1
|
Rouse CJ, Hawkins K, Kabbej N, Dalugdug J, Kunta A, Kim MJ, Someya S, Herbst Z, Gelb M, Dinelli I, Butterworth E, Falk DJ, Rosenkrantz E, Elmohd H, Khaledi H, Mowafy S, Ashby F, Heldermon CD. Disease correction in mucopolysaccharidosis type IIIB mice by intraparenchymal or cisternal delivery of a capsid modified AAV8 codon-optimized NAGLU vector. Hum Mol Genet 2023; 32:417-430. [PMID: 35997776 PMCID: PMC9851742 DOI: 10.1093/hmg/ddac209] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 08/01/2022] [Accepted: 08/19/2022] [Indexed: 02/01/2023] Open
Abstract
Mucopolysaccharidosis type IIIB (MPS IIIB) is an autosomal recessive lysosomal storage disease caused by mutations in the gene that encodes the protein N-acetyl-glucosaminidase (NAGLU). Defective NAGLU activity results in aberrant retention of heparan sulfate within lysosomes leading to progressive central nervous system (CNS) degeneration. Intravenous treatment options are limited by the need to overcome the blood-brain barrier and gain successful entry into the CNS. Additionally, we have demonstrated that AAV8 provides a broader transduction area in the MPS IIIB mouse brain compared with AAV5, 9 or rh10. A triple-capsid mutant (tcm) modification of AAV8 further enhanced GFP reporter expression and distribution. Using the MPS IIIB mouse model, we performed a study using either intracranial six site or intracisterna magna injection of AAVtcm8-codon-optimized (co)-NAGLU using untreated MPS IIIB mice as controls to assess disease correction. Disease correction was evaluated based on enzyme activity, heparan sulfate storage levels, CNS lysosomal signal intensity, coordination, activity level, hearing and survival. Both histologic and enzymatic assessments show that each injection method results in supranormal levels of NAGLU expression in the brain. In this study, we have shown correction of lifespan and auditory deficits, increased CNS NAGLU activity and reduced lysosomal storage levels of heparan sulfate following AAVtcm8-coNAGLU administration and partial correction of NAGLU activity in several peripheral organs in the murine model of MPS IIIB.
Collapse
Affiliation(s)
- Courtney J Rouse
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
- Lacerta Therapeutics, Alachua, FL, USA
| | - Kimberley Hawkins
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Nadia Kabbej
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Justin Dalugdug
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Aishwarya Kunta
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Mi-Jung Kim
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Shinichi Someya
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Zachary Herbst
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Michael Gelb
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Isabella Dinelli
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | | | | | - Erinn Rosenkrantz
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Hamza Elmohd
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Hamid Khaledi
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Samar Mowafy
- Department of Chemistry, University of Washington, Seattle, WA, USA
- Pharmaceutical Chemistry Department, Misr International University, Cairo, Egypt
| | - Frederick Ashby
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Coy D Heldermon
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
2
|
Devanney SC, Gibney JM, Le Prell CG, Wronski TJ, Aguirre JI, Mcdoom I, Heldermon CD. The beta-glucuronidase intracisternal A particle insertion model results in similar overall MPSVII phenotype as the single base deletion model when on the same C57BL/6J mouse background. Mol Genet Metab Rep 2021; 27:100727. [PMID: 33604242 PMCID: PMC7873470 DOI: 10.1016/j.ymgmr.2021.100727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 11/26/2022] Open
Abstract
Two unique gene mutations in the enzyme beta-glucuronidase (GUSB) that result in the lysosomal storage disease Mucopolysaccharidosis (MPS) type VII had previously been reported to have differing disease phenotype severities when compared on differing mouse strains. The MPSVII mouse has proven to be a highly efficacious model to study mucopolysaccharidoses and for evaluating potential gene or stem cell therapies for lysosomal storage diseases. We examined the single base pair deletion (MPSVII) and the intracisternal A particle element insertion (MPSVII2J) in GUSB compared with control animals by skeletal measures, electroretinography, auditory-evoked brainstem response and life span on a C57BL/6J background strain. In all measures, both mutations result in either a trend toward or significant changes from the background strain control. In all measures, there is no significant phenotypic difference between the two mutations. The 2J variant is a more easily genotyped and equally affected phenotype, which holds promise for further studies of chimerism and stem cell therapy approaches.
Collapse
Affiliation(s)
- Sean C Devanney
- College of Medicine, Department of Medicine, University of Florida, Box 100278, Gainesville, FL 32610, United States of America
| | - Joseph M Gibney
- College of Medicine, Department of Medicine, University of Florida, Box 100278, Gainesville, FL 32610, United States of America
| | - Colleen G Le Prell
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 1966 Inwood Road, room J216, Dallas, TX 75235, United States of America
| | - Thomas J Wronski
- College of Veterinary Medicine, Department of Physiological Sciences, University of Florida, Gainesville, FL 32608, United States of America
| | - J I Aguirre
- College of Veterinary Medicine, Department of Physiological Sciences, University of Florida, Gainesville, FL 32608, United States of America
| | - Issam Mcdoom
- College of Medicine, Department of Ophthalmology Research, University of Florida, Gainesville, FL 32610, United States of America
| | - Coy D Heldermon
- College of Medicine, Department of Medicine, University of Florida, Box 100278, Gainesville, FL 32610, United States of America
| |
Collapse
|
3
|
Abstract
Mucopolysaccharidoses (MPS) are inborn errors of metabolism produced by a deficiency of one of the enzymes involved in the degradation of glycosaminoglycans (GAGs). Although taken separately, each type is rare. As a group, MPS are relatively frequent, with an overall estimated incidence of around 1 in 20,000-25,000 births. Development of therapeutic options for MPS, including hematopoietic stem cell transplantation (HSCT) and enzyme replacement therapy (ERT), has modified the natural history of many MPS types. In spite of the improvement in some tissues and organs, significant challenges remain unsolved, including blood-brain barrier (BBB) penetration and treatment of lesions in avascular cartilage, heart valves, and corneas. Newer approaches, such as intrathecal ERT, ERT with fusion proteins to cross the BBB, gene therapy, substrate reduction therapy (SRT), chaperone therapy, and some combination of these strategies may provide better outcomes for MPS patients in the near future. As early diagnosis and early treatment are imperative to improve therapeutic efficacy, the inclusion of MPS in newborn screening programs should enhance the potential impact of treatment in reducing the morbidity associated with MPS diseases. In this review, we evaluate available treatments, including ERT and HSCT, and future treatments, such as gene therapy, SRT, and chaperone therapy, and describe the advantages and disadvantages. We also assess the current clinical endpoints and biomarkers used in clinical trials.
Collapse
|
4
|
Kunihiro AG, Luis PB, Brickey JA, Frye JB, Chow HHS, Schneider C, Funk JL. Beta-Glucuronidase Catalyzes Deconjugation and Activation of Curcumin-Glucuronide in Bone. JOURNAL OF NATURAL PRODUCTS 2019; 82:500-509. [PMID: 30794412 PMCID: PMC6528680 DOI: 10.1021/acs.jnatprod.8b00873] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The biological basis for documented in vivo bone-protective effects of turmeric-derived curcumin is unclear since curcumin is barely detectable in serum, being rapidly conjugated to form what is thought to be an inactive glucuronide. Studies were therefore undertaken to test the postulate that antiresorptive effects of curcumin require deconjugation within bone to form the bioactive aglycone and that β-glucuronidase (GUSB), a deconjugating enzyme expressed by hematopoietic marrow cells, facilitates this site-specific transformation. Consistent with this postulate, aglycone, but not glucuronidated, curcumin inhibited RANKL-stimulated osteoclastogenesis, a key curcumin target in bone. Aglycone curcumin, expressed relative to total curcumin, was higher in bone marrow than in serum of curcumin-treated C57BL/6J mice, while remaining a minor component. Ex vivo, under conditions preventing further metabolism of the unstable aglycone, the majority of curcumin-glucuronide delivered to marrow in vivo was hydrolyzed to the aglycone, a process that was inhibited by treatment with saccharolactone, a GUSB inhibitor, or in mice having reduced (C3H/HeJ) or absent (mps/mps) GUSB activity. These findings suggest that curcumin, despite low systemic bioavailability, may be enzymatically activated (deconjugated) within GUSB-enriched bone to exert protective effects, a metabolic process that could also contribute to bone-protective effects of other highly glucuronidated dietary polyphenols.
Collapse
Affiliation(s)
- Andrew G Kunihiro
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ 85724
| | - Paula B Luis
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Julia A Brickey
- Department of Medicine, University of Arizona, Tucson, AZ 85724
| | - Jen B Frye
- Department of Medicine, University of Arizona, Tucson, AZ 85724
| | - H-H. Sherry Chow
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| | - Claus Schneider
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Janet L Funk
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ 85724
- Department of Medicine, University of Arizona, Tucson, AZ 85724
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| |
Collapse
|
5
|
Solomon M, Muro S. Lysosomal enzyme replacement therapies: Historical development, clinical outcomes, and future perspectives. Adv Drug Deliv Rev 2017; 118:109-134. [PMID: 28502768 PMCID: PMC5828774 DOI: 10.1016/j.addr.2017.05.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/26/2017] [Accepted: 05/08/2017] [Indexed: 01/06/2023]
Abstract
Lysosomes and lysosomal enzymes play a central role in numerous cellular processes, including cellular nutrition, recycling, signaling, defense, and cell death. Genetic deficiencies of lysosomal components, most commonly enzymes, are known as "lysosomal storage disorders" or "lysosomal diseases" (LDs) and lead to lysosomal dysfunction. LDs broadly affect peripheral organs and the central nervous system (CNS), debilitating patients and frequently causing fatality. Among other approaches, enzyme replacement therapy (ERT) has advanced to the clinic and represents a beneficial strategy for 8 out of the 50-60 known LDs. However, despite its value, current ERT suffers from several shortcomings, including various side effects, development of "resistance", and suboptimal delivery throughout the body, particularly to the CNS, lowering the therapeutic outcome and precluding the use of this strategy for a majority of LDs. This review offers an overview of the biomedical causes of LDs, their socio-medical relevance, treatment modalities and caveats, experimental alternatives, and future treatment perspectives.
