1
|
López-Alcalá D, Hu Z, Baldoví JJ. Graphendofullerene: a novel molecular two-dimensional ferromagnet. Chem Sci 2025; 16:7659-7666. [PMID: 40177315 PMCID: PMC11959406 DOI: 10.1039/d5sc01278c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 03/23/2025] [Indexed: 04/05/2025] Open
Abstract
Carbon chemistry has attracted a lot of attention from chemists, physicists and material scientists in the last few decades. The recent discovery of graphullerene provides a promising platform for many applications due to its exceptional electronic properties and the possibility to host molecules or clusters inside the fullerene units. Herein, we introduce graphendofullerene, a novel molecular-based two-dimensional (2D) magnetic material formed by trimetallic nitride clusters encapsulated on graphullerene. Through first-principles calculations, we demonstrate the successful incorporation of the molecules into the 2D network formed by C80 fullerenes, which leads to robust long-range ferromagnetic order with a Curie temperature (T C) of 38 K. Additionally, we achieve a 45% and 18% increase in T C by strain engineering and electrostatic doping, respectively. These findings open the way for a new family of molecular 2D magnets based on graphendofullerene for advanced technologies.
Collapse
Affiliation(s)
- Diego López-Alcalá
- Instituto de Ciencia Molecular, Universitat de València Catedrático José Beltrán 2 46980 Paterna Spain
| | - Ziqi Hu
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China Hefei 230026 China
| | - José J Baldoví
- Instituto de Ciencia Molecular, Universitat de València Catedrático José Beltrán 2 46980 Paterna Spain
| |
Collapse
|
2
|
Nie L, Sun Y, Wang Y. Computational insights into Diels-Alder reactions of paramagnetic endohedral metallofullerenes: M@C 82 (M = Sc, Y, La) and La@C 72. Phys Chem Chem Phys 2024; 26:25788-25797. [PMID: 39377172 DOI: 10.1039/d4cp02538e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
In fullerene chemistry, Diels-Alder cycloaddition is an essential reaction for exohedral modification of carbon cages. M@C2v(9)-C82 (M = Sc, Y, and La), incorporating one metal atom within the fullerene cage, are key compounds for understanding the impact of both endohedral and exohedral modifications on their electronic structures. In this work, the Diels-Alder (DA) cycloaddition of cyclopentadiene (Cp) to M@C2v(9)-C82 (M = Sc, Y, and La) and La@C2(10612)-C72 was systematically studied using density functional theory. The most reactive bonds were initially chosen for detailed mechanistic exploration, considering both concerted and stepwise mechanisms. Our findings revealed that DA cycloadditions for the three metals (Sc, Y, and La) consistently exhibit the same regioselectivity, favoring the concerted attack on the [5,6] bond. This observation is in agreement with previous experimental and theoretical studies on the regioselectivity of the Diels-Alder reaction between La@C2v(9)-C82 and Cp. In the case of La@C2(10612)-C72, the most favored pathway is the concerted attack on the [6,6] bond both kinetically and thermodynamically. In toluene and ortho-dichlorobenzene, while the energy barriers and the reaction free energies increased to different extents for most pathways, the regioselectivity largely mirrored that observed in the gas phase.
Collapse
Affiliation(s)
- Linfeng Nie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China.
| | - Yuanyuan Sun
- Institute of Innovation Materials and Energy, Yangzhou University, Yangzhou 225002, P. R. China.
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China.
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China.
| |
Collapse
|
3
|
Fan H, Liu Z, Gan LH, Wang CR. The formation mechanism of Sc-based metallofullerenes: a molecular dynamics simulation study. Phys Chem Chem Phys 2024; 26:5499-5507. [PMID: 38282470 DOI: 10.1039/d3cp05587f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
The practical applications of endohedral metallofullerenes (EMFs) are mainly constrained by their low yields. Understanding the formation mechanisms is therefore crucial for developing methods for high-yield and selective synthesis. To address this, a novel force-field parameter set, "CSc.ff", was created using a single-parameter search optimization method, then molecular dynamics simulations of various systems with a carbon-to-scandium atomic ratio of 12.5 were carried out. The simulations were run under a constant atomic number, volume, and energy (NVE) ensemble. The influence of the working gas, helium, as well as temperature gradients on the formation process was examined. Our simulations reveal that the cage growth patterns of Sc-based EMFs (Sc-EMFs) closely resemble those of hollow fullerenes, evolving from free carbon atoms to chains, rings, and, ultimately, to cage-shaped clusters. Importantly, the Sc-EMFs formed in the simulation frequently exhibit structural defects or under-coordinated carbon atoms. Scandium atoms, whether at the periphery or on the surface of these cages, can be incorporated into the cages, forming Sc-EMFs. Helium was found to not only promote the formation of carbon cages but also facilitate the encapsulation of scandium atoms, playing a crucial role in the formation of cluster fullerenes. Moreover, cooling effectively inhibits the uncontrollable growth of the carbon cage and is essential for forming stable, appropriate-sized cages. This study enhances our understanding of the formation of Sc-EMFs and provides valuable insights for developing more efficient synthetic methods.
Collapse
Affiliation(s)
- Huichen Fan
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Zhenyu Liu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Li-Hua Gan
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Chun-Ru Wang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
4
|
Khan MU, Janjua MRSA, Yaqoob J, Hussain R, Khalid M, Syed A, Elgorban AM, Zaghloul NS. First theoretical framework of superalkali metals [M3X(M = Li, Na, k; X = O, S, F, N)] doped all-boron B38 nanocluster: A promising class of nonlinear optical materials for optoelectronic applications. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
5
|
Banerjee S, Ash T, Debnath T, Das AK. Dual modification to stabilize Non-IPR C 72 fullerene: A new theoretical strategy. J Mol Graph Model 2022; 117:108289. [PMID: 35964364 DOI: 10.1016/j.jmgm.2022.108289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/21/2022] [Accepted: 08/01/2022] [Indexed: 01/14/2023]
Abstract
The stabilization of non-IPR fullerenes for their isolation and characterization is an area of recent interest. In the present study, we have explored the stabilization techniques of C72 isomers via endo and exo-modifications and finally approached dual modification. A total of four isomers of C72 have been considered in this study; among them, one is IPR derivative (1), and the rest are non-IPR derivatives with one (2) and two (3 and 4) fused pentagon rings. First, we have studied the endohedral modification by encapsulating one and two La atoms in the C72 cavity. Secondly, we have exohedrally modified the C72 isomers via chlorination by adding four and eight chlorides, respectively. Our final approach is to study the dual modification, where we have implemented both endo exo-modifications together. This dual modification can be achieved in two ways: exo followed by endo and endo followed by exo. For each modification, the relative stability of every modified C72 derivative has been checked by calculating the relative energy with respect to the most stable modified analogue. To find out whether these modifications are energetically feasible or not, we have calculated the binding energy of each modified C72 isomer. The binding energy calculation reveals that the encapsulation and exo-modification techniques are good enough to stabilize the non-IPR C72 derivatives. Moreover, the effectiveness of dual modification has also been established from the enhanced binding energy compared to either endo- or exo-modification. We have also studied the NPA charges on the encapsulated La atoms for each endo- and dual-modified C72 derivative. Furthermore, the AIM study has also been perceived to find out the interaction between the La atom and the fullerene cages for both mono- and di-encapsulated fullerene derivatives and also between La-La centres for di-encapsulated derivatives. Overall, the present theoretical study will provide an idea about the stability of the modified C72 derivatives, which will help the experimentalists to design new strategies for synthesizing modified non-IPR fullerene derivatives that have vast applications in the medicinal and industrial fields.
