1
|
Wang Y, Shen S, Wu Z, Tao W, Zhang W, Yu P. Genome-wide analysis of Triticum aestivum bromodomain gene family and expression analysis under salt stress. PLANTA 2024; 260:117. [PMID: 39404907 DOI: 10.1007/s00425-024-04549-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/07/2024] [Indexed: 10/27/2024]
Abstract
MAIN CONCLUSION This study identified 82 wheat BRD genes, revealing both conserved evolutionary and functional characteristics across plant species and novel features specific to wheat. GTE8-12 cluster TaBRDs were found as positive response to salt stress. Bromodomain-containing proteins (BRDs) are crucial in histone acetylation "reading" and chromatin remodeling in eukaryotes. Despite some of their members showing importance in various biological processes in plants, our understanding of the BRD family in wheat (Triticum aestivum) remains limited. This study comprehensively analyzes the T. aestivum BRD (TaBRD) family. We identified 82 TaBRD genes in wheat genome encoding hydrophobic proteins with a conserved pocket structure. Phylogenetic analysis classified these genes into 16 distinct clusters, with conserved protein motifs and gene structures within clusters but diverse patterns across clusters. Gene duplication analysis revealed that whole-genome or segmental duplication events were the primary expansion mechanism for the TaBRD family, with purifying selection acting on these genes. Subcellular localization and Gene Ontology (GO) analyses indicated that TaBRD proteins are predominantly nuclear-localized and involved in transcription regulation and RNA metabolism. Promoter analysis and interaction network prediction suggested diverse regulatory mechanisms for TaBRDs. Notably, TaBRDs from the GTE8-12 cluster were enriched with cis-elements responsive to abscisic acid (ABA), methyl jasmonate (MeJA), and light, implying their involvement in physiological functions and abiotic stress responses. Expression analysis confirmed tissue-specific patterns and responsiveness to salinity stress. This comprehensive study enhances our understanding of the BRD family in higher plants and provides a foundation for developing salt-tolerant wheat varieties.
Collapse
Affiliation(s)
- Yueduo Wang
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, China
| | - Shenghai Shen
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, China
- Division of Life Science, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Zhaoming Wu
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, China
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Weiqi Tao
- Marine College, Shandong University, Weihai, 264209, China
- Research Center for Biological Adaptability in Space Environment, Institute of Space Sciences, Shandong University, Weihai, 264209, China
| | - Wei Zhang
- Marine College, Shandong University, Weihai, 264209, China
- Research Center for Biological Adaptability in Space Environment, Institute of Space Sciences, Shandong University, Weihai, 264209, China
| | - Pei Yu
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, China.
- Marine College, Shandong University, Weihai, 264209, China.
- Research Center for Biological Adaptability in Space Environment, Institute of Space Sciences, Shandong University, Weihai, 264209, China.
| |
Collapse
|
2
|
Riddihough G, Surridge C, Ladurner AG, Clyne RK, Hodges M, Heinrichs A, Marcinkiewicz K, Ullrich F, Perdigoto C, Osman S, Ciazynska K, Typas D. Looking back at 30 years of Nature Structural & Molecular Biology. Nat Struct Mol Biol 2024; 31:397-403. [PMID: 38499829 DOI: 10.1038/s41594-024-01248-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
|
3
|
Kwan JZ, Nguyen TF, Teves SS. TBP facilitates RNA Polymerase I transcription following mitosis. RNA Biol 2024; 21:42-51. [PMID: 38958280 PMCID: PMC11225926 DOI: 10.1080/15476286.2024.2375097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
The TATA-box binding protein (TBP) is the sole transcription factor common in the initiation complexes of the three major eukaryotic RNA Polymerases (Pol I, II and III). Although TBP is central to transcription by the three RNA Pols in various species, the emergence of TBP paralogs throughout evolution has expanded the complexity in transcription initiation. Furthermore, recent studies have emerged that questioned the centrality of TBP in mammalian cells, particularly in Pol II transcription, but the role of TBP and its paralogs in Pol I transcription remains to be re-evaluated. In this report, we show that in murine embryonic stem cells TBP localizes onto Pol I promoters, whereas the TBP paralog TRF2 only weakly associates to the Spacer Promoter of rDNA, suggesting that it may not be able to replace TBP for Pol I transcription. Importantly, acute TBP depletion does not fully disrupt Pol I occupancy or activity on ribosomal RNA genes, but TBP binding in mitosis leads to efficient Pol I reactivation following cell division. These findings provide a more nuanced role for TBP in Pol I transcription in murine embryonic stem cells.
Collapse
Affiliation(s)
- James Z.J. Kwan
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Thomas F. Nguyen
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Sheila S. Teves
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Liao CC, Wang YS, Pi WC, Wang CH, Wu YM, Chen WY, Hsia KC. Structural convergence endows nuclear transport receptor Kap114p with a transcriptional repressor function toward TATA-binding protein. Nat Commun 2023; 14:5518. [PMID: 37684250 PMCID: PMC10491584 DOI: 10.1038/s41467-023-41206-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
The transcription factor TATA-box binding protein (TBP) modulates gene expression in nuclei. This process requires the involvement of nuclear transport receptors, collectively termed karyopherin-β (Kap-β) in yeast, and various regulatory factors. In previous studies we showed that Kap114p, a Kap-β that mediates nuclear import of yeast TBP (yTBP), modulates yTBP-dependent transcription. However, how Kap114p associates with yTBP to exert its multifaceted functions has remained elusive. Here, we employ single-particle cryo-electron microscopy to determine the structure of Kap114p in complex with the core domain of yTBP (yTBPC). Remarkably, Kap114p wraps around the yTBPC N-terminal lobe, revealing a structure resembling transcriptional regulators in complex with TBP, suggesting convergent evolution of the two protein groups for a common function. We further demonstrate that Kap114p sequesters yTBP away from promoters, preventing a collapse of yTBP dynamics required for yeast responses to environmental stress. Hence, we demonstrate that nuclear transport receptors represent critical elements of the transcriptional regulatory network.
Collapse
Affiliation(s)
- Chung-Chi Liao
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and National Defense Medical Center, Taipei, 11490, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Sen Wang
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Wen-Chieh Pi
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Chun-Hsiung Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Min Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Wei-Yi Chen
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
- Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
| | - Kuo-Chiang Hsia
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and National Defense Medical Center, Taipei, 11490, Taiwan.
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan.
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
| |
Collapse
|
5
|
Manasra S, Kajava AV. Why does the first protein repeat often become the only one? J Struct Biol 2023; 215:108014. [PMID: 37567371 DOI: 10.1016/j.jsb.2023.108014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/06/2023] [Accepted: 08/09/2023] [Indexed: 08/13/2023]
Abstract
Proteins with two similar motifs in tandem are one of the most common cases of tandem repeat proteins. The question arises: why is the first emerged repeat frequently fixed in the process of evolution, despite the ample opportunities to continue its multiplication at the DNA level? To answer this question, we systematically analyzed the structure and function of these proteins. Our analysis showed that, in the vast majority of cases, the structural repetitive units have a two-fold (C2) internal symmetry. These closed structures provide an internal structural limitation for the subsequent growth of the repeat number. Frequently, the units "swap" their secondary structure elements with each other. Moreover, the duplicated domains, in contrast to other tandem repeat proteins, form binding sites for small molecules around the axis of C2 symmetry. Thus, the closure of the C2 structures and the emergence of new functional sites around the axis of C2 symmetry provide plausible explanations for why a repeat, once appeared, becomes fixed in the evolutionary process. We have placed these structures within the general structural classification of tandem repeat proteins, classifying them as either Class IV or V depending on the size of the repetitive unit.
Collapse
Affiliation(s)
- Simona Manasra
- Institute of Bioengineering, ITMO University, Kronverksky Pr. 49, 197101 Saint Petersburg, Russia
| | - Andrey V Kajava
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), UMR 5237 CNRS, Université Montpellier, 1919 Route de Mende, Cedex 5, 34293 Montpellier, France.
| |
Collapse
|
6
|
Savinkova LK, Sharypova EB, Kolchanov NA. On the Role of TATA Boxes and TATA-Binding Protein in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2023; 12:1000. [PMID: 36903861 PMCID: PMC10005294 DOI: 10.3390/plants12051000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/13/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
For transcription initiation by RNA polymerase II (Pol II), all eukaryotes require assembly of basal transcription machinery on the core promoter, a region located approximately in the locus spanning a transcription start site (-50; +50 bp). Although Pol II is a complex multi-subunit enzyme conserved among all eukaryotes, it cannot initiate transcription without the participation of many other proteins. Transcription initiation on TATA-containing promoters requires the assembly of the preinitiation complex; this process is triggered by an interaction of TATA-binding protein (TBP, a component of the general transcription factor TFIID (transcription factor II D)) with a TATA box. The interaction of TBP with various TATA boxes in plants, in particular Arabidopsis thaliana, has hardly been investigated, except for a few early studies that addressed the role of a TATA box and substitutions in it in plant transcription systems. This is despite the fact that the interaction of TBP with TATA boxes and their variants can be used to regulate transcription. In this review, we examine the roles of some general transcription factors in the assembly of the basal transcription complex, as well as functions of TATA boxes of the model plant A. thaliana. We review examples showing not only the involvement of TATA boxes in the initiation of transcription machinery assembly but also their indirect participation in plant adaptation to environmental conditions in responses to light and other phenomena. Examples of an influence of the expression levels of A. thaliana TBP1 and TBP2 on morphological traits of the plants are also examined. We summarize available functional data on these two early players that trigger the assembly of transcription machinery. This information will deepen the understanding of the mechanisms underlying transcription by Pol II in plants and will help to utilize the functions of the interaction of TBP with TATA boxes in practice.
