1
|
Saffioti NA, Sousa EB, Marin M, Leal Denis MF, Ostuni MA, Herlax V, Schwarzbaum PJ, Pallarola D. Escherichia coli α-hemolysin induces red blood cell retention in a microfluidic spleen-like device. Biophys J 2025:S0006-3495(25)00137-7. [PMID: 40077968 DOI: 10.1016/j.bpj.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/20/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
α-hemolysin (HlyA) is a major exotoxin secreted by uropathogenic Escherichia coli (UPEC), known for its ability to lyse red blood cells (RBCs). Although its lytic effects are well characterized, the nonlytic alterations on RBCs, such as increased permeability to Ca2+, osmotic imbalance, and morphological alterations, remain less understood and may be critical in UPEC pathogenesis. This study investigates the impact of these nonlytic alterations on the rheology and mechanics of RBCs using two biomimetic microfluidic devices that model key aspects of RBCs' circulation. In the first device, which mimics the mechanical deformation of RBCs in narrow capillaries, HlyA sublytic concentrations were found to significantly impair RBC deformability. These changes were accompanied by an increase in cytosolic Ca2+ and volume expansion. In contrast, the nonacylated protoxin ProHlyA neither impaired the deformability of RBCs nor triggered changes in cytosolic Ca2+ or cell volume. The second device, which simulates the RBCs' filtration by the spleen's red pulp, revealed that HlyA, but not ProHlyA, increased RBCs' retention in small gaps resembling splenic fenestrations. The extent of RBCs' retention was partially mitigated by blocking purinergic signaling, indicating a contribution of the HlyA-induced volume increase in this process. Our results suggest that the increase in cytosolic Ca2+ elicited by HlyA impacts RBCs' circulation by decreasing RBCs' deformability and increasing spleen retention. However, this impairment of RBCs' performance can function as a defense mechanism to aid in the retention of HlyA-bound RBCs, removing them from circulation, and potentially preventing vascular hemolysis.
Collapse
Affiliation(s)
- Nicolás Andrés Saffioti
- Laboratorio de Biosensores Avanzados, Instituto de Nanosistemas, Universidad Nacional de San Martín, Buenos Aires, Argentina; Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini", Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Emilia Belén Sousa
- Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini", Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, Ciudad Autónoma de Buenos Aires, Argentina
| | - Mickaël Marin
- Université Paris Cité, INSERM, EFS, BIGR U1134, 75015, Paris, France
| | - María Florencia Leal Denis
- Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini", Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, Ciudad Autónoma de Buenos Aires, Argentina
| | | | - Vanesa Herlax
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP) CCT-La Plata, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina
| | - Pablo Julio Schwarzbaum
- Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini", Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, Ciudad Autónoma de Buenos Aires, Argentina
| | - Diego Pallarola
- Laboratorio de Biosensores Avanzados, Instituto de Nanosistemas, Universidad Nacional de San Martín, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Wang Y, Liu Y, Xiang G, Jian Y, Yang Z, Chen T, Ma X, Zhao N, Dai Y, Lv Y, Wang H, He L, Shi B, Liu Q, Liu Y, Otto M, Li M. Post-translational toxin modification by lactate controls Staphylococcus aureus virulence. Nat Commun 2024; 15:9835. [PMID: 39537625 PMCID: PMC11561239 DOI: 10.1038/s41467-024-53979-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Diverse post-translational modifications have been shown to play important roles in regulating protein function in eukaryotes. By contrast, the roles of post-translational modifications in bacteria are not so well understood, particularly as they relate to pathogenesis. Here, we demonstrate post-translational protein modification by covalent addition of lactate to lysine residues (lactylation) in the human pathogen Staphylococcus aureus. Lactylation is dependent on lactate concentration and specifically affects alpha-toxin, in which a single lactylated lysine is required for full activity and virulence in infection models. Given that lactate levels typically increase during infection, our results suggest that the pathogen can use protein lactylation as a mechanism to increase toxin-mediated virulence during infection.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Faculty of Medical Laboratory Science, College of Health Science and Technology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanfeng Liu
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guoxiu Xiang
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Jian
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ziyu Yang
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tianchi Chen
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaowei Ma
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Na Zhao
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yingxin Dai
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Lv
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hua Wang
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei He
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bisheng Shi
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Liu
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yao Liu
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Min Li
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Faculty of Medical Laboratory Science, College of Health Science and Technology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
3
|
Lepesheva A, Grobarcikova M, Osickova A, Jurnecka D, Knoblochova S, Cizkova M, Osicka R, Sebo P, Masin J. Modification of the RTX domain cap by acyl chains of adapted length rules the formation of functional hemolysin pores. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184311. [PMID: 38570122 DOI: 10.1016/j.bbamem.2024.184311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/14/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
The acylated pore-forming Repeats in ToXin (RTX) cytolysins α-hemolysin (HlyA) and adenylate cyclase toxin (CyaA) preferentially bind to β2 integrins of myeloid leukocytes but can also promiscuously bind and permeabilize cells lacking the β2 integrins. We constructed a HlyA1-563/CyaA860-1706 chimera that was acylated either by the toxin-activating acyltransferase CyaC, using sixteen carbon-long (C16) acyls, or by the HlyC acyltransferase using fourteen carbon-long (C14) acyls. Cytolysin assays with the C16- or C14-acylated HlyA/CyaA chimeric toxin revealed that the RTX domain of CyaA can functionally replace the RTX domain of HlyA only if it is modified by C16-acyls on the Lys983 residue of CyaA. The C16-monoacylated HlyA/CyaA chimera was as pore-forming and cytolytic as native HlyA, whereas the C14-acylated chimera exhibited very low pore-forming activity. Hence, the capacity of the RTX domain of CyaA to support the insertion of the N-terminal pore-forming domain into the target cell membrane, and promote formation of toxin pores, strictly depends on the modification of the Lys983 residue by an acyl chain of adapted length.
Collapse
Affiliation(s)
- Anna Lepesheva
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Michaela Grobarcikova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Adriana Osickova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - David Jurnecka
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Sarka Knoblochova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Monika Cizkova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Radim Osicka
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Peter Sebo
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Jiri Masin
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
4
|
Cané L, Saffioti NA, Genetet S, Daza Millone MA, Ostuni MA, Schwarzbaum PJ, Mouro-Chanteloup I, Herlax V. Alpha hemolysin of E. coli induces hemolysis of human erythrocytes independently of toxin interaction with membrane proteins. Biochimie 2024; 216:3-13. [PMID: 37820991 DOI: 10.1016/j.biochi.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/13/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
Alpha hemolysin (HlyA) is a hemolytic and cytotoxic protein secreted by uropathogenic strains of E. coli. The role of glycophorins (GPs) as putative receptors for HlyA binding to red blood cells (RBCs) has been debated. Experiments using anti-GPA/GPB antibodies and a GPA-specific epitope nanobody to block HlyA-GP binding on hRBCs, showed no effect on hemolytic activity. Similarly, the hemolysis induced by HlyA remained unaffected when hRBCs from a GPAnull/GPBnull variant were used. Surface Plasmon Resonance experiments revealed similar values of the dissociation constant between GPA and either HlyA, ProHlyA (inactive protoxin), HlyAΔ914-936 (mutant of HlyA lacking the binding domain to GPA) or human serum albumin, indicating that the binding between the proteins and GPA is not specific. Although far Western blot followed by mass spectroscopy analyses suggested that HlyA interacts with Band 3 and spectrins, hemolytic experiments on spectrin-depleted hRBCs and spherocytes, indicated these proteins do not mediate the hemolytic process. Our results unequivocally demonstrate that neither glycophorins, nor Band 3 and spectrins mediate the cytotoxic activity of HlyA on hRBCs, thereby challenging the HlyA-receptor hypothesis. This finding holds significant relevance for the design of anti-toxin therapeutic strategies, particularly in light of the growing antibiotic resistance exhibited by bacteria.
Collapse
Affiliation(s)
- Lucía Cané
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT- La Plata, CONICET. Facultad de Ciencias Médicas. Universidad Nacional de La Plata, Argentina
| | - Nicolás Andrés Saffioti
- Instituto de Química y Fisico-Química Biológicas (IQUIFIB) "Prof. Alejandro C. Paladini", Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Nanosistemas, Universidad de General San Martín, Avenida 25 de Mayo 1021, San Martín, Buenos Aires, Argentina
| | - Sandrine Genetet
- Université Paris Cité and Université des Antilles, INSERM, BIGR, F-75015, Paris, France
| | - María Antonieta Daza Millone
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CCT- La Plata, CONICET. Universidad Nacional de La Plata, Sucursal 4 Casilla de Correo 16, 1900, La Plata, Argentina
| | - Mariano A Ostuni
- Université Paris Cité and Université des Antilles, INSERM, BIGR, F-75015, Paris, France
| | - Pablo J Schwarzbaum
- Instituto de Química y Fisico-Química Biológicas (IQUIFIB) "Prof. Alejandro C. Paladini", Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Vanesa Herlax
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT- La Plata, CONICET. Facultad de Ciencias Médicas. Universidad Nacional de La Plata, Argentina.
| |
Collapse
|
5
|
Cané L, Guzmán F, Balatti G, Daza Millone MA, Pucci Molineris M, Maté S, Martini MF, Herlax V. Biophysical Analysis to Assess the Interaction of CRAC and CARC Motif Peptides of Alpha Hemolysin of Escherichia coli with Membranes. Biochemistry 2023. [PMID: 37224476 DOI: 10.1021/acs.biochem.3c00164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Alpha hemolysin of Escherichia coli (HlyA) is a pore-forming protein, which is a prototype of the "Repeat in Toxins" (RTX) family. It was demonstrated that HlyA-cholesterol interaction facilitates the insertion of the toxin into membranes. Putative cholesterol-binding sites, called cholesterol recognition/amino acid consensus (CRAC), and CARC (analogous to CRAC but with the opposite orientation) were identified in the HlyA sequence. In this context, two peptides were synthesized, one derived from a CARC site from the insertion domain of the toxin (residues 341-353) (PEP 1) and the other one from a CRAC site from the domain between the acylated lysines (residues 639-644) (PEP 2), to study their role in the interaction of HlyA with membranes. The interaction of peptides with membranes of different lipid compositions (pure POPC and POPC/Cho of 4:1 and 2:1 molar ratios) was analyzed by surface plasmon resonance and molecular dynamics simulations. Results demonstrate that both peptides interact preferentially with Cho-containing membranes, although PEP 2 presents a lower KD than PEP 1. Molecular dynamics simulation results indicate that the insertion and interaction of PEP 2 with Cho-containing membranes are more prominent than those caused by PEP 1. The hemolytic activity of HlyA in the presence of peptides indicates that PEP 2 was the only one that inhibits HlyA activity, interfering in the binding between the toxin and cholesterol.
