1
|
Moosmayer T, Kiszka KA, Westphal V, Pape JK, Leutenegger M, Steffens H, Grant SGN, Sahl SJ, Hell SW. MINFLUX fluorescence nanoscopy in biological tissue. Proc Natl Acad Sci U S A 2024; 121:e2422020121. [PMID: 39705311 DOI: 10.1073/pnas.2422020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/29/2024] [Indexed: 12/22/2024] Open
Abstract
Optical imaging access to nanometer-level protein distributions in intact tissue is a highly sought-after goal, as it would provide visualization in physiologically relevant contexts. Under the unfavorable signal-to-background conditions of increased absorption and scattering of the excitation and fluorescence light in the complex tissue sample, superresolution fluorescence microscopy methods are severely challenged in attaining precise localization of molecules. We reasoned that the typical use of a confocal detection pinhole in MINFLUX nanoscopy, suppressing background and providing optical sectioning, should facilitate the detection and resolution of single fluorophores even amid scattering and optically challenging tissue environments. Here, we investigated the performance of MINFLUX imaging for different synaptic targets and fluorescent labels in tissue sections of the mouse brain. Single fluorophores were localized with a precision of <5 nm at up to 80 µm sample depth. MINFLUX imaging in two color channels allowed to probe PSD95 localization relative to the spine head morphology, while also visualizing presynaptic vesicular glutamate transporter (VGlut) 1 clustering and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) clustering at the postsynapse. Our two-dimensional (2D) and three-dimensional (3D) two-color MINFLUX results in tissue, with <10 nm 3D fluorophore localization, open up broad avenues to investigate protein distributions on the single-synapse level in fixed and living brain slices.
Collapse
Affiliation(s)
- Thea Moosmayer
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
- Georg-August University School of Science, University of Göttingen, Göttingen 37077, Germany
| | - Kamila A Kiszka
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Volker Westphal
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Jasmin K Pape
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Marcel Leutenegger
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Heinz Steffens
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Seth G N Grant
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - Steffen J Sahl
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Stefan W Hell
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg 69120, Germany
| |
Collapse
|
2
|
Leana-Sandoval G, Kolli AV, Sandoval MA, Saavedra E, Li KH, Chen LY, Burlingame AL, Ramírez-Franco J, Díaz-Alonso J. The VGCC auxiliary subunit α2δ1 is an extracellular GluA1 interactor and regulates LTP, spatial memory, and seizure susceptibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.02.626379. [PMID: 39677598 PMCID: PMC11642997 DOI: 10.1101/2024.12.02.626379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Activity-dependent synaptic accumulation of AMPA receptors (AMPARs) and subsequent long-term synaptic strengthening underlie different forms of learning and memory. The AMPAR subunit GluA1 amino-terminal domain is essential for synaptic docking of AMPAR during LTP, but the precise mechanisms involved are not fully understood. Using unbiased proteomics, we identified the epilepsy and intellectual disability-associated VGCC auxiliary subunit α2δ1 as a candidate extracellular AMPAR slot. Presynaptic α2δ1 deletion in CA3 affects synaptic AMPAR incorporation during long-term potentiation, but not basal synaptic transmission, at CA1 synapses. Consistently, mice lacking α2δ1 in CA3 display a specific impairment in CA1-dependent spatial memory, but not in memory tests involving other cortical regions. Decreased seizure susceptibility in mice lacking α2δ1 in CA3 suggests a regulation of circuit excitability by α2δ1/AMPAR interactions. Our study sheds light on the regulation of activity-dependent AMPAR trafficking, and highlights the synaptic organizing roles of α2δ1.
Collapse
Affiliation(s)
- Gerardo Leana-Sandoval
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92617, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| | - Ananth V. Kolli
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92617, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| | - Matthew A. Sandoval
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92617, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| | - Emily Saavedra
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92617, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| | - Kathy H. Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lulu Y. Chen
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92617, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| | - Alma L. Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jorge Ramírez-Franco
- Institut de Neurosciences de la Timone, Aix-Marseille Université (AMU) & CNRS, UMR7289, 13005, Marseille, France
| | - Javier Díaz-Alonso
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92617, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| |
Collapse
|
3
|
Chimura T, Manabe T. Ca2+-PP2B-PSD-95 axis: A novel regulatory mechanism of the phosphorylation state of Serine 295 of PSD-95. PLoS One 2024; 19:e0313441. [PMID: 39509447 PMCID: PMC11542788 DOI: 10.1371/journal.pone.0313441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024] Open
Abstract
The phosphorylation state of PSD-95 at Serine 295 (Ser295) is important for the regulation of synaptic plasticity. Although the activation of NMDA receptors (NMDARs), which initiates an intracellular calcium signaling cascade, decreases phosphorylated Ser295 (pS295) of PSD-95, the molecular mechanisms are not fully understood. We found that the calcium-activated protein phosphatase PP2B dephosphorylated pS295 not only in basal conditions but also in NMDAR-activated conditions in cultured neurons. The biochemical assay also revealed the dephosphorylation of pS295 by PP2B, consistently supporting the results obtained using neurons. The newly identified calcium signaling cascade "Ca2+-PP2B-PSD-95 axis" would play an important role in the molecular mechanism for NMDA receptor-dependent plasticity.
Collapse
Affiliation(s)
- Takahiko Chimura
- Department of Basic Medical Sciences, Institute of Medical Science, Division of Neuronal Network, University of Tokyo, Tokyo, Japan
| | - Toshiya Manabe
- Department of Basic Medical Sciences, Institute of Medical Science, Division of Neuronal Network, University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Yang F, You H, Mizui T, Ishikawa Y, Takao K, Miyakawa T, Li X, Bai T, Xia K, Zhang L, Pang D, Xu Y, Zhu C, Kojima M, Lu B. Inhibiting proBDNF to mature BDNF conversion leads to ASD-like phenotypes in vivo. Mol Psychiatry 2024; 29:3462-3474. [PMID: 38762692 DOI: 10.1038/s41380-024-02595-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/20/2024]
Abstract
Autism Spectrum Disorders (ASD) comprise a range of early age-onset neurodevelopment disorders with genetic heterogeneity. Most ASD related genes are involved in synaptic function, which is regulated by mature brain-derived neurotrophic factor (mBDNF) and its precursor proBDNF in a diametrically opposite manner: proBDNF inhibits while mBDNF potentiates synapses. Here we generated a knock-in mouse line (BDNFmet/leu) in which the conversion of proBDNF to mBDNF is attenuated. Biochemical experiments revealed residual mBDNF but excessive proBDNF in the brain. Similar to other ASD mouse models, the BDNFmet/leu mice showed reduced dendritic arborization, altered spines, and impaired synaptic transmission and plasticity in the hippocampus. They also exhibited ASD-like phenotypes, including stereotypical behaviors and deficits in social interaction. Moreover, the plasma proBDNF/mBDNF ratio was significantly increased in ASD patients compared to normal children in a case-control study. Thus, deficits in proBDNF to mBDNF conversion in the brain may contribute to ASD-like behaviors, and plasma proBDNF/mBDNF ratio may be a potential biomarker for ASD.
Collapse
Affiliation(s)
- Feng Yang
- China National Clinical Research Center for Neurological Diseases, Basic and Translational Medicine Center, Beijing Tiantan Hospital, Capital Medical University, 100070, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100070, Beijing, China
| | - He You
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100070, Beijing, China
- School of Pharmaceutical Sciences and IDG/McGovern Institute for Brain Research, Tsinghua University, 100084, Beijing, China
| | - Toshiyuki Mizui
- Core Research for Evolutional Science and Technology (CREST), Kawaguchi, 332-0012, Japan
| | - Yasuyuki Ishikawa
- Department of Systems Life Engineering, Maebashi Institute of Technology, Maebashi, 371-0816, Japan
| | - Keizo Takao
- Core Research for Evolutional Science and Technology (CREST), Kawaguchi, 332-0012, Japan
- Life Science Research Center, University of Toyama, Toyama, 930-0194, Japan
- Department of Behavioral Physiology, Graduate School of Innovative Life Science, University of Toyama, Toyama, 930-0194, Japan
| | - Tsuyoshi Miyakawa
- Core Research for Evolutional Science and Technology (CREST), Kawaguchi, 332-0012, Japan
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Xiaofei Li
- China National Clinical Research Center for Neurological Diseases, Basic and Translational Medicine Center, Beijing Tiantan Hospital, Capital Medical University, 100070, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100070, Beijing, China
| | - Ting Bai
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Kun Xia
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Lingling Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Dizhou Pang
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Masami Kojima
- Core Research for Evolutional Science and Technology (CREST), Kawaguchi, 332-0012, Japan.
- Biomedical Department of Applied Bioscience, College of Bioscience and Chemistry, Kanazawa Institute of Technology (KIT), Ishikawa, 924-0838, Japan.
| | - Bai Lu
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100070, Beijing, China.
- School of Pharmaceutical Sciences and IDG/McGovern Institute for Brain Research, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
5
|
Tripathi G, Dourson A, Wayland J, Khanna S, Hoffmann M, Govindarajan T, Morales FM, Queme L, Millay D, Jankowski MP. Synaptic-like coupling of macrophages to myofibers regulates muscle repair. RESEARCH SQUARE 2024:rs.3.rs-5290399. [PMID: 39574892 PMCID: PMC11581056 DOI: 10.21203/rs.3.rs-5290399/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Peripheral injury responses essential for muscle repair and nociception require complex interactions of target tissues, immune cells and primary sensory neurons. Nociceptors and myofibers both react robustly to signals generated from circulating immune cells, which promote repair, growth, and regeneration of muscle while simultaneously modulating peripheral sensitization. Here, we found that macrophages form a synaptic-like contact with myofibers to hasten repair after acute incision injury and to facilitate regeneration after major muscle damage. Transient chemogenetic activation of macrophages enhanced calcium dependent membrane repair, induced muscle calcium waves in vivo , elicited low level electrical activity in the muscles and enhanced myonuclear accretion. Under severe injury, macrophage activation could also modulate pain-like behaviors. This study identifies a novel mechanism by which synaptic-like functions of macrophages impacts muscle repair after tissue damage.
Collapse
|
6
|
Held RG, Liang J, Esquivies L, Khan YA, Wang C, Azubel M, Brunger AT. In-Situ Structure and Topography of AMPA Receptor Scaffolding Complexes Visualized by CryoET. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.19.619226. [PMID: 39464045 PMCID: PMC11507944 DOI: 10.1101/2024.10.19.619226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Most synapses in the brain transmit information by the presynaptic release of vesicular glutamate, driving postsynaptic depolarization through AMPA-type glutamate receptors (AMPARs). The nanometer-scale topography of synaptic AMPARs regulates response amplitude by controlling the number of receptors activated by synaptic vesicle fusion. The mechanisms controlling AMPAR topography and their interactions with postsynaptic scaffolding proteins are unclear, as is the spatial relationship between AMPARs and synaptic vesicles. Here, we used cryo-electron tomography to map the molecular topography of AMPARs and visualize their in-situ structure. Clustered AMPARs form structured complexes with postsynaptic scaffolding proteins resolved by sub-tomogram averaging. Sub-synaptic topography mapping reveals the presence of AMPAR nanoclusters with exclusion zones beneath synaptic vesicles. Our molecular-resolution maps visualize the predominant information transfer path in the nervous system.