Collapse
|
7
|
Amack S, Ferreira SS, Antunes MS. Tuning the Transcriptional Activity of the CaMV 35S Promoter in Plants by Single-Nucleotide Changes in the TATA Box. ACS Synth Biol 2023; 12:178-185. [PMID: 36563338 PMCID: PMC9872816 DOI: 10.1021/acssynbio.2c00457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Indexed: 12/24/2022]
Abstract
Synthetic biology uses genetically encoded devices and circuits to implement novel complex functions in living cells and organisms. A hallmark of these genetic circuits is the interaction among their individual parts, according to predefined rules, to process cellular information and produce a circuit output or response. As the number of individual components in a genetic circuit increases, so does the number of interactions needed to achieve the correct behavior, and hence, a greater need to fine-tune the levels of expression of each component. Transcriptional promoters play a key regulatory role in genetic circuits, as they influence the levels of RNA and proteins produced. In multicellular organisms, such as plants, they can also determine developmental, spatial, and tissue-specific patterns of gene expression. The 35S promoter from the Cauliflower Mosaic Virus (CaMV 35S) is widely used in plant biotechnology to direct high levels of gene expression in a variety of plant species. We produced a library of 21 variants of the CaMV 35S promoter by introducing all single nucleotide substitutions to the promoter's TATA box sequence. We then characterized the activity of all variants in homozygous transgenic plants and showed that some of these variants have lower activity than the wild type in plants. These promoter variants could be used to fine-tune the behavior of synthetic genetic circuits in plants.
Collapse
Affiliation(s)
- Stephanie
C. Amack
- Department
of Biology, University of North Texas, Denton, Texas 76203, United States
- BioDiscovery
Institute, University of North Texas, Denton, Texas 76203, United States
| | - Savio S. Ferreira
- Department
of Biology, University of North Texas, Denton, Texas 76203, United States
- BioDiscovery
Institute, University of North Texas, Denton, Texas 76203, United States
| | - Mauricio S. Antunes
- Department
of Biology, University of North Texas, Denton, Texas 76203, United States
- BioDiscovery
Institute, University of North Texas, Denton, Texas 76203, United States
| |
Collapse
|
8
|
Köhler SA, Brandl L, Strissel PL, Gloßner L, Ekici AB, Angeloni M, Ferrazzi F, Bahlinger V, Hartmann A, Beckmann MW, Eckstein M, Strick R. Improved Bladder Tumor RNA Isolation from Archived Tissues Using Methylene Blue for Normalization, Multiplex RNA Hybridization, Sequencing and Subtyping. Int J Mol Sci 2022; 23:ijms231810267. [PMID: 36142180 PMCID: PMC9499321 DOI: 10.3390/ijms231810267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 12/02/2022] Open
Abstract
Methylene blue (MB) is a dye used for histology with clinical importance and intercalates into nucleic acids. After MB staining of formalin fixed paraffin embedded (FFPE) muscle invasive bladder cancer (MIBC) and normal urothelium, specific regions could be microdissected. It is not known if MB influences RNA used for gene expression studies. Therefore, we analyzed MIBC using five different RNA isolation methods comparing patient matched FFPE and fresh frozen (FF) tissues pre-stained with or without MB. We demonstrate a positive impact of MB on RNA integrity with FF tissues using real time PCR with no interference of its chemical properties. FFPE tissues showed no improvement of RNA integrity, which we propose is due to formalin induced nucleotide crosslinks. Using direct multiplex RNA hybridization the best genes for normalization of MIBC and control tissues were identified from 34 reference genes. In addition, 5SrRNA and 5.8SrRNA were distinctive reference genes detecting <200 bp fragments important for mRNA analyses. Using these normalized RNAs from MB stained MIBC and applying multiplex RNA hybridization and mRNA sequencing, a minimal gene expression panel precisely identified luminal and basal MIBC tumor subtypes, important for diagnosis, prognosis and chemotherapy response.
Collapse
Affiliation(s)
- Stefanie A. Köhler
- Laboratory for Molecular Medicine, Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Universitaetsstrasse 21-23, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), University Hospital Erlangen, Östliche Stadtmauerstrasse 30, 91054 Erlangen, Germany
| | - Lisa Brandl
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), University Hospital Erlangen, Östliche Stadtmauerstrasse 30, 91054 Erlangen, Germany
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Krankenhausstrasse 8-10, 91054 Erlangen, Germany
| | - Pamela L. Strissel
- Laboratory for Molecular Medicine, Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Universitaetsstrasse 21-23, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), University Hospital Erlangen, Östliche Stadtmauerstrasse 30, 91054 Erlangen, Germany
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Krankenhausstrasse 8-10, 91054 Erlangen, Germany
| | - Laura Gloßner
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), University Hospital Erlangen, Östliche Stadtmauerstrasse 30, 91054 Erlangen, Germany
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Krankenhausstrasse 8-10, 91054 Erlangen, Germany
| | - Arif B. Ekici
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Miriam Angeloni
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), University Hospital Erlangen, Östliche Stadtmauerstrasse 30, 91054 Erlangen, Germany
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Krankenhausstrasse 8-10, 91054 Erlangen, Germany
| | - Fulvia Ferrazzi
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), University Hospital Erlangen, Östliche Stadtmauerstrasse 30, 91054 Erlangen, Germany
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Krankenhausstrasse 8-10, 91054 Erlangen, Germany
- Department of Nephropathology, Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Krankenhausstrasse 8-10, 91054 Erlangen, Germany
| | - Veronika Bahlinger
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), University Hospital Erlangen, Östliche Stadtmauerstrasse 30, 91054 Erlangen, Germany
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Krankenhausstrasse 8-10, 91054 Erlangen, Germany
| | - Arndt Hartmann
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), University Hospital Erlangen, Östliche Stadtmauerstrasse 30, 91054 Erlangen, Germany
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Krankenhausstrasse 8-10, 91054 Erlangen, Germany
| | - Matthias W. Beckmann
- Laboratory for Molecular Medicine, Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Universitaetsstrasse 21-23, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), University Hospital Erlangen, Östliche Stadtmauerstrasse 30, 91054 Erlangen, Germany
| | - Markus Eckstein
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), University Hospital Erlangen, Östliche Stadtmauerstrasse 30, 91054 Erlangen, Germany
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Krankenhausstrasse 8-10, 91054 Erlangen, Germany
| | - Reiner Strick
- Laboratory for Molecular Medicine, Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Universitaetsstrasse 21-23, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), University Hospital Erlangen, Östliche Stadtmauerstrasse 30, 91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-91318536671
| |
Collapse
|
9
|
Role of the TATA-box binding protein (TBP) and associated family members in transcription regulation. Gene X 2022; 833:146581. [PMID: 35597524 DOI: 10.1016/j.gene.2022.146581] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/18/2022] [Accepted: 05/16/2022] [Indexed: 11/20/2022] Open
Abstract
The assembly of transcription complexes on eukaryotic promoters involves a series of steps, including chromatin remodeling, recruitment of TATA-binding protein (TBP)-containing complexes, the RNA polymerase II holoenzyme, and additional basal transcription factors. This review describes the transcriptional regulation by TBP and its corresponding homologs that constitute the TBP family and their interactions with promoter DNA. The C-terminal core domain of TBP is highly conserved and contains two structural repeats that fold into a saddle-like structure, essential for the interaction with the TATA-box on DNA. Based on the TBP C-terminal core domain similarity, three TBP-related factors (TRFs) or TBP-like factors (TBPLs) have been discovered in metazoans, TRF1, TBPL1, and TBPL2. TBP is autoregulated, and once bound to DNA, repressors such as Mot1 induce TBP to dissociate, while other factors such as NC2 and the NOT complex convert the active TBP/DNA complex into inactive, negatively regulating TBP. TFIIA antagonizes the TBP repressors but may be effective only in conjunction with the RNA polymerase II holoenzyme recruitment to the promoter by promoter-bound activators. TRF1 has been discovered inDrosophila melanogasterandAnophelesbut found absent in vertebrates and yeast. TBPL1 cannot bind to the TATA-box; instead, TBPL1 prefers binding to TATA-less promoters. However, TBPL1 shows a stronger association with TFIIA than TBP. The TCT core promoter element is present in most ribosomal protein genes inDrosophilaand humans, and TBPL1 is required for the transcription of these genes. TBP directly participates in the DNA repair mechanism, and TBPL1 mediates cell cycle arrest and apoptosis. TBPL2 is closely related to its TBP paralog, showing 95% sequence similarity with the TBP core domain. Like TBP, TBPL2 also binds to the TATA-box and shows interactions with TFIIA, TFIIB, and other basal transcription factors. Despite these advances, much remains to be explored in this family of transcription factors.
Collapse
|
10
|
McIntosh CS, Li D, Wilton SD, Aung-Htut MT. Polyglutamine Ataxias: Our Current Molecular Understanding and What the Future Holds for Antisense Therapies. Biomedicines 2021; 9:1499. [PMID: 34829728 PMCID: PMC8615177 DOI: 10.3390/biomedicines9111499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023] Open
Abstract
Polyglutamine (polyQ) ataxias are a heterogenous group of neurological disorders all caused by an expanded CAG trinucleotide repeat located in the coding region of each unique causative gene. To date, polyQ ataxias encompass six disorders: spinocerebellar ataxia types 1, 2, 3, 6, 7, and 17 and account for a larger group of disorders simply known as polyglutamine disorders, which also includes Huntington's disease. These diseases are typically characterised by progressive ataxia, speech and swallowing difficulties, lack of coordination and gait, and are unfortunately fatal in nature, with the exception of SCA6. All the polyQ spinocerebellar ataxias have a hallmark feature of neuronal aggregations and share many common pathogenic mechanisms, such as mitochondrial dysfunction, impaired proteasomal function, and autophagy impairment. Currently, therapeutic options are limited, with no available treatments that slow or halt disease progression. Here, we discuss the common molecular and clinical presentations of polyQ spinocerebellar ataxias. We will also discuss the promising antisense oligonucleotide therapeutics being developed as treatments for these devastating diseases. With recent advancements and therapeutic approvals of various antisense therapies, it is envisioned that some of the studies reviewed may progress into clinical trials and beyond.
