1
|
Harris ES, McIntire HJ, Mazur M, Schulz-Hildebrandt H, Leung HM, Tearney GJ, Krick S, Rowe SM, Barnes JW. Reduced sialylation of airway mucin impairs mucus transport by altering the biophysical properties of mucin. Sci Rep 2024; 14:16568. [PMID: 39019950 PMCID: PMC11255327 DOI: 10.1038/s41598-024-66510-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/02/2024] [Indexed: 07/19/2024] Open
Abstract
Mucus stasis is a pathologic hallmark of muco-obstructive diseases, including cystic fibrosis (CF). Mucins, the principal component of mucus, are extensively modified with hydroxyl (O)-linked glycans, which are largely terminated by sialic acid. Sialic acid is a negatively charged monosaccharide and contributes to the biochemical/biophysical properties of mucins. Reports suggest that mucin sialylation may be altered in CF; however, the consequences of reduced sialylation on mucus clearance have not been fully determined. Here, we investigated the consequences of reduced sialylation on the charge state and conformation of the most prominent airway mucin, MUC5B, and defined the functional consequences of reduced sialylation on mucociliary transport (MCT). Reduced sialylation contributed to a lower charged MUC5B form and decreased polymer expansion. The inhibition of total mucin sialylation de novo impaired MCT in primary human bronchial epithelial cells and rat airways, and specific α-2,3 sialylation blockade was sufficient to recapitulate these findings. Finally, we show that ST3 beta-galactoside alpha-2,3-sialyltransferase (ST3Gal1) expression is downregulated in CF and partially restored by correcting CFTR via Elexacaftor/Tezacaftor/Ivacaftor treatment. Overall, this study demonstrates the importance of mucin sialylation in mucus clearance and identifies decreased sialylation by ST3Gal1 as a possible therapeutic target in CF and potentially other muco-obstructive diseases.
Collapse
Affiliation(s)
- Elex S Harris
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, 1900 University Blvd. Tinsley Harrison Tower, Suite 422, Birmingham, AL, 35294, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hannah J McIntire
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, 1900 University Blvd. Tinsley Harrison Tower, Suite 422, Birmingham, AL, 35294, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Marina Mazur
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, 1900 University Blvd. Tinsley Harrison Tower, Suite 422, Birmingham, AL, 35294, USA
| | | | - Hui Min Leung
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Guillermo J Tearney
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Stefanie Krick
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, 1900 University Blvd. Tinsley Harrison Tower, Suite 422, Birmingham, AL, 35294, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven M Rowe
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, 1900 University Blvd. Tinsley Harrison Tower, Suite 422, Birmingham, AL, 35294, USA.
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
- Departments of Pediatrics and Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Jarrod W Barnes
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, 1900 University Blvd. Tinsley Harrison Tower, Suite 422, Birmingham, AL, 35294, USA.
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
2
|
Harris ES, McIntire HJ, Mazur M, Schulz-Hildebrandt H, Leung HM, Tearney GJ, Krick S, Rowe SM, Barnes JW. Reduced Sialylation of Airway Mucin Impairs Mucus Transport by Altering the Biophysical Properties of Mucin. RESEARCH SQUARE 2024:rs.3.rs-4421613. [PMID: 38853971 PMCID: PMC11160914 DOI: 10.21203/rs.3.rs-4421613/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Mucus stasis is a pathologic hallmark of muco-obstructive diseases, including cystic fibrosis (CF). Mucins, the principal component of mucus, are extensively modified with hydroxyl (O)-linked glycans, which are largely terminated by sialic acid. Sialic acid is a negatively charged monosaccharide and contributes to the biochemical/biophysical properties of mucins. Reports suggest that mucin sialylation may be altered in CF; however, the consequences of reduced sialylation on mucus clearance have not been fully determined. Here, we investigated the consequences of reduced sialylation on the charge state and conformation of the most prominent airway mucin, MUC5B, and defined the functional consequences of reduced sialylation on mucociliary transport (MCT). Reduced sialylation contributed to a lower charged MUC5B form and decreased polymer expansion. The inhibition of total mucin sialylation de novo impaired MCT in primary human bronchial epithelial cells and rat airways, and specific α-2,3 sialylation blockade was sufficient to recapitulate these findings. Finally, we show that ST3 beta-galactoside alpha-2,3-sialyltransferase (ST3Gal1) expression is downregulated in CF and partially restored by correcting CFTR via Elexacaftor/Tezacaftor/Ivacaftor treatment. Overall, this study demonstrates the importance of mucin sialylation in mucus clearance and identifies decreased sialylation by ST3Gal1 as a possible therapeutic target in CF and potentially other muco-obstructive diseases.
Collapse
Affiliation(s)
- Elex S Harris
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, USA
| | - Hannah J McIntire
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, USA
| | - Marina Mazur
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | - Stefanie Krick
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven M Rowe
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, USA
| | - Jarrod W Barnes
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
3
|
Tedbury PR, Manfredi C, Degenhardt F, Conway J, Horwath MC, McCracken C, Sorscher AJ, Moreau S, Wright C, Edwards C, Brewer J, Guarner J, de Wit E, Williamson BN, Suthar MS, Ong YT, Roback JD, Alter DN, Holter JC, Karlsen TH, Sacchi N, Romero-Gómez M, Invernizzi P, Fernández J, Buti M, Albillos A, Julià A, Valenti L, Asselta R, Banales JM, Bujanda L, de Cid R, Sarafianos SG, Hong JS, Sorscher EJ, Ehrhardt A. Mechanisms by which the cystic fibrosis transmembrane conductance regulator may influence SARS-CoV-2 infection and COVID-19 disease severity. FASEB J 2023; 37:e23220. [PMID: 37801035 PMCID: PMC10760435 DOI: 10.1096/fj.202300077r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 10/07/2023]
Abstract
Patients with cystic fibrosis (CF) exhibit pronounced respiratory damage and were initially considered among those at highest risk for serious harm from SARS-CoV-2 infection. Numerous clinical studies have subsequently reported that individuals with CF in North America and Europe-while susceptible to severe COVID-19-are often spared from the highest levels of virus-associated mortality. To understand features that might influence COVID-19 among patients with cystic fibrosis, we studied relationships between SARS-CoV-2 and the gene responsible for CF (i.e., the cystic fibrosis transmembrane conductance regulator, CFTR). In contrast to previous reports, we found no association between CFTR carrier status (mutation heterozygosity) and more severe COVID-19 clinical outcomes. We did observe an unexpected trend toward higher mortality among control individuals compared with silent carriers of the common F508del CFTR variant-a finding that will require further study. We next performed experiments to test the influence of homozygous CFTR deficiency on viral propagation and showed that SARS-CoV-2 production in primary airway cells was not altered by the absence of functional CFTR using two independent protocols. On the contrary, experiments performed in vitro strongly indicated that virus proliferation depended on features of the mucosal fluid layer known to be disrupted by absent CFTR in patients with CF, including both low pH and increased viscosity. These results point to the acidic, viscous, and mucus-obstructed airways in patients with cystic fibrosis as unfavorable for the establishment of coronaviral infection. Our findings provide new and important information concerning relationships between the CF clinical phenotype and severity of COVID-19.
Collapse
Affiliation(s)
- Philip R. Tedbury
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States
| | - Candela Manfredi
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Frauke Degenhardt
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | - Joseph Conway
- Northeast Georgia Medical Center, Gainesville, Georgia, United States
| | - Michael C. Horwath
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Courtney McCracken
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Adam J. Sorscher
- Dartmouth University School of Medicine, Hanover, New Hampshire, United States
| | - Sandy Moreau
- Elliot Hospital, Manchester, New Hampshire, United States
| | | | - Carolina Edwards
- Northeast Georgia Medical Center, Gainesville, Georgia, United States
| | - Jo Brewer
- Northeast Georgia Medical Center, Gainesville, Georgia, United States
| | | | - Emmie de Wit
- Laboratory of Virology, Division of Intramural Research, NIAID, National Institutes of Health, Hamilton, Montana, United States
| | - Brandi N. Williamson
- Laboratory of Virology, Division of Intramural Research, NIAID, National Institutes of Health, Hamilton, Montana, United States
| | - Mehul S. Suthar
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Yee T. Ong
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States
| | - John D. Roback
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - David N. Alter
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Jan C. Holter
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tom H. Karlsen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute for Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Section for Gastroenterology, Department of Transplantation Medicine, Division for Cancer Medicine, Surgery and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | | | - Manuel Romero-Gómez
- Hospital Universitario Virgen del Rocío de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Instituto de Biomedicina de Sevilla (IBIS), Sevilla, Spain
- University of Sevilla, Sevilla, Spain
- Digestive Diseases Unit, Virgen del Rocio University Hospital, Institute of Biomedicine of Seville, University of Seville, Seville, Spain
| | - Pietro Invernizzi
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Javier Fernández
- Hospital Clinic, University of Barcelona, and IDIBAPS, Barcelona, Spain
- European Foundation for the Study of Chronic Liver Failure (EF-CLIF), Barcelona, Spain
| | - Maria Buti
- Liver Unit. Hospital Universitario Valle Hebron and CIBEREHD del Instituto Carlos III. Barcelona, Spain
| | - Agustin Albillos
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Gastroenterology, Hospital Universitario Ramón y Cajal, University of Alcalá, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Antonio Julià
- Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Barcelona, Spain
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- Biological Resorce Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano, Milan Italy
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Jesus M. Banales
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute – Donostia University Hospital, University of the Basque Country (UPV/EHU), CIBERehd, Ikerbasque, San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Luis Bujanda
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute – Donostia University Hospital, University of the Basque Country (UPV/EHU), CIBERehd, Ikerbasque, San Sebastian, Spain
| | - Rafael de Cid
- Genomes for Life-GCAT lab. German Trias I Pujol Research Institute (IGTP), Badalona, Spain
| | | | - Stefan G. Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States
| | - Jeong S. Hong
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Eric J. Sorscher
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Annette Ehrhardt
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States
| |
Collapse
|
4
|
Lotti V, Lagni A, Diani E, Sorio C, Gibellini D. Crosslink between SARS-CoV-2 replication and cystic fibrosis hallmarks. Front Microbiol 2023; 14:1162470. [PMID: 37250046 PMCID: PMC10213757 DOI: 10.3389/fmicb.2023.1162470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
SARS-CoV-2, the etiological cause of the COVID-19 pandemic, can cause severe illness in certain at-risk populations, including people with cystic fibrosis (pwCF). Nevertheless, several studies indicated that pwCF do not have higher risks of SARS-CoV-2 infection nor do they demonstrate worse clinical outcomes than those of the general population. Recent in vitro studies indicate cellular and molecular processes to be significant drivers in pwCF lower infection rates and milder symptoms than expected in cases of SARS-CoV-2 infection. These range from cytokine releases to biochemical alterations leading to morphological rearrangements inside the cells associated with CFTR impairment. Based on available data, the reported low incidence of SARS-CoV-2 infection among pwCF is likely a result of several variables linked to CFTR dysfunction, such as thick mucus, IL-6 reduction, altered ACE2 and TMPRSS2 processing and/or functioning, defective anions exchange, and autophagosome formation. An extensive analysis of the relation between SARS-CoV-2 infection and pwCF is essential to elucidate the mechanisms involved in this lower-than-expected infection impact and to possibly suggest potential new antiviral strategies.