Collapse
Affiliation(s)
- Richard G. Held
- Department of Molecular and Cellular Physiology; Stanford University, Stanford, United States
- Department of Neurology and Neurological Sciences; Stanford University, Stanford, United States
- Department of Structural Biology; Stanford University, Stanford, United States
- Department of Photon Science; Stanford University, Stanford, United States
- Howard Hughes Medical Institute; Stanford University, Stanford, United States
| | - Jiahao Liang
- Department of Molecular and Cellular Physiology; Stanford University, Stanford, United States
- Department of Neurology and Neurological Sciences; Stanford University, Stanford, United States
- Department of Structural Biology; Stanford University, Stanford, United States
- Department of Photon Science; Stanford University, Stanford, United States
- Howard Hughes Medical Institute; Stanford University, Stanford, United States
| | - Luis Esquivies
- Department of Molecular and Cellular Physiology; Stanford University, Stanford, United States
- Department of Neurology and Neurological Sciences; Stanford University, Stanford, United States
- Department of Structural Biology; Stanford University, Stanford, United States
- Department of Photon Science; Stanford University, Stanford, United States
- Howard Hughes Medical Institute; Stanford University, Stanford, United States
| | - Yousuf A. Khan
- Department of Molecular and Cellular Physiology; Stanford University, Stanford, United States
- Department of Neurology and Neurological Sciences; Stanford University, Stanford, United States
- Department of Structural Biology; Stanford University, Stanford, United States
- Department of Photon Science; Stanford University, Stanford, United States
- Howard Hughes Medical Institute; Stanford University, Stanford, United States
| | - Chuchu Wang
- Department of Molecular and Cellular Physiology; Stanford University, Stanford, United States
- Department of Neurology and Neurological Sciences; Stanford University, Stanford, United States
- Department of Structural Biology; Stanford University, Stanford, United States
- Department of Photon Science; Stanford University, Stanford, United States
- Howard Hughes Medical Institute; Stanford University, Stanford, United States
| | - Maia Azubel
- Howard Hughes Medical Institute; Stanford University, Stanford, United States
| | - Axel T. Brunger
- Department of Molecular and Cellular Physiology; Stanford University, Stanford, United States
- Department of Neurology and Neurological Sciences; Stanford University, Stanford, United States
- Department of Structural Biology; Stanford University, Stanford, United States
- Department of Photon Science; Stanford University, Stanford, United States
- Howard Hughes Medical Institute; Stanford University, Stanford, United States
- Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University, Stanford, United States
| |
Collapse
|
7
|
Qneibi M, Bdir S, Bdair M, Aldwaik SA, Heeh M, Sandouka D, Idais T. Exploring the role of AMPA receptor auxiliary proteins in synaptic functions and diseases. FEBS J 2024. [PMID: 39394632 DOI: 10.1111/febs.17287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/21/2024] [Accepted: 09/20/2024] [Indexed: 10/13/2024]
Abstract
α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) ionotropic glutamate receptors (AMPARs) mediate rapid excitatory synaptic transmission in the mammalian brain, primarily driven by the neurotransmitter glutamate. The modulation of AMPAR activity, particularly calcium-permeable AMPARs (CP-AMPARs), is crucially influenced by various auxiliary subunits. These subunits are integral membrane proteins that bind to the receptor's core and modify its functional properties, including ion channel kinetics and receptor trafficking. This review comprehensively catalogs all known AMPAR auxiliary proteins, providing vital insights into the biochemical mechanisms governing synaptic modulation and the specific impact of CP-AMPARs compared to their calcium-impermeable AMPA receptor (CI-AMPARs). Understanding the complex interplay between AMPARs and their auxiliary subunits in different brain regions is essential for elucidating their roles in cognitive functions such as learning and memory. Importantly, alterations in these auxiliary proteins' expression, function or interactions have been implicated in various neurological disorders. Aberrant signaling through CP-AMPARs, in particular, is associated with severe synaptic dysfunctions across neurodevelopmental, neurodegenerative and psychiatric conditions. Targeting the distinct properties of AMPAR-auxiliary subunit complexes, especially those involving CP-AMPARs, could disclose new therapeutic strategies, potentially allowing for more precise interventions in treating complex neuronal disorders.
Collapse
Affiliation(s)
- Mohammad Qneibi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Sosana Bdir
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mohammad Bdair
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Samia Ammar Aldwaik
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | | | - Dana Sandouka
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Tala Idais
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
8
|
Ivica J, Kejzar N, Ho H, Stockwell I, Kuchtiak V, Scrutton AM, Nakagawa T, Greger IH. Proton-triggered rearrangement of the AMPA receptor N-terminal domains impacts receptor kinetics and synaptic localization. Nat Struct Mol Biol 2024; 31:1601-1613. [PMID: 39138332 PMCID: PMC11479944 DOI: 10.1038/s41594-024-01369-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/08/2024] [Indexed: 08/15/2024]
Abstract
AMPA glutamate receptors (AMPARs) are ion channel tetramers that mediate the majority of fast excitatory synaptic transmission. They are composed of four subunits (GluA1-GluA4); the GluA2 subunit dominates AMPAR function throughout the forebrain. Its extracellular N-terminal domain (NTD) determines receptor localization at the synapse, ensuring reliable synaptic transmission and plasticity. This synaptic anchoring function requires a compact NTD tier, stabilized by a GluA2-specific NTD interface. Here we show that low pH conditions, which accompany synaptic activity, rupture this interface. All-atom molecular dynamics simulations reveal that protonation of an interfacial histidine residue (H208) centrally contributes to NTD rearrangement. Moreover, in stark contrast to their canonical compact arrangement at neutral pH, GluA2 cryo-electron microscopy structures exhibit a wide spectrum of NTD conformations under acidic conditions. We show that the consequences of this pH-dependent conformational control are twofold: rupture of the NTD tier slows recovery from desensitized states and increases receptor mobility at mouse hippocampal synapses. Therefore, a proton-triggered NTD switch will shape both AMPAR location and kinetics, thereby impacting synaptic signal transmission.
Collapse
Affiliation(s)
- Josip Ivica
- Neurobiology Division, Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
| | - Nejc Kejzar
- Neurobiology Division, Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Hinze Ho
- Neurobiology Division, Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Imogen Stockwell
- Neurobiology Division, Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
| | - Viktor Kuchtiak
- Neurobiology Division, Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Alexander M Scrutton
- Neurobiology Division, Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
| | - Terunaga Nakagawa
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Ingo H Greger
- Neurobiology Division, Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
9
|
Leitch B. Molecular Mechanisms Underlying the Generation of Absence Seizures: Identification of Potential Targets for Therapeutic Intervention. Int J Mol Sci 2024; 25:9821. [PMID: 39337309 PMCID: PMC11432152 DOI: 10.3390/ijms25189821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Understanding the molecular mechanisms underlying the generation of absence seizures is crucial for developing effective, patient-specific treatments for childhood absence epilepsy (CAE). Currently, one-third of patients remain refractive to the antiseizure medications (ASMs), previously called antiepileptic drugs (AEDs), available to treat CAE. Additionally, these ASMs often produce serious side effects and can even exacerbate symptoms in some patients. Determining the precise cellular and molecular mechanisms directly responsible for causing this type of epilepsy has proven challenging as they appear to be complex and multifactorial in patients with different genetic backgrounds. Aberrant neuronal activity in CAE may be caused by several mechanisms that are not fully understood. Thus, dissecting the causal factors that could be targeted in the development of precision medicines without side effects remains a high priority and the ultimate goal in this field of epilepsy research. The aim of this review is to highlight our current understanding of potential causative mechanisms for absence seizure generation, based on the latest research using cutting-edge technologies. This information will be important for identifying potential targets for future therapeutic intervention.
Collapse
Affiliation(s)
- Beulah Leitch
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
10
|
Sumino A, Sumikama T, Zhao Y, Flechsig H, Umeda K, Kodera N, Konno H, Hattori M, Shibata M. High-Speed Atomic Force Microscopy Reveals Fluctuations and Dimer Splitting of the N-Terminal Domain of GluA2 Ionotropic Glutamate Receptor-Auxiliary Subunit Complex. ACS NANO 2024; 18:25018-25035. [PMID: 39180186 DOI: 10.1021/acsnano.4c06295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid glutamate receptors (AMPARs) enable rapid excitatory synaptic transmission by localizing to the postsynaptic density of glutamatergic spines. AMPARs possess large extracellular N-terminal domains (NTDs), which are crucial for AMPAR clustering at synaptic sites. However, the dynamics of NTDs and the molecular mechanism governing their synaptic clustering remain elusive. Here, we employed high-speed atomic force microscopy (HS-AFM) to directly visualize the conformational dynamics of NTDs in the GluA2 subunit complexed with TARP γ2 in lipid environments. HS-AFM videos of GluA2-γ2 in the resting and activated/open states revealed fluctuations in NTD dimers. Conversely, in the desensitized/closed state, the two NTD dimers adopted a separated conformation with less fluctuation. Notably, we observed individual NTD dimers transitioning into monomers, with extended monomeric states in the activated/open state. Molecular dynamics simulations provided further support, confirming the energetic stability of the monomeric NTD states within lipids. This NTD-dimer splitting resulted in subunit exchange between the receptors and increased the number of interaction sites with synaptic protein neuronal pentraxin 1 (NP1). Moreover, our HS-AFM studies revealed that NP1 forms a ring-shaped octamer through N-terminal disulfide bonds and binds to the tip of the NTD. These findings suggest a molecular mechanism in which NP1, upon forming an octamer, is secreted into the synaptic region and binds to the tip of the GluA2 NTD, thereby bridging and clustering multiple AMPARs. Thus, our findings illuminate the critical role of NTD dynamics in the synaptic clustering of AMPARs and contribute valuable insights into the fundamental processes of synaptic transmission.
Collapse
Affiliation(s)
- Ayumi Sumino
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Takashi Sumikama
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Yimeng Zhao
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Bioactive Small Molecules, Collaborative Innovation Center of Genetics and Development, and Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Yangpu District, Shanghai 200438, China
- Human Phenome Institute, Fudan University, Yangpu District, Shanghai 200438, China
| | - Holger Flechsig
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Kenichi Umeda
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Noriyuki Kodera
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroki Konno
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Motoyuki Hattori
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Bioactive Small Molecules, Collaborative Innovation Center of Genetics and Development, and Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Yangpu District, Shanghai 200438, China
| | - Mikihiro Shibata
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
11
|
Bats C, Coombs ID, Farrant M, Cull-Candy SG. α-Bungarotoxin labelling of AMPA receptor-associated TARPs in living neurons. Neuroscience 2024:S0306-4522(24)00440-8. [PMID: 39209103 DOI: 10.1016/j.neuroscience.2024.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/30/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
In mammalian central neurons AMPARs are clustered at glutamatergic synapses where they mediate fast excitatory transmission. In addition to four pore-forming subunits (GluA1-4), AMPARs contain auxiliary transmembrane AMPAR regulatory proteins (γ2, γ3, γ4, γ5, γ7 or γ8) whose incorporation can vary between neuron types, brain regions, and stages of development. As well as modulating the functional properties of AMPARs, these auxiliary subunits play a central role in AMPAR trafficking. Directly visualizing TARPs could therefore provide a valuable insight into mechanisms underlying these processes. Although antibodies are routinely used for the detection of surface proteins, our experience suggests anti-TARP antibodies are too bulky to access their target, possibly due to close interactions between the extracellular domains of TARP and AMPAR subunits. We therefore assessed the utility of a small monovalent probe - fluorescent α-bungarotoxin (α-Btx) - for TARP labelling in living neurons. We inserted the bungarotoxin binding site (BBS) within the extracellular domain of TARPs to enable their detection in cells exposed to fluorescent α-Btx. Focusing on the prototypical TARP γ2, we demonstrate that the small size of fluorescent α-Btx allows it to bind to the BBS-tagged TARP when associated with AMPARs. Importantly, labelled γ2 enhances AMPAR function in the same way as unmodified γ2. In living neurons, fluorescent α-Btx-labelled γ2 associates with AMPAR clusters at synapses. As a proof-of-principle, we employed our method to compare the surface trafficking of γ2 and γ7 in cerebellar stellate neurons. Our approach provides a simple way to visualize TARPs within AMPARs in living cells.
Collapse
Affiliation(s)
- Cecile Bats
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Ian D Coombs
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Mark Farrant
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| | - Stuart G Cull-Candy
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
12
|
Wan YC, Yang Y, Pang S, Kong ZL. A novel derivative of evodiamine improves cognitive impairment and synaptic integrity in AD mice. Biomed Pharmacother 2024; 177:117103. [PMID: 39018870 DOI: 10.1016/j.biopha.2024.117103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 07/19/2024] Open
Abstract
Alzheimer's disease (AD), the major cause of dementia, is a multifactoral progressive neurodegenerative disorder that currently affects over 43 million people worldwide. The interaction betweengenetic and environmental factors decides pathogenesis and pathological development. The chemical drugs designed for clinical applications on AD have not reached the expected preventive effect so far.Here, we obtained a new evodiamine (Evo) derivative, LE-42, which exhibited lower cytotoxicity in SH-SY5Y cells and HepaG2 cells than that of Evo. The LD50 of LE-42 in SH-SY5Y cells and HepaG2 cells was increased by 9 folds and 14 folds than Evo, respectively. The LE-42 also exhibited much more potent effects on anti-oxidation and anti-cytotoxicity of AβOs than Evo. The LE-42 significantly improved the working memory, spatial learning, and memory of the 3×Tg AD mice, and the pharmacodynamic dose of LE-42 on AD mice was increased by 500 folds than that of Evo. LE-42 significantly improved the Tau hyperphosphorylation, a typical pathological feature in 3×Tg AD mice. The LE-42 restored the JAK2/STAT3 pathway's dysfunction and upregulated the expression of GluN1, GluA2, SYN, and PSD95, subsequentially improving the synaptic integrity in 3×Tg mice. The activation of the JAK2/STAT3 axis by LE-42 was a possible mechanism for a therapeutic effect on the AD mice.
