1
|
Cross-Talk Between the Adenylyl Cyclase/cAMP Pathway and Ca 2+ Homeostasis. Rev Physiol Biochem Pharmacol 2021; 179:73-116. [PMID: 33398503 DOI: 10.1007/112_2020_55] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cyclic AMP and Ca2+ are the first second or intracellular messengers identified, unveiling the cellular mechanisms activated by a plethora of extracellular signals, including hormones. Cyclic AMP generation is catalyzed by adenylyl cyclases (ACs), which convert ATP into cAMP and pyrophosphate. By the way, Ca2+, as energy, can neither be created nor be destroyed; Ca2+ can only be transported, from one compartment to another, or chelated by a variety of Ca2+-binding molecules. The fine regulation of cytosolic concentrations of cAMP and free Ca2+ is crucial in cell function and there is an intimate cross-talk between both messengers to fine-tune the cellular responses. Cancer is a multifactorial disease resulting from a combination of genetic and environmental factors. Frequent cases of cAMP and/or Ca2+ homeostasis remodeling have been described in cancer cells. In those tumoral cells, cAMP and Ca2+ signaling plays a crucial role in the development of hallmarks of cancer, including enhanced proliferation and migration, invasion, apoptosis resistance, or angiogenesis. This review summarizes the cross-talk between the ACs/cAMP and Ca2+ intracellular pathways with special attention to the functional and reciprocal regulation between Orai1 and AC8 in normal and cancer cells.
Collapse
|
2
|
Leslie SN, Nairn AC. cAMP regulation of protein phosphatases PP1 and PP2A in brain. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:64-73. [PMID: 30401536 DOI: 10.1016/j.bbamcr.2018.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 09/13/2018] [Indexed: 12/21/2022]
Abstract
Normal functioning of the brain is dependent upon a complex web of communication between numerous cell types. Within neuronal networks, the faithful transmission of information between neurons relies on an equally complex organization of inter- and intra-cellular signaling systems that act to modulate protein activity. In particular, post-translational modifications (PTMs) are responsible for regulating protein activity in response to neurochemical signaling. The key second messenger, cyclic adenosine 3',5'-monophosphate (cAMP), regulates one of the most ubiquitous and influential PTMs, phosphorylation. While cAMP is canonically viewed as regulating the addition of phosphate groups through its activation of cAMP-dependent protein kinases, it plays an equally critical role in regulating removal of phosphate through indirect control of protein phosphatase activity. This dichotomy of regulation by cAMP places it as one of the key regulators of protein activity in response to neuronal signal transduction throughout the brain. In this review we focus on the role of cAMP in regulation of the serine/threonine phosphatases protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A) and the relevance of control of PP1 and PP2A to regulation of brain function and behavior.
Collapse
Affiliation(s)
- Shannon N Leslie
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States of America
| | - Angus C Nairn
- Department of Psychiatry, Yale University, New Haven, CT, United States of America
| |
Collapse
|
3
|
Commemorating John F. MacDonald and the Art of Being a Mentor. Can J Neurol Sci 2016; 43:735-44. [PMID: 27488619 DOI: 10.1017/cjn.2016.272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
John F. MacDonald was a close friend and mentor whose life was ended far too soon on April 22, 2014. To those who knew him, John was an endearing blend of fiery Scotsman, compassionate socialist, dedicated family man, and tireless investigator. Those close to him valued his loyalty and friendship, relished his biting wit, and puzzled at his self-deprecating manner. His career spanned a remarkable period of discovery from the early identification of excitatory amino acid, to the molecular cloning and characterization of glutamate receptors and the elucidation of mechanisms responsible for regulating their function. A true pioneer in each of these areas, John's research has had a lasting impact on our understanding of excitatory synaptic transmission and its plasticity. Our intent in commemorating John's work is to focus on some notable discoveries that highlight the impact and innovative aspects of John's work. In doing so, we also wish to highlight just how greatly our understanding of the glutamate transmitter systems has advanced since the late 1970s, when John first launched his independent neuroscience career.
Collapse
|
4
|
Chan P, Lutfy K. Molecular Changes in Opioid Addiction: The Role of Adenylyl Cyclase and cAMP/PKA System. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 137:203-27. [PMID: 26810003 DOI: 10.1016/bs.pmbts.2015.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
For centuries, opiate analgesics have had a considerable presence in the treatment of moderate to severe pain. While effective in providing analgesia, opiates are notorious in exerting many undesirable adverse reactions. The receptor targets and the intracellular effectors of opioids have largely been identified. Furthermore, much of the mechanisms underlying the development of tolerance, dependence, and withdrawal have been delineated. Thus, there is a focus on developing novel compounds or strategies in mitigating or avoiding the development of tolerance, dependence, and withdrawal. This review focuses on the adenylyl cyclase and cyclic adenosine 3,5-monophosphate (cAMP)/protein kinase A (AC/cAMP/PKA) system as the central player in mediating the acute and chronic effects of opioids. This chapter also reviews the neuronal adaptive changes in the locus coeruleus, amygdala, periaqueductal gray, and ventral tegmental area induced by acute and chronic actions of opioid because these neuronal adaptive changes in these regions may underlie the behavioral changes observed in opiate users and abusers.
Collapse
Affiliation(s)
- Patrick Chan
- Department of Pharmacy and Pharmacy Administration, Western University of Health Sciences, College of Pharmacy, Pomona, California, USA.
| | - Kabirullah Lutfy
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, USA
| |
Collapse
|
5
|
Ghafari M, Keihan Falsafi S, Höger H, Bennett KL, Lubec G. Identification of new phosphorylation sites of AMPA receptors in the rat hippocampus--A resource for neuroscience research. Proteomics Clin Appl 2015; 9:808-16. [PMID: 25656447 DOI: 10.1002/prca.201400057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 10/16/2014] [Accepted: 02/03/2015] [Indexed: 12/14/2022]
Abstract
PURPOSE AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors (AMPARs) are glutamate-gated ion channels that mediate the majority of fast excitatory synaptic transmissions in the mammalian brain. A series of phosphorylation sites have been predicted or identified and knowledge on phosphorylations is mandatory for understanding receptor biology and functions. EXPERIMENTAL DESIGN Immunoprecipitation from extracted hippocampal rat proteins was carried out using an antibody against the AMPAR GluA1 subunit, followed by identification of GluA1 and binding partners by MS. Bands from SDS-PAGE were picked, peptides were generated by trypsin and chymotrypsin digestion and identified by MS/MS (LTQ Orbitrap Velos). RESULTS Using Mascot as a search engine, phosphorylation sites S506, S645, S720, S849, S863, S895, T858, Y228, Y419, and T734 were found on GluA1; S357, S513, S656, S727, T243, T420, T741, Y 143, Y301,Y426 on GluA2; S301, S516, S657, S732, T222, and T746 were observed on GluA3; and S514, S653 was phosphorylated on GluA4. CONCLUSIONS AND CLINICAL RELEVANCE A series of additional protein modifications were observed and in particular, tyrosine and tryptophan nitrations on GluA1 were detected that may raise questions on additional regulation mechanisms for AMPARs in addition to phosphorylations. The findings are relevant for interpretation of previous work and design of future studies using AMPAR serving as a resource for neuroscience research and indeed, phosphorylations and PTMs per se would have to be respected when neuropathological and neurological disorders are being studied.
Collapse
Affiliation(s)
- Maryam Ghafari
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | | | - Harald Höger
- Core Unit of Biomedical Research, Division of Laboratory Animal Science and Genetics, Medical University of Vienna, Himberg, Austria
| | - Keiryn L Bennett
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Gert Lubec
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Viswaprakash N, Vaithianathan T, Viswaprakash A, Judd R, Parameshwaran K, Suppiramaniam V. Insulin treatment restores glutamate (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor function in the hippocampus of diabetic rats. J Neurosci Res 2015; 93:1442-50. [PMID: 25807926 DOI: 10.1002/jnr.23589] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 12/22/2014] [Accepted: 02/26/2015] [Indexed: 11/10/2022]
Abstract
Type 1 diabetes is associated with cognitive dysfunction. Cognitive processing, particularly memory acquisition, depends on the regulated enhancement of expression and function of glutamate receptor subtypes in the hippocampus. Impairment of memory was been detected in rodent models of type 1 diabetes induced by streptozotocin (STZ). This study examines the functional properties of synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and the expression of synaptic molecules that regulate glutamatergic synaptic transmission in the hippocampus of STZ-diabetic rats. The AMPA receptor-mediated miniature excitatory postsynaptic currents (mEPSCs) and single-channel properties of synaptosomal AMPA receptors were examined after 4 weeks of diabetes induction. Results show that amplitude and frequency of mEPSCs recorded from CA1 pyramidal neurons were decreased in diabetic rats. In addition, the single-channel properties of synaptic AMPA receptors from diabetic rat hippocampi were different from those of controls. These impairments in synaptic currents gated by AMPA receptors were accompanied by decreased protein levels of AMPA receptor subunit GluR1, the presynaptic protein synaptophysin, and the postsynaptic anchor protein postsynaptic density protein 95 in the hippocampus of diabetic rats. Neural cell adhesion molecule (NCAM), an extracellular matrix molecule abundantly expressed in the brain, and the polysialic acid (PSA) attached to NCAM were also downregulated in the hippocampus of diabetic rats. Insulin treatment, when initiated at the onset of diabetes induction, reduced these effects. These findings suggest that STZ-induced diabetes may result in functional deteriorations in glutamatergic synapses in the hippocampus of rats and that these effects may be reduced by insulin treatment.