Collapse
Affiliation(s)
- Soumadip Banerjee
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
| | - Tamalika Ash
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
| | - Tanay Debnath
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India.
| | - Abhijit K Das
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India.
| |
Collapse
|
6
|
Jiang Z, Intan NN, Yang Q. Ab initio insight into the electrolysis of water on basal and edge (fullerene C 20) surfaces of 4 Å single-walled carbon nanotubes. RSC Adv 2022; 12:33552-33558. [PMID: 36505700 PMCID: PMC9680824 DOI: 10.1039/d2ra06123f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/10/2022] [Indexed: 11/24/2022] Open
Abstract
The extreme surface reactivity of 4 Å single-walled carbon nanotubes (SWCNTs) makes for a very promising catalytic material, however, controlling it experimentally has been found to be challenging. Here, we employ ab initio calculations to investigate the extent of surface reactivity and functionalization of 4 Å SWCNTs. We study the kinetics of water dissociation and adsorption on the surface of 4 Å SWCNTs with three different configurations: armchair (3,3), chiral (4,2) and zigzag (5,0). We reveal that out of three different configurations of 4 Å SWCNTs, the surface of tube (5,0) is the most reactive due to its small HOMO-LUMO gap. The dissociation of 1 H2O molecule into an OH/H pair on the surface of tube (5,0) has an adsorption energy of -0.43 eV and an activation energy barrier of 0.66 eV at 298.15 K in pure aqueous solution, which is less than 10% of the activation energy barrier of the same reaction without the catalyst present. The four steps of H+/e- transfer in the oxygen evolution reaction have also been studied on the surface of tube (5,0). The low overpotential of 0.38 V indicates that tube (5,0) has the highest potential efficiency among all studied carbon-based catalysts. We also reveal that the armchair edge of tube (5,0) is reconstructed into fullerene C20. The dangling bonds on the surface of fullerene C20 result in a more reactive surface than the basal surface of tube (5,0), however the catalytic ability was also inhibited in the later oxygen reduction processes.
Collapse
Affiliation(s)
- Zhen Jiang
- Department of Chemistry, University of Pennsylvania Philadelphia PA 19104-6323 USA
| | - Nadia N Intan
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln Lincoln NE 68588 USA
| | - Qiong Yang
- Hunan Provincial Key Laboratory of Thin Film Materials and Devices, School of Materials Science and Engineering, Xiangtan University Xiangtan Hunan 411105 China
| |
Collapse
|
7
|
Li M, Zhao R, Dang J, Zhao X. Theoretical study on the stabilities, electronic structures, and reaction and formation mechanisms of fullerenes and endohedral metallofullerenes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Yang Q, Jiang N, Shao Y, Zhang Y, Zhao X, Zeng Y, Qiu J. Functional carbon materials addressing dendrite problems in metal batteries: surface chemistry, multi-dimensional structure engineering, and defects. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1397-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Lyu B, Chen J, Lou S, Li C, Qiu L, Ouyang W, Xie J, Mitchell I, Wu T, Deng A, Hu C, Zhou X, Shen P, Ma S, Wu Z, Watanabe K, Taniguchi T, Wang X, Liang Q, Jia J, Urbakh M, Hod O, Ding F, Wang S, Shi Z. Catalytic Growth of Ultralong Graphene Nanoribbons on Insulating Substrates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200956. [PMID: 35560711 DOI: 10.1002/adma.202200956] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/18/2022] [Indexed: 06/15/2023]
Abstract
Graphene nanoribbons (GNRs) with widths of a few nanometers are promising candidates for future nanoelectronic applications due to their structurally tunable bandgaps, ultrahigh carrier mobilities, and exceptional stability. However, the direct growth of micrometer-long GNRs on insulating substrates, which is essential for the fabrication of nanoelectronic devices, remains an immense challenge. Here, the epitaxial growth of GNRs on an insulating hexagonal boron nitride (h-BN) substrate through nanoparticle-catalyzed chemical vapor deposition is reported. Ultranarrow GNRs with lengths of up to 10 µm are synthesized. Remarkably, the as-grown GNRs are crystallographically aligned with the h-BN substrate, forming 1D moiré superlattices. Scanning tunneling microscopy reveals an average width of 2 nm and a typical bandgap of ≈1 eV for similar GNRs grown on conducting graphite substrates. Fully atomistic computational simulations support the experimental results and reveal a competition between the formation of GNRs and carbon nanotubes during the nucleation stage, and van der Waals sliding of the GNRs on the h-BN substrate throughout the growth stage. This study provides a scalable, single-step method for growing micrometer-long narrow GNRs on insulating substrates, thus opening a route to explore the performance of high-quality GNR devices and the fundamental physics of 1D moiré superlattices.
Collapse
Affiliation(s)
- Bosai Lyu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Jiajun Chen
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Shuo Lou
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Can Li
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Lu Qiu
- Centre for Multidimensional Carbon Materials, Institute for Basic Science, Ulsan, 44919, South Korea
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Wengen Ouyang
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei, 430072, China
| | - Jingxu Xie
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Izaac Mitchell
- Centre for Multidimensional Carbon Materials, Institute for Basic Science, Ulsan, 44919, South Korea
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Tongyao Wu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Aolin Deng
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Cheng Hu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Xianliang Zhou
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Peiyue Shen
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Saiqun Ma
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Zhenghan Wu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Kenji Watanabe
- Research Centre for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Takashi Taniguchi
- International Centre for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Xiaoqun Wang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qi Liang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jinfeng Jia
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Michael Urbakh
- Department of Physical Chemistry, School of Chemistry and The Sackler Centre for Computational Molecular and Materials Science, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Oded Hod
- Department of Physical Chemistry, School of Chemistry and The Sackler Centre for Computational Molecular and Materials Science, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Feng Ding
- Centre for Multidimensional Carbon Materials, Institute for Basic Science, Ulsan, 44919, South Korea
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Shiyong Wang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhiwen Shi
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
10
|
Bao L, Yu P, Li MY, Shen W, Hu S, Yu P, Tian X, Zhao X, Lu X. An unprecedented C80 cage that violates the isolated pentagon rule. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00410k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two Lu2O@C80 isomers have been successfully isolated and unambiguously assigned as Lu2O@C1(31876)-C80 and Lu2O@C2v(5)-C80, respectively, by X-ray crystallography. Interestingly, C1(31876)-C80 is an unprecedented cage with a pair of adjacent pentagons,...
Collapse
|
11
|
Mao R, Wang Z, Song X, Chen WK, Qi J. Structural and Spectral Properties of a Nonclassical C 66 Isomer with Its Hydrogenated Derivative C 66H 4 in Theory. ACS OMEGA 2021; 6:27101-27111. [PMID: 34693130 PMCID: PMC8529658 DOI: 10.1021/acsomega.1c03691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/21/2021] [Indexed: 05/15/2023]
Abstract
X-ray photoelectron and near-edge X-ray absorption fine structure (NEXAFS) spectra, as well as the ground-state electronic/geometrical structures of a newly discovered nonclassical isomer C 2v -C66(NC), and two classical fullerene isomers C 2-#4466C66 and C s -#4169C66 with their hydrogenated derivatives [C 2v -C66H4(NC), C 2-#4466C66H4, and C s -#4169C66H4] have been calculated at the density functional theory (DFT) level. Significant differences were observed in the electronic structures and simulated X-ray spectra after hydrogenation. Simultaneously, both X-ray photoelectron and NEXAFS spectra reflected conspicuous isomer dependence, indicating that the "fingerprints" in the X-ray spectra can offer an effective method for identifying the above-mentioned fullerene isomers. The simulated ultraviolet-visible (UV-vis) absorption spectroscopy of C 2v -C66H4(NC) has also been generated by means of the time-dependent DFT method, and the calculations are well consistent with the experimental results. Consequently, this work reveals that X-ray and UV-vis spectroscopy techniques can provide valuable information to help researchers explore the fullerene electronic structure and isomer identification on the future experimental and theoretical fullerene domains.
Collapse
Affiliation(s)
- Renfeng Mao
- College of Chemistry, Fuzhou
University, Fuzhou, Fujian 350116, People’s Republic of China
| | - Ziwei Wang
- College of Chemistry, Fuzhou
University, Fuzhou, Fujian 350116, People’s Republic of China
| | - Xiaoxi Song
- College of Chemistry, Fuzhou
University, Fuzhou, Fujian 350116, People’s Republic of China
| | - Wen-Kai Chen
- College of Chemistry, Fuzhou
University, Fuzhou, Fujian 350116, People’s Republic of China
| | - Jiayuan Qi
- College of Chemistry, Fuzhou
University, Fuzhou, Fujian 350116, People’s Republic of China
| |
Collapse
|
12
|
Li W, Wang C, Wang T. Molecular structures and magnetic properties of endohedral metallofullerenes. Chem Commun (Camb) 2021; 57:10317-10326. [PMID: 34542549 DOI: 10.1039/d1cc04218a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Endohedral metallofullerenes have fascinating core-shell structures, with metal atoms or metal clusters encaged in fullerene cages, and they display various chemical, optical and magnetic properties derived from different types of fullerene cages and metal moieties. Fullerene cages can act as carriers to stabilize unusual cluster moieties. Many bizarre species that are hard to produce via synthetic methods survive well under the protection of a fullerene cage, making metallofullerenes ideal platforms for generating new clusters and bonds. Fullerene cages can also be carriers to hold active unpaired electrons. Some metallofullerenes possess electron spin and show intriguing magnetic properties, making them applicable for use in quantum computing, high density information storage and magnetoreception systems. The exploration of new metallofullerenes is still ongoing, while function-oriented studies are also promoted for the future application of metallofullerenes. Herein, we highlight the recent progress in the synthesis, electron spin characteristics and magnetic properties of metallofullerenes. Discussions and an outlook on the future development of metallofullerenes are also stated.
