] known to be the most prevalent modified state of messenger RNA (mRNA) in the mammalian cell. The methylation machinery responsible for the dynamic deposition and recognition of m6A on mRNA is composed of subunits that play specific roles, including reading, writing, and erasing of m6A marks on mRNA to influence gene expression. As a result, peculiar cellular perturbations have been linked to dysregulation of components of the mRNA methylation machinery or its cofactors. It is increasingly clear that neural tissues/cells, especially in the brain, make the most of m6A modification in maintaining normal morphology and function. Neurons in particular display dynamic distribution of m6A marks during development and in adulthood. Interestingly, such dynamic m6A patterns are responsive to external cues and experience. Specific disturbances in the neural m6A landscape lead to anomalous phenotypes, including aberrant stem/progenitor cell proliferation and differentiation, defective cell fate choices, and abnormal synaptogenesis. Such m6A-linked neural perturbations may singularly or together have implications for syndromic or non-syndromic neurological diseases, given that most RNAs in the brain are enriched with m6A tags. Here, we review the current perspectives on the m6A machinery and function, its role in brain development and possible association with brain disorders, and the prospects of applying the clustered regularly interspaced short palindromic repeats (CRISPR)–dCas13b system to obviate m6A-related neurological anomalies.
Collapse
Affiliation(s)
- Godwin Sokpor
- Department of Human Genetics, Ruhr University of Bochum, Bochum, Germany
| | - Yuanbin Xie
- Department of Biochemistry and Molecular Biology, Gannan Medical University, Ganzhou, China
| | - Huu P Nguyen
- Department of Human Genetics, Ruhr University of Bochum, Bochum, Germany
| | - Tran Tuoc
- Department of Human Genetics, Ruhr University of Bochum, Bochum, Germany
| |
Collapse
|
37
|
RACK1 modulates polyglutamine-induced neurodegeneration by promoting ERK degradation in Drosophila. PLoS Genet 2021; 17:e1009558. [PMID: 33983927 PMCID: PMC8118270 DOI: 10.1371/journal.pgen.1009558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/20/2021] [Indexed: 11/19/2022] Open
Abstract
Polyglutamine diseases are neurodegenerative diseases caused by the expansion of polyglutamine (polyQ) tracts within different proteins. Although multiple pathways have been found to modulate aggregation of the expanded polyQ proteins, the mechanisms by which polyQ tracts induced neuronal cell death remain unknown. We conducted a genome-wide genetic screen to identify genes that suppress polyQ-induced neurodegeneration when mutated. Loss of the scaffold protein RACK1 alleviated cell death associated with the expression of polyQ tracts alone, as well as in models of Machado-Joseph disease (MJD) and Huntington's disease (HD), without affecting proteostasis of polyQ proteins. A genome-wide RNAi screen for modifiers of this rack1 suppression phenotype revealed that knockdown of the E3 ubiquitin ligase, POE (Purity of essence), further suppressed polyQ-induced cell death, resulting in nearly wild-type looking eyes. Biochemical analyses demonstrated that RACK1 interacts with POE and ERK to promote ERK degradation. These results suggest that RACK1 plays a key role in polyQ pathogenesis by promoting POE-dependent degradation of ERK, and implicate RACK1/POE/ERK as potent drug targets for treatment of polyQ diseases.
Collapse
|
38
|
Intrinsically disordered Meningioma-1 stabilizes the BAF complex to cause AML. Mol Cell 2021; 81:2332-2348.e9. [PMID: 33974912 DOI: 10.1016/j.molcel.2021.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/05/2021] [Accepted: 04/15/2021] [Indexed: 02/07/2023]
Abstract
Meningioma-1 (MN1) overexpression in AML is associated with poor prognosis, and forced expression of MN1 induces leukemia in mice. We sought to determine how MN1 causes AML. We found that overexpression of MN1 can be induced by translocations that result in hijacking of a downstream enhancer. Structure predictions revealed that the entire MN1 coding frame is disordered. We identified the myeloid progenitor-specific BAF complex as the key interaction partner of MN1. MN1 over-stabilizes BAF on enhancer chromatin, a function directly linked to the presence of a long polyQ-stretch within MN1. BAF over-stabilization at binding sites of transcription factors regulating a hematopoietic stem/progenitor program prevents the developmentally appropriate decommissioning of these enhancers and results in impaired myeloid differentiation and leukemia. Beyond AML, our data detail how the overexpression of a polyQ protein, in the absence of any coding sequence mutation, can be sufficient to cause malignant transformation.