Collapse
Affiliation(s)
- Melani Solomon
- Institute for Bioscience and Biotechnology Research, University Maryland, College Park, MD 20742, USA
| | - Silvia Muro
- Institute for Bioscience and Biotechnology Research, University Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University Maryland, College Park, MD 20742, USA.
| |
Collapse
|
6
|
Yoon SY, Bagel JH, O'Donnell PA, Vite CH, Wolfe JH. Clinical Improvement of Alpha-mannosidosis Cat Following a Single Cisterna Magna Infusion of AAV1. Mol Ther 2015; 24:26-33. [PMID: 26354342 DOI: 10.1038/mt.2015.168] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/01/2015] [Indexed: 11/09/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are debilitating neurometabolic disorders for most of which long-term effective therapies have not been developed. Gene therapy is a potential treatment but a critical barrier to treating the brain is the need for global correction. We tested the efficacy of cisterna magna infusion of adeno-associated virus type 1 (AAV1) expressing feline alpha-mannosidase gene in the postsymptomatic alpha-mannosidosis (AMD) cat, a homologue of the human disease. Lysosomal alpha-mannosidase (MANB) activity in the cerebrospinal fluid (CSF) and serum were increased above the control values in untreated AMD cats. Clinical neurological signs were delayed in onset and reduced in severity. The lifespan of the treated cats was significantly extended. Postmortem histopathology showed resolution of lysosomal storage lesions throughout the brain. MANB activity in brain tissue was significantly above the levels of untreated tissues. The results demonstrate that a single cisterna magna injection of AAV1 into the CSF can mediate widespread neuronal transduction of the brain and meaningful clinical improvement. Thus, cisterna magna gene delivery by AAV1 appears to be a viable strategy for treatment of the whole brain in AMD and should be applicable to many of the neurotropic LSDs as well as other neurogenetic disorders.
Collapse
Affiliation(s)
- Sea Young Yoon
- Research Institute of the Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jessica H Bagel
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Patricia A O'Donnell
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Charles H Vite
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John H Wolfe
- Research Institute of the Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Ihara N, Akihiro U, Onami N, Tsumura H, Inoue E, Hayashi S, Sago H, Mizutani S. Partial rescue of mucopolysaccharidosis type VII mice with a lifelong engraftment of allogeneic stem cells in utero. Congenit Anom (Kyoto) 2015; 55:55-64. [PMID: 25421592 PMCID: PMC4654854 DOI: 10.1111/cga.12099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 11/18/2014] [Indexed: 12/15/2022]
Abstract
In utero hematopoietic cell transplantation (IUHCT) has been performed in Mucopolysaccharidosis Type VII (MPSVII) mice, but a lifelong engraftment of allogeneic donor cells has not been achieved. In this study, we sought to confirm a lifelong engraftment of allogeneic donor cells immunologically matched to the mother and to achieve partial rescue of phenotypes in the original MPSVII strain through IUHCT by intravenous injection. We performed in vitro fertilization in a MPSVII murine model and transferred affected embryos to ICR/B6-GFP surrogate mothers in cases where fetuses receiving IUHCT were all homozygous. Lineage-depleted cells from ICR/B6-GFP mice were injected intravenously at E14.5. Chimerism was confirmed by flow cytometry at 4 weeks after birth, and β-glucuronidase activity in serum and several phenotypes were assessed at 8 weeks of age or later. Donor cells in chimeric mice from ICR/B6-GFP mothers were detected at death, and were confirmed in several tissues including the brains of sacrificed chimeric mice. Although the serum enzyme activity of chimeric mice was extremely low, the engraftment rate of donor cells correlated with enzyme activity. Furthermore, improvement of bone structure and rescue of reproductive ability were confirmed in our limited preclinical study. We confirmed the lifelong engraftment of donor cells in an original immunocompetent MPSVII murine model using intravenous IUHCT with cells immunologically matched to the mother without myeloablation, and the improvement of several phenotypes.
Collapse
Affiliation(s)
- Norimasa Ihara
- Department of Reproductive Biology, National Research Institute for Child Health and Development, Tokyo, Japan; Center for Maternal-Fetal and Neonatal Medicine, National Center for Child Health and Development Hospital, Tokyo, Japan; Department of Pediatrics and Developmental Biology, Graduate School of Medicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Aronovich EL, Hackett PB. Lysosomal storage disease: gene therapy on both sides of the blood-brain barrier. Mol Genet Metab 2015; 114:83-93. [PMID: 25410058 PMCID: PMC4312729 DOI: 10.1016/j.ymgme.2014.09.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 09/29/2014] [Accepted: 09/29/2014] [Indexed: 12/17/2022]
Abstract
Most lysosomal storage disorders affect the nervous system as well as other tissues and organs of the body. Previously, the complexities of these diseases, particularly in treating neurologic abnormalities, were too great to surmount. However, based on recent developments there are realistic expectations that effective therapies are coming soon. Gene therapy offers the possibility of affordable, comprehensive treatment associated with these diseases currently not provided by standards of care. With a focus on correction of neurologic disease by systemic gene therapy of mucopolysaccharidoses types I and IIIA, we review some of the major recent advances in viral and non-viral vectors, methods of their delivery and strategies leading to correction of both the nervous and somatic tissues as well as evaluation of functional correction of neurologic manifestations in animal models. We discuss two questions: what systemic gene therapy strategies work best for correction of both somatic and neurologic abnormalities in a lysosomal storage disorder and is there evidence that targeting peripheral tissues (e.g., in the liver) has a future for ameliorating neurologic disease in patients?
Collapse
Affiliation(s)
- Elena L Aronovich
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, United States; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, United States.
| | - Perry B Hackett
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, United States; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, United States
| |
Collapse
|
9
|
Chakraborty S, Haque M, Banu L. Gene therapy: A veracity or myth! ACTA MEDICA INTERNATIONAL 2015. [DOI: 10.5530/ami.2015.4.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
10
|
Wolf DA, Banerjee S, Hackett PB, Whitley CB, McIvor RS, Low WC. Gene therapy for neurologic manifestations of mucopolysaccharidoses. Expert Opin Drug Deliv 2014; 12:283-96. [PMID: 25510418 DOI: 10.1517/17425247.2015.966682] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Mucopolysaccharidoses (MPS) are a family of lysosomal disorders caused by mutations in genes that encode enzymes involved in the catabolism of glycoaminoglycans. These mutations affect multiple organ systems and can be particularly deleterious to the nervous system. At the present time, enzyme replacement therapy and hematopoietic stem-cell therapy are used to treat patients with different forms of these disorders. However, to a great extent, the nervous system is not adequately responsive to current therapeutic approaches. AREAS COVERED Recent advances in gene therapy show great promise for treating MPS. This article reviews the current state of the art for routes of delivery in developing genetic therapies for treating the neurologic manifestations of MPS. EXPERT OPINION Gene therapy for treating neurological manifestations of MPS can be achieved by intraventricular, intrathecal, intranasal and systemic administrations. The intraventricular route of administration appears to provide the most widespread distribution of gene therapy vectors to the brain. The intrathecal route of delivery results in predominant distribution to the caudal areas of the brain. The systemic route of delivery via intravenous infusion can also achieve widespread delivery to the CNS; however, the distribution to the brain is greatly dependent on the vector system. Intravenous delivery using lentiviral vectors appear to be less effective than adeno-associated viral (AAV) vectors. Moreover, some subtypes of AAV vectors are more effective than others in crossing the blood-brain barrier. In summary, the recent advances in gene vector technology and routes of delivery to the CNS will facilitate the clinical translation of gene therapy for the treatment of the neurological manifestations of MPS.
Collapse
Affiliation(s)
- Daniel A Wolf
- University of Minnesota, Department of Genetics, Cell Biology, and Development , Minneapolis, MN 55455 , USA
| | | | | | | | | | | |
Collapse
|
11
|
Naz H, Islam A, Waheed A, Sly WS, Ahmad F, Hassan MI. Humanβ-Glucuronidase: Structure, Function, and Application in Enzyme Replacement Therapy. Rejuvenation Res 2013; 16:352-63. [DOI: 10.1089/rej.2013.1407] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Huma Naz
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Abdul Waheed
- The Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis, University School of Medicine, St. Louis, Missouri
| | - William S. Sly
- The Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis, University School of Medicine, St. Louis, Missouri
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| |
Collapse
|
12
|
Dysregulation of gene expression in a lysosomal storage disease varies between brain regions implicating unexpected mechanisms of neuropathology. PLoS One 2012; 7:e32419. [PMID: 22403656 PMCID: PMC3293807 DOI: 10.1371/journal.pone.0032419] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/30/2012] [Indexed: 12/19/2022] Open
Abstract
The characteristic neurological feature of many neurogenetic diseases is intellectual disability. Although specific neuropathological features have been described, the mechanisms by which specific gene defects lead to cognitive impairment remain obscure. To gain insight into abnormal functions occurring secondary to a single gene defect, whole transcriptome analysis was used to identify molecular and cellular pathways that are dysregulated in the brain in a mouse model of a lysosomal storage disorder (LSD) (mucopolysaccharidosis [MPS] VII). We assayed multiple anatomical regions separately, in a large cohort of normal and diseased mice, which greatly increased the number of significant changes that could be detected compared to past studies in LSD models. We found that patterns of aberrant gene expression and involvement of multiple molecular and cellular systems varied significantly between brain regions. A number of changes revealed unexpected system and process alterations, such as up-regulation of the immune system with few inflammatory changes (a significant difference from the closely related MPS IIIb model), down-regulation of major oligodendrocyte genes even though white matter changes are not a feature histopathologically, and a plethora of developmental gene changes. The involvement of multiple neural systems indicates that the mechanisms of neuropathology in this type of disease are much broader than previously appreciated. In addition, the variation in gene dysregulation between brain regions indicates that different neuropathologic mechanisms may predominate within different regions of a diseased brain caused by a single gene mutation.