Collapse
Affiliation(s)
- Virginia Lotti
- Microbiology Section, Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Anna Lagni
- Microbiology Section, Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Erica Diani
- Microbiology Section, Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Claudio Sorio
- General Pathology Section, Department of Medicine, University of Verona, Verona, Italy
| | - Davide Gibellini
- Microbiology Section, Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| |
Collapse
|
5
|
Batson BD, Zorn BT, Radicioni G, Livengood SS, Kumagai T, Dang H, Ceppe A, Clapp PW, Tunney M, Elborn JS, McElvaney NG, Muhlebach MS, Boucher RC, Tiemeyer M, Wolfgang MC, Kesimer M. Cystic Fibrosis Airway Mucus Hyperconcentration Produces a Vicious Cycle of Mucin, Pathogen, and Inflammatory Interactions that Promotes Disease Persistence. Am J Respir Cell Mol Biol 2022; 67:253-265. [PMID: 35486871 PMCID: PMC9348562 DOI: 10.1165/rcmb.2021-0359oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 04/29/2022] [Indexed: 11/24/2022] Open
Abstract
The dynamics describing the vicious cycle characteristic of cystic fibrosis (CF) lung disease, initiated by stagnant mucus and perpetuated by infection and inflammation, remain unclear. Here we determine the effect of the CF airway milieu, with persistent mucoobstruction, resident pathogens, and inflammation, on the mucin quantity and quality that govern lung disease pathogenesis and progression. The concentrations of MUC5AC and MUC5B were measured and characterized in sputum samples from subjects with CF (N = 44) and healthy subjects (N = 29) with respect to their macromolecular properties, degree of proteolysis, and glycomics diversity. These parameters were related to quantitative microbiome and clinical data. MUC5AC and MUC5B concentrations were elevated, 30- and 8-fold, respectively, in CF as compared with control sputum. Mucin parameters did not correlate with hypertonic saline, inhaled corticosteroids, or antibiotics use. No differences in mucin parameters were detected at baseline versus during exacerbations. Mucin concentrations significantly correlated with the age and sputum human neutrophil elastase activity. Although significantly more proteolytic cleavages were detected in CF mucins, their macromolecular properties (e.g., size and molecular weight) were not significantly different than control mucins, likely reflecting the role of S-S bonds in maintaining multimeric structures. No evidence of giant mucin macromolecule reflecting oxidative stress-induced cross-linking was found. Mucin glycomic analysis revealed significantly more sialylated glycans in CF, and the total abundance of nonsulfated O-glycans correlated with the relative abundance of pathogens. Collectively, the interaction of mucins, pathogens, epithelium, and inflammatory cells promotes proteomic and glycomic changes that reflect a persistent mucoobstructive, infectious, and inflammatory state.
Collapse
Affiliation(s)
- Bethany D. Batson
- Marsico Lung Institute/Cystic Fibrosis Research Center
- Department of Pathology and Laboratory Medicine
| | - Bryan T. Zorn
- Marsico Lung Institute/Cystic Fibrosis Research Center
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Giorgia Radicioni
- Marsico Lung Institute/Cystic Fibrosis Research Center
- Department of Pathology and Laboratory Medicine
| | - Stephanie S. Livengood
- Marsico Lung Institute/Cystic Fibrosis Research Center
- Department of Pathology and Laboratory Medicine
| | - Tadahiro Kumagai
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia
| | - Hong Dang
- Marsico Lung Institute/Cystic Fibrosis Research Center
| | - Agathe Ceppe
- Marsico Lung Institute/Cystic Fibrosis Research Center
| | | | - Michael Tunney
- Queen’s University, Belfast, Northern Ireland, United Kingdom; and
| | - J. Stuart Elborn
- Queen’s University, Belfast, Northern Ireland, United Kingdom; and
| | - Noel G. McElvaney
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | | | | | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia
| | - Matthew C. Wolfgang
- Marsico Lung Institute/Cystic Fibrosis Research Center
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Mehmet Kesimer
- Marsico Lung Institute/Cystic Fibrosis Research Center
- Department of Pathology and Laboratory Medicine
| |
Collapse
|
6
|
Matthaiou EI, Chiu W, Conrad C, Hsu J. Macrophage Lysosomal Alkalinization Drives Invasive Aspergillosis in a Mouse Cystic Fibrosis Model of Airway Transplantation. J Fungi (Basel) 2022; 8:751. [PMID: 35887506 PMCID: PMC9321820 DOI: 10.3390/jof8070751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 01/25/2023] Open
Abstract
Cystic fibrosis (CF) lung transplant recipients (LTRs) exhibit a disproportionately high rate of life-threatening invasive aspergillosis (IA). Loss of the cystic fibrosis transmembrane conductance regulator (CFTR-/-) in macrophages (mφs) has been associated with lyosomal alkalinization. We hypothesize that this alkalinization would persist in the iron-laden post-transplant microenvironment increasing the risk of IA. To investigate our hypothesis, we developed a murine CF orthotopic tracheal transplant (OTT) model. Iron levels were detected by immunofluorescence staining and colorimetric assays. Aspergillus fumigatus (Af) invasion was evaluated by Grocott methenamine silver staining. Phagocytosis and killing of Af conidia were examined by flow cytometry and confocal microscopy. pH and lysosomal acidification were measured by LysoSensorTM and LysotrackerTM, respectively. Af was more invasive in the CF airway transplant recipient compared to the WT recipient (p < 0.05). CFTR-/- mφs were alkaline at baseline, a characteristic that was increased with iron-overload. These CFTR-/- mφs were unable to phagocytose and kill Af conidia (p < 0.001). Poly(lactic-co-glycolic acid) (PLGA) nanoparticles acidified lysosomes, restoring the CFTR-/- mφs’ ability to clear conidia. Our results suggest that CFTR-/- mφs’ alkalinization interacts with the iron-loaded transplant microenvironment, decreasing the CF-mφs’ ability to kill Af conidia, which may explain the increased risk of IA. Therapeutic pH modulation after transplantation could decrease the risk of IA.
Collapse
Affiliation(s)
- Efthymia Iliana Matthaiou
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA; (E.I.M.); (W.C.)
| | - Wayland Chiu
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA; (E.I.M.); (W.C.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carol Conrad
- Department of Pediatrics, Pulmonary Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA;
| | - Joe Hsu
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA; (E.I.M.); (W.C.)
| |
Collapse
|
7
|
Badr A, Eltobgy M, Krause K, Hamilton K, Estfanous S, Daily KP, Abu Khweek A, Hegazi A, Anne MNK, Carafice C, Robledo-Avila F, Saqr Y, Zhang X, Bonfield TL, Gavrilin MA, Partida-Sanchez S, Seveau S, Cormet-Boyaka E, Amer AO. CFTR Modulators Restore Acidification of Autophago-Lysosomes and Bacterial Clearance in Cystic Fibrosis Macrophages. Front Cell Infect Microbiol 2022; 12:819554. [PMID: 35252032 PMCID: PMC8890004 DOI: 10.3389/fcimb.2022.819554] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/19/2022] [Indexed: 12/17/2022] Open
Abstract
Cystic fibrosis (CF) human and mouse macrophages are defective in their ability to clear bacteria such as Burkholderia cenocepacia. The autophagy process in CF (F508del) macrophages is halted, and the underlying mechanism remains unclear. Furthermore, the role of CFTR in maintaining the acidification of endosomal and lysosomal compartments in CF cells has been a subject of debate. Using 3D reconstruction of z-stack confocal images, we show that CFTR is recruited to LC3-labeled autophagosomes harboring B. cenocepacia. Using several complementary approaches, we report that CF macrophages display defective lysosomal acidification and degradative function for cargos destined to autophagosomes, whereas non-autophagosomal cargos are effectively degraded within acidic compartments. Notably, treatment of CF macrophages with CFTR modulators (tezacaftor/ivacaftor) improved the autophagy flux, lysosomal acidification and function, and bacterial clearance. In addition, CFTR modulators improved CFTR function as demonstrated by patch-clamp. In conclusion, CFTR regulates the acidification of a specific subset of lysosomes that specifically fuse with autophagosomes. Therefore, our study describes a new biological location and function for CFTR in autophago-lysosomes and clarifies the long-standing discrepancies in the field.
Collapse
Affiliation(s)
- Asmaa Badr
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
- Clinical Pathology Department, College of Medicine, Mansoura University, Mansoura, Egypt
| | - Mostafa Eltobgy
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Kathrin Krause
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
- Max Planck Unit for the Science of Pathogens, Berlin, Germany
| | - Kaitlin Hamilton
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Shady Estfanous
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Kylene P. Daily
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Arwa Abu Khweek
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine
| | - Ahmad Hegazi
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Midhun N. K. Anne
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Cierra Carafice
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Frank Robledo-Avila
- Center for Microbial Pathogenesis, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Youssra Saqr
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Xiaoli Zhang
- Center for Biostatistics, Ohio State University, Columbus, OH, United States
| | - Tracey L. Bonfield
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Mikhail A. Gavrilin
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Columbus, OH, United States
| | | | - Stephanie Seveau
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Estelle Cormet-Boyaka
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Amal O. Amer
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
8
|
Banik D, Manna SK, Maiti A, Mahapatra AK. Recent Advancements in Colorimetric and Fluorescent pH Chemosensors: From Design Principles to Applications. Crit Rev Anal Chem 2022; 53:1313-1373. [PMID: 35086371 DOI: 10.1080/10408347.2021.2023002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Due to the immense biological significance of pH in diverse living systems, the design, synthesis, and development of pH chemosensors for pH monitoring has been a very active research field in recent times. In this review, we summarize the designing strategies, sensing mechanisms, biological and environmental applications of fluorogenic and chromogenic pH chemosensors of the last three years (2018-2020). We categorized these pH probes into seven types based on their applications, including 1) Cancer cell discriminating pH probes; 2) Lysosome targetable pH probes; 3) Mitochondria targetable pH probes; 4) Golgi body targetable pH probes; 5) Endoplasmic reticulum targetable pH probes; 6) pH probes used in nonspecific cell imaging; and 7) pH probes without cell imaging. All these different categories exhibit diverse applications of pH probes in biological and environmental fields.
Collapse
Affiliation(s)
- Dipanjan Banik
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, India
| | - Saikat Kumar Manna
- Department of Chemistry, Haldia Government College, Purba Medinipur, West Bengal, India
| | - Anwesha Maiti
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, India
| | - Ajit Kumar Mahapatra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, India
| |
Collapse
|
9
|
Riazanski V, Mauleon G, Zimnicka AM, Chen S, Nelson DJ. Phagosomal chloride dynamics in the alveolar macrophage. iScience 2022; 25:103636. [PMID: 35024579 PMCID: PMC8733233 DOI: 10.1016/j.isci.2021.103636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 10/11/2021] [Accepted: 12/14/2021] [Indexed: 12/04/2022] Open
Abstract
Acidification in intracellular organelles is tightly linked to the influx of Cl- counteracting proton translocation by the electrogenic V-ATPase. We quantified the dynamics of Cl- transfer accompanying cargo incorporation into single phagosomes in alveolar macrophages (AMs). Phagosomal Cl- concentration and acidification magnitude were followed in real time with maximal acidification achieved at levels of approximately 200 mM. Live cell confocal microscopy verified that phagosomal Cl- influx utilized predominantly the Cl- channel CFTR. Relative levels of elemental chlorine (Cl) in hard X-ray fluorescence microprobe (XFM) analysis within single phagosomes validated the increase in Cl- content. XFM revealed the complex interplay between elemental K content inside the phagosome and changes in Cl- during phagosomal particle uptake. Cl- -dependent changes in phagosomal membrane potential were obtained using second harmonic generation (SHG) microscopy. These studies provide a mechanistic insight for screening studies in drug development targeting pulmonary inflammatory disease.