Collapse
|
39
|
Li S, Datta S, Brabbit E, Love Z, Woytowicz V, Flattery K, Capri J, Yao K, Wu S, Imboden M, Upadhyay A, Arumugham R, Thoreson WB, DeAngelis MM, Haider NB. Nr2e3 is a genetic modifier that rescues retinal degeneration and promotes homeostasis in multiple models of retinitis pigmentosa. Gene Ther 2021; 28:223-241. [PMID: 32123325 PMCID: PMC7483267 DOI: 10.1038/s41434-020-0134-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 02/05/2020] [Accepted: 02/18/2020] [Indexed: 12/21/2022]
Abstract
Recent advances in viral vector engineering, as well as an increased understanding of the cellular and molecular mechanism of retinal diseases, have led to the development of novel gene therapy approaches. Furthermore, ease of accessibility and ocular immune privilege makes the retina an ideal target for gene therapies. In this study, the nuclear hormone receptor gene Nr2e3 was evaluated for efficacy as broad-spectrum therapy to attenuate early to intermediate stages of retinal degeneration in five unique mouse models of retinitis pigmentosa (RP). RP is a group of heterogenic inherited retinal diseases associated with over 150 gene mutations, affecting over 1.5 million individuals worldwide. RP varies in age of onset, severity, and rate of progression. In addition, ~40% of RP patients cannot be genetically diagnosed, confounding the ability to develop personalized RP therapies. Remarkably, Nr2e3 administered therapy resulted in reduced retinal degeneration as observed by increase in photoreceptor cells, improved electroretinogram, and a dramatic molecular reset of key transcription factors and associated gene networks. These therapeutic effects improved retinal homeostasis in diseased tissue. Results of this study provide evidence that Nr2e3 can serve as a broad-spectrum therapy to treat multiple forms of RP.
Collapse
Affiliation(s)
- Sujun Li
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Shyamtanu Datta
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Emily Brabbit
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Zoe Love
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Victoria Woytowicz
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Kyle Flattery
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Jessica Capri
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Katie Yao
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Siqi Wu
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | | | | | | | - Wallace B Thoreson
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Neena B Haider
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
40
|
Onur TS, Laitman A, Zhao H, Keyho R, Kim H, Wang J, Mair M, Wang H, Li L, Perez A, de Haro M, Wan YW, Allen G, Lu B, Al-Ramahi I, Liu Z, Botas J. Downregulation of glial genes involved in synaptic function mitigates Huntington's disease pathogenesis. eLife 2021; 10:64564. [PMID: 33871358 PMCID: PMC8149125 DOI: 10.7554/elife.64564] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/19/2021] [Indexed: 01/01/2023] Open
Abstract
Most research on neurodegenerative diseases has focused on neurons, yet glia help form and maintain the synapses whose loss is so prominent in these conditions. To investigate the contributions of glia to Huntington's disease (HD), we profiled the gene expression alterations of Drosophila expressing human mutant Huntingtin (mHTT) in either glia or neurons and compared these changes to what is observed in HD human and HD mice striata. A large portion of conserved genes are concordantly dysregulated across the three species; we tested these genes in a high-throughput behavioral assay and found that downregulation of genes involved in synapse assembly mitigated pathogenesis and behavioral deficits. To our surprise, reducing dNRXN3 function in glia was sufficient to improve the phenotype of flies expressing mHTT in neurons, suggesting that mHTT's toxic effects in glia ramify throughout the brain. This supports a model in which dampening synaptic function is protective because it attenuates the excitotoxicity that characterizes HD. When a neuron dies, through injury or disease, the body loses all communication that passes through it. The brain compensates by rerouting the flow of information through other neurons in the network. Eventually, if the loss of neurons becomes too great, compensation becomes impossible. This process happens in Alzheimer's, Parkinson's, and Huntington's disease. In the case of Huntington's disease, the cause is mutation to a single gene known as huntingtin. The mutation is present in every cell in the body but causes particular damage to parts of the brain involved in mood, thinking and movement. Neurons and other cells respond to mutations in the huntingtin gene by turning the activities of other genes up or down, but it is not clear whether all of these changes contribute to the damage seen in Huntington's disease. In fact, it is possible that some of the changes are a result of the brain trying to protect itself. So far, most research on this subject has focused on neurons because the huntingtin gene plays a role in maintaining healthy neuronal connections. But, given that all cells carry the mutated gene, it is likely that other cells are also involved. The glia are a diverse group of cells that support the brain, providing care and sustenance to neurons. These cells have a known role in maintaining the connections between neurons and may also have play a role in either causing or correcting the damage seen in Huntington's disease. The aim of Onur et