1
|
Miravitlles M, Criner GJ, Mall MA, Rowe SM, Vogelmeier CF, Hederer B, Schoenberger M, Altman P. Potential systemic effects of acquired CFTR dysfunction in COPD. Respir Med 2024; 221:107499. [PMID: 38104786 DOI: 10.1016/j.rmed.2023.107499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/25/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by airflow limitation, respiratory symptoms, inflammation of the airways, and systemic manifestations of the disease. Genetic susceptibility and environmental factors are important in the development of the disease, particularly exposure to cigarette smoke which is the most notable risk factor. Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene are the cause of cystic fibrosis (CF), which shares several pathophysiological pulmonary features with COPD, including airway obstruction, chronic airway inflammation and bacterial colonization; in addition, both diseases also present systemic defects leading to comorbidities such as pancreatic, gastrointestinal, and bone-related diseases. In patients with COPD, systemic CFTR dysfunction can be acquired by cigarette smoking, inflammation, and infection. This dysfunction is, on average, about half of that found in CF. Herein we review the literature focusing on acquired CFTR dysfunction and the potential role in the pathogenesis of comorbidities associated with COPD and chronic bronchitis.
Collapse
Affiliation(s)
- Marc Miravitlles
- Pneumology Department Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Campus, Barcelona, Spain.
| | - Gerard J Criner
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, USA
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Berlin Institute of Health at the Charité - Universitätsmedizin Berlin, Berlin, Germany; German Centre for Lung Research, Berlin, Germany
| | - Steven M Rowe
- Univeristy of Alabama at Birmingham, Birmingham, USA
| | - Claus F Vogelmeier
- Department of Medicine, Pulmonary and Critical Care Medicine, University Hospital Marburg UKGM, German Centre for Lung Research (DZL), Marburg, Germany
| | | | | | - Pablo Altman
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| |
Collapse
|
2
|
Carlos dos Reis D, Dastoor P, Santos AK, Sumigray K, Ameen NA. CFTR high expresser cells in cystic fibrosis and intestinal diseases. Heliyon 2023; 9:e14568. [PMID: 36967909 PMCID: PMC10031467 DOI: 10.1016/j.heliyon.2023.e14568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Cystic Fibrosis Transmembrane Conductance Regulator (CFTR), the Cl-/HCO3 - channel implicated in Cystic Fibrosis, is critical to the pathophysiology of many gastrointestinal diseases. Defects in CFTR lead to intestinal dysfunction, malabsorption, obstruction, infection, inflammation, and cancer that increases morbidity and reduces quality of life. This review will focus on CFTR in the intestine and the implications of the subpopulation of CFTR High Expresser Cells (CHEs) in Cystic Fibrosis (CF), intestinal physiology and pathophysiology of intestinal diseases.
Collapse
Affiliation(s)
- Diego Carlos dos Reis
- Department of Pediatrics/Gastroenterology and Hepatology, Yale School of Medicine, CT, 06510, USA
| | - Parinaz Dastoor
- Department of Pediatrics/Gastroenterology and Hepatology, Yale School of Medicine, CT, 06510, USA
| | - Anderson Kenedy Santos
- Department of Pediatrics/Gastroenterology and Hepatology, Yale School of Medicine, CT, 06510, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Kaelyn Sumigray
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06510, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Nadia A. Ameen
- Department of Pediatrics/Gastroenterology and Hepatology, Yale School of Medicine, CT, 06510, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT06510, USA
- Corresponding author. Department of Pediatrics/Gastroenterology and Hepatology, Yale School of Medicine, CT, 06510, USA.
| |
Collapse
|
3
|
Kimple AJ, Senior BA, Naureckas ET, Gudis DA, Meyer T, Hempstead SE, Resnick HE, Albon D, Barfield W, Benoit MM, Beswick DM, Callard E, Cofer S, Downer V, Elson EC, Garinis A, Halderman A, Hamburger L, Helmick M, McCown M, McKinzie CJ, Phan H, Rodriguez K, Rubenstein RC, Severin A, Shah G, Shenoy A, Sprouse B, Virgin F, Woodworth BA, Lee SE. Cystic Fibrosis Foundation otolaryngology care multidisciplinary consensus recommendations. Int Forum Allergy Rhinol 2022; 12:1089-1103. [PMID: 35089650 PMCID: PMC9545592 DOI: 10.1002/alr.22974] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/02/2022]
Abstract
BACKGROUND Cystic fibrosis (CF) is a multisystem disease that often requires otolaryngology care. Individuals with CF commonly have chronic rhinosinusitis but also present with hearing loss and dysphonia. Given these manifestations of CF, otolaryngologists are frequently involved in the care of patients with CF; however, there is limited consensus on optimal management of sinonasal, otologic, and laryngologic symptoms. METHODS The Cystic Fibrosis Foundation convened a multidisciplinary team of otolaryngologists, pulmonologists, audiologists, pharmacists, a social worker, a nurse coordinator, a respiratory therapist, two adults with CF, and a caregiver of a child with CF to develop consensus recommendations. Workgroups developed draft recommendation statements based on a systematic literature review, and a ≥80% consensus was required for acceptance of each recommendation statement. RESULTS The committee voted on 25 statements. Eleven statements were adopted recommending a treatment or intervention, while five statements were formulated recommending against a specific treatment or intervention. The committee recommended eight statements as an option for select patients in certain circumstances, and one statement did not reach consensus. CONCLUSION These multidisciplinary consensus recommendations will help providers navigate decisions related to otolaryngology consultation, medical and surgical management of CF-CRS, hearing, and voice in individuals with CF. A collaborative and multidisciplinary approach is advocated to best care for our patients with CF. Future clinical research is needed utilizing standardized, validated outcomes with comprehensive reporting of patient outcome, effects of modulator therapies, and genetic characteristics to help continue to advance care, decrease morbidity, and improve the quality of life for individuals with CF.
Collapse
Affiliation(s)
- Adam J. Kimple
- Department of Otolaryngology/Head & Neck SurgeryThe University of North CarolinaChapel HillNorth CarolinaUSA
| | - Brent A. Senior
- Department of Otolaryngology/Head & Neck SurgeryThe University of North CarolinaChapel HillNorth CarolinaUSA
| | - Edward T. Naureckas
- Department of Pulmonary MedicineCritical Care MedicineUniversity of Chicago MedicineChicagoIllinoisUSA
| | - David A. Gudis
- Department of Otolaryngology – Head and Neck SurgeryColumbia University Irving Medical Center/New York‐Presbyterian HospitalNew YorkNew YorkUSA
| | - Ted Meyer
- Department of Otolaryngology/Head & Neck SurgeryThe University of North CarolinaChapel HillNorth CarolinaUSA
- Department of Otolaryngology – Head and Neck SurgeryMedical University of South CarolinaSouth CarolinaUSA
| | | | | | - Dana Albon
- Department of Internal MedicineDivision of Pulmonary and Critical CareUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Wayne Barfield
- Pediatric and Adult CF CenterMedical University of South CarolinaSouth CarolinaUSA
| | - Margo McKenna Benoit
- Department of Otolaryngology‐Head and Neck SurgeryUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Daniel M. Beswick
- Department of Head and Neck SurgeryUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Eliza Callard
- Community Advisor to the Cystic Fibrosis FoundationBethesdaMarylandUSA
| | - Shelagh Cofer
- Mayo Clinic‐Otolaryngology (ENT)/Head and Neck SurgeryRochesterMinnesotaUSA
| | | | - E. Claire Elson
- Department of PharmacyChildren's Mercy Kansas CityKansas CityMissouriUSA
| | - Angela Garinis
- Oregon Hearing Research CenterOregon Health & Science UniversityPortlandOregonUSA
| | - Ashleigh Halderman
- Department of Otolaryngology/Head and Neck SurgeryUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Lisa Hamburger
- Community Advisor to the Cystic Fibrosis FoundationBethesdaMarylandUSA
| | - Meagan Helmick
- Community Advisor to the Cystic Fibrosis FoundationBethesdaMarylandUSA
| | - Michael McCown
- Department of PediatricsWalter Reed National Military Medical CenterBethesdaMarylandUSA
| | - Cameron J. McKinzie
- Department of PharmacyUniversity of North Carolina Medical CenterChapel HillNorth CarolinaUSA
| | - Hanna Phan
- College of Pharmacy, Department of Clinical Pharmacy, The University of MichiganC.S. Mott Children's Hospital, Michigan MedicineMichiganUSA
| | - Kenneth Rodriguez
- Department of OtolaryngologyUniversity Hospitals Cleveland Medical CenterClevelandOhioUSA
| | - Ronald C. Rubenstein
- Allergy and Pulmonary Medicine, Department of PediatricsWashington University School of MedicineSt. LouisMissouriUSA
| | - Ashley Severin
- Department of Social WorkChildren's Mercy Kansas CityKansas CityMissouriUSA
| | - Gopi Shah
- Department of Otolaryngology/Head and Neck SurgeryUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Ambika Shenoy
- Department of Pediatrics, Division of Pediatric PulmonologyNemours Alfred I. duPont Hospital for ChildrenWilmingtonDelawareUSA
| | - Brittney Sprouse
- Department of Pediatrics, Division of Pediatric PulmonologyNemours Alfred I. duPont Hospital for ChildrenWilmingtonDelawareUSA
- University of Chicago MedicineChicagoIllinoisUSA
| | - Frank Virgin
- Department of Otolaryngology – Head and Neck SurgeryMonroe Carell Jr. Children's Hospital at VanderbiltNashvilleTennesseeUSA
| | - Bradford A. Woodworth
- Department of Otolaryngology – Head and Neck SurgeryUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Stella E. Lee
- Brigham and Women's Hospital, Division of Otolaryngology‐Head & Neck SurgeryHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
4
|
Prasad H, Mathew JKK, Visweswariah SS. Receptor Guanylyl Cyclase C and Cyclic GMP in Health and Disease: Perspectives and Therapeutic Opportunities. Front Endocrinol (Lausanne) 2022; 13:911459. [PMID: 35846281 PMCID: PMC9276936 DOI: 10.3389/fendo.2022.911459] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
Receptor Guanylyl Cyclase C (GC-C) was initially characterized as an important regulator of intestinal fluid and ion homeostasis. Recent findings demonstrate that GC-C is also causally linked to intestinal inflammation, dysbiosis, and tumorigenesis. These advances have been fueled in part by identifying mutations or changes in gene expression in GC-C or its ligands, that disrupt the delicate balance of intracellular cGMP levels and are associated with a wide range of clinical phenotypes. In this review, we highlight aspects of the current knowledge of the GC-C signaling pathway in homeostasis and disease, emphasizing recent advances in the field. The review summarizes extra gastrointestinal functions for GC-C signaling, such as appetite control, energy expenditure, visceral nociception, and behavioral processes. Recent research has expanded the homeostatic role of GC-C and implicated it in regulating the ion-microbiome-immune axis, which acts as a mechanistic driver in inflammatory bowel disease. The development of transgenic and knockout mouse models allowed for in-depth studies of GC-C and its relationship to whole-animal physiology. A deeper understanding of the various aspects of GC-C biology and their relationships with pathologies such as inflammatory bowel disease, colorectal cancer, and obesity can be leveraged to devise novel therapeutics.
Collapse
Affiliation(s)
- Hari Prasad
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
| | | | - Sandhya S. Visweswariah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India
- *Correspondence: Sandhya S. Visweswariah,
| |
Collapse
|
5
|
Immunoglobulin A Mucosal Immunity and Altered Respiratory Epithelium in Cystic Fibrosis. Cells 2021; 10:cells10123603. [PMID: 34944110 PMCID: PMC8700636 DOI: 10.3390/cells10123603] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 12/30/2022] Open
Abstract
The respiratory epithelium represents the first chemical, immune, and physical barrier against inhaled noxious materials, particularly pathogens in cystic fibrosis. Local mucus thickening, altered mucociliary clearance, and reduced pH due to CFTR protein dysfunction favor bacterial overgrowth and excessive inflammation. We aimed in this review to summarize respiratory mucosal alterations within the epithelium and current knowledge on local immunity linked to immunoglobulin A in patients with cystic fibrosis.