Collapse
Affiliation(s)
- Craig S. McIntosh
- Molecular Therapy Laboratory, Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute Murdoch University, Discovery Way, Murdoch, WA 6150, Australia; (C.S.M.); (D.L.); (S.D.W.)
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Dunhui Li
- Molecular Therapy Laboratory, Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute Murdoch University, Discovery Way, Murdoch, WA 6150, Australia; (C.S.M.); (D.L.); (S.D.W.)
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Steve D. Wilton
- Molecular Therapy Laboratory, Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute Murdoch University, Discovery Way, Murdoch, WA 6150, Australia; (C.S.M.); (D.L.); (S.D.W.)
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA 6009, Australia
| | - May T. Aung-Htut
- Molecular Therapy Laboratory, Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute Murdoch University, Discovery Way, Murdoch, WA 6150, Australia; (C.S.M.); (D.L.); (S.D.W.)
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA 6009, Australia
| |
Collapse
|
11
|
Abstract
The TATA box-binding protein (TBP) is highly conserved throughout eukaryotes and plays a central role in the assembly of the transcription preinitiation complex (PIC) at gene promoters. TBP binds and bends DNA, and directs adjacent binding of the transcription factors TFIIA and TFIIB for PIC assembly. Here, we show that yeast TBP can bind to a nucleosome containing the Widom-601 sequence and that TBP-nucleosome binding is stabilized by TFIIA. We determine three cryo-electron microscopy (cryo-EM) structures of TBP-nucleosome complexes, two of them containing also TFIIA. TBP can bind to superhelical location (SHL) -6, which contains a TATA-like sequence, but also to SHL +2, which is GC-rich. Whereas binding to SHL -6 can occur in the absence of TFIIA, binding to SHL +2 is only observed in the presence of TFIIA and goes along with detachment of upstream terminal DNA from the histone octamer. TBP-nucleosome complexes are sterically incompatible with PIC assembly, explaining why a promoter nucleosome generally impairs transcription and must be moved before initiation can occur.
Collapse
|
12
|
Ramalingam V, Natarajan M, Johnston J, Zeitlinger J. TATA and paused promoters active in differentiated tissues have distinct expression characteristics. Mol Syst Biol 2021; 17:e9866. [PMID: 33543829 PMCID: PMC7863008 DOI: 10.15252/msb.20209866] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/22/2020] [Accepted: 01/07/2021] [Indexed: 12/18/2022] Open
Abstract
Core promoter types differ in the extent to which RNA polymerase II (Pol II) pauses after initiation, but how this affects their tissue-specific gene expression characteristics is not well understood. While promoters with Pol II pausing elements are active throughout development, TATA promoters are highly active in differentiated tissues. We therefore used a genomics approach on late-stage Drosophila embryos to analyze the properties of promoter types. Using tissue-specific Pol II ChIP-seq, we found that paused promoters have high levels of paused Pol II throughout the embryo, even in tissues where the gene is not expressed, while TATA promoters only show Pol II occupancy when the gene is active. The promoter types are associated with different chromatin accessibility in ATAC-seq data and have different expression characteristics in single-cell RNA-seq data. The two promoter types may therefore be optimized for different properties: paused promoters show more consistent expression when active, while TATA promoters have lower background expression when inactive. We propose that tissue-specific genes have evolved to use two different strategies for their differential expression across tissues.
Collapse
Affiliation(s)
- Vivekanandan Ramalingam
- Stowers Institute for Medical ResearchKansas CityMOUSA
- Department of Pathology and Laboratory MedicineUniversity of Kansas Medical CenterKansas CityKSUSA
- Present address:
Department of GeneticsStanford UniversityStanfordCAUSA
| | - Malini Natarajan
- Stowers Institute for Medical ResearchKansas CityMOUSA
- Present address:
Department of Molecular Biology, Cell Biology and BiochemistryBrown UniversityProvidenceRIUSA
| | - Jeff Johnston
- Stowers Institute for Medical ResearchKansas CityMOUSA
- Present address:
Center for Pediatric Genomic MedicineChildren's MercyKansas CityMOUSA
| | - Julia Zeitlinger
- Stowers Institute for Medical ResearchKansas CityMOUSA
- Department of Pathology and Laboratory MedicineUniversity of Kansas Medical CenterKansas CityKSUSA
| |
Collapse
|
13
|
Liao CC, Shankar S, Pi WC, Chang CC, Ahmed GR, Chen WY, Hsia KC. Karyopherin Kap114p-mediated trans-repression controls ribosomal gene expression under saline stress. EMBO Rep 2020; 21:e48324. [PMID: 32484313 DOI: 10.15252/embr.201948324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 04/16/2020] [Accepted: 04/30/2020] [Indexed: 01/01/2023] Open
Abstract
Nuclear accessibility of transcription factors controls gene expression, co-regulated by Ran-dependent nuclear localization and a competitive regulatory network. Here, we reveal that nuclear import factor-facilitated transcriptional repression attenuates ribosome biogenesis under chronic salt stress. Kap114p, one of the karyopherin-βs (Kap-βs) that mediates nuclear import of yeast TATA-binding protein (yTBP), exhibits a yTBP-binding affinity four orders of magnitude greater than its counterparts and suppresses binding of yTBP with DNA. Our crystal structure of Kap114p reveals an extensively negatively charged concave surface, accounting for high-affinity basic-protein binding. KAP114 knockout in yeast leads to a high-salt growth defect, with transcriptomic analyses revealing that Kap114p modulates expression of genes associated with ribosomal biogenesis by suppressing yTBP binding to target promoters, a trans-repression mechanism we attribute to reduced nuclear Ran levels under salinity stress. Our findings reveal that Ran integrates the nuclear transport pathway and transcription regulatory network, allowing yeast to respond to environmental stresses.
Collapse
Affiliation(s)
- Chung-Chi Liao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Sahana Shankar
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Wen-Chieh Pi
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Chia Chang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | | | - Wei-Yi Chen
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Kuo-Chiang Hsia
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.,Institute of Biochemistry and Molecular Biology, College of Life Sciences, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
14
|
Kramm K, Schröder T, Gouge J, Vera AM, Gupta K, Heiss FB, Liedl T, Engel C, Berger I, Vannini A, Tinnefeld P, Grohmann D. DNA origami-based single-molecule force spectroscopy elucidates RNA Polymerase III pre-initiation complex stability. Nat Commun 2020; 11:2828. [PMID: 32504003 PMCID: PMC7275037 DOI: 10.1038/s41467-020-16702-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 05/13/2020] [Indexed: 01/03/2023] Open
Abstract
The TATA-binding protein (TBP) and a transcription factor (TF) IIB-like factor are important constituents of all eukaryotic initiation complexes. The reason for the emergence and strict requirement of the additional initiation factor Bdp1 in the RNA polymerase (RNAP) III system, however, remained elusive. A poorly studied aspect in this context is the effect of DNA strain arising from DNA compaction and transcriptional activity on initiation complex formation. We made use of a DNA origami-based force clamp to follow the assembly of human initiation complexes in the RNAP II and RNAP III systems at the single-molecule level under piconewton forces. We demonstrate that TBP-DNA complexes are force-sensitive and TFIIB is sufficient to stabilise TBP on a strained promoter. In contrast, Bdp1 is the pivotal component that ensures stable anchoring of initiation factors, and thus the polymerase itself, in the RNAP III system. Thereby, we offer an explanation for the crucial role of Bdp1 for the high transcriptional output of RNAP III.
Collapse
Affiliation(s)
- Kevin Kramm
- Single-Molecule Biochemistry Lab, Institute of Microbiology and Archaea Centre, University of Regensburg, 93053, Regensburg, Germany
| | - Tim Schröder
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Jerome Gouge
- Division of Structural Biology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Andrés Manuel Vera
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Kapil Gupta
- Bristol Synthetic Biology Centre BrisSynBio, Biomedical Sciences, University of Bristol, 1 Tankard's Close, Clifton, BS8 1TD, UK
| | - Florian B Heiss
- Regensburg Center of Biochemistry (RCB), University of Regensburg, 93053, Regensburg, Germany
| | - Tim Liedl
- Faculty of Physics and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität München, 80539, Munich, Germany
| | - Christoph Engel
- Regensburg Center of Biochemistry (RCB), University of Regensburg, 93053, Regensburg, Germany
| | - Imre Berger
- Bristol Synthetic Biology Centre BrisSynBio, Biomedical Sciences, University of Bristol, 1 Tankard's Close, Clifton, BS8 1TD, UK
| | - Alessandro Vannini
- Division of Structural Biology, The Institute of Cancer Research, London, SW7 3RP, UK
- Human Technopole Foundation, Centre of Structural Biology, 20157, Milan, Italy
| | - Philip Tinnefeld
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Dina Grohmann
- Single-Molecule Biochemistry Lab, Institute of Microbiology and Archaea Centre, University of Regensburg, 93053, Regensburg, Germany.
- Regensburg Center of Biochemistry (RCB), University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
15
|
Molecular determinants underlying functional innovations of TBP and their impact on transcription initiation. Nat Commun 2020; 11:2384. [PMID: 32404905 PMCID: PMC7221094 DOI: 10.1038/s41467-020-16182-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023] Open
Abstract
TATA-box binding protein (TBP) is required for every single transcription event in archaea and eukaryotes. It binds DNA and harbors two repeats with an internal structural symmetry that show sequence asymmetry. At various times in evolution, TBP has acquired multiple interaction partners and different organisms have evolved TBP paralogs with additional protein regions. Together, these observations raise questions of what molecular determinants (i.e. key residues) led to the ability of TBP to acquire new interactions, resulting in an increasingly complex transcriptional system in eukaryotes. We present a comprehensive study of the evolutionary history of TBP and its interaction partners across all domains of life, including viruses. Our analysis reveals the molecular determinants and suggests a unified and multi-stage evolutionary model for the functional innovations of TBP. These findings highlight how concerted chemical changes on a conserved structural scaffold allow for the emergence of complexity in a fundamental biological process. The TATA-box binding protein (TBP) is required for transcription initiation in archaea and eukaryotes. Here the authors delineate how TBP’s function has evolved new functional features through context-dependent interactions with various protein partners.