Collapse
Affiliation(s)
- Nilmini Viswaprakash
- Department of Biomedical Sciences, College of Veterinary Medicine, Nursing and Allied Health, Tuskegee University, Tuskegee, Alabama
| | - Thirumalini Vaithianathan
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York.,Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama
| | - Ajitan Viswaprakash
- Biology Department and Spine Rehabilitation Center, University of Alabama-Birmingham, Birmingham, Alabama
| | - Robert Judd
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Kodeeswaran Parameshwaran
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama.,Department of Biological and Environmental Sciences, Texas A&M University-Commerce, Commerce, Texas
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama
| |
Collapse
|
7
|
Fisher MT, Fisher JL. Contributions of different kainate receptor subunits to the properties of recombinant homomeric and heteromeric receptors. Neuroscience 2014; 278:70-80. [PMID: 25139762 PMCID: PMC4172534 DOI: 10.1016/j.neuroscience.2014.08.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/11/2014] [Accepted: 08/11/2014] [Indexed: 01/20/2023]
Abstract
The tetrameric kainate receptors can be assembled from a combination of five different subunit subtypes. While GluK1-3 subunits can form homomeric receptors, GluK4 and GluK5 require a heteromeric partner to assemble, traffic to the membrane surface, and produce a functional channel. Previous studies have shown that incorporation of a GluK4 or GluK5 subunit changes both receptor pharmacology and channel kinetics. We directly compared the functional characteristics of recombinant receptors containing either GluK4 or GluK5 in combination with the GluK1 or GluK2 subunit. In addition, we took advantage of mutations within the agonist binding sites of GluK1, GluK2, or GluK5 to isolate the response of the wild-type partner within the heteromeric receptor. Our results suggest that GluK1 and GluK2 differ primarily in their pharmacological properties, but that GluK4 and GluK5 have distinct functional characteristics. In particular, while binding of agonist to only the GluK5 subunit appears to activate the channel to a non-desensitizing state, binding to GluK4 does produce some desensitization. This suggests that GluK4 and GluK5 differ fundamentally in their contribution to receptor desensitization. In addition, mutation of the agonist binding site of GluK5 results in a heteromeric receptor with a glutamate sensitivity similar to homomeric GluK1 or GluK2 receptors, but which requires higher agonist concentrations to produce desensitization. This suggests that onset of desensitization in heteromeric receptors is determined more by the number of subunits bound to agonist than by the identity of those subunits. The distinct, concentration-dependent properties observed with heteromeric receptors in response to glutamate or kainate are consistent with a model in which either subunit can activate the channel, but in which occupancy of both subunits within a dimer is needed to allow desensitization of GluK2/K5 receptors.
Collapse
Affiliation(s)
- M T Fisher
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - J L Fisher
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA.
| |
Collapse
|
8
|
Zhu QJ, Kong FS, Xu H, Wang Y, Du CP, Sun CC, Liu Y, Li T, Hou XY. Tyrosine phosphorylation of GluK2 up-regulates kainate receptor-mediated responses and downstream signaling after brain ischemia. Proc Natl Acad Sci U S A 2014; 111:13990-5. [PMID: 25201974 PMCID: PMC4183319 DOI: 10.1073/pnas.1403493111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although kainate receptors play important roles in ischemic stroke, the molecular mechanisms underlying postischemic regulation of kainate receptors remain unclear. In this study we demonstrate that Src family kinases contribute to the potentiation of kainate receptor function. Brain ischemia and reperfusion induce rapid and sustained phosphorylation of the kainate receptor subunit GluK2 by Src in the rat hippocampus, implicating a critical role for Src-mediated GluK2 phosphorylation in ischemic brain injury. The NMDA and kainate receptors are involved in the tyrosine phosphorylation of GluK2. GluK2 binds to Src, and the tyrosine residue at position 590 (Y590) on GluK2 is a major site of phosphorylation by Src kinases. GluK2 phosphorylation at Y590 is responsible for increases in whole-cell currents and calcium influx in response to transient kainate stimulation. In addition, GluK2 phosphorylation at Y590 facilitates the endocytosis of GluK2 subunits, and the activation of JNK3 and its substrate c-Jun after long-term kainate treatment. Thus, Src phosphorylation of GluK2 plays an important role in the opening of kainate receptor channels and downstream proapoptosis signaling after brain ischemia. The present study reveals an additional mechanism for the regulation of GluK2-containing kainate receptors by Src family kinases, which may be of pathological significance in ischemic stroke.
Collapse
Affiliation(s)
- Qiu-Ju Zhu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical College, Jiangsu 221004, China
| | - Fan-Shu Kong
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical College, Jiangsu 221004, China
| | - Hao Xu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical College, Jiangsu 221004, China
| | - Yi Wang
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical College, Jiangsu 221004, China
| | - Cai-Ping Du
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical College, Jiangsu 221004, China
| | - Chang-Cheng Sun
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical College, Jiangsu 221004, China
| | - Yong Liu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical College, Jiangsu 221004, China
| | - Ting Li
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical College, Jiangsu 221004, China
| | - Xiao-Yu Hou
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical College, Jiangsu 221004, China
| |
Collapse
|
9
|
Sun H, Lu L, Zuo Y, Wang Y, Jiao Y, Zeng WZ, Huang C, Zhu MX, Zamponi GW, Zhou T, Xu TL, Cheng J, Li Y. Kainate receptor activation induces glycine receptor endocytosis through PKC deSUMOylation. Nat Commun 2014; 5:4980. [PMID: 25236484 PMCID: PMC4199113 DOI: 10.1038/ncomms5980] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 08/13/2014] [Indexed: 01/21/2023] Open
Abstract
Surface expression and regulated endocytosis of glycine receptors (GlyRs) play a critical function in balancing neuronal excitability. SUMOylation (SUMO modification) is of critical importance for maintaining neuronal function in the central nervous system. Here we show that activation of kainate receptors (KARs) causes GlyR endocytosis in a calcium- and protein kinase C (PKC)-dependent manner, leading to reduced GlyR-mediated synaptic activity in cultured spinal cord neurons and the superficial dorsal horn of rat spinal cord slices. This effect requires SUMO1/sentrin-specific peptidase 1 (SENP1)-mediated deSUMOylation of PKC, indicating that the crosstalk between KARs and GlyRs relies on the SUMOylation status of PKC. SENP1-mediated deSUMOylation of PKC is involved in the kainate-induced GlyR endocytosis and thus plays an important role in the anti-homeostatic regulation between excitatory and inhibitory ligand-gated ion channels. Altogether, we have identified a SUMOylation-dependent regulatory pathway for GlyR endocytosis, which may have important physiological implications for proper neuronal excitability. Maintenance of proper membrane excitability is vital to neuronal function and in several neuronal types this relies on a balance between receptor-mediated excitation and inhibition. Here the authors report a crosstalk between excitatory kainate receptors and inhibitory glycine receptors that relies on the SUMOylation status of PKC.
Collapse
Affiliation(s)
- Hao Sun
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Li Lu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yong Zuo
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yan Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yingfu Jiao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei-Zheng Zeng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chao Huang
- Center for Translational Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary T2N 4 N1, Alberta, Canada
| | - Tong Zhou
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Tian-Le Xu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jinke Cheng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yong Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
10
|
Pahl S, Tapken D, Haering SC, Hollmann M. Trafficking of kainate receptors. MEMBRANES 2014; 4:565-95. [PMID: 25141211 PMCID: PMC4194049 DOI: 10.3390/membranes4030565] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 08/04/2014] [Accepted: 08/12/2014] [Indexed: 11/17/2022]
Abstract
Ionotropic glutamate receptors (iGluRs) mediate the vast majority of excitatory neurotransmission in the central nervous system of vertebrates. In the protein family of iGluRs, kainate receptors (KARs) comprise the probably least well understood receptor class. Although KARs act as key players in the regulation of synaptic network activity, many properties and functions of these proteins remain elusive until now. Especially the precise pre-, extra-, and postsynaptic localization of KARs plays a critical role for neuronal function, as an unbalanced localization of KARs would ultimately lead to dysregulated neuronal excitability. Recently, important advances in the understanding of the regulation of surface expression, function, and agonist-dependent endocytosis of KARs have been achieved. Post-translational modifications like PKC-mediated phosphorylation and SUMOylation have been reported to critically influence surface expression and endocytosis, while newly discovered auxiliary proteins were shown to shape the functional properties of KARs.
