1
|
Sandei I, Gaule T, Batchelor M, Paci E, Kim YY, Kulak AN, Tomlinson DC, Meldrum FC. Phage display identifies Affimer proteins that direct calcium carbonate polymorph formation. Biomater Sci 2024; 12:5215-5224. [PMID: 39206560 PMCID: PMC11358866 DOI: 10.1039/d4bm00165f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024]
Abstract
A key factor in biomineralization is the use of organic molecules to direct the formation of inorganic materials. However, identification of molecules that can selectively produce the calcium carbonate polymorphs calcite or aragonite has proven extremely challenging. Here, we use a phage display approach to identify proteins - rather than the short peptides typically identified using this method - that can direct calcium carbonate formation. A 1.3 × 1010 library of Affimer proteins was displayed on modified M13 phage, where an Affimer is a ≈13 kDa protein scaffold that displays two variable regions of 9-13 residues. The phage displaying the Affimer library were then screened in binding assays against calcite and aragonite at pH 7.4, and four different strongly-binding proteins were identified. The two aragonite-binding proteins generated aragonite when calcium and magnesium ions were present at a 1 : 1 ratio, while the calcite-binding proteins produce magnesium-calcite under the same conditions. Calcite alone formed in the presence of all four proteins in the absence of magnesium ions. In combination with molecular dynamics simulations to evaluate the conformations of the proteins in solution, this work demonstrates the importance of conformation in polymorph control, and highlights the importance of magnesium ions, which are abundant in seawater, to reduce the energetic barriers associated with aragonite formation.
Collapse
Affiliation(s)
- Ilaria Sandei
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK.
| | - Thembaninkosi Gaule
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK.
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Matthew Batchelor
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Emanuele Paci
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Yi-Yeoun Kim
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK.
| | | | - Darren C Tomlinson
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Fiona C Meldrum
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
2
|
Shimizu K, Negishi L, Kurumizaka H, Suzuki M. Diversification of von Willebrand Factor A and Chitin-Binding Domains in Pif/BMSPs Among Mollusks. J Mol Evol 2024; 92:415-431. [PMID: 38864871 PMCID: PMC11291548 DOI: 10.1007/s00239-024-10180-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/23/2024] [Indexed: 06/13/2024]
Abstract
Pif is a shell matrix protein (SMP) identified in the nacreous layer of Pinctada fucata (Pfu) comprised two proteins, Pif97 and Pif 80. Pif97 contains a von Willebrand factor A (VWA) and chitin-binding domains, whereas Pif80 can bind calcium carbonate crystals. The VWA domain is conserved in the SMPs of various mollusk species; however, their phylogenetic relationship remains obscure. Furthermore, although the VWA domain participates in protein-protein interactions, its role in shell formation has not been established. Accordingly, in the current study, we investigate the phylogenetic relationship between PfuPif and other VWA domain-containing proteins in major mollusk species. The shell-related proteins containing VWA domains formed a large clade (the Pif/BMSP family) and were classified into eight subfamilies with unique sequential features, expression patterns, and taxa diversity. Furthermore, a pull-down assay using recombinant proteins containing the VWA domain of PfuPif 97 revealed that the VWA domain interacts with five nacreous layer-related SMPs of P. fucata, including Pif 80 and nacrein. Collectively, these results suggest that the VWA domain is important in the formation of organic complexes and participates in shell mineralisation.
Collapse
Affiliation(s)
- Keisuke Shimizu
- Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-Cho, Yokosuka, Kanagawa, 237-0061, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Lumi Negishi
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Hitoshi Kurumizaka
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Michio Suzuki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan.
| |
Collapse
|
3
|
Wu L, Liu C, Yao T, Shi Y, Shen J, Gao X, Qin K. Structural and Compositional Changes in Two Marine Shell Traditional Chinese Medicines: A Comparative Analysis Pre- and Post-Calcination. J AOAC Int 2024; 107:704-713. [PMID: 38492563 DOI: 10.1093/jaoacint/qsae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/01/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Arcae concha and Meretricis concha cyclinae concha are two marine shellfish herbs with similar composition and efficacy, which are usually calcined and used clinically. OBJECTIVE This study investigated variations in the inorganic and organic components of Arcae concha and Meretricis concha cyclinae concha from different production regions, both Arcae concha and Meretricis concha cyclinae concha. The aim was to enhance the understanding of these two types of marine shell traditional Chinese medicine (msTCM) and provide a foundation for their future development and application. METHOD Spectroscopic techniques, including infrared spectroscopy, X-ray spectroscopy, and X-ray fluorescence spectroscopy, were used to analyze the calcium carbonate (CaCO3) crystal and trace elements. Thermogravimetric analysis was used to investigate the decomposition process during heating. The proteins were quantified using the BCA protein assay kit. Principal component analysis (PCA) was used to classify inorganic elements in the two marine shellfish traditional Chinese medicines. RESULTS No significant differences were found among the various production regions. The crystal structure of CaCO3 in the raw products was aragonite, but it transformed into calcite after calcination. The contents of Ca, Na, Sr, and other inorganic elements were highest. The protein content was significantly reduced after calcination. Therefore, these factors cannot accurately reflect the internal quality of TCM, rendering qualitative identification challenging. CaCO3 dissolution in the decoction of Arcae concha and Meretricis concha cyclinae concha increased after calcination, aligning with the clinical application of calcined shell TCM. PCA revealed the inorganic elements in them, indicating that the variation in trace element composition among different drugs leads to differences in their therapeutic focus, which should be considered during usage. CONCLUSIONS This study clarifies the composition and structure changes of corrugated and clam shell before and after calcining, and it lays the foundation for the comprehensive utilization of marine traditional Chinese medicine. HIGHLIGHTS These technical representations reveal the differences between raw materials and processed products, which will provide support for the quality control of other shellfish TCM.
Collapse
Affiliation(s)
- Lizhu Wu
- Jiangsu Ocean University, School of Pharmacy, Lianyungang 222005, PR China
| | - Chenlu Liu
- Jiangsu Ocean University, School of Pharmacy, Lianyungang 222005, PR China
| | - Tao Yao
- Qinghai Xinda Biological Technology Co, Ltd, Xining 810100, PR China
| | - Yun Shi
- Jiangsu Ocean University, School of Pharmacy, Lianyungang 222005, PR China
| | - Jinyang Shen
- Jiangsu Ocean University, School of Pharmacy, Lianyungang 222005, PR China
| | - Xun Gao
- Jiangsu Ocean University, School of Pharmacy, Lianyungang 222005, PR China
| | - Kunming Qin
- Jiangsu Ocean University, School of Pharmacy, Lianyungang 222005, PR China
| |
Collapse
|
4
|
Ruiz-Agudo C, Cölfen H. Exploring the Potential of Nonclassical Crystallization Pathways to Advance Cementitious Materials. Chem Rev 2024; 124:7538-7618. [PMID: 38874016 PMCID: PMC11212030 DOI: 10.1021/acs.chemrev.3c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
Understanding the crystallization of cement-binding phases, from basic units to macroscopic structures, can enhance cement performance, reduce clinker use, and lower CO2 emissions in the construction sector. This review examines the crystallization pathways of C-S-H (the main phase in PC cement) and other alternative binding phases, particularly as cement formulations evolve toward increasing SCMs and alternative binders as clinker replacements. We adopt a nonclassical crystallization perspective, which recognizes the existence of critical intermediate steps between ions in solution and the final crystalline phases, such as solute ion associates, dense liquid phases, amorphous intermediates, and nanoparticles. These multistep pathways uncover innovative strategies for controlling the crystallization of binding phases through additive use, potentially leading to highly optimized cement matrices. An outstanding example of additive-controlled crystallization in cementitious materials is the synthetically produced mesocrystalline C-S-H, renowned for its remarkable flexural strength. This highly ordered microstructure, which intercalates soft matter between inorganic and brittle C-S-H, was obtained by controlling the assembly of individual C-S-H subunits. While large-scale production of cementitious materials by a bottom-up self-assembly method is not yet feasible, the fundamental insights into the crystallization mechanism of cement binding phases presented here provide a foundation for developing advanced cement-based materials.