Collapse
|
16
|
Abstract
RNA polymerase II (Pol II) transcribes all protein-coding genes and many noncoding RNAs in eukaryotic genomes. Although Pol II is a complex, 12-subunit enzyme, it lacks the ability to initiate transcription and cannot consistently transcribe through long DNA sequences. To execute these essential functions, an array of proteins and protein complexes interact with Pol II to regulate its activity. In this review, we detail the structure and mechanism of over a dozen factors that govern Pol II initiation (e.g., TFIID, TFIIH, and Mediator), pausing, and elongation (e.g., DSIF, NELF, PAF, and P-TEFb). The structural basis for Pol II transcription regulation has advanced rapidly in the past decade, largely due to technological innovations in cryoelectron microscopy. Here, we summarize a wealth of structural and functional data that have enabled a deeper understanding of Pol II transcription mechanisms; we also highlight mechanistic questions that remain unanswered or controversial.
Collapse
Affiliation(s)
- Allison C Schier
- Department of Biochemistry, University of Colorado, Boulder, Colorado 80303, USA
| | - Dylan J Taatjes
- Department of Biochemistry, University of Colorado, Boulder, Colorado 80303, USA
| |
Collapse
|
17
|
Lamprecht-Grandío M, Cortesão M, Mirete S, de la Cámara MB, de Figueras CG, Pérez-Pantoja D, White JJ, Farías ME, Rosselló-Móra R, González-Pastor JE. Novel Genes Involved in Resistance to Both Ultraviolet Radiation and Perchlorate From the Metagenomes of Hypersaline Environments. Front Microbiol 2020; 11:453. [PMID: 32292392 PMCID: PMC7135895 DOI: 10.3389/fmicb.2020.00453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/03/2020] [Indexed: 12/25/2022] Open
Abstract
Microorganisms that thrive in hypersaline environments on the surface of our planet are exposed to the harmful effects of ultraviolet radiation. Therefore, for their protection, they have sunscreen pigments and highly efficient DNA repair and protection systems. The present study aimed to identify new genes involved in UV radiation resistance from these microorganisms, many of which cannot be cultured in the laboratory. Thus, a functional metagenomic approach was used and for this, small-insert libraries were constructed with DNA isolated from microorganisms of high-altitude Andean hypersaline lakes in Argentina (Diamante and Ojo Seco lakes, 4,589 and 3,200 m, respectively) and from the Es Trenc solar saltern in Spain. The libraries were hosted in a UV radiation-sensitive strain of Escherichia coli (recA mutant) and they were exposed to UVB. The resistant colonies were analyzed and as a result, four clones were identified with environmental DNA fragments containing five genes that conferred resistance to UV radiation in E. coli. One gene encoded a RecA-like protein, complementing the mutation in recA that makes the E. coli host strain more sensitive to UV radiation. Two other genes from the same DNA fragment encoded a TATA-box binding protein and an unknown protein, both responsible for UV resistance. Interestingly, two other genes from different and remote environments, the Ojo Seco Andean lake and the Es Trenc saltern, encoded two hypothetical proteins that can be considered homologous based on their significant amino acid similarity (49%). All of these genes also conferred resistance to 4-nitroquinoline 1-oxide (4-NQO), a compound that mimics the effect of UV radiation on DNA, and also to perchlorate, a powerful oxidant that can induce DNA damage. Furthermore, the hypothetical protein from the Es Trenc salterns was localized as discrete foci possibly associated with damaged sites in the DNA in cells treated with 4-NQO, so it could be involved in the repair of damaged DNA. In summary, novel genes involved in resistance to UV radiation, 4-NQO and perchlorate have been identified in this work and two of them encoding hypothetical proteins that could be involved in DNA damage repair activities not previously described.
Collapse
Affiliation(s)
| | - Marta Cortesão
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| | - Salvador Mirete
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| | | | | | - Danilo Pérez-Pantoja
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Santiago, Chile
| | - Joseph John White
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| | - María Eugenia Farías
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), Centro Científico Tecnológico, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Argentina
| | - Ramon Rosselló-Móra
- Marine Microbiology Group, Department of Ecology and Marine Resources, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain
| | | |
Collapse
|
18
|
Comparison of High-Throughput Sequencing for Phage Display Peptide Screening on Two Commercially Available Platforms. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-019-09858-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Host Transcription Factors in Hepatitis B Virus RNA Synthesis. Viruses 2020; 12:v12020160. [PMID: 32019103 PMCID: PMC7077322 DOI: 10.3390/v12020160] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 02/06/2023] Open
Abstract
The hepatitis B virus (HBV) chronically infects over 250 million people worldwide and is one of the leading causes of liver cancer and hepatocellular carcinoma. HBV persistence is due in part to the highly stable HBV minichromosome or HBV covalently closed circular DNA (cccDNA) that resides in the nucleus. As HBV replication requires the help of host transcription factors to replicate, focusing on host protein–HBV genome interactions may reveal insights into new drug targets against cccDNA. The structural details on such complexes, however, remain poorly defined. In this review, the current literature regarding host transcription factors’ interactions with HBV cccDNA is discussed.
Collapse
|
20
|
Identification and Characterization of Cis-Regulatory Elements for Photoreceptor-Type-Specific Transcription in ZebraFish. Methods Mol Biol 2020; 2092:123-145. [PMID: 31786786 DOI: 10.1007/978-1-0716-0175-4_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Tissue-specific or cell-type-specific transcription of protein-coding genes is controlled by both trans-regulatory elements (TREs) and cis-regulatory elements (CREs). However, it is challenging to identify TREs and CREs, which are unknown for most genes. Here, we describe a protocol for identifying two types of transcription-activating CREs-core promoters and enhancers-of zebrafish photoreceptor type-specific genes. This protocol is composed of three phases: bioinformatic prediction, experimental validation, and characterization of the CREs. To better illustrate the principles and logic of this protocol, we exemplify it with the discovery of the core promoter and enhancer of the mpp5b apical polarity gene (also known as ponli), whose red, green, and blue (RGB) cone-specific transcription requires its enhancer, a member of the rainbow enhancer family. While exemplified with an RGB-cone-specific gene, this protocol is general and can be used to identify the core promoters and enhancers of other protein-coding genes.
Collapse
|
21
|
Stelling AL, Liu AY, Zeng W, Salinas R, Schumacher MA, Al-Hashimi HM. Infrared Spectroscopic Observation of a G-C + Hoogsteen Base Pair in the DNA:TATA-Box Binding Protein Complex Under Solution Conditions. Angew Chem Int Ed Engl 2019; 58:12010-12013. [PMID: 31268220 PMCID: PMC6719543 DOI: 10.1002/anie.201902693] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/24/2019] [Indexed: 12/22/2022]
Abstract
Hoogsteen DNA base pairs (bps) are an alternative base pairing to canonical Watson-Crick bps and are thought to play important biochemical roles. Hoogsteen bps have been reported in a handful of X-ray structures of protein-DNA complexes. However, there are several examples of Hoogsteen bps in crystal structures that form Watson-Crick bps when examined under solution conditions. Furthermore, Hoogsteen bps can sometimes be difficult to resolve in DNA:protein complexes by X-ray crystallography due to ambiguous electron density and by solution-state NMR spectroscopy due to size limitations. Here, using infrared spectroscopy, we report the first direct solution-state observation of a Hoogsteen (G-C+ ) bp in a DNA:protein complex under solution conditions with specific application to DNA-bound TATA-box binding protein. These results support a previous assignment of a G-C+ Hoogsteen bp in the complex, and indicate that Hoogsteen bps do indeed exist under solution conditions in DNA:protein complexes.
Collapse
Affiliation(s)
- Allison L. Stelling
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710 (USA)
| | - Amy Y. Liu
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710 (USA)
| | - Wenjie Zeng
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710 (USA)
| | - Raul Salinas
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710 (USA)
| | - Maria A. Schumacher
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710 (USA)
| | - Hashim M. Al-Hashimi
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710 (USA)
- Department of Chemistry, Duke University, Durham, NC 27710 (USA)
| |
Collapse
|
22
|
Stelling AL, Liu AY, Zeng W, Salinas R, Schumacher MA, Al‐Hashimi HM. Infrared Spectroscopic Observation of a G–C
+
Hoogsteen Base Pair in the DNA:TATA‐Box Binding Protein Complex Under Solution Conditions. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Allison L. Stelling
- Department of BiochemistryDuke University Medical Center Durham NC 27710 USA
| | - Amy Y. Liu
- Department of BiochemistryDuke University Medical Center Durham NC 27710 USA
| | - Wenjie Zeng
- Department of BiochemistryDuke University Medical Center Durham NC 27710 USA
| | - Raul Salinas
- Department of BiochemistryDuke University Medical Center Durham NC 27710 USA
| | - Maria A. Schumacher
- Department of BiochemistryDuke University Medical Center Durham NC 27710 USA
| | - Hashim M. Al‐Hashimi
- Department of BiochemistryDuke University Medical Center Durham NC 27710 USA
- Department of ChemistryDuke University Durham NC 27710 USA
| |
Collapse
|
23
|
Kramm K, Endesfelder U, Grohmann D. A Single-Molecule View of Archaeal Transcription. J Mol Biol 2019; 431:4116-4131. [PMID: 31207238 DOI: 10.1016/j.jmb.2019.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/27/2019] [Accepted: 06/06/2019] [Indexed: 01/03/2023]
Abstract
The discovery of the archaeal domain of life is tightly connected to an in-depth analysis of the prokaryotic RNA world. In addition to Carl Woese's approach to use the sequence of the 16S rRNA gene as phylogenetic marker, the finding of Karl Stetter and Wolfram Zillig that archaeal RNA polymerases (RNAPs) were nothing like the bacterial RNAP but are more complex enzymes that resemble the eukaryotic RNAPII was one of the key findings supporting the idea that archaea constitute the third major branch on the tree of life. This breakthrough in transcriptional research 40years ago paved the way for in-depth studies of the transcription machinery in archaea. However, although the archaeal RNAP and the basal transcription factors that fine-tune the activity of the RNAP during the transcription cycle are long known, we still lack information concerning the architecture and dynamics of archaeal transcription complexes. In this context, single-molecule measurements were instrumental as they provided crucial insights into the process of transcription initiation, the architecture of the initiation complex and the dynamics of mobile elements of the RNAP. In this review, we discuss single-molecule approaches suitable to examine molecular mechanisms of transcription and highlight findings that shaped our understanding of the archaeal transcription apparatus. We furthermore explore the possibilities and challenges of next-generation single-molecule techniques, for example, super-resolution microscopy and single-molecule tracking, and ask whether these approaches will ultimately allow us to investigate archaeal transcription in vivo.