Collapse
Affiliation(s)
- Wang Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunru Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, China.
| | - Taishan Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, China.
| |
Collapse
|
13
|
Guo M, Li X, Yao YR, Zhuang J, Meng Q, Yan Y, Liu X, Chen N. A non-isolated pentagon rule C 82 cage stabilized by a stretched Sc 3N cluster. Chem Commun (Camb) 2021; 57:4150-4153. [PMID: 33908444 DOI: 10.1039/d1cc00328c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel cluster fullerene, Sc3N@Cs(39 663)-C82, has been synthesized and characterized. Crystallograpic charaterization unambiguously determines the non-IPR cage structure of Cs(39 663)-C82. Structural analyses further reveal that the Sc3N cluster is notably stretched to facilitate the interaction with the non-IPR fullerene cage.
Collapse
Affiliation(s)
- Min Guo
- College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, P. R. China.
| | - Xiaomeng Li
- College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, P. R. China.
| | - Yang-Rong Yao
- Department of Chemistry, University of Texas at El Paso, 500 W University Avenue, El Paso, Texas 79968, USA
| | - Jiaxin Zhuang
- College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, P. R. China.
| | - Qingyu Meng
- College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, P. R. China.
| | - Yingjing Yan
- College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, P. R. China.
| | - Xinye Liu
- College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, P. R. China.
| | - Ning Chen
- College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, P. R. China.
| |
Collapse
|
14
|
Zhang Q, Xie XM, Wei SY, Zhu ZZ, Zheng LS, Xie SY. The Synthesis of Conical Carbon. SMALL METHODS 2021; 5:e2001086. [PMID: 34927822 DOI: 10.1002/smtd.202001086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/30/2020] [Indexed: 06/14/2023]
Abstract
Conical carbon, specifically multi-walled carbon nanocones (CNCs) and single-walled carboncones, is a new class of sp2 -hybridized carbon allotrope, in addition to fullerene, carbon nanotubes (CNTs), and graphene. Characterized by a conical and delocalized aromatic configuration, the conical carbon structure is considered the intermediate structure between planar graphene and open-cage fullerene. CNCs can be stiffer than CNTs and exhibit intriguing physical and chemical properties owing to their unique hollow conical structure, which make these materials promising for application as field emission sources and scanning probes. The research on conical carbon structures is in its nascent stage, mainly because of the limitations in the synthesis and purification of conical carbons. This review summarizes the significant progress in the synthesis of CNCs and carboncones. Particularly, the synthetic methods, which can be divided into traditional physical-chemical synthesis methods for multi-walled CNCs and emerging bottom-up organic synthesis methods for single-walled carboncones, are comprehensively discussed. In addition, the advantages and disadvantages of the various synthetic methods as well as the possible formation and growth mechanisms of CNCs and carboncones are discussed. Finally, some outlooks on the potential solutions to the synthesis of single-walled carboncones with uniform apex angles are presented.
Collapse
Affiliation(s)
- Qianyan Zhang
- State Key Lab for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Xiao-Ming Xie
- State Key Lab for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Shi-Yao Wei
- State Key Lab for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Zheng-Zhong Zhu
- State Key Lab for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Lan-Sun Zheng
- State Key Lab for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Su-Yuan Xie
- State Key Lab for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| |
Collapse
|
15
|
Anafcheh M, Khanmohammadi H, Zahedi M. Diels–Alder cycloaddition of the silicon–silicon bonds at pentagon junctions of Si-doped non-IPR and SW defective fullerenes. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02743-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Theoretical Investigation of Seven Membered Ring C120X6 (X = H2, F2, Cl2, Br2, O, O2, and CH2) Fullerene Derivatives. J CLUST SCI 2021. [DOI: 10.1007/s10876-020-01767-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Miao J, Lang Z, Xue T, Li Y, Li Y, Cheng J, Zhang H, Tang Z. Revival of Zeolite-Templated Nanocarbon Materials: Recent Advances in Energy Storage and Conversion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001335. [PMID: 33101857 PMCID: PMC7578874 DOI: 10.1002/advs.202001335] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/27/2020] [Indexed: 05/05/2023]
Abstract
Nanocarbon materials represent one of the hottest topics in physics, chemistry, and materials science. Preparation of nanocarbon materials by zeolite templates has been developing for more than 20 years. In recent years, novel structures and properties of zeolite-templated nanocarbons have been evolving and new applications are emerging in the realm of energy storage and conversion. Here, recent progress of zeolite-templated nanocarbons in advanced synthetic techniques, emerging properties, and novel applications is summarized: i) thanks to the diversity of zeolites, the structures of the corresponding nanocarbons are multitudinous; ii) by various synthetic techniques, novel properties of zeolite-templated nanocarbons can be achieved, such as hierarchical porosity, heteroatom doping, and nanoparticle loading capacity; iii) the applications of zeolite-templated nanocarbons are also evolving from traditional gas/vapor adsorption to advanced energy storage techniques including Li-ion batteries, Li-S batteries, fuel cells, metal-O2 batteries, etc. Finally, a perspective is provided to forecast the future development of zeolite-templated nanocarbon materials.
Collapse
Affiliation(s)
- Jun Miao
- Key Laboratory of Bioinorganic and Synthetic Chemistry (MOE)Institute of Applied Physics and Material EngineeringUniversity of MacauTaipaMacau SARP. R. China
- Instituto de Ciencia de Materiales MadridCSICMadrid28049Spain
| | - Zhongling Lang
- Polyoxometalate Science of Ministry of EducationNortheast Normal UniversityChangchunJilin130024P. R. China
| | - Tianyu Xue
- Institute of Microscale OptoelectronicsKey Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen Key Laboratory of Micro‐Nano Photonic Information TechnologyGuangdong Laboratory of Artificial Intelligence and Digital Economy (SZ)Shenzhen UniversityShenzhen518060P. R. China
- Biodesign Center for Biosensors and BioelectronicsBiodesign InstituteArizona State UniversityTempeAZ85281USA
- Center for High Pressure ScienceState Key Laboratory of Metastable Materials Science and TechnologyYanshan UniversityQinhuangdao066004P. R. China
| | - Yan Li
- Institute of Microscale OptoelectronicsKey Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen Key Laboratory of Micro‐Nano Photonic Information TechnologyGuangdong Laboratory of Artificial Intelligence and Digital Economy (SZ)Shenzhen UniversityShenzhen518060P. R. China
| | - Yiwen Li
- School of Material Science and EngineeringHubei UniversityWuhan430062P. R. China
- Department of ChemistryPurdue UniversityWest LafayetteIN47907USA
| | - Jiaji Cheng
- School of Material Science and EngineeringHubei UniversityWuhan430062P. R. China
| | - Han Zhang
- Institute of Microscale OptoelectronicsKey Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen Key Laboratory of Micro‐Nano Photonic Information TechnologyGuangdong Laboratory of Artificial Intelligence and Digital Economy (SZ)Shenzhen UniversityShenzhen518060P. R. China
| | - Zikang Tang
- Key Laboratory of Bioinorganic and Synthetic Chemistry (MOE)Institute of Applied Physics and Material EngineeringUniversity of MacauTaipaMacau SARP. R. China
| |
Collapse
|
18
|
Wang Y, Ben T, Qiu S, Valtchev V. Aligned High Density Semi‐Conductive Ultra‐Small Single‐Walled Carbon Nanotubes. ChemistrySelect 2019. [DOI: 10.1002/slct.201904178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yun Wang
- Zhuhai College of Jilin University, Zhuhai China
| | - Teng Ben
- Zhuhai College of Jilin University, Zhuhai China
- Department of ChemistryJilin University, Changchun China
| | - Shilun Qiu
- Zhuhai College of Jilin University, Zhuhai China
- Department of ChemistryJilin University, Changchun China
| | - Valentin Valtchev
- Department of ChemistryJilin University, Changchun China
- Normandie UnivENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, 6 Marechal Juin 14050 Caen France
| |
Collapse
|
19
|
Freisetzung der Spannung kondensierter Fünfringe des Fullerenkäfigs durch chemische Funktionalisierung. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Guan R, Chen M, Jin F, Yang S. Strain Release of Fused Pentagons in Fullerene Cages by Chemical Functionalization. Angew Chem Int Ed Engl 2019; 59:1048-1073. [PMID: 30884036 DOI: 10.1002/anie.201901678] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Indexed: 11/07/2022]
Abstract
According to the isolated pentagon rule (IPR), for stable fullerenes, the 12 pentagons should be isolated from one another by hexagons, otherwise the fused pentagons will result in an increase in the local steric strain of the fullerene cage. However, the successful isolation of more than 100 endohedral and exohedral fullerenes containing fused pentagons over the past 20 years has shown that strain release of fused pentagons in fullerene cages is feasible. Herein, we present a general overview on fused-pentagon-containing (i.e. non-IPR) fullerenes through an exhaustive review of all the types of fused-pentagon-containing fullerenes reported to date. We clarify how the strain of fused pentagons can be released in different manners, and provide an in-depth understanding of the role of fused pentagons in the stability, electronic properties, and chemical reactivity of fullerene cages.