Collapse
Affiliation(s)
- Cristina Ruiz-Agudo
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Helmut Cölfen
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| |
Collapse
|
5
|
Díaz-Cuenca A, Sezanova K, Gergulova R, Rabadjieva D, Ruseva K. New Nano-Crystalline Hydroxyapatite-Polycarboxy/Sulfo Betaine Hybrid Materials: Synthesis and Characterization. Molecules 2024; 29:930. [PMID: 38474442 DOI: 10.3390/molecules29050930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
Hybrid materials based on calcium phosphates and synthetic polymers can potentially be used for caries protection due to their similarity to hard tissues in terms of composition, structure and a number of properties. This study is focused on the biomimetic synthesis of hybrid materials consisting of hydroxiapatite and the zwitterionic polymers polysulfobetaine (PSB) and polycarboxybetaine (PCB) using controlled media conditions with a constant pH of 8.0-8.2 and Ca/P = 1.67. The results show that pH control is a dominant factor in the crystal phase formation, so nano-crystalline hydroxyapatite with a Ca/P ratio of 1.63-1.71 was observed as the mineral phase in all the materials prepared. The final polymer content measured for the synthesized hybrid materials was 48-52%. The polymer type affects the final microstructure, and the mineral particle size is thinner and smaller in the synthesis performed using PCB than using PSB. The final intermolecular interaction of the nano-crystallized hydroxyapatite was demonstrated to be stronger with PCB than with PSB as shown by our IR and Raman spectroscopy analyses. The higher remineralization potential of the PCB-containing synthesized material was demonstrated by in vitro testing using artificial saliva.
Collapse
Affiliation(s)
- Aránzazu Díaz-Cuenca
- Materials Science Institute of Seville (ICMS), Joint CSIC-University of Seville Center, 41092 Seville, Spain
| | - Kostadinka Sezanova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Rumiana Gergulova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Diana Rabadjieva
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Konstans Ruseva
- Laboratory on Structure and Properties of Polymers, Faculty of Chemistry and Pharmacy, University of Sofia, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria
| |
Collapse
|
6
|
Kalka M, Bielak K, Ptak M, Stolarski J, Dobryszycki P, Wojtas M. Calcium carbonate polymorph selection in fish otoliths: A key role of phosphorylation of Starmaker-like protein. Acta Biomater 2024; 174:437-446. [PMID: 38061675 DOI: 10.1016/j.actbio.2023.11.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023]
Abstract
Fish otoliths are calcium carbonate biominerals found in the inner ear commonly used for tracking fish biochronologies and as a model system for biomineralization. The process of fish otolith formation is biologically controlled by numerous biomacromolecules which not only affect crystal size, shape, mechanical properties, but also selection of calcium carbonate polymorph (e.g., aragonite, vaterite). The proteinaceous control over calcium carbonate polymorph selection occurs in many other species (e.g., corals, mollusks, echinoderms) but the exact mechanism of protein interactions with calcium and carbonate ions - constituents of CaCO3 - are not fully elucidated. Herein, we focus on a native Starmaker-like protein isolated from vaterite asteriscus otoliths from Cyprinus carpio. The proteomic studies show the presence of the phosphorylated protein in vaterite otoliths. In a series of in vitro mineralization experiments with Starmaker-like, we show that native phosphorylation is a crucial determinant for the selection of a crystal's polymorphic form. This is the first report showing that the switch in calcium carbonate phase depends on the phosphorylation pattern of a single isolated protein. STATEMENT OF SIGNIFICANCE: Calcium carbonate has numerous applications in industry and medicine. However, we still do not understand the mechanism of biologically driven polymorph selection which results in specific biomineral properties. Previous work on calcium carbonate biominerals showed that either several macromolecular factors or high magnesium concentration (non-physiological) are required for proper polymorph selection (e.g., in mollusk shells, corals and otoliths). In this work, we showed for the first time that protein phosphorylation is a crucial factor for controlling the calcium carbonate crystal phase. This is important because a single protein from the otolith organic matrix could switch between polymorphs depending on the phosphorylation level. It seems that protein post-translational modifications (native, not artificial) are more important for biomolecular control of crystal growth than previously considered.
Collapse
Affiliation(s)
- Marta Kalka
- Wroclaw University of Science and Technology, Faculty of Chemistry, Department of Biochemistry, Molecular Biology and Biotechnology, Wrocław, Poland
| | - Klaudia Bielak
- Wroclaw University of Science and Technology, Faculty of Chemistry, Department of Biochemistry, Molecular Biology and Biotechnology, Wrocław, Poland
| | - Maciej Ptak
- Division of Optical Spectroscopy, Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wrocław, Poland
| | | | - Piotr Dobryszycki
- Wroclaw University of Science and Technology, Faculty of Chemistry, Department of Biochemistry, Molecular Biology and Biotechnology, Wrocław, Poland
| | - Magdalena Wojtas
- Wroclaw University of Science and Technology, Faculty of Chemistry, Department of Biochemistry, Molecular Biology and Biotechnology, Wrocław, Poland.
| |
Collapse
|
7
|
Gindele MB, Vinod-Kumar S, Rochau J, Boemke D, Groß E, Redrouthu VS, Gebauer D, Mathies G. Colloidal pathways of amorphous calcium carbonate formation lead to distinct water environments and conductivity. Nat Commun 2024; 15:80. [PMID: 38167336 PMCID: PMC10761707 DOI: 10.1038/s41467-023-44381-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
CaCO3 is the most abundant biomineral and a major constituent of incrustations arising from water hardness. Polycarboxylates play key roles in controlling mineralization. Herein, we present an analytical and spectroscopic study of polycarboxylate-stabilized amorphous CaCO3 (ACC) and its formation via a dense liquid precursor phase (DLP). Polycarboxylates facilitate pronounced, kinetic bicarbonate entrapment in the DLP. Since bicarbonate is destabilized in the solid state, DLP dehydration towards solid ACC necessitates the formation of locally calcium deficient sites, thereby inhibiting nucleation. Magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy of poly-aspartate-stabilized ACC reveals the presence of two distinct environments. The first contains immobile calcium and carbonate ions and structural water molecules, undergoing restricted, anisotropic motion. In the second environment, water molecules undergo slow, but isotropic motion. Indeed, conductive atomic force microscopy (C-AFM) reveals that ACC conducts electrical current, strongly suggesting that the mobile environment pervades the bulk of ACC, with dissolved hydroxide ions constituting the charge carriers. We propose that the distinct environments arise from colloidally stabilized interfaces of DLP nanodroplets, consistent with the pre-nucleation cluster (PNC) pathway.
Collapse
Affiliation(s)
- Maxim B Gindele
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstr. 9, 30167, Hannover, Germany
| | - Sanjay Vinod-Kumar
- Department of Chemistry, University of Konstanz, Universitätsstr. 10, 78464, Konstanz, Germany
| | - Johannes Rochau
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstr. 9, 30167, Hannover, Germany
| | - Daniel Boemke
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstr. 9, 30167, Hannover, Germany
| | - Eduard Groß
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstr. 9, 30167, Hannover, Germany
| | | | - Denis Gebauer
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstr. 9, 30167, Hannover, Germany.
| | - Guinevere Mathies
- Department of Chemistry, University of Konstanz, Universitätsstr. 10, 78464, Konstanz, Germany.
| |
Collapse
|
8
|
Putra NE, Zhou J, Zadpoor AA. Sustainable Sources of Raw Materials for Additive Manufacturing of Bone-Substituting Biomaterials. Adv Healthc Mater 2024; 13:e2301837. [PMID: 37535435 PMCID: PMC11468967 DOI: 10.1002/adhm.202301837] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/12/2023] [Indexed: 08/05/2023]
Abstract
The need for sustainable development has never been more urgent, as the world continues to struggle with environmental challenges, such as climate change, pollution, and dwindling natural resources. The use of renewable and recycled waste materials as a source of raw materials for biomaterials and tissue engineering is a promising avenue for sustainable development. Although tissue engineering has rapidly developed, the challenges associated with fulfilling the increasing demand for bone substitutes and implants remain unresolved, particularly as the global population ages. This review provides an overview of waste materials, such as eggshells, seashells, fish residues, and agricultural biomass, that can be transformed into biomaterials for bone tissue engineering. While the development of recycled metals is in its early stages, the use of probiotics and renewable polymers to improve the biofunctionalities of bone implants is highlighted. Despite the advances of additive manufacturing (AM), studies on AM waste-derived bone-substitutes are limited. It is foreseeable that AM technologies can provide a more sustainable alternative to manufacturing biomaterials and implants. The preliminary results of eggshell and seashell-derived calcium phosphate and rice husk ash-derived silica can likely pave the way for more advanced applications of AM waste-derived biomaterials for sustainably addressing several unmet clinical applications.