Collapse
Affiliation(s)
- Lucía Cané
- CCT-La Plata, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), 60 y 120, La Plata 1900, Argentina
| | - Fanny Guzmán
- Núcleo de Biotecnología Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile
| | - Galo Balatti
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes. Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Roque Sáenz Peña 352, Bernal, Buenos Aires 1876, Argentina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Metabolismo del Fármaco (IQUIMEFA). Junín 956, Buenos Aires 1113, Argentina
| | - María Antonieta Daza Millone
- CCT-La Plata, CONICET. Universidad Nacional de La Plata, Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Sucursal 4 Casilla de Correo 16, La Plata 1900, Argentina
| | - Melisa Pucci Molineris
- CCT-La Plata, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), 60 y 120, La Plata 1900, Argentina
| | - Sabina Maté
- CCT-La Plata, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), 60 y 120, La Plata 1900, Argentina
| | - M Florencia Martini
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Metabolismo del Fármaco (IQUIMEFA). Junín 956, Buenos Aires 1113, Argentina
- Cátedra de Química Medicinal, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires 1113, Argentina
| | - Vanesa Herlax
- CCT-La Plata, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), 60 y 120, La Plata 1900, Argentina
| |
Collapse
|
6
|
Heterologously secreted MbxA from Moraxella bovis induces a membrane blebbing response of the human host cell. Sci Rep 2022; 12:17825. [PMID: 36280777 PMCID: PMC9592583 DOI: 10.1038/s41598-022-22480-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/14/2022] [Indexed: 01/20/2023] Open
Abstract
Many proteins of the Repeats in Toxins (RTX) protein family are toxins of Gram-negative pathogens including hemolysin A (HlyA) of uropathogenic E. coli. RTX proteins are secreted via Type I secretion systems (T1SS) and adopt their native conformation in the Ca2+-rich extracellular environment. Here we employed the E. coli HlyA T1SS as a heterologous surrogate system for the RTX toxin MbxA from the bovine pathogen Moraxella bovis. In E. coli the HlyA system successfully activates the heterologous MbxA substrate by acylation and secretes the precursor proMbxA and active MbxA allowing purification of both species in quantities sufficient for a variety of investigations. The activating E. coli acyltransferase HlyC recognizes the acylation sites in MbxA, but unexpectedly in a different acylation pattern as for its endogenous substrate HlyA. HlyC-activated MbxA shows host species-independent activity including a so-far unknown toxicity against human lymphocytes and epithelial cells. Using live-cell imaging, we show an immediate MbxA-mediated permeabilization and a rapidly developing blebbing of the plasma membrane in epithelial cells, which is associated with immediate cell death.
Collapse
|
7
|
Filipi K, Rahman WU, Osickova A, Osicka R. Kingella kingae RtxA Cytotoxin in the Context of Other RTX Toxins. Microorganisms 2022; 10:518. [PMID: 35336094 PMCID: PMC8953716 DOI: 10.3390/microorganisms10030518] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/04/2022] Open
Abstract
The Gram-negative bacterium Kingella kingae is part of the commensal oropharyngeal flora of young children. As detection methods have improved, K. kingae has been increasingly recognized as an emerging invasive pathogen that frequently causes skeletal system infections, bacteremia, and severe forms of infective endocarditis. K. kingae secretes an RtxA cytotoxin, which is involved in the development of clinical infection and belongs to an ever-growing family of cytolytic RTX (Repeats in ToXin) toxins secreted by Gram-negative pathogens. All RTX cytolysins share several characteristic structural features: (i) a hydrophobic pore-forming domain in the N-terminal part of the molecule; (ii) an acylated segment where the activation of the inactive protoxin to the toxin occurs by a co-expressed toxin-activating acyltransferase; (iii) a typical calcium-binding RTX domain in the C-terminal portion of the molecule with the characteristic glycine- and aspartate-rich nonapeptide repeats; and (iv) a C-proximal secretion signal recognized by the type I secretion system. RTX toxins, including RtxA from K. kingae, have been shown to act as highly efficient 'contact weapons' that penetrate and permeabilize host cell membranes and thus contribute to the pathogenesis of bacterial infections. RtxA was discovered relatively recently and the knowledge of its biological role remains limited. This review describes the structure and function of RtxA in the context of the most studied RTX toxins, the knowledge of which may contribute to a better understanding of the action of RtxA in the pathogenesis of K. kingae infections.
Collapse
Affiliation(s)
| | | | | | - Radim Osicka
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (K.F.); (W.U.R.); (A.O.)
| |
Collapse
|
8
|
Giglione C, Meinnel T. Mapping the myristoylome through a complete understanding of protein myristoylation biochemistry. Prog Lipid Res 2021; 85:101139. [PMID: 34793862 DOI: 10.1016/j.plipres.2021.101139] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/22/2022]
Abstract
Protein myristoylation is a C14 fatty acid modification found in all living organisms. Myristoylation tags either the N-terminal alpha groups of cysteine or glycine residues through amide bonds or lysine and cysteine side chains directly or indirectly via glycerol thioester and ester linkages. Before transfer to proteins, myristate must be activated into myristoyl coenzyme A in eukaryotes or, in bacteria, to derivatives like phosphatidylethanolamine. Myristate originates through de novo biosynthesis (e.g., plants), from external uptake (e.g., human tissues), or from mixed origins (e.g., unicellular organisms). Myristate usually serves as a molecular anchor, allowing tagged proteins to be targeted to membranes and travel across endomembrane networks in eukaryotes. In this review, we describe and discuss the metabolic origins of protein-bound myristate. We review strategies for in vivo protein labeling that take advantage of click-chemistry with reactive analogs, and we discuss new approaches to the proteome-wide discovery of myristate-containing proteins. The machineries of myristoylation are described, along with how protein targets can be generated directly from translating precursors or from processed proteins. Few myristoylation catalysts are currently described, with only N-myristoyltransferase described to date in eukaryotes. Finally, we describe how viruses and bacteria hijack and exploit myristoylation for their pathogenicity.
Collapse
Affiliation(s)
- Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| |
Collapse
|
9
|
Lipidation of Class IV CdiA Effector Proteins Promotes Target Cell Recognition during Contact-Dependent Growth Inhibition. mBio 2021; 12:e0253021. [PMID: 34634941 PMCID: PMC8510554 DOI: 10.1128/mbio.02530-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Contact-dependent growth inhibition (CDI) systems enable the direct transfer of protein toxins between competing Gram-negative bacteria. CDI+ strains produce cell surface CdiA effector proteins that bind specific receptors on neighboring bacteria to initiate toxin delivery. Three classes of CdiA effectors that recognize different outer membrane protein receptors have been characterized in Escherichia coli to date. Here, we describe a fourth effector class that uses the lipopolysaccharide (LPS) core as a receptor to identify target bacteria. Selection for CDI-resistant target cells yielded waaF and waaP “deep-rough” mutants, which are unable to synthesize the full LPS core. The CDI resistance phenotypes of other waa mutants suggest that phosphorylated inner-core heptose residues form a critical CdiA recognition epitope. Class IV cdi loci also encode putative lysyl acyltransferases (CdiC) that are homologous to enzymes that lipidate repeats-in-toxin (RTX) cytolysins. We found that catalytically active CdiC is required for full target cell killing activity, and we provide evidence that the acyltransferase appends 3-hydroxydecanoate to a specific Lys residue within the CdiA receptor-binding domain. We propose that the lipid moiety inserts into the hydrophobic leaflet of lipid A to anchor CdiA interactions with the core oligosaccharide. Thus, LPS-binding CDI systems appear to have co-opted an RTX toxin-activating acyltransferase to increase the affinity of CdiA effectors for the target cell outer membrane.
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW RTX toxin action often defines the outcome of bacterial infections. Here, we discuss the progress in understanding the impacts of RTX toxin activities on host immunity. RECENT FINDINGS Bordetella pertussis CyaA activity paralyzes sentinel phagocytic cells by elevating cellular cAMP levels and blocks differentiation of infiltrating monocytes into bactericidal macrophages, promoting also de-differentiation of resident alveolar macrophages into monocyte-like cells. Vibrio cholerae multifunctional autoprocessing repeats-in-toxins (MARTX), through Rho inactivating and α/β-hydrolase (ABH) domain action blocks mitogen-activated protein kinase signaling in epithelial cells and dampens the inflammatory responses of intestinal epithelia by blocking immune cell recruitment. The action of actin crosslinking effector domain and Ras/Rap1-specific endopeptidase (RRSP) domains of MARTX compromises the phagocytic ability of macrophages. Aggregatibacter actinomycetemcomitans LtxA action triggers neutrophil elastase release into periodontal tissue, compromising the epithelial barrier and promoting bacterial spreads into deeper tissue. SUMMARY Action of RTX toxins enables bacterial pathogens to cope with the fierce host immune defenses. RTX toxins often block phagocytosis and bactericidal reactive oxygen species and NO production. Some RTX toxins can reprogram the macrophages to less bactericidal cell types. Autophagy is hijacked for example by the activity of the V. cholerae ABH effector domain of the MARTX protein. Subversion of immune functions by RTX toxins thus promotes bacterial survival and proliferation in the host.
Collapse
|
11
|
Komaniecki G, Lin H. Lysine Fatty Acylation: Regulatory Enzymes, Research Tools, and Biological Function. Front Cell Dev Biol 2021; 9:717503. [PMID: 34368168 PMCID: PMC8339906 DOI: 10.3389/fcell.2021.717503] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/30/2021] [Indexed: 11/19/2022] Open
Abstract
Post-translational acylation of lysine side chains is a common mechanism of protein regulation. Modification by long-chain fatty acyl groups is an understudied form of lysine acylation that has gained increasing attention recently due to the characterization of enzymes that catalyze the addition and removal this modification. In this review we summarize what has been learned about lysine fatty acylation in the approximately 30 years since its initial discovery. We report on what is known about the enzymes that regulate lysine fatty acylation and their physiological functions, including tumorigenesis and bacterial pathogenesis. We also cover the effect of lysine fatty acylation on reported substrates. Generally, lysine fatty acylation increases the affinity of proteins for specific cellular membranes, but the physiological outcome depends greatly on the molecular context. Finally, we will go over the experimental tools that have been used to study lysine fatty acylation. While much has been learned about lysine fatty acylation since its initial discovery, the full scope of its biological function has yet to be realized.
Collapse
Affiliation(s)
- Garrison Komaniecki
- Graduate Field of Biochemistry, Molecular, and Cell Biology, Cornell University, Ithaca, NY, United States.,Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| | - Hening Lin
- Graduate Field of Biochemistry, Molecular, and Cell Biology, Cornell University, Ithaca, NY, United States.,Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States.,Howard Hughes Medical Institute, Cornell University, Ithaca, NY, United States
| |
Collapse
|
12
|
Charov K, Burkart MD. In silico identification and in vitro evaluation of a protein-protein interaction inhibitor of Escherichia coli fatty acid biosynthesis. Chem Biol Drug Des 2021; 98:94-101. [PMID: 33905605 DOI: 10.1111/cbdd.13851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/27/2021] [Accepted: 02/14/2021] [Indexed: 11/29/2022]
Abstract
To combat the rise in antibiotic resistance, new targets must be identified and probes against them developed. Protein-protein interactions (PPI) of bacterial type II fatty acid biosynthesis (FAS-II) represent an untapped, yet rich area for new antibiotic discovery. Here, we present a computational and in vitro workflow for the discovery of new inhibitors of PPI in Escherichia coli FAS-II. As part of this study, we identified suramin, an existing treatment for African sleeping sickness, to effectively block the interaction of E. coli dehydratase FabA and the acyl carrier protein EcACP, with an IC50 = 85 μΜ. This finding validates a workflow that combines in silico screening with in vitro PPI assays to identify probes appropriate for further optimization.