Collapse
Affiliation(s)
- Runnan Guan
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China (USTC), Hefei, 230026, China
| | - Muqing Chen
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China (USTC), Hefei, 230026, China
| | - Fei Jin
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China (USTC), Hefei, 230026, China
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China (USTC), Hefei, 230026, China
| |
Collapse
|
21
|
Artigas A, Fernández I, Solà M. Regioselectivity in Diels–Alder Cycloadditions of #6094C68 Fullerene with a Triplet Ground State. J Org Chem 2019; 84:9017-9024. [DOI: 10.1021/acs.joc.9b00921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Albert Artigas
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, C/Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Israel Fernández
- Departamento de Química Orgánica I and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, C/Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| |
Collapse
|
22
|
Jin P, Li Y, Magagula S, Chen Z. Exohedral functionalization of endohedral metallofullerenes: Interplay between inside and outside. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.02.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Wang Y, Ma L, Mu L, Ren J, Kong X. A systematic study on the generation of multimetallic lanthanide fullerene ions by laser ablation mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:1396-1402. [PMID: 29858507 DOI: 10.1002/rcm.8185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/25/2018] [Accepted: 05/27/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE Laser ablation masss spectromety has been previously proved to be a powerful tool for studying endohedro metallofullerene (EMF) ions. Our previous study showed the possiblity of forming multi-metallofullerene ions containg more than six metal atoms for La, Y and Lu. Thus, it is important to conduct a systematic study on the generation of multi-metallofullerenes and their distribuitons for all lanthanide elements. METHODS Experiments were performed on a 7.0 T Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. Laser ablation mass spectra were obtained by laser irradiation on mixtures of graphene and MCl3 on a stainless steel plate, applying a 355 nm Nd:YAG laser with a typical energy of 2.5 mJ/pulse. Reaction test experiments were performed by introducing O2 into the FTICR cell with a pulse valve. RESULTS Multi-metallofullerene ions Ce2-4C2m+, Pr2-4C2m+, Gd2-4C2m+, Nd3C2m+, Dy2-3C2m+, Tb2-7C2m+, Ho2-6C2m+ were observed in the mass spectra. For the metals Sm and Eu, no multi-metallofullerene ion was observed. No reaction with O2 was observed in the reaction experiments, verifying that these species had endohedral structures. For the observed series of multi-metallofullerene ions, tri-metallofullerene ions dominated their mass spectra. The results were further compared with previously generated EMF ions for La, Er, Tm, Yb and Lu. CONCLUSIONS Endohedral lanthanide metallofullerene ions were generated by laser ablation of graphene and the corresponding metal salts MCl3 (M = Ce, Pr, Nd, Gd, Tb, Dy and Ho) and studied with a FTICR mass spectrometer. Typically, multi-metallofullerene ions of TbnC2m+2≤n≤780≤2m≤176 and Ho6C2m+2≤n≤674≤2m≤162 were observed. The results show that the formation of multi-EMF ions containing lanthanides that have +3 and + 4 oxidation states is easier than those containing +2 oxidation states in the process of laser ablation.
Collapse
Affiliation(s)
- Yiyun Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - LiFu Ma
- Tianjin University, School of Precision Instrument and Opto-Electronics Engineering, Tianjin, 300072, China
| | - Lei Mu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Juan Ren
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Xianglei Kong
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, China
- Nankai University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300071, China
| |
Collapse
|
24
|
Nakagawa A, Nishino M, Niwa H, Ishino K, Wang Z, Omachi H, Furukawa K, Yamaguchi T, Kato T, Bandow S, Rio J, Ewels C, Aoyagi S, Shinohara H. Crystalline functionalized endohedral C 60 metallofullerides. Nat Commun 2018; 9:3073. [PMID: 30082836 PMCID: PMC6078994 DOI: 10.1038/s41467-018-05496-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 07/02/2018] [Indexed: 11/09/2022] Open
Abstract
Endohedral metallofullerenes have been extensively studied since the first experimental observation of La@C60 in a laser-vaporized supersonic beam in 1985. However, most of these studies have focused on metallofullerenes larger than C60 such as (metal)@C82, and there are no reported purified C60-based monomeric metallofullerenes, except for [Li@C60]+(SbCl6)- salt. Pure (metal)@C60 compounds have not been obtained because of their extremely high chemical reactivity. One route to their stabilization is through chemical functionalization. Here we report the isolation, structural determination and electromagnetic properties of functionalized crystalline C60-based metallofullerenes Gd@C60(CF3)5 and La@C60(CF3)5. Synchrotron X-ray single-crystal diffraction reveals that La and Gd atoms are indeed encapsulated in the Ih-C60 fullerene. The HOMO-LUMO gaps of Gd@C60 and La@C60 are significantly widened by an order of magnitude with addition of CF3 groups. Magnetic measurements show the presence of a weak antiferromagnetic coupling in Gd@C60(CF3)3 crystals at low temperatures.
Collapse
Affiliation(s)
- Ayano Nakagawa
- Department of Chemistry and Institute for Advanced Research, Nagoya University, Nagoya, 464-8602, Japan
| | - Makiko Nishino
- Department of Chemistry and Institute for Advanced Research, Nagoya University, Nagoya, 464-8602, Japan
| | - Hiroyuki Niwa
- Department of Chemistry and Institute for Advanced Research, Nagoya University, Nagoya, 464-8602, Japan
| | - Katsuma Ishino
- Department of Chemistry and Institute for Advanced Research, Nagoya University, Nagoya, 464-8602, Japan
| | - Zhiyong Wang
- Department of Chemistry and Institute for Advanced Research, Nagoya University, Nagoya, 464-8602, Japan
| | - Haruka Omachi
- Department of Chemistry and Institute for Advanced Research, Nagoya University, Nagoya, 464-8602, Japan
| | - Ko Furukawa
- Center for Coordination of Research Facilities, Institute for Research Promotion, Niigata University, Niigata, 950-2181, Japan
| | - Takahisa Yamaguchi
- Graduate School of Human and Environmental Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tatsuhisa Kato
- Graduate School of Human and Environmental Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shunji Bandow
- Faculty of Science and Technology, Department of Applied Chemistry, Meijo University, Nagoya, 468-8502, Japan
| | - Jeremy Rio
- Institut des Materiaux Jean Rouxel (IMN), Université de Nantes, CNRS UMR6502, BP32229, 44322, Nantes, France
| | - Chris Ewels
- Institut des Materiaux Jean Rouxel (IMN), Université de Nantes, CNRS UMR6502, BP32229, 44322, Nantes, France.
| | - Shinobu Aoyagi
- Department of Information and Basic Science, Nagoya City University, Nagoya, 467-8501, Japan
| | - Hisanori Shinohara
- Department of Chemistry and Institute for Advanced Research, Nagoya University, Nagoya, 464-8602, Japan.