Collapse
Affiliation(s)
- Niko E. Putra
- Department of Biomechanical EngineeringFaculty of MechanicalMaritimeand Materials EngineeringDelft University of TechnologyMekelweg 2Delft2628 CDThe Netherlands
| | - Jie Zhou
- Department of Biomechanical EngineeringFaculty of MechanicalMaritimeand Materials EngineeringDelft University of TechnologyMekelweg 2Delft2628 CDThe Netherlands
| | - Amir A. Zadpoor
- Department of Biomechanical EngineeringFaculty of MechanicalMaritimeand Materials EngineeringDelft University of TechnologyMekelweg 2Delft2628 CDThe Netherlands
| |
Collapse
|
9
|
Davila-Hernandez FA, Jin B, Pyles H, Zhang S, Wang Z, Huddy TF, Bera AK, Kang A, Chen CL, De Yoreo JJ, Baker D. Directing polymorph specific calcium carbonate formation with de novo protein templates. Nat Commun 2023; 14:8191. [PMID: 38097544 PMCID: PMC10721895 DOI: 10.1038/s41467-023-43608-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023] Open
Abstract
Biomolecules modulate inorganic crystallization to generate hierarchically structured biominerals, but the atomic structure of the organic-inorganic interfaces that regulate mineralization remain largely unknown. We hypothesized that heterogeneous nucleation of calcium carbonate could be achieved by a structured flat molecular template that pre-organizes calcium ions on its surface. To test this hypothesis, we design helical repeat proteins (DHRs) displaying regularly spaced carboxylate arrays on their surfaces and find that both protein monomers and protein-Ca2+ supramolecular assemblies directly nucleate nano-calcite with non-natural {110} or {202} faces while vaterite, which forms first in the absence of the proteins, is bypassed. These protein-stabilized nanocrystals then assemble by oriented attachment into calcite mesocrystals. We find further that nanocrystal size and polymorph can be tuned by varying the length and surface chemistry of the designed protein templates. Thus, bio-mineralization can be programmed using de novo protein design, providing a route to next-generation hybrid materials.
Collapse
Affiliation(s)
- Fatima A Davila-Hernandez
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98105, USA
- Molecular Engineering Graduate Program, University of Washington, Seattle, WA, 98105, USA
| | - Biao Jin
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA.
| | - Harley Pyles
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98105, USA
| | - Shuai Zhang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Zheming Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Timothy F Huddy
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98105, USA
| | - Asim K Bera
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98105, USA
| | - Alex Kang
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98105, USA
| | - Chun-Long Chen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - James J De Yoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA.
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, 98105, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98105, USA.
| |
Collapse
|
10
|
Mohamed H, Hkiri K, Botha N, Cloete K, Azizi S, Ahmed AAQ, Morad R, Motlamane T, Krief A, Gibaud A, Henini M, Chaker M, Ahmad I, Maaza M. Room temperature bio-engineered multifunctional carbonates for CO 2 sequestration and valorization. Sci Rep 2023; 13:16783. [PMID: 37798317 PMCID: PMC10556044 DOI: 10.1038/s41598-023-42905-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/15/2023] [Indexed: 10/07/2023] Open
Abstract
This contribution reports, for the first time, on an entirely green bio-engineering approach for the biosynthesis of single phase crystalline 1-D nano-scaled calcite CaCO3. This was validated using H2O as the universal solvent and natural extract of Hyphaene thebaica fruit as an effective chelating agent. In this room temperature green process, CaCl2 and CO2 are used as the unique source of Ca and CO3 respectively in view of forming nano-scaled CaCO3 with a significant shape anisotropy and an elevated surface to volume ratio. In terms of novelty, and relatively to the reported scientific and patented literature in relation to the fabrication of CaCO3 by green nano-chemistry, the current cost effective room temperature green process can be singled out as per the following specificities: only water as universal solvent is used, No additional base or acid chemicals for pH control, No additional catalyst, No critical or supercritical CO2 usage conditions, Only natural extract of thebaica as a green effective chelating agent through its phytochemicals and proper enzematic compounds, room Temperature processing, atmospheric pressure processing, Nanoscaled size particles, and Nanoparticles with a significant shape anisotropy (1-D like nanoparticles). Beyond and in addition to the validation of the 1-D synthesis aspect, the bio-engineered CaCO3 exhibited a wide-ranging functionalities in terms of highly reflecting pigment, an effective nanofertilizer as well as a potential binder in cement industry.
Collapse
Affiliation(s)
- H Mohamed
- UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, South Africa
- Nanosciences African Network (NANOAFNET), Materials Research Department, iThemba LABS-National Research Foundation of South Africa, 1 Old Faure Road, Somerset West, PO Box 722, Cape Town, 7129, Western Cape, South Africa
- College of Graduate Studies, University of South Africa, PRETORIA, South Africa
| | - K Hkiri
- UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, South Africa
- Nanosciences African Network (NANOAFNET), Materials Research Department, iThemba LABS-National Research Foundation of South Africa, 1 Old Faure Road, Somerset West, PO Box 722, Cape Town, 7129, Western Cape, South Africa
| | - N Botha
- UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, South Africa
- Nanosciences African Network (NANOAFNET), Materials Research Department, iThemba LABS-National Research Foundation of South Africa, 1 Old Faure Road, Somerset West, PO Box 722, Cape Town, 7129, Western Cape, South Africa
| | - K Cloete
- UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, South Africa
- Nanosciences African Network (NANOAFNET), Materials Research Department, iThemba LABS-National Research Foundation of South Africa, 1 Old Faure Road, Somerset West, PO Box 722, Cape Town, 7129, Western Cape, South Africa
| | - Sh Azizi
- UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, South Africa
- Nanosciences African Network (NANOAFNET), Materials Research Department, iThemba LABS-National Research Foundation of South Africa, 1 Old Faure Road, Somerset West, PO Box 722, Cape Town, 7129, Western Cape, South Africa
| | - A A Q Ahmed
- UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, South Africa
- Nanosciences African Network (NANOAFNET), Materials Research Department, iThemba LABS-National Research Foundation of South Africa, 1 Old Faure Road, Somerset West, PO Box 722, Cape Town, 7129, Western Cape, South Africa
| | - R Morad
- UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, South Africa
- Nanosciences African Network (NANOAFNET), Materials Research Department, iThemba LABS-National Research Foundation of South Africa, 1 Old Faure Road, Somerset West, PO Box 722, Cape Town, 7129, Western Cape, South Africa
| | - Th Motlamane
- UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, South Africa
- Nanosciences African Network (NANOAFNET), Materials Research Department, iThemba LABS-National Research Foundation of South Africa, 1 Old Faure Road, Somerset West, PO Box 722, Cape Town, 7129, Western Cape, South Africa
| | - A Krief
- UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, South Africa
- Nanosciences African Network (NANOAFNET), Materials Research Department, iThemba LABS-National Research Foundation of South Africa, 1 Old Faure Road, Somerset West, PO Box 722, Cape Town, 7129, Western Cape, South Africa
- Chemistry Department (CMI Laboratory), University of Namur, 2 Rue Joseph Grafé, 5000, Namur, Belgium
| | - A Gibaud
- UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, South Africa
- Nanosciences African Network (NANOAFNET), Materials Research Department, iThemba LABS-National Research Foundation of South Africa, 1 Old Faure Road, Somerset West, PO Box 722, Cape Town, 7129, Western Cape, South Africa
- IMMM, UMR 6283 CNRS, University of Le Maine, Bd O. Messiaen, 72085, Le Mans Cedex 09, France
| | - M Henini
- UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, South Africa
- Nanosciences African Network (NANOAFNET), Materials Research Department, iThemba LABS-National Research Foundation of South Africa, 1 Old Faure Road, Somerset West, PO Box 722, Cape Town, 7129, Western Cape, South Africa
- Physics and Astronomy Department, Nottingham University, Nottingham, NG7 2RD7, UK
| | - M Chaker
- UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, South Africa
- Nanosciences African Network (NANOAFNET), Materials Research Department, iThemba LABS-National Research Foundation of South Africa, 1 Old Faure Road, Somerset West, PO Box 722, Cape Town, 7129, Western Cape, South Africa
- INRS-Energie et Matériaux, 1650 Lionel-Boulet, Varennes, QC, J3X 1S2, Canada
| | - I Ahmad
- UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, South Africa
- Nanosciences African Network (NANOAFNET), Materials Research Department, iThemba LABS-National Research Foundation of South Africa, 1 Old Faure Road, Somerset West, PO Box 722, Cape Town, 7129, Western Cape, South Africa
- Experimental Physics Directorate (EPD), National Center for Physics, Islamabad, 44000, Pakistan
| | - M Maaza
- UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, South Africa.