Collapse
Affiliation(s)
- Ying-Chun Wan
- Department of Food Science, National Taiwan Ocean University, Keelung City, Taiwan.
| | - Yajun Yang
- Beijing Key Laboratory of Active Substance Discovery and Drug Ability Evaluation, Institute of Material Medical, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Shuo Pang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences,Beijing, China.
| | - Zwe-Ling Kong
- Department of Food Science, National Taiwan Ocean University, Keelung City, Taiwan.
| |
Collapse
|
13
|
Nowacka A, Getz AM, Bessa-Neto D, Choquet D. Activity-dependent diffusion trapping of AMPA receptors as a key step for expression of early LTP. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230220. [PMID: 38853553 PMCID: PMC11343219 DOI: 10.1098/rstb.2023.0220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 06/11/2024] Open
Abstract
This review focuses on the activity-dependent diffusion trapping of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) as a crucial mechanism for the expression of early long-term potentiation (LTP), a process central to learning and memory. Despite decades of research, the precise mechanisms by which LTP induction leads to an increase in AMPAR responses at synapses have been elusive. We review the different hypotheses that have been put forward to explain the increased AMPAR responsiveness during LTP. We discuss the dynamic nature of AMPAR complexes, including their constant turnover and activity-dependent modifications that affect their synaptic accumulation. We highlight a hypothesis suggesting that AMPARs are diffusively trapped at synapses through activity-dependent interactions with protein-based binding slots in the post-synaptic density (PSD), offering a potential explanation for the increased synaptic strength during LTP. Furthermore, we outline the challenges still to be addressed before we fully understand the functional roles and molecular mechanisms of AMPAR dynamic nanoscale organization in LTP. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Agata Nowacka
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, BordeauxF-33000, France
| | - Angela M. Getz
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, BordeauxF-33000, France
- University of Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4, BordeauxF-33000, France
| | - Diogo Bessa-Neto
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, BordeauxF-33000, France
| | - Daniel Choquet
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, BordeauxF-33000, France
- University of Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4, BordeauxF-33000, France
| |
Collapse
|
14
|
Carrillo E, Montaño Romero A, Gonzalez CU, Turcu AL, Chen SR, Chen H, Pan HL, Vázquez S, Twomey EC, Jayaraman V. Memantine Inhibits Calcium-Permeable AMPA Receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601784. [PMID: 39005433 PMCID: PMC11245036 DOI: 10.1101/2024.07.02.601784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Memantine is an US Food and Drug Administration (FDA) approved drug that selectively inhibits NMDA-subtype ionotropic glutamate receptors (NMDARs) for treatment of dementia and Alzheimer's. NMDARs enable calcium influx into neurons and are critical for normal brain function. However, increasing evidence shows that calcium influx in neurological diseases is augmented by calcium-permeable AMPA-subtype ionotropic glutamate receptors (AMPARs). Here, we demonstrate that these calcium-permeable AMPARs (CP-AMPARs) are inhibited by memantine. Electrophysiology unveils that memantine inhibition of CP-AMPARs is dependent on their calcium permeability and the presence of their neuronal auxiliary subunit transmembrane AMPAR regulatory proteins (TARPs). Through cryo-electron microscopy we elucidate that memantine blocks CP-AMPAR ion channels in a unique mechanism of action from NMDARs. Furthermore, we demonstrate that memantine reverses a gain of function AMPAR mutation found in a patient with a neurodevelopmental disorder and inhibits CP-AMPARs in nerve injury. Our findings alter the paradigm for the memantine mechanism of action and provide a blueprint for therapeutic approaches targeting CP-AMPARs.
Collapse
Affiliation(s)
- Elisa Carrillo
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Alejandra Montaño Romero
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Cuauhtemoc U. Gonzalez
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Andreea L. Turcu
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l’Alimentació i Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
| | | | - Hong Chen
- MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hui-Lin Pan
- MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Santiago Vázquez
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l’Alimentació i Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - Edward C. Twomey
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- The Beckman Center for Cryo-EM at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA, 70170, USA
| | - Vasanthi Jayaraman
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| |
Collapse
|
15
|
Held RG, Liang J, Brunger AT. Nanoscale architecture of synaptic vesicles and scaffolding complexes revealed by cryo-electron tomography. Proc Natl Acad Sci U S A 2024; 121:e2403136121. [PMID: 38923992 PMCID: PMC11228483 DOI: 10.1073/pnas.2403136121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
The spatial distribution of proteins and their arrangement within the cellular ultrastructure regulates the opening of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in response to glutamate release at the synapse. Fluorescence microscopy imaging revealed that the postsynaptic density (PSD) and scaffolding proteins in the presynaptic active zone (AZ) align across the synapse to form a trans-synaptic "nanocolumn," but the relation to synaptic vesicle release sites is uncertain. Here, we employ focused-ion beam (FIB) milling and cryoelectron tomography to image synapses under near-native conditions. Improved image contrast, enabled by FIB milling, allows simultaneous visualization of supramolecular nanoclusters within the AZ and PSD and synaptic vesicles. Surprisingly, membrane-proximal synaptic vesicles, which fuse to release glutamate, are not preferentially aligned with AZ or PSD nanoclusters. These synaptic vesicles are linked to the membrane by peripheral protein densities, often consistent in size and shape with Munc13, as well as globular densities bridging the synaptic vesicle and plasma membrane, consistent with prefusion complexes of SNAREs, synaptotagmins, and complexin. Monte Carlo simulations of synaptic transmission events using biorealistic models guided by our tomograms predict that clustering AMPARs within PSD nanoclusters increases the variability of the postsynaptic response but not its average amplitude. Together, our data support a model in which synaptic strength is tuned at the level of single vesicles by the spatial relationship between scaffolding nanoclusters and single synaptic vesicle fusion sites.
Collapse
Affiliation(s)
- Richard G. Held
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA94305
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA94305
- Department of Structural Biology, Stanford University, Stanford, CA94305
- Department of Photon Science, Stanford University, Stanford, CA94305
- HHMI, Stanford University, Stanford, CA94305
| | - Jiahao Liang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA94305
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA94305
- Department of Structural Biology, Stanford University, Stanford, CA94305
- Department of Photon Science, Stanford University, Stanford, CA94305
- HHMI, Stanford University, Stanford, CA94305
| | - Axel T. Brunger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA94305
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA94305
- Department of Structural Biology, Stanford University, Stanford, CA94305
- Department of Photon Science, Stanford University, Stanford, CA94305
- HHMI, Stanford University, Stanford, CA94305
| |
Collapse
|
16
|
Stockwell I, Watson JF, Greger IH. Tuning synaptic strength by regulation of AMPA glutamate receptor localization. Bioessays 2024; 46:e2400006. [PMID: 38693811 PMCID: PMC7616278 DOI: 10.1002/bies.202400006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
Long-term potentiation (LTP) of excitatory synapses is a leading model to explain the concept of information storage in the brain. Multiple mechanisms contribute to LTP, but central amongst them is an increased sensitivity of the postsynaptic membrane to neurotransmitter release. This sensitivity is predominantly determined by the abundance and localization of AMPA-type glutamate receptors (AMPARs). A combination of AMPAR structural data, super-resolution imaging of excitatory synapses, and an abundance of electrophysiological studies are providing an ever-clearer picture of how AMPARs are recruited and organized at synaptic junctions. Here, we review the latest insights into this process, and discuss how both cytoplasmic and extracellular receptor elements cooperate to tune the AMPAR response at the hippocampal CA1 synapse.
Collapse
Affiliation(s)
- Imogen Stockwell
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Jake F. Watson
- Institute of Science and Technology, Technology (IST) Austria, Klosterneuburg, Austria
| | - Ingo H. Greger
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
17
|
Leitch B. Parvalbumin Interneuron Dysfunction in Neurological Disorders: Focus on Epilepsy and Alzheimer's Disease. Int J Mol Sci 2024; 25:5549. [PMID: 38791587 PMCID: PMC11122153 DOI: 10.3390/ijms25105549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Parvalbumin expressing (PV+) GABAergic interneurons are fast spiking neurons that provide powerful but relatively short-lived inhibition to principal excitatory cells in the brain. They play a vital role in feedforward and feedback synaptic inhibition, preventing run away excitation in neural networks. Hence, their dysfunction can lead to hyperexcitability and increased susceptibility to seizures. PV+ interneurons are also key players in generating gamma oscillations, which are synchronized neural oscillations associated with various cognitive functions. PV+ interneuron are particularly vulnerable to aging and their degeneration has been associated with cognitive decline and memory impairment in dementia and Alzheimer's disease (AD). Overall, dysfunction of PV+ interneurons disrupts the normal excitatory/inhibitory balance within specific neurocircuits in the brain and thus has been linked to a wide range of neurodevelopmental and neuropsychiatric disorders. This review focuses on the role of dysfunctional PV+ inhibitory interneurons in the generation of epileptic seizures and cognitive impairment and their potential as targets in the design of future therapeutic strategies to treat these disorders. Recent research using cutting-edge optogenetic and chemogenetic technologies has demonstrated that they can be selectively manipulated to control seizures and restore the balance of neural activity in the brains of animal models. This suggests that PV+ interneurons could be important targets in developing future treatments for patients with epilepsy and comorbid disorders, such as AD, where seizures and cognitive decline are directly linked to specific PV+ interneuron deficits.
Collapse
Affiliation(s)
- Beulah Leitch
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
18
|
Ducza L, Gaál B. The Neglected Sibling: NLRP2 Inflammasome in the Nervous System. Aging Dis 2024; 15:1006-1028. [PMID: 38722788 PMCID: PMC11081174 DOI: 10.14336/ad.2023.0926-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/26/2023] [Indexed: 05/13/2024] Open
Abstract
While classical NOD-like receptor pyrin domain containing protein 1 (NLRP1) and NLRP3 inflammasomal proteins have been extensively investigated, the contribution of NLRP2 is still ill-defined in the nervous system. Given the putative significance of NLRP2 in orchestrating neuroinflammation, further inquiry is needed to gain a better understanding of its connectome, hence its specific targeting may hold a promising therapeutic implication. Therefore, bioinformatical approach for extracting information, specifically in the context of neuropathologies, is also undoubtedly preferred. To the best of our knowledge, there is no review study selectively targeting only NLRP2. Increasing, but still fragmentary evidence should encourage researchers to thoroughly investigate this inflammasome in various animal- and human models. Taken together, herein we aimed to review the current literature focusing on the role of NLRP2 inflammasome in the nervous system and more importantly, we provide an algorithm-based protein network of human NLRP2 for elucidating potentially valuable molecular partnerships that can be the beginning of a new discourse and future therapeutic considerations.
Collapse
Affiliation(s)
- László Ducza
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Hungary, Hungary
| | - Botond Gaál
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Hungary, Hungary
| |
Collapse
|
19
|
Zhou H, Bi GQ, Liu G. Intracellular magnesium optimizes transmission efficiency and plasticity of hippocampal synapses by reconfiguring their connectivity. Nat Commun 2024; 15:3406. [PMID: 38649706 PMCID: PMC11035601 DOI: 10.1038/s41467-024-47571-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
Synapses at dendritic branches exhibit specific properties for information processing. However, how the synapses are orchestrated to dynamically modify their properties, thus optimizing information processing, remains elusive. Here, we observed at hippocampal dendritic branches diverse configurations of synaptic connectivity, two extremes of which are characterized by low transmission efficiency, high plasticity and coding capacity, or inversely. The former favors information encoding, pertinent to learning, while the latter prefers information storage, relevant to memory. Presynaptic intracellular Mg2+ crucially mediates the dynamic transition continuously between the two extreme configurations. Consequently, varying intracellular Mg2+ levels endow individual branches with diverse synaptic computations, thus modulating their ability to process information. Notably, elevating brain Mg2+ levels in aging animals restores synaptic configuration resembling that of young animals, coincident with improved learning and memory. These findings establish intracellular Mg2+ as a crucial factor reconfiguring synaptic connectivity at dendrites, thus optimizing their branch-specific properties in information processing.
Collapse
Affiliation(s)
- Hang Zhou
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, 518107, China.
- Interdisciplinary Center for Brain Information, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Guo-Qiang Bi
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, 518107, China
- Interdisciplinary Center for Brain Information, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, 518055, China
- Hefei National Laboratory for Physical Sciences at the Microscale, and School of Life Sciences, University of Science and Technology of China, Hefei, 230031, China
| | - Guosong Liu
- School of Medicine, Tsinghua University, Beijing, 100084, China.
- NeuroCentria Inc., Walnut Creek, CA, 94596, USA.
| |
Collapse
|
20
|
Chen Y, Liu S, Jacobi AA, Jeng G, Ulrich JD, Stein IS, Patriarchi T, Hell JW. Rapid sequential clustering of NMDARs, CaMKII, and AMPARs upon activation of NMDARs at developing synapses. Front Synaptic Neurosci 2024; 16:1291262. [PMID: 38660466 PMCID: PMC11039796 DOI: 10.3389/fnsyn.2024.1291262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
Rapid, synapse-specific neurotransmission requires the precise alignment of presynaptic neurotransmitter release and postsynaptic receptors. How postsynaptic glutamate receptor accumulation is induced during maturation is not well understood. We find that in cultures of dissociated hippocampal neurons at 11 days in vitro (DIV) numerous synaptic contacts already exhibit pronounced accumulations of the pre- and postsynaptic markers synaptotagmin, synaptophysin, synapsin, bassoon, VGluT1, PSD-95, and Shank. The presence of an initial set of AMPARs and NMDARs is indicated by miniature excitatory postsynaptic currents (mEPSCs). However, AMPAR and NMDAR immunostainings reveal rather smooth distributions throughout dendrites and synaptic enrichment is not obvious. We found that brief periods of Ca2+ influx through NMDARs induced a surprisingly rapid accumulation of NMDARs within 1 min, followed by accumulation of CaMKII and then AMPARs within 2-5 min. Postsynaptic clustering of NMDARs and AMPARs was paralleled by an increase in their mEPSC amplitudes. A peptide that blocked the interaction of NMDAR subunits with PSD-95 prevented the NMDAR clustering. NMDAR clustering persisted for 3 days indicating that brief periods of elevated glutamate fosters permanent accumulation of NMDARs at postsynaptic sites in maturing synapses. These data support the model that strong glutamatergic stimulation of immature glutamatergic synapses results in a fast and substantial increase in postsynaptic NMDAR content that required NMDAR binding to PSD-95 or its homologues and is followed by recruitment of CaMKII and subsequently AMPARs.