Collapse
Affiliation(s)
- Vladimir Riazanski
- The University of Chicago, Department of Pharmacological and Physiological Sciences, 947 E. 58th Street, MC 0926, Chicago, IL 60637, USA
| | - Gerardo Mauleon
- The University of Chicago, Department of Pharmacological and Physiological Sciences, 947 E. 58th Street, MC 0926, Chicago, IL 60637, USA
| | - Adriana M. Zimnicka
- The University of Chicago, Department of Pharmacological and Physiological Sciences, 947 E. 58th Street, MC 0926, Chicago, IL 60637, USA
| | - Si Chen
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Deborah J. Nelson
- The University of Chicago, Department of Pharmacological and Physiological Sciences, 947 E. 58th Street, MC 0926, Chicago, IL 60637, USA
| |
Collapse
|
10
|
Lukasiak A, Zajac M. The Distribution and Role of the CFTR Protein in the Intracellular Compartments. MEMBRANES 2021; 11:membranes11110804. [PMID: 34832033 PMCID: PMC8618639 DOI: 10.3390/membranes11110804] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022]
Abstract
Cystic fibrosis is a hereditary disease that mainly affects secretory organs in humans. It is caused by mutations in the gene encoding CFTR with the most common phenylalanine deletion at position 508. CFTR is an anion channel mainly conducting Cl− across the apical membranes of many different epithelial cells, the impairment of which causes dysregulation of epithelial fluid secretion and thickening of the mucus. This, in turn, leads to the dysfunction of organs such as the lungs, pancreas, kidney and liver. The CFTR protein is mainly localized in the plasma membrane; however, there is a growing body of evidence that it is also present in the intracellular organelles such as the endosomes, lysosomes, phagosomes and mitochondria. Dysfunction of the CFTR protein affects not only the ion transport across the epithelial tissues, but also has an impact on the proper functioning of the intracellular compartments. The review aims to provide a summary of the present state of knowledge regarding CFTR localization and function in intracellular compartments, the physiological role of this localization and the consequences of protein dysfunction at cellular, epithelial and organ levels. An in-depth understanding of intracellular processes involved in CFTR impairment may reveal novel opportunities in pharmacological agents of cystic fibrosis.
Collapse
|
11
|
Abstract
Beta cells of the pancreatic islet express many different types of ion channels. These channels reside in the β-cell plasma membrane as well as subcellular organelles and their coordinated activity and sensitivity to metabolism regulate glucose-dependent insulin secretion. Here, we review the molecular nature, expression patterns, and functional roles of many β-cell channels, with an eye toward explaining the ionic basis of glucose-induced insulin secretion. Our primary focus is on KATP and voltage-gated Ca2+ channels as these primarily regulate insulin secretion; other channels in our view primarily help to sculpt the electrical patterns generated by activated β-cells or indirectly regulate metabolism. Lastly, we discuss why understanding the physiological roles played by ion channels is important for understanding the secretory defects that occur in type 2 diabetes. © 2021 American Physiological Society. Compr Physiol 11:1-21, 2021.
Collapse
Affiliation(s)
- Benjamin Thompson
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Brehm Diabetes Research Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | |
Collapse
|
12
|
Ding L, Wang J, Cai S, Smyth H, Cui Z. Pulmonary biofilm-based chronic infections and inhaled treatment strategies. Int J Pharm 2021; 604:120768. [PMID: 34089796 DOI: 10.1016/j.ijpharm.2021.120768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/20/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022]
Abstract
Certain pulmonary diseases, such as cystic fibrosis (CF), non-CF bronchiectasis, chronic obstructive pulmonary disease, and ventilator-associated pneumonia, are usually accompanied by respiratory tract infections due to the physiological alteration of the lung immunological defenses. Recurrent infections may lead to chronic infection through the formation of biofilms. Chronic biofilm-based infections are challenging to treat using antimicrobial agents. Therefore, effective ways to eradicate biofilms and thus relieve respiratory tract infection require the development of efficacious agents for biofilm destruction, the design of delivery carriers with biofilm-targeting and/or penetrating abilities for these agents, and the direct delivery of them into the lung. This review provides an in-depth description of biofilm-based infections caused by pulmonary diseases and focuses on current existing agents that are administered by inhalation into the lung to treat biofilm, which include i) inhalable antimicrobial agents and their combinations, ii) non-antimicrobial adjuvants such as matrix-targeting enzymes, mannitol, glutathione, cyclosporin A, and iii) liposomal formulations of anti-biofilm agents. Finally, novel agents that have shown promise against pulmonary biofilms as well as traditional and new devices for pulmonary delivery of anti-biofilm agents into the lung are also discussed.
Collapse
Affiliation(s)
- Li Ding
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jieliang Wang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Shihao Cai
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Hugh Smyth
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Zhengrong Cui
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
13
|
Mussel M, Basser PJ, Horkay F. Ion-Induced Volume Transition in Gels and Its Role in Biology. Gels 2021; 7:20. [PMID: 33670826 PMCID: PMC8005988 DOI: 10.3390/gels7010020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/12/2022] Open
Abstract
Incremental changes in ionic composition, solvent quality, and temperature can lead to reversible and abrupt structural changes in many synthetic and biopolymer systems. In the biological milieu, this nonlinear response is believed to play an important functional role in various biological systems, including DNA condensation, cell secretion, water flow in xylem of plants, cell resting potential, and formation of membraneless organelles. While these systems are markedly different from one another, a physicochemical framework that treats them as polyelectrolytes, provides a means to interpret experimental results and make in silico predictions. This article summarizes experimental results made on ion-induced volume phase transition in a polyelectrolyte model gel (sodium polyacrylate) and observations on the above-mentioned biological systems indicating the existence of a steep response.
Collapse
Affiliation(s)
- Matan Mussel
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA;
| | | | - Ferenc Horkay
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA;
| |
Collapse
|
14
|
Arora K, Liyanage P, Zhong Q, Naren AP. A SNARE protein Syntaxin 17 captures CFTR to potentiate autophagosomal clearance under stress. FASEB J 2020; 35:e21185. [PMID: 33191543 DOI: 10.1096/fj.201903210r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 10/12/2020] [Accepted: 10/28/2020] [Indexed: 01/07/2023]
Abstract
Autophagy, a cellular stress response to starvation and bacterial infection, is executed by double-membrane-bound organelles called autophagosomes. Autophagosomes transfer cytosolic material to acidified lysosomes for degradation following soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE)-dependent fusion processes. Many of the autophagy-related disorders stem from defective end-step proteolysis inside lysosomes. The role of epithelial cystic fibrosis (CF) transmembrane conductance regulator (CFTR) chloride channel has been argued to be critical for efficient lysosomal clearance; however, its context to autophagic clearance and the underlying mechanism is poorly defined. Here, we report that syntaxin17 (Stx17), an autophagic SNARE protein interacts with CFTR under nutritional stress and bacterial infection and incorporates it into mature autophagosomes to mediate an efficient lysosomal clearance. Lack of CFTR function and Stx17 and loss of CFTR-Stx17 interaction impairs bacterial clearance. We discover a specialized role of the Stx17-CFTR protein complex that is critical to prevent defective autophagy as has been the reported scenario in CF airway epithelial cells, infectious diseases, and lysosomal clearance disorders.
Collapse
Affiliation(s)
- Kavisha Arora
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Pramodha Liyanage
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Qing Zhong
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anjaparavanda P Naren
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
15
|
Bal Topçu D, Tugcu G, Ozcan F, Aslan M, Yalcinkaya A, Polat SE, Hizal M, Yalcin EE, Ersoz DD, Ozcelik U, Kiper N, Lay I, Oztas Y. Plasma Ceramides and Sphingomyelins of Pediatric Patients Increase in Primary Ciliary Dyskinesia but Decrease in Cystic Fibrosis. Lipids 2020; 55:213-223. [PMID: 32120452 DOI: 10.1002/lipd.12230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/09/2020] [Accepted: 02/18/2020] [Indexed: 11/06/2022]
Abstract
We investigated plasma sphingomyelin (CerPCho) and ceramide (Cer) levels in pediatric patients with cystic fibrosis (CF) and primary ciliary dyskinesia (PCD). Plasma samples were obtained from CF (n = 19) and PCD (n = 7) patients at exacerbation, discharge, and stable periods. Healthy children (n = 17) of similar age served as control. Levels of 16-24 CerPCho and 16-24 Cer were measured by LC-MS/MS. Concentrations of all CerPCho and Cer species measured at exacerbation were significantly lower in patients with CF than PCD. 16, 18, 24 CerPCho, and 22, 24 Cer in exacerbation; 18, 24 CerPCho, and 18, 20, 22, 24 Cer at discharge; 18, 24 CerPCho and 24 Cer at stable period were significantly lower in CF patients than healthy children (p < 0.001 and p < 0.05). All CerPCho and Cer levels of PCD patients were significantly higher except 24 CerPCho and 24 Cer during exacerbation, 24 CerPCho at discharge, and 18, 22 CerPCho levels at stable period (p < 0.001 and p < 0.05) compared with healthy children. There was no significant difference among exacerbation, discharge, and stable periods in each group for Cer and CerPCho levels. This is the first study measuring plasma Cer and CerPCho levels in PCD and third study in CF patients. The dramatic difference in plasma levels of most CerPCho and Cer species found between two diseases suggest that cilia pathology in PCD and CFTR mutation in CF seem to alter sphingolipid metabolism possibly in opposite directions.