- Nanosciences African Network (NANOAFNET), Materials Research Department, iThemba LABS-National Research Foundation of South Africa, 1 Old Faure Road, Somerset West, PO Box 722, Cape Town, 7129, Western Cape, South Africa.
| |
Collapse
|
11
|
Dai M, Zhang Y, Jiao Y, Deng Y, Du X, Yang C. Immunomodulatory effects of one novel microRNA miR-63 in pearl oyster Pinctada fucata martensii. FISH & SHELLFISH IMMUNOLOGY 2023; 140:109002. [PMID: 37586600 DOI: 10.1016/j.fsi.2023.109002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/18/2023]
Abstract
Novel microRNA miR-63 (novel-miR-63) from pearl oyster Pinctada fucata martensii (Pm-novel-miR-63) is a species-specific miRNA. Our previous research has shown that the expression of Pm-novel-miR-63 was significantly downregulated at 24 h after nucleus transplantation. In this study, we analyzed the function and regulatory role of Pm-novel-miR-63 in the immune response of pearl oysters. The results showed that Pm-novel-miR-63 expression increased after the stimulation of pathogen associated molecular patterns at 6-12 h, and the activity of immune and antioxidant enzymes in the serum decreased after Pm-novel-miR-63 overexpression. Transcriptome analysis revealed that Pm-novel-miR-63 participated in regulating transplantation immunity through the Notch and mRNA surveillance signaling pathways. Target prediction and dual luciferase analysis revealed that Pm-GDP-FucTP, Pm-CysLTR2, and Pm-RLR were the target genes of Pm-novel-miR-63. These results suggested that Pm-novel-miR-63 participated in regulating the immune response in pearl oysters and can serve as a new interference target to reasonably control excessive immune rejection in pearl culture.
Collapse
Affiliation(s)
- Meiqi Dai
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Yuting Zhang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Yu Jiao
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China.
| | - Yuewen Deng
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, China; Guangdong Marine Ecology Early Warning and Monitoring Laboratory, Zhanjiang, 524088, China
| | - Xiaodong Du
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China
| | - Chuangye Yang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Marine Ecology Early Warning and Monitoring Laboratory, Zhanjiang, 524088, China
| |
Collapse
|
12
|
Cheng M, Liu M, Chang L, Liu Q, Wang C, Hu L, Zhang Z, Ding W, Chen L, Guo S, Qi Z, Pan P, Chen J. Overview of structure, function and integrated utilization of marine shell. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161950. [PMID: 36740075 DOI: 10.1016/j.scitotenv.2023.161950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/15/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Marine shell resources have received great attention from researchers owing to their unique merits such as high hardness, good toughness, corrosion resistance, high adsorption, and bioactivity. Restricted by the level of comprehensive utilization technology, the utilization rate of shells is extremely low, resulting in serious waste and pollution. The research shows that the unique brick-mud structure of shells makes them have diverse and good functional characteristics, which guides them to have great utilization potential in different fields. Hence, this review highlights the constitutive relationship between microstructure-function-application of shells (e.g., gastropods, cephalopods, and amniotes), and the comprehensive applications and development ideas in the fields of biomedicine, adsorption enrichment, pHotocatalysis, marine carbon sink, and environmental deicer. It is worth mentioning that marine shells are currently well developed in three areas: bone repair, health care and medicinal value, and drug carrier, which together promote the progress of biomedical field. In addition, an in-depth summary of the application of marine shells in the adsorption and purification of various impurities such as crude oil, heavy metal ions and dyes at low-cost and high efficiency is presented. Finally, by integrating thoughts and approaches from different applications, we are committed to providing new pathways for the excavation and future high-value of shell resources, clarifying the existing development stages and bottlenecks, promoting the development of related technology industries, and achieving the synergistic win-win situation of economic and environmental benefits.
Collapse
Affiliation(s)
- Meiqi Cheng
- Marine College, Shandong University, Weihai 264209, China
| | - Man Liu
- Marine College, Shandong University, Weihai 264209, China
| | - Lirong Chang
- Weihai Changqing Ocean Science Technology Co., Ltd., Rongcheng 264300, China
| | - Qing Liu
- Marine College, Shandong University, Weihai 264209, China
| | - Chunxiao Wang
- Marine College, Shandong University, Weihai 264209, China
| | - Le Hu
- Marine College, Shandong University, Weihai 264209, China
| | - Ziyue Zhang
- Marine College, Shandong University, Weihai 264209, China
| | - Wanying Ding
- Marine College, Shandong University, Weihai 264209, China
| | - Li Chen
- College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China
| | - Sihan Guo
- Business School, Shandong University, Weihai 264209, China
| | - Zhi Qi
- Business School, Shandong University, Weihai 264209, China
| | - Panpan Pan
- Marine College, Shandong University, Weihai 264209, China; Weihai Changqing Ocean Science Technology Co., Ltd., Rongcheng 264300, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China.
| | - Jingdi Chen
- Marine College, Shandong University, Weihai 264209, China; Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai 265599, China.
| |
Collapse
|
13
|
The Matrix Protein Cysrichin, a Galaxin-like Protein from Hyriopsis cumingii, Induces Vaterite Formation In Vitro. BIOLOGY 2023; 12:biology12030447. [PMID: 36979139 PMCID: PMC10045328 DOI: 10.3390/biology12030447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/23/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
In this study, we cloned a novel matrix protein, cysrichin, with 16.03% homology and a similar protein structure to the coral biomineralized protein galaxin. Tissue expression analysis showed that cysrichin was mainly expressed in mantle and gill tissues. In situ hybridization indicated that cysrichin mRNA was detected in the entire epithelium region of mantle tissue. RNAi analysis and shell notching experiment confirmed that cysrichin participates in the prismatic layer and nacreous layer formation of the shell. An in vitro crystallization experiment showed that the cysrichin protein induced lotus-shaped and round-shaped crystals, which were identified as vaterite crystals. These results may provide new clues for understanding the formation of vaterite in freshwater shellfish.
Collapse
|
14
|
Yao Y, Ye T, Ren J, Li H. Morphological Evolution of Calcite Grown in Zwitterionic Hydrogels: Charge Effects Enhanced by Gel-Incorporation. Chemistry 2023; 29:e202300169. [PMID: 36793152 DOI: 10.1002/chem.202300169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/17/2023]
Abstract
The incorporation of charged biomacromolecules is widely found in biomineralization. To investigate the significance of this biological strategy for mineralization control, gelatin-incorporated calcite crystals grown from gelatin hydrogels with different charge concentrations along the gel networks are examined. It is found that the bound charged groups on gelatin networks (amino cations, gelatin-NH3 + and carboxylic anions, gelatin-COO- ) play crucial roles in controlling the single-crystallinity and the crystal morphology. And the charge effects are greatly enhanced by the gel-incorporation because the incorporated gel networks force the bound charged groups on them to attach to crystallization fronts. In contrast, ammonium ions (NH4 + ) and acetate ions (Ac- ) dissolve in the crystallization media do not exhibit the similar charge effects because the balance of attachment/detachment make them more difficult to be incorporated. Employing the revealed charge effects, the calcite crystal composites with different morphologies can be flexibly prepared.