Collapse
Affiliation(s)
- Yucui Chen
- Department of Pharmacology, University of Iowa, Iowa City, IA, United States
| | - Shangming Liu
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Ariel A. Jacobi
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Grace Jeng
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Jason D. Ulrich
- Department of Pharmacology, University of Iowa, Iowa City, IA, United States
| | - Ivar S. Stein
- Department of Pharmacology, University of Iowa, Iowa City, IA, United States
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Tommaso Patriarchi
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Johannes W. Hell
- Department of Pharmacology, University of Iowa, Iowa City, IA, United States
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
21
|
Atarashi N, Morishita M, Matsuda S. Activation of innate immune receptor TLR9 by mitochondrial DNA plays essential roles in the chemical long-term depression of hippocampal neurons. J Biol Chem 2024; 300:105744. [PMID: 38354781 PMCID: PMC10943477 DOI: 10.1016/j.jbc.2024.105744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/11/2024] [Accepted: 02/04/2024] [Indexed: 02/16/2024] Open
Abstract
Synaptic plasticity is believed to be the cellular basis for experience-dependent learning and memory. Although long-term depression (LTD), a form of synaptic plasticity, is caused by the activity-dependent reduction of cell surface α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-type glutamate receptors (AMPA receptors) at postsynaptic sites, its regulation by neuronal activity is not completely understood. In this study, we showed that the inhibition of toll-like receptor-9 (TLR9), an innate immune receptor, suppresses N-methyl-d-aspartate (NMDA)-induced reduction of cell surface AMPA receptors in cultured hippocampal neurons. We found that inhibition of TLR9 also blocked NMDA-induced activation of caspase-3, which plays an essential role in the induction of LTD. siRNA-based knockdown of TLR9 also suppressed the NMDA-induced reduction of cell surface AMPA receptors, although the scrambled RNA had no effect on the NMDA-induced trafficking of AMPA receptors. Overexpression of the siRNA-resistant form of TLR9 rescued the AMPA receptor trafficking abolished by siRNA. Furthermore, NMDA stimulation induced rapid mitochondrial morphological changes, mitophagy, and the binding of mitochondrial DNA (mtDNA) to TLR9. Treatment with dideoxycytidine and mitochondrial division inhibitor-1, which block mtDNA replication and mitophagy, respectively, inhibited NMDA-dependent AMPA receptor internalization. These results suggest that mitophagy induced by NMDA receptor activation releases mtDNA and activates TLR9, which plays an essential role in the trafficking of AMPA receptors during the induction of LTD.
Collapse
Affiliation(s)
- Naoya Atarashi
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| | - Misaki Morishita
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| | - Shinji Matsuda
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan; Center for Neuroscience and Biomedical Engineering (CNBE), The University of Electro-Communications, Tokyo, Japan.
| |
Collapse
|
22
|
Fadahunsi N, Petersen J, Metz S, Jakobsen A, Vad Mathiesen C, Silke Buch-Rasmussen A, Kurgan N, Kjærgaard Larsen J, Andersen RC, Topilko T, Svendsen C, Apuschkin M, Skovbjerg G, Hendrik Schmidt J, Houser G, Elgaard Jager S, Bach A, Deshmukh AS, Kilpeläinen TO, Strømgaard K, Madsen KL, Clemmensen C. Targeting postsynaptic glutamate receptor scaffolding proteins PSD-95 and PICK1 for obesity treatment. SCIENCE ADVANCES 2024; 10:eadg2636. [PMID: 38427737 PMCID: PMC10906926 DOI: 10.1126/sciadv.adg2636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/29/2024] [Indexed: 03/03/2024]
Abstract
Human genome-wide association studies (GWAS) suggest a functional role for central glutamate receptor signaling and plasticity in body weight regulation. Here, we use UK Biobank GWAS summary statistics of body mass index (BMI) and body fat percentage (BF%) to identify genes encoding proteins known to interact with postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-d-aspartate (NMDA) receptors. Loci in/near discs large homolog 4 (DLG4) and protein interacting with C kinase 1 (PICK1) reached genome-wide significance (P < 5 × 10-8) for BF% and/or BMI. To further evaluate the functional role of postsynaptic density protein-95 (PSD-95; gene name: DLG4) and PICK1 in energy homeostasis, we used dimeric PSD-95/disc large/ZO-1 (PDZ) domain-targeting peptides of PSD-95 and PICK1 to demonstrate that pharmacological inhibition of PSD-95 and PICK1 induces prolonged weight-lowering effects in obese mice. Collectively, these data demonstrate that the glutamate receptor scaffolding proteins, PICK1 and PSD-95, are genetically linked to obesity and that pharmacological targeting of their PDZ domains represents a promising therapeutic avenue for sustained weight loss.
Collapse
Affiliation(s)
- Nicole Fadahunsi
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jonas Petersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Sophia Metz
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Alexander Jakobsen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cecilie Vad Mathiesen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Alberte Silke Buch-Rasmussen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | - Nigel Kurgan
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jeppe Kjærgaard Larsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Rita C. Andersen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Charlotte Svendsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Mia Apuschkin
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Grethe Skovbjerg
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Gubra, Hørsholm, Denmark
| | - Jan Hendrik Schmidt
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Grace Houser
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sara Elgaard Jager
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Bach
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Atul S. Deshmukh
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Tuomas O. Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Kenneth L. Madsen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Flockerzi V, Fakler B. TR(i)P Goes On: Auxiliary TRP Channel Subunits? Circ Res 2024; 134:346-350. [PMID: 38359093 DOI: 10.1161/circresaha.123.323178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/28/2023] [Indexed: 02/17/2024]
Abstract
Transient receptor potential (TRP) cation channels are a diverse family of channels whose members play prominent roles as cellular sensors and effectors. The important role of TRP channels (and mechanosensitive piezo channels) in the complex interaction of our senses with the environment was underlined by the award of the Nobel Prize in Physiology or Medicine to 2 pioneers in this field, David Julius and Ardem Patapoutian. There are many competent and comprehensive reviews on many aspects of the TRP channels, and there is no intention to expand on them. Rather, after an introduction to the nomenclature, the molecular architecture of native TRP channel/protein complexes in vivo will be summarized using TRP channels of the canonical transient receptor potential subfamily as an example. This molecular architecture provides the basis for the signatures of native canonical transient receptor potential currents and their control by endogenous modulators and potential drugs.
Collapse
Affiliation(s)
- Veit Flockerzi
- Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg, Germany (V.F.)
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany (B.F.)
| |
Collapse
|
24
|
Certain N, Gan Q, Bennett J, Hsieh H, Wollmuth LP. Differential regulation of tetramerization of the AMPA receptor glutamate-gated ion channel by auxiliary subunits. J Biol Chem 2023; 299:105227. [PMID: 37673338 PMCID: PMC10558804 DOI: 10.1016/j.jbc.2023.105227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/08/2023] Open
Abstract
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) auxiliary subunits are specialized, nontransient binding partners of AMPARs that modulate AMPAR channel gating properties and pharmacology, as well as their biogenesis and trafficking. The most well-characterized families of auxiliary subunits are transmembrane AMPAR regulatory proteins (TARPs), cornichon homologs (CNIHs), and the more recently discovered GSG1-L. These auxiliary subunits can promote or reduce surface expression of AMPARs (composed of GluA1-4 subunits) in neurons, thereby impacting their functional role in membrane signaling. Here, we show that CNIH-2 enhances the tetramerization of WT and mutant AMPARs, presumably by increasing the overall stability of the tetrameric complex, an effect that is mainly mediated by interactions with the transmembrane domain of the receptor. We also find CNIH-2 and CNIH-3 show receptor subunit-specific actions in this regard with CNIH-2 enhancing both GluA1 and GluA2 tetramerization, whereas CNIH-3 only weakly enhances GluA1 tetramerization. These results are consistent with the proposed role of CNIHs as endoplasmic reticulum cargo transporters for AMPARs. In contrast, TARP γ-2, TARP γ-8, and GSG1-L have no or negligible effect on AMPAR tetramerization. On the other hand, TARP γ-2 can enhance receptor tetramerization but only when directly fused with the receptor at a maximal stoichiometry. Notably, surface expression of functional AMPARs was enhanced by CNIH-2 to a greater extent than TARP γ-2, suggesting that this distinction aids in maturation and membrane expression. These experiments define a functional distinction between CNIHs and other auxiliary subunits in the regulation of AMPAR biogenesis.
Collapse
Affiliation(s)
- Noele Certain
- Graduate Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York, USA
| | - Quan Gan
- Graduate Program in Neuroscience, Stony Brook University, Stony Brook, New York, USA
| | - Joseph Bennett
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, New York, USA
| | - Helen Hsieh
- Department of Surgery, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA; Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York, USA
| | - Lonnie P Wollmuth
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, New York, USA; Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York, USA; Department of Biochemistry & Cell Biology, Stony Brook University, Stony Brook, New York, USA.
| |
Collapse
|
25
|
Gangwar SP, Yen LY, Yelshanskaya MV, Korman A, Jones DR, Sobolevsky AI. Modulation of GluA2-γ5 synaptic complex desensitization, polyamine block and antiepileptic perampanel inhibition by auxiliary subunit cornichon-2. Nat Struct Mol Biol 2023; 30:1481-1494. [PMID: 37653241 PMCID: PMC10584687 DOI: 10.1038/s41594-023-01080-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 07/26/2023] [Indexed: 09/02/2023]
Abstract
Synaptic complexes of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors (AMPARs) with auxiliary subunits mediate most excitatory neurotransmission and can be targeted to treat neuropsychiatric and neurological disorders, including epilepsy. Here we present cryogenic-electron microscopy structures of rat GluA2 AMPAR complexes with inhibitory mouse γ5 and potentiating human cornichon-2 (CNIH2) auxiliary subunits. CNIH2 appears to destabilize the desensitized state of the complex by reducing the separation of the upper lobes in ligand-binding domain dimers. At the same time, CNIH2 stabilizes binding of polyamine spermidine to the selectivity filter of the closed ion channel. Nevertheless, CNIH2, and to a lesser extent γ5, attenuate polyamine block of the open channel and reduce the potency of the antiepileptic drug perampanel that inhibits the synaptic complex allosterically by binding to sites in the ion channel extracellular collar. These findings illustrate the fine-tuning of synaptic complex structure and function in an auxiliary subunit-dependent manner, which is critical for the study of brain region-specific neurotransmission and design of therapeutics for disease treatment.
Collapse
Affiliation(s)
- Shanti Pal Gangwar
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Laura Y Yen
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
- Cellular and Molecular Physiology and Biophysics Graduate Program, Columbia University Irving Medical Center, New York, NY, USA
| | - Maria V Yelshanskaya
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Aryeh Korman
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Drew R Jones
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
26
|
Yamada R, Takada S. Postsynaptic protein assembly in three and two dimensions studied by mesoscopic simulations. Biophys J 2023; 122:3395-3410. [PMID: 37496268 PMCID: PMC10465727 DOI: 10.1016/j.bpj.2023.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/25/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023] Open
Abstract
Recently, cellular biomolecular condensates formed via phase separation have received considerable attention. While they can be formed either in cytosol (denoted as 3D) or beneath the membrane (2D), the underlying difference between the two has not been well clarified. To compare the phase behaviors in 3D and 2D, postsynaptic density (PSD) serves as a model system. PSD is a protein condensate located under the postsynaptic membrane that influences the localization of glutamate receptors and thus contributes to synaptic plasticity. Recent in vitro studies have revealed the formation of droplets of various soluble PSD proteins via liquid-liquid phase separation. However, it is unclear how these protein condensates are formed beneath the membrane and how they specifically affect the localization of glutamate receptors in the membrane. In this study, focusing on the mixture of a glutamate receptor complex, AMPAR-TARP, and a ubiquitous scaffolding protein, PSD-95, we constructed a mesoscopic model of protein-domain interactions in PSD and performed comparative molecular simulations. The results showed a sharp contrast in the phase behaviors of protein assemblies in 3D and those under the membrane (2D). A mixture of a soluble variant of the AMPAR-TARP complex and PSD-95 in the 3D system resulted in a phase-separated condensate, which was consistent with the experimental results. However, with identical domain interactions, AMPAR-TARP embedded in the membrane formed clusters with PSD-95, but did not form a stable separated phase. Thus, the cluster formation behaviors of PSD proteins in the 3D and 2D systems were distinct. The current study suggests that, more generally, stable phase separation can be more difficult to achieve in and beneath the membrane than in 3D systems.