Collapse
|
13
|
Hawkins-Salsbury JA, Reddy AS, Sands MS. Combination therapies for lysosomal storage disease: is the whole greater than the sum of its parts? Hum Mol Genet 2011; 20:R54-60. [PMID: 21421999 DOI: 10.1093/hmg/ddr112] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Lysosomal storage diseases (LSDs), as a group, are among the most common inherited diseases affecting children. The primary defect is typically a genetic deficiency of one of the lysosomal enzymes, often causing accumulation of undegraded substrates within the lysosome. This accumulation causes numerous secondary effects that contribute to the disease phenotype. Viral-mediated gene therapy (GT) can supply a persistent source of the deficient enzyme. However, with some notable exceptions, GT has been only modestly successful as a single approach. Recently, various therapies have been combined in order to more effectively target the diverse pathogenic mechanisms at work in LSDs. One strategy that has shown promise involves providing a persistent source of the deficient enzyme (GT, stem cell transplantation) while targeting a secondary consequence of disease with a more transient approach (substrate reduction, anti-inflammatories, pharmacological mimetic, etc.). This general strategy has resulted in both additive and synergistic effects. Interestingly, some therapeutic approaches by themselves provide essentially no clinical benefit but contribute greatly to the overall efficacy when used in combination with other treatments. Unfortunately, no therapeutic combination is universally effective. This adds to the difficulty in predicting and identifying combinations that will be most effective for individual LSDs. A better understanding of both pathogenic and therapeutic mechanisms is necessary in order to identify potentially successful combinations. While a single treatment would be ideal, the complex nature of these diseases may unavoidably limit the efficacy of single therapies. In order to more successfully treat LSDs, a shift in focus towards a combination therapy may be necessary.
Collapse
Affiliation(s)
- Jacqueline A Hawkins-Salsbury
- Department of Internal Medicine, Washington University, Campus PO Box 8007, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
14
|
Meyerrose T, Olson S, Pontow S, Kalomoiris S, Jung Y, Annett G, Bauer G, Nolta JA. Mesenchymal stem cells for the sustained in vivo delivery of bioactive factors. Adv Drug Deliv Rev 2010; 62:1167-74. [PMID: 20920540 DOI: 10.1016/j.addr.2010.09.013] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 09/24/2010] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSC) are a promising tool for cell therapy, either through direct contribution to the repair of bone, tendon and cartilage or as an adjunct therapy through protein production and immune mediation. They are an attractive vehicle for cellular therapies due to a variety of cell intrinsic and environmentally responsive properties. Following transplantation, MSC are capable of systemic migration, are not prone to tumor formation, and appear to tolerize the immune response across donor mismatch. These attributes combine to allow MSC to reside in many different tissue types without disrupting the local microenvironment and, in some cases, responding to the local environment with appropriate protein secretion. We describe work done by our group and others in using human MSC for the sustained in vivo production of supraphysiological levels of cytokines for the support of cotransplanted hematopoietic stem cells and enzymes that are deficient in animal models of lysosomal storage disorders such as MPSVII. In addition, the use of MSC engineered to secrete protein products has been reviewed in several fields of tissue injury repair, including but not limited to revascularization after myocardial infarction, regeneration of intervertebral disc defects and spine therapy, repair of stroke, therapy for epilepsy, skeletal tissue repair, chondrogenesis/knee and joint repair, and neurodegenerative diseases. Genetically engineered MSC have thus proven safe and efficacious in numerous animal models of disease modification and tissue repair and are poised to be tested in human clinical trials. The potential for these interesting cells to secrete endogenous or transgene products in a sustained and long-term manner is highly promising and is discussed in the current review.
Collapse
|
15
|
Heldermon CD, Ohlemiller KK, Herzog ED, Vogler C, Qin E, Wozniak DF, Tan Y, Orrock JL, Sands MS. Therapeutic efficacy of bone marrow transplant, intracranial AAV-mediated gene therapy, or both in the mouse model of MPS IIIB. Mol Ther 2010; 18:873-80. [PMID: 20179679 DOI: 10.1038/mt.2010.17] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Sanfilippo syndrome type B (MPS IIIB) is a lysosomal storage disease resulting from a deficiency of N-acetyl-glucosaminidase (NAGLU) activity. In an attempt to correct the disease in the murine model of MPS IIIB, neonatal mice were treated with intracranial AAV2/5-NAGLU (AAV), syngeneic bone marrow transplant (BMT), or both (AAV/BMT). All treatments resulted in some improvement in clinical phenotype. Adeno-associated viral (AAV) treatment resulted in improvements in lifespan, motor function, hearing, time to activity onset, and daytime activity level, but no reduction of lysosomal storage. BMT resulted in improved hearing by 9 months, and improved circadian measures, but had no effect on lifespan, motor function, or central nervous system (CNS) lysosomal storage. AAV/BMT treatment resulted in improvements in hearing, time to activity onset, motor function, and reduced CNS lysosomal storage, but had no effect on lifespan. Combination therapy compared to either therapy alone resulted in synergistic effects on hearing and CNS lysosomal inclusions but antagonistic effects on motor function and lifespan. AAV alone is more efficacious than BMT or AAV/BMT treatment for lifespan. BMT was the least efficacious treatment by all measures. CNS-directed AAV treatment alone appears to be the preferred treatment, combining the most efficacy with the least toxicity of the approaches assessed.
Collapse
Affiliation(s)
- Coy D Heldermon
- Department of Internal Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
The cornea is particularly suited to gene therapy. The cornea is readily accessible, normally transparent, and is somewhat sequestrated from the general circulation and the systemic immune system. The principle of genetic therapy for the cornea is to use an appropriate vector system to transfer a gene to the cornea itself, or to the ocular environs, or systemically, so that a transgenic protein will be expressed that will modulate congenital or acquired disease. The protein may be structural such as a collagen, or functionally active such as an enzyme, cytokine or growth factor that may modulate a pathological process. Alternatively, gene expression may be silenced by the use of modalities such as antisense oligonucleotides. Interestingly, despite a very considerable amount of work in animal models, clinical translation directed to gene therapy of the human cornea has been minimal. This is in contrast to gene therapy for monogenic inherited diseases of the retina, where promising early results of clinical trials for Leber's congenital amaurosis have already been published and a number of other trials are ongoing.
Collapse
Affiliation(s)
- Keryn A Williams
- Department of Ophthalmology, Flinders University, Adelaide, South Australia 5042, Australia.
| | | |
Collapse
|
17
|
Meyerrose TE, Roberts M, Ohlemiller KK, Vogler CA, Wirthlin L, Nolta JA, Sands MS. Lentiviral-transduced human mesenchymal stem cells persistently express therapeutic levels of enzyme in a xenotransplantation model of human disease. Stem Cells 2008; 26:1713-22. [PMID: 18436861 DOI: 10.1634/stemcells.2008-0008] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Bone marrow-derived mesenchymal stem cells (MSCs) are a promising platform for cell- and gene-based treatment of inherited and acquired disorders. We recently showed that human MSCs distribute widely in a murine xenotransplantation model. In the current study, we have determined the distribution, persistence, and ability of lentivirally transduced human MSCs to express therapeutic levels of enzyme in a xenotransplantation model of human disease (nonobese diabetic severe combined immunodeficient mucopolysaccharidosis type VII [NOD-SCID MPSVII]). Primary human bone marrow-derived MSCs were transduced ex vivo with a lentiviral vector expressing either enhanced green fluorescent protein or the lysosomal enzyme beta-glucuronidase (MSCs-GUSB). Lentiviral transduction did not affect any in vitro parameters of MSC function or potency. One million cells from each population were transplanted intraperitoneally into separate groups of neonatal NOD-SCID MPSVII mice. Transduced MSCs persisted in the animals that underwent transplantation, and comparable numbers of donor MSCs were detected at 2 and 4 months after transplantation in multiple organs. MSCs-GUSB expressed therapeutic levels of protein in the recipients, raising circulating serum levels of GUSB to nearly 40% of normal. This level of circulating enzyme was sufficient to normalize the secondary elevation of other lysosomal enzymes and reduce lysosomal distention in several tissues. In addition, at least one physiologic marker of disease, retinal function, was normalized following transplantation of MSCs-GUSB. These data provide evidence that transduced human MSCs retain their normal trafficking ability in vivo and persist for at least 4 months, delivering therapeutic levels of protein in an authentic xenotransplantation model of human disease.
Collapse
Affiliation(s)
- Todd E Meyerrose
- Washington University School of Medicine, Department of Internal Medicine, Box 8,007, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Berges BK, Wolfe JH, Fraser NW. Transduction of brain by herpes simplex virus vectors. Mol Ther 2008; 15:20-9. [PMID: 17164771 DOI: 10.1038/sj.mt.6300018] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
An imposing obstacle to gene therapy is the inability to transduce all of the necessary cells in a target organ. This certainly applies to gene transfer to the brain, especially when one considers the challenges involved in scaling up transduction from animal models to use in the clinic. Non-neurotropic viral gene transfer vectors (e.g., adenovirus, adeno-associated virus, and lentivirus) do not spread very far in the nervous system, and consequently these vectors transduce brain regions mostly near the injection site in adult animals. This indicates that numerous, well-spaced injections would be required to achieve widespread transduction in a large brain with these vectors. In contrast, herpes simplex virus type 1 (HSV-1) is a promising vector for widespread gene transfer to the brain owing to the innate ability of the virus to spread through the nervous system and form latent infections in neurons that last for the lifetime of the infected individual. In this review, we summarize the published literature of the transduction patterns produced by attenuated HSV-1 vectors in small animals as a function of the injection site, and discuss the implications of the distribution for widespread gene transfer to the large animal brain.