Collapse
Affiliation(s)
- Katherine Charov
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
13
|
Sztain T, Bartholow TG, Lee DJ, Casalino L, Mitchell A, Young MA, Wang J, McCammon JA, Burkart MD. Decoding allosteric regulation by the acyl carrier protein. Proc Natl Acad Sci U S A 2021; 118:e2025597118. [PMID: 33846262 PMCID: PMC8072227 DOI: 10.1073/pnas.2025597118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Enzymes in multistep metabolic pathways utilize an array of regulatory mechanisms to maintain a delicate homeostasis [K. Magnuson, S. Jackowski, C. O. Rock, J. E. Cronan, Jr, Microbiol. Rev. 57, 522-542 (1993)]. Carrier proteins in particular play an essential role in shuttling substrates between appropriate enzymes in metabolic pathways. Although hypothesized [E. Płoskoń et al., Chem. Biol. 17, 776-785 (2010)], allosteric regulation of substrate delivery has never before been demonstrated for any acyl carrier protein (ACP)-dependent pathway. Studying these mechanisms has remained challenging due to the transient and dynamic nature of protein-protein interactions, the vast diversity of substrates, and substrate instability [K. Finzel, D. J. Lee, M. D. Burkart, ChemBioChem 16, 528-547 (2015)]. Here we demonstrate a unique communication mechanism between the ACP and partner enzymes using solution NMR spectroscopy and molecular dynamics to elucidate allostery that is dependent on fatty acid chain length. We demonstrate that partner enzymes can allosterically distinguish between chain lengths via protein-protein interactions as structural features of substrate sequestration are translated from within the ACP four-helical bundle to the protein surface, without the need for stochastic chain flipping. These results illuminate details of cargo communication by the ACP that can serve as a foundation for engineering carrier protein-dependent pathways for specific, desired products.
Collapse
Affiliation(s)
- Terra Sztain
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0358
| | - Thomas G Bartholow
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0358
| | - D John Lee
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0358
| | - Lorenzo Casalino
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0358
| | - Andrew Mitchell
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0358
| | - Megan A Young
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0358
| | - Jianing Wang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0358
| | - J Andrew McCammon
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0358;
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093-0340
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0358;
| |
Collapse
|
14
|
Wang M, Lin H. Understanding the Function of Mammalian Sirtuins and Protein Lysine Acylation. Annu Rev Biochem 2021; 90:245-285. [PMID: 33848425 DOI: 10.1146/annurev-biochem-082520-125411] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein lysine acetylation is an important posttranslational modification that regulates numerous biological processes. Targeting lysine acetylation regulatory factors, such as acetyltransferases, deacetylases, and acetyl-lysine recognition domains, has been shown to have potential for treating human diseases, including cancer and neurological diseases. Over the past decade, many other acyl-lysine modifications, such as succinylation, crotonylation, and long-chain fatty acylation, have also been investigated and shown to have interesting biological functions. Here, we provide an overview of the functions of different acyl-lysine modifications in mammals. We focus on lysine acetylation as it is well characterized, and principles learned from acetylation are useful for understanding the functions of other lysine acylations. We pay special attention to the sirtuins, given that the study of sirtuins has provided a great deal of information about the functions of lysine acylation. We emphasize the regulation of sirtuins to illustrate that their regulation enables cells to respond to various signals and stresses.
Collapse
Affiliation(s)
- Miao Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA;
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA; .,Howard Hughes Medical Institute, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
15
|
Jiang L, Zhu Y, Luan P, Xu J, Ru G, Fu JG, Sang N, Xiong Y, He Y, Lin GQ, Wang J, Zhang J, Li R. Bacteria -Anchoring Hybrid Liposome Capable of Absorbing Multiple Toxins for Antivirulence Therapy of Escherichia coli Infection. ACS NANO 2021; 15:4173-4185. [PMID: 33606516 DOI: 10.1021/acsnano.0c04800] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Antivirulence therapy by cell membrane coated nanoparticles has shown promise against bacterial infections. However, current approaches remain unsatisfactory when facing Escherichia coli (E. coli) infections, since the E. coli secretes multiple bacterial toxins including endotoxins and exotoxins that are challenging to eliminate simultaneously. What is worse, the absorptive scavengers normally rely on random contact of the diffuse toxins, which is not efficient. For the current cell membrane coated platform, the single type of cell membrane cannot fully meet the detoxing requirement facing multiple toxins. To address these problems, a polymyxin B (PMB)-modified, red blood cell (RBC)-mimetic hybrid liposome (P-RL) was developed. The P-RL was fabricated succinctly through fusion of PMB-modified lipids and the RBC membranes. By the strong interaction between PMB and the E. coli membrane, P-RL could attach and anchor to the E. coli; attributed to the fused RBC membrane and modified PMB, the P-RL could then efficiently neutralize both endotoxins and exotoxins from the toxin fountainhead. In vitro and in vivo results demonstrated the P-RL had a significant anchoring effect to E. coli. Moreover, compared with the existing RBC vesicles or PMB-modified liposomes, P-RL exhibited a superior therapeutic effect against RBC hemolysis, macrophage activation, and a mixed-toxin infection in mice. Potently, P-RL could inhibit E. coli O157:H7-induced skin damage, intestinal infection, and mouse death. Overall, the P-RL could potentially improve the detoxing efficiency and markedly expand the detoxification spectrum of current antivirulence systems, which provides different insights into drug-resistant E. coli treatment.
Collapse
Affiliation(s)
- Lixian Jiang
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuying Zhu
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Pengwei Luan
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiazhen Xu
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ge Ru
- NMPA Key Laboratory for Monitoring and Evaluation of Cosmetics, Shanghai Institute for Food and Drug Control, Shanghai 201203, China
| | - Jian-Guo Fu
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Nina Sang
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yang Xiong
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Yuwei He
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Guo-Qiang Lin
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jianxin Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jiange Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ruixiang Li
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 311402, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
16
|
Dhembla C, Arya R, Kumar A, Kundu S, Sundd M. L. major apo-acyl carrier protein forms ordered aggregates due to an exposed phenylalanine, while phosphopantetheine inhibits aggregation in the holo-form. Int J Biol Macromol 2021; 179:144-153. [PMID: 33667556 DOI: 10.1016/j.ijbiomac.2021.02.215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/23/2021] [Accepted: 02/27/2021] [Indexed: 11/25/2022]
Abstract
L. major acyl carrier protein (ACP) is a mitochondrial protein, involved in fatty acid biosynthesis. The protein is expressed as an apo-protein, and post-translationally modified at Ser 37 by a 4'-Phosphopantetheinyl transferase. Crystal structure of the apo-form of the protein at pH 5.5 suggests a four helix bundle fold, typical of ACP's. However, upon lowering the pH to 5.0, it undergoes a conformational transition from α-helix to β-sheet, and displays amyloid like properties. When left for a few days at room temperature at this pH, the protein forms fibrils, visible under Transmission electron microscopy (TEM). Using an approach combining NMR, biophysical techniques, and mutagenesis, we have identified a Phe residue present on helix II of ACP, liable for this change. Phosphopantetheinylation of LmACP, or mutation of Phe 45 to the corresponding residue in E. coli ACP (methionine), slows down the conformational change. Conversely, substitution of methionine 44 of E. coli ACP with a phenylalanine, causes enhanced ThT binding. Thus, we demonstrate the unique property of an exposed Phe in inducing, and phophopantetheine in inhibiting amyloidogenesis. Taken together, our study adds L. major acyl carrier protein to the list of ACPs that act as pH sensors.
Collapse
Affiliation(s)
- Chetna Dhembla
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi 110 021, India
| | - Richa Arya
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi 110 021, India
| | - Ambrish Kumar
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Suman Kundu
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi 110 021, India
| | - Monica Sundd
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India.
| |
Collapse
|
17
|
Preferential modification of CyaA-hemolysin by CyaC-acyltransferase through the catalytic Ser 30-His 33 dyad in esterolysis of palmitoyl-donor substrate devoid of acyl carrier proteins. Arch Biochem Biophys 2020; 694:108615. [PMID: 33011179 DOI: 10.1016/j.abb.2020.108615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/04/2020] [Accepted: 09/29/2020] [Indexed: 11/23/2022]
Abstract
We previously demonstrated that the ~130-kDa CyaA-hemolysin domain (CyaA-Hly) from Bordetella pertussis co-expressed with CyaC-acyltransferase in Escherichia coli was acylated at Lys983 and thus activated its hemolytic activity. Here, attempts were made to provide greater insights into such toxin activation via fatty-acyl modification by CyaC-acyltransferase. Non-acylated CyaA-Hly (NA/CyaA-Hly) and CyaC were separately expressed in E. coli and subsequently purified by FPLC to near homogeneity. When effects of acyl-chain length were comparatively evaluated through CyaC-esterolysis using various p-nitrophenyl (pNP) derivatives, Michaelis-Menten steady-state kinetic parameters (KM and kcat) of CyaC-acyltransferase revealed a marked preference for myristoyl (C14:0) and palmitoyl (C16:0) substrates of which catalytic efficiencies (kcat/KM) were roughly the same (~1.5 × 103 s-1mM-1). However, pNP-palmitate (pNPP) gave the highest hemolytic activity of NA/CyaA-Hly after being acylated in vitro with a range of acyl-donor substrates. LC-MS/MS analysis confirmed such CyaC-mediated palmitoylation of CyaA-Hly occurring at Lys983, denoting no requirement of an acyl carrier protein (ACP). A homology-based CyaC structure inferred a role of a potential catalytic dyad of conserved Ser30 and His33 residues in substrate esterolysis. CyaC-ligand binding analysis via molecular docking corroborated high-affinity binding of palmitate with its carboxyl group oriented toward such a dyad. Ala-substitutions of each residue (S30A or H33A) caused a drastic decrease in kcat/KM of CyaC toward pNPP, and hence its catalytic malfunction through palmitoylation-dependent activation of NA/CyaA-Hly. Altogether, our present data evidently provide such preferential palmitoylation of CyaA-Hly by CyaC-acyltransferase through the enzyme Ser30-His33 nucleophile-activation dyad in esterolysis of palmitoyl-donor substrate, particularly devoid of a natural acyl-ACP donor.