Collapse
Affiliation(s)
- Steffen Pahl
- Department of Biochemistry I, Ruhr University Bochum, Universitätsstr. 150, 44780 Bochum, Germany.
| | - Daniel Tapken
- Department of Biochemistry I, Ruhr University Bochum, Universitätsstr. 150, 44780 Bochum, Germany.
| | - Simon C Haering
- Department of Biochemistry I, Ruhr University Bochum, Universitätsstr. 150, 44780 Bochum, Germany.
| | - Michael Hollmann
- Department of Biochemistry I, Ruhr University Bochum, Universitätsstr. 150, 44780 Bochum, Germany.
| |
Collapse
|
11
|
Rojas A, Gueorguieva P, Lelutiu N, Quan Y, Shaw R, Dingledine R. The prostaglandin EP1 receptor potentiates kainate receptor activation via a protein kinase C pathway and exacerbates status epilepticus. Neurobiol Dis 2014; 70:74-89. [PMID: 24952362 DOI: 10.1016/j.nbd.2014.06.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 05/12/2014] [Accepted: 06/09/2014] [Indexed: 12/16/2022] Open
Abstract
Prostaglandin E2 (PGE2) regulates membrane excitability, synaptic transmission, plasticity, and neuronal survival. The consequences of PGE2 release following seizures has been the subject of much study. Here we demonstrate that the prostaglandin E2 receptor 1 (EP1, or Ptger1) modulates native kainate receptors, a family of ionotropic glutamate receptors widely expressed throughout the central nervous system. Global ablation of the EP1 gene in mice (EP1-KO) had no effect on seizure threshold after kainate injection but reduced the likelihood to enter status epilepticus. EP1-KO mice that did experience typical status epilepticus had reduced hippocampal neurodegeneration and a blunted inflammatory response. Further studies with native prostanoid and kainate receptors in cultured cortical neurons, as well as with recombinant prostanoid and kainate receptors expressed in Xenopus oocytes, demonstrated that EP1 receptor activation potentiates heteromeric but not homomeric kainate receptors via a second messenger cascade involving phospholipase C, calcium and protein kinase C. Three critical GluK5 C-terminal serines underlie the potentiation of the GluK2/GluK5 receptor by EP1 activation. Taken together, these results indicate that EP1 receptor activation during seizures, through a protein kinase C pathway, increases the probability of kainic acid induced status epilepticus, and independently promotes hippocampal neurodegeneration and a broad inflammatory response.
Collapse
Affiliation(s)
- Asheebo Rojas
- Department of Pharmacology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA.
| | - Paoula Gueorguieva
- Department of Pharmacology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - Nadia Lelutiu
- Department of Pharmacology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - Yi Quan
- Department of Pharmacology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - Renee Shaw
- Department of Pharmacology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - Raymond Dingledine
- Department of Pharmacology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| |
Collapse
|
12
|
Affiliation(s)
- Hannah Monyer
- University of Heidelberg, Center for Molecular Biology, Heidelberg, Germany
| | - Peter H. Seeburg
- University of Heidelberg, Center for Molecular Biology, Heidelberg, Germany
| |
Collapse
|
13
|
Rojas A, Wetherington J, Shaw R, Serrano G, Swanger S, Dingledine R. Activation of group I metabotropic glutamate receptors potentiates heteromeric kainate receptors. Mol Pharmacol 2013; 83:106-21. [PMID: 23066089 PMCID: PMC3533475 DOI: 10.1124/mol.112.081802] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 10/11/2012] [Indexed: 01/14/2023] Open
Abstract
Kainate receptors (KARs), a family of ionotropic glutamate receptors, are widely expressed in the central nervous system and are critically involved in synaptic transmission. KAR activation is influenced by metabotropic glutamate receptor (mGlu) signaling, but the underlying mechanisms are not understood. We undertook studies to examine how mGlu modulation affects activation of KARs. Confocal immunohistochemistry of rat hippocampus and cultured rat cortex revealed colocalization of the high-affinity KAR subunits with group I mGlu receptors. In hippocampal and cortical cultures, the calcium signal caused by activation of native KARs was potentiated by activation of group I mGlu receptors. In Xenopus laevis oocytes, activation of group I mGlu receptors potentiated heteromeric but not homomeric KAR-mediated currents, with no change in agonist potency. The potentiation of heteromeric KARs by mGlu1 activation was attenuated by GDPβS, blocked by an inhibitor of phospholipase C or the calcium chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), prolonged by the phosphatase inhibitor okadaic acid, but unaffected by the tyrosine kinase inhibitor lavendustin A. Protein kinase C (PKC) inhibition reduced the potentiation by mGlu1 of GluK2/GluK5, and conversely, direct activation of PKC by phorbol 12-myristate,13-acetate potentiated GluK2/GluK5. Using site-directed mutagenesis, we identified three serines (Ser833, Ser836, and Ser840) within the membrane proximal region of the GluK5 C-terminal domain that, in combination, are required for mGlu1-mediated potentiation of KARs. Together, these data suggest that phosphorylation of key residues in the C-terminal domain changes the overall charge of this domain, resulting in potentiated agonist responses.
Collapse
Affiliation(s)
- Asheebo Rojas
- Department of Pharmacology, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Zhang XM, Zhu J. Kainic Acid-induced neurotoxicity: targeting glial responses and glia-derived cytokines. Curr Neuropharmacol 2012; 9:388-98. [PMID: 22131947 PMCID: PMC3131729 DOI: 10.2174/157015911795596540] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 09/28/2010] [Accepted: 10/18/2010] [Indexed: 01/01/2023] Open
Abstract
Glutamate excitotoxicity contributes to a variety of disorders in the central nervous system, which is triggered primarily by excessive Ca2+ influx arising from overstimulation of glutamate receptors, followed by disintegration of the endoplasmic reticulum (ER) membrane and ER stress, the generation and detoxification of reactive oxygen species as well as mitochondrial dysfunction, leading to neuronal apoptosis and necrosis. Kainic acid (KA), a potent agonist to the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate class of glutamate receptors, is 30-fold more potent in neuro-toxicity than glutamate. In rodents, KA injection resulted in recurrent seizures, behavioral changes and subsequent degeneration of selective populations of neurons in the brain, which has been widely used as a model to study the mechanisms of neurodegenerative pathways induced by excitatory neurotransmitter. Microglial activation and astrocytes proliferation are the other characteristics of KA-induced neurodegeneration. The cytokines and other inflammatory molecules secreted by activated glia cells can modify the outcome of disease progression. Thus, anti-oxidant and anti-inflammatory treatment could attenuate or prevent KA-induced neurodegeneration. In this review, we summarized updated experimental data with regard to the KA-induced neurotoxicity in the brain and emphasized glial responses and glia-oriented cytokines, tumor necrosis factor-α, interleukin (IL)-1, IL-12 and IL-18.
Collapse
Affiliation(s)
- Xing-Mei Zhang
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
15
|
González-González IM, Konopacki FA, Rocca DL, Doherty AJ, Jaafari N, Wilkinson KA, Henley JM. Kainate receptor trafficking. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/wmts.23] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
16
|
Kainate receptors with a metabotropic signature enhance hippocampal excitability by regulating the slow after-hyperpolarization in CA3 pyramidal neurons. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011. [PMID: 21713667 DOI: 10.1007/978-1-4419-9557-5_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Most of our knowledge of the synaptic function of kainate receptors stems from a detailed analysis of synaptic transmission between dentate granule cells and CA3 pyramidal neurons, where kainate receptors mediate a slow excitatory current with integrative properties ideally suited for repetitive neuronal firing. Besides this well characterized ionotropic effect of kainate receptors, they can also enhance neuronal excitability by inhibiting the slow Ca(2+) activated K(+) current I(sAHP) via a G-protein coupled mechanism. This phenomenon is associated with Ca(2+) mobilization and protein-kinase activation and ultimately leads to modulation of ion channels responsible for intrinsic electrical properties such as firing adaptation. The significance for CNS function of these newly emerging metabotropic kainate receptors is poorly understood and as yet proteomic analysis of kainate receptors has yielded little information on signaling molecules associated with the kainate receptor ionophore. This chapter covers the key findings that have led to the proposal that high-affinity postsynaptic kainate receptors trigger a form of metabotropic signaling regulating I(sAH P) and neuronal firing in CA3 hippocampal neurons.
Collapse
|
17
|
Xu J, Liu ZA, Pei DS, Xu TJ. Calcium/calmodulin-dependent kinase II facilitated GluR6 subunit serine phosphorylation through GluR6-PSD95-CaMKII signaling module assembly in cerebral ischemia injury. Brain Res 2010; 1366:197-203. [PMID: 20888327 DOI: 10.1016/j.brainres.2010.09.087] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 09/23/2010] [Accepted: 09/23/2010] [Indexed: 10/19/2022]
Abstract
Although recent results suggest that GluR6 serine phosphorylation plays a prominent role in brain ischemia/reperfusion-mediated neuronal injury, little is known about the precise mechanisms regulating GluR6 receptor phosphorylation. Our present study shows that the assembly of the GluR6-PSD95-CaMKII signaling module induced by brain ischemia facilitates the serine phosphorylation of GluR6 and further induces the activation of c-Jun NH2-terminal kinase JNK. More important, a selective CaMKII inhibitor KN-93 suppressed the increase of the GluR6-PSD95-CaMKII signaling module assembly and GluR6 serine phosphorylation as well as JNK activation. Such effects were similar to be observed by NMDA receptor antagonist MK801 and L-type Ca(2+) channel (L-VGCC) blocker Nifedipine. These results demonstrate that NMDA receptors and L-VGCCs depended-CaMKII functionally modulated the phosphorylation of GluR6 via the assembly of GluR6-PSD95-CaMKII signaling module in cerebral ischemia injury.
Collapse
Affiliation(s)
- Jing Xu
- Laboratory of Biological Cancer Therapy, Xuzhou Medical College 84 West Huai-hai Road, Xuzhou, Jiangsu, 221002 PR China
| | | | | | | |
Collapse
|
18
|
|
19
|
Modulation of horizontal cell function by dopaminergic ligands in mammalian retina. Vision Res 2008; 48:1383-90. [PMID: 18440579 DOI: 10.1016/j.visres.2008.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 02/08/2008] [Accepted: 03/06/2008] [Indexed: 11/17/2022]
Abstract
Light responses of rabbit horizontal cell somata (HC) to flickering light stimuli recorded with sharp electrodes consist of a distinctive flicker component superimposed on a sustained hyperpolarisation. Activation of dopamine D1/D5 receptors depolarises HC dark membrane potential and suppresses the flicker component of responses to photopic stimuli without affecting the sustained hyperpolarising response component. Waveforms of responses to scotopic stimuli are preserved. Similar response modulation was observed in depolarising cells of the inner retina, suggesting that activation of D1/D5 receptors of HC causes modification of cone signal transmission to higher order neurons. The impact of dopamine D1/D5 receptor activation on the function of HC in the light stimulated retina is discussed.