Collapse
Affiliation(s)
- Bradford K Berges
- Department of Microbiology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
19
|
Hess DA, Craft TP, Wirthlin L, Hohm S, Zhou P, Eades WC, Creer MH, Sands MS, Nolta JA. Widespread nonhematopoietic tissue distribution by transplanted human progenitor cells with high aldehyde dehydrogenase activity. Stem Cells 2008; 26:611-20. [PMID: 18055447 PMCID: PMC3045698 DOI: 10.1634/stemcells.2007-0429] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Transplanted adult progenitor cells distribute to peripheral organs and can promote endogenous cellular repair in damaged tissues. However, development of cell-based regenerative therapies has been hindered by the lack of preclinical models to efficiently assess multiple organ distribution and difficulty defining human cells with regenerative function. After transplantation into beta-glucuronidase (GUSB)-deficient NOD/SCID/mucopolysaccharidosis type VII mice, we characterized the distribution of lineage-depleted human umbilical cord blood-derived cells purified by selection using high aldehyde dehydrogenase (ALDH) activity with CD133 coexpression. ALDH(hi) or ALDH(hi)CD133+ cells produced robust hematopoietic reconstitution and variable levels of tissue distribution in multiple organs. GUSB+ donor cells that coexpressed human leukocyte antigen (HLA-A,B,C) and hematopoietic (CD45+) cell surface markers were the primary cell phenotype found adjacent to the vascular beds of several tissues, including islet and ductal regions of mouse pancreata. In contrast, variable phenotypes were detected in the chimeric liver, with HLA+/CD45+ cells demonstrating robust GUSB expression adjacent to blood vessels and CD45-/HLA- cells with diluted GUSB expression predominant in the liver parenchyma. However, true nonhematopoietic human (HLA+/CD45-) cells were rarely detected in other peripheral tissues, suggesting that these GUSB+/HLA-/CD45- cells in the liver were a result of downregulated human surface marker expression in vivo, not widespread seeding of nonhematopoietic cells. However, relying solely on continued expression of cell surface markers, as used in traditional xenotransplantation models, may underestimate true tissue distribution. ALDH-expressing progenitor cells demonstrated widespread and tissue-specific distribution of variable cellular phenotypes, indicating that these adult progenitor cells should be explored in transplantation models of tissue damage.
Collapse
Affiliation(s)
- David A Hess
- Hematopoietic Development and Malignancy Group, Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Naked plasmid DNA-based alpha-galactosidase A gene transfer partially reduces systemic accumulation of globotriaosylceramide in Fabry mice. Mol Biotechnol 2007; 38:109-19. [PMID: 18219591 DOI: 10.1007/s12033-007-9008-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Accepted: 09/21/2007] [Indexed: 10/23/2022]
Abstract
Fabry disease is an X-linked recessive inborn metabolic disorder in which a deficiency in lysosomal enzyme alpha-galactosidase A (Gal A) causes the systemic accumulation of globotriaosylceramide (Gb3). Although many investigators have attempted to treat alpha-Gal A knock-out mice (Fabry mice) with gene therapy, no report has demonstrated therapeutic effects by the retrograde renal vein injection of naked DNA. We recently developed a naked plasmid vector-mediated kidney-targeted gene transfer technique. A solution containing naked plasmid DNA encoding human alpha-Gal A (pKSCX-alpha-Gal A) was rapidly injected into the left kidney of Fabry mice (pKSCX-alpha-Gal A mice). pKSCX was used for mock transfections (pKSCX mice). We confirmed that vector-derived human alpha-Gal A mRNA was present in the left kidney but not in other tissues, by reverse transcriptase polymerase chain reaction. Compared with the pKSCX mice, the pKSCX-alpha-Gal A mice showed partial therapeutic effects: increased alpha-Gal A activity in the injected kidney and in the liver, heart, and plasma, and decreased Gb3 in the injected kidney, contralateral kidney, liver, heart, and spleen. Our results demonstrated that, although further studies are needed to improve the outcome, this method has promise as a potential treatment option for Fabry disease.
Collapse
|
21
|
Abstract
Mucopolysaccharidoses (MPS) are due to deficiencies in activities of lysosomal enzymes that degrade glycosaminoglycans. Some attempts at gene therapy for MPS in animal models have involved intravenous injection of vectors derived from an adeno-associated virus (AAV), adenovirus, retrovirus or a plasmid, which primarily results in expression in liver and secretion of the relevant enzyme into blood. Most vectors can correct disease in liver and spleen, although correction in other organs including the brain requires high enzyme activity in the blood. Alternative approaches are to transduce hematopoietic stem cells, or to inject a vector locally into difficult-to-reach sites such as the brain. Gene therapy holds great promise for providing a long-lasting therapeutic effect for MPS if safety issues can be resolved.
Collapse
Affiliation(s)
- Katherine P Ponder
- Washington University School of Medicine, Department of Internal Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| | | |
Collapse
|
22
|
Donsante A, Levy B, Vogler C, Sands MS. Clinical response to persistent, low-level beta-glucuronidase expression in the murine model of mucopolysaccharidosis type VII. J Inherit Metab Dis 2007; 30:227-38. [PMID: 17308887 DOI: 10.1007/s10545-007-0483-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 12/20/2006] [Accepted: 12/21/2006] [Indexed: 12/28/2022]
Abstract
Mucopolysaccharidosis type VII (MPS VII) is a lysosomal storage disease caused by beta-glucuronidase (GUSB) deficiency. This disease exhibits a broad spectrum of clinical signs including skeletal dysplasia, retinal degeneration, cognitive deficits and hearing impairment. Sustained, high-level expression of GUSB significantly improves the clinical course of the disease in the murine model of MPS VII. Low levels of enzyme expression (1-5% of normal) can significantly reduce the biochemical and histopathological manifestations of MPS VII. However, it has not been clear from previous studies whether persistent, low levels of circulating GUSB lead to significant improvements in the clinical presentation of this disease. We generated a rAAV2 vector that mediates persistent, low-level GUSB expression in the liver. Liver and serum levels of GUSB were maintained at approximately 5% and approximately 2.5% of normal, respectively, while other tissue ranged from background levels to 0.9%. This level of activity significantly reduced the secondary elevations of alpha-galactosidase and the levels of glycosaminoglycans in multiple tissues. Interestingly, this level of GUSB was also sufficient to reduce lysosomal storage in neurons in the brain. Although there were small but statistically significant improvements in retinal function, auditory function, skeletal dysplasia, and reproduction in rAAV-treated MPS VII mice, the clinical deficits were still profound and there was no improvement in lifespan. These data suggest that circulating levels of GUSB greater than 2.5% will be required to achieve substantial clinical improvements in MPS VII.
Collapse
Affiliation(s)
- A Donsante
- Department of Internal Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| | | | | | | |
Collapse
|
23
|
Miller DG, Wang PR, Petek LM, Hirata RK, Sands MS, Russell DW. Gene targeting in vivo by adeno-associated virus vectors. Nat Biotechnol 2006; 24:1022-6. [PMID: 16878127 DOI: 10.1038/nbt1231] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Accepted: 06/15/2006] [Indexed: 12/28/2022]
Abstract
Therapeutic gene delivery typically involves the addition of a transgene expression cassette to mutant cells. This approach is complicated by transgene silencing, aberrant transcriptional regulation and insertional mutagenesis. An alternative strategy is to correct mutations through homologous recombination, allowing for normal regulation of gene expression from the endogenous locus. Adeno-associated virus (AAV) vectors containing single-stranded DNA efficiently transduce cells in vivo and have been shown to target homologous chromosomal sequences in cultured cells. To determine whether AAV-mediated gene targeting can occur in vivo, we developed a mouse model that contains a mutant, nuclear-localized lacZ gene inserted at the ubiquitously expressed ROSA26 locus. Foci of beta-galactosidase-positive hepatocytes were observed in these mice after injection with an AAV vector containing a lacZ gene fragment, and precise correction of the 4-bp deletion was demonstrated by gene sequencing. We also used AAV gene-targeting vectors to correct the naturally occurring GusB gene mutation responsible for murine mucopolysaccharidosis type VII.
Collapse
Affiliation(s)
- Daniel G Miller
- Department of Pediatrics, Division of Genetics and Developmental Medicine, University of Washington, 1705 NE Pacific St., Seattle, WA 98195-7720, USA
| | | | | | | | | | | |
Collapse
|
24
|
Sands MS, Davidson BL. Gene therapy for lysosomal storage diseases. Mol Ther 2006; 13:839-49. [PMID: 16545619 DOI: 10.1016/j.ymthe.2006.01.006] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Revised: 01/28/2006] [Accepted: 01/28/2006] [Indexed: 02/04/2023] Open
Abstract
Lysosomal storage diseases (LSDs) comprise a diverse group of monogenetic disorders with complex clinical phenotypes that include both systemic and central nervous system pathologies. In recent years, the identification or development of mouse models recapitulating the clinical course of the LSDs has been instrumental in evaluating therapeutic strategies. Here, we review the various gene replacement strategies for target organs affected in many LSDs and describe briefly the various vector systems employed to test how best to accomplish long-lasting therapies for these fatal disorders.
Collapse
Affiliation(s)
- Mark S Sands
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | |
Collapse
|
25
|
Karolewski BA, Wolfe JH. Genetic correction of the fetal brain increases the lifespan of mice with the severe multisystemic disease mucopolysaccharidosis type VII. Mol Ther 2006; 14:14-24. [PMID: 16624622 DOI: 10.1016/j.ymthe.2006.02.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 02/16/2006] [Accepted: 02/18/2006] [Indexed: 10/24/2022] Open
Abstract
Neurogenetic diseases typically have globally distributed lesions, and pathology usually develops early in life, requiring early diagnosis and treatment. We investigated the effects of transferring a corrective gene into the fetal brain before the onset of pathology in the mucopolysaccharidosis (MPS) type VII mouse, a model of a lysosomal storage disease. A single adeno-associated virus serotype 1 vector injection into the ventricle at 15.5 days of gestation resulted in widespread distribution and lifelong expression of the normal gene in the brain and spinal cord. The normal enzyme was distributed to neighboring cells (as expected) and completely prevented the development of storage lesions throughout the central nervous system (CNS). No vector transfer was found outside the CNS, including the gonads, but a small amount of enzyme was present in visceral tissues, consistent with transfer from cerebrospinal fluid to venous circulation. The enzyme was present peripherally in such low amounts that it did not result in the severe skeletal dysmorphology that occurs readily when systemic treatment is used in neonates. However, the survival probability of the treated animals was significantly increased. The results suggest that the nervous system disease may contribute to the overall physiologic health of the animal in this type of disease.