Collapse
Affiliation(s)
- Risa Yamada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan.
| |
Collapse
|
27
|
Boudkkazi S, Schwenk J, Nakaya N, Brechet A, Kollewe A, Harada H, Bildl W, Kulik A, Dong L, Sultana A, Zolles G, Schulte U, Tomarev S, Fakler B. A Noelin-organized extracellular network of proteins required for constitutive and context-dependent anchoring of AMPA-receptors. Neuron 2023; 111:2544-2556.e9. [PMID: 37591201 PMCID: PMC10441612 DOI: 10.1016/j.neuron.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/21/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023]
Abstract
Information processing and storage in the brain rely on AMPA-receptors (AMPARs) and their context-dependent dynamics in synapses and extra-synaptic sites. We found that distribution and dynamics of AMPARs in the plasma membrane are controlled by Noelins, a three-member family of conserved secreted proteins expressed throughout the brain in a cell-type-specific manner. Noelin tetramers tightly assemble with the extracellular domains of AMPARs and interconnect them in a network-like configuration with a variety of secreted and membrane-anchored proteins including Neurexin1, Neuritin1, and Seizure 6-like. Knock out of Noelins1-3 profoundly reduced AMPARs in synapses onto excitatory and inhibitory (inter)neurons, decreased their density and clustering in dendrites, and abolished activity-dependent synaptic plasticity. Our results uncover an endogenous mechanism for extracellular anchoring of AMPARs and establish Noelin-organized networks as versatile determinants of constitutive and context-dependent neurotransmission.
Collapse
Affiliation(s)
- Sami Boudkkazi
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Jochen Schwenk
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Naoki Nakaya
- National Eye Institute, Section of Retinal Ganglion Cell Biology, National Institutes of Health, Bethesda, MD, USA
| | - Aline Brechet
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Astrid Kollewe
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Harumi Harada
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Wolfgang Bildl
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Akos Kulik
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Lijin Dong
- National Eye Institute, Genetic Engineering Facility, National Institutes of Health, Bethesda, MD, USA
| | - Afia Sultana
- National Eye Institute, Section of Retinal Ganglion Cell Biology, National Institutes of Health, Bethesda, MD, USA
| | - Gerd Zolles
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Uwe Schulte
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany; Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany; Logopharm GmbH, Schlossstr. 14, 79232 March-Buchheim, Germany
| | - Stanislav Tomarev
- National Eye Institute, Section of Retinal Ganglion Cell Biology, National Institutes of Health, Bethesda, MD, USA.
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany; Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany.
| |
Collapse
|
28
|
Stincic T, Gayet-Primo J, Taylor WR, Puthussery T. TARPγ2 Is Required for Normal AMPA Receptor Expression and Function in Direction-Selective Circuits of the Mammalian Retina. eNeuro 2023; 10:ENEURO.0158-23.2023. [PMID: 37491367 PMCID: PMC10431237 DOI: 10.1523/eneuro.0158-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023] Open
Abstract
AMPA receptors (AMPARs) are the major mediators of fast excitatory neurotransmission in the retina as in other parts of the brain. In most neurons, the synaptic targeting, pharmacology, and function of AMPARs are influenced by auxiliary subunits including the transmembrane AMPA receptor regulatory proteins (TARPs). However, it is unclear which TARP subunits are present at retinal synapses and how they influence receptor localization and function. Here, we show that TARPɣ2 (stargazin) is associated with AMPARs in the synaptic layers of the mouse, rabbit, macaque, and human retina. In most species, TARPɣ2 expression was high where starburst amacrine cells (SACs) ramify and transcriptomic analyses suggest correspondingly high gene expression in mouse and human SACs. Synaptic expression of GluA2, GluA3, and GluA4 was significantly reduced in a mouse mutant lacking TARPɣ2 expression (stargazer mouse; stg), whereas GluA1 levels were unaffected. AMPAR-mediated light-evoked EPSCs in ON-SACs from stg mice were ∼30% smaller compared with heterozygous littermates. There was also loss of a transient ON pathway-driven GABAergic input to ON-SACs in stg mutants. Direction-selective ganglion cells in the stg mouse showed normal directional tuning, but their surround inhibition and thus spatial tuning was reduced. Our results indicate that TARPɣ2 is required for normal synaptic expression of GluA2, GluA3, and GluA4 in the inner retina. The presence of residual AMPAR expression in the stargazer mutant suggests that other TARP subunits may compensate in the absence of TARPɣ2.
Collapse
Affiliation(s)
- Todd Stincic
- Casey Eye Institute, Oregon Health and Science University, Portland, OR 97239
| | - Jacqueline Gayet-Primo
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Berkeley, CA 94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720
- Casey Eye Institute, Oregon Health and Science University, Portland, OR 97239
| | - W Rowland Taylor
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Berkeley, CA 94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720
- Casey Eye Institute, Oregon Health and Science University, Portland, OR 97239
| | - Teresa Puthussery
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Berkeley, CA 94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720
- Casey Eye Institute, Oregon Health and Science University, Portland, OR 97239
| |
Collapse
|
29
|
Sha Z, Xu J, Li N, Li O. Regulatory Molecules of Synaptic Plasticity in Anxiety Disorder. Int J Gen Med 2023; 16:2877-2886. [PMID: 37435365 PMCID: PMC10332425 DOI: 10.2147/ijgm.s413176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 06/19/2023] [Indexed: 07/13/2023] Open
Abstract
Synaptic plasticity is the capacity of synaptic transmission between neurons to be strengthened or weakened. There are many signal molecules accumulated in the presynaptic and postsynaptic membranes that can lead to the regulation of synaptic plasticity and involvement in numerous of neurological and psychiatric diseases, including anxiety disorder. However, the regulatory mechanisms of synaptic plasticity in the development of anxiety disorder have not been well summarized. This review mainly aims to discuss the biological functions and mechanisms of synaptic plasticity-related molecules in anxiety disorder, with a particular focus on the metabotropic glutamate receptors, brain-derived neurotrophic factor, hyperpolarization-activated cyclic nucleotide-gated channels, and postsynaptic density 95. The summarized functions and mechanisms of synaptic plasticity-related molecules in anxiety will provide insight into novel neuroplasticity modifications for targeted therapy for anxiety.
Collapse
Affiliation(s)
- Zhongwei Sha
- Department of Mental Diseases, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jian Xu
- Department of Mental Diseases, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Nana Li
- Department of Mental Diseases, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Ou Li
- Department of Mental Diseases, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
30
|
Bessa-Neto D, Choquet D. Molecular mechanisms of AMPAR reversible stabilization at synapses. Mol Cell Neurosci 2023; 125:103856. [PMID: 37105372 DOI: 10.1016/j.mcn.2023.103856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
In the central nervous system, glutamatergic synapses play a central role in the regulation of excitatory neuronal transmission. With the membrane-associated guanylate kinase (MAGUK) family of proteins as their structuring scaffold, glutamatergic receptors serve as the powerhouse of glutamatergic synapses. Glutamatergic receptors can be categorized as metabotropic and ionotropic receptors. The latter are then categorized into N-methyl-d-aspartate, kainate receptors, and α-amino-3-hydroxy-5-methyl-isoxazole-propionic acid receptors (AMPARs). Over the past two decades, genetic tagging technology and super-resolution microscopy have been of the utmost importance to unravel how the different receptors are organized at glutamatergic synapses. At the plasma membrane, receptors are highly mobile but show reduced mobility when at synaptic sites. This partial immobilization of receptors at synaptic sites is attributed to the stabilization/anchoring of receptors with the postsynaptic MAGUK proteins and auxiliary proteins, and presynaptic proteins. These partial immobilizations and localization of glutamatergic receptors within the synaptic sites are fundamental for proper basal transmission and synaptic plasticity. Perturbations of the stabilization of glutamatergic receptors are often associated with cognitive deficits. In this review, we describe the proposed mechanisms for synaptic localization and stabilization of AMPARs, the major players of fast excitatory transmission in the central nervous system.
Collapse
Affiliation(s)
- Diogo Bessa-Neto
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000 Bordeaux, France
| | - Daniel Choquet
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000 Bordeaux, France; Univ. Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4, F-33000 Bordeaux, France.
| |
Collapse
|
31
|
Maruo T, Mizutani K, Miyata M, Kuriu T, Sakakibara S, Takahashi H, Kida D, Maesaka K, Sugaya T, Sakane A, Sasaki T, Takai Y, Mandai K. s-Afadin binds to MAGUIN/Cnksr2 and regulates the localization of the AMPA receptor and glutamatergic synaptic response in hippocampal neurons. J Biol Chem 2023; 299:103040. [PMID: 36803960 PMCID: PMC10040811 DOI: 10.1016/j.jbc.2023.103040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/19/2023] Open
Abstract
A hippocampal mossy fiber synapse implicated in learning and memory is a complex structure in which a presynaptic bouton attaches to the dendritic trunk by puncta adherentia junctions (PAJs) and wraps multiply branched spines. The postsynaptic densities (PSDs) are localized at the heads of each of these spines and faces to the presynaptic active zones. We previously showed that the scaffolding protein afadin regulates the formation of the PAJs, PSDs, and active zones in the mossy fiber synapse. Afadin has two splice variants: l-afadin and s-afadin. l-Afadin, but not s-afadin, regulates the formation of the PAJs but the roles of s-afadin in synaptogenesis remain unknown. We found here that s-afadin more preferentially bound to MAGUIN (a product of the Cnksr2 gene) than l-afadin in vivo and in vitro. MAGUIN/CNKSR2 is one of the causative genes for nonsyndromic X-linked intellectual disability accompanied by epilepsy and aphasia. Genetic ablation of MAGUIN impaired PSD-95 localization and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic (AMPA) receptor surface accumulation in cultured hippocampal neurons. Our electrophysiological analysis revealed that the postsynaptic response to glutamate, but not its release from the presynapse, was impaired in the MAGUIN-deficient cultured hippocampal neurons. Furthermore, disruption of MAGUIN did not increase the seizure susceptibility to flurothyl, a GABAA receptor antagonist. These results indicate that s-afadin binds to MAGUIN and regulates the PSD-95-dependent cell surface localization of the AMPA receptor and glutamatergic synaptic responses in the hippocampal neurons and that MAGUIN is not involved in the induction of epileptic seizure by flurothyl in our mouse model.
Collapse
Affiliation(s)
- Tomohiko Maruo
- Department of Molecular and Cellular Neurobiology, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan; Department of Biochemistry, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan; Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan; Department of Biochemistry, Tokushima University Graduate School of Medical Sciences, Tokushima, Japan
| | - Kiyohito Mizutani
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Muneaki Miyata
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Toshihiko Kuriu
- Research and Development Center, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - Shotaro Sakakibara
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan; Department of Biochemistry, Tokushima University Graduate School of Medical Sciences, Tokushima, Japan
| | - Hatena Takahashi
- Department of Molecular and Cellular Neurobiology, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
| | - Daichi Kida
- Department of Molecular and Cellular Neurobiology, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
| | - Kouki Maesaka
- Department of Molecular and Cellular Neurobiology, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
| | - Tsukiko Sugaya
- Department of Biochemistry, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Ayuko Sakane
- Department of Biochemistry, Tokushima University Graduate School of Medical Sciences, Tokushima, Japan; Department of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics, Tokushima University, Tokushima, Japan
| | - Takuya Sasaki
- Department of Biochemistry, Tokushima University Graduate School of Medical Sciences, Tokushima, Japan
| | - Yoshimi Takai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan.
| | - Kenji Mandai
- Department of Molecular and Cellular Neurobiology, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan; Department of Biochemistry, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan.
| |
Collapse
|
32
|
Dysregulated Signaling at Postsynaptic Density: A Systematic Review and Translational Appraisal for the Pathophysiology, Clinics, and Antipsychotics' Treatment of Schizophrenia. Cells 2023; 12:cells12040574. [PMID: 36831241 PMCID: PMC9954794 DOI: 10.3390/cells12040574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Emerging evidence from genomics, post-mortem, and preclinical studies point to a potential dysregulation of molecular signaling at postsynaptic density (PSD) in schizophrenia pathophysiology. The PSD that identifies the archetypal asymmetric synapse is a structure of approximately 300 nm in diameter, localized behind the neuronal membrane in the glutamatergic synapse, and constituted by more than 1000 proteins, including receptors, adaptors, kinases, and scaffold proteins. Furthermore, using FASS (fluorescence-activated synaptosome sorting) techniques, glutamatergic synaptosomes were isolated at around 70 nm, where the receptors anchored to the PSD proteins can diffuse laterally along the PSD and were stabilized by scaffold proteins in nanodomains of 50-80 nm at a distance of 20-40 nm creating "nanocolumns" within the synaptic button. In this context, PSD was envisioned as a multimodal hub integrating multiple signaling-related intracellular functions. Dysfunctions of glutamate signaling have been postulated in schizophrenia, starting from the glutamate receptor's interaction with scaffolding proteins involved in the N-methyl-D-aspartate receptor (NMDAR). Despite the emerging role of PSD proteins in behavioral disorders, there is currently no systematic review that integrates preclinical and clinical findings addressing dysregulated PSD signaling and translational implications for antipsychotic treatment in the aberrant postsynaptic function context. Here we reviewed a critical appraisal of the role of dysregulated PSD proteins signaling in the pathophysiology of schizophrenia, discussing how antipsychotics may affect PSD structures and synaptic plasticity in brain regions relevant to psychosis.