Collapse
|
20
|
Coussen F. Molecular determinants of kainate receptor trafficking. Neuroscience 2008; 158:25-35. [PMID: 18358623 DOI: 10.1016/j.neuroscience.2007.12.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 12/21/2007] [Accepted: 12/26/2007] [Indexed: 11/19/2022]
Abstract
Glutamate receptors of the kainate subtype are ionotropic receptors that play a key role in the modulation of neuronal network activity. The role of kainate receptors depends on their precise membrane and subcellular localization in presynaptic, extrasynaptic and postsynaptic domains. These receptors are composed of the combination of five subunits, three of them having several splice variants. The subunits and splice variants show great divergence in their C-terminal cytoplasmic tail domains, which have been implicated in intracellular trafficking of homomeric and heteromeric receptors. Differential trafficking of kainate receptors to specific neuronal compartments likely relies on interactions between the different kainate receptor subunits with distinct subsets of protein partners that interact with C-terminal domains. These C-terminal domains have also been implicated in the degradation of kainate receptors. Finally, the phosphorylation of the C-terminal domain regulates receptor trafficking and function. This review summarizes our knowledge on the regulation of membrane delivery and trafficking of kainate receptors implicating C-terminal domains of the different isoforms and focuses on the identification and characterization of the function of interacting partners.
Collapse
Affiliation(s)
- F Coussen
- CNRS UMR 5091, Laboratoire "Physiologie Cellulaire de la Synapse," Bordeaux Neuroscience Institute, University of Bordeaux 2, Bordeaux, France.
| |
Collapse
|
21
|
Kornreich BG, Niu L, Roberson MS, Oswald RE. Identification of C-terminal domain residues involved in protein kinase A-mediated potentiation of kainate receptor subtype 6. Neuroscience 2007; 146:1158-68. [PMID: 17379418 PMCID: PMC2700767 DOI: 10.1016/j.neuroscience.2007.02.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 02/07/2007] [Accepted: 02/07/2007] [Indexed: 11/18/2022]
Abstract
Glutamate receptors are the major excitatory receptors in the vertebrate CNS and have been implicated in a number of physiological and pathological processes. Previous work has shown that glutamate receptor function may be modulated by protein kinase A (PKA)-mediated phosphorylation, although the molecular mechanism of this potentiation has remained unclear. We have investigated the phosphorylation of specific amino acid residues in the C-terminal cytoplasmic domain of the rat kainate receptor subtype 6 (GluR6) as a possible mechanism for regulation of receptor function. The C-terminal tail of rat GluR6 can be phosphorylated by PKA on serine residues as demonstrated using [gamma-32P]ATP kinase assays. Whole cell recordings of transiently transfected human embryonic kidney (HEK) 293 cells showed that phosphorylation by PKA potentiates whole cell currents in wildtype GluR6 and that removal of the cytoplasmic C-terminal domain abolishes this potentiation. This suggested that the C-terminal domain may contain residue(s) involved in the PKA-mediated potentiation. Single mutations of each serine residue in the C-terminal domain (S815A, S825A, S828A, and S837A) and a truncation after position 855, which removes all threonines (T856, T864, and T875) from the domain, do not abolish PKA potentiation. However, the S825A/S837A mutation, but no other double mutation, abolishes potentiation. These results demonstrate that phosphorylation of the C-terminal tail of GluR6 by PKA leads to potentiation of whole cell response, and the combination of S825 and S837 in the C-terminal domain is a vital component of the mechanism of GluR6 potentiation by PKA.
Collapse
Affiliation(s)
| | - Li Niu
- Dept of Molecular Medicine, Cornell University, Ithaca, NY 14853
- Dept of Chemistry, Center of Biochemistry & Biophysics, SUNY Albany, Albany, NY 12222
| | - Mark S. Roberson
- Dept of Biomedical Sciences, Cornell University, Ithaca, NY 14853
| | - Robert E. Oswald
- Dept of Molecular Medicine, Cornell University, Ithaca, NY 14853
| |
Collapse
|
22
|
Laezza F, Wilding TJ, Sequeira S, Coussen F, Zhang XZ, Hill-Robinson R, Mulle C, Huettner JE, Craig AM. KRIP6: a novel BTB/kelch protein regulating function of kainate receptors. Mol Cell Neurosci 2007; 34:539-50. [PMID: 17254796 PMCID: PMC1939939 DOI: 10.1016/j.mcn.2006.12.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Accepted: 12/08/2006] [Indexed: 11/26/2022] Open
Abstract
Whereas many interacting proteins have been identified for AMPA and NMDA glutamate receptors, fewer are known to directly bind and regulate function of kainate receptors. Using a yeast two-hybrid screen for interacting partners of the C-terminal domain of GluR6a, we identified a novel neuronal protein of the BTB/kelch family, KRIP6. KRIP6 binds to the GluR6a C-terminal domain at a site distinct from the PDZ-binding motif and it co-immunoprecipitates with recombinant and endogenous GluR6. Co-expression of KRIP6 alters GluR6 mediated currents in a heterologous expression system reducing peak current amplitude and steady-state desensitization, without affecting surface levels of GluR6. Endogenous KRIP6 is widely expressed in brain and overexpression of KRIP6 reduces endogenous kainate receptor-mediated responses evoked in hippocampal neurons. Taken together, these results suggest that KRIP6 can directly regulate native kainate receptors and provide the first evidence for a BTB/kelch protein in direct functional regulation of a mammalian glutamate receptor.
Collapse
Affiliation(s)
- Fernanda Laezza
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Reymann KG, Frey JU. The late maintenance of hippocampal LTP: Requirements, phases, ‘synaptic tagging’, ‘late-associativity’ and implications. Neuropharmacology 2007; 52:24-40. [PMID: 16919684 DOI: 10.1016/j.neuropharm.2006.07.026] [Citation(s) in RCA: 230] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 07/14/2006] [Accepted: 07/17/2006] [Indexed: 11/28/2022]
Abstract
Our review focuses on the mechanisms which enable the late maintenance of hippocampal long-term potentiation (LTP; >3h), a phenomenon which is thought to underlie prolonged memory. About 20 years ago we showed for the first time that the maintenance of LTP - like memory storage--depends on intact protein synthesis and thus, consists of at least two temporal phases. Here we concentrate on mechanisms required for the induction of the transient early-LTP and of the protein synthesis-dependent late-LTP. Our group has shown that the induction of late-LTP requires the associative activation of heterosynaptic inputs, i.e. the synergistic activation of glutamatergic and modulatory, reinforcing inputs within specific, effective time windows. The induction of late-LTP is characterized by novel, late-associative properties such as 'synaptic tagging' and 'late-associative reinforcement'. Both phenomena require the associative setting of synaptic tags as well as the availability of plasticity-related proteins (PRPs) and they are restricted to functional dendritic compartments, in general. 'Synaptic tagging' guarantees input specificity and thus the specific processing of afferent signals for the establishment of late-LTP. 'Late-associative reinforcement' describes a process where early-LTP by the co-activation of modulatory inputs can be transformed into late-LTP in activated synapses where a tag is set. Recent evidence from behavioral experiments, which studied processes of emotional and cognitive reinforcement of LTP, point to the physiological relevance of the above mechanisms during cellular and system's memory formation.
Collapse
Affiliation(s)
- Klaus G Reymann
- Department for Neurophysiology, Leibniz Institute for Neurobiology, Brenneckestrasse 6, D-39118 Magdeburg, Germany
| | | |
Collapse
|
24
|
Abstract
Kainate receptors are composed of several subunits and splice variants, but the relevance of this diversity is still not well understood. The subunits and splice variants show great divergence in their C-terminal cytoplasmic tail region, which has been identified as a region of interaction with a number of protein partners. Differential trafficking of kainate receptors to neuronal compartments is likely to rely on interactions with distinct subsets of protein partners. This review summarizes our knowledge of the regulation of trafficking of kainate receptors and focuses on the identification and characterization of functions of interacting partners.
Collapse
Affiliation(s)
- F Coussen
- CNRS UMR 5091, Laboratoire Physiologie Cellulaire de la Synapse, Bordeaux Neuroscience Institute, University of Bordeaux, 33077 Bordeaux Cedex, France
| | | |
Collapse
|
25
|
Bruneau EG, Akaaboune M. The dynamics of recycled acetylcholine receptors at the neuromuscular junction in vivo. Development 2006; 133:4485-93. [PMID: 17050625 DOI: 10.1242/dev.02619] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
At the peripheral neuromuscular junction (NMJ), a significant number of nicotinic acetylcholine receptors (AChRs) recycle back into the postsynaptic membrane after internalization to intermingle with not-yet-internalized ;pre-existing' AChRs. However, the way in which these receptor pools are maintained and regulated at the NMJ in living animals remains unknown. Here, we demonstrate that recycled receptors in functional synapses are removed approximately four times faster than pre-existing receptors, and that most removed recycled receptors are replaced by new recycled ones. In denervated NMJs, the recycling of AChRs is significantly depressed and their removal rate increased, whereas direct muscle stimulation prevents their loss. Furthermore, we show that protein tyrosine phosphatase inhibitors cause the selective accumulation of recycled AChRs in the peri-synaptic membrane without affecting the pre-existing AChR pool. The inhibition of serine/threonine phosphatases, however, has no effect on AChR recycling. These data show that recycled receptors are remarkably dynamic, and suggest a potential role for tyrosine dephosphorylation in the insertion and maintenance of recycled AChRs at the postsynaptic membrane. These findings may provide insights into long-term recycling processes at less accessible synapses in the central nervous system in vivo.