Collapse
Affiliation(s)
- Brian A Karolewski
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Pennsylvania, USA; Stokes Research Institute, Children's Hospital of Philadelphia, Philadelphia, Pennsylania 19104, USA
| | | |
Collapse
|
26
|
Nakama H, Ohsugi K, Otsuki T, Date I, Kosuga M, Okuyama T, Sakuragawa N. Encapsulation Cell Therapy for Mucopolysaccharidosis Type VII Using Genetically Engineered Immortalized Human Amniotic Epithelial Cells. TOHOKU J EXP MED 2006; 209:23-32. [PMID: 16636519 DOI: 10.1620/tjem.209.23] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mucopolysaccharidosis type VII (MPSVII) is a lysosomal storage disease resulted from a deficiency of the enzyme beta-glucuronidase (GUSB), which is necessary for degradation of glycosaminoglycans (GAGs). The deficiency of GUSB causes progressive accumulation of GAGs and subsequent lysosomal distension in multiple tissues, including the central nervous system (CNS). In murine experiments, bone marrow transplant, enzyme replacement, viral vectors, and genetically modified cells were successfully used for correction of the visceral accumulation of GAGs, but little improvement was seen in the brain, because these therapeutic agents cannot cross the blood-brain barrier (BBB). Although direct intracerebral injection of GUSB-encoding viral vectors has been developed to bypass the BBB, the possibility of tumor formation and the toxicity of over-expressed GUSB have been reported. In this study, we generated immortalized human amniotic epithelial (IHAE) cells to maintain the effect of implantation, and encapsulated these cells to prevent harmful immunological response and tumor formation and to regulate the level of GUSB expression within the host. Moreover, we generated IHAE cells that over-express and secrete human GUSB following transduction with an adenoviral vector encoding human GUSB. Therapeutic efficacy for MPSVII was evaluated in and ex vivo experiments using these encapsulated genetically engineered GUSB-encoding IHAE cells. We confirmed that encapsulated genetically engineered IHAE cells could secrete significant amounts of GUSB outside the capsule in vitro and into the cerebral parenchyma of C3H mice seven days after the capsule implantation. Thus, encapsulation cell therapy using genetically engineered IHAE cells is an effective armamentarium for the treatment of MPSVII.
Collapse
Affiliation(s)
- Hideyuki Nakama
- Department of Neurosurgery, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashicho, Kodaira, Tokyo 187-8551, Japan.
| | | | | | | | | | | | | |
Collapse
|
27
|
Berges BK, Wolfe JH, Fraser NW. Stable Levels of Long-Term Transgene Expression Driven by the Latency-Associated Transcript Promoter in a Herpes Simplex Virus Type 1 Vector. Mol Ther 2005; 12:1111-9. [PMID: 16122987 DOI: 10.1016/j.ymthe.2005.06.478] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Revised: 06/24/2005] [Accepted: 06/24/2005] [Indexed: 10/25/2022] Open
Abstract
Previous gene transfer studies of the herpes simplex virus type 1 (HSV-1) using the latency-associated transcript (LAT) promoter have reported a decrease in transgene expression in the brain over time, but the extent of this decrease has not been measured and it is unknown if expression eventually stabilizes. We examined LAT promoter-mediated transgene expression in the mouse brain for 1 year following intracranial injection with a HSV-1 vector expressing human beta-glucuronidase (GUSB). The vector genome copy number remained stable from 2 to 52 weeks. Quantitative reverse transcriptase PCR detected a peak of LAT intron expression at 2 weeks (corresponding to the end of the acute phase of viral infection), followed by stable expression during latency (13-52 weeks). The number of GUSB-positive cells also had a peak in the acute phase and then was stable during latency (13-52 weeks). GUSB enzymatic activity was maintained at 11% of normal at 6 and 12 months, indicating that the LAT promoter is capable of driving stable transgene expression in the brain.
Collapse
Affiliation(s)
- B K Berges
- Department of Microbiology, School of Medicine, 319 Johnson Pavilion, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
28
|
Shen JS, Meng XL, Maeda H, Ohashi T, Eto Y. Widespread gene transduction to the central nervous system by adenovirus in utero: implication for prenatal gene therapy to brain involvement of lysosomal storage disease. J Gene Med 2005; 6:1206-15. [PMID: 15459963 DOI: 10.1002/jgm.630] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In some lysosomal storage diseases, considerable alterations of the central nervous system (CNS) occur prior to birth and neurodegeneration progresses rapidly soon after birth causing early death in patients. No effective treatment is available after birth. Treatment may need to be initiated before birth to prevent the onset or progression of neurological changes and thereby irreversible brain damage. The aim of this study is to investigate the feasibility and effectiveness of brain-directed prenatal gene therapy for lysosomal storage diseases. METHODS Recombinant adenovirus encoding the lacZ gene was injected into the lateral ventricles of mouse embryos and the pattern of gene transduction to the CNS was investigated. In the therapeutic experiment, adenovirus expressing beta-glucuronidase was injected into the cerebral ventricles of the embryos of mucopolysaccharidosis VII mice and the therapeutic effects on the brain were evaluated. RESULTS Injection of adenoviral vectors to the cerebral ventricles of mouse embryos led to widespread gene transduction throughout the brain and the spinal cord and transgene expression persisted over 10 months in those surviving the procedure. The prenatal transduction of the therapeutic gene to the brain of the mucopolysaccharidosis VII mouse efficiently prevented lysosomal storage in most brain cells before birth until 4 months after birth. CONCLUSIONS Brain-directed in utero gene therapy through an intra-ventricular route would be an effective strategy to treat some lysosomal storage diseases with early and severe CNS alterations.
Collapse
Affiliation(s)
- Jin-Song Shen
- Department of Gene Therapy, Institute of DNA Medicine, The Jikei University School of Medicine, Minato-Ku, Tokyo 105-8461, Japan
| | | | | | | | | |
Collapse
|
29
|
Tomatsu S, Gutierrez M, Nishioka T, Yamada M, Yamada M, Tosaka Y, Grubb JH, Montaño AM, Vieira MB, Trandafirescu GG, Peña OM, Yamaguchi S, Orii KO, Orii T, Noguchi A, Laybauer L. Development of MPS IVA mouse (Galnstm(hC79S.mC76S)slu) tolerant to human N-acetylgalactosamine-6-sulfate sulfatase. Hum Mol Genet 2005; 14:3321-35. [PMID: 16219627 DOI: 10.1093/hmg/ddi364] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mucopolysaccharidosis IVA (MPS IVA) is an autosomal recessive disease caused by N-acetylgalactosamine-6-sulfate sulfatase (GALNS) deficiency. In recent studies of enzyme replacement therapy for animal models with lysosomal storage diseases, cellular and humoral immune responses to the injected enzymes have been recognized as major impediments to effective treatment. To study the long-term effectiveness and side effects of therapies in the absence of immune responses, we have developed an MPS IVA mouse model, which has many similarities to human MPS IVA and is tolerant to human GALNS protein. We used a construct containing both a transgene (cDNA) expressing inactive human GALNS in intron 1 and an active site mutation (C76S) in adjacent exon 2 and thereby introduced both the inactive cDNA and the C76S mutation into the murine Galns by targeted mutagenesis. Affected homozygous mice have no detectable GALNS enzyme activity and accumulate glycosaminoglycans in multiple tissues including visceral organs, brain, cornea, bone, ligament and bone marrow. At 3 months, lysosomal storage is marked within hepatocytes, reticuloendothelial Kupffer cells, and cells of the sinusoidal lining of the spleen, neurons and meningeal cells. The bone storage is also obvious, with lysosomal distention in osteoblasts and osteocytes lining the cortical bone, in chondrocytes and in the sinus lining cells in bone marrow. Ubiquitous expression of the inactive human GALNS was also confirmed by western blot using the anti-GALNS monoclonal antibodies newly produced, which resulted in tolerance to immune challenge with human enzyme. The newly generated MPS IVA mouse model should provide a good model to evaluate long-term administration of enzyme replacement.
Collapse
Affiliation(s)
- Shunji Tomatsu
- Department of Pediatrics, Pediatric Research Institute, Saint Louis University, MO 63110, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Passini MA, Macauley SL, Huff MR, Taksir TV, Bu J, Wu IH, Piepenhagen PA, Dodge JC, Shihabuddin LS, O'Riordan CR, Schuchman EH, Stewart GR. AAV vector-mediated correction of brain pathology in a mouse model of Niemann-Pick A disease. Mol Ther 2005; 11:754-62. [PMID: 15851014 DOI: 10.1016/j.ymthe.2005.01.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Accepted: 01/10/2005] [Indexed: 10/25/2022] Open
Abstract
Niemann-Pick A disease (NPA) is a fatal lysosomal storage disorder caused by a deficiency in acid sphingomyelinase (ASM) activity. The lack of functional ASM results in cellular accumulation of sphingomyelin and cholesterol within distended lysosomes throughout the brain. In this study, we investigated the potential of AAV-mediated expression of ASM to correct the brain pathology in an ASM knockout (ASMKO) mouse model of NPA. An AAV serotype 2 vector encoding human ASM (AAV2-hASM) was injected directly into the adult ASMKO hippocampus of one hemisphere. This resulted in expression of human ASM in all major cell layers of the ipsilateral hippocampus for at least 15 weeks postinjection. Transduced cells were also present in the entorhinal cortex, medial septum, and contralateral hippocampus in a pattern consistent with retrograde axonal transport of AAV2. There was a substantial reduction of distended lysosomes and an almost complete reversal of cholesterol accumulation in all areas of the brain that were targeted by AAV2-hASM. These findings show that the ASMKO brain is responsive to ASM replacement and that retrograde transport of AAV2 functions as a platform for widespread gene delivery and reversal of pathology in affected brain.