Collapse
|
18
|
Reid LO, Thomas AH, Herlax V, Dántola ML. Role of Tryptophan Residues in the Toxicity and Photosensitized Inactivation of Escherichia coli α-Hemolysin. Biochemistry 2020; 59:4213-4224. [PMID: 33108867 DOI: 10.1021/acs.biochem.0c00660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
α-Hemolysin (HlyA) is an extracellular protein toxin secreted by uropathogenic strains of Escherichia coli that inserts into membranes of eukaryotic cells. The main goal of this work was to investigate the involvement of tryptophan (W) residues in the hemolytic activity of HlyA. We investigated the hemolytic activity of six single-point mutant proteins, in which one of the four Ws was replaced by cysteine (C) or leucine (L). We also analyzed the photoinactivation of HlyA with pterin (Ptr), an endogenous photosensitizer, as a method of unspecific oxidation of W and tyrosine (Y) residues. HlyA photoinactivation was analyzed by ultraviolet-visible spectrophotometry, hemolytic activity measurement, fluorescence spectroscopy, and electrophoretic analysis. The results indicate that Ws are important in the hemolytic process. Specifically, the chemical structure of the amino acid at position 578 is important for the acylation of HlyA at residue K563. Furthermore, the exposure of HlyA to ultraviolet radiation, with energy similar to that experienced under sun exposure, in the presence of Ptr induces the inactivation of the toxin, causing chemical changes in, at least, W and Y, the rate of damage to W residues being faster than that observed for Y residues. This work not only deepens our understanding of the structure-function relationship of the toxin but also introduces the possibility of using photoinactivation of HlyA for potential applications such as obtaining innocuous molecules for vaccine production and the elimination of the toxin from contaminated surfaces and drinking water.
Collapse
Affiliation(s)
- Lara O Reid
- Instituto de Investigaciones Fisicoquı́micas Teóricas y Aplicadas (INIFTA), Departamento de Quı́mica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata-CONICET, Casilla de Correo 16, Sucursal 4, 1900 La Plata, Argentina
| | - Andrés H Thomas
- Instituto de Investigaciones Fisicoquı́micas Teóricas y Aplicadas (INIFTA), Departamento de Quı́mica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata-CONICET, Casilla de Correo 16, Sucursal 4, 1900 La Plata, Argentina
| | - Vanesa Herlax
- Instituto de Investigaciones Bioquı́micas La Plata (INIBIOLP), CCT-La Plata, CONICET, UNLP, Facultad de Ciencias Médicas, 60 y 120 La Plata, 1900 La Plata, Argentina
| | - M Laura Dántola
- Instituto de Investigaciones Fisicoquı́micas Teóricas y Aplicadas (INIFTA), Departamento de Quı́mica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata-CONICET, Casilla de Correo 16, Sucursal 4, 1900 La Plata, Argentina
| |
Collapse
|
19
|
Forrest S, Welch M. Arming the troops: Post-translational modification of extracellular bacterial proteins. Sci Prog 2020; 103:36850420964317. [PMID: 33148128 PMCID: PMC10450907 DOI: 10.1177/0036850420964317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Protein secretion is almost universally employed by bacteria. Some proteins are retained on the cell surface, whereas others are released into the extracellular milieu, often playing a key role in virulence. In this review, we discuss the diverse types and potential functions of post-translational modifications (PTMs) occurring to extracellular bacterial proteins.
Collapse
Affiliation(s)
- Suzanne Forrest
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Martin Welch
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
20
|
Verma V, Kumar P, Gupta S, Yadav S, Dhanda RS, Thorlacius H, Yadav M. α-Hemolysin of uropathogenic E. coli regulates NLRP3 inflammasome activation and mitochondrial dysfunction in THP-1 macrophages. Sci Rep 2020; 10:12653. [PMID: 32724079 PMCID: PMC7387347 DOI: 10.1038/s41598-020-69501-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 07/07/2020] [Indexed: 12/16/2022] Open
Abstract
Hemolysin expressing UPEC strains have been associated with severe advanced kidney pathologies, such as cystitis and pyelonephritis, which are associated with an inflammatory response. Macrophages play an important role in regulating an inflammatory response during a urinary tract infection. We have studied the role of purified recombinant α-hemolysin in inducing inflammatory responses and cell death in macrophages. Acylation at lysine residues through HlyC is known to activate proHlyA into a fully functional pore-forming toxin, HlyA. It was observed that active α-hemolysin (HlyA) induced cleavage of caspase-1 leading to the maturation of IL-1β, while inactive α-hemolysin (proHlyA) failed to do so in THP-1 derived macrophages. HlyA also promotes deubiquitination, oligomerization, and activation of the NLRP3 inflammasome, which was found to be dependent on potassium efflux. We have also observed the co-localization of NLRP3 within mitochondria during HlyA stimulations. Moreover, blocking of potassium efflux improved the mitochondrial health in addition to a decreased inflammatory response. Our study demonstrates that HlyA stimulation caused perturbance in potassium homeostasis, which led to the mitochondrial dysfunction followed by an acute inflammatory response, resulting in cell death. However, the repletion of intracellular potassium stores could avoid HlyA induced macrophage cell death. The findings of this study will help to understand the mechanism of α-hemolysin induced inflammatory response and cell death.
Collapse
Affiliation(s)
- Vivek Verma
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi (North Campus), Delhi, 110007, India
| | - Parveen Kumar
- Department of Urology, University of Alabama At Birmingham, Hugh Kaul Genetics Building, Birmingham, AL, USA
| | - Surbhi Gupta
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi (North Campus), Delhi, 110007, India
| | - Sonal Yadav
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi (North Campus), Delhi, 110007, India
| | - Rakesh Singh Dhanda
- Stem Cell Laboratory, Longboat Explorers AB, SMiLE Incubator, Scheelevägen 2, Lund, Sweden
| | - Henrik Thorlacius
- Department of Clinical Sciences, Section of Surgery, Malmö, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Manisha Yadav
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi (North Campus), Delhi, 110007, India.
- Department of Clinical Sciences, Section of Surgery, Malmö, Skåne University Hospital, Lund University, Malmö, Sweden.
| |
Collapse
|
21
|
Osickova A, Khaliq H, Masin J, Jurnecka D, Sukova A, Fiser R, Holubova J, Stanek O, Sebo P, Osicka R. Acyltransferase-mediated selection of the length of the fatty acyl chain and of the acylation site governs activation of bacterial RTX toxins. J Biol Chem 2020; 295:9268-9280. [PMID: 32461253 DOI: 10.1074/jbc.ra120.014122] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/20/2020] [Indexed: 11/06/2022] Open
Abstract
In a wide range of organisms, from bacteria to humans, numerous proteins have to be posttranslationally acylated to become biologically active. Bacterial repeats in toxin (RTX) cytolysins form a prominent group of proteins that are synthesized as inactive protoxins and undergo posttranslational acylation on ε-amino groups of two internal conserved lysine residues by co-expressed toxin-activating acyltransferases. Here, we investigated how the chemical nature, position, and number of bound acyl chains govern the activities of Bordetella pertussis adenylate cyclase toxin (CyaA), Escherichia coli α-hemolysin (HlyA), and Kingella kingae cytotoxin (RtxA). We found that the three protoxins are acylated in the same E. coli cell background by each of the CyaC, HlyC, and RtxC acyltransferases. We also noted that the acyltransferase selects from the bacterial pool of acyl-acyl carrier proteins (ACPs) an acyl chain of a specific length for covalent linkage to the protoxin. The acyltransferase also selects whether both or only one of two conserved lysine residues of the protoxin will be posttranslationally acylated. Functional assays revealed that RtxA has to be modified by 14-carbon fatty acyl chains to be biologically active, that HlyA remains active also when modified by 16-carbon acyl chains, and that CyaA is activated exclusively by 16-carbon acyl chains. These results suggest that the RTX toxin molecules are structurally adapted to the length of the acyl chains used for modification of their acylated lysine residue in the second, more conserved acylation site.
Collapse
Affiliation(s)
- Adriana Osickova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Humaira Khaliq
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Masin
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - David Jurnecka
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Anna Sukova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Radovan Fiser
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.,Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Jana Holubova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ondrej Stanek
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Peter Sebo
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Radim Osicka
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
22
|
Masin J, Osickova A, Jurnecka D, Klimova N, Khaliq H, Sebo P, Osicka R. Retargeting from the CR3 to the LFA-1 receptor uncovers the adenylyl cyclase enzyme-translocating segment of Bordetella adenylate cyclase toxin. J Biol Chem 2020; 295:9349-9365. [PMID: 32393579 DOI: 10.1074/jbc.ra120.013630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/07/2020] [Indexed: 12/11/2022] Open
Abstract
The Bordetella adenylate cyclase toxin-hemolysin (CyaA) and the α-hemolysin (HlyA) of Escherichia coli belong to the family of cytolytic pore-forming Repeats in ToXin (RTX) cytotoxins. HlyA preferentially binds the αLβ2 integrin LFA-1 (CD11a/CD18) of leukocytes and can promiscuously bind and also permeabilize many other cells. CyaA bears an N-terminal adenylyl cyclase (AC) domain linked to a pore-forming RTX cytolysin (Hly) moiety, binds the complement receptor 3 (CR3, αMβ2, CD11b/CD18, or Mac-1) of myeloid phagocytes, penetrates their plasma membrane, and delivers the AC enzyme into the cytosol. We constructed a set of CyaA/HlyA chimeras and show that the CyaC-acylated segment and the CR3-binding RTX domain of CyaA can be functionally replaced by the HlyC-acylated segment and the much shorter RTX domain of HlyA. Instead of binding CR3, a CyaA1-710/HlyA411-1024 chimera bound the LFA-1 receptor and effectively delivered AC into Jurkat T cells. At high chimera concentrations (25 nm), the interaction with LFA-1 was not required for CyaA1-710/HlyA411-1024 binding to CHO cells. However, interaction with the LFA-1 receptor strongly enhanced the specific capacity of the bound CyaA1-710/HlyA411-1024 chimera to penetrate cells and deliver the AC enzyme into their cytosol. Hence, interaction of the acylated segment and/or the RTX domain of HlyA with LFA-1 promoted a productive membrane interaction of the chimera. These results help delimit residues 400-710 of CyaA as an "AC translocon" sufficient for translocation of the AC polypeptide across the plasma membrane of target cells.
Collapse
Affiliation(s)
- Jiri Masin
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Adriana Osickova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.,Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - David Jurnecka
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.,Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Nela Klimova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.,Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Humaira Khaliq
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Peter Sebo
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Radim Osicka
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
23
|
Charov K, Burkart MD. Quantifying protein-protein interactions of the acyl carrier protein with solvatochromic probes. Methods Enzymol 2020; 638:321-340. [PMID: 32416920 DOI: 10.1016/bs.mie.2020.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Protein-protein interactions (PPIs) are universal to life and their study and understanding is critical to drug discovery and bioengineering efforts. Historically, X-ray crystallography, isothermal titration calorimetry and other biophysical methods have been used to study PPIs, but can be costly and are low throughput, hindering progress towards rapid evaluation of these interactions. Recent interest in targeting PPIs and in engineering biosynthetic pathways in which PPIs play a critical role has driven innovation in their evaluation but a universal screen is still needed. One of the best characterized systems relying upon PPIs is Escherichia coli type II fatty acid biosynthesis in which the central acyl carrier protein (EcACP) shuttles substrates to a series of partner enzymes. Here we present a method by which EcACP is labeled with a solvatochromic dye, 4-DMN, and then allowed to interact with its various partner enzymes. Upon interaction, there is a large increase in fluorescence intensity which is easily monitored via fluorometer or plate reader. This method is useful in the study of known PPI, hypothetical PPI and in evaluation of inhibitors of both partner enzyme active site and of the PPI itself.