Collapse
Affiliation(s)
- Emile G Bruneau
- Department of Molecular, Cellular and Developmental Biology and Neuroscience Program, University of Michigan, 830 North University Avenue, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
26
|
Abstract
Kainate receptors form a family of ionotropic glutamate receptors that appear to play a special role in the regulation of the activity of synaptic networks. This review first describes briefly the molecular and pharmacological properties of native and recombinant kainate receptors. It then attempts to outline the general principles that appear to govern the function of kainate receptors in the activity of synaptic networks under physiological conditions. It subsequently describes the way that kainate receptors are involved in synaptic integration, synaptic plasticity, the regulation of neurotransmitter release and the control of neuronal excitability, and the manner in which they might play an important role in synaptogenesis and synaptic maturation. These functions require the proper subcellular localization of kainate receptors in specific functional domains of the neuron, necessitating complex cellular and molecular trafficking events. We show that our comprehension of these mechanisms is just starting to emerge. Finally, this review presents evidence that implicates kainate receptors in pathophysiological conditions such as epilepsy, excitotoxicity and pain, and that shows that these receptors represent promising therapeutic targets.
Collapse
Affiliation(s)
- Paulo Pinheiro
- CNRS UMR 5091, Laboratoire "Physiologie Cellulaire de la Synapse", Bordeaux Neuroscience Institute, University of Bordeaux, 33077 Bordeaux Cedex, France
| | | |
Collapse
|
27
|
Hao ZB, Pei DS, Guan QH, Zhang GY. Calcium/calmodulin-dependent protein kinase II (CaMKII), through NMDA receptors and L-Voltage-gated channels, modulates the serine phosphorylation of GluR6 during cerebral ischemia and early reperfusion period in rat hippocampus. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2005; 140:55-62. [PMID: 16126302 DOI: 10.1016/j.molbrainres.2005.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Revised: 04/01/2005] [Accepted: 07/09/2005] [Indexed: 11/17/2022]
Abstract
Recent studies have shown that GluR6 is involved in the modulation of neuronal cell death. It has been shown that PKA can phosphorylate recombinant GluR6 homomeric receptors and that this phosphorylation of GluR6 was suggested to underlie an enhancement of whole-cell current responses. Here, we try to find out whether brain ischemia and reperfusion could induce any change in the serine phosphorylation of GluR6. Our results showed that the serine phosphorylation of GluR6 increased in hippocampus during brain ischemia and early reperfusion period. Then, we used several drugs to investigate the mechanism of modulating the serine phosphorylation of GluR6. KT5720, a specific cell-permeable inhibitor of protein kinase A (PKA), had no effect on the increase in serine phosphorylation of GluR6 induced by brain ischemia or reperfusion. On the other hand, KN-62, a selective inhibitor of rat brain Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), diminished the increase in serine phosphorylation of GluR6. Moreover, our results showed that either MK801 (a NMDA receptor antagonist) or Nifedipine (a L-type Ca2+ channel (L-VGCC) blocker) decreased the increase in serine phosphorylation. In conclusion, our results suggest that CaMKII, activated through NMDA receptors and L-VGCCs, mediated the serine phosphorylation of GluR6 during brain ischemia and early reperfusion period.
Collapse
Affiliation(s)
- Zhi-Bin Hao
- Research Center for Biochemistry and Molecular Biology, Xuzhou Medical College, 84 West Huai-hai Road, Xuzhou, Jiangsu 221002, PR China
| | | | | | | |
Collapse
|
28
|
Abstract
Progress in experimental and theoretical biology is likely to provide us with the opportunity to assemble detailed predictive models of mammalian cells. Using a functional format to describe the organization of mammalian cells, we describe current approaches for developing qualitative and quantitative models using data from a variety of experimental sources. Recent developments and applications of graph theory to biological networks are reviewed. The use of these qualitative models to identify the topology of regulatory motifs and functional modules is discussed. Cellular homeostasis and plasticity are interpreted within the framework of balance between regulatory motifs and interactions between modules. From this analysis we identify the need for detailed quantitative models on the basis of the representation of the chemistry underlying the cellular process. The use of deterministic, stochastic, and hybrid models to represent cellular processes is reviewed, and an initial integrated approach for the development of large-scale predictive models of a mammalian cell is presented.
Collapse
|
29
|
Martin S, Henley JM. Activity-dependent endocytic sorting of kainate receptors to recycling or degradation pathways. EMBO J 2004; 23:4749-59. [PMID: 15549132 PMCID: PMC535095 DOI: 10.1038/sj.emboj.7600483] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Accepted: 10/22/2004] [Indexed: 11/08/2022] Open
Abstract
Kainate receptors (KARs) play important roles in the modulation of neurotransmission and plasticity, but the mechanisms that regulate their surface expression and endocytic sorting remain largely unknown. Here, we show that in cultured hippocampal neurons the surface expression of GluR6-containing KARs is dynamically regulated. Furthermore, internalized KARs are sorted into recycling or degradative pathways depending on the endocytotic stimulus. Kainate activation causes a Ca2+- and PKA-independent but PKC-dependent internalization of KARs that are targeted to lysosomes for degradation. In contrast, NMDAR activation evokes a Ca2+-, PKA- and PKC-dependent endocytosis of KARs to early endosomes with subsequent reinsertion back into the plasma membrane. These results demonstrate that GluR6-containing KARs are subject to activity-dependent endocytic sorting, a process that provides a mechanism for both rapid and chronic changes in the number of functional receptors.
Collapse
Affiliation(s)
- Stéphane Martin
- Department of Anatomy, MRC Centre for Synaptic Plasticity, School of Medical Sciences, University Walk, University of Bristol, Bristol, UK
| | - Jeremy M Henley
- Department of Anatomy, MRC Centre for Synaptic Plasticity, School of Medical Sciences, University Walk, University of Bristol, Bristol, UK
| |
Collapse
|
30
|
Rodríguez-Moreno A, Sihra TS. Presynaptic kainate receptor facilitation of glutamate release involves protein kinase A in the rat hippocampus. J Physiol 2004; 557:733-45. [PMID: 15107475 PMCID: PMC1665138 DOI: 10.1113/jphysiol.2004.065029] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We have explored the mechanisms involved in the facilitation of glutamate release mediated by the activation of kainate receptors in the rat hippocampus using isolated nerve terminal (synaptosome) and slice preparations. In hippocampal nerve terminals, kainate (KA) produced an increase of glutamate release at concentrations of agonist ranging from 10 to 1000 microm. In hippocampal slices, KA at low nanomolar concentrations (20-50 nm) also produced an increase of evoked excitatory postsynaptic currents (eEPSCs) at mossy fibre-CA3 synapses. In both, synaptosomes and slices, the effect of KA was antagonized by CNQX, and persisted after pretreatment with a cocktail of antagonists for other receptors whose activation could potentially have produced facilitation of release. These data indicate that the facilitation of glutamate release observed is mediated by the activation of presynaptic glutamate receptors of the kainate type. Mechanistically, the observed effects of KA appear to be the same in synaptosomal and slice preparations. Thus, the effect of KA on glutamate release and mossy fibre-CA3 synaptic transmission was occluded by the stimulation of adenylyl cyclase by forskolin and suppressed by the inhibition of protein kinase A by H-89 or Rp-Br-cAMP. We conclude that kainate receptors present at presynaptic terminals in the rat hippocampus mediate the facilitation of glutamate release through a mechanism involving the activation of an adenylyl cyclase-second messenger cAMP-protein kinase A signalling cascade.
Collapse
MESH Headings
- Adenylyl Cyclases/metabolism
- Animals
- Cyclic AMP/physiology
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Electric Stimulation
- Electrophysiology
- Excitatory Amino Acid Agonists/pharmacology
- Glutamic Acid/metabolism
- Hippocampus/drug effects
- Hippocampus/metabolism
- In Vitro Techniques
- Kainic Acid/pharmacology
- Male
- Mossy Fibers, Hippocampal/drug effects
- Mossy Fibers, Hippocampal/metabolism
- Rats
- Receptors, AMPA/drug effects
- Receptors, AMPA/metabolism
- Receptors, Kainic Acid/drug effects
- Receptors, Kainic Acid/physiology
- Receptors, N-Methyl-D-Aspartate/drug effects
- Receptors, N-Methyl-D-Aspartate/metabolism
- Receptors, Presynaptic/drug effects
- Receptors, Presynaptic/physiology
- Synaptic Transmission/drug effects
- Synaptosomes/drug effects
- Synaptosomes/metabolism
Collapse
|
31
|
Age-related changes in synaptic phosphorylation and dephosphorylation. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/s1566-3124(04)16006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
32
|
Abstract
Ionotropic glutamate receptors are the major excitatory neurotransmitters in mammalian brain but are found throughout the animal kingdom as well as in plants and bacteria. A great deal of progress in understanding the structure of these essential neurotransmitter receptors has been made since the first examples were cloned and sequenced in 1989. The atomic structure of the ligand-binding domain of several ionotropic glutamate receptors has been determined, and a great deal of progress has been made in relating the structural properties of the binding site to the function of the intact receptor. In addition, the identification of glutamate receptors from a wide variety of organisms ranging from several types of bacteria to Arabidopsis to a range of animal species has made glutamate receptors a molecular laboratory for studying the evolution of proteins. The fact that glutamate receptors are a particularly ancient intercellular signaling molecule suggests a potential role in the transition from single celled to multicellular organisms. This review focuses on the structure and dynamics of ionotropic glutamate receptors and their relation to the function and evolution of these proteins.