Collapse
Affiliation(s)
- Kevin Kramm
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Ulrike Endesfelder
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Str. 16, 35043 Marburg, Germany
| | - Dina Grohmann
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany.
| |
Collapse
|
24
|
Bartold K, Pietrzyk-Le A, Lisowski W, Golebiewska K, Siklitskaya A, Borowicz P, Shao S, D'Souza F, Kutner W. Promoting bioanalytical concepts in genetics: A TATA box molecularly imprinted polymer as a small isolated fragment of the DNA damage repairing system. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:1-10. [PMID: 30948043 DOI: 10.1016/j.msec.2019.02.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/01/2019] [Accepted: 02/12/2019] [Indexed: 11/25/2022]
Abstract
We demonstrate that a new, stable, artificial TATA (T - thymine, A - adenine) box is recognized by amino acids recognizing the natural TATA box. Here, the former mimicked, as a minimal motif, oligodeoxyribonucleotide interactions with amino acids of proteins involved in repairing of damaged dsDNA. By electropolymerization, we molecularly imprinted non-labeled 5'-TATAAA-3' via Watson-Crick nucleobase pairing, thus synthesizing, in a one-step procedure, the hexakis[bis(2,2'-bithien-5-yl)] TTTATA and simultaneously hybridizing it with the 5'-TATAAA-3' template. That is, a stable dsDNA analog having a controlled sequence of nucleobases was formed in the molecularly imprinted polymer (MIP). The 5'-TATAAA-3' was by the X-ray photoelectron spectroscopy (XPS) depth profiling found to be homogeneously distributed both in the bulk of the MIP film and on its surface. The 5'-TATAAA-3' concentration in the 2.8(±0.2)-nm relative surface area, ~140-nm thick MIP film was 2.1 mM. The MIP served as a matrix of an artificial TATA box with the TATAAA-promoter sequence. We comprehensively characterized this artificial DNA hybrid by the polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS) and X-ray photoelectron spectroscopy (XPS). Further, we examined interactions of DNA repairing TATA binding protein (TBP) amino acids with the artificial TATA box prepared. That is, molecules of l-phenylalanine aromatic amino acid were presumably engaged in stacking interactions with nucleobase steps of this artificial TATA box. The nitrogen-to‑phosphorus atomic % ratio on the surface of the MIP-(5'-TATAAA-3') film increased by ~1.6 times after film immersing in the l-glutamic acid solution, as determined using the XPS depth profiling. Furthermore, l-lysine and l-serine preferentially interacted with the phosphate moiety of 5'-TATAAA-3'. We monitored amino acids interactions with the artificial TATA box using real-time piezoelectric microgravimetry at a quartz crystal microbalance (QCM) and surface plasmon resonance (SPR) spectroscopy under flow injection analysis (FIA) conditions.
Collapse
Affiliation(s)
- Katarzyna Bartold
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | | | - Wojciech Lisowski
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | | | | | - Pawel Borowicz
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Shuai Shao
- Department of Chemistry, University of North Texas, Denton TX, USA
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, Denton TX, USA
| | - Wlodzimierz Kutner
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland; Faculty of Mathematics and Natural Sciences, School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, Poland
| |
Collapse
|
25
|
Transcription initiation factor TBP: old friend new questions. Biochem Soc Trans 2019; 47:411-423. [DOI: 10.1042/bst20180623] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 12/14/2022]
Abstract
Abstract
In all domains of life, the regulation of transcription by DNA-dependent RNA polymerases (RNAPs) is achieved at the level of initiation to a large extent. Whereas bacterial promoters are recognized by a σ-factor bound to the RNAP, a complex set of transcription factors that recognize specific promoter elements is employed by archaeal and eukaryotic RNAPs. These initiation factors are of particular interest since the regulation of transcription critically relies on initiation rates and thus formation of pre-initiation complexes. The most conserved initiation factor is the TATA-binding protein (TBP), which is of crucial importance for all archaeal-eukaryotic transcription initiation complexes and the only factor required to achieve full rates of initiation in all three eukaryotic and the archaeal transcription systems. Recent structural, biochemical and genome-wide mapping data that focused on the archaeal and specialized RNAP I and III transcription system showed that the involvement and functional importance of TBP is divergent from the canonical role TBP plays in RNAP II transcription. Here, we review the role of TBP in the different transcription systems including a TBP-centric discussion of archaeal and eukaryotic initiation complexes. We furthermore highlight questions concerning the function of TBP that arise from these findings.
Collapse
|
26
|
Greber BJ, Nogales E. The Structures of Eukaryotic Transcription Pre-initiation Complexes and Their Functional Implications. Subcell Biochem 2019; 93:143-192. [PMID: 31939151 DOI: 10.1007/978-3-030-28151-9_5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transcription is a highly regulated process that supplies living cells with coding and non-coding RNA molecules. Failure to properly regulate transcription is associated with human pathologies, including cancers. RNA polymerase II is the enzyme complex that synthesizes messenger RNAs that are then translated into proteins. In spite of its complexity, RNA polymerase requires a plethora of general transcription factors to be recruited to the transcription start site as part of a large transcription pre-initiation complex, and to help it gain access to the transcribed strand of the DNA. This chapter reviews the structure and function of these eukaryotic transcription pre-initiation complexes, with a particular emphasis on two of its constituents, the multisubunit complexes TFIID and TFIIH. We also compare the overall architecture of the RNA polymerase II pre-initiation complex with those of RNA polymerases I and III, involved in transcription of ribosomal RNA and non-coding RNAs such as tRNAs and snRNAs, and discuss the general, conserved features that are applicable to all eukaryotic RNA polymerase systems.
Collapse
Affiliation(s)
- Basil J Greber
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA.
- Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Eva Nogales
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA
- Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
27
|
Leading role of TBP in the Establishment of Complexity in Eukaryotic Transcription Initiation Systems. Cell Rep 2017; 21:3941-3956. [DOI: 10.1016/j.celrep.2017.12.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 11/27/2017] [Accepted: 12/12/2017] [Indexed: 01/06/2023] Open
|
28
|
Gupta K, Watson AA, Baptista T, Scheer E, Chambers AL, Koehler C, Zou J, Obong-Ebong I, Kandiah E, Temblador A, Round A, Forest E, Man P, Bieniossek C, Laue ED, Lemke EA, Rappsilber J, Robinson CV, Devys D, Tora L, Berger I. Architecture of TAF11/TAF13/TBP complex suggests novel regulation properties of general transcription factor TFIID. eLife 2017; 6:e30395. [PMID: 29111974 PMCID: PMC5690282 DOI: 10.7554/elife.30395] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/03/2017] [Indexed: 11/13/2022] Open
Abstract
General transcription factor TFIID is a key component of RNA polymerase II transcription initiation. Human TFIID is a megadalton-sized complex comprising TATA-binding protein (TBP) and 13 TBP-associated factors (TAFs). TBP binds to core promoter DNA, recognizing the TATA-box. We identified a ternary complex formed by TBP and the histone fold (HF) domain-containing TFIID subunits TAF11 and TAF13. We demonstrate that TAF11/TAF13 competes for TBP binding with TATA-box DNA, and also with the N-terminal domain of TAF1 previously implicated in TATA-box mimicry. In an integrative approach combining crystal coordinates, biochemical analyses and data from cross-linking mass-spectrometry (CLMS), we determine the architecture of the TAF11/TAF13/TBP complex, revealing TAF11/TAF13 interaction with the DNA binding surface of TBP. We identify a highly conserved C-terminal TBP-interaction domain (CTID) in TAF13, which is essential for supporting cell growth. Our results thus have implications for cellular TFIID assembly and suggest a novel regulatory state for TFIID function.