Collapse
|
6
|
Infield DT, Strickland KM, Gaggar A, McCarty NA. The molecular evolution of function in the CFTR chloride channel. J Gen Physiol 2021; 153:212705. [PMID: 34647973 PMCID: PMC8640958 DOI: 10.1085/jgp.202012625] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/11/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022] Open
Abstract
The ATP-binding cassette (ABC) transporter superfamily includes many proteins of clinical relevance, with genes expressed in all domains of life. Although most members use the energy of ATP binding and hydrolysis to accomplish the active import or export of various substrates across membranes, the cystic fibrosis transmembrane conductance regulator (CFTR) is the only known animal ABC transporter that functions primarily as an ion channel. Defects in CFTR, which is closely related to ABCC subfamily members that bear function as bona fide transporters, underlie the lethal genetic disease cystic fibrosis. This article seeks to integrate structural, functional, and genomic data to begin to answer the critical question of how the function of CFTR evolved to exhibit regulated channel activity. We highlight several examples wherein preexisting features in ABCC transporters were functionally leveraged as is, or altered by molecular evolution, to ultimately support channel function. This includes features that may underlie (1) construction of an anionic channel pore from an anionic substrate transport pathway, (2) establishment and tuning of phosphoregulation, and (3) optimization of channel function by specialized ligand–channel interactions. We also discuss how divergence and conservation may help elucidate the pharmacology of important CFTR modulators.
Collapse
Affiliation(s)
- Daniel T Infield
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA
| | | | - Amit Gaggar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL.,Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL.,Birmingham Veterans Administration Medical Center, Birmingham, AL
| | - Nael A McCarty
- Department of Pediatrics, Emory University, Atlanta, GA.,Children's Healthcare of Atlanta Center for Cystic Fibrosis and Airways Disease Research, Emory University, Atlanta, GA
| |
Collapse
|
7
|
Sabharwal A, Stellrecht E, Scannapieco FA. Associations between dental caries and systemic diseases: a scoping review. BMC Oral Health 2021; 21:472. [PMID: 34563194 PMCID: PMC8466895 DOI: 10.1186/s12903-021-01803-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 09/01/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The objective of this study was to evaluate and present evidence from animal and human clinical studies on associations between dental caries and systemic diseases, and to suggest potential mechanisms that might explain such associations. METHODS An electronic search was conducted of PubMed, Embase and Cochrane Central Register of Controlled Trials for articles published from 2010 to 2020 in the English language. From the initial search, 404 full-text studies were assessed for eligibility. After excluding studies for technical and study limitations, a total of 67 studies were included in the summary tables and additional studies were included in the review to support evidence. RESULTS Few systemic disease and conditions were found to be clinically meaningfully associated with caries experience. Best evidence from human and animal studies described association between metabolic diseases and dental caries. Several interesting animal studies were noted that could generate clinical hypotheses and further investigations in rodent models for cardiovascular injury and hyperglycemia. Inadequate data was found to suggest any modifications to current clinical practice or prevention guidelines. CONCLUSIONS Limited clinical evidence was found connecting several systemic diseases and dental caries. Inadequate data was found to suggest any modifications to current clinical practice or prevention guidelines. CLINICAL SIGNIFICANCE Understanding of associations between dental caries and systemic diseases play a crucial role in the treatment planning and education of the dental patient.
Collapse
Affiliation(s)
- Amarpreet Sabharwal
- Division of Periodontics, Schulich School of Medicine and Dentistry, DSB 0156A, Western University, 1151 Richmond St., London, ON N6A 5C1 Canada
- Department of Periodontics and Endodontics, School of Dental Medicine, University at Buffalo, 3435 Main St., Buffalo, NY 14214 USA
| | - Elizabeth Stellrecht
- Health Sciences Library University at Buffalo, 3435 Main St., Buffalo, NY 14214 USA
| | - Frank A. Scannapieco
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, 3435 Main St, Buffalo, NY 14214 USA
| |
Collapse
|
8
|
Khedri A, Farahmandi AY, Moghaveleh M, Baghbani KA, Khoob SN, Moghbelinejad S, Asadi F. TG12-T5-V470 haplotype in the CFTR gene is associated with non-obstructive azoospermia in Iranian infertile men. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Collobert M, Bocher O, Le Nabec A, Génin E, Férec C, Moisan S. CFTR Cooperative Cis-Regulatory Elements in Intestinal Cells. Int J Mol Sci 2021; 22:ijms22052599. [PMID: 33807548 PMCID: PMC7961337 DOI: 10.3390/ijms22052599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 11/16/2022] Open
Abstract
About 8% of the human genome is covered with candidate cis-regulatory elements (cCREs). Disruptions of CREs, described as "cis-ruptions" have been identified as being involved in various genetic diseases. Thanks to the development of chromatin conformation study techniques, several long-range cystic fibrosis transmembrane conductance regulator (CFTR) regulatory elements were identified, but the regulatory mechanisms of the CFTR gene have yet to be fully elucidated. The aim of this work is to improve our knowledge of the CFTR gene regulation, and to identity factors that could impact the CFTR gene expression, and potentially account for the variability of the clinical presentation of cystic fibrosis as well as CFTR-related disorders. Here, we apply the robust GWAS3D score to determine which of the CFTR introns could be involved in gene regulation. This approach highlights four particular CFTR introns of interest. Using reporter gene constructs in intestinal cells, we show that two new introns display strong cooperative effects in intestinal cells. Chromatin immunoprecipitation analyses further demonstrate fixation of transcription factors network. These results provide new insights into our understanding of the CFTR gene regulation and allow us to suggest a 3D CFTR locus structure in intestinal cells. A better understand of regulation mechanisms of the CFTR gene could elucidate cases of patients where the phenotype is not yet explained by the genotype. This would thus help in better diagnosis and therefore better management. These cis-acting regions may be a therapeutic challenge that could lead to the development of specific molecules capable of modulating gene expression in the future.
Collapse
Affiliation(s)
- Mégane Collobert
- Univ. Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (O.B.); (A.L.N.); (E.G.); (C.F.)
- Correspondence: (M.C.); (S.M.); Tel.: +33-298-0165-67 (M.C.)
| | - Ozvan Bocher
- Univ. Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (O.B.); (A.L.N.); (E.G.); (C.F.)
| | - Anaïs Le Nabec
- Univ. Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (O.B.); (A.L.N.); (E.G.); (C.F.)
| | - Emmanuelle Génin
- Univ. Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (O.B.); (A.L.N.); (E.G.); (C.F.)
| | - Claude Férec
- Univ. Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (O.B.); (A.L.N.); (E.G.); (C.F.)
- Department of Molecular Genetics and Reproduction Biology, CHRU Brest, F-29200 Brest, France
| | - Stéphanie Moisan
- Univ. Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (O.B.); (A.L.N.); (E.G.); (C.F.)
- Department of Molecular Genetics and Reproduction Biology, CHRU Brest, F-29200 Brest, France
- Correspondence: (M.C.); (S.M.); Tel.: +33-298-0165-67 (M.C.)
| |
Collapse
|
10
|
The Detection of Bile Acids in the Lungs of Paediatric Cystic Fibrosis Patients Is Associated with Altered Inflammatory Patterns. Diagnostics (Basel) 2020; 10:diagnostics10050282. [PMID: 32384684 PMCID: PMC7277992 DOI: 10.3390/diagnostics10050282] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/25/2020] [Accepted: 05/03/2020] [Indexed: 12/23/2022] Open
Abstract
Background: Cystic fibrosis (CF) is a hereditary disorder in which persistent unresolved inflammation and recurrent airway infections play major roles in the initiation and progression of the disease. Little is known about triggering factors modulating the transition to chronic microbial infection and inflammation particularly in young children. Cystic fibrosis respiratory disease starts early in life, with the detection of inflammatory markers and infection evident even before respiratory symptoms arise. Thus, identifying factors that dysregulate immune responsiveness at the earliest stages of the disease will provide novel targets for early therapeutic intervention. Methods: We evaluated the clinical significance of bile acid detection in the bronchoalveolar lavage fluid of clinically stable preschool-aged children diagnosed with CF. Results: We applied an unbiased classification strategy to categorize these specimens based on bile acid profiles. We provide clear associations linking the presence of bile acids in the lungs with alterations in the expression of inflammatory markers. Using multiple regression analysis, we also demonstrate that clustering based on bile acid profiles is a meaningful predictor of the progression of structural lung disease. Conclusions: Altogether, our work has identified a clinically relevant host-derived factor that may participate in shaping early events in the aetiology of CF respiratory disease.
Collapse
|
11
|
Carrageta DF, Bernardino RL, Alves MG, Oliveira PF. CFTR regulation of aquaporin-mediated water transport. VITAMINS AND HORMONES 2020; 112:163-177. [PMID: 32061340 DOI: 10.1016/bs.vh.2019.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel responsible for the direct transport of bicarbonate and chloride. CFTR-dependent ionic transport is crucial for pH regulation and fluid homeodynamics among epithelial surfaces. Particularly, CFTR performs an essential role in the male reproductive tract, which requires a tight regulation of water and electrolytes in order to produce healthy spermatozoa. The absence or malfunction of CFTR results in cystic fibrosis, the most common lethal disease among Caucasians, that is characterized by an impaired fluid and ionic homeostasis in the whole organism. Due to the wide expression and importance of CFTR, the male reproductive tract is highly affected by cystic fibrosis, resulting in male infertility. Although CFTR is not permeable to water, this protein acts as a regulator of other protein channels, such as aquaporins. In fact, CFTR acts as a molecular partner of aquaporins in epithelial cells, regulating fluid homeodynamics. Herein, up-to-date data concerning the regulation of aquaporin-mediated water transport by CFTR will be discussed, highlighting the role of both channels in the male reproductive tract.
Collapse
Affiliation(s)
- David F Carrageta
- Department of Microscopy, Laboratory of Cell Biology, Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Raquel L Bernardino
- Department of Microscopy, Laboratory of Cell Biology, Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Marco G Alves
- Department of Microscopy, Laboratory of Cell Biology, Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Pedro F Oliveira
- Department of Microscopy, Laboratory of Cell Biology, Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal; Department of Genetics, Faculty of Medicine, University of Porto, Porto, Portugal; i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.
| |
Collapse
|
12
|
Kim D, Huang J, Billet A, Abu-Arish A, Goepp J, Matthes E, Tewfik MA, Frenkiel S, Hanrahan JW. Pendrin Mediates Bicarbonate Secretion and Enhances Cystic Fibrosis Transmembrane Conductance Regulator Function in Airway Surface Epithelia. Am J Respir Cell Mol Biol 2020; 60:705-716. [PMID: 30742493 DOI: 10.1165/rcmb.2018-0158oc] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Bicarbonate facilitates mucin unpacking and bacterial killing; however, its transport mechanisms in the airways are not well understood. cAMP stimulates anion efflux through the cystic fibrosis (CF) transmembrane conductance regulator (CFTR; ABCC7) anion channel, and this is defective in CF. The anion exchanger pendrin (SLC26A4) also mediates HCO3- efflux and is upregulated by proinflammatory cytokines. Here, we examined pendrin and CFTR expression and their contributions to HCO3- secretion by human nasal and bronchial epithelia. In native tissue, both proteins were most abundant at the apical pole of ciliated surface cells with little expression in submucosal glands. In well-differentiated primary nasal and bronchial cell cultures, IL-4 dramatically increased pendrin mRNA levels and apical immunostaining. Exposure to low-Cl- apical solution caused intracellular alkalinization (ΔpHi) that was enhanced fourfold by IL-4 pretreatment. ΔpHi was unaffected by 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS) or CFTR inhibitor CFTRinh-172, but was reduced by adenoviral shRNA targeting pendrin. Forskolin increased ΔpHi, and this stimulation was prevented by CFTRinh-172, implicating CFTR, yet forskolin only increased ΔpHi after pendrin expression had been induced by IL-4. The dependence of ΔpHi on pendrin suggests there is minimal electrical coupling between Cl- and HCO3- fluxes and that CFTR activation increases anion exchange-mediated HCO3- influx. Conversely, inducing pendrin expression increased forskolin-stimulated, CFTRinh-172-sensitive current by approximately twofold in epithelial and nonepithelial cells. We conclude that pendrin mediates most HCO3- secretion across airway surface epithelium during inflammation and enhances electrogenic Cl- secretion via CFTR, as described for other SLC26A transporters.