Collapse
|
33
|
Certain N, Gan Q, Bennett J, Hsieh H, Wollmuth LP. Differential regulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) receptor tetramerization by auxiliary subunits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527516. [PMID: 36798164 PMCID: PMC9934675 DOI: 10.1101/2023.02.07.527516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
AMPA receptor (AMPAR) auxiliary subunits are specialized, non-transient binding partners of AMPARs that modulate their ion channel gating properties and pharmacology, as well as their biogenesis and trafficking. The most well characterized families of auxiliary subunits are transmembrane AMPAR regulatory proteins (TARPs) and cornichon homologs (CNIHs) and the more recently discovered GSG1-L. These auxiliary subunits can promote or reduce surface expression of AMPARs in neurons, thereby impacting their functional role in membrane signaling. Here, we show that CNIH-2 enhances the tetramerization of wild type and mutant AMPARs, possibly by increasing the overall stability of the tetrameric complex, an effect that is mainly mediated by interactions with the transmembrane domain of the receptor. We also find CNIH-2 and CNIH-3 show receptor subunit-specific actions in this regard with CNIH-2 enhancing both GluA1 and GluA2 tetramerization whereas CNIH-3 only weakly enhances GluA1 tetramerization. These results are consistent with the proposed role of CNIHs as endoplasmic reticulum cargo transporters for AMPARs. In contrast, TARP γ-2, TARP γ-8, and GSG1-L have no or negligible effect on AMPAR tetramerization. On the other hand, TARP γ-2 can enhance receptor tetramerization but only when directly fused with the receptor at a maximal stoichiometry. Notably, surface expression of functional AMPARs was enhanced by CNIH-2 to a greater extent than TARP γ-2 suggesting that this distinction aids in maturation and membrane expression. These experiments define a functional distinction between CNIHs and other auxiliary subunits in the regulation of AMPAR biogenesis.
Collapse
|
34
|
Developmental Inhibitory Changes in the Primary Somatosensory Cortex of the Stargazer Mouse Model of Absence Epilepsy. Biomolecules 2023; 13:biom13010186. [PMID: 36671571 PMCID: PMC9856073 DOI: 10.3390/biom13010186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Childhood absence epilepsy seizures arise in the cortico-thalamocortical network due to multiple cellular and molecular mechanisms, which are still under investigation. Understanding the precise mechanisms is imperative given that treatment fails in ~30% of patients while adverse neurological sequelae remain common. Impaired GABAergic neurotransmission is commonly reported in research models investigating these mechanisms. Recently, we reported a region-specific reduction in the whole-tissue and synaptic GABAA receptor (GABAAR) α1 subunit and an increase in whole-tissue GAD65 in the primary somatosensory cortex (SoCx) of the adult epileptic stargazer mouse compared with its non-epileptic (NE) littermate. The current study investigated whether these changes occurred prior to the onset of seizures on postnatal days (PN) 17-18, suggesting a causative role. Synaptic and cytosolic fractions were biochemically isolated from primary SoCx lysates followed by semiquantitative Western blot analyses for GABAAR α1 and GAD65. We found no significant changes in synaptic GABAAR α1 and cytosolic GAD65 in the primary SoCx of the stargazer mice at the critical developmental stages of PN 7-9, 13-15, and 17-18. This indicates that altered levels of GABAAR α1 and GAD65 in adult mice do not directly contribute to the initial onset of absence seizures but are a later consequence of seizure activity.
Collapse
|
35
|
Moretto E, Miozzo F, Longatti A, Bonnet C, Coussen F, Jaudon F, Cingolani LA, Passafaro M. The tetraspanin TSPAN5 regulates AMPAR exocytosis by interacting with the AP4 complex. eLife 2023; 12:76425. [PMID: 36795458 PMCID: PMC9934860 DOI: 10.7554/elife.76425] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/25/2023] [Indexed: 02/17/2023] Open
Abstract
Intracellular trafficking of AMPA receptors is a tightly regulated process which involves several adaptor proteins, and is crucial for the activity of excitatory synapses both in basal conditions and during synaptic plasticity. We found that, in rat hippocampal neurons, an intracellular pool of the tetraspanin TSPAN5 promotes exocytosis of AMPA receptors without affecting their internalisation. TSPAN5 mediates this function by interacting with the adaptor protein complex AP4 and Stargazin and possibly using recycling endosomes as a delivery route. This work highlights TSPAN5 as a new adaptor regulating AMPA receptor trafficking.
Collapse
Affiliation(s)
- Edoardo Moretto
- Institute of Neuroscience, CNRVedano al LambroItaly,NeuroMI Milan Center for Neuroscience, University of Milano-BicoccaMilanItaly
| | | | | | - Caroline Bonnet
- University of Bordeaux, Interdisciplinary Institute for NeuroscienceBordeauxFrance
| | - Francoise Coussen
- University of Bordeaux, Interdisciplinary Institute for NeuroscienceBordeauxFrance
| | - Fanny Jaudon
- Department of Life Sciences, University of TriesteTriesteItaly,IRCCS Ospedale Policlinico San MartinoGenoaItaly
| | - Lorenzo A Cingolani
- Department of Life Sciences, University of TriesteTriesteItaly,Center for Synaptic Neuroscience and Technology (NSYN), Istituto Italiano di Tecnologia (IIT)GenoaItaly
| | - Maria Passafaro
- Institute of Neuroscience, CNRVedano al LambroItaly,NeuroMI Milan Center for Neuroscience, University of Milano-BicoccaMilanItaly
| |
Collapse
|
36
|
Sel1l May Contributes to the Determinants of Neuronal Lineage and Neuronal Maturation Regardless of Hrd1 via Atf6-Sel1l Signaling. Neurochem Res 2023; 48:263-272. [PMID: 36074198 DOI: 10.1007/s11064-022-03750-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/08/2022] [Accepted: 08/30/2022] [Indexed: 01/11/2023]
Abstract
The endoplasmic reticulum (ER) is the primary site of intracellular quality control involved in the recognition and degradation of unfolded proteins. A variety of stresses, including hypoxia and glucose starvation, can lead to accumulation of unfolded proteins triggering the ER-associated degradation (ERAD) pathway. Suppressor Enhancer Lin12/Notch1 Like (Sel1l) acts as a "gate keeper" in the quality control of de novo synthesized proteins and complexes with the ubiquitin ligase Hrd1 in the ER membrane. We previously demonstrated that ER stress-induced aberrant neural stem cell (NSC) differentiation and inhibited neurite outgrowth. Inhibition of neurite outgrowth was associated with increased Hrd1 expression; however, the contribution of Sel1l remained unclear. To investigate whether ER stress is induced during normal neuronal differentiation, we semi-quantitatively evaluated mRNA expression levels of unfolded protein response (UPR)-related genes in P19 embryonic carcinoma cells undergoing neuronal differentiation in vitro. Stimulation with all-trans retinoic acid (ATRA) for 4 days induced the upregulation of Nestin and several UPR-related genes (Atf6, Xbp1, Chop, Hrd1, and Sel1l), whereas Atf4 and Grp78/Bip were unchanged. Small-interfering RNA (siRNA)-mediated knockdown of Sel1l uncovered that mRNA levels of the neural progenitor marker Math1 (also known as Atoh1) and the neuronal marker Math3 (also known as Atoh3 and NeuroD4) were significantly suppressed at 4 days after ATRA stimulation. Consistent with this result, Sel1l silencing significantly reduced protein levels of immature neuronal marker βIII-tubulin (also known as Tuj-1) at 8 days after induction of neuronal differentiation, whereas synaptogenic factors, such as cell adhesion molecule 1 (CADM1) and SH3 and multiple ankyrin repeat domain protein 3 (Shank3) were accumulated in Sel1l silenced cells. These results indicate that neuronal differentiation triggers ER stress and suggest that Sel1l may facilitate neuronal lineage through the regulation of Math1 and Math3 expression.
Collapse
|
37
|
Brown JC, Higgins ES, George MS. Synaptic Plasticity 101: The Story of the AMPA Receptor for the Brain Stimulation Practitioner. Neuromodulation 2022; 25:1289-1298. [PMID: 35088731 PMCID: PMC10479373 DOI: 10.1016/j.neurom.2021.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/10/2021] [Accepted: 09/08/2021] [Indexed: 02/04/2023]
Abstract
The fields of Neurobiology and Neuromodulation have never been closer. Consequently, the phrase "synaptic plasticity" has become very familiar to non-basic scientists, without actually being very familiar. We present the "Story of the AMPA receptor," an easy-to-understand "10,000 ft" narrative overview of synaptic plasticity, oriented toward the brain stimulation clinician or scientist without basic science training. Neuromodulation is unparalleled in its capacity to both modulate and probe plasticity, yet many are not comfortable with their grasp of the topic. Here, we describe the seminal discoveries that defined the canonical mechanisms of long-term potentiation (LTP), long-term depression (LTD), and homeostatic plasticity. We then provide a conceptual framework for how plasticity at the synapse is accomplished, describing the functional roles of N-methyl-d-aspartate (NMDA) receptors and calcium, their effect on calmodulin, phosphatases (ie, calcineurin), kinases (ie, calcium/calmodulin-dependent protein kinase [CaMKII]), and structural "scaffolding" proteins (ie, post-synaptic density protein [PSD-95]). Ultimately, we describe how these affect the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor. More specifically, AMPA receptor delivery to (LTP induction), removal from (LTD), or recycling within (LTP maintenance) the synapse is determined by the status of phosphorylation and protein binding at specific sites on the tails of AMPA receptor subunits: GluA1 and GluA2. Finally, we relate these to transcranial magnetic stimulation (TMS) treatment, highlighting evidences for LTP as the basis of high-frequency TMS therapy, and briefly touch on the role of plasticity for other brain stimulation modalities. In summary, we present Synaptic Plasticity 101 as a singular introductory reference for those less familiar with the mechanisms of synaptic plasticity.
Collapse
Affiliation(s)
- Joshua C Brown
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA; Department of Neurology, Medical University of South Carolina, Charleston, SC, USA; Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA.
| | - Edmund S Higgins
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Mark S George
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA; Ralph Johnson VA Medical Center, Charleston, SC, USA
| |
Collapse
|
38
|
GluR2Q and GluR2R AMPA Subunits are not Targets of lypd2 Interaction. PLoS One 2022; 17:e0278278. [PMID: 36441793 PMCID: PMC9704558 DOI: 10.1371/journal.pone.0278278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 11/12/2022] [Indexed: 11/30/2022] Open
Abstract
A large family of prototoxin-like molecules endogenous to mammals, Ly6 proteins have been implicated in the regulation of cell signaling processes across multiple species. Previous work has shown that certain members of the Ly6 family are expressed in the brain and target nicotinic acetylcholine receptor and potassium channel function. Structural similarities between Ly6 proteins and alpha-neurotoxins suggest the possibility of additional ionotropic receptor targets. Here, we investigated the possibility of lypd2 as a novel regulator of AMPA receptor (AMPAR) function. In particular, we focused on potential interactions with the Q/R isoforms of the GluR2 subunit, which have profound impacts on AMPAR permeability to calcium during neuronal stimulation. We find that although lypd2 and GluR2 share overlapping expression patterns in the mouse hippocampus, there was no interaction between lypd2 and either GluR2Q or GluR2R isoform. These results underscore the importance of continuing to investigate novel targets for Ly6 interaction and regulation.