Collapse
Affiliation(s)
- Marco A Passini
- Neuroscience, Genzyme Corporation, One Mountain Road, Framingham, MA 01701, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kobayashi H, Carbonaro D, Pepper K, Petersen D, Ge S, Jackson H, Shimada H, Moats R, Kohn DB. Neonatal gene therapy of MPS I mice by intravenous injection of a lentiviral vector. Mol Ther 2005; 11:776-89. [PMID: 15851016 DOI: 10.1016/j.ymthe.2004.10.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Accepted: 10/07/2004] [Indexed: 11/24/2022] Open
Abstract
Mucopolysaccharidosis type I (MPS I) is a lysosomal glycosaminoglycan (GAG) storage disorder caused by deficiency of alpha-l-iduronidase (IDUA). In this study, we evaluated the potential to perform gene therapy for MPS I by direct in vivo injection of a lentiviral vector, using an IDUA gene knockout murine model. We compared the efficacy in newborn versus young adult MPS I mice of a single intravenous injection of the lentiviral vector. The extent of transduction was dose-dependent, with the liver receiving the highest level of vector, but other somatic organs reaching almost the same level. The phenotypic manifestations of disease were partially improved in the mice treated as young adults, but were nearly normalized at every end-point measured in the mice treated as neonates. In the neonatally treated mice, the expressed IDUA activity resulted in decreased GAG storage, prevention of skeletal abnormalities, a more normal gross appearance, and improved survival. Most strikingly, significant levels of IDUA enzyme were produced in the brain of mice treated as neonates, with transduction of neurons at high levels. The sustained expression of enzymatically active IDUA in multiple organs had a significant beneficial effect on the phenotypic abnormalities of MPS I, which may be translated to clinical gene therapy of patients with Hurler disease.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Pediatrics, Division of Research Immunology/Bone Marrow Transplantation, The Saban Research Institute at Childrens Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA 90027, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Gonçalves MAFV. A concise peer into the background, initial thoughts and practices of human gene therapy. Bioessays 2005; 27:506-17. [PMID: 15832383 DOI: 10.1002/bies.20218] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The concept of human gene therapy came on the heels of fundamental discoveries on the nature and working of the gene. However, realistic prospects to correct the underlying cause of recessive genetic disorders through the transfer of wild-type alleles of defective genes had to wait for the arrival of recombinant DNA technology. These techniques permitted the isolation and insertion of genes into the first recombinant delivery systems. The realization that viruses are natural gene carriers provided inspiration for gene therapy and, as engineered vectors, viruses became prominent gene delivery vehicles. Nonetheless, when put in the context of human and non-human primate studies, all vectors fell short of success regardless of their viral or non-viral origin. Recognition of issues such as inefficient gene transfer and short-lived or scant expression in the relevant cell type(s) prompted researchers to refine and develop several gene delivery systems, in particular those based on retroviruses, adeno-associated viruses and adenoviruses. Concomitantly, available technology was deployed to tackle disorders that require few genetically corrected cells to attain therapy.
Collapse
Affiliation(s)
- Manuel A F V Gonçalves
- Gene Therapy Section, Department of Molecular Cell Biology, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL Leiden, the Netherlands.
| |
Collapse
|
33
|
Abstract
The lysosomal storage diseases are a family of inherited disorders usually caused by a deficiency in a single lysosomal enzyme, and are characterised by progressive intralysosomal storage in multiple cell types. Although individual syndromes can be uncommon, as a whole this family of diseases affects approximately 1 in 3,000 live births. The severity of disease can be variable, ranging from minimal evidence of lysosomal storage to widespread multi-system involvement and early mortality. Although the enzymatic defects responsible for most of these diseases are known, treatment options for the majority of these disorders are limited to supportive care and genetic counselling. Knowledge of the genetic defects underlying these diseases, coupled with advances in the fields of gene transfer and expression, provide an opportunity to utilise gene therapy strategies in order to treat these disorders. Here we provide a description of the biochemical and molecular basis of gene therapy for lysosomal storage diseases, as well as an overview of some of the in vitro and in vivo studies that have been performed.
Collapse
Affiliation(s)
- T M Daly
- Department of Pathology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | |
Collapse
|
34
|
Williams KA, Jessup CF, Coster DJ. Gene therapy approaches to prolonging corneal allograft survival. Expert Opin Biol Ther 2005; 4:1059-71. [PMID: 15268674 DOI: 10.1517/14712598.4.7.1059] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Irreversible immunological rejection is the major cause of human corneal allograft failure and occurs despite the use of topical glucocorticoid immunosuppression. Systemic pharmacological interventions have not found widespread favour in corneal transplantation because of associated morbidities and inadequate demonstration of efficacy. Gene therapy offers tantalising prospects for improving corneal allograft survival, especially in those recipients at high risk of graft rejection. Donor corneas can be gene-modified ex vivo, while in storage prior to implantation, and the relative isolation of the transplanted cornea from the circulation decreases the risk of potential systemic complications. A wide variety of vectors have been found suitable for gene transfer to the cornea. The mechanisms involved in corneal graft rejection have been placed on a relatively secure footing over the past decade and in consequence a number of transgenes with promise for modulating rejection have been identified. However, relatively few studies have thus far demonstrated significant prolongation of corneal allograft survival after gene transfer to the donor cornea. In these instances, the therapeutic protein almost certainly acted at a proximal level in the afferent immune response, within the ocular environs.
Collapse
Affiliation(s)
- Keryn A Williams
- Department of Ophthalmology, Flinders University of South Australia, Flinders Medical Centre, Bedford Park, GPO Box 2100, Adelaide SA 5042, Australia.
| | | | | |
Collapse
|
35
|
Hartung SD, Frandsen JL, Pan D, Koniar BL, Graupman P, Gunther R, Low WC, Whitley CB, McIvor RS. Correction of metabolic, craniofacial, and neurologic abnormalities in MPS I mice treated at birth with adeno-associated virus vector transducing the human alpha-L-iduronidase gene. Mol Ther 2005; 9:866-75. [PMID: 15194053 DOI: 10.1016/j.ymthe.2004.03.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2003] [Accepted: 03/15/2004] [Indexed: 10/26/2022] Open
Abstract
Murine models of lysosomal storage diseases provide an opportunity to evaluate the potential for gene therapy to prevent systemic manifestations of the disease. To determine the potential for treatment of mucopolysaccharidosis type I using a gene delivery approach, a recombinant adeno-associated virus (AAV) vector, vTRCA1, transducing the human iduronidase (IDUA) gene was constructed and 1 x 10(10) particles were injected intravenously into 1-day-old Idua(-/-) mice. High levels of IDUA activity were present in the plasma of vTRCA1-treated animals that persisted for the 5-month duration of the study, with heart and lung of this group demonstrating the highest tissue levels of gene transfer and enzyme activity overall. vTRCA1-treated Idua(-/-) animals with measurable plasma IDUA activity exhibited histopathological evidence of reduced lysosomal storage in a number of tissues and were normalized with respect to urinary GAG excretion, craniofacial bony parameters, and body weight. In an open field test, vTRCA1-treated Idua(-/-) animals exhibited a significant reduction in total squares covered and a trend toward normalization in rearing events and grooming time compared to control-treated Idua(-/-) animals. We conclude that AAV-mediated transduction of the IDUA gene in newborn Idua(-/-) mice was sufficient to have a major curative impact on several of the most important parameters of the disease.
Collapse
Affiliation(s)
- Seth D Hartung
- Gene Therapy Program, Institute of Human Genetics, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Hofling AA, Devine S, Vogler C, Sands MS. Human CD34+ hematopoietic progenitor cell-directed lentiviral-mediated gene therapy in a xenotransplantation model of lysosomal storage disease. Mol Ther 2005; 9:856-65. [PMID: 15194052 DOI: 10.1016/j.ymthe.2004.03.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Accepted: 03/15/2004] [Indexed: 11/20/2022] Open
Abstract
As a group, lysosomal storage diseases (LSDs) affect roughly 1 in 6700 live births. Treatment of patients with enzyme replacement therapy or allogeneic bone marrow transplantation is severely limited by cost and clinical complications, respectively. In this study, the efficacy of gene therapy targeted to human hematopoietic progenitor cells was investigated for mucopolysaccharidosis type VII (MPSVII), a LSD caused by beta-glucuronidase (GUSB) deficiency. Clinical experience has emphasized the need to evaluate transduction protocols directly with human cells through in vivo assays. Therefore, GUSB-deficient mobilized peripheral blood CD34(+) cells from a patient with MPSVII were transduced with a third-generation lentiviral vector encoding human GUSB and then assessed in a xenotransplantation system. In this novel strategy, the xenotransplanted murine recipients were also GUSB-deficient, allowing a detailed evaluation of therapeutic efficacy in a host with MPSVII. Twelve weeks posttransplantation, lymphomyeloid expression of GUSB was detected in 10.8 +/- 1.6% of the human cells in the bone marrow with an average of 1 to 2 vector genomes measured per positive cell. The corrected cells distributed widely throughout recipient tissues, resulting in significant therapeutic effects including improvements in biochemical parameters and reduction of the lysosomal distension of several host tissues.
Collapse
Affiliation(s)
- A Alex Hofling
- Department of Internal Medicine, Washington University School of Medicine, Box 8007, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
37
|
Sleeper MM, Fornasari B, Ellinwood NM, Weil MA, Melniczek J, O'Malley TM, Sammarco CD, Xu L, Ponder KP, Haskins ME. Gene therapy ameliorates cardiovascular disease in dogs with mucopolysaccharidosis VII. Circulation 2004; 110:815-20. [PMID: 15289379 DOI: 10.1161/01.cir.0000138747.82487.4b] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Mucopolysaccharidosis VII (MPS VII) is a lysosomal storage disease caused by deficient beta-glucuronidase (GUSB) activity resulting in defective catabolism of glycosaminoglycans (GAGs). Cardiac disease is a major cause of death in MPS VII because of accumulation of GAGs in cardiovascular cells. Manifestations include cardiomyopathy, mitral and aortic valve thickening, and aortic root dilation and may cause death in the early months of life or may be compatible with a fairly normal lifespan. We previously reported that neonatal administration of a retroviral vector (RV) resulted in transduction of hepatocytes, which secreted GUSB into the blood and could be taken up by cells throughout the body. The goal of this study was to evaluate the effect on cardiac disease. METHODS AND RESULTS Six MPS VII dogs were treated intravenously with an RV-expressing canine GUSB. Echocardiographic parameters, cardiovascular lesions, and biochemical parameters of these dogs were compared with those of normal and untreated MPS VII dogs. CONCLUSIONS RV-treated dogs were markedly improved compared with untreated MPS VII dogs. Most RV-treated MPS VII dogs had mild or moderate mitral regurgitation at 4 to 5 months after birth, which improved or disappeared when evaluated at 9 to 11 and at 24 months. Similarly, mitral valve thickening present early in some animals disappeared over time, whereas aortic dilation and aortic valve thickening were absent at all times. Both myocardium and aorta had significant levels of GUSB and reduction in GAGs.