Collapse
Affiliation(s)
- Dusik Kim
- 1 Department of Physiology and.,2 Cystic Fibrosis Translational Research Centre, McGill University, Montréal, Québec, Canada; and
| | - Junwei Huang
- 1 Department of Physiology and.,2 Cystic Fibrosis Translational Research Centre, McGill University, Montréal, Québec, Canada; and
| | - Arnaud Billet
- 1 Department of Physiology and.,2 Cystic Fibrosis Translational Research Centre, McGill University, Montréal, Québec, Canada; and
| | - Asmahan Abu-Arish
- 1 Department of Physiology and.,2 Cystic Fibrosis Translational Research Centre, McGill University, Montréal, Québec, Canada; and
| | - Julie Goepp
- 1 Department of Physiology and.,2 Cystic Fibrosis Translational Research Centre, McGill University, Montréal, Québec, Canada; and
| | - Elizabeth Matthes
- 1 Department of Physiology and.,2 Cystic Fibrosis Translational Research Centre, McGill University, Montréal, Québec, Canada; and
| | - Marc A Tewfik
- 2 Cystic Fibrosis Translational Research Centre, McGill University, Montréal, Québec, Canada; and.,3 Department of Otolaryngology-Head and Neck Surgery and
| | - Saul Frenkiel
- 2 Cystic Fibrosis Translational Research Centre, McGill University, Montréal, Québec, Canada; and.,3 Department of Otolaryngology-Head and Neck Surgery and
| | - John W Hanrahan
- 1 Department of Physiology and.,2 Cystic Fibrosis Translational Research Centre, McGill University, Montréal, Québec, Canada; and.,4 Research Institute, McGill University Health Centre, Montréal, Québec, Canada
| |
Collapse
|
13
|
Gawenis LR, Hodges CA, McHugh DR, Valerio DM, Miron A, Cotton CU, Liu J, Walker NM, Strubberg AM, Gillen AE, Mutolo MJ, Kotzamanis G, Bosch J, Harris A, Drumm ML, Clarke LL. A BAC Transgene Expressing Human CFTR under Control of Its Regulatory Elements Rescues Cftr Knockout Mice. Sci Rep 2019; 9:11828. [PMID: 31413336 PMCID: PMC6694137 DOI: 10.1038/s41598-019-48105-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/30/2019] [Indexed: 01/25/2023] Open
Abstract
Small-molecule modulators of cystic fibrosis transmembrane conductance regulator (CFTR) biology show promise in the treatment of cystic fibrosis (CF). A Cftr knockout (Cftr KO) mouse expressing mutants of human CFTR would advance in vivo testing of new modulators. A bacterial artificial chromosome (BAC) carrying the complete hCFTR gene including regulatory elements within 40.1 kb of DNA 5' and 25 kb of DNA 3' to the gene was used to generate founder mice expressing hCFTR. Whole genome sequencing indicated a single integration site on mouse chromosome 8 (8qB2) with ~6 gene copies. hCFTR+ offspring were bred to murine Cftr KO mice, producing hCFTR+/mCftr- (H+/m-) mice, which had normal survival, growth and goblet cell function as compared to wild-type (WT) mice. Expression studies showed hCFTR protein and transcripts in tissues typically expressing mCftr. Functionally, nasal potential difference and large intestinal short-circuit (Isc) responses to cAMP stimulation were similar in magnitude to WT mice, whereas small intestinal cAMP ΔIsc responses were reduced. A BAC transgenic mouse with functional hCFTR under control of its regulatory elements has been developed to enable the generation of mouse models of hCFTR mutations by gene editing for in vivo testing of new CF therapies.
Collapse
Affiliation(s)
- Lara R Gawenis
- Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park Dr, Columbia, Missouri, 65211-3300, USA
- Department of Biomedical Sciences, University of Missouri, E102 Veterinary Medicine Bldg., Columbia, Missouri, 65211, USA
| | - Craig A Hodges
- Departments of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Departments of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Daniel R McHugh
- Departments of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Dana M Valerio
- Departments of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Alexander Miron
- Departments of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Calvin U Cotton
- Departments of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Departments of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Jinghua Liu
- Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park Dr, Columbia, Missouri, 65211-3300, USA
| | - Nancy M Walker
- Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park Dr, Columbia, Missouri, 65211-3300, USA
| | - Ashlee M Strubberg
- Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park Dr, Columbia, Missouri, 65211-3300, USA
- Department of Biomedical Sciences, University of Missouri, E102 Veterinary Medicine Bldg., Columbia, Missouri, 65211, USA
| | - Austin E Gillen
- Human Molecular Genetics Program, Lurie Children's Research Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60614, USA
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, USA
| | - Michael J Mutolo
- Human Molecular Genetics Program, Lurie Children's Research Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60614, USA
| | - George Kotzamanis
- Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece
| | - Jürgen Bosch
- Departments of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- InterRayBio, LLC, Baltimore, MD, USA
| | - Ann Harris
- Departments of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Mitchell L Drumm
- Departments of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Departments of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Lane L Clarke
- Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park Dr, Columbia, Missouri, 65211-3300, USA.
- Department of Biomedical Sciences, University of Missouri, E102 Veterinary Medicine Bldg., Columbia, Missouri, 65211, USA.
| |
Collapse
|
14
|
Cabrini G. Innovative Therapies for Cystic Fibrosis: The Road from Treatment to Cure. Mol Diagn Ther 2019; 23:263-279. [PMID: 30478715 DOI: 10.1007/s40291-018-0372-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cystic fibrosis (CF), a life-threatening multiorgan genetic disease, is facing a new era of research and development using innovative gene-directed personalized therapies. The priority organ to cure is the lung, which suffers recurrent and chronic bacterial infection and inflammation since infancy, representing the main cause of morbidity and precocious mortality of these individuals. After the disappointing failure of gene-replacement approaches using gene therapy vectors, no single drug is presently available to repair all the CF gene defects. The impressive number of different CF gene mutations is now tackled with different chemical and biotechnological tools tailored to the specific molecular derangements, thanks to the extensive knowledge acquired over many years on the mechanisms of CF cell and organ pathology. This review provides an overview and recalls both the successes and limitations of the different experimental approaches, such as high-throughput screening on chemical libraries to discover CF gene correctors and potentiators, dual-acting compounds, read-through molecules, splicing defect repairing tools, cystic fibrosis transmembrane conductance regulator (CFTR) "amplifiers," CFTR interactome modulators and the first gene editing attempts.
Collapse
Affiliation(s)
- Giulio Cabrini
- Laboratory of Molecular Pathology, University Hospital, Verona, Italy. .,Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| |
Collapse
|
15
|
Zanatta AP, Gonçalves R, Zanatta L, de Oliveria GT, Ludwig Moraes AL, Zamoner A, Fernández-Dueñas V, Lanznaster D, Ciruela F, Tasca CI, Delalande C, Menegaz D, Mena Barreto Silva FR. New ionic targets of 3,3′,5′-triiodothyronine at the plasma membrane of rat Sertoli cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:748-759. [DOI: 10.1016/j.bbamem.2019.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 12/18/2018] [Accepted: 01/07/2019] [Indexed: 11/26/2022]
|
16
|
Swahn H, Harris A. Cell-Selective Regulation of CFTR Gene Expression: Relevance to Gene Editing Therapeutics. Genes (Basel) 2019; 10:E235. [PMID: 30893953 PMCID: PMC6471542 DOI: 10.3390/genes10030235] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 12/19/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) gene is an attractive target for gene editing approaches, which may yield novel therapeutic approaches for genetic diseases such as cystic fibrosis (CF). However, for gene editing to be effective, aspects of the three-dimensional (3D) structure and cis-regulatory elements governing the dynamic expression of CFTR need to be considered. In this review, we focus on the higher order chromatin organization required for normal CFTR locus function, together with the complex mechanisms controlling expression of the gene in different cell types impaired by CF pathology. Across all cells, the CFTR locus is organized into an invariant topologically associated domain (TAD) established by the architectural proteins CCCTC-binding factor (CTCF) and cohesin complex. Additional insulator elements within the TAD also recruit these factors. Although the CFTR promoter is required for basal levels of expression, cis-regulatory elements (CREs) in intergenic and intronic regions are crucial for cell-specific and temporal coordination of CFTR transcription. These CREs are recruited to the promoter through chromatin looping mechanisms and enhance cell-type-specific expression. These features of the CFTR locus should be considered when designing gene-editing approaches, since failure to recognize their importance may disrupt gene expression and reduce the efficacy of therapies.
Collapse
Affiliation(s)
- Hannah Swahn
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44067, USA.
| | - Ann Harris
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44067, USA.
| |
Collapse
|
17
|
Li P, Singh J, Sun Y, Ma X, Yuan P. CFTR constrains the differentiation from mouse embryonic stem cells to intestine lineage cells. Biochem Biophys Res Commun 2019; 510:322-328. [PMID: 30704755 DOI: 10.1016/j.bbrc.2019.01.100] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 01/23/2019] [Indexed: 02/07/2023]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) is a transmembrane Cl- and HCO3- transporter and its malfunction leads to cystic fibrosis (CF) and multiple congenital diseases. The most common mutation in CF patient is DF508 and the patients have increased risk in developing gastrointestinal tumors. To explore the etiology of high cancer risk in DF508-CF patients, we have derived mouse DF508-CFTR embryonic stem (ES) cells and use it as a novel in vitro model to study the role of CFTR from developmental angle. We found the self-renewal properties are intact in DF508-CFTR ES cells. Nevertheless, the differentiation of intestine lineage, the expression of intestine progenitor and major intestine differentiated cell markers is significantly upregulated in DF508-CFTR ES cell differentiated cells. Therefore, CFTR plays an important role in intestine lineage differentiation. Besides, DF508-CFTR ES cells formed teratomas demonstrated enhanced expressions of cell proliferation, migration and epithelial-mesenchymal transition associated marker genes, indicating the tumor suppressive role of CFTR. Taken together, our derived DF508-CFTR ES cells can serve as a new model to study the etiology of CF disease in vitro and malignant teratoma formation in vivo.
Collapse
Affiliation(s)
- Peng Li
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Jyotsana Singh
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, 510655, China
| | - Yifeng Sun
- Sing Loong Limited, Hong Kong, SAR, China
| | - Xin Ma
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Ping Yuan
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, 510655, China.
| |
Collapse
|
18
|
Yefimova M, Bourmeyster N, Becq F, Burel A, Lavault MT, Jouve G, Veau S, Pimentel C, Jégou B, Ravel C. Update on the cellular and molecular aspects of cystic fibrosis transmembrane conductance regulator (CFTR) and male fertility. Morphologie 2018; 103:4-10. [PMID: 30528305 DOI: 10.1016/j.morpho.2018.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/09/2018] [Accepted: 11/06/2018] [Indexed: 12/15/2022]
Abstract
CFTR protein regulates electrolyte and fluid transport in almost all tissues with exocrine function, including male reproductive tract. Mutation of CFTR gene causes cystic fibrosis (CF), which affects the function of several organs, and impairs male fertility. The role of CFTR protein in different compartments of male reproductive tract (testis, epididymis, sperm) as well as an impact of CFTR mutation(s) on male fertility phenotype is discussed in relation with the choice of optimal technique for Assisted Reproductive Techniques (ART) management.