| |
Collapse
|
25
|
Jena P, Sun Q. Super Atomic Clusters: Design Rules and Potential for Building Blocks of Materials. Chem Rev 2018; 118:5755-5870. [DOI: 10.1021/acs.chemrev.7b00524] [Citation(s) in RCA: 302] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Puru Jena
- Physics Department, Virginia Commonwealth University, Richmond, Virginia 23284-2000, United States
| | - Qiang Sun
- Physics Department, Virginia Commonwealth University, Richmond, Virginia 23284-2000, United States
| |
Collapse
|
26
|
Li Y, Yang L, Liu C, Hou Q, Jin P, Lu X. Th-Based Endohedral Metallofullerenes: Anomalous Metal Position and Significant Metal-Cage Covalent Interactions with the Involvement of Th 5f Orbitals. Inorg Chem 2018; 57:7142-7150. [PMID: 29808676 DOI: 10.1021/acs.inorgchem.8b00866] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Endohedral metallofullerenes (EMFs) containing actinides are rather intriguing due to potential 5f-orbital participation in the metal-metal or metal-cage bonding. In this work, density functional theory calculations first characterized the structure of recently synthesized ThC74 as Th@ D3 h(14246)-C74. We found that the thorium atom adopts an unusual off-axis position inside cage due to small metal ion size and the requirement of large coordination number, which phenomenon was further extended to other Th-based EMFs. Significantly, besides the strong metal-cage electrostatic attractions, topological and orbital analysis revealed that all the investigated Th-based EMFs exhibit obvious covalent interactions between metal and cage with substantial contribution from the Th 5f orbitals. The encapsulation by fullerenes is thus proposed as a practical pathway toward the f-orbital covalency for thorium. Interestingly, the anomalous internal position of Th led to a novel three-dimensional metal trajectory at elevated temperatures in the D3 h-C74 cavity, as elucidated by the static computations and molecular dynamic simulations.
Collapse
Affiliation(s)
- Ying Li
- School of Materials Science and Engineering , Hebei University of Technology , Tianjin 300130 , China
| | - Le Yang
- School of Materials Science and Engineering , Hebei University of Technology , Tianjin 300130 , China
| | - Chang Liu
- School of Materials Science and Engineering , Hebei University of Technology , Tianjin 300130 , China
| | - Qinghua Hou
- School of Materials Science and Engineering , Hebei University of Technology , Tianjin 300130 , China
| | - Peng Jin
- School of Materials Science and Engineering , Hebei University of Technology , Tianjin 300130 , China
| | - Xing Lu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering , Huazhong University of Science and Technology , 1037 Luoyu Road , Wuhan 430074 , China
| |
Collapse
|
27
|
Yang S, Wei T, Jin F. When metal clusters meet carbon cages: endohedral clusterfullerenes. Chem Soc Rev 2018; 46:5005-5058. [PMID: 28681052 DOI: 10.1039/c6cs00498a] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Fullerenes have the characteristic of a hollow interior, and this unique feature triggers intuitive inspiration to entrap atoms, ions or clusters inside the carbon cage in the form of endohedral fullerenes. In particular, upon entrapping an otherwise unstable metal cluster into a carbon cage, the so-called endohedral clusterfullerenes fulfil the mutual stabilization of the inner metal cluster and the outer fullerene cage with a specific isomeric structure which is often unstable as an empty fullerene. A variety of metal clusters have been reported to form endohedral clusterfullerenes, including metal nitrides, carbides, oxides, sulfides, cyanides and so on, making endohedral clusterfullerenes the most variable and intriguing branch of endohedral fullerenes. In this review article, we present an exhaustive review on all types of endohedral clusterfullerenes reported to date, including their discoveries, syntheses, separations, molecular structures and properties as well as their potential applications in versatile fields such as biomedicine, energy conversion, and so on. At the end, we present an outlook on the prospect of endohedral clusterfullerenes.
Collapse
Affiliation(s)
- Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale, Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China (USTC), Hefei 230026, China.
| | | | | |
Collapse
|
28
|
Moreno-Vicente A, Abella L, Azmani K, Rodríguez-Fortea A, Poblet JM. Formation of C 2v-C 72(11188)Cl 4: A Particularly Stable Non-IPR Fullerene. J Phys Chem A 2018; 122:2288-2296. [PMID: 29436831 DOI: 10.1021/acs.jpca.7b12228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Halogenation has been one of the most used strategies to explore the reactivity of empty carbon cages. In particular, the higher reactivity of non-IPR fullerenes, i.e., those fullerenes that do not satisfy the isolated pentagon rule (IPR), has been used to functionalize and capture these less stable fullerenes. Here, we have explored the stability of the non-IPR isomer C72(11188) with C2v symmetry, which is topologically linked to the only IPR isomer of C70, as well as its reactivity to chlorination. DFT calculations and Car-Parrinello molecular dynamics simulations suggest that chlorination takes places initially in nonspecific sites, once carbon cages are formed. When the temperature in the arc reactor decreases sufficiently, Cl atoms are trapped on the fullerene surface, migrating from not-so-favored positions to reach the most favored sites in the pentalene. We have also discussed why cage C2v-C72(11188) is found to take four chlorines, whereas cage C1-C74(14049) is observed to capture 10 of them, even though these two fullerenes are closely related by a simple C2 insertion.
Collapse
Affiliation(s)
- Antonio Moreno-Vicente
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili , c/Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Laura Abella
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili , c/Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Khalid Azmani
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili , c/Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Antonio Rodríguez-Fortea
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili , c/Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Josep M Poblet
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili , c/Marcel·lí Domingo 1, 43007 Tarragona, Spain
| |
Collapse
|
29
|
Xu D, Wang Z, Shinohara H. Capturing the Unconventional Metallofullerene M@C 66 by Trifluoromethylation: A Theoretical Study. Chemphyschem 2017; 18:3007-3011. [PMID: 28834147 DOI: 10.1002/cphc.201700830] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/16/2017] [Indexed: 11/06/2022]
Abstract
The endohedral metallofullerenes M@C66 (M=rare-earth metal) have a unique structure that violates the well-known "isolated pentagon rule" of fullerene science. Although the synthesis of M@C66 has been achieved by using the arc discharge method, the solvent extraction and purification of M@C66 remain challenges because of their radical character and extremely high reactivity. In this paper, the possibility of capturing these missing metallofullerenes by exohedral functionalization of the C66 cage is demonstrated theoretically. Stable trifluoromethylated derivatives of Y@C66 are revealed by density functional theory calculations. Mono- or poly-trifluoromethylation of Y@C66 results in a closed-shell electronic configuration and a large band gap. Thus Y@C66 can be greatly stabilized through trifluoromethylation. The trifluoromethyl group prefers to be attached to the fused pentagon region to relieve local steric strain. The mechanism of isomerization of Y@C66 (CF3 )3 is also investigated and it is found that the attached trifluoromethyl group can migrate from a carbon atom to another via a transition state.
Collapse
Affiliation(s)
- Dan Xu
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Zhiyong Wang
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Hisanori Shinohara
- Department of Chemistry and Institute for Advanced Research, Nagoya University, Nagoya, 464-8602, Japan
| |
Collapse
|
30
|
Investigation into the molecular structure, electronic properties, and energetic stability of endohedral (TM@C 20 ) and exohedral (TM-C 20 ) metallofullerene derivatives of C 20 : TM = Group 11 and 12 transition metal atoms/ions. COMPUT THEOR CHEM 2017. [DOI: 10.1016/j.comptc.2017.09.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Transformation of doped graphite into cluster-encapsulated fullerene cages. Nat Commun 2017; 8:1222. [PMID: 29089497 PMCID: PMC5663703 DOI: 10.1038/s41467-017-01295-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/07/2017] [Indexed: 11/09/2022] Open
Abstract
An ultimate goal in carbon nanoscience is to decipher formation mechanisms of highly ordered systems. Here, we disclose chemical processes that result in formation of high-symmetry clusterfullerenes, which attract interest for use in applications that span biomedicine to molecular electronics. The conversion of doped graphite into a C80 cage is shown to occur through bottom-up self-assembly reactions. Unlike conventional forms of fullerene, the iconic Buckminsterfullerene cage, Ih-C60, is entirely avoided in the bottom-up formation mechanism to afford synthesis of group 3-based metallic nitride clusterfullerenes. The effects of structural motifs and cluster–cage interactions on formation of compounds in the solvent-extractable C70–C100 region are determined by in situ studies of defined clusterfullerenes under typical synthetic conditions. This work establishes the molecular origin and mechanism that underlie formation of unique carbon cage materials, which may be used as a benchmark to guide future nanocarbon explorations. An understanding of how caged carbon materials self-assemble from doped graphite is a long-standing challenge. Here, the authors show that distinct bottom-up processes lead to the synthesis of high-symmetry clusterfullerenes.