al. was to find out which genes are affected by having a mutant huntingtin gene in neurons or glia, and whether severity of Huntington’s disease improved or worsened when the activity of these genes changed. First, Onur et al. identified genes affected by mutant huntingtin by comparing healthy human brains to the brains of people with Huntington's disease. Repeating the same comparison in mice and fruit flies identified genes affected in the same way across all three species, revealing that, in Huntington's disease, the brain dials down glial cell genes involved in maintaining neuronal connections. To find out how these changes in gene activity affect disease severity and progression, Onur et al. manipulated the activity of each of the genes they had identified in fruit flies that carried mutant versions of huntingtin either in neurons, in glial cells or in both cell types. They then filmed the flies to see the effects of the manipulation on movement behaviors, which are affected by Huntington’s disease. This revealed that purposely lowering the activity of the glial genes involved in maintaining connections between neurons improved the symptoms of the disease, but only in flies who had mutant huntingtin in their glial cells. This indicates that the drop in activity of these genes observed in Huntington’s disease is the brain trying to protect itself. This work suggests that it is important to include glial cells in studies of neurological disorders. It also highlights the fact that changes in gene expression as a result of a disease are not always bad. Many alterations are compensatory, and try to either make up for or protect cells affected by the disease. Therefore, it may be important to consider whether drugs designed to treat a condition by changing levels of gene activity might undo some of the body's natural protection. Working out which changes drive disease and which changes are protective will be essential for designing effective treatments.
Collapse
Affiliation(s)
- Tarik Seref Onur
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States.,Genetics & Genomics Graduate Program, Baylor College of Medicine, Houston, United States
| | - Andrew Laitman
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States.,Quantitative & Computational Biosciences, Baylor College of Medicine, Houston, United States.,Department of Pediatrics, Baylor College of Medicine, Houston, United States
| | - He Zhao
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
| | - Ryan Keyho
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
| | - Hyemin Kim
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
| | - Jennifer Wang
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
| | - Megan Mair
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States.,Genetics & Genomics Graduate Program, Baylor College of Medicine, Houston, United States
| | - Huilan Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Lifang Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
| | - Alma Perez
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
| | - Maria de Haro
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
| | - Ying-Wooi Wan
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
| | - Genevera Allen
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States.,Departments of Electrical & Computer Engineering, Statistics and Computer Science, Rice University, Houston, United States
| | - Boxun Lu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Ismael Al-Ramahi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
| | - Zhandong Liu
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States.,Quantitative & Computational Biosciences, Baylor College of Medicine, Houston, United States.,Department of Pediatrics, Baylor College of Medicine, Houston, United States
| | - Juan Botas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States.,Genetics & Genomics Graduate Program, Baylor College of Medicine, Houston, United States.,Quantitative & Computational Biosciences, Baylor College of Medicine, Houston, United States
| |
Collapse
|
41
|
Suart CE, Perez AM, Al-Ramahi I, Maiuri T, Botas J, Truant R. Spinocerebellar Ataxia Type 1 protein Ataxin-1 is signaled to DNA damage by ataxia-telangiectasia mutated kinase. Hum Mol Genet 2021; 30:706-715. [PMID: 33772540 DOI: 10.1093/hmg/ddab074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/10/2021] [Accepted: 03/05/2021] [Indexed: 01/16/2023] Open
Abstract
Spinocerebellar Ataxia Type 1 (SCA1) is an autosomal dominant neurodegenerative disorder caused by a polyglutamine expansion in the ataxin-1 protein. Recent genetic correlational studies have implicated DNA damage repair pathways in modifying the age at onset of disease symptoms in SCA1 and Huntington's Disease, another polyglutamine expansion disease. We demonstrate that both endogenous and transfected ataxin-1 localizes to sites of DNA damage, which is impaired by polyglutamine expansion. This response is dependent on ataxia-telangiectasia mutated (ATM) kinase activity. Further, we characterize an ATM phosphorylation motif within ataxin-1 at serine 188. We show reduction of the Drosophila ATM homolog levels in a ATXN1[82Q] Drosophila model through shRNA or genetic cross ameliorates motor symptoms. These findings offer a possible explanation as to why DNA repair was implicated in SCA1 pathogenesis by past studies. The similarities between the ataxin-1 and the huntingtin responses to DNA damage provide further support for a shared pathogenic mechanism for polyglutamine expansion diseases.