Collapse
Affiliation(s)
- Katherine Charov
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, United States
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, United States.
| |
Collapse
|
24
|
Structural Characterization of an ACP from Thermotoga maritima: Insights into Hyperthermal Adaptation. Int J Mol Sci 2020; 21:ijms21072600. [PMID: 32283632 PMCID: PMC7178038 DOI: 10.3390/ijms21072600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/30/2022] Open
Abstract
Thermotoga maritima, a deep-branching hyperthermophilic bacterium, expresses an extraordinarily stable Thermotoga maritima acyl carrier protein (Tm-ACP) that functions as a carrier in the fatty acid synthesis system at near-boiling aqueous environments. Here, to understand the hyperthermal adaptation of Tm-ACP, we investigated the structure and dynamics of Tm-ACP by nuclear magnetic resonance (NMR) spectroscopy. The melting temperature of Tm-ACP (101.4 °C) far exceeds that of other ACPs, owing to extensive ionic interactions and tight hydrophobic packing. The D59 residue, which replaces Pro/Ser of other ACPs, mediates ionic clustering between helices III and IV. This creates a wide pocket entrance to facilitate the accommodation of long acyl chains required for hyperthermal adaptation of the T. maritima cell membrane. Tm-ACP is revealed to be the first ACP that harbor an amide proton hyperprotected against hydrogen/deuterium exchange for I15. The hydrophobic interactions mediated by I15 appear to be the key driving forces of the global folding process of Tm-ACP. Our findings provide insights into the structural basis of the hyperthermal adaptation of ACP, which might have allowed T. maritima to survive in hot ancient oceans.
Collapse
|
25
|
RTX Toxins Ambush Immunity's First Cellular Responders. Toxins (Basel) 2019; 11:toxins11120720. [PMID: 31835552 PMCID: PMC6950748 DOI: 10.3390/toxins11120720] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/05/2019] [Accepted: 12/07/2019] [Indexed: 01/17/2023] Open
Abstract
The repeats-in-toxin (RTX) family represents a unique class of bacterial exoproteins. The first family members described were toxins from Gram-negative bacterial pathogens; however, additional members included exoproteins with diverse functions. Our review focuses on well-characterized RTX family toxins from Aggregatibacteractinomycetemcomitans (LtxA), Mannheimiahaemolytica (LktA), Bordetella pertussis (CyaA), uropathogenic Escherichia coli (HlyA), and Actinobacillus pleuropneumoniae (ApxIIIA), as well as the studies that have honed in on a single host cell receptor for RTX toxin interactions, the β2 integrins. The β2 integrin family is composed of heterodimeric members with four unique alpha subunits and a single beta subunit. β2 integrins are only found on leukocytes, including neutrophils and monocytes, the first responders to inflammation following bacterial infection. The LtxA, LktA, HlyA, and ApxIIIA toxins target the shared beta subunit, thereby targeting all types of leukocytes. Specific β2 integrin family domains are required for the RTX toxin’s cytotoxic activity and are summarized here. Research examining the domains of the RTX toxins required for cytotoxic and hemolytic activity is also summarized. RTX toxins attack and kill phagocytic immune cells expressing a single integrin family, providing an obvious advantage to the pathogen. The critical question that remains, can the specificity of the RTX-β2 integrin interaction be therapeutically targeted?
Collapse
|
26
|
Abstract
Uropathogenic E. coli (UPEC) is the major cause of urinary tract infections and a frequent cause of sepsis. Nearly half of all UPEC strains produce the potent cytotoxin hemolysin, and its expression is associated with enhanced virulence. In this study, we explored hemolysin variation within the globally dominant UPEC ST131 clone, finding that strains from the ST131 sublineage with the greatest multidrug resistance also possess the strongest hemolytic activity. We also employed an innovative forward genetic screen to define the set of genes required for hemolysin production. Using this approach, and subsequent targeted mutagenesis and complementation, we identified new hemolysin-controlling elements involved in LPS inner core biosynthesis and cytoplasmic chaperone activity, and we show that mechanistically they are required for hemolysin secretion. These original discoveries substantially enhance our understanding of hemolysin regulation, secretion and function. Uropathogenic Escherichia coli (UPEC) is the major cause of urinary tract infections. Nearly half of all UPEC strains secrete hemolysin, a cytotoxic pore-forming toxin. Here, we show that the prevalence of the hemolysin toxin gene (hlyA) is highly variable among the most common 83 E. coli sequence types (STs) represented on the EnteroBase genome database. To explore this diversity in the context of a defined monophyletic lineage, we contextualized sequence variation of the hlyCABD operon within the genealogy of the globally disseminated multidrug-resistant ST131 clone. We show that sequence changes in hlyCABD and its newly defined 1.616-kb-long leader sequence correspond to phylogenetic designation, and that ST131 strains with the strongest hemolytic activity belong to the most extensive multidrug-resistant sublineage (clade C2). To define the set of genes involved in hemolysin production, the clade C2 strain S65EC was completely sequenced and subjected to a genome-wide screen by combining saturated transposon mutagenesis and transposon-directed insertion site sequencing with the capacity to lyse red blood cells. Using this approach, and subsequent targeted mutagenesis and complementation, 13 genes were confirmed to be specifically required for production of active hemolysin. New hemolysin-controlling elements included discrete sets of genes involved in lipopolysaccharide (LPS) inner core biosynthesis (waaC, waaF, waaG, and rfaE) and cytoplasmic chaperone activity (dnaK and dnaJ), and we show these are required for hemolysin secretion. Overall, this work provides a unique description of hemolysin sequence diversity in a single clonal lineage and describes a complex multilevel system of regulatory control for this important toxin.
Collapse
|
27
|
Charov K, Burkart MD. A Single Tool to Monitor Multiple Protein-Protein Interactions of the Escherichia coli Acyl Carrier Protein. ACS Infect Dis 2019; 5:1518-1523. [PMID: 31317739 DOI: 10.1021/acsinfecdis.9b00150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein-protein interactions are ubiquitous to all domains of life and have gained recent interest as drug targets. However, many current methods to study protein-protein interactions can be costly and are low-throughput. Here, we demonstrate a solvatochromic tool based on the natural post-translational modification of the Escherichia coli acyl carrier protein (EcACP) used to visualize protein-protein interactions between EcACP and 13 different partner enzymes from several biosynthetic pathways. We use this tool to confirm proposed interactions between EcACP and both catalytic and regulatory proteins. We also show the utility of this method toward detecting allosteric changes to partner enzyme structure and the validation of active site inhibitors. We anticipate the future adaptation of this assay into a high-throughput screen for antibiotic discovery.
Collapse
Affiliation(s)
- Katherine Charov
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Michael D. Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| |
Collapse
|
28
|
Abstract
Over the past decade the number and variety of protein post-translational modifications that have been detected and characterized in bacteria have rapidly increased. Most post-translational protein modifications occur in a relatively low number of bacterial proteins in comparison with eukaryotic proteins, and most of the modified proteins carry low, substoichiometric levels of modification; therefore, their structural and functional analysis is particularly challenging. The number of modifying enzymes differs greatly among bacterial species, and the extent of the modified proteome strongly depends on environmental conditions. Nevertheless, evidence is rapidly accumulating that protein post-translational modifications have vital roles in various cellular processes such as protein synthesis and turnover, nitrogen metabolism, the cell cycle, dormancy, sporulation, spore germination, persistence and virulence. Further research of protein post-translational modifications will fill current gaps in the understanding of bacterial physiology and open new avenues for treatment of infectious diseases.
Collapse
|
29
|
O'Brien DP, Cannella SE, Voegele A, Raoux-Barbot D, Davi M, Douché T, Matondo M, Brier S, Ladant D, Chenal A. Post-translational acylation controls the folding and functions of the CyaA RTX toxin. FASEB J 2019; 33:10065-10076. [PMID: 31226003 DOI: 10.1096/fj.201802442rr] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The adenylate cyclase (CyaA) toxin is a major virulence factor of Bordetella pertussis, the causative agent of whooping cough. CyaA is synthetized as a pro-toxin, pro-CyaA, and converted into its cytotoxic form upon acylation of two lysines. After secretion, CyaA invades eukaryotic cells and produces cAMP, leading to host defense subversion. To gain further insights into the effect of acylation, we compared the functional and structural properties of pro-CyaA and CyaA proteins. HDX-MS results show that the refolding process of both proteins upon progressive urea removal is initiated by calcium binding to the C-terminal RTX domain. We further identified a critical hydrophobic segment, distal from the acylation region, that folds at higher urea concentration in CyaA than in pro-CyaA. Once refolded into monomers, CyaA is more compact and stable than pro-CyaA, due to a complex set of interactions between domains. Our HDX-MS data provide direct evidence that the presence of acyl chains in CyaA induces a significant stabilization of the apolar segments of the hydrophobic domain and of most of the acylation region. We propose a refolding model dependent on calcium and driven by local and distal acylation-dependent interactions within CyaA. Therefore, CyaA acylation is not only critical for cell intoxication, but also for protein refolding into its active conformation. Our data shed light on the complex relationship between post-translational modifications, structural disorder and protein folding. Coupling calcium-binding and acylation-driven folding is likely pertinent for other repeat-in-toxin cytolysins produced by many Gram-negative bacterial pathogens.-O'Brien, D. P., Cannella, S. E., Voegele, A., Raoux-Barbot, D., Davi, M., Douché, T., Matondo, M., Brier, S., Ladant, D., Chenal, A. Post-translational acylation controls the folding and functions of the CyaA RTX toxin.