Collapse
Affiliation(s)
- Yuqing Yao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Tao Ye
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Jie Ren
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Hanying Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| |
Collapse
|
15
|
Eyal Z, Deis R, Varsano N, Dezorella N, Rechav K, Houben L, Gur D. Plate-like Guanine Biocrystals Form via Templated Nucleation of Crystal Leaflets on Preassembled Scaffolds. J Am Chem Soc 2022; 144:22440-22445. [PMID: 36469805 DOI: 10.1021/jacs.2c11136] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Controlling the morphology of crystalline materials is challenging, as crystals have a strong tendency toward thermodynamically stable structures. Yet, organisms form crystals with distinct morphologies, such as the plate-like guanine crystals produced by many terrestrial and aquatic species for light manipulation. Regulation of crystal morphogenesis was hypothesized to entail physical growth restriction by the surrounding membrane, combined with fine-tuned interactions between organic molecules and the growing crystal. Using cryo-electron tomography of developing zebrafish larvae, we found that guanine crystals form via templated nucleation of thin leaflets on preassembled scaffolds made of 20-nm-thick amyloid fibers. These leaflets then merge and coalesce into a single plate-like crystal. Our findings shed light on the biological regulation of crystal morphogenesis, which determines their optical properties.
Collapse
Affiliation(s)
- Zohar Eyal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rachael Deis
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Neta Varsano
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nili Dezorella
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Katya Rechav
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Lothar Houben
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dvir Gur
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
16
|
Shimizu K, Negishi L, Ito T, Touma S, Matsumoto T, Awaji M, Kurumizaka H, Yoshitake K, Kinoshita S, Asakawa S, Suzuki M. Evolution of nacre- and prisms-related shell matrix proteins in the pen shell, Atrina pectinata. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 44:101025. [PMID: 36075178 DOI: 10.1016/j.cbd.2022.101025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 01/27/2023]
Abstract
The molluscan shell is a good model for understanding the mechanisms underlying biomineralization. It is composed of calcium carbonate crystals and many types of organic molecules, such as the matrix proteins, polysaccharides, and lipids. The pen shell Atrina pectinata (Pterioida, Pinnidae) has two shell microstructures: an outer prismatic layer and an inner nacreous layer. Similar microstructures are well known in pearl oysters (Pteriidae), such as Pinctada fucata, and many kinds of shell matrix proteins (SMPs) have been identified from their shells. However, the members of SMPs that consist of the nacreous and prismatic layers of Pinnidae bivalves remain unclear. In this study, we identified 114 SMPs in the nacreous and prismatic layers of A. pectinata, of which only seven were found in both microstructures. 54 of them were found to bind calcium carbonate. Comparative analysis of nine molluscan shell proteomes showed that 69 of 114 SMPs of A. pectinata were found to have sequential similarity with at least one or more SMPs of other molluscan species. For instance, nacrein, tyrosinase, Pif/BMSP-like, chitinase (CN), chitin-binding proteins, CD109, and Kunitz-type serine proteinase inhibitors are widely shared among bivalves and gastropods. Our results provide new insights for understanding the complex evolution of SMPs related to nacreous and prismatic layer formation in the pteriomorph bivalves.
Collapse
Affiliation(s)
- Keisuke Shimizu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Lumi Negishi
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Takumi Ito
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Shogo Touma
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Toshie Matsumoto
- National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, 422-1 Nakatsuhama, Minami-Ise, Watarai, Mie 516-0193, Japan
| | - Masahiko Awaji
- National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, 422-1 Nakatsuhama, Minami-Ise, Watarai, Mie 516-0193, Japan
| | - Hitoshi Kurumizaka
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Kazutoshi Yoshitake
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Shigeharu Kinoshita
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Michio Suzuki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan.
| |
Collapse
|
17
|
Nahi O, Kulak AN, Zhang S, He X, Aslam Z, Ilett MA, Ford IJ, Darkins R, Meldrum FC. Polyamines Promote Aragonite Nucleation and Generate Biomimetic Structures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2203759. [PMID: 36403251 PMCID: PMC9811428 DOI: 10.1002/advs.202203759] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Calcium carbonate biomineralization is remarkable for the ability of organisms to produce calcite or aragonite with perfect fidelity, where this is commonly attributed to specific anionic biomacromolecules. However, it is proven difficult to mimic this behavior using synthetic or biogenic anionic organic molecules. Here, it is shown that cationic polyamines ranging from small molecules to large polyelectrolytes can exert exceptional control over calcium carbonate polymorph, promoting aragonite nucleation at extremely low concentrations but suppressing its growth at high concentrations, such that calcite or vaterite form. The aragonite crystals form via particle assembly, giving nanoparticulate structures analogous to biogenic aragonite, and subsequent growth yields stacked aragonite platelets comparable to structures seen in developing nacre. This mechanism of polymorph selectivity is captured in a theoretical model based on these competing nucleation and growth effects and is completely distinct from the activity of magnesium ions, which generate aragonite by inhibiting calcite. Profiting from these contrasting mechanisms, it is then demonstrated that polyamines and magnesium ions can be combined to give unprecedented control over aragonite formation. These results give insight into calcite/aragonite polymorphism and raise the possibility that organisms may exploit both amine-rich organic molecules and magnesium ions in controlling calcium carbonate polymorph.
Collapse
Affiliation(s)
- Ouassef Nahi
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | | | - Shuheng Zhang
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Xuefeng He
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Zabeada Aslam
- School of Chemical and Process EngineeringUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Martha A. Ilett
- School of Chemical and Process EngineeringUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Ian J. Ford
- London Centre for NanotechnologyUniversity College London17–19 Gordon StreetLondonWC1H 0AHUK
| | - Robert Darkins
- London Centre for NanotechnologyUniversity College London17–19 Gordon StreetLondonWC1H 0AHUK
| | - Fiona C. Meldrum
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| |
Collapse
|
18
|
Yi L, Zou B, Xie L, Zhang R. A novel bifunctional protein PNU7 in CaCO3 polymorph formation: Vaterite stabilization and surface energy minimization. Int J Biol Macromol 2022; 222:2796-2807. [DOI: 10.1016/j.ijbiomac.2022.10.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022]
|
19
|
Mao LB, Meng YF, Meng XS, Yang B, Yang YL, Lu YJ, Yang ZY, Shang LM, Yu SH. Matrix-Directed Mineralization for Bulk Structural Materials. J Am Chem Soc 2022; 144:18175-18194. [PMID: 36162119 DOI: 10.1021/jacs.2c07296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mineral-based bulk structural materials (MBSMs) are known for their long history and extensive range of usage. The inherent brittleness of minerals poses a major problem to the performance of MBSMs. To overcome this problem, design principles have been extracted from natural biominerals, in which the extraordinary mechanical performance is achieved via the hierarchical organization of minerals and organics. Nevertheless, precise and efficient fabrication of MBSMs with bioinspired hierarchical structures under mild conditions has long been a big challenge. This Perspective provides a panoramic view of an emerging fabrication strategy, matrix-directed mineralization, which imitates the in vivo growth of some biominerals. The advantages of the strategy are revealed by comparatively analyzing the conventional fabrication techniques of artificial hierarchically structured MBSMs and the biomineral growth processes. By introducing recent advances, we demonstrate that this strategy can be used to fabricate artificial MBSMs with hierarchical structures. Particular attention is paid to the mass transport and the precursors that are involved in the mineralization process. We hope this Perspective can provide some inspiring viewpoints on the importance of biomimetic mineralization in material fabrication and thereby spur the biomimetic fabrication of high-performance MBSMs.