Collapse
Affiliation(s)
- Celeste E Suart
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Alma M Perez
- Department of Molecular and Human Genetics, Department of Molecular and Cellular Biology, Jan and Dan Duncan Neurological Research Institute, Houston, TX, USA
| | - Ismael Al-Ramahi
- Department of Molecular and Human Genetics, Department of Molecular and Cellular Biology, Jan and Dan Duncan Neurological Research Institute, Houston, TX, USA
| | - Tamara Maiuri
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Juan Botas
- Department of Molecular and Human Genetics, Department of Molecular and Cellular Biology, Jan and Dan Duncan Neurological Research Institute, Houston, TX, USA
| | - Ray Truant
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
42
|
Lee WS, Lavery L, Rousseaux MWC, Rutledge EB, Jang Y, Wan YW, Wu SR, Kim W, Al-Ramahi I, Rath S, Adamski CJ, Bondar VV, Tewari A, Soleimani S, Mota S, Yalamanchili HK, Orr HT, Liu Z, Botas J, Zoghbi HY. Dual targeting of brain region-specific kinases potentiates neurological rescue in Spinocerebellar ataxia type 1. EMBO J 2021; 40:e106106. [PMID: 33709453 DOI: 10.15252/embj.2020106106] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 02/01/2021] [Accepted: 02/10/2021] [Indexed: 12/26/2022] Open
Abstract
A critical question in neurodegeneration is why the accumulation of disease-driving proteins causes selective neuronal loss despite their brain-wide expression. In Spinocerebellar ataxia type 1 (SCA1), accumulation of polyglutamine-expanded Ataxin-1 (ATXN1) causes selective degeneration of cerebellar and brainstem neurons. Previous studies revealed that inhibiting Msk1 reduces phosphorylation of ATXN1 at S776 as well as its levels leading to improved cerebellar function. However, there are no regulators that modulate ATXN1 in the brainstem-the brain region whose pathology is most closely linked to premature death. To identify new regulators of ATXN1, we performed genetic screens and identified a transcription factor-kinase axis (ZBTB7B-RSK3) that regulates ATXN1 levels. Unlike MSK1, RSK3 is highly expressed in the human and mouse brainstems where it regulates Atxn1 by phosphorylating S776. Reducing Rsk3 rescues brainstem-associated pathologies and deficits, and lowering Rsk3 and Msk1 together improves cerebellar and brainstem function in an SCA1 mouse model. Our results demonstrate that selective vulnerability of brain regions in SCA1 is governed by region-specific regulators of ATXN1, and targeting multiple regulators could rescue multiple degenerating brain areas.