Collapse
Affiliation(s)
- Kapil Gupta
- BrisSynBio Centre, The School of Biochemistry, Faculty of Biomedical SciencesUniversity of BristolBristolUnited Kingdom
- European Molecular Biology LaboratoryGrenobleFrance
| | | | - Tiago Baptista
- Institut de Génétique et de Biologie Moléculaire et Cellulaire IGBMCIllkirchFrance
- Centre National de la Recherche ScientifiqueIllkirchFrance
- Institut National de la Santé et de la Recherche MédicaleIllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Elisabeth Scheer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire IGBMCIllkirchFrance
- Centre National de la Recherche ScientifiqueIllkirchFrance
- Institut National de la Santé et de la Recherche MédicaleIllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Anna L Chambers
- BrisSynBio Centre, The School of Biochemistry, Faculty of Biomedical SciencesUniversity of BristolBristolUnited Kingdom
| | | | - Juan Zou
- Wellcome Trust Centre for Cell BiologyUniversity of EdinburghEdinburghUnited Kingdom
- Chair of BioanalyticsInstitute of Biotechnology, Technische Universität BerlinBerlinGermany
| | - Ima Obong-Ebong
- Physical and Theoretical Chemistry LaboratoryOxfordUnited Kingdom
| | - Eaazhisai Kandiah
- European Molecular Biology LaboratoryGrenobleFrance
- Institut de Biologie Structurale IBSGrenobleFrance
| | | | - Adam Round
- European Molecular Biology LaboratoryGrenobleFrance
| | - Eric Forest
- Institut de Biologie Structurale IBSGrenobleFrance
| | - Petr Man
- Institute of MicrobiologyThe Czech Academy of SciencesVestecCzech Republic
- BioCeV - Faculty of ScienceCharles UniversityPragueCzech Republic
| | | | - Ernest D Laue
- Department of BiochemistryUniversity of CambridgeCambridgeUnited Kingdom
| | | | - Juri Rappsilber
- Wellcome Trust Centre for Cell BiologyUniversity of EdinburghEdinburghUnited Kingdom
- Chair of BioanalyticsInstitute of Biotechnology, Technische Universität BerlinBerlinGermany
| | - Carol V Robinson
- Physical and Theoretical Chemistry LaboratoryOxfordUnited Kingdom
| | - Didier Devys
- Institut de Génétique et de Biologie Moléculaire et Cellulaire IGBMCIllkirchFrance
- Centre National de la Recherche ScientifiqueIllkirchFrance
- Institut National de la Santé et de la Recherche MédicaleIllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Làszlò Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire IGBMCIllkirchFrance
- Centre National de la Recherche ScientifiqueIllkirchFrance
- Institut National de la Santé et de la Recherche MédicaleIllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Imre Berger
- BrisSynBio Centre, The School of Biochemistry, Faculty of Biomedical SciencesUniversity of BristolBristolUnited Kingdom
| |
Collapse
|
29
|
Murayi R, Chittiboina P. Glucocorticoids in the management of peritumoral brain edema: a review of molecular mechanisms. Childs Nerv Syst 2016; 32:2293-2302. [PMID: 27613642 PMCID: PMC5136308 DOI: 10.1007/s00381-016-3240-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 08/31/2016] [Indexed: 12/15/2022]
Abstract
Peritumoral brain edema (PTBE) is mediated by blood-brain barrier breakdown. PTBE results from interstitial vasogenic brain edema due to vascular endothelial growth factor and other inflammatory products of brain tumors. Glucocorticoids (GCs) are the mainstay for treatment of PTBE despite significant systemic side effects. GCs are thought to affect multiple cell types in the edematous brain. Here, we review preclinical studies of GC effects on edematous brain and review mechanisms underlying GC action on tumor cells, endothelial cells, and astrocytes. GCs may reduce tumor cell viability and suppress vascular endothelial growth factor (VEGF) production in tumor cells. Modulation of expression and distribution of tight junction proteins occludin, claudin-5, and ZO-1 in endothelial cells likely plays a central role in GC action on endothelial cells. GCs may also have an effect on astrocyte angiopoietin production and limited effect on astrocyte aquaporin. A better understanding of these molecular mechanisms may lead to the development of novel therapeutics for management of PTBE with a better side effect profile.
Collapse
Affiliation(s)
- Roger Murayi
- Surgical Neurology Branch, Neurosurgery Unit for Pituitary and Inheritable Diseases, National Institute of Neurological Diseases and Stroke, National Institutes of Health, 10 Center Drive, Room 3D20, Bethesda, MD, 20892-1414, USA
| | - Prashant Chittiboina
- Surgical Neurology Branch, Neurosurgery Unit for Pituitary and Inheritable Diseases, National Institute of Neurological Diseases and Stroke, National Institutes of Health, 10 Center Drive, Room 3D20, Bethesda, MD, 20892-1414, USA.
| |
Collapse
|
30
|
Uncovering ancient transcription systems with a novel evolutionary indicator. Sci Rep 2016; 6:27922. [PMID: 27307191 PMCID: PMC4910066 DOI: 10.1038/srep27922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 05/26/2016] [Indexed: 11/08/2022] Open
Abstract
TBP and TFIIB are evolutionarily conserved transcription initiation factors in archaea and eukaryotes. Information about their ancestral genes would be expected to provide insight into the origin of the RNA polymerase II-type transcription apparatus. In obtaining such information, the nucleotide sequences of current genes of both archaea and eukaryotes should be included in the analysis. However, the present methods of evolutionary analysis require that a subset of the genes should be excluded as an outer group. To overcome this limitation, we propose an innovative concept for evolutionary analysis that does not require an outer group. This approach utilizes the similarity in intramolecular direct repeats present in TBP and TFIIB as an evolutionary measure revealing the degree of similarity between the present offspring genes and their ancestors. Information on the properties of the ancestors and the order of emergence of TBP and TFIIB was also revealed. These findings imply that, for evolutionarily early transcription systems billions of years ago, interaction of RNA polymerase II with transcription initiation factors and the regulation of its enzymatic activity was required prior to the accurate positioning of the enzyme. Our approach provides a new way to discuss mechanistic and system evolution in a quantitative manner.
Collapse
|
31
|
Thirugnanasambandam A, Karthik S, Artheswari G, Gautham N. DNA polymorphism in crystals: three stable conformations for the decadeoxynucleotide d(GCATGCATGC). ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2016; 72:780-8. [PMID: 27303798 DOI: 10.1107/s2059798316006306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/14/2016] [Indexed: 11/11/2022]
Abstract
High-resolution structures of DNA fragments determined using X-ray crystallography or NMR have provided descriptions of a veritable alphabet of conformations. They have also shown that DNA is a flexible molecule, with some sequences capable of adopting two different structures. Here, the first example is presented of a DNA fragment that can assume three different and distinct conformations in crystals. The decanucleotide d(GCATGCATGC) was previously reported to assume a single-stranded double-fold structure. In one of the two crystal structures described here the decamer assumes both the double-fold conformation and, simultaneously, the more conventional B-type double-helical structure. In the other crystal the sequence assumes the A-type double-helical conformation. These results, taken together with CD spectra, which were recorded as the decamer was titrated against four metal ions and spermine, indicate that the molecule may exist as a mixed population of structures in solution. Small differences in the environmental conditions, such as the concentration of metal ion, may decide which of these crystallizes out. The results also support the idea that it may be possible for DNA to change its structure to suit the binding requirements of proteins or drugs.
Collapse
Affiliation(s)
| | - Selvam Karthik
- CAS in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Gunanithi Artheswari
- CAS in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Namasivayam Gautham
- CAS in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
| |
Collapse
|
32
|
Rodríguez-Lima O, García-Gutierrez P, Jiménez L, Zarain-Herzberg Á, Lazzarini R, Landa A. Molecular Cloning of a cDNA Encoding for Taenia solium TATA-Box Binding Protein 1 (TsTBP1) and Study of Its Interactions with the TATA-Box of Actin 5 and Typical 2-Cys Peroxiredoxin Genes. PLoS One 2015; 10:e0141818. [PMID: 26529408 PMCID: PMC4631506 DOI: 10.1371/journal.pone.0141818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/13/2015] [Indexed: 11/18/2022] Open
Abstract
TATA-box binding protein (TBP) is an essential regulatory transcription factor for the TATA-box and TATA-box-less gene promoters. We report the cloning and characterization of a full-length cDNA that encodes a Taenia solium TATA-box binding protein 1 (TsTBP1). Deduced amino acid composition from its nucleotide sequence revealed that encodes a protein of 238 residues with a predicted molecular weight of 26.7 kDa, and a theoretical pI of 10.6. The NH2-terminal domain shows no conservation when compared with to pig and human TBP1s. However, it shows high conservation in size and amino acid identity with taeniids TBP1s. In contrast, the TsTBP1 COOH-terminal domain is highly conserved among organisms, and contains the amino acids involved in interactions with the TATA-box, as well as with TFIIA and TFIIB. In silico TsTBP1 modeling reveals that the COOH-terminal domain forms the classical saddle structure of the TBP family, with one α-helix at the end, not present in pig and human. Native TsTBP1 was detected in T. solium cysticerci´s nuclear extract by western blot using rabbit antibodies generated against two synthetic peptides located in the NH2 and COOH-terminal domains of TsTBP1. These antibodies, through immunofluorescence technique, identified the TBP1 in the nucleus of cells that form the bladder wall of cysticerci of Taenia crassiceps, an organism close related to T. solium. Electrophoretic mobility shift assays using nuclear extracts from T. solium cysticerci and antibodies against the NH2-terminal domain of TsTBP1 showed the interaction of native TsTBP1 with the TATA-box present in T. solium actin 5 (pAT5) and 2-Cys peroxiredoxin (Ts2-CysPrx) gene promoters; in contrast, when antibodies against the anti-COOH-terminal domain of TsTBP1 were used, they inhibited the binding of TsTBP1 to the TATA-box of the pAT5 promoter gene.
Collapse
Affiliation(s)
- Oscar Rodríguez-Lima
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, México D.F., México
| | | | - Lucía Jiménez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, México D.F., México
| | - Ángel Zarain-Herzberg
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, México D.F., México
| | - Roberto Lazzarini
- Departamento de Biología Experimental, Universidad Autónoma Metropolitana–Iztapalapa, México D.F., México
| | - Abraham Landa
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, México D.F., México
- * E-mail:
| |
Collapse
|
33
|
Mondragón E, Maher LJ. Anti-Transcription Factor RNA Aptamers as Potential Therapeutics. Nucleic Acid Ther 2015; 26:29-43. [PMID: 26509637 PMCID: PMC4753637 DOI: 10.1089/nat.2015.0566] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Transcription factors (TFs) are DNA-binding proteins that play critical roles in regulating gene expression. These proteins control all major cellular processes, including growth, development, and homeostasis. Because of their pivotal role, cells depend on proper TF function. It is, therefore, not surprising that TF deregulation is linked to disease. The therapeutic drug targeting of TFs has been proposed as a frontier in medicine. RNA aptamers make interesting candidates for TF modulation because of their unique characteristics. The products of in vitro selection, aptamers are short nucleic acids (DNA or RNA) that bind their targets with high affinity and specificity. Aptamers can be expressed on demand from transgenes and are intrinsically amenable to recognition by nucleic acid-binding proteins such as TFs. In this study, we review several natural prokaryotic and eukaryotic examples of RNAs that modulate the activity of TFs. These examples include 5S RNA, 6S RNA, 7SK, hepatitis delta virus-RNA (HDV-RNA), neuron restrictive silencer element (NRSE)-RNA, growth arrest-specific 5 (Gas5), steroid receptor RNA activator (SRA), trophoblast STAT utron (TSU), the 3' untranslated region of caudal mRNA, and heat shock RNA-1 (HSR1). We then review examples of unnatural RNA aptamers selected to inhibit TFs nuclear factor-kappaB (NF-κB), TATA-binding protein (TBP), heat shock factor 1 (HSF1), and runt-related transcription factor 1 (RUNX1). The field of RNA aptamers for DNA-binding proteins continues to show promise.