Collapse
Affiliation(s)
- Robert E Oswald
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
33
|
Angehagen M, Ben-Menachem E, Shank R, Rönnbäck L, Hansson E. Topiramate modulation of kainate-induced calcium currents is inversely related to channel phosphorylation level. J Neurochem 2003; 88:320-5. [PMID: 14690520 DOI: 10.1046/j.1471-4159.2003.02186.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Topiramate (TPM) is a structurally novel broad-spectrum anticonvulsant known to modulate the activity of several ligand- and voltage-gated ion channels in neurons. These include an inhibitory effect on the AMPA and kainate subtypes of glutamate receptors, mixed modulatory effects (usually positive) on some types of GABAA receptors, negative modulatory effects on some types of voltage-gated Na+ and Ca2+ channels, and a positive modulatory effect on at least one type of K+ channel. The nature of these effects at the molecular level has not been established, but two previous studies have implicated the phosphorylation state of these receptor/channel complexes as an influencing factor in the activity of TPM. Here, we report that the ability of TPM to inhibit a kainate-induced accumulation of free Ca2+ in cultured neurons from rat cerebral cortex is inversely related to the level of cAMP-dependent protein kinase (cAPK) mediated phosphorylation of kainate-activated receptors/channels. Specifically, when cell cultures were pre-treated with forskolin or dibutyryl cAMP, indirect activators of cAPK, the activity of TPM was abolished, whereas when the cells were pre-treated with H89, an inhibitor of cAPK, the relative activity of TPM was enhanced. The results of this study support the hypothesis that TPM binds to phosphorylation sites on AMPA and kainate receptors, but only in the dephosphorylated state and thereby exerts an allosteric modulatory effect on channel conductance.
Collapse
Affiliation(s)
- Mikael Angehagen
- Institute of Clinical Neuroscience, Göteborg University, Göteborg, Sweden.
| | | | | | | | | |
Collapse
|
34
|
Abstract
Excitatory glutamatergic transmission involves a variety of different receptor types, each with distinct properties and functions. Physiological studies have identified both post- and presynaptic roles for kainate receptors, which are a subtype of the ionotropic glutamate receptors. Kainate receptors contribute to excitatory postsynaptic currents in many regions of the central nervous system including hippocampus, cortex, spinal cord and retina. In some cases, postsynaptic kainate receptors are co-distributed with alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptors, but there are also synapses where transmission is mediated exclusively by postsynaptic kainate receptors: for example, in the retina at connections made by cones onto off bipolar cells. Modulation of transmitter release by presynaptic kainate receptors can occur at both excitatory and inhibitory synapses. The depolarization of nerve terminals by current flow through ionotropic kainate receptors appears sufficient to account for most examples of presynaptic regulation; however, a number of studies have provided evidence for metabotropic effects on transmitter release that can be initiated by activation of kainate receptors. Recent analysis of knockout mice lacking one or more of the subunits that contribute to kainate receptors, as well as studies with subunit-selective agonists and antagonists, have revealed the important roles that kainate receptors play in short- and long-term synaptic plasticity. This review briefly addresses the properties of kainate receptors and considers in greater detail the physiological analysis of their contributions to synaptic transmission.
Collapse
Affiliation(s)
- James E Huettner
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
35
|
Chan YS, Chen LW, Lai CH, Shum DKY, Yung KKL, Zhang FX. Receptors of glutamate and neurotrophin in vestibular neuronal functions. J Biomed Sci 2003. [DOI: 10.1007/bf02256307] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
36
|
Gallyas F, Ball SM, Molnar E. Assembly and cell surface expression of KA-2 subunit-containing kainate receptors. J Neurochem 2003; 86:1414-27. [PMID: 12950450 DOI: 10.1046/j.1471-4159.2003.01945.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Kainate receptors (KARs) modulate synaptic transmission at both pre-synaptic and post-synaptic sites. The overlap in the distribution of KA-2 and GluR6/7 subunits in several brain regions suggests the co-assembly of these subunits in native KARs. The molecular mechanisms that control the assembly and surface expression of KARs are unknown. Unlike GluR5-7, the KA-2 subunit is unable to form functional homomeric KAR channels. We expressed the KA-2 subunit alone or in combination with other KAR subunits in HEK-293 cells. The cell surface expression of the KAR subunit homo- and heteromers were analysed using biotinylation and agonist-stimulated cobalt uptake. While GluR6 or GluR7 homomers were expressed on the cell surface, KA-2 alone was retained within the endoplasmic reticulum. We found that the cell surface expression of KA-2 was dramatically increased by co-expression with either of the low-affinity KAR subunits GluR5-7. However, co-expression with other related ionotropic glutamate receptor subunits (GluR1 and NR1) does not facilitate the cell surface expression of KA-2. The analysis of subcellular fractions of neocortex revealed that synaptic KARs have a relatively high KA-2 content compared to microsomal ones. Thus, KA-2 is likely to contain an endoplasmic reticulum retention signal that is shielded on assembly with other KAR subunits.
Collapse
Affiliation(s)
- Ferenc Gallyas
- MRC Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, University of Bristol, Bristol, UK
| | | | | |
Collapse
|
37
|
Affiliation(s)
- Juan Lerma
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Av. Doctor Arce 37, 28002 Madrid, Spain.
| |
Collapse
|
38
|
Renden RB, Broadie K. Mutation and activation of Galpha s similarly alters pre- and postsynaptic mechanisms modulating neurotransmission. J Neurophysiol 2003; 89:2620-38. [PMID: 12611964 DOI: 10.1152/jn.01072.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Constitutive activation of Galphas in the Drosophila brain abolishes associative learning, a behavioral disruption far worse than that observed in any single cAMP metabolic mutant, suggesting that Galphas is essential for synaptic plasticity. The intent of this study was to examine the role of Galphas in regulating synaptic function by targeting constitutively active Galphas to either pre- or postsynaptic cells and by examining loss-of-function Galphas mutants (dgs) at the glutamatergic neuromuscular junction (NMJ) model synapse. Surprisingly, both loss of Galphas and activation of Galphas in either pre- or postsynaptic compartment similarly increased basal neurotransmission, decreased short-term plasticity (facilitation and augmentation), and abolished posttetanic potentiation. Elevated synaptic function was specific to an evoked neurotransmission pathway because both spontaneous synaptic vesicle fusion frequency and amplitude were unaltered in all mutants. In the postsynaptic cell, the glutamate receptor field was regulated by Galphas activity; based on immunocytochemical studies, GluRIIA receptor subunits were dramatically downregulated (>75% decrease) in both loss and constitutive active Galphas genotypes. In the presynaptic cell, the synaptic vesicle cycle was regulated by Galphas activity; based on FM1-43 dye imaging studies, evoked vesicle fusion rate was increased in both loss and constitutively active Galphas genotypes. An important conclusion of this study is that both increased and decreased Galphas activity very similarly alters pre- and postsynaptic mechanisms. A second important conclusion is that Galphas activity induces transynaptic signaling; targeted Galphas activation in the presynapse downregulates postsynaptic GluRIIA receptors, whereas targeted Galphas activation in the postsynapse enhances presynaptic vesicle cycling.
Collapse
Affiliation(s)
- Robert B Renden
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City 84112-0840, USA
| | | |
Collapse
|
39
|
Cho K, Francis JC, Hirbec H, Dev K, Brown MW, Henley JM, Bashir ZI. Regulation of kainate receptors by protein kinase C and metabotropic glutamate receptors. J Physiol 2003; 548:723-30. [PMID: 12640005 PMCID: PMC2342901 DOI: 10.1113/jphysiol.2003.040188] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Kainate receptors have recently been shown to be involved in synaptic transmission, to regulate transmitter release and to mediate synaptic plasticity in different regions of the CNS. However, very little is known about endogenous mechanisms that can control native kainate receptor signalling. In this study we have found that GluR5-containing kainate receptor-mediated actions can be modulated by activation of protein kinase C (PKC) but not protein kinase A (PKA). However, both PKA and PKC directly phosphorylate the GluR5 subunit of kainate receptors. Metabotropic glutamate (mGlu) receptors are well known to be involved in synaptic transmission, regulation of transmitter release and synaptic plasticity in a variety of brain regions. We now demonstrate that kainate receptor signalling is enhanced by activation of group I mGlu receptors, in a PKC-dependent manner. These data demonstrate for the first time that kainate receptor function can be modulated by activation of metabotropic glutamate receptors and have implications for understanding mechanisms of synaptic transmission, plasticity and disorders such as epilepsy.