Collapse
Affiliation(s)
- Won-Seok Lee
- Integrative Molecular and Biomedical Science Program, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Laura Lavery
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Maxime W C Rousseaux
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Eric B Rutledge
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.,Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Youjin Jang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Ying-Wooi Wan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Sih-Rong Wu
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Wonho Kim
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.,Howard Hughes Medical Institute, Houston, TX, USA
| | - Ismael Al-Ramahi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Smruti Rath
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Carolyn J Adamski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.,Howard Hughes Medical Institute, Houston, TX, USA
| | - Vitaliy V Bondar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Ambika Tewari
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Shirin Soleimani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Samantha Mota
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Hari K Yalamanchili
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.,Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Harry T Orr
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Zhandong Liu
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.,Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Juan Botas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Huda Y Zoghbi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.,Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA.,Howard Hughes Medical Institute, Houston, TX, USA
| |
Collapse
|
43
|
Deubiquitylating enzymes in neuronal health and disease. Cell Death Dis 2021; 12:120. [PMID: 33483467 PMCID: PMC7822931 DOI: 10.1038/s41419-020-03361-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022]
Abstract
Ubiquitylation and deubiquitylation play a pivotal role in protein homeostasis (proteostasis). Proteostasis shapes the proteome landscape in the human brain and its impairment is linked to neurodevelopmental and neurodegenerative disorders. Here we discuss the emerging roles of deubiquitylating enzymes in neuronal function and survival. We provide an updated perspective on the genetics, physiology, structure, and function of deubiquitylases in neuronal health and disease. ![]()
Collapse
|
44
|
Schieweck R, Ninkovic J, Kiebler MA. RNA-binding proteins balance brain function in health and disease. Physiol Rev 2020; 101:1309-1370. [PMID: 33000986 DOI: 10.1152/physrev.00047.2019] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Posttranscriptional gene expression including splicing, RNA transport, translation, and RNA decay provides an important regulatory layer in many if not all molecular pathways. Research in the last decades has positioned RNA-binding proteins (RBPs) right in the center of posttranscriptional gene regulation. Here, we propose interdependent networks of RBPs to regulate complex pathways within the central nervous system (CNS). These are involved in multiple aspects of neuronal development and functioning, including higher cognition. Therefore, it is not sufficient to unravel the individual contribution of a single RBP and its consequences but rather to study and understand the tight interplay between different RBPs. In this review, we summarize recent findings in the field of RBP biology and discuss the complex interplay between different RBPs. Second, we emphasize the underlying dynamics within an RBP network and how this might regulate key processes such as neurogenesis, synaptic transmission, and synaptic plasticity. Importantly, we envision that dysfunction of specific RBPs could lead to perturbation within the RBP network. This would have direct and indirect (compensatory) effects in mRNA binding and translational control leading to global changes in cellular expression programs in general and in synaptic plasticity in particular. Therefore, we focus on RBP dysfunction and how this might cause neuropsychiatric and neurodegenerative disorders. Based on recent findings, we propose that alterations in the entire regulatory RBP network might account for phenotypic dysfunctions observed in complex diseases including neurodegeneration, epilepsy, and autism spectrum disorders.
Collapse
Affiliation(s)
- Rico Schieweck
- Biomedical Center (BMC), Department for Cell Biology and Anatomy, Medical Faculty, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| | - Jovica Ninkovic
- Biomedical Center (BMC), Department for Cell Biology and Anatomy, Medical Faculty, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| | - Michael A Kiebler
- Biomedical Center (BMC), Department for Cell Biology and Anatomy, Medical Faculty, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| |
Collapse
|
45
|
Dermentzaki G, Lotti F. New Insights on the Role of N 6-Methyladenosine RNA Methylation in the Physiology and Pathology of the Nervous System. Front Mol Biosci 2020; 7:555372. [PMID: 32984403 PMCID: PMC7492240 DOI: 10.3389/fmolb.2020.555372] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/12/2020] [Indexed: 12/21/2022] Open
Abstract
RNA modifications termed epitranscriptomics represent an additional layer of gene regulation similar to epigenetic mechanisms operating on DNA. The dynamic nature and the increasing number of RNA modifications offer new opportunities for a rapid fine-tuning of gene expression in response to specific environmental cues. In cooperation with a diverse and versatile set of effector proteins that "recognize" them, these RNA modifications have the ability to mediate and control diverse fundamental cellular functions, such as pre-mRNA splicing, nuclear export, stability, and translation. N 6-methyladenosine (m6A) is the most abundant of these RNA modifications, particularly in the nervous system, where recent studies have highlighted it as an important post-transcriptional regulator of physiological functions from development to synaptic plasticity, learning and memory. Here we review recent findings surrounding the role of m6A modification in regulating physiological responses of the mammalian nervous system and we discuss its emerging role in pathological conditions such as neuropsychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Georgia Dermentzaki
- Center for Motor Neuron Biology and Disease, Department of Pathology and Cell Biology, Columbia University, New York City, NY, United States
- Department of Neurology, Columbia University, New York City, NY, United States
| | - Francesco Lotti
- Center for Motor Neuron Biology and Disease, Department of Pathology and Cell Biology, Columbia University, New York City, NY, United States
- Department of Neurology, Columbia University, New York City, NY, United States
| |
Collapse
|
46
|
Soo SK, Rudich PD, Traa A, Harris-Gauthier N, Shields HJ, Van Raamsdonk JM. Compounds that extend longevity are protective in neurodegenerative diseases and provide a novel treatment strategy for these devastating disorders. Mech Ageing Dev 2020; 190:111297. [PMID: 32610099 PMCID: PMC7484136 DOI: 10.1016/j.mad.2020.111297] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022]
Abstract
While aging is the greatest risk factor for the development of neurodegenerative disease, the role of aging in these diseases is poorly understood. In the inherited forms of these diseases, the disease-causing mutation is present from birth but symptoms appear decades later. This indicates that these mutations are well tolerated in younger individuals but not in older adults. Based on this observation, we hypothesized that changes taking place during normal aging make the cells in the brain (and elsewhere) susceptible to the disease-causing mutations. If so, then delaying some of these age-related changes may be beneficial in the treatment of neurodegenerative disease. In this review, we examine the effects of five compounds that have been shown to extend longevity (metformin, rapamycin, resveratrol, N-acetyl-l-cysteine, curcumin) in four of the most common neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis). While not all investigations observe a beneficial effect of these compounds, there are multiple studies that show a protective effect of each of these lifespan-extending compounds in animal models of neurodegenerative disease. Combined with genetic studies, this suggests the possibility that targeting the aging process may be an effective strategy to treat neurodegenerative disease.