Collapse
Affiliation(s)
- Li-Bo Mao
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China.,Institute of Advanced Technology, University of Science and Technology of China, Hefei 230026, China.,Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Feng Meng
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Xiang-Sen Meng
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Bo Yang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Lu Yang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Jie Lu
- Institute of Advanced Technology, University of Science and Technology of China, Hefei 230026, China
| | - Zhong-Yuan Yang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Li-Mei Shang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Shu-Hong Yu
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China.,Institute of Advanced Technology, University of Science and Technology of China, Hefei 230026, China.,Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
20
|
Tarczewska A, Bielak K, Zoglowek A, Sołtys K, Dobryszycki P, Ożyhar A, Różycka M. The Role of Intrinsically Disordered Proteins in Liquid–Liquid Phase Separation during Calcium Carbonate Biomineralization. Biomolecules 2022; 12:biom12091266. [PMID: 36139105 PMCID: PMC9496343 DOI: 10.3390/biom12091266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Some animal organs contain mineralized tissues. These so-called hard tissues are mostly deposits of calcium salts, usually in the form of calcium phosphate or calcium carbonate. Examples of this include fish otoliths and mammalian otoconia, which are found in the inner ear, and they are an essential part of the sensory system that maintains body balance. The composition of ear stones is quite well known, but the role of individual components in the nucleation and growth of these biominerals is enigmatic. It is sure that intrinsically disordered proteins (IDPs) play an important role in this aspect. They have an impact on the shape and size of otoliths. It seems probable that IDPs, with their inherent ability to phase separate, also play a role in nucleation processes. This review discusses the major theories on the mechanisms of biomineral nucleation with a focus on the importance of protein-driven liquid–liquid phase separation (LLPS). It also presents the current understanding of the role of IDPs in the formation of calcium carbonate biominerals and predicts their potential ability to drive LLPS.
Collapse
|
21
|
Asgar H, Mohammed S, Gadikota G. Confinement induces stable calcium carbonate formation in silica nanopores. NANOSCALE 2022; 14:10349-10359. [PMID: 35796623 DOI: 10.1039/d2nr01834a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Scalable efforts to remove anthropogenic CO2via the formation of durable carbonates require us to harness siliceous nanoporous geologic materials for carbon storage. While calcium carbonate formation has been extensively reported in bulk fluids, there is a limited understanding of the influence of nanoconfined fluids on the formation of specific stable and metastable polymorphs of calcium carbonates in siliceous materials that are abundant in subsurface environments. To address this challenge, silica nanochannels with diameters of 3.7 nm are architected and the formation of specific calcium carbonate phases is investigated using X-ray diffraction (XRD), and molecular dynamics (MD) simulations. The formation of stable calcium carbonate (or calcite) is noted in silica nanochannels. The presence of fewer water molecules in the first hydration shell of calcium ions in confinement compared to in bulk fluids contributes to stable calcium carbonate formation. These studies show that nanoporous siliceous environments favor the formation of stable calcium carbonate formation.
Collapse
Affiliation(s)
- Hassnain Asgar
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| | - Sohaib Mohammed
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| | - Greeshma Gadikota
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
22
|
Yi L, Zou B, Xie L, Zhang R. DCSr-NL: A Novel Method to Semiquantitatively Probe the Growth Rate of Nacre. ACS OMEGA 2022; 7:23624-23633. [PMID: 35847271 PMCID: PMC9281326 DOI: 10.1021/acsomega.2c02230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Matrix proteins play critical roles in regulating the prismatic and nacreous layer formation in the shell. However, due to the dearth of in vivo experiments, their specific roles during shell formation are still unclear. In this study, a new method to detect the content of Sr in the nacreous layer (DCSr-NL), which can semiquantitatively measure the nacreous growth rate, has been proposed. In vitro experiments show that during in vitro crystallization, the Sr element can replace Ca partially, resulting in isomorphism. In vivo experiments show that the best labeling conditions are when the Sr/Ca in seawater is 0.3, at 24 °C, and at 4 days of culture. Although a surface morphological difference in the inner layer of nacre is seldom detected by scanning electron microscopy (SEM), knockdown of the classical gene nacrein or unknown gene NU9, combined with DCSr-NL, shows that both significantly decrease the nacreous layer formation rate. The knockdown of the classical gene Pif177 or unknown genes NU3 or MRPN affects the surface morphology and decreases the nacreous layer formation rate. In general, thanks to DCSr-NL, we can efficiently analyze the growth rate of the nacre with or without morphological changes by SEM, and it is of considerable significance for exploring the target gene's function in forming the nacre in vivo.
Collapse
|
23
|
Elias J, Angelini T, Martindale MQ, Gower L. Assessment of Optimal Conditions for Marine Invertebrate Cell-Mediated Mineralization of Organic Matrices. Biomimetics (Basel) 2022; 7:biomimetics7030086. [PMID: 35892356 PMCID: PMC9326593 DOI: 10.3390/biomimetics7030086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 11/24/2022] Open
Abstract
Cellular strategies and regulation of their crystallization mechanisms are essential to the formation of biominerals, and harnessing these strategies will be important for the future creation of novel non-native biominerals that recapitulate the impressive properties biominerals possess. Harnessing these biosynthetic strategies requires an understanding of the interplay between insoluble organic matrices, mineral precursors, and soluble organic and inorganic additives. Our long-range goal is to use a sea anemone model system (Nematostella vectensis) to examine the role of intrinsically disordered proteins (IDPs) found in native biomineral systems. Here, we study how ambient temperatures (25–37 °C) and seawater solution compositions (varying NaCl and Mg ratios) will affect the infiltration of organic matrices with calcium carbonate mineral precursors generated through a polymer-induced liquid-precursor (PILP) process. Fibrillar collagen matrices were used to assess whether solution conditions were suitable for intrafibrillar mineralization, and SEM with EDS was used to analyze mineral infiltration. Conditions of temperatures 30 °C and above and with low Mg:Ca ratios were determined to be suitable conditions for calcium carbonate infiltration. The information obtained from these observations may be useful for the manipulation and study of cellular secreted IDPs in our quest to create novel biosynthetic materials.
Collapse
Affiliation(s)
- Jeremy Elias
- Department of Materials Science & Engineering, University of Florida, Gainesville, FL 32611, USA;
| | - Thomas Angelini
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA;
| | - Mark Q. Martindale
- Whitney Laboratory of Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA;
| | - Laurie Gower
- Department of Materials Science & Engineering, University of Florida, Gainesville, FL 32611, USA;
- Correspondence:
| |
Collapse
|
24
|
Biomineralization of Carbonates Induced by Mucilaginibacter gossypii HFF1: Significant Role of Biochemical Parameters. MINERALS 2022. [DOI: 10.3390/min12050614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Although the precipitation of carbonate minerals induced by various bacteria is widely studied, the changes in the biochemical parameters, and their significant role in the biomineralization processes, still need further exploration. In this study, Mucilaginibacter gossypii HFF1 was isolated, identified, and used to induce carbonate minerals at various Mg/Ca ratios. The biochemical parameters were determined in order to explore the biomineralization mechanisms, including cell concentration, pH, ammonia, carbonic anhydrase activity, and alkaline phosphatase activity. The characteristics of extracellular minerals and intracellular inclusions were both analyzed. In addition, the amino acid composition of the extracellular polymeric substance was also tested. Results show that the biochemical parameters provide an alkaline environment for precipitation, due to the combined effect of ammonia, carbonic anhydrase, and alkaline phosphatase. Biotic minerals are characterized by preferred orientation, specific shape, and better crystalline and better thermal stability, indicating their biogenesis. Most of the amino acids in the extracellular polymeric substance are negatived charged, and facilitate the binding of magnesium and calcium ions. The particles with weak crystalline structure in the EPS prove that it acts as a nucleation site. Intracellular analyses prove the presence of the intracellular amorphous inclusions. Our results suggest that the changes in the biochemical parameters caused by bacteria are beneficial to biomineralization, and play a necessary role in its process. This offers new insight into understanding the biomineralization mechanism of the bacteria HFF1.
Collapse
|
25
|
Avrahami EM, Houben L, Aram L, Gal A. Complex morphologies of biogenic crystals emerge from anisotropic growth of symmetry-related facets. Science 2022; 376:312-316. [PMID: 35420932 DOI: 10.1126/science.abm1748] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Directing crystal growth into complex morphologies is challenging, as crystals tend to adopt thermodynamically stable morphologies. However, many organisms form crystals with intricate morphologies, as exemplified by coccoliths, microscopic calcite crystal arrays produced by unicellular algae. The complex morphologies of the coccolith crystals were hypothesized to materialize from numerous crystallographic facets, stabilized by fine-tuned interactions between organic molecules and the growing crystals. Using electron tomography, we examined multiple stages of coccolith development in three dimensions. We found that the crystals express only one set of symmetry-related crystallographic facets, which grow differentially to yield highly anisotropic shapes. Morphological chirality arises from positioning the crystals along specific edges of these same facets. Our findings suggest that growth rate manipulations are sufficient to yield complex crystalline morphologies.