Collapse
|
32
|
Wang Y, Zhu K, Shao Q. A Cu-atom-chain current channel with a width of approximately 0.246 nm on (5, 0) single-wall carbon nanotube. Sci Rep 2017; 7:12894. [PMID: 29018262 PMCID: PMC5634995 DOI: 10.1038/s41598-017-13286-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/20/2017] [Indexed: 11/17/2022] Open
Abstract
Continuous miniaturization with improved performance has enabled the development of electronic devices. However, further shrinking of electronic circuits will push feature sizes (linewidths) firmly into the nanoscale. This can cause electronic devices built using current materials (silicon-based) and fabrication processes to not work as expected. Therefore, new materials or preparation technologies are needed for the further miniaturization of electron devices. Here, through theoretical simulation, we show that regular doping of a Cu-atom chain on a single-wall carbon nanotube (SWCNT) can be used to realize an atomic-scale current channel (Cu-atom-chain current channel) with a linewidth of approximately 0.246 nm. Moreover, the atomic-scale Cu-atom-chain current channel shows enhanced conductivity (lower power consumption) compared to a pristine SWCNT. Such a Cu-atom-chain current channel with an atomic-scale linewidth and its method of fabrication (regular doping) may be suitable for the preparation of nanoelectronic devices.
Collapse
Affiliation(s)
- Yue Wang
- Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Out Ring Road No. 378 Guangzhou University Town, Guangzhou, 510006, China.,School of Science, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Kaigui Zhu
- Department of physics, Beihang University, Beijing, 100191, China
| | - Qingyi Shao
- Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Out Ring Road No. 378 Guangzhou University Town, Guangzhou, 510006, China.
| |
Collapse
|
33
|
Zhang F. Comparative theoretical study of three C 56 fullerenes, their chlorinated derivatives, and chlorofullerene oxides. COMPUT THEOR CHEM 2017. [DOI: 10.1016/j.comptc.2017.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Kawaguchi S, Takemoto M, Osaka K, Nishibori E, Moriyoshi C, Kubota Y, Kuroiwa Y, Sugimoto K. High-throughput powder diffraction measurement system consisting of multiple MYTHEN detectors at beamline BL02B2 of SPring-8. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2017; 88:085111. [PMID: 28863664 DOI: 10.1063/1.4999454] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In this study, we developed a user-friendly automatic powder diffraction measurement system for Debye-Scherrer geometry using a capillary sample at beamline BL02B2 of SPring-8. The measurement system consists of six one-dimensional solid-state (MYTHEN) detectors, a compact auto-sampler, wide-range temperature control systems, and a gas handling system. This system enables to do the automatic measurement of temperature dependence of the diffraction patterns for multiple samples. We introduced two measurement modes in the MYTHEN system and developed new attachments for the sample environment such as a gas handling system. The measurement modes and the attachments can offer in situ and/or time-resolved measurements in an extended temperature range between 25 K and 1473 K and various gas atmospheres and pressures. The results of the commissioning and performance measurements using reference materials (NIST CeO2 674b and Si 640c), V2O3 and Ti2O3, and a nanoporous coordination polymer are presented.
Collapse
Affiliation(s)
- S Kawaguchi
- Research and Utilization Division, Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - M Takemoto
- Research and Utilization Division, Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - K Osaka
- Industrial Application Division, Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - E Nishibori
- Faculty of Pure and Applied Sciences, TIMS and CiRfSE, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - C Moriyoshi
- Graduate School of Science, Hiroshima University, Higashihiroshima, Hiroshima 739-8526, Japan
| | - Y Kubota
- Department of Physical Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Y Kuroiwa
- Graduate School of Science, Hiroshima University, Higashihiroshima, Hiroshima 739-8526, Japan
| | - K Sugimoto
- Research and Utilization Division, Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| |
Collapse
|
35
|
4-Nitrophenol Reduction by a Single Platinum Palladium Nanocube Caged within a Nitrogen-Doped Hollow Carbon Nanosphere. ChemCatChem 2017. [DOI: 10.1002/cctc.201601364] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
36
|
Dolyniuk JA, Zaikina JV, Kaseman DC, Sen S, Kovnir K. Breaking the Tetra-Coordinated Framework Rule: New Clathrate Ba8
M
24
P28+δ
(M
=Cu/Zn). Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Juli-Anna Dolyniuk
- Department of Chemistry; The University of California, Davis; One Shields Avenue Davis CA 95616 USA
| | - Julia V. Zaikina
- Department of Chemistry; The University of California, Davis; One Shields Avenue Davis CA 95616 USA
| | - Derrick C. Kaseman
- Department of Materials Science and Engineering; The University of California, Davis; One Shields Avenue Davis CA 95616 USA
| | - Sabyasachi Sen
- Department of Materials Science and Engineering; The University of California, Davis; One Shields Avenue Davis CA 95616 USA
| | - Kirill Kovnir
- Department of Chemistry; The University of California, Davis; One Shields Avenue Davis CA 95616 USA
| |
Collapse
|
37
|
Dolyniuk JA, Zaikina JV, Kaseman DC, Sen S, Kovnir K. Breaking the Tetra-Coordinated Framework Rule: New Clathrate Ba8
M
24
P28+δ
(M
=Cu/Zn). Angew Chem Int Ed Engl 2017; 56:2418-2422. [DOI: 10.1002/anie.201611510] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Juli-Anna Dolyniuk
- Department of Chemistry; The University of California, Davis; One Shields Avenue Davis CA 95616 USA
| | - Julia V. Zaikina
- Department of Chemistry; The University of California, Davis; One Shields Avenue Davis CA 95616 USA
| | - Derrick C. Kaseman
- Department of Materials Science and Engineering; The University of California, Davis; One Shields Avenue Davis CA 95616 USA
| | - Sabyasachi Sen
- Department of Materials Science and Engineering; The University of California, Davis; One Shields Avenue Davis CA 95616 USA
| | - Kirill Kovnir
- Department of Chemistry; The University of California, Davis; One Shields Avenue Davis CA 95616 USA
| |
Collapse
|
38
|
Mu L, Bao X, Yang S, Kong X. Dimetallofullerene M2@C100 or carbide cluster fullerene M2C2@C98 (M = La, Y, and Sc): which ones are more stable? RSC Adv 2017. [DOI: 10.1039/c7ra00717e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The geometric and thermodynamic stability of the M2C100 (M = La, Y, and Sc) series was systematically investigated using density functional theory calculations on the level of B3LYP/6-31G(d) ∼ Lanl2dz.
Collapse
Affiliation(s)
- Lei Mu
- The State Key Laboratory of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin
- China
| | - Xiaodi Bao
- The State Key Laboratory of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin
- China
| | - Shumei Yang
- The State Key Laboratory of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin
- China
| | - Xianglei Kong
- The State Key Laboratory of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin
- China
| |
Collapse
|
39
|
Xiao J, Pan X, Zhang F, Li H, Bao X. Size-dependence of carbon nanotube confinement in catalysis. Chem Sci 2017; 8:278-283. [PMID: 28616131 PMCID: PMC5458720 DOI: 10.1039/c6sc02298g] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/05/2016] [Indexed: 12/15/2022] Open
Abstract
An increasing number of studies have demonstrated that confinement within carbon nanotubes (CNTs) provides an effective approach for the modulation of catalysis. It was generally predicted that confinement became stronger with a decreasing diameter of CNTs. However, our present study here overturns the previous expectation: the influence on catalysis is not monotonic. Instead, it exhibits a volcano relationship with CNT diameter. Taking Pt catalyzing O2 conversion and Re catalyzing N2 conversion as probes using density functional theory, we show that only within tubes with an i.d. of ∼1 nm can the activity of metal clusters be enhanced to its maximum. Furthermore, confinement only enhances the catalytic activity of metals with strong intrinsic binding with reactants, whereas it is suppressed for those with weak binding. These findings shed further light on the fundamental effects of confinement on catalysis, and could guide more rational design of confined catalysts.