Collapse
Affiliation(s)
- Sonja K Soo
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Paige D Rudich
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Annika Traa
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Namasthée Harris-Gauthier
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Hazel J Shields
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Jeremy M Van Raamsdonk
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada; Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, H4A 3J1, Canada; Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
47
|
Park JY, Joo K, Woo SJ. Ophthalmic Manifestations and Genetics of the Polyglutamine Autosomal Dominant Spinocerebellar Ataxias: A Review. Front Neurosci 2020; 14:892. [PMID: 32973440 PMCID: PMC7472957 DOI: 10.3389/fnins.2020.00892] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/30/2020] [Indexed: 12/20/2022] Open
Abstract
Spinocerebellar ataxia (SCA) is a part of the cerebellar neurodegenerative disease group that is diverse in genetics and phenotypes. It usually shows autosomal dominant inheritance. SCAs, always together with the cerebellar degeneration, may exhibit clinical deficits in brainstem or eye, especially retina or optic nerve. Interestingly, autosomal dominant SCAs share a common genetic mechanism; the length of the glutamine chain is abnormally expanded due to the increase in the cytosine–adenine–guanine (CAG) repeats of the disease causing gene. Studies have suggested that the mutant ataxin induces alteration of protein conformation and abnormal aggregation resulting in nuclear inclusions, and causes cellular loss of photoreceptors through a toxic effect. As a result, these pathologic changes induce a downregulation of genes involved in the phototransduction, development, and differentiation of photoreceptors such as CRX, one of the photoreceptor transcription factors. However, the exact mechanism of neuronal degeneration by mutant ataxin restricted to only certain type of neuronal cell including cerebellar Purkinje neurons and photoreceptor is still unclear. The most common SCAs are types 1, 2, 3, 6, 7, and 17 which contain about 80% of autosomal dominant SCA cases. Various aspects of eye movement abnormalities are evident depending on the degree of cerebellar and brainstem degeneration in SCAs. In addition, certain types of SCAs such as SCA7 are characterized by both cerebellar ataxia and visual loss mainly due to retinal degeneration. The severity of the retinopathy can vary from occult macular photoreceptor disruption to extensive retinal atrophy and is correlated with the number of CAG repeats. The value of using optical coherence tomography in conjunction with electrodiagnostic and genetic testing is emphasized as the combination of these tests can provide critical information regarding the etiology, morphological evaluation, and functional significances. Therefore, ophthalmologists need to recognize and differentiate SCAs in order to properly diagnose and evaluate the disease. In this review, we have described and discussed SCAs showing ophthalmic abnormalities with particular attention to their ophthalmic features, neurodegenerative mechanisms, genetics, and future perspectives.