Collapse
Affiliation(s)
- Estefanía Mondragón
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine , Rochester, Minnesota
| | - Louis James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine , Rochester, Minnesota
| |
Collapse
|
34
|
Abstract
Transcription of eukaryotic protein-coding genes commences with the assembly of a conserved initiation complex, which consists of RNA polymerase II (Pol II) and the general transcription factors, at promoter DNA. After two decades of research, the structural basis of transcription initiation is emerging. Crystal structures of many components of the initiation complex have been resolved, and structural information on Pol II complexes with general transcription factors has recently been obtained. Although mechanistic details await elucidation, available data outline how Pol II cooperates with the general transcription factors to bind to and open promoter DNA, and how Pol II directs RNA synthesis and escapes from the promoter.
Collapse
|
35
|
Abstract
We report the preparation of millimeter-scale particles by thermal polymerization of liquid monomer capillary bridges to form catenoid-shaped particles that exhibit negative Gaussian curvature. The shape of the capillary bridges and resulting particles can be finely tuned using several addressable parameters: (i) the shape, size, and orientation of lithographic pinning features on the spanned surfaces; (ii) the distance between opposing support surfaces; and (iii) the lateral displacement (shear) of opposing features. The catenoid-shaped particles exhibit controllable optical properties as a result of their concave menisci, the shape of which can be easily manipulated. The particles self assemble in the presence of a condensing liquid (water) to form reversible neck-to-neck pairs and less reversible end-to-end aggregates. We argue that this approach could be scaled down to micrometer dimensions by fabricating an array of micrometer-scale particles. We also argue, with a discussion of dynamic wetting, that these particles will exhibit interesting anisotropic adhesive properties.
Collapse
|
36
|
|
37
|
Furst AL, Hill MG, Barton JK. DNA-modified electrodes fabricated using copper-free click chemistry for enhanced protein detection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:16141-9. [PMID: 24328347 PMCID: PMC3947573 DOI: 10.1021/la403262v] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A method of DNA monolayer formation has been developed using copper-free click chemistry that yields enhanced surface homogeneity and enables variation in the amount of DNA assembled; extremely low-density DNA monolayers, with as little as 5% of the monolayer being DNA, have been formed. These DNA-modified electrodes (DMEs) were characterized visually, with AFM, and electrochemically, and were found to facilitate DNA-mediated reduction of a distally bound redox probe. These low-density monolayers were found to be more homogeneous than traditional thiol-modified DNA monolayers, with greater helix accessibility through an increased surface area-to-volume ratio. Protein binding efficiency of the transcriptional activator TATA-binding protein (TBP) was also investigated on these surfaces and compared to that on DNA monolayers formed with standard thiol-modified DNA. Our low-density monolayers were found to be extremely sensitive to TBP binding, with a signal decrease in excess of 75% for 150 nM protein. This protein was detectable at 4 nM, on the order of its dissociation constant, with our low-density monolayers. The improved DNA helix accessibility and sensitivity of our low-density DNA monolayers to TBP binding reflects the general utility of this method of DNA monolayer formation for DNA-based electrochemical sensor development.
Collapse
Affiliation(s)
- Ariel L. Furst
- Department of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Michael G. Hill
- Department of Chemistry and Chemical Biology, Occidental College, Los Angeles, CA 90041
| | - Jacqueline K. Barton
- Department of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
38
|
Furst A, Landefeld S, Hill MG, Barton JK. Electrochemical patterning and detection of DNA arrays on a two-electrode platform. J Am Chem Soc 2013; 135:19099-102. [PMID: 24328227 DOI: 10.1021/ja410902j] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a novel method of DNA array formation that is electrochemically formed and addressed with a two-electrode platform. Electrochemical activation of a copper catalyst, patterned with one electrode, enables precise placement of multiple sequences of DNA onto a second electrode surface. The two-electrode patterning and detection platform allows for both spatial resolution of the patterned DNA array and optimization of detection through DNA-mediated charge transport with electrocatalysis. This two-electrode platform has been used to form arrays that enable differentiation between well-matched and mismatched sequences, the detection of TATA-binding protein, and sequence-selective DNA hybridization.
Collapse
Affiliation(s)
- Ariel Furst
- Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| | | | | | | |
Collapse
|
39
|
Durand A, Papai G, Schultz P. Structure, assembly and dynamics of macromolecular complexes by single particle cryo-electron microscopy. J Nanobiotechnology 2013; 11 Suppl 1:S4. [PMID: 24565374 PMCID: PMC4028798 DOI: 10.1186/1477-3155-11-s1-s4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Proteins in their majority act rarely as single entities. Multisubunit macromolecular complexes are the actors in most of the cellular processes. These nanomachines are hold together by weak protein-protein interactions and undergo functionally important conformational changes. TFIID is such a multiprotein complex acting in eukaryotic transcription initiation. This complex is first to be recruited to the promoter of the genes and triggers the formation of the transcription preinitiation complex involving RNA polymerase II which leads to gene transcription. The exact role of TFIID in this process is not yet understood. METHODS Last generation electron microscopes, improved data collection and new image analysis tools made it possible to obtain structural information of biological molecules at atomic resolution. Cryo-electron microscopy of vitrified samples visualizes proteins in a fully hydrated, close to native state. Molecular images are recorded at liquid nitrogen temperature in low electron dose conditions to reduce radiation damage. Digital image analysis of these noisy images aims at improving the signal-to-noise ratio, at separating distinct molecular views and at reconstructing a three-dimensional model of the biological particle. RESULTS Using these methods we showed the early events of an activated transcription initiation process. We explored the interaction of the TFIID coactivator with the yeast Rap1 activator, the transcription factor TFIIA and the promoter DNA. We demonstrated that TFIID serves as an assembly platform for transient protein-protein interactions, which are essential for transcription initiation. CONCLUSIONS Recent developments in electron microscopy have provided new insights into the structural organization and the dynamic reorganization of large macromolecular complexes. Examples of near-atomic resolutions exist but the molecular flexibility of macromolecular complexes remains the limiting factor in most case. Electron microscopy has the potential to provide both structural and dynamic information of biological assemblies in order to understand the molecular mechanisms of their functions.
Collapse
|
40
|
Abstract
Structural analyses help to elucidate a key step in DNA transcription.
[Also see Research Article by
Murakami
et al.
]
Collapse
Affiliation(s)
- Sohail Malik
- Laboratory of Biochemistry and Molecular Biology, Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Robert G. Roeder
- Laboratory of Biochemistry and Molecular Biology, Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
41
|
Perturbation of discrete sites on a single protein domain with RNA aptamers: targeting of different sides of the TATA-binding protein (TBP). Biosci Biotechnol Biochem 2013; 77:1739-46. [PMID: 23924740 DOI: 10.1271/bbb.130296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Control of interactions among proteins is critical in the treatment of diseases, but the specificity required is not easily incorporated into small molecules. Macromolecules could be more suitable as antagonists in this situation, and RNA aptamers have become particularly promising. Here we describe a novel selection procedure for RNA aptamers against a protein that constitutes a single structural domain, the Drosophila TATA-binding protein (TBP). In addition to the conventional filter partitioning method with free TBP as target, we performed another experiment, in which the TATA-bound form of TBP was targeted. Aptamers generated by both selections were able to bind specifically to TBP, but the two groups showed characteristics which were clearly different in terms of their capability to compete with TATA-DNA, their effects on the TATA-bound form of TBP, and their effects on in vitro transcription. The method used to generate these two groups of aptamers can be used with other targets to direct aptamer specificity to discrete sites on the surface of a protein.
Collapse
|
42
|
Transcriptional activators and activation mechanisms. Protein Cell 2011; 2:879-88. [PMID: 22180087 DOI: 10.1007/s13238-011-1101-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 08/22/2011] [Indexed: 10/14/2022] Open
Abstract
Transcriptional activators are required to turn on the expression of genes in a eukaryotic cell. Activators bound to the enhancer can facilitate either the recruitment of RNA polymerase II to the promoter or its elongation. This article examines a few selected issues in understanding activator functions and activation mechanisms.
Collapse
|
43
|
Akhtar W, Veenstra GJC. TBP-related factors: a paradigm of diversity in transcription initiation. Cell Biosci 2011; 1:23. [PMID: 21711503 PMCID: PMC3142196 DOI: 10.1186/2045-3701-1-23] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 06/27/2011] [Indexed: 01/24/2023] Open
Abstract
TATA binding protein (TBP) is a key component of the eukaryotic transcription initiation machinery. It functions in several complexes involved in core promoter recognition and assembly of the pre-initiation complex. Through gene duplication eukaryotes have expanded their repertoire of TATA binding proteins, leading to a variable composition of the transcription machinery. In vertebrates this repertoire consists of TBP, TBP-like factor (TLF, also known as TBPL1, TRF2) and TBP2 (also known as TBPL2, TRF3). All three factors are essential, with TLF and TBP2 playing important roles in development and differentiation, in particular gametogenesis and early embryonic development, whereas TBP dominates somatic cell transcription. TBP-related factors may compete for promoters when co-expressed, but also show preferential interactions with subsets of promoters. Initiation factor switching occurs on account of differential expression of these proteins in gametes, embryos and somatic cells. Paralogs of TFIIA and TAF subunits account for additional variation in the transcription initiation complex. This variation in core promoter recognition accommodates the expanded regulatory capacity and specificity required for germ cells and embryonic development in higher eukaryotes.