Collapse
Affiliation(s)
- Darragh P O'Brien
- Institut Pasteur, Chemistry and Structural Biology Department, UMR CNRS 3528, Paris, France
| | - Sara E Cannella
- Institut Pasteur, Chemistry and Structural Biology Department, UMR CNRS 3528, Paris, France
| | - Alexis Voegele
- Institut Pasteur, Chemistry and Structural Biology Department, UMR CNRS 3528, Paris, France.,Université Paris Diderot Paris VII, Sorbonne Paris Cité, Paris, France
| | - Dorothée Raoux-Barbot
- Institut Pasteur, Chemistry and Structural Biology Department, UMR CNRS 3528, Paris, France
| | - Marilyne Davi
- Institut Pasteur, Chemistry and Structural Biology Department, UMR CNRS 3528, Paris, France
| | - Thibaut Douché
- Institut Pasteur, Proteomics Platform, Mass Spectrometry for Biology Unit, USR CNRS 2000, Paris, France
| | - Mariette Matondo
- Institut Pasteur, Proteomics Platform, Mass Spectrometry for Biology Unit, USR CNRS 2000, Paris, France
| | - Sébastien Brier
- Institut Pasteur, Chemistry and Structural Biology Department, UMR CNRS 3528, Paris, France.,Biological NMR Technical Platform, Center for Technological Resources and Research, UMR CNRS 3528, Paris, France
| | - Daniel Ladant
- Institut Pasteur, Chemistry and Structural Biology Department, UMR CNRS 3528, Paris, France
| | - Alexandre Chenal
- Institut Pasteur, Chemistry and Structural Biology Department, UMR CNRS 3528, Paris, France
| |
Collapse
|
30
|
Verma V, Gupta S, Kumar P, Rawat A, Singh Dhanda R, Yadav M. Efficient production of endotoxin depleted bioactive α-hemolysin of uropathogenicEscherichia coli. Prep Biochem Biotechnol 2019; 49:616-622. [DOI: 10.1080/10826068.2019.1591993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Vivek Verma
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Surbhi Gupta
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Parveen Kumar
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Ankita Rawat
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | | | - Manisha Yadav
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| |
Collapse
|
31
|
Murthy AMV, Sullivan MJ, Nhu NTK, Lo AW, Phan MD, Peters KM, Boucher D, Schroder K, Beatson SA, Ulett GC, Schembri MA, Sweet MJ. Variation in hemolysin A expression between uropathogenic Escherichia coli isolates determines NLRP3-dependent vs. -independent macrophage cell death and host colonization. FASEB J 2019; 33:7437-7450. [PMID: 30869997 DOI: 10.1096/fj.201802100r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Uropathogenic Escherichia coli (UPEC) is the major cause of urinary tract infections (UTIs). The multidrug-resistant E. coli sequence type 131 (ST131) clone is a serious threat to human health, yet its effects on immune responses are not well understood. Here we screened a panel of ST131 isolates, finding that only strains expressing the toxin hemolysin A (HlyA) killed primary human macrophages and triggered maturation of the inflammasome-dependent cytokine IL-1β. Using a representative strain, the requirement for the hlyA gene in these responses was confirmed. We also observed considerable heterogeneity in levels of cell death initiated by different HlyA+ve ST131 isolates, and this correlated with secreted HlyA levels. Investigation into the biological significance of this variation revealed that an ST131 strain producing low levels of HlyA initiated cell death that was partly dependent on the nod-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, with this response being associated with a host-protective role in a mouse UTI model. When the same ST131 strain was engineered to overexpress high HlyA levels, macrophage cell death occurred even when NLRP3 function was abrogated, and bladder colonization was significantly increased. Thus, variation in HlyA expression in UPEC affects mechanisms by which macrophages die, as well as host susceptibility vs. resistance to colonization.-Murthy, A. M. V., Sullivan, M. J., Nhu, N. T. K., Lo, A. W., Phan, M.-D., Peters, K. M., Boucher, D., Schroder, K., Beatson, S. A., Ulett, G. C., Schembri, M. A., Sweet, M. J. Variation in hemolysin A expression between uropathogenic Escherichia coli isolates determines NLRP3-dependent vs. -independent macrophage cell death and host colonization.
Collapse
Affiliation(s)
- Ambika M V Murthy
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Matthew J Sullivan
- School of Medical Science, Griffith University, Gold Coast, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia; and
| | - Nguyen Thi Khanh Nhu
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Alvin W Lo
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Minh-Duy Phan
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Kate M Peters
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Dave Boucher
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Kate Schroder
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Scott A Beatson
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Glen C Ulett
- School of Medical Science, Griffith University, Gold Coast, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia; and
| | - Mark A Schembri
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Matthew J Sweet
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
32
|
Spitz O, Erenburg IN, Beer T, Kanonenberg K, Holland IB, Schmitt L. Type I Secretion Systems-One Mechanism for All? Microbiol Spectr 2019; 7:10.1128/microbiolspec.psib-0003-2018. [PMID: 30848237 PMCID: PMC11588160 DOI: 10.1128/microbiolspec.psib-0003-2018] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Indexed: 02/07/2023] Open
Abstract
Type I secretion systems (T1SS) are widespread in Gram-negative bacteria, especially in pathogenic bacteria, and they secrete adhesins, iron-scavenger proteins, lipases, proteases, or pore-forming toxins in the unfolded state in one step across two membranes without any periplasmic intermediate into the extracellular space. The substrates of T1SS are in general characterized by a C-terminal secretion sequence and nonapeptide repeats, so-called GG repeats, located N terminal to the secretion sequence. These GG repeats bind Ca2+ ions in the extracellular space, which triggers folding of the entire protein. Here we summarize our current knowledge of how Gram-negative bacteria secrete these substrates, which can possess a molecular mass of up to 1,500 kDa. We also describe recent findings that demonstrate that the absence of periplasmic intermediates, the "classic" mode of action, does not hold true for all T1SS and that we are beginning to realize modifications of a common theme.
Collapse
Affiliation(s)
- Olivia Spitz
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Isabelle N Erenburg
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tobias Beer
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kerstin Kanonenberg
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - I Barry Holland
- Institute of Genetics and Microbiology, University of Paris-Sud, Orsay, France
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
33
|
Balashova N, Giannakakis A, Brown AC, Koufos E, Benz R, Arakawa T, Tang HY, Lally ET. Generation of a recombinant Aggregatibacter actinomycetemcomitans RTX toxin in Escherichia coli. Gene 2018; 672:106-114. [PMID: 29879499 DOI: 10.1016/j.gene.2018.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/28/2018] [Accepted: 06/03/2018] [Indexed: 10/14/2022]
Abstract
A leukotoxin (LtxA) that is produced by Aggregatibacter actinomycetemcomitans (Aa) is an important virulence determinant in an aggressive form of periodontitis in adolescents. Understanding the function of this protein at the molecular level is critical to elucidating its role in the disease process. To accomplish genetic analysis of the protein structure and relating these observations to toxin function, we have developed an E. coli expression system for the generation and rapid purification of LtxA. Cloning the structural toxin gene, ltxA, from Aa strain JP2 under control of T7 promoter-1 of pCDFDuet-1 vector resulted in expression of a 114 KDa protein which could be easily purified by the presence of a carboxy-terminal engineered double hexahistidine (double-His6) tag and was immunologically reactive with an anti-LtxA monoclonal antibody, but was not cytotoxic. Cloning a second gene, ltxC, an acyltransferase gene, into the vector under control of T7 promoter-2, resulted in expression of the biologically active LtxA. The toxin was extracted from E. coli inclusion bodies, purified by immobilized metal affinity chromatography, and refolded by dialysis. When compared by circular dichroism (CD) spectroscopy analysis, acylated recombinant LtxA has a secondary structure consistent with wt LtxA, while variations in α-helical structure of nonacylated LtxA were observed. No modifications in α-helix were found upon the toxin's binding with liposome-incorporated cholesterol. Our results suggest that pure, biologically active recombinant LtxA can be isolated by a one-step affinity chromatography from E. coli. The toxic and structural properties of the recombinant LtxA are similar to its wt counterpart.
Collapse
Affiliation(s)
- Nataliya Balashova
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander Giannakakis
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Angela C Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA
| | - Evan Koufos
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA
| | - Roland Benz
- Department of Life Science and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Tsutomu Arakawa
- Alliance Protein Laboratories, a Division of KBI Biopharma, San Diego, CA, USA
| | - Hsin-Yao Tang
- Proteomics and Metabolomics Facility, The Wistar Institute, Philadelphia, PA, USA
| | - Edward T Lally
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
34
|
Kanonenberg K, Spitz O, Erenburg IN, Beer T, Schmitt L. Type I secretion system—it takes three and a substrate. FEMS Microbiol Lett 2018; 365:4966979. [DOI: 10.1093/femsle/fny094] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/09/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- Kerstin Kanonenberg
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Olivia Spitz
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Isabelle N Erenburg
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Tobias Beer
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
35
|
Sobocińska J, Roszczenko-Jasińska P, Ciesielska A, Kwiatkowska K. Protein Palmitoylation and Its Role in Bacterial and Viral Infections. Front Immunol 2018; 8:2003. [PMID: 29403483 PMCID: PMC5780409 DOI: 10.3389/fimmu.2017.02003] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/26/2017] [Indexed: 12/11/2022] Open
Abstract
S-palmitoylation is a reversible, enzymatic posttranslational modification of proteins in which palmitoyl chain is attached to a cysteine residue via a thioester linkage. S-palmitoylation determines the functioning of proteins by affecting their association with membranes, compartmentalization in membrane domains, trafficking, and stability. In this review, we focus on S-palmitoylation of proteins, which are crucial for the interactions of pathogenic bacteria and viruses with the host. We discuss the role of palmitoylated proteins in the invasion of host cells by bacteria and viruses, and those involved in the host responses to the infection. We highlight recent data on protein S-palmitoylation in pathogens and their hosts obtained owing to the development of methods based on click chemistry and acyl-biotin exchange allowing proteomic analysis of protein lipidation. The role of the palmitoyl moiety present in bacterial lipopolysaccharide and lipoproteins, contributing to infectivity and affecting recognition of bacteria by innate immune receptors, is also discussed.
Collapse
Affiliation(s)
- Justyna Sobocińska
- Laboratory of Molecular Membrane Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Paula Roszczenko-Jasińska
- Laboratory of Molecular Membrane Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Anna Ciesielska
- Laboratory of Molecular Membrane Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Kwiatkowska
- Laboratory of Molecular Membrane Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
36
|
Holland IB, Peherstorfer S, Kanonenberg K, Lenders M, Reimann S, Schmitt L. Type I Protein Secretion-Deceptively Simple yet with a Wide Range of Mechanistic Variability across the Family. EcoSal Plus 2016; 7. [PMID: 28084193 PMCID: PMC11575716 DOI: 10.1128/ecosalplus.esp-0019-2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Indexed: 01/08/2023]
Abstract
A very large type I polypeptide begins to reel out from a ribosome; minutes later, the still unidentifiable polypeptide, largely lacking secondary structure, is now in some cases a thousand or more residues longer. Synthesis of the final hundred C-terminal residues commences. This includes the identity code, the secretion signal within the last 50 amino acids, designed to dock with a waiting ATP binding cassette (ABC) transporter. What happens next is the subject of this review, with the main, but not the only focus on hemolysin HlyA, an RTX protein toxin secreted by the type I system. Transport substrates range from small peptides to giant proteins produced by many pathogens. These molecules, without detectable cellular chaperones, overcome enormous barriers, crossing two membranes before final folding on the cell surface, involving a unique autocatalytic process.Unfolded HlyA is extruded posttranslationally, C-terminal first. The transenvelope "tunnel" is formed by HlyB (ABC transporter), HlyD (membrane fusion protein) straddling the inner membrane and periplasm and TolC (outer membrane). We present a new evaluation of the C-terminal secretion code, and the structure function of HlyD and HlyB at the heart of this nanomachine. Surprisingly, key details of the secretion mechanism are remarkably variable in the many type I secretion system subtypes. These include alternative folding processes, an apparently distinctive secretion code for each type I subfamily, and alternative forms of the ABC transporter; most remarkably, the ABC protein probably transports peptides or polypeptides by quite different mechanisms. Finally, we suggest a putative structure for the Hly-translocon, HlyB, the multijointed HlyD, and the TolC exit.