Collapse
Affiliation(s)
- Dilara Bal Topçu
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Sıhhıye, 06100, Turkey
| | - Gokcen Tugcu
- Department of Pediatric Pulmonology, Faculty of Medicine, Hacettepe University, Ankara, Sıhhıye, 06100, Turkey
| | - Filiz Ozcan
- Department of Medical Biochemistry, Faculty of Medicine, Akdeniz University, Antalya, Konyaaltı, 07070, Turkey
| | - Mutay Aslan
- Department of Medical Biochemistry, Faculty of Medicine, Akdeniz University, Antalya, Konyaaltı, 07070, Turkey
| | - Ahmet Yalcinkaya
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Sıhhıye, 06100, Turkey
| | - Sanem Eryilmaz Polat
- Department of Pediatric Pulmonology, Faculty of Medicine, Hacettepe University, Ankara, Sıhhıye, 06100, Turkey
| | - Mina Hizal
- Department of Pediatric Pulmonology, Faculty of Medicine, Hacettepe University, Ankara, Sıhhıye, 06100, Turkey
| | - Ebru Elmas Yalcin
- Department of Pediatric Pulmonology, Faculty of Medicine, Hacettepe University, Ankara, Sıhhıye, 06100, Turkey
| | - Deniz Dogru Ersoz
- Department of Pediatric Pulmonology, Faculty of Medicine, Hacettepe University, Ankara, Sıhhıye, 06100, Turkey
| | - Ugur Ozcelik
- Department of Pediatric Pulmonology, Faculty of Medicine, Hacettepe University, Ankara, Sıhhıye, 06100, Turkey
| | - Nural Kiper
- Department of Pediatric Pulmonology, Faculty of Medicine, Hacettepe University, Ankara, Sıhhıye, 06100, Turkey
| | - Incilay Lay
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Sıhhıye, 06100, Turkey
| | - Yesim Oztas
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Sıhhıye, 06100, Turkey
| |
Collapse
|
16
|
Law SM, Stanfield SJ, Hardisty GR, Dransfield I, Campbell CJ, Gray RD. Human cystic fibrosis monocyte derived macrophages display no defect in acidification of phagolysosomes when measured by optical nanosensors. J Cyst Fibros 2020; 19:203-210. [PMID: 31501051 DOI: 10.1016/j.jcf.2019.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 09/03/2019] [Accepted: 09/03/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Defective macrophage phagolysosomal acidification is implicated in numerous lung diseases including Cystic Fibrosis (CF) and may contribute to defective pathogen killing. Conflicting reports relating to phagolysosomal pH in CF macrophages have been published, in part related to the use of pH-sensitive fluorescent probes where potential inadequacies in experimental design can be a contributing factor (e.g. employing probes with incorrect pKa for the cellular compartment of interest). We developed a reliable method to quantify macrophage phagolysosomal pH using surface-enhanced Raman spectroscopy-based nanosensors. METHODS Monocyte-derived macrophages from CF and healthy control participants were incubated with nanosensors. Live cell imaging identified phagocytosed nanosensors, and surface-enhanced Raman spectroscopy was performed using para-mercaptobenzoic acid functionalised gold nanoparticles which produce Raman spectra that change predictably with their environmental pH. Conventional fluorescence spectroscopy was carried out in comparison. Nanosensor localisation to phagolysosomes was confirmed by transmission electron microscopy. RESULTS Nanosensors were actively phagocytosed by macrophages into phagolysosomes and acidification occurred rapidly and remained stable for at least 60 min. There was no difference in phagolysosomal pH between healthy control and CF macrophages (5.41 ± 0.11 vs. 5.41 ± 0.20, p > .9999), further confirmed by inhibiting Cystic Fibrosis Transmembrane Conductance Regulator in healthy control monocyte-derived macrophages. CONCLUSIONS Optical nanosensors accurately measure macrophage phagolysosomal pH and demonstrate no phagolysosomal acidification defect in human CF monocyte-derived macrophages. Further studies using alveolar macrophages could extend the impact of our findings. Nanosensors represent a novel and precise means to measure organelle functions with widespread potential for the study and monitoring of several lung diseases.
Collapse
Affiliation(s)
- Sheonagh M Law
- Centre for Inflammation Research, The Queen's Medical Research Institute, 47 Little France Crescent, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Samuel J Stanfield
- Joseph Black Building, The University of Edinburgh, David Brewster Rd, Edinburgh EH9 3FJ, UK
| | - Gareth R Hardisty
- Centre for Inflammation Research, The Queen's Medical Research Institute, 47 Little France Crescent, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Ian Dransfield
- Centre for Inflammation Research, The Queen's Medical Research Institute, 47 Little France Crescent, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Colin J Campbell
- Joseph Black Building, The University of Edinburgh, David Brewster Rd, Edinburgh EH9 3FJ, UK
| | - Robert D Gray
- Centre for Inflammation Research, The Queen's Medical Research Institute, 47 Little France Crescent, The University of Edinburgh, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
17
|
Chloride transporters and channels in β-cell physiology: revisiting a 40-year-old model. Biochem Soc Trans 2020; 47:1843-1855. [PMID: 31697318 PMCID: PMC6925527 DOI: 10.1042/bst20190513] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 12/13/2022]
Abstract
It is accepted that insulin-secreting β-cells release insulin in response to glucose even in the absence of functional ATP-sensitive K+ (KATP)-channels, which play a central role in a 'consensus model' of secretion broadly accepted and widely reproduced in textbooks. A major shortcoming of this consensus model is that it ignores any and all anionic mechanisms, known for more than 40 years, to modulate β-cell electrical activity and therefore insulin secretion. It is now clear that, in addition to metabolically regulated KATP-channels, β-cells are equipped with volume-regulated anion (Cl-) channels (VRAC) responsive to glucose concentrations in the range known to promote electrical activity and insulin secretion. In this context, the electrogenic efflux of Cl- through VRAC and other Cl- channels known to be expressed in β-cells results in depolarization because of an outwardly directed Cl- gradient established, maintained and regulated by the balance between Cl- transporters and channels. This review will provide a succinct historical perspective on the development of a complex hypothesis: Cl- transporters and channels modulate insulin secretion in response to nutrients.
Collapse
|
18
|
Zajac M, Chakraborty K, Saha S, Mahadevan V, Infield DT, Accardi A, Qiu Z, Krishnan Y. What biologists want from their chloride reporters – a conversation between chemists and biologists. J Cell Sci 2020; 133:133/2/jcs240390. [DOI: 10.1242/jcs.240390] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
ABSTRACT
Impaired chloride transport affects diverse processes ranging from neuron excitability to water secretion, which underlie epilepsy and cystic fibrosis, respectively. The ability to image chloride fluxes with fluorescent probes has been essential for the investigation of the roles of chloride channels and transporters in health and disease. Therefore, developing effective fluorescent chloride reporters is critical to characterizing chloride transporters and discovering new ones. However, each chloride channel or transporter has a unique functional context that demands a suite of chloride probes with appropriate sensing characteristics. This Review seeks to juxtapose the biology of chloride transport with the chemistries underlying chloride sensors by exploring the various biological roles of chloride and highlighting the insights delivered by studies using chloride reporters. We then delineate the evolution of small-molecule sensors and genetically encoded chloride reporters. Finally, we analyze discussions with chloride biologists to identify the advantages and limitations of sensors in each biological context, as well as to recognize the key design challenges that must be overcome for developing the next generation of chloride sensors.
Collapse
Affiliation(s)
- Matthew Zajac
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637, USA
| | - Kasturi Chakraborty
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637, USA
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Sonali Saha
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Vivek Mahadevan
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Daniel T. Infield
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, IA 52242, USA
| | - Alessio Accardi
- Department of Anesthesiology, Weill Cornell Medical School, New York, NY 10065, USA
- Department of Physiology and Biophysics, Weill Cornell Medical School, New York, NY 10065, USA
- Department of Biochemistry, Weill Cornell Medical School, New York, NY 10065, USA
| | - Zhaozhu Qiu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Yamuna Krishnan
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
19
|
Fan L, Wang X, Ge J, Li F, Zhang C, Lin B, Shuang S, Dong C. A Golgi-targeted off-on fluorescent probe for real-time monitoring of pH changes in vivo. Chem Commun (Camb) 2019; 55:6685-6688. [PMID: 31106798 DOI: 10.1039/c9cc02511a] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We present the first Golgi-targeted small-molecular pH-sensitive fluorescent probe RSG, which allows an off-on fluorescence response to Golgi acidification with high sensitivity and specificity. RSG has been successfully used for real-time monitoring of Golgi pH changes induced by drug treatment at the cellular level, as well as by the LPS-mediated inflammation in vivo.
Collapse
Affiliation(s)
- Li Fan
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Mennerich D, Kellokumpu S, Kietzmann T. Hypoxia and Reactive Oxygen Species as Modulators of Endoplasmic Reticulum and Golgi Homeostasis. Antioxid Redox Signal 2019; 30:113-137. [PMID: 29717631 DOI: 10.1089/ars.2018.7523] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SIGNIFICANCE Eukaryotic cells execute various functions in subcellular compartments or organelles for which cellular redox homeostasis is of importance. Apart from mitochondria, hypoxia and stress-mediated formation of reactive oxygen species (ROS) were shown to modulate endoplasmic reticulum (ER) and Golgi apparatus (GA) functions. Recent Advances: Research during the last decade has improved our understanding of disulfide bond formation, protein glycosylation and secretion, as well as pH and redox homeostasis in the ER and GA. Thus, oxygen (O2) itself, NADPH oxidase (NOX) formed ROS, and pH changes appear to be of importance and indicate the intricate balance of intercompartmental communication. CRITICAL ISSUES Although the interplay between hypoxia, ER stress, and Golgi function is evident, the existence of more than 20 protein disulfide isomerase family members and the relative mild phenotypes of, for example, endoplasmic reticulum oxidoreductin 1 (ERO1)- and NOX4-knockout mice clearly suggest the existence of redundant and alternative pathways, which remain largely elusive. FUTURE DIRECTIONS The identification of these pathways and the key players involved in intercompartmental communication needs suitable animal models, genome-wide association, as well as proteomic studies in humans. The results of those studies will be beneficial for the understanding of the etiology of diseases such as type 2 diabetes, Alzheimer's disease, and cancer, which are associated with ROS, protein aggregation, and glycosylation defects.
Collapse
Affiliation(s)
- Daniela Mennerich
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu , Oulu, Finland
| | - Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu , Oulu, Finland
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu , Oulu, Finland
| |
Collapse
|
21
|
Liou TG. The Clinical Biology of Cystic Fibrosis Transmembrane Regulator Protein: Its Role and Function in Extrapulmonary Disease. Chest 2018; 155:605-616. [PMID: 30359614 DOI: 10.1016/j.chest.2018.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 02/07/2023] Open
Abstract
Normal cystic fibrosis (CF) transmembrane regulator (CFTR) protein has multiple functions in health and disease. Many mutations in the CFTR gene produce abnormal or absent protein. CFTR protein dysfunction underlies the classic CF phenotype of progressive pulmonary and GI pathology but may underlie diseases not usually associated with CF. This review highlights selected extrapulmonary disease that may be associated with abnormal CFTR. Increasing survival in CF is associated with increasing incidence of diseases associated with aging. CFTR dysfunction in older individuals may have novel effects on glucose metabolism, control of insulin release, regulation of circadian rhythm, and cancer cell pathophysiology. In individuals who have cancers with acquired CFTR suppression, their tumors may more likely exhibit rapid expansion, epithelial-to-mesenchymal transformation, abnormally reduced apoptosis, and increased metastatic potential. The new modulators of CFTR protein synthesis could facilitate the additional exploration needed to better understand the unfolding clinical biology of CFTR in human disease, even as they revolutionize treatment of patients with CF.