Collapse
Affiliation(s)
- Emanuel M Avrahami
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Lothar Houben
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Lior Aram
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Assaf Gal
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
26
|
Gui Y, Huang C, Shi C, Stelzer T, Zhang GGZ, Yu L. Polymorphic selectivity in crystal nucleation. J Chem Phys 2022; 156:144504. [DOI: 10.1063/5.0086308] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Crystal nucleation rates have been measured in the supercooled melts of two richly polymorphic glass-forming liquids: ROY and nifedipine (NIF). ROY or 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile is known for its crystals of red, orange, and yellow colors and many polymorphs of solved structures (12). Of the many polymorphs, ON (orange needles) nucleates the fastest with the runner up (Y04) trailing by a factor of 103 when compared under the same mobility-limited condition, while the other unobserved polymorphs are slower yet by at least 5 orders of magnitude. Similarly, of the six polymorphs of NIF, [Formula: see text]′ nucleates the fastest, [Formula: see text]′ is slower by a factor of 10, and the rest are slower yet by at least 5 decades. In both systems, the faster-nucleating polymorphs are not built from the lowest-energy conformers, while they tend to have higher energies and lower densities and thus greater similarity to the liquid phase by these measures. The temperature ranges of this study covered the glass transition temperature Tg of each system, and we find no evidence that the nucleation rate is sensitive to the passage of Tg. At the lowest temperatures investigated, the rates of nucleation and growth are proportional to each other, indicating that a similar kinetic barrier controls both processes. The classical nucleation theory provides an accurate description of the observed nucleation rates if the crystal growth rate is used to describe the kinetic barrier for nucleation. The quantitative rates of both nucleation and growth for the competing polymorphs enable prediction of the overall rate of crystallization and its polymorphic outcome.
Collapse
Affiliation(s)
- Yue Gui
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Chengbin Huang
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Chenyang Shi
- Drug Product Development, Research and Development, AbbVie, Inc., North Chicago, Illinois 60064, USA
| | - Torsten Stelzer
- Department of Pharmaceutical Sciences, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico 00936, USA
- Crystallization Design Institute, Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico 00926, USA
| | - Geoff G. Z. Zhang
- Drug Product Development, Research and Development, AbbVie, Inc., North Chicago, Illinois 60064, USA
| | - Lian Yu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|
27
|
Duboisset J, Ferrand P, Baroni A, Grünewald TA, Dicko H, Grauby O, Vidal-Dupiol J, Saulnier D, Gilles LM, Rosenthal M, Burghammer M, Nouet J, Chevallard C, Baronnet A, Chamard V. Amorphous-to-crystal transition in the layer-by-layer growth of bivalve shell prisms. Acta Biomater 2022; 142:194-207. [PMID: 35041900 DOI: 10.1016/j.actbio.2022.01.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/21/2021] [Accepted: 01/13/2022] [Indexed: 11/28/2022]
Abstract
Biomineralization integrates complex physical and chemical processes bio-controlled by the living organisms through ionic concentration regulation and organic molecules production. It allows tuning the structural, optical and mechanical properties of hard tissues during ambient-condition crystallisation, motivating a deeper understanding of the underlying processes. By combining state-of-the-art optical and X-ray microscopy methods, we investigated early-mineralized calcareous units from two bivalve species, Pinctada margaritifera and Pinna nobilis, revealing chemical and crystallographic structural insights. In these calcite units, we observed ring-like structural features correlated with a lack of calcite and an increase of amorphous calcium carbonate and proteins contents. The rings also correspond to a larger crystalline disorder and a larger strain level. Based on these observations, we propose a temporal biomineralization cycle, initiated by the production of an amorphous precursor layer, which further crystallizes with a transition front progressing radially from the unit centre, while the organics are expelled towards the prism edge. Simultaneously, along the shell thickness, the growth occurs following a layer-by-layer mode. These findings open biomimetic perspectives for the design of refined crystalline materials. STATEMENT OF SIGNIFICANCE: Calcareous biominerals are amongst the most present forms of biominerals. They exhibit astonishing structural, optical and mechanical properties while being formed at ambient synthesis conditions from ubiquitous ions, motivating the deep understanding of biomineralization. Here, we unveil the first formation steps involved in the biomineralization cycle of prismatic units of two bivalve species by applying a new multi-modal non-destructive characterization approach, sensitive to chemical and crystalline properties. The observations of structural features in mineralized units of different ages allowed the derivation of a temporal sequence for prism biomineralization, involving an amorphous precursor, a radial crystallisation front and a layer-by-layer sequence. Beyond these chemical and physical findings, the herein introduced multi-modal approach is highly relevant to other biominerals and bio-inspired studies.
Collapse
Affiliation(s)
- Julien Duboisset
- Aix-Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Patrick Ferrand
- Aix-Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Arthur Baroni
- Aix-Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Tilman A Grünewald
- Aix-Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Hamadou Dicko
- Aix-Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Olivier Grauby
- Aix-Marseille Univ, CNRS, CINaM, Campus Luminy, Case 913, 13288-Marseille cedex 9, France
| | - Jeremie Vidal-Dupiol
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Montpellier France
| | - Denis Saulnier
- Ifremer, UMR 241 Environnement Insulaire Océanien (EIO), Labex Corail, Centre du Pacifique, BP 49, Vairao 98719, French Polynesia
| | - Le Moullac Gilles
- Ifremer, UMR 241 Environnement Insulaire Océanien (EIO), Labex Corail, Centre du Pacifique, BP 49, Vairao 98719, French Polynesia
| | - Martin Rosenthal
- European Synchrotron Radiation Facility, F-38043 Grenoble Cedex, France
| | | | - Julius Nouet
- GEOPS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay, France
| | - Corinne Chevallard
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay 91191 Gif-sur-Yvette Cedex, France
| | - Alain Baronnet
- Aix-Marseille Univ, CNRS, CINaM, Campus Luminy, Case 913, 13288-Marseille cedex 9, France
| | - Virginie Chamard
- Aix-Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France.
| |
Collapse
|
28
|
Ajili W, Tovani CB, Fouassier J, de Frutos M, Laurent GP, Bertani P, Djediat C, Marin F, Auzoux-Bordenave S, Azaïs T, Nassif N. Inorganic phosphate in growing calcium carbonate abalone shell suggests a shared mineral ancestral precursor. Nat Commun 2022; 13:1496. [PMID: 35314701 PMCID: PMC8938516 DOI: 10.1038/s41467-022-29169-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/17/2022] [Indexed: 01/30/2023] Open
Abstract
The presence of phosphate from different origins (inorganic, bioorganic) is found more and more in calcium carbonate-based biominerals. Phosphate is often described as being responsible for the stabilization of the transient amorphous calcium carbonate phase. In order to specify the composition of the mineral phase deposited at the onset of carbonated shell formation, the present study investigates, down to the nanoscale, the growing shell from the European abalone Haliotis tuberculata, using a combination of solid state nuclear magnetic resonance, scanning transmission electron microscope and spatially-resolved electron energy loss spectroscopy techniques. We show the co-occurrence of inorganic phosphate with calcium and carbonate throughout the early stages of abalone shell formation. One possible hypothesis is that this first-formed mixed mineral phase represents the vestige of a shared ancestral mineral precursor that appeared early during Evolution. In addition, our findings strengthen the idea that the final crystalline phase (calcium carbonate or phosphate) depends strongly on the nature of the mineral-associated proteins in vivo. Phosphate involvement in calcium carbonate biominerals raises questions on biomineralisation pathways. Here, the authors explore the presence of phosphate in the growing shell of the European abalone and suggest a shared mixed mineral ancestral precursor with final crystal phase being selected by mineral-associated proteins.