Collapse
Affiliation(s)
- M Yefimova
- Sechenov institute of evolutionary physiology and biochemistry, Russian academy of sciences, 44M. Thorez pr, 194223 St-Petersburg, Russia; Laboratoire STIM, université de Poitiers, 1, rue Georges-Bonnet, 86022 Poitiers cedex, France; Département de gynécologie obstétrique et reproduction humaine - CECOS, CHU de Rennes, 16, boulevard de Bulgarie, 35000 Rennes, France.
| | - N Bourmeyster
- Laboratoire STIM, université de Poitiers, 1, rue Georges-Bonnet, 86022 Poitiers cedex, France.
| | - F Becq
- Laboratoire STIM, université de Poitiers, 1, rue Georges-Bonnet, 86022 Poitiers cedex, France.
| | - A Burel
- Plateforme de MRIC TEM cellulaire, BIOSIT, Université Rennes 1, 2, avenue du Pr Léon-Bernard, 35000 Rennes, France.
| | - M-T Lavault
- Plateforme de MRIC TEM cellulaire, BIOSIT, Université Rennes 1, 2, avenue du Pr Léon-Bernard, 35000 Rennes, France.
| | - G Jouve
- Département de gynécologie obstétrique et reproduction humaine - CECOS, CHU de Rennes, 16, boulevard de Bulgarie, 35000 Rennes, France.
| | - S Veau
- Département de gynécologie obstétrique et reproduction humaine - CECOS, CHU de Rennes, 16, boulevard de Bulgarie, 35000 Rennes, France.
| | - C Pimentel
- Département de gynécologie obstétrique et reproduction humaine - CECOS, CHU de Rennes, 16, boulevard de Bulgarie, 35000 Rennes, France.
| | - B Jégou
- Inserm, université Rennes, EHESP, Irset (Instiut de recherche en santé,environnement et travail)-UMR_S1085, 35000 Rennes, France; Université de Rennes 1, 2, avenue du Pr Léon-Bernard, 35000 Rennes, France.
| | - C Ravel
- Département de gynécologie obstétrique et reproduction humaine - CECOS, CHU de Rennes, 16, boulevard de Bulgarie, 35000 Rennes, France; Inserm, université Rennes, EHESP, Irset (Instiut de recherche en santé,environnement et travail)-UMR_S1085, 35000 Rennes, France; Université de Rennes 1, 2, avenue du Pr Léon-Bernard, 35000 Rennes, France.
| |
Collapse
|
19
|
Dey I, Bradbury NA. Physiology of the Gut: Experimental Models for Investigating Intestinal Fluid and Electrolyte Transport. CURRENT TOPICS IN MEMBRANES 2018; 81:337-381. [PMID: 30243437 DOI: 10.1016/bs.ctm.2018.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Once thought to be exclusively an absorptive tissue, the intestine is now recognized as an important secretory tissue, playing a key role in body ion and fluid homeostasis. Given the intestine's role in fluid homeostasis, it is not surprising that important clinical pathologies arise from imbalances in fluid absorption and secretion. Perhaps the most important examples of this can be seen in enterotoxigenic secretory diarrheas with extreme fluid secretion, and Cystic Fibrosis with little or no fluid secretion. A mechanistic understanding of the cellular pathways regulating ion and fluid transport has been obtained from a variety of approaches and model systems. These have ranged from the intact intestine to a single intestinal epithelial cell type. Although for many years a reductionist approach has held sway for investigating intestinal transport, the growing realization that physiologic processes should really be examined within a physiological context has seen a marked increase in studies using models that are essentially mini-intestines in a dish. The aim of this chapter is to provide a historical context for our understanding of intestinal ion and fluid transport, and to highlight the model systems that have been used to acquire this knowledge.
Collapse
Affiliation(s)
- Isha Dey
- Department of Physiology and Biophysics, Chicago Medical School, North Chicago, IL, United States
| | - Neil A Bradbury
- Department of Physiology and Biophysics, Chicago Medical School, North Chicago, IL, United States
| |
Collapse
|
20
|
The psychoactive substance of cannabis Δ9-tetrahydrocannabinol (THC) negatively regulates CFTR in airway cells. Biochim Biophys Acta Gen Subj 2018; 1862:1988-1994. [DOI: 10.1016/j.bbagen.2018.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 12/21/2022]
|
21
|
Dechecchi MC, Tamanini A, Cabrini G. Molecular basis of cystic fibrosis: from bench to bedside. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:334. [PMID: 30306073 PMCID: PMC6174194 DOI: 10.21037/atm.2018.06.48] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 06/26/2018] [Indexed: 12/21/2022]
Abstract
Cystic fibrosis (CF), is an autosomal recessive disease affecting different organs. The lung disease, characterized by recurrent and chronic bacterial infection and inflammation since infancy, is the main cause of morbidity and precocious mortality of these individuals. The innovative therapies directed to repair the defective CF gene should account for the presence of more than 200 disease-causing mutations of the CF transmembrane conductance regulator (CFTR) gene. The review will recall the different experimental approaches in discovering CFTR protein targeted molecules, such as the high throughput screening on chemical libraries to discover correctors and potentiators of CFTR protein, dual-acting compounds, read-through molecules, splicing defects repairing tools, CFTR "amplifiers".
Collapse
Affiliation(s)
- Maria Cristina Dechecchi
- Laboratory of Analysis, Section of Molecular Pathology, University Hospital of Verona, Verona, Italy
| | - Anna Tamanini
- Laboratory of Analysis, Section of Molecular Pathology, University Hospital of Verona, Verona, Italy
| | - Giulio Cabrini
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
22
|
Zomer-van Ommen DD, de Poel E, Kruisselbrink E, Oppelaar H, Vonk AM, Janssens HM, van der Ent CK, Hagemeijer MC, Beekman JM. Comparison of ex vivo and in vitro intestinal cystic fibrosis models to measure CFTR-dependent ion channel activity. J Cyst Fibros 2018; 17:316-324. [PMID: 29544685 DOI: 10.1016/j.jcf.2018.02.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/15/2018] [Accepted: 02/06/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND New functional assays using primary human intestinal adult stem cell cultures can be valuable tools to study epithelial defects in human diseases such as cystic fibrosis. METHODS CFTR-mediated ion transport was measured in rectal organoid-derived monolayers grown from subjects with various CFTR mutations and compared to donor-matched intestinal current measurements (ICM) in rectal biopsies and forskolin-induced swelling of rectal organoids. RESULTS Rectal organoid-derived monolayers were generated within four days. Ion transport measurements of CFTR function using these monolayers correlated with ICM and organoid swelling (r = 0.73 and 0.79 respectively). Culturing the monolayers under differentiation conditions enhanced the detection of mucus-secreting cells and was accompanied by reduced CFTR function. CONCLUSIONS CFTR-dependent intestinal epithelial ion transport properties can be measured in rectal organoid-derived monolayers of subjects and correlate with donor-matched ICM and rectal organoid swelling.
Collapse
Affiliation(s)
- Domenique D Zomer-van Ommen
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Center Utrecht, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Eyleen de Poel
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Center Utrecht, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Evelien Kruisselbrink
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Center Utrecht, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Hugo Oppelaar
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Center Utrecht, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Annelotte M Vonk
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Center Utrecht, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Hettie M Janssens
- Department of Pediatric Pulmonology, Erasmus Medical Centre, Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Cornelis K van der Ent
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marne C Hagemeijer
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Center Utrecht, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Jeffrey M Beekman
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Center Utrecht, University Medical Centre Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
23
|
Gonçalves R, Zanatta AP, Cavalari FC, do Nascimento MAW, Delalande-Lecapitaine C, Bouraïma-Lelong H, Silva FRMB. Acute effect of bisphenol A: Signaling pathways on calcium influx in immature rat testes. Reprod Toxicol 2018; 77:94-102. [PMID: 29476780 DOI: 10.1016/j.reprotox.2018.02.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 02/15/2018] [Accepted: 02/20/2018] [Indexed: 02/07/2023]
Abstract
We investigated the acute effect of low concentrations of BPA on calcium influx and the mechanism of action of BPA in this rapid response in the rat testis. BPA increased calcium influx at 1 pM and 1 nM at 300 s of incubation, in a similar manner to that of estradiol. At 1 pM, BPA stimulated calcium influx independently of classical estrogen receptors, consistent with a G-protein coupled receptor. This effect also involves the modulation of ionic channels, such as K+, TRPV1 and Cl- channels. Furthermore, BPA is able to modulate calcium from intracellular storages by inhibiting SERCA and activating IP3 receptor/Ca2+ channels at the endoplasmic reticulum and activate kinase proteins, such as PKA and PKC. The rapid responses of BPA on calcium influx could, in turn, trigger a cross talk by MEK and p38MAPK activation and also mediate genomic responses.
Collapse
Affiliation(s)
- Renata Gonçalves
- Laboratório de Hormônios & Transdução de Sinais, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil; UNOCHAPECÓ, Brazil; Normandie Univ, France; UNICAEN, Laboratoire Estrogènes, Reproduction, Cancer, CAEN cedex 5, France
| | | | - Fernanda Carvalho Cavalari
- Laboratório de Hormônios & Transdução de Sinais, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Monica Andressa Wessner do Nascimento
- Laboratório de Hormônios & Transdução de Sinais, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Christelle Delalande-Lecapitaine
- Normandie Univ, France; UNICAEN, Laboratoire Estrogènes, Reproduction, Cancer, CAEN cedex 5, France; INRA USC 2006, CAEN cedex 5, France
| | - Hélène Bouraïma-Lelong
- Normandie Univ, France; UNICAEN, Laboratoire Estrogènes, Reproduction, Cancer, CAEN cedex 5, France; INRA USC 2006, CAEN cedex 5, France
| | - Fátima Regina Mena Barreto Silva
- Laboratório de Hormônios & Transdução de Sinais, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
24
|
Ishibashi K, Yamazaki J, Okamura K, Teng Y, Kitamura K, Abe K. Roles of CLCA and CFTR in Electrolyte Re-absorption from Rat Saliva. J Dent Res 2016; 85:1101-5. [PMID: 17122162 DOI: 10.1177/154405910608501207] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A molecular basis for Cl− re-absorption has not been well-characterized in salivary ductal cells. Previously, we found strong expression of a rat homologue proposed to be Ca2+-dependent Cl− channels (rCLCA) in the intralobular ducts of the rat submandibular gland. To address the question as to whether rCLCA and cystic fibrosis transmembrane conductance regulator (CFTR) are involved in Cl− re-absorption, we evaluated the electrolyte content of saliva from glands pre-treated with a small interfering RNA (siRNA). Retrograde injection into a given submandibular duct of an siRNA designed to knock down either rCLCA or CFTR reduced the expression of each of the proteins. rCLCA and CFTR siRNAs significantly increased Cl− concentration in the final saliva during pilocarpine stimulation. These results represent the first in vivo evidence for a physiological significance of rCLCA, along with CFTR, in transepithelial Cl− transport in the ductal system of the rat submandibular gland.