Collapse
|
39
|
Bai Y, Wang H, Li C. SAPAP Scaffold Proteins: From Synaptic Function to Neuropsychiatric Disorders. Cells 2022; 11:cells11233815. [PMID: 36497075 PMCID: PMC9740047 DOI: 10.3390/cells11233815] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
Excitatory (glutamatergic) synaptic transmission underlies many aspects of brain activity and the genesis of normal human behavior. The postsynaptic scaffolding proteins SAP90/PSD-95-associated proteins (SAPAPs), which are abundant components of the postsynaptic density (PSD) at excitatory synapses, play critical roles in synaptic structure, formation, development, plasticity, and signaling. The convergence of human genetic data with recent in vitro and in vivo animal model data indicates that mutations in the genes encoding SAPAP1-4 are associated with neurological and psychiatric disorders, and that dysfunction of SAPAP scaffolding proteins may contribute to the pathogenesis of various neuropsychiatric disorders, such as schizophrenia, autism spectrum disorders, obsessive compulsive disorders, Alzheimer's disease, and bipolar disorder. Here, we review recent major genetic, epigenetic, molecular, behavioral, electrophysiological, and circuitry studies that have advanced our knowledge by clarifying the roles of SAPAP proteins at the synapses, providing new insights into the mechanistic links to neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yunxia Bai
- Key Laboratory of Brain Functional Genomics (STCSM & MOE), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
- Shanghai Changning Mental Health Center, Shanghai 200335, China
| | - Huimin Wang
- Key Laboratory of Brain Functional Genomics (STCSM & MOE), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
- Shanghai Changning Mental Health Center, Shanghai 200335, China
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai 200062, China
| | - Chunxia Li
- Key Laboratory of Brain Functional Genomics (STCSM & MOE), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
- Shanghai Changning Mental Health Center, Shanghai 200335, China
- Correspondence:
| |
Collapse
|
40
|
Benesh JL, Mueller TM, Meador-Woodruff JH. AMPA receptor subunit localization in schizophrenia anterior cingulate cortex. Schizophr Res 2022; 249:16-24. [PMID: 32014361 DOI: 10.1016/j.schres.2020.01.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/14/2022]
Abstract
The glutamate hypothesis of schizophrenia suggests that altered glutamatergic transmission occurs in this illness, although precise mechanisms of dysregulation remain elusive. AMPA receptors (AMPARs), a subtype of ionotropic glutamate receptor, are the main facilitators of fast, excitatory neurotransmission in the brain, and changes in AMPAR number or composition at synapses can regulate synaptic strength and plasticity. Prior evidence of abnormal expression of transmembrane AMPAR regulatory proteins (TARPs) in schizophrenia suggests defective trafficking of AMPARs, which we propose could lead to altered AMPAR expression at excitatory synapses. To test this hypothesis, we isolated subcellular fractions enriched for endoplasmic reticulum (ER) and synapses from anterior cingulate cortex (ACC) from schizophrenia (N = 18) and comparison (N = 18) subjects, and measured glutamate receptor subunits (GluA1, GluA2, GluA3, GluA4, NR1, NR2A, NR2B, and NR3A) and TARP member γ2 (stargazin) in homogenates and subcellular fractions by western blot analysis. We found decreased expression of stargazin and an increased ratio of GluA2:stargazin in ACC homogenates, while in the synapse fraction we identified a decrease in GluA1 and reduced ratios of GluA1:stargazin and GluA1:GluA2 in schizophrenia. The amount of stargazin in the ER fraction was not different, but the relative amount of ER/Total stargazin was increased in schizophrenia. Together, these findings suggest that associations between stargazin and AMPA subunits are abnormal, potentially affecting forward trafficking or synaptic stability of GluA1-containing AMPARs. These data provide evidence that altered interactions with trafficking proteins may contribute to glutamate dysregulation in schizophrenia.
Collapse
Affiliation(s)
- Jana L Benesh
- University of Alabama at Birmingham, Department of Psychiatry and Behavioral Neurobiology, 1720 2nd Ave S., Birmingham, AL 35294, United States of America
| | - Toni M Mueller
- University of Alabama at Birmingham, Department of Psychiatry and Behavioral Neurobiology, 1720 2nd Ave S., Birmingham, AL 35294, United States of America.
| | - James H Meador-Woodruff
- University of Alabama at Birmingham, Department of Psychiatry and Behavioral Neurobiology, 1720 2nd Ave S., Birmingham, AL 35294, United States of America
| |
Collapse
|
41
|
Martinez-Galan JR, Garcia-Belando M, Cabanes-Sanchis JJ, Caminos E. Pre- and postsynaptic alterations in the visual cortex of the P23H-1 retinal degeneration rat model. Front Neuroanat 2022; 16:1000085. [PMID: 36312296 PMCID: PMC9608761 DOI: 10.3389/fnana.2022.1000085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/29/2022] [Indexed: 11/24/2022] Open
Abstract
P23H rats express a variant of rhodopsin with a mutation that leads to loss of visual function with similar properties as human autosomal dominant retinitis pigmentosa (RP). The advances made in different therapeutic strategies to recover visual system functionality reveal the need to know whether progressive retina degeneration affects the visual cortex structure. Here we are interested in detecting cortical alterations in young rats with moderate retinal degeneration, and in adulthood when degeneration is severer. For this purpose, we studied the synaptic architecture of the primary visual cortex (V1) by analyzing a series of pre- and postsynaptic elements related to excitatory glutamatergic transmission. Visual cortices from control Sprague Dawley (SD) and P23H rats at postnatal days 30 (P30) and P230 were used to evaluate the distribution of vesicular glutamate transporters VGLUT1 and VGLUT2 by immunofluorescence, and to analyze the expression of postsynaptic density protein-95 (PSD-95) by Western blot. The amount and dendritic spine distribution along the apical shafts of the layer V pyramidal neurons, stained by the Golgi-Cox method, were also studied. We observed that at P30, RP does not significantly affect any of the studied markers and structures, which suggests in young P23H rats that visual cortex connectivity seems preserved. However, in adult rats, although VGLUT1 immunoreactivity and PSD-95 expression were similar between both groups, a narrower and stronger VGLUT2-immunoreactive band in layer IV was observed in the P23H rats. Furthermore, RP significantly decreased the density of dendritic spines and altered their distribution along the apical shafts of pyramidal neurons, which remained in a more immature state compared to the P230 SD rats. Our results indicate that the most notable changes in the visual cortex structure take place after a prolonged retinal degeneration period that affected the presynaptic thalamocortical VGLUT2-immunoreactive terminals and postsynaptic dendritic spines from layer V pyramidal cells. Although plasticity is more limited at these ages, future studies will determine how reversible these changes are and to what extent they can affect the visual system's functionality.
Collapse
Affiliation(s)
- Juan R. Martinez-Galan
- Facultad de Medicina, Instituto de Investigación en Discapacidades Neurológicas, Universidad de Castilla-La Mancha, Albacete, Spain
| | | | | | | |
Collapse
|
42
|
Ravi AS, Zeng M, Chen X, Sandoval G, Diaz-Alonso J, Zhang M, Nicoll RA. Long-term potentiation reconstituted with an artificial TARP/PSD-95 complex. Cell Rep 2022; 41:111483. [PMID: 36223737 PMCID: PMC9797105 DOI: 10.1016/j.celrep.2022.111483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 07/08/2022] [Accepted: 09/19/2022] [Indexed: 12/30/2022] Open
Abstract
The critical role of AMPA receptor (AMPAR) trafficking in long-term potentiation (LTP) of excitatory synaptic transmission is now well established, but the underlying molecular mechanism is still uncertain. Recent research suggests that PSD-95 captures AMPARs via an interaction with the AMPAR auxiliary subunits-transmembrane AMPAR regulatory proteins (TARPs). To determine if such interaction is a core minimal component of the AMPAR trafficking and LTP mechanism, we engineered artificial binding partners, which individually were biochemically and functionally dead but which, when expressed together, rescue binding and both basal synaptic transmission and LTP. These findings establish the TARP/PSD-95 complex as an essential interaction underlying AMPAR trafficking and LTP.
Collapse
Affiliation(s)
- Anagh Sinha Ravi
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, CA, USA
| | - Menglong Zeng
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xudong Chen
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Gerardo Sandoval
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA, USA,Center for the Neurobiology of Learning and Memory, University of California at Irvine, Irvine, CA, USA
| | - Javier Diaz-Alonso
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA, USA,Center for the Neurobiology of Learning and Memory, University of California at Irvine, Irvine, CA, USA,Correspondence: (J.D.-A.), (R.A.N.)
| | - Mingjie Zhang
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China,Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen 518036, China,School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Roger A. Nicoll
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, CA, USA,Lead contact,Correspondence: (J.D.-A.), (R.A.N.)
| |
Collapse
|
43
|
Li X, Hémond G, Godin AG, Doyon N. Computational modeling of trans-synaptic nanocolumns, a modulator of synaptic transmission. Front Comput Neurosci 2022; 16:969119. [PMID: 36249484 PMCID: PMC9554614 DOI: 10.3389/fncom.2022.969119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/01/2022] [Indexed: 12/01/2022] Open
Abstract
Understanding synaptic transmission is of crucial importance in neuroscience. The spatial organization of receptors, vesicle release properties and neurotransmitter molecule diffusion can strongly influence features of synaptic currents. Newly discovered structures coined trans-synaptic nanocolumns were shown to align presynaptic vesicles release sites and postsynaptic receptors. However, how these structures, spanning a few tens of nanometers, shape synaptic signaling remains little understood. Given the difficulty to probe submicroscopic structures experimentally, computer modeling is a useful approach to investigate the possible functional impacts and role of nanocolumns. In our in silico model, as has been experimentally observed, a nanocolumn is characterized by a tight distribution of postsynaptic receptors aligned with the presynaptic vesicle release site and by the presence of trans-synaptic molecules which can modulate neurotransmitter molecule diffusion. In this work, we found that nanocolumns can play an important role in reinforcing synaptic current mostly when the presynaptic vesicle contains a small number of neurotransmitter molecules. Our work proposes a new methodology to investigate in silico how the existence of trans-synaptic nanocolumns, the nanometric organization of the synapse and the lateral diffusion of receptors shape the features of the synaptic current such as its amplitude and kinetics.
Collapse
Affiliation(s)
- Xiaoting Li
- Department of Mathematics and Statistics, Université Laval, Québec City, QC, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec City, QC, Canada
- CERVO Brain Research Centre, Québec City, QC, Canada
| | - Gabriel Hémond
- Department of Physics, Université Laval, Québec City, QC, Canada
| | - Antoine G. Godin
- Department of Psychiatry and Neuroscience, Université Laval, Québec City, QC, Canada
- CERVO Brain Research Centre, Québec City, QC, Canada
- *Correspondence: Antoine G. Godin
| | - Nicolas Doyon
- Department of Mathematics and Statistics, Université Laval, Québec City, QC, Canada
- CERVO Brain Research Centre, Québec City, QC, Canada
- Nicolas Doyon
| |
Collapse
|
44
|
Thacker JS, Mielke JG. The combined effects of corticosterone and brain-derived neurotrophic factor on plasticity-related receptor phosphorylation and expression at the synaptic surface in male Sprague-Dawley rats. Horm Behav 2022; 145:105233. [PMID: 35878471 DOI: 10.1016/j.yhbeh.2022.105233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/23/2022]
Abstract
Following acute exercise, a temporal window exists wherein neuroplasticity is thought to be heightened. Although a number of studies have established that pairing this post-exercise period with motor training enhances learning, the mechanisms through which exercise-induced priming occurs are not well understood. Previously, we characterized a rodent model of acute exercise that generates significant enhancement in glutamatergic receptor phosphorylation as a possible mechanism to explain how exercise-induced priming might occur. However, whether these changes are stimulated by peripheral factors (e.g., glucocorticoids), central effects (e.g., brain-derived neurotrophic factor (BDNF), or a combination of the two remains unclear. Herein, we explored the possible individual and/or cumulative contribution corticosterone (CORT) and BDNF may have on glutamate receptor phosphorylation and synaptic surface expression. Tissue slices from the sensorimotor cortex were prepared and acutely (30 min) incubated with either CORT (200 nM), BDNF (20 ng/mL), or the simultaneous application of CORT and BDNF (CORT+BDNF). Immunoblotting with biotinylated synaptoneurosomes (which provide an enrichment of proteins from the synaptic surface) suggested divergent effects between CORT and BDNF. Acute CORT application enhanced NMDA- (GluN2A, B) and AMPA- (GluA1) receptor phosphorylation, whereas BDNF preferentially increased synaptic surface expression of both NMDA- and AMPA-receptor subunits. The combined effects of CORT+BDNF resulted in a unique subset of signaling patterns that favored phosphorylation in the absence of surface expression. Taken together, these data provide a mechanistic framework for how CORT and BDNF may alter glutamatergic synapses during exercise-induced priming.