Collapse
Affiliation(s)
- Jun Young Park
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Kwangsic Joo
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Se Joon Woo
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
48
|
Zhang S, Williamson NA, Duvick L, Lee A, Orr HT, Korlin-Downs A, Yang P, Mok YF, Jans DA, Bogoyevitch MA. The ataxin-1 interactome reveals direct connection with multiple disrupted nuclear transport pathways. Nat Commun 2020; 11:3343. [PMID: 32620905 PMCID: PMC7334205 DOI: 10.1038/s41467-020-17145-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 06/09/2020] [Indexed: 11/21/2022] Open
Abstract
The expanded polyglutamine (polyQ) tract form of ataxin-1 drives disease progression in spinocerebellar ataxia type 1 (SCA1). Although known to form distinctive intranuclear bodies, the cellular pathways and processes that polyQ-ataxin-1 influences remain poorly understood. Here we identify the direct and proximal partners constituting the interactome of ataxin-1[85Q] in Neuro-2a cells, pathways analyses indicating a significant enrichment of essential nuclear transporters, pointing to disruptions in nuclear transport processes in the presence of elevated levels of ataxin-1. Our direct assessments of nuclear transporters and their cargoes confirm these observations, revealing disrupted trafficking often with relocalisation of transporters and/or cargoes to ataxin-1[85Q] nuclear bodies. Analogous changes in importin-β1, nucleoporin 98 and nucleoporin 62 nuclear rim staining are observed in Purkinje cells of ATXN1[82Q] mice. The results highlight a disruption of multiple essential nuclear protein trafficking pathways by polyQ-ataxin-1, a key contribution to furthering understanding of pathogenic mechanisms initiated by polyQ tract proteins.
Collapse
Affiliation(s)
- Sunyuan Zhang
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Nicholas A Williamson
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Lisa Duvick
- Institute of Translational Neuroscience, and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Alexander Lee
- Nuclear Signalling Lab., Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Harry T Orr
- Institute of Translational Neuroscience, and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Austin Korlin-Downs
- Institute of Translational Neuroscience, and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Praseuth Yang
- Institute of Translational Neuroscience, and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Yee-Foong Mok
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - David A Jans
- Nuclear Signalling Lab., Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia.
| | - Marie A Bogoyevitch
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
49
|
Diez-Hermano S, Ganfornina MD, Vegas-Lozano E, Sanchez D. Machine Learning Representation of Loss of Eye Regularity in a Drosophila Neurodegenerative Model. Front Neurosci 2020; 14:516. [PMID: 32581679 PMCID: PMC7287026 DOI: 10.3389/fnins.2020.00516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
The fruit fly compound eye is a premier experimental system for modeling human neurodegenerative diseases. The disruption of the retinal geometry has been historically assessed using time-consuming and poorly reliable techniques such as histology or pseudopupil manual counting. Recent semiautomated quantification approaches rely either on manual region-of-interest delimitation or engineered features to estimate the extent of degeneration. This work presents a fully automated classification pipeline of bright-field images based on orientated gradient descriptors and machine learning techniques. An initial region-of-interest extraction is performed, applying morphological kernels and Euclidean distance-to-centroid thresholding. Image classification algorithms are trained on these regions (support vector machine, decision trees, random forest, and convolutional neural network), and their performance is evaluated on independent, unseen datasets. The combinations of oriented gradient + gaussian kernel Support Vector Machine [0.97 accuracy and 0.98 area under the curve (AUC)] and fine-tuned pre-trained convolutional neural network (0.98 accuracy and 0.99 AUC) yielded the best results overall. The proposed method provides a robust quantification framework that can be generalized to address the loss of regularity in biological patterns similar to the Drosophila eye surface and speeds up the processing of large sample batches.