Collapse
Affiliation(s)
- K Ishibashi
- Department of Functional Bioscience, Fukuoka Dental College, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Bodewes FAJA, Verkade HJ, Wilschanski M. Gastroenterological endpoints in drug trials for cystic fibrosis. Pediatr Pulmonol 2016; 51:S18-S22. [PMID: 27442207 DOI: 10.1002/ppul.23528] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 06/28/2016] [Accepted: 07/03/2016] [Indexed: 12/28/2022]
Abstract
The phenotype of cystic fibrosis includes a wide variety of clinical and biochemical gastrointestinal presentations. These gastrointestinal characteristics of the disease have come under renewed interest as potential outcome measures and clinical endpoints for therapeutic trials in cystic fibrosis. Established gastrointestinal clinical endpoints, like e.g. fecal elastase-1, are already used in trials. Other potential gastrointestinal outcome measures gather more scientific interest for evaluation in future trials. Gastrointestinal outcome measures look particularly relevant and promising for trials in CF patients with normal lung function or therapeutic studies in young children and infants. We review, the currently reported gastrointestinal effects of CFTR modulation therapies and discuss the potential of gastrointestinal outcome measures for therapeutic trials in cystic fibrosis. Pediatr Pulmonol. 2016;51:S18-S22. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Frank A J A Bodewes
- Department of Pediatric Gastroenterology, University Medical Center Groningen, Groningen, The Netherlands.
| | - Henkjan J Verkade
- Department of Pediatric Gastroenterology, University Medical Center Groningen, Groningen, The Netherlands
| | - Micheal Wilschanski
- Pediatric Gastroenterology Unit, Division of Pediatrics, Hadassah University Hospitals, Jerusalem, Israel
| |
Collapse
|
26
|
Carvalho-Oliveira I, Efthymiadou A, Malhó R, Nogueira P, Tzetis M, Kanavakis E, Amaral MD, Penque D. CFTR Localization in Native Airway Cells and Cell Lines Expressing Wild-type or F508del-CFTR by a Panel of Different Antibodies. J Histochem Cytochem 2016; 52:193-203. [PMID: 14729871 DOI: 10.1177/002215540405200207] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The intracellular localization of cystic fibrosis transmembrane conductance regulator (CFTR) in native tissues is a major issue in the study of mutation, processing, and trafficking effects in CFTR and in the evaluation of therapeutic strategies in cystic fibrosis (CF). This work evaluated the applicability of ten different antibodies (Abs) under various fixation techniques for CFTR localization in fresh-brushed nasal epithelial cells collected from CF patients homozygous for F508del and control individuals. In parallel, the same Ab panel was also tested on BHK cell lines overexpressing wild-type or F508del CFTR. The Abs MATG1061, 169, Lis1, MP-CT1, CC24-R, MAB25031, and MAB1660 gave the best detection of CFTR in the apical region (AR) of nasal tall columnar epithelial (TCE) cells. The labeling pattern of these Abs was consistent with the postulated processing defect of F508del CFTR because only a minority of CF TCE cells present CFTR in the AR. In contrast, M3A7, MM13–4, and L12B4 weakly react with the AR and stain almost exclusively a cis-Golgi-like structure in the majority of CF and non-CF airway cells. In BHK cells, all the Abs enabled distinction between wild-type CFTR localization in cell membrane from F508del CFTR, which in these cells is exclusively located in the endoplasmic reticulum.
Collapse
|
27
|
Veit G, Oliver K, Apaja PM, Perdomo D, Bidaud-Meynard A, Lin ST, Guo J, Icyuz M, Sorscher EJ, Hartman JL, Lukacs GL. Ribosomal Stalk Protein Silencing Partially Corrects the ΔF508-CFTR Functional Expression Defect. PLoS Biol 2016; 14:e1002462. [PMID: 27168400 PMCID: PMC4864299 DOI: 10.1371/journal.pbio.1002462] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 04/14/2016] [Indexed: 01/05/2023] Open
Abstract
The most common cystic fibrosis (CF) causing mutation, deletion of phenylalanine 508 (ΔF508 or Phe508del), results in functional expression defect of the CF transmembrane conductance regulator (CFTR) at the apical plasma membrane (PM) of secretory epithelia, which is attributed to the degradation of the misfolded channel at the endoplasmic reticulum (ER). Deletion of phenylalanine 670 (ΔF670) in the yeast oligomycin resistance 1 gene (YOR1, an ABC transporter) of Saccharomyces cerevisiae phenocopies the ΔF508-CFTR folding and trafficking defects. Genome-wide phenotypic (phenomic) analysis of the Yor1-ΔF670 biogenesis identified several modifier genes of mRNA processing and translation, which conferred oligomycin resistance to yeast. Silencing of orthologues of these candidate genes enhanced the ΔF508-CFTR functional expression at the apical PM in human CF bronchial epithelia. Although knockdown of RPL12, a component of the ribosomal stalk, attenuated the translational elongation rate, it increased the folding efficiency as well as the conformational stability of the ΔF508-CFTR, manifesting in 3-fold augmented PM density and function of the mutant. Combination of RPL12 knockdown with the corrector drug, VX-809 (lumacaftor) restored the mutant function to ~50% of the wild-type channel in primary CFTRΔF508/ΔF508 human bronchial epithelia. These results and the observation that silencing of other ribosomal stalk proteins partially rescue the loss-of-function phenotype of ΔF508-CFTR suggest that the ribosomal stalk modulates the folding efficiency of the mutant and is a potential therapeutic target for correction of the ΔF508-CFTR folding defect. Reducing the rate of translational elongation by silencing ribosomal stalk proteins ameliorates the folding and stability defect of the cystic fibrosis mutant protein ΔF508-CFTR, partially restoring the plasma membrane chloride conductance. Cystic fibrosis (CF) is one of the most common autosomal recessive diseases in Caucasians. It is caused by mutations in the CF transmembrane conductance regulator (CFTR), which functions as an anion channel at the apical plasma membrane of secretory epithelia. The most common CF mutation, a deletion of the phenylalanine residue at position 508 (ΔF508), results in the channel misfolding and subsequent intracellular degradation. Our previous genome-wide phenotypic screens, using a yeast variant, have predicted modifier genes for ΔF508-CFTR biogenesis. Here, we show that silencing of one of these candidate genes, RPL12, a component of the ribosomal stalk, increased the folding and stabilization of ΔF508-CFTR, resulting in its increased plasma membrane expression and function. Our data suggest that reducing the translational elongation rate via RPL12 silencing can partially reverse the ΔF508-CFTR folding defect. Importantly, RPL12 silencing in combination with the corrector drug VX-809 (lumacaftor), increased the mutant function to 50% of the wild-type CFTR channel, suggesting that the ribosomal stalk perturbation may represent a therapeutic target for rescuing the ΔF508-CFTR biogenesis defect.
Collapse
Affiliation(s)
- Guido Veit
- Department of Physiology, McGill University, Montréal, Quebec, Canada
| | - Kathryn Oliver
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Pirjo M. Apaja
- Department of Physiology, McGill University, Montréal, Quebec, Canada
| | - Doranda Perdomo
- Department of Physiology, McGill University, Montréal, Quebec, Canada
| | | | - Sheng-Ting Lin
- Department of Physiology, McGill University, Montréal, Quebec, Canada
| | - Jingyu Guo
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Mert Icyuz
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Eric J. Sorscher
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - John L. Hartman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail: (JLH); (GLL)
| | - Gergely L. Lukacs
- Department of Physiology, McGill University, Montréal, Quebec, Canada
- Department of Biochemistry, McGill University, Montréal, Quebec, Canada
- Groupe de Recherche Axé sur la Structure des Protéines (GRASP), McGill University, Montréal, Quebec, Canada
- * E-mail: (JLH); (GLL)
| |
Collapse
|
28
|
Beer RL, Parsons MJ, Rovira M. Centroacinar cells: At the center of pancreas regeneration. Dev Biol 2016; 413:8-15. [PMID: 26963675 DOI: 10.1016/j.ydbio.2016.02.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/23/2016] [Accepted: 02/26/2016] [Indexed: 10/22/2022]
Abstract
The process of regeneration serves to heal injury by replacing missing cells. Understanding regeneration can help us replace cell populations lost during disease, such as the insulin-producing β cells lost in diabetic patients. Centroacinar cells (CACs) are a specialized ductal pancreatic cell type that act as progenitors to replace β cells in the zebrafish. However, whether CACs contribute to β-cell regeneration in adult mammals remains controversial. Here we review the current understanding of the role of CACs as endocrine progenitors during regeneration in zebrafish and mammals.
Collapse
Affiliation(s)
- Rebecca L Beer
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, United States.
| | - Michael J Parsons
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, United States; Department of Surgery, Johns Hopkins University, Baltimore, MD, United States
| | - Meritxell Rovira
- Genomic Programming of Beta-Cells Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain.
| |
Collapse
|
29
|
Al-Hazza A, Linley J, Aziz Q, Hunter M, Sandle G. Upregulation of basolateral small conductance potassium channels (KCNQ1/KCNE3) in ulcerative colitis. Biochem Biophys Res Commun 2015; 470:473-478. [PMID: 26718405 PMCID: PMC4748010 DOI: 10.1016/j.bbrc.2015.12.086] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 12/20/2015] [Indexed: 12/04/2022]
Abstract
Background Basolateral K+ channels hyperpolarize colonocytes to ensure Na+ (and thus water) absorption. Small conductance basolateral (KCNQ1/KCNE3) K+ channels have never been evaluated in human colon. We therefore evaluated KCNQ1/KCNE3 channels in distal colonic crypts obtained from normal and active ulcerative colitis (UC) patients. Methods KCNQ1 and KCNE3 mRNA levels were determined by qPCR, and KCNQ1/KCNE3 channel activity in normal and UC crypts, and the effects of forskolin (activator of adenylate cyclase) and UC-related proinflammatory cytokines on normal crypts, studied by patch clamp recording. Results Whereas KCNQ1 and KCNE3 mRNA expression was similar in normal and UC crypts, single 6.8 pS channels were seen in 36% of basolateral patches in normal crypts, and to an even greater extent (74% of patches, P < 0.001) in UC crypts, with two or more channels per patch. Channel activity was 10-fold higher (P < 0.001) in UC crypts, with a greater contribution to basolateral conductance (5.85 ± 0.62 mS cm−2) than in controls (0.28 ± 0.04 mS cm−2, P < 0.001). In control crypts, forskolin and thromboxane A2 stimulated channel activity 30-fold and 10-fold respectively, while PGE2, IL-1β, and LTD4 had no effect. Conclusions KCNQ1/KCNE3 channels make only a small contribution to basolateral conductance in normal colonic crypts, with increased channel activity in UC appearing insufficient to prevent colonic cell depolarization in this disease. This supports the proposal that defective Na+ absorption rather than enhanced Cl− secretion, is the dominant pathophysiological mechanism of diarrhea in UC.
Collapse
Affiliation(s)
- Adel Al-Hazza
- Institute of Membrane and Systems Biology, University of Leeds, UK
| | - John Linley
- Institute of Membrane and Systems Biology, University of Leeds, UK
| | - Qadeer Aziz
- Institute of Membrane and Systems Biology, University of Leeds, UK
| | - Malcolm Hunter
- Institute of Membrane and Systems Biology, University of Leeds, UK
| | - Geoffrey Sandle
- Leeds Institute of Biomedical and Clinical Sciences, St. James's University Hospital, Leeds, UK.
| |
Collapse
|
30
|
Dittrich NP, Kummer W, Clauss WG, Fronius M. Luminal acetylcholine does not affect the activity of the CFTR in tracheal epithelia of pigs. Int Immunopharmacol 2015; 29:166-72. [DOI: 10.1016/j.intimp.2015.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 11/29/2022]
|
31
|
Jalali R, Zandieh-Doulabi B, DenBesten PK, Seidler U, Riederer B, Wedenoja S, Micha D, Bronckers ALJJ. Slc26a3/Dra and Slc26a6 in Murine Ameloblasts. J Dent Res 2015; 94:1732-9. [PMID: 26394631 DOI: 10.1177/0022034515606873] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Formation of apatite crystals during enamel development generates protons. To sustain mineral accretion, maturation ameloblasts need to buffer these protons. The presence of cytosolic carbonic anhydrases, the basolateral Na(+) bicarbonate cotransporter Nbce1, and the basolateral anion exchanger Ae2a,b in maturation ameloblasts suggests that these cells secrete bicarbonates into the forming enamel, but it is unknown by which mechanism. Solute carrier (Slc) family 26A encodes different anion exchangers that exchange Cl(-)/HCO3 (-), including Slc26a3/Dra, Slc26a6/Pat-1, and Slc26a4/pendrin. Previously, we showed that pendrin is expressed in ameloblasts but is not critical for enamel formation. In this study, we tested the hypothesis that maturation ameloblasts express Dra and Slc26a6 to secrete bicarbonate into the enamel space in exchange for Cl(-). Real-time polymerase chain reaction detected mRNA transcripts for Dra and Slc26a6 in mouse incisor enamel organs, and Western blotting confirmed their translation into protein. Both isoforms were immunolocalized in ameloblasts, principally at maturation stage. Mice with null mutation of either Dra or Slc26a6 had a normal dental or skeletal phenotype without changes in mineral density, as measured by micro-computed tomography. In enamel organs of Slc26a6-null mice, Dra and pendrin protein levels were both elevated by 52% and 55%, respectively. The amount of Slc26a6 protein was unchanged in enamel organs of Ae2a,b- and Cftr-null mice but reduced in Dra-null mice by 36%. Our data show that ameloblasts express Dra, pendrin, or Slc26a6 but each of these separately is not critical for formation of dental enamel. The data suggest that in ameloblasts, Slc26a isoforms can functionally compensate for one another.