Collapse
Affiliation(s)
- M M Sleeper
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Meng XL, Shen JS, Ohashi T, Maeda H, Kim SU, Eto Y. Brain transplantation of genetically engineered human neural stem cells globally corrects brain lesions in the mucopolysaccharidosis type VII mouse. J Neurosci Res 2003; 74:266-77. [PMID: 14515356 DOI: 10.1002/jnr.10764] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the present study, we investigated the feasibility of using human neural stem cells (NSCs) in the treatment of diffuse central nervous system (CNS) alterations in a murine model of mucopolysaccharidosis VII (MPS VII), a lysosomal storage disease caused by a genetic defect in the beta-glucuronidase gene. An immortalized NSC line derived from human fetal telencephalon was genetically engineered to overexpress beta-glucuronidase and transplanted into the cerebral ventricles of neonatal MPS VII mouse. Transplanted human NSCs were found to integrate and migrate in the host brain and to produce large amount of beta-glucuronidase. Brain contents of the substrates of beta-glucuronidase were reduced to nearly normal levels, and widespread clearing of lysosomal storage was observed in the MPS VII mouse brain at 25 days posttransplantation. The number of engrafted cells decreased markedly after the transplantation, and it appears that the major cause of the cell death was not the immune response of the host but apoptotic cell death of grafted human NSCs. Results showed that human NSCs would serve as a useful gene transfer vehicle for the treatment of diffuse CNS lesions in human lysosomal storage diseases and are potentially applicable in the treatment of patients suffering from neurological disorders.
Collapse
Affiliation(s)
- Xing-Li Meng
- Department of Gene Therapy, Institute of DNA Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Lysosomal storage diseases (LSDs) represent a large group of monogenic disorders of metabolism, which affect approximately 1 in 5000 live births. LSDs result from a single or multiple deficiency of specific lysosomal hydrolases, the enzymes responsible for the luminal catabolization of macromolecular substrates. The consequent accumulation of undigested metabolites in lysosomes leads to polysystemic dysfunction, including progressive neurologic deterioration, mental retardation, visceromegaly, blindness, and early death. In general, the residual amount of functional enzyme in lysosomes determines the severity and age at onset of the clinical symptoms, implying that even modest increases in enzyme activity might affect a cure. A key feature on which therapy for LSDs is based is the ability of soluble enzyme precursors to be secreted by one cell type and reinternalize by neighboring cells via receptor-mediated endocytosis and routed to lysosomes, where they function normally. In principle, somatic gene therapy could be the preferred treatment for LSDs if the patient's own cells could be genetically modified in vitro or in vivo to constitutively express high levels of the correcting enzyme and become the source of the enzyme in the patient. Both ex vivo and in vivo gene transfer methods have been experimented with for gene therapy of lysosomal disorders. Several of these methods have proved efficient for the transfer of genetic material into deficient cells in culture and reconstitution of enzyme activity. However, the same methods applied to humans or animal models have been giving inconsistent results, the bases of which are not fully understood. A broader knowledge of disease pathogenesis, facilitated by available, faithful animal models of LSDs, coupled to the development of better gene transfer systems as well as the understanding of vector host interactions will make somatic gene therapy for these devastating and complex diseases the most suitable therapeutic approach.
Collapse
Affiliation(s)
- Alessandra D'Azzo
- Department of Genetics and Tumor Cell Biology, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.
| |
Collapse
|
40
|
Barker JE, Schuldt AJT, Lessard ML, Jude CD, Vogler CA, Soper BW. Donor cell expansion is delayed following nonablative in utero transplantation to treat murine mucopolysaccharidosis type VII. Exp Hematol 2003; 31:1112-8. [PMID: 14585377 DOI: 10.1016/s0301-472x(03)00234-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To block development of progressive childhood diseases, in utero transplantation (IUTx) requires immediate and significant donor peripheral blood (PB) cell amplification. To date, negligible and nontherapeutic donor PB cell levels have been observed postnatally, except in patients with immunodeficiency diseases. Donor cell fate in utero still is not clear. Ease of identifying and quantifying beta-glucuronidase (GUSB)-expressing donor cells in GUSB-null mucopolysaccharidosis type VII (MPSVII) mouse recipients allowed us to evaluate temporal donor cell engraftment and amplification post-IUTx. Like humans, MPSVII mice are unable to catabolize lysosomal glycosaminoglycans and progressively develop severe storage disease unless they are treated early in life.IUTx recipients were nonablated MPSVII fetuses and genetically stem cell-deficient, and hence myeloablated, W(41)/W(41) MPSVII fetuses. Donor GUSB+ cells were identified and counted in histochemical tissue sections. Quantitative results were confirmed by flow cytometry, enzyme analysis, and histopathology. Whereas GUSB+ cells engraft in most tissues in utero, significant amplification does not occur until the first postnatal week in the nonablated MPSVII hosts. In contrast, genetically myeloablated MPSVII recipients display widely distributed donor cell replacement accompanied by extensive amplification in utero. In both models, storage is alleviated in adult tissues with significant donor cell repopulation. To become therapeutic, IUTx must overcome the limitations of donor cell expansion in the highly competitive fetal environment. Fortunately, nonablative mechanisms to amplify cells in utero are coming on line.
Collapse
|
41
|
Bosch A, Heard JM. Gene therapy for mucopolysaccharidosis. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 55:271-96. [PMID: 12968541 DOI: 10.1016/s0074-7742(03)01012-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Assumpció Bosch
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Centre de Biotecnologia Animal i Teràpia Gènica (CBATEG), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | |
Collapse
|
42
|
Vollweiler JL, Zielske SP, Reese JS, Gerson SL. Hematopoietic stem cell gene therapy: progress toward therapeutic targets. Bone Marrow Transplant 2003; 32:1-7. [PMID: 12815471 DOI: 10.1038/sj.bmt.1704081] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The concept of hematopoietic stem cell gene therapy is as exciting as that of stem cell transplantation itself. The past 20 years of research have led to improved techniques for transferring and expressing genes in hematopoietic stem cells and preclinical models now routinely indicate the ease with which new genes can be expressed in repopulating stem cells of multiple species. Both modified murine oncoretroviruses and lentiviruses transmit genes into the genome of hematopoietic stem cells and allow expression in the host following transplantation. Using oncoretroviruses, therapeutic genes for severe combined immunodeficiency, common variable gamma chain immunodeficiency, chronic granulomatous disease, Hurler's and Gaucher's Disease have all been used clinically with only modest success except for the patients with immunodeficiency in whom a partial T-cell chimerism has been dramatic. Since stem cell selection in vivo appears important to the therapeutic success of gene transfer, drug resistance selection, most recently using the MGMT gene, has been developed and appears to be safe. Future trials combining a drug resistance and therapeutic gene are planned, as are trials using safety-modified lentiviruses. The therapeutic potential of hematopoietic stem cell gene therapy, particularly given recent advances in stem cell plasticity, remains an exceptionally exciting area of clinical research.
Collapse
Affiliation(s)
- J L Vollweiler
- Division of Hematology-Oncology, Comprehensive Cancer Center at University Hospitals of Cleveland, Case Western Reserve University School of Medicine, USA
| | | | | | | |
Collapse
|
43
|
Kao WWY. Particle-mediated gene transfer to ocular surface epithelium. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 506:1297-308. [PMID: 12614071 DOI: 10.1007/978-1-4615-0717-8_189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Winston W Y Kao
- Department of Ophthalmology, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
44
|
Tomatsu S, Orii KO, Vogler C, Grubb JH, Snella EM, Gutierrez M, Dieter T, Holden CC, Sukegawa K, Orii T, Kondo N, Sly WS. Production of MPS VII mouse (Gus(tm(hE540A x mE536A)Sly)) doubly tolerant to human and mouse beta-glucuronidase. Hum Mol Genet 2003; 12:961-73. [PMID: 12700165 PMCID: PMC1567498 DOI: 10.1093/hmg/ddg119] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mucopolysaccharidosis VII (MPS VII, Sly syndrome) is an autosomal recessive lysosomal storage disease caused by beta-glucuronidase (GUS) deficiency. A naturally occurring mouse model of that disease has been very useful for studying experimental approaches to therapy. However, immune responses can complicate evaluation of the long-term benefits of enzyme replacement or gene therapy delivered to adult MPS VII mice. To make this model useful for studying the long-term effectiveness and side effects of experimental therapies delivered to adult mice, we developed a new MPS VII mouse model, which is tolerant to both human and murine GUS. To achieve this, we used homologous recombination to introduce simultaneously a human cDNA transgene expressing inactive human GUS into intron 9 of the murine Gus gene and a targeted active site mutation (E536A) into the adjacent exon 10. When the heterozygote products of germline transmission were bred to homozygosity, the homozygous mice expressed no GUS enzyme activity but expressed inactive human GUS protein highly and were tolerant to immune challenge with human enzyme. Expression of the mutant murine Gus gene was reduced to about 10% of normal levels, but the inactive murine GUS enzyme also conferred tolerance to murine GUS. This MPS VII mouse model should be useful to evaluate therapeutic responses in adult mice receiving repetitive doses of enzyme or mice receiving gene therapy as adults. Heterozygotes expressed only 9.5-26% of wild-type levels of murine GUS instead of the expected 50%, indicating a dominant-negative effect of the mutant enzyme monomers on the activity of GUS tetramers in different tissues. Corrective gene therapy in this model should provide high enough levels of expression of normal GUS monomers to overcome the dominant negative effect of mutant monomers on newly synthesized GUS tetramers in most tissues.