Collapse
Affiliation(s)
- Kwangwook Cho
- MRC Centre for Synaptic Plasticity, Department of Anatomy, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | | | | | | | |
Collapse
|
40
|
Dynamic modulation of inspiratory drive currents by protein kinase A and protein phosphatases in functionally active motoneurons. J Neurosci 2003. [PMID: 12598595 DOI: 10.1523/jneurosci.23-04-01099.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Plasticity underlying adaptive, long-term changes in breathing behavior is hypothesized to be attributable to the modulation of respiratory motoneurons by intracellular second-messenger cascades. In quiescent preparations, protein kinases, including cAMP-dependent protein kinase A (PKA), potentiate glutamatergic inputs. However, the dynamic role of protein kinases or phosphatases in functionally active and behaviorally relevant preparations largely remains to be established. Rhythmic inspiratory drive to motoneurons innervating inspiratory muscles is mediated by the release of glutamate acting predominantly on AMPA receptors. In rhythmically active brainstem slices from neonatal rats, we investigated whether synaptic AMPA receptor function could be modulated by changes in intracellular PKA activity, affecting inspiratory drive in hypoglossal (XII) motoneurons. Intracellular perfusion of the catalytic subunit of PKA potentiated endogenous synaptic and (exogenously applied) AMPA-induced currents in XII motoneurons. Conversely, when a peptide inhibitor of PKA was perfused intracellularly, inspiratory drive currents were depressed. Intracellular perfusion with microcystin, a potent phosphatase 1 and 2a inhibitor, increased both endogenous and exogenous AMPA receptor-mediated currents, further supporting a role of phosphorylation in modulating motoneuronal excitability affecting behaviorally relevant synaptic inputs. These findings suggest that PKA is constitutively active in XII motoneurons in vitro. Thus, endogenous synaptic AMPA currents in XII motoneurons are influenced by phosphorylation, specifically by PKA, and dephosphorylation. The role of this modulation may be to keep the activity of motoneurons within a dynamic range that aids in responding to different physiological challenges affecting breathing, such as exercise, hypoxia, and sleep.
Collapse
|
41
|
Hirbec H, Francis JC, Lauri SE, Braithwaite SP, Coussen F, Mulle C, Dev KK, Couthino V, Meyer G, Isaac JT, Collingridge GL, Henley JM. Rapid and differential regulation of AMPA and kainate receptors at hippocampal mossy fibre synapses by PICK1 and GRIP. Neuron 2003; 37:625-38. [PMID: 12597860 PMCID: PMC3314502 DOI: 10.1016/s0896-6273(02)01191-1] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We identified four PDZ domain-containing proteins, syntenin, PICK1, GRIP, and PSD95, as interactors with the kainate receptor (KAR) subunits GluR5(2b,) GluR5(2c), and GluR6. Of these, we show that both GRIP and PICK1 interactions are required to maintain KAR-mediated synaptic function at mossy fiber-CA3 synapses. In addition, PKC alpha can phosphorylate ct-GluR5(2b) at residues S880 and S886, and PKC activity is required to maintain KAR-mediated synaptic responses. We propose that PICK1 targets PKC alpha to phosphorylate KARs, causing their stabilization at the synapse by an interaction with GRIP. Importantly, this mechanism is not involved in the constitutive recycling of AMPA receptors since blockade of PDZ interactions can simultaneously increase AMPAR- and decrease KAR-mediated synaptic transmission at the same population of synapses.
Collapse
|
42
|
Dohovics R, Janáky R, Varga V, Hermann A, Saransaari P, Oja SS. Regulation of glutamatergic neurotransmission in the striatum by presynaptic adenylyl cyclase-dependent processes. Neurochem Int 2003; 42:1-7. [PMID: 12441162 DOI: 10.1016/s0197-0186(02)00066-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The aim here was to examine the possible roles of adenylyl cyclase- and protein kinase A (PKA)-dependent processes in ionotropic glutamate receptor (iGluR)-mediated neurotransmission using superfused mouse striatal slices and a non-metabolized L-glutamate analogue, D-[3H]aspartate. The direct and indirect presynaptic modulation of glutamate release and its susceptibility to changes in the intracellular levels of cyclic AMP (cAMP), Ca(2+) and calmodulin (CaM) and in protein phosphorylation was characterized by pharmacological manipulations. The agonists of iGluRs, 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) and kainate, stimulated the basal release of D-[3H]aspartate, while N-methyl-D-aspartate (NMDA) was without effect. Both the AMPA- and kainate-mediated responses were accentuated by the beta-adrenoceptor agonist isoproterenol. These facilitatory effects were mimicked by the permeable cAMP analogue dibutyryl-cAMP. The beta-adrenoceptor antagonist propranolol, the adenylyl cyclase inhibitor MDL12,330A, the inhibitor of PKA and PKC, H-7, and the PKA inhibitor H-89 abolished the isoproterenol effect on the kainate-evoked release. The dibutyryl-cAMP-induced potentiation was also attenuated by H-7. Isoproterenol, propranolol and MDL12,330A failed to affect the basal release of D-[3H]aspartate, but dibutyryl-cAMP was inhibitory and MDL12,330A activatory. In Ca(2+)-free medium, the kainate-evoked release was enhanced, being further accentuated by the CaM antagonists calmidazolium and trifluoperazine, though these inhibited the basal release. The potentiating effect of calmidazolium on the kainate-stimulated release was counteracted by both MDL12,330A and H-7. We conclude that AMPA- and kainate-evoked glutamate release from striatal glutamatergic terminals is potentiated by beta-adrenergic receptor-mediated adenylyl cyclase activation and cAMP accumulation. Glutamate release is enhanced if the Ca(2+)- and CaM-dependent, kainate-evoked processes do not prevent the excessive accumulation of intracellular cAMP.
Collapse
MESH Headings
- 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/pharmacology
- Adenylyl Cyclase Inhibitors
- Adenylyl Cyclases/physiology
- Adrenergic beta-Antagonists/pharmacology
- Animals
- Bucladesine/pharmacology
- Calcium/physiology
- Calmodulin/physiology
- Corpus Striatum/drug effects
- Corpus Striatum/metabolism
- Cyclic AMP/physiology
- Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors
- Cyclic AMP-Dependent Protein Kinases/physiology
- Enzyme Inhibitors/pharmacology
- Feedback
- Female
- Glutamic Acid/metabolism
- Imidazoles/pharmacology
- Imines/pharmacology
- Isoenzymes/antagonists & inhibitors
- Isoenzymes/physiology
- Isoproterenol/pharmacology
- Isoquinolines/pharmacology
- Kainic Acid/pharmacology
- Male
- Mice
- N-Methylaspartate/pharmacology
- Nerve Tissue Proteins/antagonists & inhibitors
- Nerve Tissue Proteins/physiology
- Propranolol/pharmacology
- Receptors, AMPA/drug effects
- Receptors, AMPA/physiology
- Receptors, Adrenergic, beta/drug effects
- Receptors, Adrenergic, beta/physiology
- Receptors, Glutamate/drug effects
- Receptors, Glutamate/physiology
- Receptors, Kainic Acid/drug effects
- Receptors, Kainic Acid/physiology
- Receptors, Presynaptic/drug effects
- Receptors, Presynaptic/physiology
- Second Messenger Systems/physiology
- Sulfonamides
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
- Trifluoperazine/pharmacology
- alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology
Collapse
Affiliation(s)
- Róbert Dohovics
- Brain Research Center, University of Tampere Medical School, Tampere, Finland.
| | | | | | | | | | | |
Collapse
|
43
|
Mendell LM, Arvanian VL. Diversity of neurotrophin action in the postnatal spinal cord. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2002; 40:230-9. [PMID: 12589921 DOI: 10.1016/s0165-0173(02)00205-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The expression of neurotrophins and their receptors in the adult spinal cord indicates that they have postnatal actions in addition to their well-known prenatal ones on axonal growth and cell survival. In this review we summarize evidence in support of mechanisms by which neurotrophins acutely modulate the response both of sensory neurons and of synapses within the spinal cord. The selective action of neurotrophins is achieved via restricted expression of high affinity trk receptors through which the neurotrophins act. Activation of trk receptors enhances the response of the vanilloid VR-1 receptor in nociceptive neurons leading to peripheral sensitization of the response to capsaicin or noxious heat. At synapses on motoneurons trk receptor activation enhances the response of NMDA receptors that in turn can increase the response of AMPA/kainate receptors on the same cell. Both of these sensitizing actions have a very rapid onset that is contrasted with slower neurotrophin effects on growth of axotomized afferents. It is likely that these different functional effects of neurotrophins reflect activation of different intracellular signaling pathways. These studies suggest mechanisms by which neurotrophins might be used to improve function of the damaged spinal cord.
Collapse
Affiliation(s)
- Lorne M Mendell
- Department of Neurobiology and Behaviour, State University of New York, Stony Brook, NY 11794-5230, USA.
| | | |
Collapse
|
44
|
Abstract
Postsynaptic kainate receptors (KARs) have been found in the CNS along with AMPA receptors (AMPARs), but because KAR-mediated EPSCs are much smaller and slower than AMPAR-mediated EPSCs, it remains unclear whether these postsynaptic KARs are functionally significant. In this study we measured KAR- and AMPAR-mediated EPSPs in hippocampal interneurons, and then we used these EPSPs in a model to examine the effects of afferent firing on each receptor. In this model the KARs generated a large tonic depolarization when activated by a small population of afferent fibers firing asynchronously at physiologically relevant firing rates (1-5 Hz). At 3-5 Hz this tonic depolarization exceeded the peak depolarization mediated by AMPARs in response to the same afferent activity. We also found that, unlike AMPARs, KARs did not generate large oscillations in membrane potential during theta rhythms. When simulated EPSCs were injected into interneurons to mimic afferents firing at 5 Hz, we found that currents simulating KARs elicited more spiking than currents simulating AMPARs. We also found that simulated AMPARs, but not KARs, could transmit presynaptic theta rhythms into postsynaptic spiking at the theta rhythm. Our results suggest that synaptically activated KARs have a strong influence on membrane potential and that AMPARs and KARs differ in their ability to encode temporal information.