Collapse
Affiliation(s)
- Waseem Akhtar
- Radboud University Nijmegen, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands.
| | | |
Collapse
|
44
|
Viswanathan R, Auble DT. One small step for Mot1; one giant leap for other Swi2/Snf2 enzymes? BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:488-96. [PMID: 21658482 DOI: 10.1016/j.bbagrm.2011.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 05/14/2011] [Accepted: 05/20/2011] [Indexed: 12/13/2022]
Abstract
The TATA-binding protein (TBP) is a major target for transcriptional regulation. Mot1, a Swi2/Snf2-related ATPase, dissociates TBP from DNA in an ATP dependent process. The experimental advantages of this relatively simple reaction have been exploited to learn more about how Swi2/Snf2 ATPases function biochemically. However, many unanswered questions remain and fundamental aspects of the Mot1 mechanism are still under debate. Here, we review the available data and integrate the results with structural and biochemical studies of related enzymes to derive a model for Mot1's catalytic action consistent with the broad literature on enzymes in this family. We propose that the Mot1 ATPase domain is tethered to TBP by a flexible, spring-like linker of alpha helical hairpins. The linker juxtaposes the ATPase domain such that it can engage duplex DNA on one side of the TBP-DNA complex. This allows the ATPase to employ short-range, nonprocessive ATP-driven DNA tracking to pull or push TBP off its DNA site. DNA translocation is a conserved property of ATPases in the broader enzyme family. As such, the model explains how a structurally and functionally conserved ATPase domain has been put to use in a very different context than other enzymes in the Swi2/Snf2 family. This article is part of a Special Issue entitled:Snf2/Swi2 ATPase structure and function.
Collapse
Affiliation(s)
- Ramya Viswanathan
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908, USA
| | | |
Collapse
|
45
|
Pitzschke A, Hirt H. New insights into an old story: Agrobacterium-induced tumour formation in plants by plant transformation. EMBO J 2010; 29:1021-32. [PMID: 20150897 DOI: 10.1038/emboj.2010.8] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 01/19/2010] [Indexed: 11/09/2022] Open
Abstract
Agrobacterium tumefaciens causes tumour formation in plants. Plant signals induce in the bacteria the expression of a range of virulence (Vir) proteins and the formation of a type IV secretion system (T4SS). On attachment to plant cells, a transfer DNA (T-DNA) and Vir proteins are imported into the host cells through the bacterial T4SS. Through interaction with a number of host proteins, the Vir proteins suppress the host innate immune system and support the transfer, nuclear targeting, and integration of T-DNA into host cell chromosomes. Owing to extensive genetic analyses, the bacterial side of the plant-Agrobacterium interaction is well understood. However, progress on the plant side has only been achieved recently, revealing a highly complex molecular choreography under the direction of the Vir proteins that impinge on multiple processes including transport, transcription, and chromosome status of their host cells.
Collapse
Affiliation(s)
- Andrea Pitzschke
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Applied Life Sciences, Muthgasse 18, Vienna, Austria
| | | |
Collapse
|
46
|
Boch J, Bonas U. Xanthomonas AvrBs3 family-type III effectors: discovery and function. ANNUAL REVIEW OF PHYTOPATHOLOGY 2010; 48:419-36. [PMID: 19400638 DOI: 10.1146/annurev-phyto-080508-081936] [Citation(s) in RCA: 605] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Xanthomonads are bacterial plant pathogens that cause diseases on many plant species, including important crops. Key to pathogenicity of most Xanthomonas pathovars is a Hrp-type III secretion (T3S) system that translocates effector proteins into plant cells. Within the eukaryotic cell, the effectors are thought to perform a variety of tasks to support bacterial virulence, proliferation, and dissemination. We are only beginning to understand the host targets of different effectors. The largest effector family found in Xanthomonas spp. is the AvrBs3/PthA or TAL (transcription activator-like) family. TAL effectors act as transcriptional activators in the plant cell nucleus. Specificity of TAL effectors is determined by a novel modular DNA-binding domain. Here, we describe the discovery of TAL effectors and their structure, activity, and host targets.
Collapse
Affiliation(s)
- Jens Boch
- Department of Genetics, Martin-Luther-University Halle-Wittenberg, D-06099 Halle (Saale), Germany.
| | | |
Collapse
|
47
|
Adachi N, Senda M, Natsume R, Senda T, Horikoshi M. Crystal structure of Methanococcus jannaschii TATA box-binding protein. Genes Cells 2009; 13:1127-40. [PMID: 19090808 DOI: 10.1111/j.1365-2443.2008.01233.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
As the archaeal transcription system consists of a eukaryotic-type transcription apparatus and bacterial-type regulatory transcription factors, analyses of the molecular interface between the transcription apparatus and regulatory transcription factors are critical to reveal the evolutionary change of the transcription system. TATA box-binding protein (TBP), the central components of the transcription apparatus are classified into three groups: eukaryotic, archaeal-I and archaeal-II TBPs. Thus, comparative functional analysis of these three groups of TBP is important for the study of the evolution of the transcription system. Here, we present the first crystal structure of an archaeal-II TBP from Methanococcus jannaschii. The highly conserved and group-specific conserved surfaces of TBP bind to DNA and TFIIB/TFB, respectively. The phylogenetic trees of TBP and TFIIB/TFB revealed that they evolved in a coupled manner. The diversified surface of TBP is negatively charged in the archaeal-II TBP, which is completely different from the case of eukaryotic and archaeal-I TBPs, which are positively charged and biphasic, respectively. This difference is responsible for the diversification of the regulatory functions of TBP during evolution.
Collapse
Affiliation(s)
- Naruhiko Adachi
- Horikoshi Gene Selector Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Corporation (JST), 5-9-6 Tokodai, Tsukuba-shi, Ibaraki 300-2635, Japan
| | | | | | | | | |
Collapse
|
48
|
Petty KJ. Metal-chelate affinity chromatography. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2008; Volume 4 Issue 1:Unit 9.4. [PMID: 18429213 DOI: 10.1002/0471140864.ps0904s04] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recombinant proteins engineered to have six consecutive histidine residues on either the amino or carboxyl terminus can be purified using a resin containing nickel ions (Ni(2+)) that have been immobilized by covalently attached nitrilotriacetic acid (NTA). This technique, known as metal-chelate affinity chromatography (MCAC), can readily be performed with either native or denatured protein. This unit discusses techniques for creating a fusion protein consisting of the protein of interest with a histidine tail attached. A procedure for expression of histidine-tail fusion proteins and their purification in native form by MCAC is described, and two alternate protocols describe purification of histidine-tail fusion proteins by MCAC under denaturing conditions and their renaturation by either dialysis or solid-phase renaturation. Support protocols are provided for analysis of the purified product and regeneration of the NTA resin. All of these protocols are easily adaptable to any protein expression system.
Collapse
Affiliation(s)
- K J Petty
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
49
|
Okuda M, Tanaka A, Satoh M, Mizuta S, Takazawa M, Ohkuma Y, Nishimura Y. Structural insight into the TFIIE-TFIIH interaction: TFIIE and p53 share the binding region on TFIIH. EMBO J 2008; 27:1161-71. [PMID: 18354501 PMCID: PMC2275666 DOI: 10.1038/emboj.2008.47] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Accepted: 02/21/2008] [Indexed: 11/09/2022] Open
Abstract
RNA polymerase II and general transcription factors (GTFs) assemble on a promoter to form a transcription preinitiation complex (PIC). Among the GTFs, TFIIE recruits TFIIH to complete the PIC formation and regulates enzymatic activities of TFIIH. However, the mode of binding between TFIIE and TFIIH is poorly understood. Here, we demonstrate the specific binding of the C-terminal acidic domain (AC-D) of the human TFIIEα subunit to the pleckstrin homology domain (PH-D) of the human TFIIH p62 subunit and describe the solution structures of the free and PH-D-bound forms of AC-D. Although the flexible N-terminal acidic tail from AC-D wraps around PH-D, the core domain of AC-D also interacts with PH-D. AC-D employs an entirely novel binding mode, which differs from the amphipathic helix method used by many transcriptional activators. So the binding surface between PH-D and AC-D is much broader than the specific binding surface between PH-D and the p53 acidic fragments. From our in vitro studies, we demonstrate that this interaction could be a switch to replace p53 with TFIIE on TFIIH in transcription.
Collapse
Affiliation(s)
- Masahiko Okuda
- Laboratory of Structural Biology, Graduate School of Supramolecular Biology, Yokohama City University, Yokohama, Japan
| | | | | | | | | | | | | |
Collapse
|
50
|
Shooltz DD, Alberts GL, Triezenberg SJ. One-step affinity purification of recombinant TATA binding proteins utilizing a modular protein interaction partner. Protein Expr Purif 2008; 59:297-301. [PMID: 18397834 DOI: 10.1016/j.pep.2008.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 02/22/2008] [Accepted: 02/22/2008] [Indexed: 11/15/2022]
Abstract
We describe a rapid and effective procedure for purifying recombinant eukaryotic TATA binding protein (TBP) from Escherichia coli. The method employs an affinity ligand comprising glutathione-S-transferase fused to the carboxyl-terminal activation domain of the transcriptional activator VP16 and an amino-terminal domain (TAND2) of the yeast TBP-associated factor TAF1. TBP can be purified without the need for extrinsic affinity tags, subsequent proteolysis, or downstream clean-up steps. This TBP purification process is rapid (requiring about 4h after bacterial harvest) and does not require sophisticated chromatographic equipment. The resulting material is monodisperse, structured, and functionally active. We demonstrate the efficacy of this method for purifying recombinant full-length or TBP core fragments encoded by yeast, humans and Arabidopsis.
Collapse
Affiliation(s)
- Dean D Shooltz
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|