Collapse
Affiliation(s)
- R Jalali
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, University of Amsterdam, and MOVE Research Institute, VU University Amsterdam, Amsterdam, Netherlands
| | - B Zandieh-Doulabi
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, University of Amsterdam, and MOVE Research Institute, VU University Amsterdam, Amsterdam, Netherlands
| | - P K DenBesten
- Department of Oral Sciences, University of California, San Francisco, CA, USA
| | - U Seidler
- Abteilung Gastroenterologie, Hepatologie und Endokrinologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - B Riederer
- Abteilung Gastroenterologie, Hepatologie und Endokrinologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - S Wedenoja
- Department of Medical Genetics, Biomedicum Helsinki, University of Helsinki, Finland
| | - D Micha
- Department of Clinical Genetics, Vrije Universiteit Medical Center, Amsterdam, Netherlands
| | - A L J J Bronckers
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, University of Amsterdam, and MOVE Research Institute, VU University Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
32
|
Chromatin Dynamics in the Regulation of CFTR Expression. Genes (Basel) 2015; 6:543-58. [PMID: 26184320 PMCID: PMC4584316 DOI: 10.3390/genes6030543] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/03/2015] [Accepted: 07/07/2015] [Indexed: 12/31/2022] Open
Abstract
The contribution of chromatin dynamics to the regulation of human disease-associated loci such as the cystic fibrosis transmembrane conductance regulator (CFTR) gene has been the focus of intensive experimentation for many years. Recent technological advances in the analysis of transcriptional mechanisms across the entire human genome have greatly facilitated these studies. In this review we describe the complex machinery of tissue-specific regulation of CFTR expression, and put earlier observations in context by incorporating them into datasets generated by the most recent genomics methods. Though the gene promoter is required for CFTR expression, cell-type specific regulatory elements are located elsewhere in the gene and in flanking intergenic regions. Probably within its own topological domain established by the architectural proteins CTCF and cohesin, the CFTR locus utilizes chromatin dynamics to remodel nucleosomes, recruit cell-selective transcription factors, and activate intronic enhancers. These cis-acting elements are then brought to the gene promoter by chromatin looping mechanisms, which establish long-range interactions across the locus. Despite its complexity, the CFTR locus provides a paradigm for elucidating the critical role of chromatin dynamics in the transcription of individual human genes.
Collapse
|
33
|
Yang H, Ma T. F508del-cystic fibrosis transmembrane regulator correctors for treatment of cystic fibrosis: a patent review. Expert Opin Ther Pat 2015; 25:991-1002. [PMID: 25971311 DOI: 10.1517/13543776.2015.1045878] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Cystic fibrosis (CF) is an autosomal recessive genetic disease caused by malfunction of CF transmembrane regulator (CFTR). The deletion of a phenylalanine at residue 508 (F508del) is the most common mutation that causes cellular processing, chloride channel gating and protein stability defects in CFTR. Pharmacological modulators of F508del-CFTR, aimed at correcting the cellular processing defect (correctors) and the gating defect (potentiators) in CFTR protein, are regarded as promising therapeutic agents for CF disease. Endeavors in searching F508del-CFTR modulators have shown encouraging results, with several small-molecule compounds having entered clinical trials or even represented clinical options. AREAS COVERED This review covers the discovery of F508del-CFTR correctors described in both patents (2005 - present) and scientific literatures. EXPERT OPINION Cyclopropane carboxamide derivatives of CFTR correctors continue to dominate in this area, among which lumacaftor (a NBD1-MSD1/2 interface stabilizer) is the most promising compound and is now under the priority review by US FDA. However, the abrogation effect of ivacaftor (potentiator) on lumacaftor suggests the requirement of discovering new correctors and potentiators that can cooperate well. Integration screening for simultaneously identifying combinations of correctors (particularly NBD1 stabilizer) and potentiators should provide an alternative strategy. A recently reported natural product fraction library may be useful for the integration screening.
Collapse
Affiliation(s)
- Hong Yang
- a 1 School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University , Dalian 116029, P.R. China +86 411 85827085 ; +86 411 85827068 ;
| | | |
Collapse
|
34
|
Higgins G, Ringholz F, Buchanan P, McNally P, Urbach V. Physiological impact of abnormal lipoxin A₄ production on cystic fibrosis airway epithelium and therapeutic potential. BIOMED RESEARCH INTERNATIONAL 2015; 2015:781087. [PMID: 25866809 PMCID: PMC4383482 DOI: 10.1155/2015/781087] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 12/15/2022]
Abstract
Lipoxin A4 has been described as a major signal for the resolution of inflammation and is abnormally produced in the lungs of patients with cystic fibrosis (CF). In CF, the loss of chloride transport caused by the mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel gene results in dehydration, mucus plugging, and reduction of the airway surface liquid layer (ASL) height which favour chronic lung infection and neutrophil based inflammation leading to progressive lung destruction and early death of people with CF. This review highlights the unique ability of LXA4 to restore airway surface hydration, to stimulate airway epithelial repair, and to antagonise the proinflammatory program of the CF airway, circumventing some of the most difficult aspects of CF pathophysiology. The report points out novel aspects of the cellular mechanism involved in the physiological response to LXA4, including release of ATP from airway epithelial cell via pannexin channel and subsequent activation of and P2Y11 purinoreceptor. Therefore, inadequate endogenous LXA4 biosynthesis reported in CF exacerbates the ion transport abnormality and defective mucociliary clearance, in addition to impairing the resolution of inflammation, thus amplifying the vicious circle of airway dehydration, chronic infection, and inflammation.
Collapse
Affiliation(s)
- Gerard Higgins
- National Children's Research Centre, Crumlin, Dublin 12, Ireland
- Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Fiona Ringholz
- National Children's Research Centre, Crumlin, Dublin 12, Ireland
- Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Paul Buchanan
- National Children's Research Centre, Crumlin, Dublin 12, Ireland
| | - Paul McNally
- National Children's Research Centre, Crumlin, Dublin 12, Ireland
| | - Valérie Urbach
- National Children's Research Centre, Crumlin, Dublin 12, Ireland
- Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
- Institut National de la Santé et de la Recherche Médicale, U845, Faculté de Médecine Paris Descartes, Site Necker, 156 rue Vaugirard, 75015 Paris, France
| |
Collapse
|
35
|
Maléth J, Balázs A, Pallagi P, Balla Z, Kui B, Katona M, Judák L, Németh I, Kemény LV, Rakonczay Z, Venglovecz V, Földesi I, Pető Z, Somorácz Á, Borka K, Perdomo D, Lukacs GL, Gray MA, Monterisi S, Zaccolo M, Sendler M, Mayerle J, Kühn JP, Lerch MM, Sahin-Tóth M, Hegyi P. Alcohol disrupts levels and function of the cystic fibrosis transmembrane conductance regulator to promote development of pancreatitis. Gastroenterology 2015; 148:427-39.e16. [PMID: 25447846 PMCID: PMC4353632 DOI: 10.1053/j.gastro.2014.11.002] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 10/23/2014] [Accepted: 11/04/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Excessive consumption of ethanol is one of the most common causes of acute and chronic pancreatitis. Alterations to the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) also cause pancreatitis. However, little is known about the role of CFTR in the pathogenesis of alcohol-induced pancreatitis. METHODS We measured CFTR activity based on chloride concentrations in sweat from patients with cystic fibrosis, patients admitted to the emergency department because of excessive alcohol consumption, and healthy volunteers. We measured CFTR levels and localization in pancreatic tissues and in patients with acute or chronic pancreatitis induced by alcohol. We studied the effects of ethanol, fatty acids, and fatty acid ethyl esters on secretion of pancreatic fluid and HCO3(-), levels and function of CFTR, and exchange of Cl(-) for HCO3(-) in pancreatic cell lines as well as in tissues from guinea pigs and CFTR knockout mice after administration of alcohol. RESULTS Chloride concentrations increased in sweat samples from patients who acutely abused alcohol but not in samples from healthy volunteers, indicating that alcohol affects CFTR function. Pancreatic tissues from patients with acute or chronic pancreatitis had lower levels of CFTR than tissues from healthy volunteers. Alcohol and fatty acids inhibited secretion of fluid and HCO3(-), as well as CFTR activity, in pancreatic ductal epithelial cells. These effects were mediated by sustained increases in concentrations of intracellular calcium and adenosine 3',5'-cyclic monophosphate, depletion of adenosine triphosphate, and depolarization of mitochondrial membranes. In pancreatic cell lines and pancreatic tissues of mice and guinea pigs, administration of ethanol reduced expression of CFTR messenger RNA, reduced the stability of CFTR at the cell surface, and disrupted folding of CFTR at the endoplasmic reticulum. CFTR knockout mice given ethanol or fatty acids developed more severe pancreatitis than mice not given ethanol or fatty acids. CONCLUSIONS Based on studies of human, mouse, and guinea pig pancreata, alcohol disrupts expression and localization of the CFTR. This appears to contribute to development of pancreatitis. Strategies to increase CFTR levels or function might be used to treat alcohol-associated pancreatitis.
Collapse
Affiliation(s)
- József Maléth
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Anita Balázs
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Petra Pallagi
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Zsolt Balla
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Balázs Kui
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Máté Katona
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Linda Judák
- First Department of Medicine, University of Szeged, Szeged, Hungary,Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - István Németh
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Lajos V. Kemény
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Zoltán Rakonczay
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Viktória Venglovecz
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Imre Földesi
- Department of Laboratory Medicine, University of Szeged, Szeged, Hungary
| | - Zoltán Pető
- Department of Emergency Medicine, University of Szeged, Szeged, Hungary
| | - Áron Somorácz
- Second Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Katalin Borka
- Second Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Doranda Perdomo
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Gergely L. Lukacs
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Mike A. Gray
- Institute for Cell & Molecular Biosciences, Newcastle University, Newcastle upon Tyne, England
| | - Stefania Monterisi
- Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, England
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, England
| | - Matthias Sendler
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Julia Mayerle
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Jens-Peter Kühn
- Institute of Radiology, University Medicine, Ernst Moritz University, Greifswald, Germany
| | - Markus M. Lerch
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Miklós Sahin-Tóth
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, Massachusetts
| | - Péter Hegyi
- First Department of Medicine, University of Szeged, Szeged, Hungary; MTA-SZTE Lendület Translational Gastroenterology Research Group, Szeged, Hungary.
| |
Collapse
|
36
|
Lukowski SW, Rothnagel JA, Trezise AEO. CFTR mRNA expression is regulated by an upstream open reading frame and RNA secondary structure in its 5' untranslated region. Hum Mol Genet 2014; 24:899-912. [PMID: 25274779 DOI: 10.1093/hmg/ddu501] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Post-transcriptional regulation of gene expression through 5' untranslated region (5'UTR)-encoded cis-acting elements is an important mechanism for the control of protein expression levels. Through controlling specific aspects of translation initiation, expression can be tightly regulated while remaining responsive to cellular requirements. With respect to cystic fibrosis (CF), the overexpression of cystic fibrosis transmembrane conductance regulator (CFTR) protein trafficking mutants, such as delta-F508, is of great biological and clinical interest. By understanding the post-transcriptional mechanisms that regulate CFTR expression, new procedures can be developed to enhance CFTR expression in homozygous delta-F508 CF patients. We have identified the key elements of a complex negative regulatory mechanism that is encoded within the human CFTR 5'UTR and show how these elements act in combination to restrict CFTR gene expression to a consistently low level in a transcript-specific manner. This study shows, for the first time, that endogenous human CFTR expression is post-transcriptionally regulated through a 5'UTR-mediated mechanism. We show that the very low levels of endogenous CFTR expression, compared with other low expression genes, are maintained through the co-operative inhibitory effects of an upstream open reading frame and a thermodynamically stable RNA secondary structure.