Collapse
Affiliation(s)
- Theodore G Liou
- Center for Quantitative Biology, The Adult Cystic Fibrosis Center and the Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, UT.
| |
Collapse
|
22
|
Becker KA, Riethmüller J, Seitz AP, Gardner A, Boudreau R, Kamler M, Kleuser B, Schuchman E, Caldwell CC, Edwards MJ, Grassmé H, Brodlie M, Gulbins E. Sphingolipids as targets for inhalation treatment of cystic fibrosis. Adv Drug Deliv Rev 2018; 133:66-75. [PMID: 29698625 DOI: 10.1016/j.addr.2018.04.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 01/19/2023]
Abstract
Studies over the past several years have demonstrated the important role of sphingolipids in cystic fibrosis (CF), chronic obstructive pulmonary disease and acute lung injury. Ceramide is increased in airway epithelial cells and alveolar macrophages of CF mice and humans, while sphingosine is dramatically decreased. This increase in ceramide results in chronic inflammation, increased death of epithelial cells, release of DNA into the bronchial lumen and thereby an impairment of mucociliary clearance; while the lack of sphingosine in airway epithelial cells causes high infection susceptibility in CF mice and possibly patients. The increase in ceramide mediates an ectopic expression of β1-integrins in the luminal membrane of CF epithelial cells, which results, via an unknown mechanism, in a down-regulation of acid ceramidase. It is predominantly this down-regulation of acid ceramidase that results in the imbalance of ceramide and sphingosine in CF cells. Correction of ceramide and sphingosine levels can be achieved by inhalation of functional acid sphingomyelinase inhibitors, recombinant acid ceramidase or by normalization of β1-integrin expression and subsequent re-expression of endogenous acid ceramidase. These treatments correct pulmonary inflammation and prevent or treat, respectively, acute and chronic pulmonary infections in CF mice with Staphylococcus aureus and mucoid or non-mucoid Pseudomonas aeruginosa. Inhalation of sphingosine corrects sphingosine levels only and seems to mainly act against the infection. Many antidepressants are functional inhibitors of the acid sphingomyelinase and were designed for systemic treatment of major depression. These drugs could be repurposed to treat CF by inhalation.
Collapse
|
23
|
Huo D, Xia Y. Quantifying the Sub-Cellular Distributions of Gold Nanospheres Taken Up by Cells through Stepwise, Site-Selective Etching. Chemistry 2018; 24:8513-8518. [PMID: 29637633 DOI: 10.1002/chem.201800525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Indexed: 11/11/2022]
Abstract
A quantitative understanding of the sub-cellular distributions of nanospheres taken up by cells is of key importance to the development of effective nanomedicine. With gold nanospheres as a model system, here we demonstrate, for the first time, how to quantify the numbers of nanospheres bound to plasma membrane, accumulated in cytosol, and entrapped in endo-lysosomes, respectively, through stepwise, site-selective etching. Our results indicate that the chance for nanospheres to escape from endo-lysosomes is insensitive to the presence of targeting ligand although ligand-receptor binding has been documented as a critical factor in triggering internalization. Furthermore, the presence of serum proteins is shown to facilitate the binding of nanospheres to plasma membrane lacking the specific receptor. Collectively, these findings confirm the potential of stepwise etching in quantitatively analyzing the sub-cellular distributions of nanospheres taken up by cells in an effort to optimize the therapeutic effect.
Collapse
Affiliation(s)
- Da Huo
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA.,School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
24
|
Krishnan V, Maddox JW, Rodriguez T, Gleason E. A role for the cystic fibrosis transmembrane conductance regulator in the nitric oxide-dependent release of Cl - from acidic organelles in amacrine cells. J Neurophysiol 2017; 118:2842-2852. [PMID: 28835528 DOI: 10.1152/jn.00511.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/21/2017] [Accepted: 08/21/2017] [Indexed: 12/16/2022] Open
Abstract
γ-Amino butyric acid (GABA) and glycine typically mediate synaptic inhibition because their ligand-gated ion channels support the influx of Cl- However, the electrochemical gradient for Cl- across the postsynaptic plasma membrane determines the voltage response of the postsynaptic cell. Typically, low cytosolic Cl- levels support inhibition, whereas higher levels of cytosolic Cl- can suppress inhibition or promote depolarization. We previously reported that nitric oxide (NO) releases Cl- from acidic organelles and transiently elevates cytosolic Cl-, making the response to GABA and glycine excitatory. In this study, we test the hypothesis that the cystic fibrosis transmembrane conductance regulator (CFTR) is involved in the NO-dependent efflux of organellar Cl- We first establish the mRNA and protein expression of CFTR in our model system, cultured chick retinal amacrine cells. Using whole cell voltage-clamp recordings of currents through GABA-gated Cl- channels, we examine the effects of pharmacological inhibition of CFTR on the NO-dependent release of internal Cl- To interfere with the expression of CFTR, we used clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 genome editing. We find that both pharmacological inhibition and CRISPR/Cas9-mediated knockdown of CFTR block the ability of NO to release Cl- from internal stores. These results demonstrate that CFTR is required for the NO-dependent efflux of Cl- from acidic organelles.NEW & NOTEWORTHY Although CFTR function has been studied extensively in the context of epithelia, relatively little is known about its function in neurons. We show that CFTR is involved in an NO-dependent release of Cl- from acidic organelles. This internal function of CFTR is particularly relevant to neuronal physiology because postsynaptic cytosolic Cl- levels determine the outcome of GABA- and glycinergic synaptic signaling. Thus the CFTR may play a role in regulating synaptic transmission.
Collapse
Affiliation(s)
- Vijai Krishnan
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana
| | - J Wesley Maddox
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana
| | - Tyler Rodriguez
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana
| | - Evanna Gleason
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana
| |
Collapse
|
25
|
Staphylococcus aureus Survives in Cystic Fibrosis Macrophages, Forming a Reservoir for Chronic Pneumonia. Infect Immun 2017; 85:IAI.00883-16. [PMID: 28289144 DOI: 10.1128/iai.00883-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 03/03/2017] [Indexed: 12/16/2022] Open
Abstract
Staphylococcus aureus plays an important role in sepsis, pneumonia, wound infections, and cystic fibrosis (CF), which is caused by mutations of the cystic fibrosis transmembrane conductance regulator (Cftr). Pulmonary S. aureus infections in CF often occur very early and prior to colonization with other pathogens, in particular Pseudomonas aeruginosa Here, we demonstrate that CF mice are highly susceptible to pulmonary infections with S. aureus and fail to clear the pathogen during infection. S. aureus is internalized by Cftr-deficient macrophages in the lung, but these macrophages are unable to kill intracellular bacteria. This failure might be caused by a defect in the fusion of phagosomes with lysosomes, while this process occurs rapidly in wild-type macrophages and serves to kill intracellular pathogens. Transplantation of infected Cftr-deficient alveolar macrophages into the lungs of noninfected CF mice is sufficient to induce pneumonia. This suggests that intracellular survival of S. aureus in macrophages may allow the pathogen to chronically infect CF lungs.
Collapse
|
26
|
Wang H, Cebotaru L, Lee HW, Yang Q, Pollard BS, Pollard HB, Guggino WB. CFTR Controls the Activity of NF-κB by Enhancing the Degradation of TRADD. Cell Physiol Biochem 2016; 40:1063-1078. [PMID: 27960153 DOI: 10.1159/000453162] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND/AIMS Chronic lung infection in cystic fibrosis leads to an inflammatory response that persists because of the chronic presence of bacteria and ultimately leads to a catastrophic failure of lung function. METHODS We use a combination of biochemistry, cell and molecular biology to study the interaction of TRADD, a key adaptor molecule in TNFα signaling, with CFTR in the regulation of NFκB. RESULTS We show that Wt CFTR binds to and colocalizes with TRADD. TRADD is a key signaling intermediate connecting TNFα with activation of NFκB. By contrast, ΔF508 CFTR does not bind to TRADD. NF-κB activation is higher in CFBE expressing ΔF508 CFTR than in cells expressing Wt CFTR. However, this differential effect is abolished when TRADD levels are knocked down. Transfecting Wt CFTR into CFBE cells reduces NF-κB activity. However the reduction is abolished by the CFTR chloride transport inhibitor-172. Consistently, transfecting in the correctly trafficked CFTR conduction mutants G551D or S341A also fail to reduce NFκB activity. Thus CFTR must be functional if it is to regulate NF-κB activity. We also found that TNFα produced a greater increase in NF-κB activity in CFBE cells than in the same cell when Wt CFTR-corrected. Consistently, the effect is also abolished when TRADD is knocked down by shRNA. Thus, Wt CFTR control of TRADD modulates the physiological activation of NF-κB by TNFα. Based on studies with proteosomal and lysosomal inhibitors, the mechanism by which Wt CFTR, but not ΔF508 CFTR, suppresses TRADD is by lysosomal degradation. CONCLUSION We have uncovered a novel mechanism whereby Wt CFTR regulates TNFα signaling by enhancing TRADD degradation. Thus by reducing the levels of TRADD, Wt CFTR suppresses downstream proinflammatory NFκB signaling. By contrast, suppression of NF-κB activation fails in CF cells expressing ΔF508 CFTR.
Collapse
Affiliation(s)
- Hua Wang
- Department of Physiology, Medicine, School of Medicine, The Johns Hopkins University, Baltimore, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Bruscia EM, Bonfield TL. Cystic Fibrosis Lung Immunity: The Role of the Macrophage. J Innate Immun 2016; 8:550-563. [PMID: 27336915 DOI: 10.1159/000446825] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/16/2016] [Indexed: 01/04/2023] Open
Abstract
Cystic fibrosis (CF) pathophysiology is hallmarked by excessive inflammation and the inability to efficiently resolve lung infections, contributing to major morbidity and eventually the mortality of patients with this disease. Macrophages (MΦs) are major players in lung homeostasis through their diverse contributions to both the innate and adaptive immune networks. The setting of MΦ function and activity in CF is multifaceted, encompassing the response to the unique environmental cues in the CF lung as well as the intrinsic changes resulting from CFTR dysfunction. The complexity is further enhanced with the identification of modifier genes, which modulate the CFTR contribution to disease, resulting in epigenetic and transcriptional shifts in MΦ phenotype. This review focuses on the contribution of MΦ to lung homeostasis, providing an overview of the diverse literature and various perspectives on the role of these immune guardians in CF.
Collapse
Affiliation(s)
- Emanuela M Bruscia
- Section of Respiratory Medicine, Department of Pediatrics, Yale University School of Medicine, New Haven, Conn., USA
| | | |
Collapse
|
28
|
Meijer L, Nelson DJ, Riazanski V, Gabdoulkhakova AG, Hery-Arnaud G, Le Berre R, Loaëc N, Oumata N, Galons H, Nowak E, Gueganton L, Dorothée G, Prochazkova M, Hall B, Kulkarni AB, Gray RD, Rossi AG, Witko-Sarsat V, Norez C, Becq F, Ravel D, Mottier D, Rault G. Modulating Innate and Adaptive Immunity by (R)-Roscovitine: Potential Therapeutic Opportunity in Cystic Fibrosis. J Innate Immun 2016; 8:330-49. [PMID: 26987072 PMCID: PMC4800827 DOI: 10.1159/000444256] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/25/2016] [Accepted: 01/25/2016] [Indexed: 12/17/2022] Open
Abstract
(R)-Roscovitine, a pharmacological inhibitor of kinases, is currently in phase II clinical trial as a drug candidate for the treatment of cancers, Cushing's disease and rheumatoid arthritis. We here review the data that support the investigation of (R)-roscovitine as a potential therapeutic agent for the treatment of cystic fibrosis (CF). (R)-Roscovitine displays four independent properties that may favorably combine against CF: (1) it partially protects F508del-CFTR from proteolytic degradation and favors its trafficking to the plasma membrane; (2) by increasing membrane targeting of the TRPC6 ion channel, it rescues acidification in phagolysosomes of CF alveolar macrophages (which show abnormally high pH) and consequently restores their bactericidal activity; (3) its effects on neutrophils (induction of apoptosis), eosinophils (inhibition of degranulation/induction of apoptosis) and lymphocytes (modification of the Th17/Treg balance in favor of the differentiation of anti-inflammatory lymphocytes and reduced production of various interleukins, notably IL-17A) contribute to the resolution of inflammation and restoration of innate immunity, and (4) roscovitine displays analgesic properties in animal pain models. The fact that (R)-roscovitine has undergone extensive preclinical safety/pharmacology studies, and phase I and II clinical trials in cancer patients, encourages its repurposing as a CF drug candidate.