Collapse
Affiliation(s)
- I Barry Holland
- Institute for Integrative Biology (I2BC) and Institute of Genetics and Microbiology, University Paris-Sud, Orsay 91450, France
| | - Sandra Peherstorfer
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Kerstin Kanonenberg
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Michael Lenders
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Sven Reimann
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
37
|
Vázquez RF, Maté SM, Bakás LS, Muñoz-Garay C, Herlax VS. Relationship between intracellular calcium and morphologic changes in rabbit erythrocytes: Effects of the acylated and unacylated forms of E. coli alpha-hemolysin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1944-53. [PMID: 27206406 DOI: 10.1016/j.bbamem.2016.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/15/2016] [Accepted: 05/16/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Romina F Vázquez
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT- La Plata, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, 1900 La Plata, Argentina
| | - Sabina M Maté
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT- La Plata, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, 1900 La Plata, Argentina
| | - Laura S Bakás
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900 La Plata, Argentina
| | - Carlos Muñoz-Garay
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Mexico
| | - Vanesa S Herlax
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT- La Plata, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, 1900 La Plata, Argentina.
| |
Collapse
|
38
|
Hyun JS, Park SJ. Effect of Acylation on the Structure of the Acyl Carrier Protein P. JOURNAL OF THE KOREAN MAGNETIC RESONANCE SOCIETY 2015. [DOI: 10.6564/jkmrs.2015.19.3.149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Park YG, Jung MC, Song H, Jeong KW, Bang E, Hwang GS, Kim Y. Novel Structural Components Contribute to the High Thermal Stability of Acyl Carrier Protein from Enterococcus faecalis. J Biol Chem 2015; 291:1692-1702. [PMID: 26631734 DOI: 10.1074/jbc.m115.674408] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Indexed: 11/06/2022] Open
Abstract
Enterococcus faecalis is a Gram-positive, commensal bacterium that lives in the gastrointestinal tracts of humans and other mammals. It causes severe infections because of high antibiotic resistance. E. faecalis can endure extremes of temperature and pH. Acyl carrier protein (ACP) is a key element in the biosynthesis of fatty acids responsible for acyl group shuttling and delivery. In this study, to understand the origin of high thermal stabilities of E. faecalis ACP (Ef-ACP), its solution structure was investigated for the first time. CD experiments showed that the melting temperature of Ef-ACP is 78.8 °C, which is much higher than that of Escherichia coli ACP (67.2 °C). The overall structure of Ef-ACP shows the common ACP folding pattern consisting of four α-helices (helix I (residues 3-17), helix II (residues 39-53), helix III (residues 60-64), and helix IV (residues 68-78)) connected by three loops. Unique Ef-ACP structural features include a hydrophobic interaction between Phe(45) in helix II and Phe(18) in the α1α2 loop and a hydrogen bonding between Ser(15) in helix I and Ile(20) in the α1α2 loop, resulting in its high thermal stability. Phe(45)-mediated hydrophobic packing may block acyl chain binding subpocket II entry. Furthermore, Ser(58) in the α2α3 loop in Ef-ACP, which usually constitutes a proline in other ACPs, exhibited slow conformational exchanges, resulting in the movement of the helix III outside the structure to accommodate a longer acyl chain in the acyl binding cavity. These results might provide insights into the development of antibiotics against pathogenic drug-resistant E. faecalis strains.
Collapse
Affiliation(s)
- Young-Guen Park
- From the Department of Bioscience and Biotechnology and the Bio/Molecular Informatics Center Konkuk University, Seoul 143-701, Korea and
| | - Min-Cheol Jung
- From the Department of Bioscience and Biotechnology and the Bio/Molecular Informatics Center Konkuk University, Seoul 143-701, Korea and
| | - Heesang Song
- From the Department of Bioscience and Biotechnology and the Bio/Molecular Informatics Center Konkuk University, Seoul 143-701, Korea and
| | - Ki-Woong Jeong
- From the Department of Bioscience and Biotechnology and the Bio/Molecular Informatics Center Konkuk University, Seoul 143-701, Korea and
| | - Eunjung Bang
- the Western Seoul Center, Korea Basic Science Institute, Seoul 120-140, Korea
| | - Geum-Sook Hwang
- the Western Seoul Center, Korea Basic Science Institute, Seoul 120-140, Korea
| | - Yangmee Kim
- From the Department of Bioscience and Biotechnology and the Bio/Molecular Informatics Center Konkuk University, Seoul 143-701, Korea and.
| |
Collapse
|
40
|
Benz R. Channel formation by RTX-toxins of pathogenic bacteria: Basis of their biological activity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:526-37. [PMID: 26523409 DOI: 10.1016/j.bbamem.2015.10.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/10/2015] [Accepted: 10/28/2015] [Indexed: 12/15/2022]
Abstract
The pore-forming cytolysins of the RTX-toxin (Repeats in ToXin) family are a relatively small fraction of a steadily increasing family of proteins that contain several functionally important glycine-rich and aspartate containing nonapeptide repeats. These cytolysins produced by a variety of Gram-negative bacteria form ion-permeable channels in erythrocytes and other eukaryotic cells. Hemolytic and cytolytic RTX-toxins represent pathogenicity factors of the toxin-producing bacteria and are very often important key factors in pathogenesis of the bacteria. Channel formation by RTX-toxins lead to the dissipation of ionic gradients and membrane potential across the cytoplasmic membrane of target cells, which results in cell death. Here we discuss channel formation and channel properties of some of the best known RTX-toxins, such as α-hemolysin (HlyA) of Escherichia coli and the uropathogenic EHEC strains, the adenylate cyclase toxin (ACT, CyaA) of Bordetella pertussis and the RTX-toxins (ApxI, ApxII and ApxIII) produced by different strains of Actinobacillus pleuropneumoniae. The channels formed by these RTX-toxins in lipid bilayers share some common properties such as cation selectivity and voltage-dependence. Furthermore the channels are transient and show frequent switching between different ion-conducting states. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale.
Collapse
Affiliation(s)
- Roland Benz
- Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759, Bremen, Germany.
| |
Collapse
|
41
|
Brown AC, Koufos E, Balashova NV, Boesze-Battaglia K, Lally ET. Inhibition of LtxA toxicity by blocking cholesterol binding with peptides. Mol Oral Microbiol 2015; 31:94-105. [PMID: 26352738 DOI: 10.1111/omi.12133] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2015] [Indexed: 12/30/2022]
Abstract
The leukotoxin (LtxA) produced by Aggregatibacter actinomycetemcomitans kills host immune cells, allowing the bacterium to establish an ecological niche in the upper aerodigestive tract of its human host. The interaction of LtxA with human immune cells is both complex and multifaceted, involving membrane lipids as well as cell-surface proteins. In the initial encounter with the host cell, LtxA associates with lymphocyte function-associated antigen-1, a cell surface adhesion glycoprotein. However, we have also demonstrated that the toxin associates strongly with the plasma membrane lipids, specifically cholesterol. This association with cholesterol is regulated by a cholesterol recognition amino acid consensus (CRAC) motif, with a sequence of (334) LEEYSKR(340), in the N-terminal region of the toxin. Here, we have demonstrated that removal of cholesterol from the plasma membrane or mutation of the LtxA CRAC motif inhibits the activity of the toxin in THP-1 cells. To inhibit LtxA activity, we designed a short peptide corresponding to the CRAC(336) motif of LtxA (CRAC(336WT)). This peptide binds to cholesterol and thereby inhibits the toxicity of LtxA in THP-1 cells. Previously, we showed that this peptide inhibits LtxA toxicity against Jn.9 (Jurkat) cells, indicating that peptides derived from the cholesterol-binding site of LtxA may have a potential clinical applicability in controlling infections of repeats-in-toxin-producing organisms.
Collapse
Affiliation(s)
- A C Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA
| | - E Koufos
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA
| | - N V Balashova
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - K Boesze-Battaglia
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - E T Lally
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
42
|
Abstract
The pathways in Escherichia coli and (largely by analogy) S. enterica remain the paradigm of bacterial lipid synthetic pathways, although recently considerable diversity among bacteria in the specific areas of lipid synthesis has been demonstrated. The structural biology of the fatty acid synthetic proteins is essentially complete. However, the membrane-bound enzymes of phospholipid synthesis remain recalcitrant to structural analyses. Recent advances in genetic technology have allowed the essentialgenes of lipid synthesis to be tested with rigor, and as expected most genes are essential under standard growth conditions. Conditionally lethal mutants are available in numerous genes, which facilitates physiological analyses. The array of genetic constructs facilitates analysis of the functions of genes from other organisms. Advances in mass spectroscopy have allowed very accurate and detailed analyses of lipid compositions as well as detection of the interactions of lipid biosynthetic proteins with one another and with proteins outside the lipid pathway. The combination of these advances has resulted in use of E. coli and S. enterica for discovery of new antimicrobials targeted to lipid synthesis and in deciphering the molecular actions of known antimicrobials. Finally,roles for bacterial fatty acids other than as membrane lipid structural components have been uncovered. For example, fatty acid synthesis plays major roles in the synthesis of the essential enzyme cofactors, biotin and lipoic acid. Although other roles for bacterial fatty acids, such as synthesis of acyl-homoserine quorum-sensing molecules, are not native to E. coli introduction of the relevant gene(s) synthesis of these foreign molecules readily proceeds and the sophisticated tools available can used to decipher the mechanisms of synthesis of these molecules.
Collapse
|
43
|
Ristow LC, Welch RA. Hemolysin of uropathogenic Escherichia coli: A cloak or a dagger? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:538-45. [PMID: 26299820 DOI: 10.1016/j.bbamem.2015.08.015] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/05/2015] [Accepted: 08/18/2015] [Indexed: 01/27/2023]
Abstract
Hemolysin from uropathogenic Escherichia coli (UPEC) is a hemolytic and cytotoxic protein active against a broad range of species and cell types. Expression of hemolysin correlates with severity of infection, as up to 78% of UPEC isolates from pyelonephritis cases express hemolysin. Despite decades of research on hemolysin activity, the mechanism of intoxication and the function of hemolysin in UPEC infection remain elusive. Early in vitro research established the role of hemolysin as a lytic protein at high doses. It is hypothesized that hemolysin is secreted at sublytic doses in vivo and recent research has focused on understanding the more subtle effects of hemolysin both in vitro and in elegant infection models in vivo, including inoculation by micropuncture of individual kidney nephrons. As the field continues to evolve, comparisons of hemolysin function in isolates from a range of UTI infections will be important for delineating the role of this toxin. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale.