Collapse
Affiliation(s)
- Shunji Tomatsu
- Edward A. Doisy Department of Biochemistry and Molecular Biology and
- Department of Pediatrics, Gifu University School of Medicine, Gifu 500, Japan
| | - Koji O. Orii
- Edward A. Doisy Department of Biochemistry and Molecular Biology and
- Department of Pediatrics, Gifu University School of Medicine, Gifu 500, Japan
| | - Carole Vogler
- Department of Pathology, Saint Louis University School of Medicine, St Louis, MO 63104, USA and
| | - Jeffrey H. Grubb
- Edward A. Doisy Department of Biochemistry and Molecular Biology and
| | | | - Monica Gutierrez
- Edward A. Doisy Department of Biochemistry and Molecular Biology and
| | - Tatiana Dieter
- Edward A. Doisy Department of Biochemistry and Molecular Biology and
| | | | - Kazuko Sukegawa
- Department of Pediatrics, Gifu University School of Medicine, Gifu 500, Japan
| | - Tadao Orii
- Department of Pediatrics, Gifu University School of Medicine, Gifu 500, Japan
| | - Naomi Kondo
- Department of Pediatrics, Gifu University School of Medicine, Gifu 500, Japan
| | - William S. Sly
- Edward A. Doisy Department of Biochemistry and Molecular Biology and
- *To whom correspondence should be addressed at: Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1402 South Grand Boulevard, St Louis, MO 63104, USA. Tel: +1 3145778131; Fax: +1 3147761183;
| |
Collapse
|
45
|
Kamata Y, Tanabe A, Kanaji A, Kosuga M, Fukuhara Y, Li XK, Suzuki S, Yamada M, Azuma N, Okuyama T. Long-term normalization in the central nervous system, ocular manifestations, and skeletal deformities by a single systemic adenovirus injection into neonatal mice with mucopolysaccharidosis VII. Gene Ther 2003; 10:406-14. [PMID: 12601395 DOI: 10.1038/sj.gt.3301869] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Systemic injection of an adenovirus vector into adult mice resulted in pathological improvements in multiple visceral organs of mice with mucopolysaccharidosis VII; however, no therapeutic efficacy was observed for mental retardation, skeletal deformities, corneal clouding, and retinal degeneration. In this study, an adenovirus vector expressing human beta-glucuronidase was injected into mice with mucopolysaccharidosis VII within 24 h of birth, and therapeutic efficacy was evaluated. In the brains of the mice, more than 20% of GUSB activity was maintained for at least 20 weeks after birth, and histopathological analysis showed no obvious lysosomal storage. Furthermore, no vacuolated cells were detected in corneal stroma and retinal pigment epithelium in the eyes of the mice treated in the neonatal period, while pathological improvement was not observed in adult MPSVII mice that received similar treatments. The treated mice also lacked characteristic facial skeletal deformities, and radiographic analysis demonstrated that their facial and cranial bones were morphologically normal. These results indicate that a single systemic adenovirus injection in the neonatal period could prevent the progression of mental retardation, corneal clouding, retinal degeneration, and skeletal deformities, all of which are frequently observed clinical manifestations and difficult to treat in adulthood.
Collapse
Affiliation(s)
- Y Kamata
- National Research Institute for Child Health and Development, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Hofling AA, Vogler C, Creer MH, Sands MS. Engraftment of human CD34+ cells leads to widespread distribution of donor-derived cells and correction of tissue pathology in a novel murine xenotransplantation model of lysosomal storage disease. Blood 2003; 101:2054-63. [PMID: 12406886 DOI: 10.1182/blood-2002-08-2597] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel murine system was developed to study the in vivo localization of xenotransplanted human cells and assess their therapeutic effect in an authentic model of disease. The beta-glucuronidase (GUSB) mutation of the mucopolysaccharidosis type VII (MPSVII) mouse was backcrossed onto the nonobese diabetic/severe combined immunodeficient (NOD/SCID) xenotransplantation strain. The resulting NOD/SCID/MPSVII mice displayed the characteristic features of lysosomal storage disease because of GUSB deficiency and were also capable of engrafting human cells. Human CD34+ hematopoietic progenitor cells from healthy, GUSB+ donors engrafted NOD/SCID/MPSVII mice in a manner similar to that of standard NOD/SCID mice. Six to 12 weeks following transplantation, 1% to 86% of the host bone marrow was positive for human CD45. By using a GUSB-specific histochemical assay, human engraftment was detected with single-cell sensitivity not only in well-characterized hematopoietic tissues like bone marrow, spleen, lymph node, and thymus, but also in other nonhematopoietic organs like liver, kidney, lung, heart, brain, and eye. Quantitative measurements of GUSB activity confirmed this expansive tissue distribution. The GUSB-specific assays were validated for their accuracy in identifying human cells through colocalization of human CD45 expression with GUSB activity in tissues of mice receiving transplants. An analysis of the therapeutic effects of engrafted human cells revealed a reduction of pathologic storage material in host organs, including the bone, spleen, and liver. Such xenotransplantation experiments in the NOD/SCID/MPSVII mouse represent a powerful approach to both study the in vivo biology of human cells and gather preclinical data regarding treatment approaches for a human disease.
Collapse
Affiliation(s)
- A Alex Hofling
- Departments of Internal Medicine and Genetics, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | |
Collapse
|
47
|
Young PP, Vogler C, Hofling AA, Sands MS. Biodistribution and efficacy of donor T lymphocytes in a murine model of lysosomal storage disease. Mol Ther 2003; 7:52-61. [PMID: 12573618 DOI: 10.1016/s1525-0016(02)00016-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Lymphocyte-directed gene transfer has been proposed as potential therapy to treat certain congenital immunological deficiencies as well as other genetic diseases such as lysosomal storage diseases (LSDs). To understand better the extent to which adoptively transferred peripheral T lymphocytes (PTLs) are able to ameliorate LSDs we utilized the beta-glucuronidase-deficient mouse as a model system. PTLs (1 x 10(7)) isolated from the spleen of syngeneic mice overexpressing ( approximately 8-fold) human beta-glucuronidase (GUSB) were injected intravenously into young adult beta-glucuronidase-deficient mice without myeloablative conditioning. Using biochemical and histochemical assays, we were able to track the donor lymphocytes in vivo. Donor lymphocytes were detected in relatively high numbers in liver, spleen, small intestine, mesenteric lymph node, and thymus for at least 5 months, the last time point of analysis. Although liver and spleen had the highest total GUSB activity, histopathologic analysis demonstrated minimal to no correction of lysosomal distention at all time points studied. By contrast, we have shown in earlier studies that administration of similar numbers of macrophages reduced lysosomal storage in several organs, including liver and spleen. To understand this difference in efficacy, we compared the relative level of GUSB released into the medium by nonactivated and activated PTLs as well as by macrophages. Macrophages released >50-fold excess enzyme compared to either activated or nonactivated PTLs. These data suggest that a LSD can be more effectively treated by directing a gene therapy approach to a hematopoietic lineage other than T lymphocytes.
Collapse
Affiliation(s)
- Pampee P Young
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
48
|
Ponder KP, Melniczek JR, Xu L, Weil MA, O'Malley TM, O'Donnell PA, Knox VW, Aguirre GD, Mazrier H, Ellinwood NM, Sleeper M, Maguire AM, Volk SW, Mango RL, Zweigle J, Wolfe JH, Haskins ME. Therapeutic neonatal hepatic gene therapy in mucopolysaccharidosis VII dogs. Proc Natl Acad Sci U S A 2002; 99:13102-7. [PMID: 12232044 PMCID: PMC130593 DOI: 10.1073/pnas.192353499] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dogs with mucopolysaccharidosis VII (MPS VII) were injected intravenously at 2-3 days of age with a retroviral vector (RV) expressing canine beta-glucuronidase (cGUSB). Five animals received RV alone, and two dogs received hepatocyte growth factor (HGF) before RV in an attempt to increase transduction efficiency. Transduced hepatocytes expanded clonally during normal liver growth and secreted enzyme with mannose 6-phosphate. Serum GUSB activity was stable for up to 14 months at normal levels for the RV-treated dogs, and for 17 months at 67-fold normal for the HGF/RV-treated dog. GUSB activity in other organs was 1.5-60% of normal at 6 months for two RV-treated dogs, which was likely because of uptake of enzyme from blood by the mannose 6-phosphate receptor. The body weights of untreated MPS VII dogs are 50% of normal at 6 months. MPS VII dogs cannot walk or stand after 6 months, and progressively develop eye and heart disease. RV- and HGF/RV-treated MPS VII dogs achieved 87% and 84% of normal body weight, respectively. Treated animals could run at all times of evaluation for 6-17 months because of improvements in bone and joint abnormalities, and had little or no corneal clouding and no mitral valve thickening. Despite higher GUSB expression, the clinical improvements in the HGF/RV-treated dog were similar to those in the RV-treated animals. This is the first successful application of gene therapy in preventing the clinical manifestations of a lysosomal storage disease in a large animal.
Collapse
Affiliation(s)
- Katherine Parker Ponder
- Departments of Internal Medicine and Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Prasad Alur RK, Foley B, Parente MK, Tobin DK, Heuer GG, Avadhani AN, Pongubala J, Wolfe JH. Modification of multiple transcriptional regulatory elements in a Moloney murine leukemia virus gene transfer vector circumvents silencing in fibroblast grafts and increases levels of expression of the transferred enzyme. Gene Ther 2002; 9:1146-54. [PMID: 12170378 DOI: 10.1038/sj.gt.3301777] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2002] [Accepted: 03/07/2002] [Indexed: 11/09/2022]
Abstract
Down-regulation of retroviral vector expression occurs in a number of cell types after transplantation. Although a number of vector elements have been shown to affect expression in specific experimental situations, the results can vary depending on the specific cDNA being expressed, the individual retroviral elements included in vectors, the promoter, or the inclusion of selectable markers. In previous experiments with the lysosomal enzyme beta-glucuronidase, silencing has occurred in more than 95% of transduced cells regardless of the position of the expression unit within the vector, whether a eukaryotic or viral promoter was used, whether a bacterial selectable marker gene was present or not, the target cell type, or the species of the host. It has been a consistent finding that a small number of continuously expressing cells persist for long periods after transplantation. In this study we found that deletion of all the transcriptional regulatory elements from the vector LTR, inclusion of a permissive primer binding site sequence, and use of a eukaryotic housekeeping promoter could greatly increase the number of expressing cells in fibroblast grafts in subcutaneous neo-organs and in the brain. Furthermore, the level of enzyme expression was increased five-fold on a per positive cell basis, indicating that the deleted regulatory elements were exerting a negative effect on expression in the few cells that were positive before modification of the vector. This resulted in more than a 50-fold increase in total activity compared with the previous highest expressing vector.
Collapse
Affiliation(s)
- R K Prasad Alur
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
We present an overview of the current status of basic science and translational research being applied to gene therapy for eye disease, focusing on diseases of the retina. We discuss the viral and nonviral methods being used to transfer genes to the retina and retinal pigment epithelium, and the advantages and disadvantages of each approach. We review the various genetic and somatic treatment strategies that are being used for genetically determined and acquired diseases of the retina, including gene replacement, gene silencing by ribozymes and antisense oligonucleotides, suicide gene therapy, antiapoptosis, and growth factor therapies. The rationales for the specific therapeutic approaches to each disease are discussed. Schematics of gene transfer methods and therapeutic approaches are presented together with a glossary of gene transfer terminology.
Collapse
Affiliation(s)
- Edward Chaum
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | | |
Collapse
|