Collapse
Affiliation(s)
- Laurent Meijer
- Centre de Perharidy, ManRos Therapeutics, Roscoff, France
| | - Deborah J. Nelson
- Department of Pharmacological and Physiological Sciences, The University of Chicago, Chicago, Ill., USA
| | - Vladimir Riazanski
- Department of Pharmacological and Physiological Sciences, The University of Chicago, Chicago, Ill., USA
| | - Aida G. Gabdoulkhakova
- Department of Pharmacological and Physiological Sciences, The University of Chicago, Chicago, Ill., USA
| | - Geneviève Hery-Arnaud
- Unité de Bactériologie, Hôpital de la Cavale Blanche, CHRU Brest, Brest, France
- EA3882-LUBEM, Université de Brest, UFR de Médecine et des Sciences de la Santé, Brest, France
| | - Rozenn Le Berre
- EA3882-LUBEM, Université de Brest, UFR de Médecine et des Sciences de la Santé, Brest, France
- Département de Médecine Interne et Pneumologie, CHRU Brest, Brest, France
| | - Nadège Loaëc
- Centre de Perharidy, ManRos Therapeutics, Roscoff, France
| | - Nassima Oumata
- Centre de Perharidy, ManRos Therapeutics, Roscoff, France
| | - Hervé Galons
- Unité de Technologies Chimiques et Biologiques pour la Santé, Université Paris Descartes UMR-S 1022 INSERM, Paris, France
| | - Emmanuel Nowak
- Hôpital de la Cavale Blanche, CHRU Brest, Centre d'Investigation Clinique, INSERM CIC 1412, Brest, France
| | | | - Guillaume Dorothée
- Immune System, Neuroinflammation and Neurodegenerative Diseases Laboratory, Inflammation-Immunopathology-Biotherapy Department (DHU i2B), CdR Saint-Antoine, INSERM, UMRS 938, Paris, France
- Hôpital Saint-Antoine, CdR Saint-Antoine, UMRS 938, UPMC University Paris 06, Sorbonne Universités, Paris, France
| | - Michaela Prochazkova
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Md., USA
| | - Bradford Hall
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Md., USA
| | - Ashok B. Kulkarni
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Md., USA
| | - Robert D. Gray
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh Medical School, Edinburgh, UK
| | - Adriano G. Rossi
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh Medical School, Edinburgh, UK
| | | | - Caroline Norez
- Laboratoire Signalisation et Transports Ioniques Membranaires, CNRS, Université de Poitiers, Poitiers, France
| | - Frédéric Becq
- Laboratoire Signalisation et Transports Ioniques Membranaires, CNRS, Université de Poitiers, Poitiers, France
| | | | - Dominique Mottier
- Hôpital de la Cavale Blanche, CHRU Brest, Centre d'Investigation Clinique, INSERM CIC 1412, Brest, France
| | | |
Collapse
|
29
|
Tang XX, Ostedgaard LS, Hoegger MJ, Moninger TO, Karp PH, McMenimen JD, Choudhury B, Varki A, Stoltz DA, Welsh MJ. Acidic pH increases airway surface liquid viscosity in cystic fibrosis. J Clin Invest 2016; 126:879-91. [PMID: 26808501 DOI: 10.1172/jci83922] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 12/08/2015] [Indexed: 12/21/2022] Open
Abstract
Cystic fibrosis (CF) disrupts respiratory host defenses, allowing bacterial infection, inflammation, and mucus accumulation to progressively destroy the lungs. Our previous studies revealed that mucus with abnormal behavior impaired mucociliary transport in newborn CF piglets prior to the onset of secondary manifestations. To further investigate mucus abnormalities, here we studied airway surface liquid (ASL) collected from newborn piglets and ASL on cultured airway epithelia. Fluorescence recovery after photobleaching revealed that the viscosity of CF ASL was increased relative to that of non-CF ASL. CF ASL had a reduced pH, which was necessary and sufficient for genotype-dependent viscosity differences. The increased viscosity of CF ASL was not explained by pH-independent changes in HCO3- concentration, altered glycosylation, additional pH-induced disulfide bond formation, increased percentage of nonvolatile material, or increased sulfation. Treating acidic ASL with hypertonic saline or heparin largely reversed the increased viscosity, suggesting that acidic pH influences mucin electrostatic interactions. These findings link loss of cystic fibrosis transmembrane conductance regulator-dependent alkalinization to abnormal CF ASL. In addition, we found that increasing Ca2+ concentrations elevated ASL viscosity, in part, independently of pH. The results suggest that increasing pH, reducing Ca2+ concentration, and/or altering electrostatic interactions in ASL might benefit early CF.
Collapse
|
30
|
Chugh S, Gnanapragassam VS, Jain M, Rachagani S, Ponnusamy MP, Batra SK. Pathobiological implications of mucin glycans in cancer: Sweet poison and novel targets. Biochim Biophys Acta Rev Cancer 2015; 1856:211-25. [PMID: 26318196 DOI: 10.1016/j.bbcan.2015.08.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 08/15/2015] [Accepted: 08/25/2015] [Indexed: 12/13/2022]
Abstract
Mucins are large glycoproteins expressed on the epithelia that provide a protective barrier against harsh insults from toxins and pathogenic microbes. These glycoproteins are classified primarily as being secreted and membrane-bound; both forms are involved in pathophysiological functions including inflammation and cancer. The high molecular weight of mucins is attributed to their large polypeptide backbone that is extensively covered by glycan moieties that modulate the function of mucins and, hence, play an important role in physiological functions. Deregulation of glycosylation machinery during malignant transformation results in altered mucin glycosylation. This review describes the functional implications and pathobiological significance of altered mucin glycosylation in cancer. Further, this review delineates various factors such as glycosyltransferases and tumor microenvironment that contribute to dysregulation of mucin glycosylation during cancer. Finally, this review discusses the scope of mucin glycan epitopes as potential diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Seema Chugh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Vinayaga S Gnanapragassam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| |
Collapse
|
31
|
Pewzner-Jung Y, Tavakoli Tabazavareh S, Grassmé H, Becker KA, Japtok L, Steinmann J, Joseph T, Lang S, Tuemmler B, Schuchman EH, Lentsch AB, Kleuser B, Edwards MJ, Futerman AH, Gulbins E. Sphingoid long chain bases prevent lung infection by Pseudomonas aeruginosa. EMBO Mol Med 2015; 6:1205-14. [PMID: 25085879 PMCID: PMC4197866 DOI: 10.15252/emmm.201404075] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cystic fibrosis patients and patients with chronic obstructive pulmonary disease, trauma, burn wound, or patients requiring ventilation are susceptible to severe pulmonary infection by Pseudomonas aeruginosa. Physiological innate defense mechanisms against this pathogen, and their alterations in lung diseases, are for the most part unknown. We now demonstrate a role for the sphingoid long chain base, sphingosine, in determining susceptibility to lung infection by P. aeruginosa. Tracheal and bronchial sphingosine levels were significantly reduced in tissues from cystic fibrosis patients and from cystic fibrosis mouse models due to reduced activity of acid ceramidase, which generates sphingosine from ceramide. Inhalation of mice with sphingosine, with a sphingosine analog, FTY720, or with acid ceramidase rescued susceptible mice from infection. Our data suggest that luminal sphingosine in tracheal and bronchial epithelial cells prevents pulmonary P. aeruginosa infection in normal individuals, paving the way for novel therapeutic paradigms based on inhalation of acid ceramidase or of sphingoid long chain bases in lung infection.
Collapse
Affiliation(s)
- Yael Pewzner-Jung
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | | | - Heike Grassmé
- Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Katrin Anne Becker
- Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lukasz Japtok
- Department of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Jörg Steinmann
- Department of Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Tammar Joseph
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Stephan Lang
- Department of Otorhinolaryngology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Burkhard Tuemmler
- Klinische Forschergruppe, OE 6710, Medizinische Hochschule Hannover, Hannover, Germany
| | - Edward H Schuchman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alex B Lentsch
- Department of Surgery, University of Cincinnati, Cincinnati, OH, USA
| | - Burkhard Kleuser
- Department of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Michael J Edwards
- Department of Surgery, University of Cincinnati, Cincinnati, OH, USA
| | - Anthony H Futerman
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Erich Gulbins
- Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany Department of Surgery, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
32
|
Pseudomonas aeruginosa-induced bleb-niche formation in epithelial cells is independent of actinomyosin contraction and enhanced by loss of cystic fibrosis transmembrane-conductance regulator osmoregulatory function. mBio 2015; 6:e02533. [PMID: 25714715 PMCID: PMC4358002 DOI: 10.1128/mbio.02533-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa can infect almost any site in the body but most often targets epithelial cell-lined tissues such as the airways, skin, and the cornea of the eye. A common predisposing factor is cystic fibrosis (CF), caused by defects in the cystic fibrosis transmembrane-conductance regulator (CFTR). Previously, we showed that when P. aeruginosa enters epithelial cells it replicates intracellularly and occupies plasma membrane blebs. This phenotype is dependent on the type 3 secretion system (T3SS) effector ExoS, shown by others to induce host cell apoptosis. Here, we examined mechanisms for P. aeruginosa-induced bleb formation, focusing on its relationship to apoptosis and the CFTR. The data showed that P. aeruginosa-induced blebbing in epithelial cells is independent of actin contraction and is inhibited by hyperosmotic media (400 to 600 mOsM), distinguishing bacterially induced blebs from apoptotic blebs. Cells with defective CFTR displayed enhanced bleb formation upon infection, as demonstrated using bronchial epithelial cells from a patient with cystic fibrosis and a CFTR inhibitor, CFTR(Inh)-172. The defect was found to be correctable either by incubation in hyperosmotic media or by complementation with CFTR (pGFP-CFTR), suggesting that the osmoregulatory function of CFTR counters P. aeruginosa-induced bleb-niche formation. Accordingly, and despite their reduced capacity for bacterial internalization, CFTR-deficient cells showed greater bacterial occupation of blebs and enhanced intracellular replication. Together, these data suggest that P. aeruginosa bleb niches are distinct from apoptotic blebs, are driven by osmotic forces countered by CFTR, and could provide a novel mechanism for bacterial persistence in the host. Pseudomonas aeruginosa is an opportunistic pathogen problematic in hospitalized patients and those with cystic fibrosis (CF). Previously, we showed that P. aeruginosa can enter epithelial cells and replicate within them and traffics to the membrane blebs that it induces. This “bleb-niche” formation requires ExoS, previously shown to cause apoptosis. Here, we show that the driving force for bleb-niche formation is osmotic pressure, differentiating P. aeruginosa-induced blebs from apoptotic blebs. Either CFTR inhibition or CFTR mutation (as seen in people with CF) causes P. aeruginosa to make more bleb niches and provides an osmotic driving force for blebbing. CFTR inhibition also enhances bacterial occupation of blebs and intracellular replication. Since CFTR is targeted for removal from the plasma membrane when P. aeruginosa invades a healthy cell, these findings could relate to pathogenesis in both CF and healthy patient populations.