Collapse
Affiliation(s)
- Jonathan S Thacker
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, Ontario M5G 1X5, Canada; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| | - John G Mielke
- School of Public Health Sciences, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
45
|
Zhu W, Wu F, Li J, Meng L, Zhang W, Zhang H, Cha S, Zhang J, Guo G. Impaired learning and memory generated by hyperthyroidism is rescued by restoration of AMPA and NMDA receptors function. Neurobiol Dis 2022; 171:105807. [PMID: 35777536 DOI: 10.1016/j.nbd.2022.105807] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/19/2022] [Accepted: 06/23/2022] [Indexed: 11/17/2022] Open
Abstract
Hyperthyroidism has been identified as a risk factor for cognitive disorders. The hippocampus is a key brain region associated with cognitive function, among which excitatory synapse transmission plays an important role in the process of learning and memory. However, the mechanism by which hyperthyroidism leads to cognitive dysfunction through a synaptic mechanism remains unknown. We investigated the synaptic mechanisms in the effects of hyperthyroidism in an animal model that involved repeated injection of triiodothyronine (T3). These mice displayed impaired learning and memory in the Novel object recognition test, Y-maze test, and Morris Water Maze test, as well as elevated anxiety in the elevated plus maze. Mature dendritic spines in the hippocampal CA1 region of hyperthyroid mice were significantly decreased, accompanied by decreased level of AMPA- and NMDA-type glutamate receptors in the hippocampus. In primary cultured hippocampal neurons, levels of AMPA- and NMDA-type glutamate receptors also decreased and whole-cell patch-clamp recording revealed that excitatory synaptic function was obviously attenuated after T3 treatment. Notably, pharmacological activation of AMPAR or NMDAR by intraperitoneal injection of CX546, an AMPAR agonist, or NMDA, an NMDAR agonist can restore excitatory synaptic function and corrected impaired learning and memory deficit in hyperthyroid mice. Together, our findings uncovered a previously unrecognized AMPAR and NMDAR-dependent mechanism involved in regulating hippocampal excitatory synaptic transmission and learning and memory disorders in hyperthyroidism.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou 510630, China
| | - Fengming Wu
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou 510630, China
| | - Jiong Li
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou 510630, China
| | - Lianghui Meng
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou 510630, China
| | - Wenjun Zhang
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou 510630, China
| | - Huijie Zhang
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou 510630, China
| | - Shuhan Cha
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou 510630, China
| | - Jifeng Zhang
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou 510630, China.
| | - Guoqing Guo
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou 510630, China.
| |
Collapse
|
46
|
Jung S, Park M. Shank postsynaptic scaffolding proteins in autism spectrum disorder: Mouse models and their dysfunctions in behaviors, synapses, and molecules. Pharmacol Res 2022; 182:106340. [DOI: 10.1016/j.phrs.2022.106340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 01/03/2023]
|
47
|
Speculation on How RIC-3 and Other Chaperones Facilitate α7 Nicotinic Receptor Folding and Assembly. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144527. [PMID: 35889400 PMCID: PMC9318448 DOI: 10.3390/molecules27144527] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 11/17/2022]
Abstract
The process of how multimeric transmembrane proteins fold and assemble in the endoplasmic reticulum is not well understood. The alpha7 nicotinic receptor (α7 nAChR) is a good model for multimeric protein assembly since it has at least two independent and specialized chaperones: Resistance to Inhibitors of Cholinesterase 3 (RIC-3) and Nicotinic Acetylcholine Receptor Regulator (NACHO). Recent cryo-EM and NMR data revealed structural features of α7 nAChRs. A ser-ala-pro (SAP) motif precedes a structurally important but unique "latch" helix in α7 nAChRs. A sampling of α7 sequences suggests the SAP motif is conserved from C. elegans to humans, but the latch sequence is only conserved in vertebrates. How RIC-3 and NACHO facilitate receptor subunits folding into their final pentameric configuration is not known. The artificial intelligence program AlphaFold2 recently predicted structures for NACHO and RIC-3. NACHO is highly conserved in sequence and structure across species, but RIC-3 is not. This review ponders how different intrinsically disordered RIC-3 isoforms from C. elegans to humans interact with α7 nAChR subunits despite having little sequence homology across RIC-3 species. Two models from the literature about how RIC-3 assists α7 nAChR assembly are evaluated considering recent structural information about the receptor and its chaperones.
Collapse
|
48
|
Yu Q, Kumata K, Rong J, Chen Z, Yamasaki T, Chen J, Xiao Z, Ishii H, Hiraishi A, Shao T, Zhang Y, Hu K, Xie L, Fujinaga M, Zhao C, Mori W, Collier T, Haider A, Tomita S, Zhang MR, Liang S. Imaging of Transmembrane AMPA Receptor Regulatory Proteins by Positron Emission Tomography. J Med Chem 2022; 65:9144-9158. [PMID: 35762919 PMCID: PMC10448436 DOI: 10.1021/acs.jmedchem.2c00377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The transmembrane α-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid (AMPA) receptor regulatory protein γ-8 (TARP γ-8) constitutes an auxiliary subunit of AMPA receptors, which mediates various brain functions including learning and memory. TARP γ-8 has emerged as a promising therapeutic target for central nervous system disorders. Despite considerable efforts, previously reported TARP γ-8 PET radioligands, such as [11C]TARP-1903 and [11C]TARP-1811 series, were plagued by limited brain uptake and/or high nonspecific binding in vivo. Herein, we developed two novel 11C-labeled probes, [11C]8 and [11C]15 (also named as [11C]TARP-2105), of which the latter exhibited a reasonable brain uptake as well as specific binding toward TARP γ-8 both in vitro and in vivo, as confirmed by blocking experiments with the commercially available TARP γ-8 inhibitor, JNJ-55511118 in the TARP γ-8-rich hippocampus. Overall, [11C]15 exhibited promising tracer characteristics and proved to be a lead positron-emission tomography ligand for the non-invasive quantification of TARP γ-8 in the mammalian brain.
Collapse
Affiliation(s)
- Qingzhen Yu
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114, United States
- Medical Research Center, Southern University of Science and Technology Hospital & School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Katsushi Kumata
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Jian Rong
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114, United States
| | - Zhen Chen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114, United States
| | - Tomoteru Yamasaki
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Jiahui Chen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114, United States
| | - Zhiwei Xiao
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114, United States
| | - Hideki Ishii
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Atsuto Hiraishi
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Tuo Shao
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114, United States
| | - Yiding Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Kuan Hu
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Lin Xie
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Masayuki Fujinaga
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Chunyu Zhao
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114, United States
| | - Wakana Mori
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Thomas Collier
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114, United States
| | - Ahmed Haider
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114, United States
| | - Susumu Tomita
- Department of Cellular and Molecular Physiology, Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, United States
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Steven Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114, United States
| |
Collapse
|
49
|
Hetsch F, Wang D, Chen X, Zhang J, Aslam M, Kegel M, Tonner H, Grus F, von Engelhardt J. CKAMP44 controls synaptic function and strength of relay neurons during early development of the dLGN. J Physiol 2022; 600:3549-3565. [PMID: 35770953 DOI: 10.1113/jp283172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/27/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Expression of CKAMP44 starts early during development of the dLGN and remains stable in relay neurons and interneurons. Genetic deletion of CKAMP44 decreases synaptic strength and increases silent synapse number in dLGN relay neurons. Genetic deletion of CKAMP44 increases the rate of recovery from desensitisation of AMPA receptors in dLGN relay neurons. Genetic deletion of CKAMP44 reduces synaptic short-term depression in retinogeniculate synapses. The probability to induce plateau potentials is elevated in relay neurons of CKAMP44-/- mice. Eye-specific input segregation is unaffected in the dLGN of CKAMP44-/- mice. Deletion of CKAMP44 mildly affects dendritic arborisation of relay neurons in the dLGN. ABSTRACT Relay neurons of the dorsal lateral geniculate nucleus (dLGN) receive inputs from retinal ganglion cells via retinogeniculate synapses. These connections undergo pruning in the first two weeks after eye opening. The remaining connections are strengthened several-fold by the insertion of AMPA receptors (AMPARs) into weak or silent synapses. In this study, we found that the AMPAR auxiliary subunit CKAMP44 is required for receptor insertion and function of retinogeniculate synapses during development. Genetic deletion of CKAMP44 resulted in decreased synaptic strength and a higher number of silent synapses in young (P9-11) mice. Recovery from desensitisation of AMPA receptors was faster in CKAMP44 knockout (CKAMP44-/- ) than in wildtype mice. Moreover, loss of CKAMP44 increased the probability to induce plateau potentials, which are known to be important for eye-specific input segregation and retinogeniculate synapse maturation. The anatomy of relay neurons in the dLGN was changed in young CKAMP44-/- mice showing a transient increase in dendritic branching that normalised during later development (P26-33). Interestingly, input segregation in young CKAMP44-/- mice was not affected when compared to wildtype mice. These results demonstrate that CKAMP44 promotes maturation and modulates function of retinogeniculate synapses during early development of the visual system without affecting input segregation. Abstract figure legend AMPA receptor auxiliary subunit CKAMP44 influences synaptic function in retinogeniculate synapses of young mice. CKAMP44 unsilences synapses by recruiting AMPA receptors to the synapse. Furthermore, genetic deletion of CKAMP44 reduces short-term depression and increases the probability to elicit L-type Ca2+ channel-mediated plateau potentials. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Florian Hetsch
- Institute of Pathophysiology, Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Danni Wang
- Institute of Pathophysiology, Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Xufeng Chen
- Institute of Pathophysiology, Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Jiong Zhang
- Institute of Pathophysiology, Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Muhammad Aslam
- Institute of Pathophysiology, Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Marcel Kegel
- Institute of Pathophysiology, Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Henrik Tonner
- Experimental Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Franz Grus
- Experimental Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Jakob von Engelhardt
- Institute of Pathophysiology, Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
| |
Collapse
|
50
|
Demin KA, Kupriyanova OV, Shevyrin VA, Derzhavina KA, Krotova NA, Ilyin NP, Kolesnikova TO, Galstyan DS, Kositsyn YM, Khaybaev AAS, Seredinskaya MV, Dubrovskii Y, Sadykova RG, Nerush MO, Mor MS, Petersen EV, Strekalova T, Efimova EV, Kuvarzin SR, Yenkoyan KB, Bozhko DV, Myrov VO, Kolchanova SM, Polovian AI, Galumov GK, Kalueff AV. Acute behavioral and Neurochemical Effects of Novel N-Benzyl-2-Phenylethylamine Derivatives in Adult Zebrafish. ACS Chem Neurosci 2022; 13:1902-1922. [PMID: 35671176 DOI: 10.1021/acschemneuro.2c00123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Hallucinogenic drugs potently affect brain and behavior and have also recently emerged as potentially promising agents in pharmacotherapy. Complementing laboratory rodents, the zebrafish (Danio rerio) is a powerful animal model organism for screening neuroactive drugs, including hallucinogens. Here, we test a battery of ten novel N-benzyl-2-phenylethylamine (NBPEA) derivatives with the 2,4- and 3,4-dimethoxy substitutions in the phenethylamine moiety and the -OCH3, -OCF3, -F, -Cl, and -Br substitutions in the ortho position of the phenyl ring of the N-benzyl moiety, assessing their acute behavioral and neurochemical effects in the adult zebrafish. Overall, substitutions in the Overall, substitutions in the N-benzyl moiety modulate locomotion, and substitutions in the phenethylamine moiety alter zebrafish anxiety-like behavior, also affecting the brain serotonin and/or dopamine turnover. The 24H-NBOMe(F) and 34H-NBOMe(F) treatment also reduced zebrafish despair-like behavior. Computational analyses of zebrafish behavioral data by artificial intelligence identified several distinct clusters for these agents, including anxiogenic/hypolocomotor (24H-NBF, 24H-NBOMe, and 34H-NBF), behaviorally inert (34H-NBBr, 34H-NBCl, and 34H-NBOMe), anxiogenic/hallucinogenic-like (24H-NBBr, 24H-NBCl, and 24H-NBOMe(F)), and anxiolytic/hallucinogenic-like (34H-NBOMe(F)) drugs. Our computational analyses also revealed phenotypic similarity of the behavioral activity of some NBPEAs to that of selected conventional serotonergic and antiglutamatergic hallucinogens. In silico functional molecular activity modeling further supported the overlap of the drug targets for NBPEAs tested here and the conventional serotonergic and antiglutamatergic hallucinogens. Overall, these findings suggest potent neuroactive properties of several novel synthetic NBPEAs, detected in a sensitive in vivo vertebrate model system, the zebrafish, raising the possibility of their potential clinical use and abuse.
Collapse
Affiliation(s)
- Konstantin A Demin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia.,Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Olga V Kupriyanova
- Institute of Fundamental Medicine and Biology, Kazan Volga Region Federal University, Kazan 420008, Russia.,Kazan State Medical University, Kazan 420012, Russia
| | - Vadim A Shevyrin
- Institute of Chemistry and Technology, Ural Federal University, 19 Mira Str., Ekaterinburg 620002, Russia
| | - Ksenia A Derzhavina
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia.,Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Nataliya A Krotova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia.,Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Nikita P Ilyin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia.,Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Tatiana O Kolesnikova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia.,Neurobiology Program, Sirius University of Science and Technology, Sochi 354340, Russia
| | - David S Galstyan
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia.,Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny 197758, Russia
| | - Yurii M Kositsyn
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | | | - Maria V Seredinskaya
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Yaroslav Dubrovskii
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia.,Institute of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia.,St. Petersburg State Chemical Pharmaceutical University, St. Petersburg 197022, Russia
| | | | - Maria O Nerush
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Mikael S Mor
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Elena V Petersen
- Moscow Institute of Physics and Technology, Moscow 141701, Russia
| | | | - Evgeniya V Efimova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Savelii R Kuvarzin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Konstantin B Yenkoyan
- Neuroscience Laboratory, COBRAIN Center, M. Heratsi Yerevan State Medical University, Yerevan AM 0025, Armenia.,COBRAIN Scientific Educational Center for Fundamental Brain Research, Yerevan AM 0025, Armenia
| | | | | | | | | | | | - Allan V Kalueff
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia.,Almazov National Medical Research Centre, St. Petersburg 197341, Russia.,Ural Federal University, Ekaterinburg 620075, Russia.,Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny 197758, Russia.,Moscow Institute of Physics and Technology, Moscow 141701, Russia.,COBRAIN Scientific Educational Center for Fundamental Brain Research, Yerevan AM 0025, Armenia.,Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, 630117, Russia
| |
Collapse
|