Collapse
Affiliation(s)
- Jianping Xiao
- State Key Laboratory of Catalysis , Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Zhongshan Road 457 , Dalian 116023 , P. R. China . ;
| | - Xiulian Pan
- State Key Laboratory of Catalysis , Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Zhongshan Road 457 , Dalian 116023 , P. R. China . ;
| | - Fan Zhang
- State Key Laboratory of Catalysis , Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Zhongshan Road 457 , Dalian 116023 , P. R. China . ;
| | - Haobo Li
- State Key Laboratory of Catalysis , Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Zhongshan Road 457 , Dalian 116023 , P. R. China . ;
| | - Xinhe Bao
- State Key Laboratory of Catalysis , Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Zhongshan Road 457 , Dalian 116023 , P. R. China . ;
| |
Collapse
|
40
|
Song XN, Wang GW, Ma Y, Jiang SZ, Yue WW, Wang CK, Luo Y. Theoretical Identification of Three C66 Fullerene Isomers and Related Chlorinated Derivatives by X-ray Photoelectron Spectroscopy and Near-edge X-ray Absorption Fine Structure Spectroscopy. J Phys Chem A 2016; 120:9932-9940. [DOI: 10.1021/acs.jpca.6b09805] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiu-Neng Song
- School
of Physics and Electronics, Shandong Normal University, 250014 Jinan, People’s Republic of China
| | - Guang-Wei Wang
- School
of Physics and Electronics, Shandong Normal University, 250014 Jinan, People’s Republic of China
| | - Yong Ma
- School
of Physics and Electronics, Shandong Normal University, 250014 Jinan, People’s Republic of China
- Division
of Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, S-106 91 Stockholm, Sweden
| | - Shou-Zhen Jiang
- School
of Physics and Electronics, Shandong Normal University, 250014 Jinan, People’s Republic of China
| | - Wei-Wei Yue
- School
of Physics and Electronics, Shandong Normal University, 250014 Jinan, People’s Republic of China
| | - Chuan-Kui Wang
- School
of Physics and Electronics, Shandong Normal University, 250014 Jinan, People’s Republic of China
| | - Yi Luo
- Division
of Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, S-106 91 Stockholm, Sweden
- Department
of Chemical Physics, University of Science and Technology of China, 230026 Hefei, People’s Republic of China
| |
Collapse
|
41
|
Shinohara H. Another big discovery-metallofullerenes. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:rsta.2015.0325. [PMID: 27501973 DOI: 10.1098/rsta.2015.0325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/17/2016] [Indexed: 05/19/2023]
Abstract
Several days after the first experimental observation of the 'magic number' soccerball-shaped C60 in a laser-vaporized cluster beam mass spectrum by Kroto and co-workers (Heath et al 1985 J. Am. Chem. Soc. 107, 7779-7780. (doi:10.1021/ja00311a102)) they also found a magic number feature owing to La@C60 in a mass spectrum prepared by laser vaporization of a LaCl3-impregnated graphite rod. With the advent of macroscopic synthesis and the following successful separation and purification of metallofullerenes, both experimental and theoretical studies of metallofullerenes have developed quite rapidly to date so as to elucidate their structural, electronic, magnetic and transport properties. Furthermore, a bottom-up closed network growth mechanism has experimentally been shown to play a crucial role in generating various types of metallofullerenes.This article is part of the themed issue 'Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene'.
Collapse
Affiliation(s)
- Hisanori Shinohara
- Department of Chemistry and Institute for Advanced Research, Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|
42
|
Li QZ, Zheng JJ, He L, Nagase S, Zhao X. Stabilization of a Chlorinated #4348C66:C2v Cage by Encapsulating Monometal Species: Coordination between Metal and Double Hexagon-Condensed Pentalenes. Inorg Chem 2016; 55:7667-75. [DOI: 10.1021/acs.inorgchem.6b01134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qiao-Zhi Li
- Institute for Chemical
Physics and Department of Chemistry, School of Science, State Key
Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049, China
| | - Jia-Jia Zheng
- Institute for Chemical
Physics and Department of Chemistry, School of Science, State Key
Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049, China
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| | - Ling He
- Institute for Chemical
Physics and Department of Chemistry, School of Science, State Key
Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049, China
| | - Shigeru Nagase
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| | - Xiang Zhao
- Institute for Chemical
Physics and Department of Chemistry, School of Science, State Key
Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
43
|
Gao FW, Xu HL, Su ZM. The inner-induced effects of YCN in C76 on the structures and nonlinear optical properties. J Mol Model 2016; 22:174. [PMID: 27383610 DOI: 10.1007/s00894-016-3040-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/20/2016] [Indexed: 11/27/2022]
Abstract
Very recently, an unprecedented novel monometallic cluster of fullerenes entrapping a yttrium cyanide (YCN) cluster inside a popular C82 cage YCN@Cs(6)-C82 was synthesized and characterized. Inspired by this investigation, four non-IPR YCN@C1(17459)-C76, YCN@C2v(19138)-C76, YCN@C2(17646)-C76, and YCN@C1(17894)-C76 (1, 2, 3, and 4) containing a pair of adjacent pentagons are designed to explore the encapsulated molecular effect on their interaction energies and nonlinear optical properties. The interaction energy (E int) values of 1, 2, 3, and 4 are -481.35 (1), -477.91 (2), -482.04 (3), -482.69 (4) kcal mol(-1), respectively, which shows that the E int value of 4 is the largest. Furthermore, the electron-transfer is mainly from the YCN to C76 cage. When YCN is encapsulated into C76 cage, we can find that the α0 values of the four molecules are very close, ranging from 6.50 × 10(2) to 6.65 × 10(2) au. Significantly, the first hyperpolarizabilities are in relation to the encapsulated molecular: 1.63 × 10(3) (1) > 8.03 × 10(2) (2) > 7.76 × 10(2) (4) > 4.86 × 10(2) au (3), the results show that the βtot value of 1 is the largest. Besides this, the encapsulation of the YCN to C76 cage brings some distinctive changes in its UV-vis spectra along with its other electronic properties that might be used by the experimentalists to develop the potential nonlinear optical nanomaterials based on endohedral metallofullerenes.
Collapse
Affiliation(s)
- Feng-Wei Gao
- Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Hong-Liang Xu
- Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun, 130024, China.
| | - Zhong-Min Su
- Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
44
|
Gan LH, Lei D, Fowler PW. Structural interconnections and the role of heptagonal rings in endohedral trimetallic nitride template fullerenes. J Comput Chem 2016; 37:1907-13. [PMID: 27282122 DOI: 10.1002/jcc.24407] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 04/14/2016] [Accepted: 04/15/2016] [Indexed: 01/28/2023]
Abstract
Recent experiments indicate that fullerene isomers outside the classical definition can also encapsulate metallic atoms or clusters to form endohedral metallofullerenes. Our systematic study using DFT calculations, suggests that many heptagon-including nonclassical trimetallic nitride template fullerenes are similar in stability to their classical counterparts, and that conversion between low-energy nonclassical and classical parent cages via Endo-Kroto insertion/extrusion of C2 units and Stone-Wales isomerization may facilitate the formation of endohedral trimetallic nitride fullerenes. Close structural connections are found between favored isomers of trimetallic nitride template fullerenes from C78 to C82 . It appears that the lower symmetry and local deformations associated with introduction of a heptagonal ring favor encapsulation of intrinsically less symmetrical mixed metal nitride clusters. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Li-Hua Gan
- School of Chemistry & Chemical Engineering, Southwest University, Chongqing, 400715, China.,Department of Chemistry, Sheffield University, Sheffield S3 7HF, United Kingdom
| | - Dan Lei
- School of Chemistry & Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Patrick W Fowler
- Department of Chemistry, Sheffield University, Sheffield S3 7HF, United Kingdom
| |
Collapse
|
45
|
Song YD, Wang L, Wu LM. Theoretical study of the structures and first hyperpolarizabilities of C60Cl n and Li@C60Cl n (n = 4, 6, 8, 10). J Mol Model 2016; 22:137. [PMID: 27188724 DOI: 10.1007/s00894-016-2999-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/24/2016] [Indexed: 11/24/2022]
Abstract
We recently reported (Song Y-D et al., 2016, J Mol Model 22:50) that doping with Li greatly affects the static first hyperpolarizability of C60Cl2. In this work, with a view to creating nonlinear optical materials with high thermodynamic stability and wide transparent regions, a series of Li@C60Cl n (n = 4, 6, 8, 10) were designed. The structures, electrostatic potentials, electronic structures, absorption spectra, and linear and nonlinear optical properties of C60Cl n and Li@C60Cl n were systematically investigated using density functional theory (DFT) methods. The results of our calculations indicated that the stability of these molecules decreases in the order Li@C60Cl10 > Li@C60Cl8 > Li@C60Cl6 > Li@C60Cl4. It is clear that the number of Cl atoms greatly influences the stability of Li@C60Cl n . Li@C60Cl n showed greater thermodynamic stability than Li@C60Cl2. We also investigated the first hyperpolarizabilities of Li@C60Cl n and found them to be 2973, 3640, 4307, and 2627 au for n = 4, 6, 8, and 10, respectively-higher than that of Li@C60Cl2. Finally, we noted that the transparent region could be modulated by increasing the number of Cl atoms: Li@C60Cl n possess wider transparent regions than that of Li@C60Cl2. We therefore believe that this study has highlighted an effective method for designing nonlinear optical materials with high thermodynamic stability and wide transparent regions.