Collapse
|
33
|
Liu J, Walker NM, Ootani A, Strubberg AM, Clarke LL. Defective goblet cell exocytosis contributes to murine cystic fibrosis-associated intestinal disease. J Clin Invest 2015; 125:1056-68. [PMID: 25642775 DOI: 10.1172/jci73193] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/18/2014] [Indexed: 01/12/2023] Open
Abstract
Cystic fibrosis (CF) intestinal disease is associated with the pathological manifestation mucoviscidosis, which is the secretion of tenacious, viscid mucus that plugs ducts and glands of epithelial-lined organs. Goblet cells are the principal cell type involved in exocytosis of mucin granules; however, little is known about the exocytotic process of goblet cells in the CF intestine. Using intestinal organoids from a CF mouse model, we determined that CF goblet cells have altered exocytotic dynamics, which involved intrathecal granule swelling that was abruptly followed by incomplete release of partially decondensated mucus. Some CF goblet cells exhibited an ectopic granule location and distorted cellular morphology, a phenotype that is consistent with retrograde intracellular granule movement during exocytosis. Increasing the luminal concentration of bicarbonate, which mimics CF transmembrane conductance regulator-mediated anion secretion, increased spontaneous degranulation in WT goblet cells and improved exocytotic dynamics in CF goblet cells; however, there was still an apparent incoordination between granule decondensation and exocytosis in the CF goblet cells. Compared with those within WT goblet cells, mucin granules within CF goblet cells had an alkaline pH, which may adversely affect the polyionic composition of the mucins. Together, these findings indicate that goblet cell dysfunction is an epithelial-autonomous defect in the CF intestine that likely contributes to the pathology of mucoviscidosis and the intestinal manifestations of obstruction and inflammation.
Collapse
|
34
|
Ishii Y, Imamoto Y, Yamamoto R, Tsukahara M, Wakamatsu K. Titer of trastuzumab produced by a Chinese hamster ovary cell line is associated with tricarboxylic acid cycle activity rather than lactate metabolism. J Biosci Bioeng 2014; 119:478-85. [PMID: 25449760 DOI: 10.1016/j.jbiosc.2014.09.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 09/17/2014] [Accepted: 09/22/2014] [Indexed: 01/08/2023]
Abstract
Achieving high productivity and quality is the final goal of therapeutic antibody development, but the productivity and quality of antibodies are known to be substantially dependent on the nature of the cell lines expressing the antibodies. We characterized two contrasting cell lines that produce trastuzumab, namely cell line A with a high titer and a low aggregate content and cell line B with a low titer and a high aggregate content to identify the causes of the differences. We observed the following differences: cell growth (A > B), proportion of defucosylated oligosaccharides on antibodies (A < B), and proportion of covalent antibody aggregates (A > B). Our results suggest that the high monoclonal antibody (mAb) titers in cell line A is associated with the high proliferation and is not caused by the lactate metabolism shift (switching from lactate production to net lactate consumption). Rather, these differences can be accounted for by the following: levels of tricarboxylic acid cycle intermediates (A > B), ammonium ion levels (A ≤ B), and oxidative stress (A > B).
Collapse
Affiliation(s)
- Yoichi Ishii
- Bio-process Research and Development Laboratories, Kyowa Hakko Kirin Co., Ltd., 100-1 Hagiwara-machi, Takasaki-shi, Gunma 370-0013, Japan; Graduate School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu-shi, Gunma 376-8515, Japan.
| | - Yasufumi Imamoto
- Bio-process Research and Development Laboratories, Kyowa Hakko Kirin Co., Ltd., 100-1 Hagiwara-machi, Takasaki-shi, Gunma 370-0013, Japan
| | - Rie Yamamoto
- Bio-process Research and Development Laboratories, Kyowa Hakko Kirin Co., Ltd., 100-1 Hagiwara-machi, Takasaki-shi, Gunma 370-0013, Japan
| | - Masayoshi Tsukahara
- Kyowa Hakko Kirin Co., Ltd., 1-6-1 Ohte-machi, Chiyoda-ku, Tokyo 100-8185, Japan
| | - Kaori Wakamatsu
- Graduate School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu-shi, Gunma 376-8515, Japan
| |
Collapse
|
35
|
Chemical rescue of ΔF508-CFTR in C127 epithelial cells reverses aberrant extracellular pH acidification to wild-type alkalization as monitored by microphysiometry. Biochem Biophys Res Commun 2014; 451:535-40. [DOI: 10.1016/j.bbrc.2014.08.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 08/04/2014] [Indexed: 11/19/2022]
|
36
|
Sasaki T, Lian S, Qi J, Bayliss PE, Carr CE, Johnson JL, Guha S, Kobler P, Catz SD, Gill M, Jia K, Klionsky DJ, Kishi S. Aberrant autolysosomal regulation is linked to the induction of embryonic senescence: differential roles of Beclin 1 and p53 in vertebrate Spns1 deficiency. PLoS Genet 2014; 10:e1004409. [PMID: 24967584 PMCID: PMC4072523 DOI: 10.1371/journal.pgen.1004409] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 04/16/2014] [Indexed: 12/04/2022] Open
Abstract
Spinster (Spin) in Drosophila or Spinster homolog 1 (Spns1) in vertebrates is a putative lysosomal H+-carbohydrate transporter, which functions at a late stage of autophagy. The Spin/Spns1 defect induces aberrant autolysosome formation that leads to embryonic senescence and accelerated aging symptoms, but little is known about the mechanisms leading to the pathogenesis in vivo. Beclin 1 and p53 are two pivotal tumor suppressors that are critically involved in the autophagic process and its regulation. Using zebrafish as a genetic model, we show that Beclin 1 suppression ameliorates Spns1 loss-mediated senescence as well as autophagic impairment, whereas unexpectedly p53 deficit exacerbates both of these characteristics. We demonstrate that ‘basal p53’ activity plays a certain protective role(s) against the Spns1 defect-induced senescence via suppressing autophagy, lysosomal biogenesis, and subsequent autolysosomal formation and maturation, and that p53 loss can counteract the effect of Beclin 1 suppression to rescue the Spns1 defect. By contrast, in response to DNA damage, ‘activated p53’ showed an apparent enhancement of the Spns1-deficient phenotype, by inducing both autophagy and apoptosis. Moreover, we found that a chemical and genetic blockage of lysosomal acidification and biogenesis mediated by the vacuolar-type H+-ATPase, as well as of subsequent autophagosome-lysosome fusion, prevents the appearance of the hallmarks caused by the Spns1 deficiency, irrespective of the basal p53 state. Thus, these results provide evidence that Spns1 operates during autophagy and senescence differentially with Beclin 1 and p53. Spinster homolog 1 (Spns1) in vertebrates, as well as Spinster (Spin) in Drosophila, is a hypothetical lysosomal H+-carbohydrate transporter, which functions at a late stage of autophagy. The Spin/Spns1 defect induces aberrant autolysosome formation that leads to embryonic senescence and accelerated aging symptoms, while the molecular mechanisms of the pathogenesis are unknown in vivo. Using zebrafish, we show that Beclin 1 suppression ameliorates Spns1 loss-mediated senescence as well as autolysosomal impairment, whereas p53 deficit unexpectedly exacerbates these characteristics. We demonstrate that basal p53 activity has a certain protective role(s) against the Spns1 defect via suppressing autophagosome-lysosome fusion, while p53 activated by ultraviolet radiation amplifies the Spns1 deficit. In addition, we found that excessive lysosomal biogenesis and prolonged suboptimal acidification, modulated by v-ATPase, could be the primary reason for the appearance on the hallmarks of Spns1 deficiency. Our findings thus suggest that Spns1 is critically involved in lysosomal acidification and trafficking during autophagy, and differentially acts in a pathway with Beclin 1 and p53 in the regulation of senescence.
Collapse
Affiliation(s)
- Tomoyuki Sasaki
- Department of Metabolism & Aging, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Shanshan Lian
- Department of Metabolism & Aging, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Jie Qi
- Department of Metabolism & Aging, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Peter E. Bayliss
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Christopher E. Carr
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Jennifer L. Johnson
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Sujay Guha
- Department of Metabolism & Aging, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Patrick Kobler
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Sergio D. Catz
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Matthew Gill
- Department of Metabolism & Aging, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Kailiang Jia
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Daniel J. Klionsky
- Life Sciences Institute, Department of Molecular, Cellular, and Developmental Biology, Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Shuji Kishi
- Department of Metabolism & Aging, The Scripps Research Institute, Jupiter, Florida, United States of America
- * E-mail:
| |
Collapse
|
37
|
|
38
|
Effect of glutamine substitution by TCA cycle intermediates on the production and sialylation of Fc-fusion protein in Chinese hamster ovary cell culture. J Biotechnol 2014; 180:23-9. [DOI: 10.1016/j.jbiotec.2014.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 03/28/2014] [Accepted: 04/01/2014] [Indexed: 11/16/2022]
|
39
|
Staudinger BJ, Muller JF, Halldórsson S, Boles B, Angermeyer A, Nguyen D, Rosen H, Baldursson O, Gottfreðsson M, Guðmundsson GH, Singh PK. Conditions associated with the cystic fibrosis defect promote chronic Pseudomonas aeruginosa infection. Am J Respir Crit Care Med 2014; 189:812-24. [PMID: 24467627 DOI: 10.1164/rccm.201312-2142oc] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
RATIONALE Progress has been made in understanding how the cystic fibrosis (CF) basic defect produces lung infection susceptibility. However, it remains unclear why CF exclusively leads to chronic infections that are noninvasive and highly resistant to eradication. Although biofilm formation has been suggested as a mechanism, recent work raises questions about the role of biofilms in CF. OBJECTIVES To learn how airway conditions attributed to CF transmembrane regulator dysfunction could lead to chronic infection, and to determine if biofilm-inhibiting genetic adaptations that are common in CF isolates affect the capacity of Pseudomonas aeruginosa to develop chronic infection phenotypes. METHODS We studied P. aeruginosa isolates grown in agar and mucus gels containing sputum from patients with CF and measured their susceptibility to killing by antibiotics and host defenses. We also measured the invasive virulence of P. aeruginosa grown in sputum gels using airway epithelial cells and a murine infection model. MEASUREMENTS AND MAIN RESULTS We found that conditions likely to result from increased mucus density, hyperinflammation, and defective bacterial killing could all cause P. aeruginosa to grow in bacterial aggregates. Aggregated growth markedly increased the resistance of bacteria to killing by host defenses and antibiotics, and reduced their invasiveness. In addition, we found that biofilm-inhibiting mutations do not impede aggregate formation in gel growth environments. CONCLUSIONS Our findings suggest that conditions associated with several CF pathogenesis hypotheses could cause the noninvasive and resistant infection phenotype, independently of the bacterial functions needed for biofilm formation.