Collapse
Affiliation(s)
- Samuel W Lukowski
- School of Chemistry and Molecular Biosciences and Australian Equine Genetics Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | - Ann E O Trezise
- School of Chemistry and Molecular Biosciences and Australian Equine Genetics Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
37
|
Ruan YC, Chen H, Chan HC. Ion channels in the endometrium: regulation of endometrial receptivity and embryo implantation. Hum Reprod Update 2014; 20:517-29. [PMID: 24591147 DOI: 10.1093/humupd/dmu006] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Although embryo implantation is a prerequisite for human reproduction, it remains a poorly understood process. The molecular mechanisms regulating endometrial receptivity and/or embryo implantation are still largely unclear. METHODS Pubmed and Medline literature databases were searched for articles in English published up to December 2013 with relevant keywords including 'endometrium', 'Na(+), Cl(-), K(+), or Ca(2+) channels', 'ion channels', 'endometrial receptivity', 'blastocyst implantation' and 'embryo implantation'. RESULTS At the time of writing, more than 14 types of ion channels, including the cystic fibrosis transmembrane conductance regulator, epithelial sodium channel and various Ca(2+) and K(+) channels, had been reported to be expressed in the endometrium or cells of endometrial origin. In vitro and/or in vivo studies conducted on different species, including rodents, pigs and humans, demonstrated the involvement of various ion channels in the process of embryo implantation by regulating: (i) uterine luminal fluid volume; (ii) decidualization; and (iii) the expression of the genes associated with implantation. Importantly, abnormal ion channel expression was found to be associated with implantation failure in IVF patients. CONCLUSIONS Ion channels in the endometrium are emerging as important players in regulating endometrial receptivity and embryo implantation. Abnormal expression or function of ion channels in the endometrium may lead to impaired endometrial receptivity and/or implantation failure. Further investigation into the roles of endometrial ion channels may provide a better understanding of the complex process of embryo implantation and thus reveal novel targets for diagnosis and treatment of implantation failure.
Collapse
Affiliation(s)
- Ye Chun Ruan
- Sichuan University - The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, People's Republic of China Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Hui Chen
- Sichuan University - The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, People's Republic of China Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Hsiao Chang Chan
- Sichuan University - The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, People's Republic of China Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| |
Collapse
|
38
|
Novel regulators of spermatogenesis. Semin Cell Dev Biol 2014; 29:31-42. [PMID: 24594193 DOI: 10.1016/j.semcdb.2014.02.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/14/2014] [Accepted: 02/17/2014] [Indexed: 02/07/2023]
Abstract
Spermatogenesis is a multistep process that supports the production of millions of sperm daily. Understanding of the molecular mechanisms that regulate spermatogenesis has been a major focus for decades. Yet, the regulators involved in different cellular processes of spermatogenesis remain largely unknown. Human diseases that result in defective spermatogenesis have provided hints on the molecular mechanisms regulating this process. In this review, we have summarized recent findings on the function and signaling mechanisms of several genes that are known to be associated with disease or pathological processes, including CFTR, CD147, YWK-II and CT genes, and discuss their potential roles in regulating different processes of spermatogenesis.
Collapse
|
39
|
Woodley FW, Machado RS, Hayes D, Di Lorenzo C, Kaul A, Skaggs B, McCoy K, Patel A, Mousa H. Children with cystic fibrosis have prolonged chemical clearance of acid reflux compared to symptomatic children without cystic fibrosis. Dig Dis Sci 2014; 59:623-30. [PMID: 24287640 DOI: 10.1007/s10620-013-2950-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/11/2013] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Few studies compare gastroesophageal reflux (GER) parameters of cystic fibrosis (CF) children and symptomatic non-CF children. We aimed to compare the impedance-pH (IMP-pH) parameters for these two groups and to test the hypothesis that prolonged acid exposure in CF patients is due to delayed chemical clearance (CC). METHODS IMP-pH tracings from 16 CF children (median 8.2 years) and 16 symptomatic non-CF children (median 8.3 years) were analyzed. Software was used to generate IMP-pH reports and parameter data were extracted. IMP-pH was used to calculate the mean CC for each patient. RESULTS pH studies showed no difference in acid GER (AGER) frequency (p = 0.587); however, mean AGER duration, duration of longest AGER, AGER index, and DeMeester scores were all significantly higher for CF patients. IMP showed no difference in GER frequency [neither acidic (p = 0.918) nor non-acidic (p = 0.277)], but total bolus clearance was more efficient in CF patients (p = 0.049). A larger percentage of total GER reached the proximal esophagus in non-CF children (p = 0.039). Analyses of two-phase AGER episodes showed that these events were more acidic (p = 0.003) and the CC phase was significantly prolonged in the CF cohort (p = 0.001). CONCLUSIONS Compared to symptomatic non-CF children, CF children do not have more frequent reflux. Actually, they have better bolus clearance efficiency following reflux and may even have better control over the number of GER episodes that reach the proximal esophagus. CC of AGER, however, is significantly prolonged in the CF cohort, likely due to hyperacidity of refluxed gastric contents.
Collapse
Affiliation(s)
- Frederick W Woodley
- Division of Gastroenterology, Hepatology, and Nutrition, Nationwide Children's Hospital, Columbus, OH, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Constitutive activation of nuclear factor κB contributes to cystic fibrosis transmembrane conductance regulator expression and promotes human cervical cancer progression and poor prognosis. Int J Gynecol Cancer 2014; 23:906-15. [PMID: 23640294 DOI: 10.1097/igc.0b013e318292da82] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Cystic fibrosis transmembrane conductance regulator (CFTR) and nuclear factor κB (NF-κB) have been known to play important roles in the development and progression of many types of cancer including cervical cancer. The study aimed to verify the relevance and significance of CFTR and NF-κB expressions in cervical cancer tissues and cell lines. METHODS The expressions of CFTR and NF-κB p65 were analyzed respectively by immunohistochemistry in total of 135 cervical tissue samples. The correlation to clinicopathologic characteristics and prognostic value was evaluated. The coexpression of CFTR and NF-κB was detected in cervical cancer cell lines. Nuclear factor κB signaling was inhibited by siRNA for NF-κB p65 and activated by stimulation of cells with interleukin β or tumor necrosis factor α. RESULTS We found both the membrane expression of CFTR and nuclear translocation of NF-κB p65 were progressively increased from normal cervical tissue, cervical intraepithelial neoplasm, to cervical cancer (overall R² = 0.74, P < 0.001). Cystic fibrosis transmembrane conductance regulator expression and NF-κB activation were also positively associated with stage, histological grade, lymph node metastasis, and invasive interstitial depth. Multivariate analysis showed that coexpression of CFTR and NF-κB was an independent prognostic factor for survival (relative risk, 5.16; P = 0.003). Dual-immunofluorescence analysis showed CFTR and NF-κB were coexpressed in cervical cancer. Studies in vitro revealed that the expression levels of CFTR mRNA and protein were positively related to NF-κB activation. CONCLUSIONS Cystic fibrosis transmembrane conductance regulator and NF-κB were coexpressed in cervical cancer, and the activation of NF-κB mediated the expression of CFTR. Multivariate analysis revealed that coexpression of CFTR and NF-κB was associated with poor prognosis in patients with cervical cancer.
Collapse
|
41
|
Jakab RL, Collaco AM, Ameen NA. Characterization of CFTR High Expresser cells in the intestine. Am J Physiol Gastrointest Liver Physiol 2013; 305:G453-65. [PMID: 23868408 PMCID: PMC3761243 DOI: 10.1152/ajpgi.00094.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The CFTR High Expresser (CHE) cells express eightfold higher levels of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel compared with neighboring enterocytes and were first identified by our laboratory (Ameen et al., Gastroenterology 108: 1016, 1995). We used double-label immunofluorescence microscopy to further study these enigmatic epithelial cells in rat intestine in vivo or ex vivo. CHE cells were found in duodenum, most frequent in proximal jejunum, and absent in ileum and colon. CFTR abundance increased in CHE cells along the crypt-villus axis. The basolateral Na(+)K(+)Cl(-) cotransporter NKCC1, a key transporter involved in Cl(-) secretion, was detected at similar levels in CHE cells and neighboring enterocytes at steady state. Microvilli appeared shorter in CHE cells, with low levels of Myosin 1a, a villus enterocyte-specific motor that retains sucrase/isomaltase in the brush-border membrane (BBM). CHE cells lacked alkaline phosphatase and absorptive villus enterocyte BBM proteins, including Na(+)H(+) exchanger NHE3, Cl(-)/HCO3(-) exchanger SLC26A6 (putative anion exchanger 1), and sucrase/isomaltase. High levels of the vacuolar-ATPase proton pump were observed in the apical domain of CHE cells. Levels of the NHE regulatory factor NHERF1, Na-K-ATPase, and Syntaxin 3 were similar to that of neighboring enterocytes. cAMP or acetylcholine stimulation robustly increased apical CFTR and basolateral NKCC1 disproportionately in CHE cells relative to neighboring enterocytes. These data strongly argue for a specialized role of CHE cells in Cl(-)-mediated "high-volume" fluid secretion on the villi of the proximal small intestine.
Collapse
Affiliation(s)
- Robert L. Jakab
- Departments of 1Pediatrics/Gastroenterology and Hepatology, and
| | - Anne M. Collaco
- Departments of 1Pediatrics/Gastroenterology and Hepatology, and
| | - Nadia A. Ameen
- Departments of 1Pediatrics/Gastroenterology and Hepatology, and ,2Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
42
|
Frizzell RA, Hanrahan JW. Physiology of epithelial chloride and fluid secretion. Cold Spring Harb Perspect Med 2013; 2:a009563. [PMID: 22675668 DOI: 10.1101/cshperspect.a009563] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epithelial salt and water secretion serves a variety of functions in different organ systems, such as the airways, intestines, pancreas, and salivary glands. In cystic fibrosis (CF), the volume and/or composition of secreted luminal fluids are compromised owing to mutations in the gene encoding CFTR, the apical membrane anion channel that is responsible for salt secretion in response to cAMP/PKA stimulation. This article examines CFTR and related cellular transport processes that underlie epithelial anion and fluid secretion, their regulation, and how these processes are altered in CF disease to account for organ-specific secretory phenotypes.
Collapse
Affiliation(s)
- Raymond A Frizzell
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| | | |
Collapse
|
43
|
Stoltz DA, Rokhlina T, Ernst SE, Pezzulo AA, Ostedgaard LS, Karp PH, Samuel MS, Reznikov LR, Rector MV, Gansemer ND, Bouzek DC, Abou Alaiwa MH, Hoegger MJ, Ludwig PS, Taft PJ, Wallen TJ, Wohlford-Lenane C, McMenimen JD, Chen JH, Bogan KL, Adam RJ, Hornick EE, Nelson GA, Hoffman EA, Chang EH, Zabner J, McCray PB, Prather RS, Meyerholz DK, Welsh MJ. Intestinal CFTR expression alleviates meconium ileus in cystic fibrosis pigs. J Clin Invest 2013; 123:2685-93. [PMID: 23676501 DOI: 10.1172/jci68867] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 03/07/2013] [Indexed: 12/20/2022] Open
Abstract
Cystic fibrosis (CF) pigs develop disease with features remarkably similar to those in people with CF, including exocrine pancreatic destruction, focal biliary cirrhosis, micro-gallbladder, vas deferens loss, airway disease, and meconium ileus. Whereas meconium ileus occurs in 15% of babies with CF, the penetrance is 100% in newborn CF pigs. We hypothesized that transgenic expression of porcine CF transmembrane conductance regulator (pCFTR) cDNA under control of the intestinal fatty acid-binding protein (iFABP) promoter would alleviate the meconium ileus. We produced 5 CFTR-/-;TgFABP>pCFTR lines. In 3 lines, intestinal expression of CFTR at least partially restored CFTR-mediated anion transport and improved the intestinal phenotype. In contrast, these pigs still had pancreatic destruction, liver disease, and reduced weight gain, and within weeks of birth, they developed sinus and lung disease, the severity of which varied over time. These data indicate that expressing CFTR in intestine without pancreatic or hepatic correction is sufficient to rescue meconium ileus. Comparing CFTR expression in different lines revealed that approximately 20% of wild-type CFTR mRNA largely prevented meconium ileus. This model may be of value for understanding CF pathophysiology and testing new preventions and therapies.