Collapse
Affiliation(s)
- Laura C Ristow
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Rodney A Welch
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
44
|
Maršavelski A, Močibob M, Gruić-Sovulj I, Vianello R. The origin of specificity and insight into recognition between an aminoacyl carrier protein and its partner ligase. Phys Chem Chem Phys 2015; 17:19030-8. [PMID: 26129823 DOI: 10.1039/c5cp03066h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acyl carrier proteins (ACPs) are among the most promiscuous proteins in terms of protein-protein interactions and it is quite puzzling how ACPs select the correct partner between many possible upstream and downstream binding proteins. To address this question, we performed molecular dynamics simulations on dimeric Bradyrhizobium japonicum Gly:CP ligase 1 to inspect the origin of its selectivity towards the three types of carrier proteins, namely holoCP, apoCP, and holoCP-Gly, which only differ in the attached prosthetic group. In line with experiments, MM-GBSA analysis revealed that the ligase preferentially binds the holoCP form to both subunits with the binding free energies of -20.7 and -19.1 kcal mol(-1), while the apoCP form, without the prosthetic group, is also recognized, but the binding values of -9.2 and -3.6 kcal mol(-1) suggest that there is no competition for the ligase binding as long as the holoCP is present. After the prosthetic group becomes glycylated, the holoCP-Gly dissociates from the ligase, as supported by its endergonic binding free energies of 2.9 and 20.9 kcal mol(-1). Our results indicate that these affinity differences are influenced by three aspects: the form of the prosthetic group and the specific non-polar hydrophobic interactions, as well as charge complementarity dominantly manifested through Arg220-Glu53 ion pair within the binding region among proteins. A careful examination of the bonding patterns within the ligase active site elucidated the interactions with Arg258, Asp215 and Tyr132 as being predominant in stabilizing the prosthetic group, which are significantly diminished upon glycation, thus promoting complex dissociation.
Collapse
Affiliation(s)
- Aleksandra Maršavelski
- Quantum Organic Chemistry Group, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia.
| | | | | | | |
Collapse
|
45
|
Greene NP, Crow A, Hughes C, Koronakis V. Structure of a bacterial toxin-activating acyltransferase. Proc Natl Acad Sci U S A 2015; 112:E3058-66. [PMID: 26016525 PMCID: PMC4466738 DOI: 10.1073/pnas.1503832112] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Secreted pore-forming toxins of pathogenic Gram-negative bacteria such as Escherichia coli hemolysin (HlyA) insert into host-cell membranes to subvert signal transduction and induce apoptosis and cell lysis. Unusually, these toxins are synthesized in an inactive form that requires posttranslational activation in the bacterial cytosol. We have previously shown that the activation mechanism is an acylation event directed by a specialized acyl-transferase that uses acyl carrier protein (ACP) to covalently link fatty acids, via an amide bond, to specific internal lysine residues of the protoxin. We now reveal the 2.15-Å resolution X-ray structure of the 172-aa ApxC, a toxin-activating acyl-transferase (TAAT) from pathogenic Actinobacillus pleuropneumoniae. This determination shows that bacterial TAATs are a structurally homologous family that, despite indiscernible sequence similarity, form a distinct branch of the Gcn5-like N-acetyl transferase (GNAT) superfamily of enzymes that typically use acyl-CoA to modify diverse bacterial, archaeal, and eukaryotic substrates. A combination of structural analysis, small angle X-ray scattering, mutagenesis, and cross-linking defined the solution state of TAATs, with intermonomer interactions mediated by an N-terminal α-helix. Superposition of ApxC with substrate-bound GNATs, and assay of toxin activation and binding of acyl-ACP and protoxin peptide substrates by mutated ApxC variants, indicates the enzyme active site to be a deep surface groove.
Collapse
Affiliation(s)
- Nicholas P Greene
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
| | - Allister Crow
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
| | - Colin Hughes
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
| | - Vassilis Koronakis
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
| |
Collapse
|
46
|
Adachi S, Murakawa Y, Hiraga S. Dynamic nature of SecA and its associated proteins in Escherichia coli. Front Microbiol 2015; 6:75. [PMID: 25713567 PMCID: PMC4322705 DOI: 10.3389/fmicb.2015.00075] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/21/2015] [Indexed: 11/13/2022] Open
Abstract
Mechanical properties such as physical constraint and pushing of chromosomes are thought to be important for chromosome segregation in Escherichia coli and it could be mediated by a hypothetical molecular "tether." However, the actual tether that mediates these features is not known. We previously described that SecA (Secretory A) and Secretory Y (SecY), components of the membrane protein translocation machinery, and AcpP (Acyl carrier protein P) were involved in chromosome segregation and homeostasis of DNA topology. In the present work, we performed three-dimensional deconvolution of microscopic images and time-lapse experiments of these proteins together with MukB and DNA topoisomerases, and found that these proteins embraced the structures of tortuous nucleoids with condensed regions. Notably, SecA, SecY, and AcpP dynamically localized in cells, which was interdependent on each other requiring the ATPase activity of SecA. Our findings imply that the membrane protein translocation machinery plays a role in the maintenance of proper chromosome partitioning, possibly through "tethering" of MukB [a functional homolog of structural maintenance of chromosomes (SMC) proteins], DNA gyrase, DNA topoisomerase IV, and SeqA (Sequestration A).
Collapse
Affiliation(s)
- Shun Adachi
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University Kyoto, Japan
| | - Yasuhiro Murakawa
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University Kyoto, Japan
| | - Sota Hiraga
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University Kyoto, Japan
| |
Collapse
|
47
|
Benz R, Maier E, Bauer S, Ludwig A. The deletion of several amino acid stretches of Escherichia coli alpha-hemolysin (HlyA) suggests that the channel-forming domain contains beta-strands. PLoS One 2014; 9:e112248. [PMID: 25463653 PMCID: PMC4251834 DOI: 10.1371/journal.pone.0112248] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 10/08/2014] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli α-hemolysin (HlyA) is a pore-forming protein of 110 kDa belonging to the family of RTX toxins. A hydrophobic region between the amino acid residues 238 and 410 in the N-terminal half of HlyA has previously been suggested to form hydrophobic and/or amphipathic α-helices and has been shown to be important for hemolytic activity and pore formation in biological and artificial membranes. The structure of the HlyA transmembrane channel is, however, largely unknown. For further investigation of the channel structure, we deleted in HlyA different stretches of amino acids that could form amphipathic β-strands according to secondary structure predictions (residues 71–110, 158–167, 180–203, and 264–286). These deletions resulted in HlyA mutants with strongly reduced hemolytic activity. Lipid bilayer measurements demonstrated that HlyAΔ71–110 and HlyAΔ264–286 formed channels with much smaller single-channel conductance than wildtype HlyA, whereas their channel-forming activity was virtually as high as that of the wildtype toxin. HlyAΔ158–167 and HlyAΔ180–203 were unable to form defined channels in lipid bilayers. Calculations based on the single-channel data indicated that the channels generated by HlyAΔ71–110 and HlyAΔ264–286 had a smaller size (diameter about 1.4 to 1.8 nm) than wildtype HlyA channels (diameter about 2.0 to 2.6 nm), suggesting that in these mutants part of the channel-forming domain was removed. Osmotic protection experiments with erythrocytes confirmed that HlyA, HlyAΔ71–110, and HlyAΔ264–286 form defined transmembrane pores and suggested channel diameters that largely agreed with those estimated from the single-channel data. Taken together, these results suggest that the channel-forming domain of HlyA might contain β-strands, possibly in addition to α-helical structures.
Collapse
Affiliation(s)
- Roland Benz
- School of Engineering and Science, Jacobs University Bremen, Bremen, Germany
- * E-mail:
| | - Elke Maier
- Lehrstuhl für Mikrobiologie, Theodor-Boveri-Institut für Biowissenschaften (Biozentrum), Universität Würzburg, Würzburg, Germany
| | - Susanne Bauer
- Lehrstuhl für Mikrobiologie, Theodor-Boveri-Institut für Biowissenschaften (Biozentrum), Universität Würzburg, Würzburg, Germany
| | - Albrecht Ludwig
- Lehrstuhl für Mikrobiologie, Theodor-Boveri-Institut für Biowissenschaften (Biozentrum), Universität Würzburg, Würzburg, Germany
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| |
Collapse
|
48
|
Thomas S, Smits SHJ, Schmitt L. A simple in vitro acylation assay based on optimized HlyA and HlyC purification. Anal Biochem 2014; 464:17-23. [PMID: 25016191 DOI: 10.1016/j.ab.2014.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/26/2014] [Accepted: 07/01/2014] [Indexed: 11/29/2022]
Abstract
HlyA is a toxin secreted by uropathogenic Escherichia coli strains. HlyA belongs to the repeats in the toxin protein family and needs (i) a posttranslational, fatty acylation at two internal lysines by the acyltransferase HlyC and (ii) extracellular ion binding to achieve its active conformation. Both processes are not fully understood and experiments are often limited due to the low amounts of protein available. Here, we present an optimized purification protocol for the proteins involved in HlyA activation as well as a quick and nonradioactive assay for in vitro HlyA acylation. These may simplify future experiments, e.g., activity scanning and characterization of HlyA or HlyC mutants as demonstrated with single and double HlyA lysine mutants.
Collapse
Affiliation(s)
- Sabrina Thomas
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
49
|
Hemolysin of enterohemorrhagic Escherichia coli: Structure, transport, biological activity and putative role in virulence. Int J Med Microbiol 2014; 304:521-9. [DOI: 10.1016/j.ijmm.2014.05.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/09/2014] [Accepted: 05/11/2014] [Indexed: 11/19/2022] Open
|
50
|
Thomas S, Bakkes PJ, Smits SHJ, Schmitt L. Equilibrium folding of pro-HlyA from Escherichia coli reveals a stable calcium ion dependent folding intermediate. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1500-10. [PMID: 24865936 DOI: 10.1016/j.bbapap.2014.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/13/2014] [Accepted: 05/16/2014] [Indexed: 11/17/2022]
Abstract
HlyA from Escherichia coli is a member of the repeats in toxin (RTX) protein family, produced by a wide range of Gram-negative bacteria and secreted by a dedicated Type 1 Secretion System (T1SS). RTX proteins are thought to be secreted in an unfolded conformation and to fold upon secretion by Ca(2+) binding. However, the exact mechanism of secretion, ion binding and folding to the correct native state remains largely unknown. In this study we provide an easy protocol for high-level pro-HlyA purification from E. coli. Equilibrium folding studies, using intrinsic tryptophan fluorescence, revealed the well-known fact that Ca(2+) is essential for stability as well as correct folding of the whole protein. In the absence of Ca(2+), pro-HlyA adopts a non-native conformation. Such molecules could however be rescued by Ca(2+) addition, indicating that these are not dead-end species and that Ca(2+) drives pro-HlyA folding. More importantly, pro-HlyA unfolded via a two-state mechanism, whereas folding was a three-state process. The latter is indicative of the presence of a stable folding intermediate. Analysis of deletion and Trp mutants revealed that the first folding transition, at 6-7M urea, relates to Ca(2+) dependent structural changes at the extreme C-terminus of pro-HlyA, sensed exclusively by Trp914. Since all Trp residues of HlyA are located outside the RTX domain, our results demonstrate that Ca(2+) induced folding is not restricted to the RTX domain. Taken together, Ca(2+) binding to the pro-HlyA RTX domain is required to drive the folding of the entire protein to its native conformation.
Collapse
Affiliation(s)
- Sabrina Thomas
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr 1, 40225 Düsseldorf, Germany
| | - Patrick J Bakkes
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr 1, 40225 Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr 1, 40225 Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr 1, 40225 Düsseldorf, Germany.
| |
Collapse
|