Collapse
|
45
|
Yamauchi T. Molecular constituents and phosphorylation-dependent regulation of the post-synaptic density. MASS SPECTROMETRY REVIEWS 2002; 21:266-286. [PMID: 12533800 DOI: 10.1002/mas.10033] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The post-synaptic density (PSD) contains receptors with associated signaling- and scaffolding-proteins that organize signal-transduction pathways near the post-synaptic membrane. The PSD plays an important role in synaptic plasticity, and protein phosphorylation is critical to the regulation of PSD function, including learning and memory. Recently, studies have investigated the protein constituents of the PSD and substrate proteins for various protein kinases by proteomic analysis. The present review focuses on the molecular properties of PSD proteins, and substrates of protein kinases and their regulation by phosphorylation in order to understand the role of PSD in synaptic plasticity.
Collapse
Affiliation(s)
- Takashi Yamauchi
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, The University of Tokushima, Shomachi 1, Tokushima 770-8505, Japan.
| |
Collapse
|
46
|
Luchowska E, Luchowski P, Wielosz M, Kleinrok Z, Urbanska EM. beta-Adrenoceptor blockade enhances the anticonvulsant effect of glutamate receptor antagonists against maximal electroshock. Eur J Pharmacol 2001; 431:209-14. [PMID: 11728427 DOI: 10.1016/s0014-2999(01)01452-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In this study, we evaluated whether beta-adrenoceptor antagonists may modify the protective efficacy of dizocilpine (MK-801), a NMDA receptor antagonist, and 1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine (GYKI 52466), a non-NMDA (AMPA/kainate) receptor antagonist, against maximal electroshock-induced seizures in mice. Propranolol, acebutolol, metoprolol and atenolol were used in doses that did not alter the electroconvulsive threshold. Propranolol potentiated the anticonvulsant activity of MK-801 and GYKI 52466, significantly lowering their ED(50) values from 0.38 and 15.0 to 0.15 (P<0.001) and 8.4 mg/kg (P<0.001), respectively. Similarly, metoprolol lowered the ED(50) of MK-801 and GYKI 52466 from 0.38 and 15.0 to 0.17 (P<0.05) and 11.2 mg/kg (P<0.05). Acebutolol enhanced the protective action of GYKI 52466, lowering its ED(50) value from 15.0 to 12.2 mg/kg (P<0.05), but not that of MK-801. Atenolol, not penetrating the blood-brain barrier, did not affect the anticonvulsive efficacy of MK-801 and GYKI 52466. In conclusion, beta-adrenoceptor antagonists may act synergistically with excitatory amino acid receptor antagonists to inhibit generalised tonic-clonic seizures.
Collapse
Affiliation(s)
- E Luchowska
- Department of Pharmacology and Toxicology, Medical University, Jaczewskiego 8, 20-090 Lublin, Poland
| | | | | | | | | |
Collapse
|
47
|
Rong Y, Lu X, Bernard A, Khrestchatisky M, Baudry M. Tyrosine phosphorylation of ionotropic glutamate receptors by Fyn or Src differentially modulates their susceptibility to calpain and enhances their binding to spectrin and PSD-95. J Neurochem 2001; 79:382-90. [PMID: 11677266 DOI: 10.1046/j.1471-4159.2001.00565.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Both tyrosine phosphorylation and calpain-mediated truncation of ionotropic glutamate receptors are important mechanisms for synaptic plasticity. Previous work from our laboratory has shown that calpain activation results in truncation of the C-terminal domains of several glutamate receptor subunits. To test whether and how tyrosine phosphorylation of glutamate ionotropic receptor subunits modulates calpain susceptibility, synaptic membranes were phosphorylated by Fyn or Src, two members of the Src family tyrosine kinases. Tyrosine phosphorylation of synaptic membranes by Src significantly reduced calpain-mediated truncation of both NR2A and NR2B subunits of NMDA receptors, but not of GluR1 subunits of AMPA receptors. In contrast, phosphorylation with Fyn significantly protected calpain-mediated truncation of GluR1 subunits of AMPA receptors, but enhanced calpain-mediated truncation of NR2A subunits of NMDA receptors. Similar results were observed with NR2A and NR2B C-terminal domain fusion proteins phosphorylated by Fyn or Src before incubation with calpain and calcium. In addition, phosphorylation of NR2A and NR2B C-terminal fusion proteins by Fyn or Src enhanced their binding to spectrin and PSD-95. Thus, tyrosine phosphorylation impairs or facilitates calpain-mediated truncation of glutamate receptor subunits, depending on which tyrosine kinase is activated. Such mechanisms could serve to regulate receptor integrity and location, in addition to modulating channel properties.
Collapse
Affiliation(s)
- Y Rong
- Neuroscience Program, University of Southern California, Los Angeles 90089-2520, USA
| | | | | | | | | |
Collapse
|
48
|
Silva AP, Malva JO, Ambrósio AF, Salgado AJ, Carvalho AP, Carvalho CM. Role of kainate receptor activation and desensitization on the [Ca(2+)](i) changes in cultured rat hippocampal neurons. J Neurosci Res 2001; 65:378-86. [PMID: 11536320 DOI: 10.1002/jnr.1164] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We investigated the role of kainate (KA) receptor activation and desensitization in inducing the increase in the intracellular free Ca(2+) concentration ([Ca(2+)](i)) in individual cultured rat hippocampal neurons. The rat hippocampal neurons in the cultures were shown to express kainate receptor subunits, KA2 and GluR6/7, either by immunocytochemistry or by immunoblot analysis. The effect of LY303070, an alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionate (AMPA) receptor antagonist, on the alterations in the [Ca(2+)](i) caused by kainate showed cell-to-cell variability. The [Ca(2+)](i) increase caused by kainate was mostly mediated by the activation of AMPA receptors because LY303070 inhibited the response to kainate in a high percentage of neurons. The response to kainate was potentiated by concanavalin A (Con A), which inhibits kainate receptor desensitization, in 82.1% of the neurons, and this potentiation was not reversed by LY303070 in about 38% of the neurons. Also, upon stimulation of the cells with 4-methylglutamate (MGA), a selective kainate receptor agonist, in the presence of Con A, it was possible to observe [Ca(2+)](i) changes induced by kainate receptor activation, because LY303070 did not inhibit the response in all neurons analyzed. In toxicity studies, cultured rat hippocampal neurons were exposed to the drugs for 30 min, and the cell viability was evaluated at 24 hr using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The selective activation of kainate receptors with MGA, in the presence of Con A, induced a toxic effect, which was not prevented by LY303070, revealing a contribution of a small subpopulation of neurons expressing kainate receptors that independently mediate cytotoxicity. Taken together, these results indicate that cultured hippocampal neurons express not only AMPA receptors, but also kainate receptors, which can modulate the [Ca(2+)](i) and toxicity.
Collapse
Affiliation(s)
- A P Silva
- Center for Neuroscience of Coimbra, Department of Zoology, University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
Glutamate is the major excitatory neurotransmitter in the brain. It acts at ligand-gated cationic channels (NMDA, AMPA and kainate receptors) and at G protein-coupled metabotropic glutamate receptors as well. The glutamatergic transmission is suggested to be involved in development, learning and memory. Its dysfunction can be detected in epilepsy, stroke, neurodegenerative disorders and drug abuse. This paper summarizes the present knowledge on the modulation of glutamate-gated ion channels in the central nervous system by phosphorylation. An inhibitory interaction between adenosine A2A receptors and NMDA receptors in the neostriatum is described as an example. mediated by the phospholipase C/inositol trisphosphate/calmodulin and calmodulin kinase II pathway.
Collapse
Affiliation(s)
- L Köles
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Germany
| | | | | |
Collapse
|
50
|
Gao XB, van den Pol AN. Melanin concentrating hormone depresses synaptic activity of glutamate and GABA neurons from rat lateral hypothalamus. J Physiol 2001; 533:237-52. [PMID: 11351031 PMCID: PMC2278620 DOI: 10.1111/j.1469-7793.2001.0237b.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The neuropeptide melanin concentrating hormone (MCH) is synthesised only by neurons of the lateral hypothalamic (LH) area in the CNS. MCH cells project widely throughout the brain. Despite the growing interest in this peptide, in part related to its role in feeding, little has been done to characterise its physiological effects in neurons. Using whole-cell recording with current and voltage clamp, we examined the cellular actions in neurons from the LH. MCH induced a consistent decrease in the frequency of action potentials and reduced synaptic activity. Most fast synaptic activity in the hypothalamus is mediated by GABA or glutamate. MCH inhibited the synaptic activity of both glutamatergic and GABAergic LH neurons, each tested independently. MCH reduced the amplitude of glutamate-evoked currents and reduced the amplitude of miniature excitatory currents, indicating an inhibitory modulation of postsynaptic glutamate receptors. In the presence of tetrodotoxin to block action potentials, MCH caused a depression in the frequency of miniature glutamate-mediated postsynaptic currents, suggesting a presynaptic site of receptor expression. In voltage clamp experiments, MCH depressed the amplitude of calcium currents, suggesting that a mechanism of inhibition may involve a reduced calcium-dependent release of amino acid transmitter. Previous reports have suggested that MCH activated potassium channels in non-neuronal cells transfected with the MCH receptor gene. We found no effect of MCH on voltage-dependent potassium channels in LH neurons. Baclofen, a GABAB receptor agonist, activated G-protein gated inwardly rectifying potassium (GIRK)-type channels; in the same neurons, MCH had no effect on GIRK channels. MCH showed no modulation of sodium currents. Blockade of the Gi/Go protein with pertussis toxin eliminated the actions of MCH. The inhibitory actions of MCH on both excitatory and inhibitory synaptic events, coupled with opposing excitatory actions of hypocretin, another LH peptide that projects to many of the same loci, suggest a substantial level of complexity in neuropeptide modulation of LH actions.
Collapse
Affiliation(s)
- X B Gao
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|