Collapse
Affiliation(s)
- David A Stoltz
- Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Tsui LC, Dorfman R. The cystic fibrosis gene: a molecular genetic perspective. Cold Spring Harb Perspect Med 2013; 3:a009472. [PMID: 23378595 DOI: 10.1101/cshperspect.a009472] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The positional cloning of the gene responsible for cystic fibrosis (CF) was the important first step in understanding the basic defect and pathophysiology of the disease. This study aims to provide a historical account of key developments as well as factors that contributed to the cystic fibrosis transmembrane conductance regulator (CFTR) gene identification work. A redefined gene structure based on the full sequence of the gene derived from the Human Genome Project is presented, along with brief reviews of the transcription regulatory sequences for the CFTR gene, the role of mRNA splicing in gene regulation and CF disease, and, various related sequences in the human genome and other species. Because CF mutations and genotype-phenotype correlations are covered by our colleagues (Ferec C, Cutting GR. 2012. Assessing the disease-liability of mutations in CFTR. Cold Spring Harb Perspect Med doi: 10.1101/cshperspect.a009480), we only attempt to provide an introduction of the CF mutation database here for reference purposes.
Collapse
Affiliation(s)
- Lap-Chee Tsui
- The University of Hong Kong, Hong Kong, Special Administrative Region, China.
| | | |
Collapse
|
45
|
Wilke M, Bot A, Jorna H, Scholte BJ, de Jonge HR. Rescue of murine F508del CFTR activity in native intestine by low temperature and proteasome inhibitors. PLoS One 2012; 7:e52070. [PMID: 23284872 PMCID: PMC3528711 DOI: 10.1371/journal.pone.0052070] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 11/15/2012] [Indexed: 11/19/2022] Open
Abstract
Most patients with Cystic Fibrosis (CF) carry at least one allele with the F508del mutation, resulting in a CFTR chloride channel protein with a processing, gating and stability defect, but with substantial residual activity when correctly sorted to the apical membranes of epithelial cells. New therapies are therefore aimed at improving the folding and trafficking of F508del CFTR, (CFTR correctors) or at enhancing the open probability of the CFTR chloride channel (CFTR potentiators). Preventing premature breakdown of F508del CFTR is an alternative or additional strategy, which is investigated in this study. We established an ex vivo assay for murine F508del CFTR rescue in native intestinal epithelium that can be used as a pre-clinical test for candidate therapeutics. Overnight incubation of muscle stripped ileum in modified William's E medium at low temperature (26°C), and 4 h or 6 h incubation at 37°C with different proteasome inhibitors (PI: ALLN, MG-132, epoxomicin, PS341/bortezomib) resulted in fifty to hundred percent respectively of the wild type CFTR mediated chloride secretion (forskolin induced short-circuit current). The functional rescue was accompanied by enhanced expression of the murine F508del CFTR protein at the apical surface of intestinal crypts and a gain in the amount of complex-glycosylated CFTR (band C) up to 20% of WT levels. Sustained rescue in the presence of brefeldin A shows the involvement of a post-Golgi compartment in murine F508del CFTR degradation, as was shown earlier for its human counterpart. Our data show that proteasome inhibitors are promising candidate compounds for improving rescue of human F508del CFTR function, in combination with available correctors and potentiators.
Collapse
Affiliation(s)
- Martina Wilke
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
46
|
Lubiprostone targets prostanoid signaling and promotes ion transporter trafficking, mucus exocytosis, and contractility. Dig Dis Sci 2012; 57:2826-45. [PMID: 22923315 PMCID: PMC3482986 DOI: 10.1007/s10620-012-2352-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 07/28/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Lubiprostone is a chloride channel activator in clinical use for the treatment of chronic constipation, but the mechanisms of action of the drug are poorly understood. The aim of this study was to determine whether lubiprostone exerts secretory effects in the intestine by membrane trafficking of ion transporters and associated machinery. METHODS Immunolabeling and quantitative fluorescence intensity were used to examine lubiprostone-induced trafficking of the cystic fibrosis transmembrane conductance regulator (CFTR), sodium/potassium-coupled chloride co-transporter 1 (NKCC1), electrogenic sodium/bicarbonate co-transporter 1 (NBCe1), down-regulated in adenoma (DRA), putative anion transporter 1 (PAT1), sodium/proton exchanger 3 (NHE3), Ca(2+) activated chloride channel 2 (ClC-2) serotonin and its transporter SERT, E prostanoid receptors EP4 and EP1, sodium/potassium ATPase (Na-K-ATPase) and protein kinase A (PKA). The effects of lubiprostone on mucus exocytosis in rat intestine and human rectosigmoid explants were also examined. RESULTS Lubiprostone induced contraction of villi and proximal colonic plicae and membrane trafficking of transporters that was more pronounced in villus/surface cells compared to the crypt. Membrane trafficking was determined by: (1) increased membrane labeling for CFTR, PAT1, NKCC1, and NBCe1 and decreased membrane labeling for NHE3, DRA and ClC-2; (2) increased serotonin, SERT, EP4, EP1 and PKA labeling in enterochromaffin cells; (3) increased SERT, EP4, EP1, PKA and Na-K-ATPase in enterocytes; and (4) increased mucus exocytosis in goblet cells. CONCLUSION These data suggest that lubiprostone can target serotonergic, EP4/PKA and EP1 signaling in surface/villus regions; stimulate membrane trafficking of CFTR/NBCe1/NKCC1 in villus epithelia and PAT1/NBCe1/NKCC1 in colonic surface epithelia; suppress NHE3/DRA trafficking and fluid absorption; and enhance mucus-mobilization and mucosal contractility.
Collapse
|
47
|
Teixeira S, Sá R, Grangeia A, Silva J, Oliveira C, Ferráz L, Alves Â, Paiva S, Barros A, Sousa M. Immunohystochemical analysis of CFTR in normal and disrupted spermatogenesis. Syst Biol Reprod Med 2012; 59:53-9. [DOI: 10.3109/19396368.2012.718851] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
48
|
Abstract
Mucus pathology in cystic fibrosis (CF) has been known for as long as the disease has been recognized and is sometimes called mucoviscidosis. The disease is marked by mucus hyperproduction and plugging in many organs, which are usually most fatal in the airways of CF patients, once the problem of meconium ileus at birth is resolved. After the CF gene, CFTR, was cloned and its protein product identified as a cAMP-regulated Cl(-) channel, causal mechanisms underlying the strong mucus phenotype of the disease became obscure. Here we focus on mucin genes and polymeric mucin glycoproteins, examining their regulation and potential relationships to a dysfunctional cystic fibrosis transmembrane conductance regulator (CFTR). Detailed examination of CFTR expression in organs and different cell types indicates that changes in CFTR expression do not always correlate with the severity of CF disease or mucus accumulation. Thus, the mucus hyperproduction that typifies CF does not appear to be a direct cause of a defective CFTR but, rather, to be a downstream consequence. In organs like the lung, up-regulation of mucin gene expression by inflammation results from chronic infection; however, in other instances and organs, the inflammation may have a non-infectious origin. The mucus plugging phenotype of the β-subunit of the epithelial Na(+) channel (βENaC)-overexpressing mouse is proving to be an archetypal example of this kind of inflammation, with a dehydrated airway surface/concentrated mucus gel apparently providing the inflammatory stimulus. Data indicate that the luminal HCO(3)(-) deficiency recently described for CF epithelia may also provide such a stimulus, perhaps by causing a mal-maturation of mucins as they are released onto luminal surfaces. In any event, the path between CFTR dysfunction and mucus hyperproduction has proven tortuous, and its unraveling continues to offer its own twists and turns, along with fascinating glimpses into biology.
Collapse
Affiliation(s)
- Silvia M Kreda
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, NC 27517-7248, USA
| | | | | |
Collapse
|
49
|
Jin PY, Lu YC, Li L, Han QF. Co action of CFTR and AQP1 increases permeability of peritoneal epithelial cells on estrogen-induced ovarian hyper stimulation syndrome. BMC Cell Biol 2012; 13:23. [PMID: 22928917 PMCID: PMC3443456 DOI: 10.1186/1471-2121-13-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2011] [Accepted: 08/22/2012] [Indexed: 11/12/2022] Open
Abstract
Background Ovarian hyper stimulation syndrome (OHSS) is an iatrogenic complication associated with fertility drugs. It is characterized by increased vascular permeability and substantial fluid shift with accumulation in the body cavity. The pathogenesis of OHSS remains obscure, and no definitive treatments are currently available. Results Using western blot and short-circuit current (Isc) techniques, we investigate the potential coactions of analysis in cystic fibrosis transmembrane conductance regulator (CFTR) and aquaporin 1 (AQP1) on the hyper permeability of body cavity peritoneal epithelial cells in the pathogenesis of OHSS. The rats develop OHSS symptoms, with the up regulation of both CFTR and AQP1 expression and enhanced CFTR channel activity in peritoneal epithelial cells, can also be mimicked by administration of estrogen, alone in ovariectomized rats. Administration of progesterone suppresses CFTR activity, OHSS symptoms as well as CFTR and AQP1 expression. Besides, AQP1 inhibitor, HgCl2, can suppress CFTR channel activity. Therefore, antisera against CFTR or AQP1 to OHSS animals may result in alleviation of the symptom. Conclusion This study confirms the coactions of CFTR and AQP1 play a critical role in the development and progression of increased peritoneal epithelial permeability in severe OHSS. These findings may provide grounds for ameliorating assisted reproduction treatment strategy to reduce the risk of OHSS in in vitro fertilization (IVF).
Collapse
Affiliation(s)
- Pei-Yin Jin
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | | | | | | |
Collapse
|
50
|
Fan S, Harfoot N, Bartolo RC, Butt AG. CFTR is restricted to a small population of high expresser cells that provide a forskolin-sensitive transepithelial Cl- conductance in the proximal colon of the possum, Trichosurus vulpecula. ACTA ACUST UNITED AC 2012; 215:1218-30. [PMID: 22399668 DOI: 10.1242/jeb.061176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is central to anion secretion in both the possum and eutherian small intestine. Here, we investigated its role in the possum proximal colon, which has novel transport properties compared with the eutherian proximal colon. Despite considerable CFTR expression, high doses of the CFTR activator forskolin (EC(50)≈10 μmol l(-1)) were required for a modest, CFTR-dependent increase in short-circuit current (I(sc)) in the proximal colon. Presumably, this is because CFTR is restricted to the apical membrane of a small population of CFTR high expresser (CHE) cells in the surface and upper crypt epithelium. Furthermore, although the forskolin-stimulated I(sc) was dependent on serosal Na(+), Cl(-) and HCO(3)(-), consistent with anion secretion, inhibition of the basolateral Na-K-2Cl(-) (NKCC1) or Na-HCO(3) (pNBCe1) cotransporters did not prevent it. Therefore, although NKCC1 and pNBCe1 are expressed in the colonic epithelium they do not appear to be expressed in CHE cells. At low doses (IC(50)≈1 μmol l(-1)), forskolin also decreased the transepithelial conductance (G(T)) of the colon through inhibition of a 4,4'-diisothiocyano-2,2'-stilbenedisulphonic acid-sensitive anion conductance in the basolateral membrane of the CHE cells. This conductance is arranged in series with CFTR in the CHE cells and, therefore, the CHE cells provide a transepithelial Cl(-) conductance for passive Cl(-) absorption across the epithelium. Inhibition of the basolateral Cl(-) conductance of the CHE cells by forskolin will inhibit Na(+) absorption by restricting the movement of its counter-ion Cl(-), assisting in the conversion of the tissue from an absorptive to a secretory state.
Collapse
Affiliation(s)
- Shujun Fan
- Department of Physiology, School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | | | | | | |
Collapse
|