Collapse
|
40
|
Robinson DG, Hedrich R. Vacuolar Lucifer Yellow Uptake in Plants: Endocytosis or Anion Transport; A Critical Opinion. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/j.1438-8677.1991.tb00227.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Itokazu Y, Pagano RE, Schroeder AS, O'Grady SM, Limper AH, Marks DL. Reduced GM1 ganglioside in CFTR-deficient human airway cells results in decreased β1-integrin signaling and delayed wound repair. Am J Physiol Cell Physiol 2014; 306:C819-30. [PMID: 24500283 DOI: 10.1152/ajpcell.00168.2013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Loss of cystic fibrosis transmembrane conductance regulator (CFTR) function reduces chloride secretion and increases sodium uptake, but it is not clear why CFTR mutation also results in progressive lung inflammation and infection. We previously demonstrated that CFTR-silenced airway cells migrate more slowly during wound repair than CFTR-expressing controls. In addition, CFTR-deficient cells and mouse models have been reported to have altered sphingolipid levels. Here, we investigated the hypothesis that reduced migration in CFTR-deficient airway epithelial cells results from altered sphingolipid composition. We used cell lines derived from a human airway epithelial cell line (Calu-3) stably transfected with CFTR short hairpin RNA (CFTR-silenced) or nontargeting short hairpin RNA (controls). Cell migration was measured by electric cell substrate impedance sensing (ECIS). Lipid analyses, addition of exogenous glycosphingolipids, and immunoblotting were performed. We found that levels of the glycosphingolipid, GM1 ganglioside, were ~60% lower in CFTR-silenced cells than in controls. CFTR-silenced cells exhibited reduced levels of activated β1-integrin, phosphorylated tyrosine 576 of focal adhesion kinase (pFAK), and phosphorylation of Crk-associated substrate (pCAS). Addition of GM1 (but not GM3) ganglioside to CFTR-silenced cells restored activated β1-integrin, pFAK, and pCAS to near control levels and partially restored (~40%) cell migration. Our results suggest that decreased GM1 in CFTR-silenced cells depresses β1-integrin signaling, which contributes to the delayed wound repair observed in these cells. These findings have implications for the pathology of cystic fibrosis, where altered sphingolipid levels in airway epithelial cells could result in a diminished capacity for wound repair after injury.
Collapse
Affiliation(s)
- Yutaka Itokazu
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota
| | | | | | | | | | | |
Collapse
|
42
|
Becker KA, Henry B, Ziobro R, Riethmüller J, Gulbins E. Lipids in cystic fibrosis. Expert Rev Respir Med 2014; 5:527-35. [DOI: 10.1586/ers.11.36] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
43
|
Venkatakrishnan V, Packer NH, Thaysen-Andersen M. Host mucin glycosylation plays a role in bacterial adhesion in lungs of individuals with cystic fibrosis. Expert Rev Respir Med 2014; 7:553-76. [DOI: 10.1586/17476348.2013.837752] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
44
|
Rotoli BM, Bussolati O, Cabrini G, Gazzola GC. Changes in neutral amino acid efflux and membrane potential associated with the expression of CFTR protein. Amino Acids 2013; 11:247-55. [PMID: 24178690 DOI: 10.1007/bf00813863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/1996] [Accepted: 02/20/1996] [Indexed: 11/30/2022]
Abstract
The expression of wild type CFTR facilitates the efflux of neutral amino acids (Rotoli et al., Biochem. Biophys. Res. Commun. 204: 653-658, 1994); as a result, after an extensive depletion of intracellular amino acid pool obtained through an incubation in saline solution, the intracellular leucine levels were lower in murine C127 cells transfected with the wild type CF gene (C127 CFTRw/t) than in cells transfected with either mutant CF (C127 CFTRΔF508 cells) or mock vector only. No change in amino acid efflux was detected when C127 CFTRw/t and C127 CFTRw/t and C127 CFTRΔF508 cells were studied under conditions known to activate protein kinase A. Upon an incubation in Cl(-) free medium, a permeant analogue of cAMP caused a marked cell depolarization of C127 CFTRw/t cells but not of C127 CFTRΔF508 cells, thus showing a functional expression of CFTR protein in the former cell line. However, we found that, upon a Cl(-) free incubation and in the absence of exogenous cAMP, C127 CFTRw/t cells developed a marked hyperpolarization that was not detected in C127 CFTRΔF508 cells. It is concluded that the expression of normal CFTR accelerates amino acid efflux and enhances cell hyperpolarization in Cl(-) free media; both these effects appear to be independent from PKA stimulation of CFTR.
Collapse
Affiliation(s)
- B M Rotoli
- Istituto di Patologia Generale, Università degli Studi di Parma, Via Gramsci, 14, I-43100, Parma, Italy
| | | | | | | |
Collapse
|
45
|
Collaco AM, Geibel P, Lee BS, Geibel JP, Ameen NA. Functional vacuolar ATPase (V-ATPase) proton pumps traffic to the enterocyte brush border membrane and require CFTR. Am J Physiol Cell Physiol 2013; 305:C981-96. [PMID: 23986201 DOI: 10.1152/ajpcell.00067.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Vacuolar ATPases (V-ATPases) are highly conserved proton pumps that regulate organelle pH. Epithelial luminal pH is also regulated by cAMP-dependent traffic of specific subunits of the V-ATPase complex from endosomes into the apical membrane. In the intestine, cAMP-dependent traffic of cystic fibrosis transmembrane conductance regulator (CFTR) channels and the sodium hydrogen exchanger (NHE3) in the brush border regulate luminal pH. V-ATPase was found to colocalize with CFTR in intestinal CFTR high expresser (CHE) cells recently. Moreover, apical traffic of V-ATPase and CFTR in rat Brunner's glands was shown to be dependent on cAMP/PKA. These observations support a functional relationship between V-ATPase and CFTR in the intestine. The current study examined V-ATPase and CFTR distribution in intestines from wild-type, CFTR(-/-) mice and polarized intestinal CaCo-2BBe cells following cAMP stimulation and inhibition of CFTR/V-ATPase function. Coimmunoprecipitation studies examined V-ATPase interaction with CFTR. The pH-sensitive dye BCECF determined proton efflux and its dependence on V-ATPase/CFTR in intestinal cells. cAMP increased V-ATPase/CFTR colocalization in the apical domain of intestinal cells and redistributed the V-ATPase Voa1 and Voa2 trafficking subunits from the basolateral membrane to the brush border membrane. Voa1 and Voa2 subunits were localized to endosomes beneath the terminal web in untreated CFTR(-/-) intestine but redistributed to the subapical cytoplasm following cAMP treatment. Inhibition of CFTR or V-ATPase significantly decreased pHi in cells, confirming their functional interdependence. These data establish that V-ATPase traffics into the brush border membrane to regulate proton efflux and this activity is dependent on CFTR in the intestine.
Collapse
Affiliation(s)
- Anne M Collaco
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut
| | | | | | | | | |
Collapse
|
46
|
Sircar S, Keener JP, Fogelson AL. The effect of divalent vs. monovalent ions on the swelling of mucin-like polyelectrolyte gels: governing equations and equilibrium analysis. J Chem Phys 2013; 138:014901. [PMID: 23298059 DOI: 10.1063/1.4772405] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We introduce a comprehensive model of a mucin-like polyelectrolyte gel swelling-deswelling which includes the ion-mediated crosslinking of polymer strands and the exchange of divalent and monovalent ions in the gel. The gel is modeled as a multi-phase mixture which accounts for the polymer and solvent volume fractions and velocities as well as ionic species concentrations. Motion is determined by force balances involving viscous, drag, and chemical forces. The chemical forces are derived from a free energy which includes entropic contributions as well as the chemical and electrostatic interactions among the crosslinked polymer, uncrosslinked polymer, and the ionic solvent. The unified derivation produces all the classical effects (van't Hoff osmotic pressure, Donnan equilibrium potential, Nernst-Planck motion of ions) as well as expressions for Flory interaction parameter and the standard free energy parameters that explicitly depend on the gel chemistry and crosslink structure. For this model, we show how the interplay between ionic bath concentrations, ionic binding, and transient divalent crosslinking leads to a variety of swelled and deswelled phases/phase transitions. In particular, we show how the absorption of divalent ions can lead to a massive deswelling of the gel. We conclude that the unique properties of mucin-like gels can be explained by their ionic binding affinities and transient divalent crosslinking.
Collapse
Affiliation(s)
- S Sircar
- Department of Mathematics, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | |
Collapse
|
47
|
Nowak R, Tarasiuk J. Retaining cytotoxic activity of anthrapyridone CO1 against multidrug resistant cells is related to the ability to induce concomitantly apoptosis and lysosomal death of leukaemia HL60/VINC and HL60/DOX cells. J Pharm Pharmacol 2013; 65:855-67. [DOI: 10.1111/jphp.12042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 01/15/2013] [Indexed: 01/08/2023]
Abstract
Abstract
Objectives
The effect of anthrapyridone compound CO1 retaining cytotoxic activity against multidrug resistant (MDR) tumour cells on inducing cell death of the sensitive leukaemia HL60 cell line and its MDR sublines (HL60/VINC and HL60/DOX) was examined.
Methods
The effects of CO1 and the reference compound doxorubicin (DOX) on examined cells were analysed by studying their cytotoxicity, drug intracellular accumulation, cell cycle distribution, caspase-3 and caspase-8 activity, Fas expression and lysosomal integrity.
Key findings
CO1 was much less effective at influencing the cell cycle of examined cells than DOX a well-known antitumour drug targeting cellular DNA and causing G2/M checkpoint arrest. CO1 caused much less pronounced appearance of the sub-G1 population and oligonucleosomal DNA fragmentation, characteristic of apoptosis, compared with DOX. Significantly lower caspase-3 and caspase-8 activity was also observed in the response of these cells to CO1 compared with DOX treatment. CO1 did not change the expression of the Fas death receptor, characteristic of apoptotic pathways, on the surface of studied cells. Interestingly, the results showed that CO1 caused lysosomal membrane permeability (LMP) of the cells, whereas DOX did not perturb the lysosomal integrity of the studied cells.
Conclusions
The results suggest that CO1 could induce LMP-mediated cell death as a main lethal effect in a caspase-independent fashion.
Collapse
Affiliation(s)
- Robert Nowak
- Department of Biochemistry, University of Szczecin, Szczecin, Poland
| | - Jolanta Tarasiuk
- Department of Biochemistry, University of Szczecin, Szczecin, Poland
| |
Collapse
|
48
|
Abstract
Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) molecule; these mutations result in a defect in chloride secretion in epithelial cell layers. The disease is characterized by severe gastrointestinal and pulmonary symptoms, but it is the pulmonary symptoms that dominate the clinical course of the disease and determine patients' life expectancy. These pulmonary symptoms include reduced mucociliary clearance, chronic inflammation, and recurrent and chronic pulmonary infections with Pseudomonas aeruginosa, Staphylococcus aureus, Burkholderia cepacia, and Haemophilus influenzae. Recent studies have shown that sphingolipids, especially ceramide, play a crucial role in the pathogenesis of cystic fibrosis. These studies have demonstrated that ceramide accumulates in the lungs of cystic fibrosis patients and mice, causing inflammation and high susceptibility to bacterial infections. The results of initial clinical studies suggest that interfering with sphingolipids may be a novel treatment strategy for cystic fibrosis.
Collapse
Affiliation(s)
- Heike Grassmé
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | | | | |
Collapse
|
49
|
Cystic Fibrosis: Alternative Approaches to the Treatment of a Genetic Disease. Mol Pharmacol 2012. [DOI: 10.1002/9781118451908.ch6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
50
|
Buret A. Pseudomonas aeruginosa Infections in Patients with Cystic Fibrosis. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/bf03258527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|