Collapse
Affiliation(s)
- Yao-Dong Song
- College of Mathematics and Physics, Fujian University of Technology, Fuzhou, Fujian, 350118, People's Republic of China.
| | - Liang Wang
- School of Humanities, Fujian University of Technology, Fuzhou, Fujian, 350118, People's Republic of China
| | - Li-Ming Wu
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, People's Republic of China.
| |
Collapse
|
46
|
Miralrio A, Sansores LE. On the search of stable, aromatic and ionic endohedral compounds of C28: A theoretical study. COMPUT THEOR CHEM 2016. [DOI: 10.1016/j.comptc.2016.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
47
|
Zhang Z, Liu X, Yu J, Hang Y, Li Y, Guo Y, Xu Y, Sun X, Zhou J, Guo W. Tunable electronic and magnetic properties of two-dimensional materials and their one-dimensional derivatives. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2016; 6:324-350. [PMID: 27818710 PMCID: PMC5069645 DOI: 10.1002/wcms.1251] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 11/16/2022]
Abstract
Low‐dimensional materials exhibit many exceptional properties and functionalities which can be efficiently tuned by externally applied force or fields. Here we review the current status of research on tuning the electronic and magnetic properties of low‐dimensional carbon, boron nitride, metal‐dichalcogenides, phosphorene nanomaterials by applied engineering strain, external electric field and interaction with substrates, etc, with particular focus on the progress of computational methods and studies. We highlight the similarities and differences of the property modulation among one‐ and two‐dimensional nanomaterials. Recent breakthroughs in experimental demonstration of the tunable functionalities in typical nanostructures are also presented. Finally, prospective and challenges for applying the tunable properties into functional devices are discussed. WIREs Comput Mol Sci 2016, 6:324–350. doi: 10.1002/wcms.1251 For further resources related to this article, please visit the WIREs website. Conflict of interest: The authors have declared no conflicts of interest for this article.
Collapse
Affiliation(s)
- Zhuhua Zhang
- State Key Laboratory of Mechanics and Control for Mechanical Structures and Key Laboratory for Intelligent Nano Materials and Devices (MOE) Nanjing University of Aeronautics and Astronautics Nanjing China
| | - Xiaofei Liu
- State Key Laboratory of Mechanics and Control for Mechanical Structures and Key Laboratory for Intelligent Nano Materials and Devices (MOE) Nanjing University of Aeronautics and Astronautics Nanjing China
| | - Jin Yu
- State Key Laboratory of Mechanics and Control for Mechanical Structures and Key Laboratory for Intelligent Nano Materials and Devices (MOE) Nanjing University of Aeronautics and Astronautics Nanjing China
| | - Yang Hang
- State Key Laboratory of Mechanics and Control for Mechanical Structures and Key Laboratory for Intelligent Nano Materials and Devices (MOE) Nanjing University of Aeronautics and Astronautics Nanjing China
| | - Yao Li
- State Key Laboratory of Mechanics and Control for Mechanical Structures and Key Laboratory for Intelligent Nano Materials and Devices (MOE) Nanjing University of Aeronautics and Astronautics Nanjing China
| | - Yufeng Guo
- State Key Laboratory of Mechanics and Control for Mechanical Structures and Key Laboratory for Intelligent Nano Materials and Devices (MOE) Nanjing University of Aeronautics and Astronautics Nanjing China
| | - Ying Xu
- State Key Laboratory of Mechanics and Control for Mechanical Structures and Key Laboratory for Intelligent Nano Materials and Devices (MOE) Nanjing University of Aeronautics and Astronautics Nanjing China
| | - Xu Sun
- State Key Laboratory of Mechanics and Control for Mechanical Structures and Key Laboratory for Intelligent Nano Materials and Devices (MOE) Nanjing University of Aeronautics and Astronautics Nanjing China
| | - Jianxin Zhou
- State Key Laboratory of Mechanics and Control for Mechanical Structures and Key Laboratory for Intelligent Nano Materials and Devices (MOE) Nanjing University of Aeronautics and Astronautics Nanjing China
| | - Wanlin Guo
- State Key Laboratory of Mechanics and Control for Mechanical Structures and Key Laboratory for Intelligent Nano Materials and Devices (MOE) Nanjing University of Aeronautics and Astronautics Nanjing China
| |
Collapse
|
48
|
Wang Y, Díaz-Tendero S, Martín F, Alcamí M. Key Structural Motifs To Predict the Cage Topology in Endohedral Metallofullerenes. J Am Chem Soc 2016; 138:1551-60. [DOI: 10.1021/jacs.5b10591] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yang Wang
- Departamento
de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Cantoblanco, 28049 Madrid, Spain
| | - Sergio Díaz-Tendero
- Departamento
de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Condensed
Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Fernando Martín
- Departamento
de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Cantoblanco, 28049 Madrid, Spain
- Condensed
Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Manuel Alcamí
- Departamento
de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
49
|
Souza N, Lasserre F, Blickley A, Zeiger M, Suárez S, Duarte M, Presser V, Mücklich F. Upcycling spent petroleum cracking catalyst: pulsed laser deposition of single-wall carbon nanotubes and silica nanowires. RSC Adv 2016. [DOI: 10.1039/c6ra15479d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
From waste to single-wall carbon nanotubes and silica nanowires: the first high-tech outlet for FC3R.
Collapse
Affiliation(s)
- N. Souza
- Department of Materials Science
- Saarland University
- 66123 Saarbrücken
- Germany
| | - F. Lasserre
- Department of Materials Science
- Saarland University
- 66123 Saarbrücken
- Germany
| | - A. Blickley
- Department of Materials Science
- Saarland University
- 66123 Saarbrücken
- Germany
- Department of Materials Science and Engineering
| | - M. Zeiger
- Department of Materials Science
- Saarland University
- 66123 Saarbrücken
- Germany
- INM – Leibniz Institute for New Materials
| | - S. Suárez
- Department of Materials Science
- Saarland University
- 66123 Saarbrücken
- Germany
| | - M. Duarte
- Engineering and Technology School
- Catholic University of Uruguay
- 11600 Montevideo
- Uruguay
| | - V. Presser
- Department of Materials Science
- Saarland University
- 66123 Saarbrücken
- Germany
- INM – Leibniz Institute for New Materials
| | - F. Mücklich
- Department of Materials Science
- Saarland University
- 66123 Saarbrücken
- Germany
| |
Collapse
|
50
|
Tlahuice-Flores A. New insight into the structure of the C60Sc20 cluster: bonding, vibrational and optical properties. Phys Chem Chem Phys 2016; 18:12434-7. [PMID: 27105055 DOI: 10.1039/c6cp01206j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this communication a systematic study of bonding, IR, Raman and absorption spectra has been carried out for a new stable C60Sc20 cluster.
Collapse
Affiliation(s)
- A. Tlahuice-Flores
- CICFIM-Facultad de Ciencias Físico-Matemáticas
- Universidad Autónoma de Nuevo León
- San Nicolás de los Garza
- Mexico
| |
Collapse
|