Collapse
Affiliation(s)
- Sergio Diez-Hermano
- Instituto de Biologia y Genetica Molecular-Departamento de Bioquimica y Biologia Molecular y Fisiologia, Universidad de Valladolid-CSIC, Valladolid, Spain.,Departamento de Biodiversidad, Ecologia y Evolucion, Unidad de Biomatematicas, Universidad Complutense, Madrid, Spain
| | - Maria D Ganfornina
- Instituto de Biologia y Genetica Molecular-Departamento de Bioquimica y Biologia Molecular y Fisiologia, Universidad de Valladolid-CSIC, Valladolid, Spain
| | - Esteban Vegas-Lozano
- Departamento de Genetica, Microbiologia y Estadistica, Universidad de Barcelona, Barcelona, Spain
| | - Diego Sanchez
- Instituto de Biologia y Genetica Molecular-Departamento de Bioquimica y Biologia Molecular y Fisiologia, Universidad de Valladolid-CSIC, Valladolid, Spain
| |
Collapse
|
50
|
Oertel FC, Zeitz O, Rönnefarth M, Bereuter C, Motamedi S, Zimmermann HG, Kuchling J, Grosch AS, Doss S, Browne A, Paul F, Schmitz-Hübsch T, Brandt AU. Functionally Relevant Maculopathy and Optic Atrophy in Spinocerebellar Ataxia Type 1. Mov Disord Clin Pract 2020; 7:502-508. [PMID: 32626794 PMCID: PMC7328427 DOI: 10.1002/mdc3.12949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/19/2020] [Accepted: 03/08/2020] [Indexed: 12/16/2022] Open
Abstract
Background Spinocerebellar ataxia type 1 (SCA-ATXN1) is an inherited progressive ataxia disorder characterized by an adult-onset cerebellar syndrome combined with nonataxia signs. Retinal or optic nerve affection are not systematically described. Objectives To describe a retinal phenotype and its functional relevance in SCA-ATXN1. Methods We applied optical coherence tomography (OCT) in 20 index cases with SCA-ATXN1 and 22 healthy controls (HCs), investigating qualitative changes and quantifying the peripapillary retinal nerve fiber layer (pRNFL) thickness and combined ganglion cell and inner plexiform layer (GCIP) volume as markers of optic atrophy and outer retinal layers as markers of maculopathy. Visual function was assessed by high- (HC-VA) and low-contrast visual acuity (LC-VA) and the Hardy-Rand-Rittler pseudoisochromatic test for color vision. Results Five patients (25%) showed distinct maculopathies in the ellipsoid zone (EZ). Furthermore, pRNFL (P < 0.001) and GCIP (P = 0.002) were reduced in patients (pRNFL, 80.86 ± 9.49 μm; GCIP, 1.84 ± 0.16 mm3) compared with HCs (pRNFL, 97.02 ± 8.34 μm; GCIP, 1.98 ± 0.12 mm3). Outer macular layers were similar between groups, but reduced in patients with maculopathies. HC-VA (P = 0.002) and LC-VA (P < 0.001) were reduced in patients (HC-VA [logMAR]: 0.01 ± 010; LC-VA [logMAR]: 0.44 ± 0.16) compared with HCs (HC-VA [logMAR]: -0.12 ± 0.08; LC-VA [logMAR]: 0.25 ± 0.05). Color vision was abnormal in 2 patients with maculopathies. Conclusions A distinct maculopathy, termed EZ disruption, as well as optic atrophy add to the known nonataxia features in SCA-ATXN1. Whereas optic atrophy may be understood as part of a widespread neurodegeneration, EZ disruption may be explained by effects of ataxin-1 gene or protein on photoreceptors. Our findings extend the spectrum of nonataxia signs in SCA-ATXN1 with potential relevance for diagnosis and monitoring.
Collapse
Affiliation(s)
- Frederike Cosima Oertel
- Experimental and Clinical Research Center, Max-Delbrück-Centrum für Molekulare Medizin and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany.,NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Oliver Zeitz
- Department of Ophthalmology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Maria Rönnefarth
- Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Charlotte Bereuter
- Experimental and Clinical Research Center, Max-Delbrück-Centrum für Molekulare Medizin and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany.,NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Seyedamirhosein Motamedi
- Experimental and Clinical Research Center, Max-Delbrück-Centrum für Molekulare Medizin and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany.,NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Hanna G Zimmermann
- Experimental and Clinical Research Center, Max-Delbrück-Centrum für Molekulare Medizin and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany.,NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Joseph Kuchling
- Experimental and Clinical Research Center, Max-Delbrück-Centrum für Molekulare Medizin and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany.,NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany.,Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Anne Sophie Grosch
- Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Sarah Doss
- Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany.,Department of Neurological Sciences University of Nebraska Medical Center Nebraska Omaha USA
| | - Andrew Browne
- Department of Ophthalmology University of California Irvine Irvine California USA
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max-Delbrück-Centrum für Molekulare Medizin and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany.,NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany.,Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Tanja Schmitz-Hübsch
- Experimental and Clinical Research Center, Max-Delbrück-Centrum für Molekulare Medizin and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany.,NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Alexander U Brandt
- Experimental and Clinical Research Center, Max-Delbrück-Centrum für Molekulare Medizin and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany.,NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany.,Department of Neurology University of California Irvine Irvine California USA
| |
Collapse
|