Collapse
|
29
|
Song N, Li J, Li B, Pan E, Ma Y. Transcriptome analysis of the bivalve Placuna placenta mantle reveals potential biomineralization-related genes. Sci Rep 2022; 12:4743. [PMID: 35304539 PMCID: PMC8933548 DOI: 10.1038/s41598-022-08610-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/04/2022] [Indexed: 01/31/2023] Open
Abstract
The shells of window pane oyster Placuna placenta are very thin and exhibit excellent optical transparency and mechanical robustness. However, little is known about the biomineralization-related proteins of the shells of P. placenta. In this work, we report the comprehensive transcriptome of the mantle tissue of P. placenta for the first time. The unigenes of the mantle tissue of P. placenta were annotated by using the public databases such as nr, GO, KOG, KEGG, and Pfam. 24,343 unigenes were annotated according to Pfam database, accounting for 21.48% of the total unigenes. We find that half of the annotated unigenes of the mantle tissue of P. placenta are consistent to the annotated unigenes from pacific oyster Crassostrea gigas according to nr database. The unigene sequence analysis from the mantle tissue of P. placenta indicates that 465,392 potential single nucleotide polymorphisms (SNPs) and 62,103 potential indel markers were identified from 60,371 unigenes. 178 unigenes of the mantle tissue of P. placenta are found to be homologous to those reported proteins related to the biomineralization process of molluscan shells, while 18 of them are highly expressed unigenes in the mantle tissue. It is proposed that four unigenes with the highest expression levels in the mantle tissue are very often related to the biomineralization process, while another three unigenes are potentially related to the biomineralization process according to the Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) analysis. In summary, the transcriptome analysis of the mantle tissue of P. Placenta shows the potential biomineralization-related proteins and this work may shed light for the shell formation mechanism of bivalves.
Collapse
Affiliation(s)
- Ningjing Song
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Jiangfeng Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Baosheng Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Ercai Pan
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yurong Ma
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
30
|
Gilbert PUPA, Bergmann KD, Boekelheide N, Tambutté S, Mass T, Marin F, Adkins JF, Erez J, Gilbert B, Knutson V, Cantine M, Hernández JO, Knoll AH. Biomineralization: Integrating mechanism and evolutionary history. SCIENCE ADVANCES 2022; 8:eabl9653. [PMID: 35263127 PMCID: PMC8906573 DOI: 10.1126/sciadv.abl9653] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Calcium carbonate (CaCO3) biomineralizing organisms have played major roles in the history of life and the global carbon cycle during the past 541 Ma. Both marine diversification and mass extinctions reflect physiological responses to environmental changes through time. An integrated understanding of carbonate biomineralization is necessary to illuminate this evolutionary record and to understand how modern organisms will respond to 21st century global change. Biomineralization evolved independently but convergently across phyla, suggesting a unity of mechanism that transcends biological differences. In this review, we combine CaCO3 skeleton formation mechanisms with constraints from evolutionary history, omics, and a meta-analysis of isotopic data to develop a plausible model for CaCO3 biomineralization applicable to all phyla. The model provides a framework for understanding the environmental sensitivity of marine calcifiers, past mass extinctions, and resilience in 21st century acidifying oceans. Thus, it frames questions about the past, present, and future of CaCO3 biomineralizing organisms.
Collapse
Affiliation(s)
- Pupa U. P. A. Gilbert
- Departments of Physics, Chemistry, Geoscience, and Materials Science, University of Wisconsin-Madison, Madison, WI 53706, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Corresponding author. (P.U.P.A.G.); (A.H.K.)
| | - Kristin D. Bergmann
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nicholas Boekelheide
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sylvie Tambutté
- Centre Scientifique de Monaco, Department of Marine Biology, 98000 Monaco, Principality of Monaco
| | - Tali Mass
- University of Haifa, Marine Biology Department, Mt. Carmel, Haifa 31905, Israel
| | - Frédéric Marin
- Université de Bourgogne–Franche-Comté (UBFC), Laboratoire Biogéosciences, UMR CNRS 6282, Bâtiment des Sciences Gabriel, 21000 Dijon, France
| | - Jess F. Adkins
- Geological and Planetary Sciences, California Institute of Technology, MS 100-23, Pasadena, CA 91125, USA
| | - Jonathan Erez
- The Hebrew University of Jerusalem, Institute of Earth Sciences, Jerusalem 91904, Israel
| | - Benjamin Gilbert
- Energy Geoscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Vanessa Knutson
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Marjorie Cantine
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Goethe-Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - Javier Ortega Hernández
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Andrew H. Knoll
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Corresponding author. (P.U.P.A.G.); (A.H.K.)
| |
Collapse
|
31
|
Sang Y, Liu M. Hierarchical self-assembly into chiral nanostructures. Chem Sci 2022; 13:633-656. [PMID: 35173928 PMCID: PMC8769063 DOI: 10.1039/d1sc03561d] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/09/2021] [Indexed: 12/11/2022] Open
Abstract
One basic principle regulating self-assembly is associated with the asymmetry of constituent building blocks or packing models. Using asymmetry to manipulate molecular-level devices and hierarchical functional materials is a promising topic in materials sciences and supramolecular chemistry. Here, exemplified by recent major achievements in chiral hierarchical self-assembly, we show how chirality may be utilized in the design, construction and evolution of highly ordered and complex chiral nanostructures. We focus on how unique functions can be developed by the exploitation of chiral nanostructures instead of single basic units. Our perspective on the future prospects of chiral nanostructures via the hierarchical self-assembly strategy is also discussed.
Collapse
Affiliation(s)
- Yutao Sang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
32
|
Checa AG, Linares F, Grenier C, Griesshaber E, Rodríguez-Navarro AB, Schmahl WW. The argonaut constructs its shell via physical self-organization and coordinated cell sensorial activity. iScience 2021; 24:103288. [PMID: 34765916 PMCID: PMC8571729 DOI: 10.1016/j.isci.2021.103288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/29/2021] [Accepted: 10/13/2021] [Indexed: 11/14/2022] Open
Abstract
The shell of the cephalopod Argonauta consists of two layers of fibers that elongate perpendicular to the shell surfaces. Fibers have a high-Mg calcitic core sheathed by thin organic membranes (>100 nm) and configurate a polygonal network in cross section. Their evolution has been studied by serial sectioning with electron microscopy-associated techniques. During growth, fibers with small cross-sectional areas shrink, whereas those with large sections widen. It is proposed that fibers evolve as an emulsion between the fluid precursors of both the mineral and organic phases. When polygons reach big cross-sectional areas, they become subdivided by new membranes. To explain both the continuation of the pattern and the subdivision process, the living cells from the mineralizing tissue must perform contact recognition of the previously formed pattern and subsequent secretion at sub-micron scale. Accordingly, the fabrication of the argonaut shell proceeds by physical self-organization together with direct cellular activity. The shell consists of a polygonal organic pattern that evolves as a physical system An emulsion model accounts for the configuration of the pattern Mean polygon size and number is kept by the additional splitting of large polygons Cell sensitivity explains the propagation of the pattern and polygon splitting
Collapse
Affiliation(s)
- Antonio G Checa
- Departamento de Estratigrafía y Paleontología, Universidad de Granada, 18071 Granada, Spain.,Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, 18100 Armilla, Spain
| | - Fátima Linares
- Centro de Instrumentación Científica, Universidad de Granada, 18071 Granada, Spain
| | - Christian Grenier
- Departamento de Estratigrafía y Paleontología, Universidad de Granada, 18071 Granada, Spain
| | - Erika Griesshaber
- Department für Geo- und Umweltwissenschaften, Ludwig-Maximilians-Universität München, 80333 München, Germany
| | | | - Wolfgang W Schmahl
- Department für Geo- und Umweltwissenschaften, Ludwig-Maximilians-Universität München, 80333 München, Germany
| |
Collapse
|
33
|
Li Q, Duan Z, Sun C, Zheng J, Xu G, Yang N. Genetic variations for the eggshell crystal structure revealed by genome-wide association study in chickens. BMC Genomics 2021; 22:786. [PMID: 34727889 PMCID: PMC8565016 DOI: 10.1186/s12864-021-08103-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 10/18/2021] [Indexed: 11/10/2022] Open
Abstract
Background Eggshell is a bio-ceramic material comprising columnar calcite (CaCO3) crystals and organic proteinaceous matrix. The size, shape and orientation of the CaCO3 crystals influence the microstructural properties of chicken eggshells. However, the genetic architecture underlying eggshell crystal polymorphism remains to be elucidated. Results The integral intensity of the nine major diffraction peaks, total integral intensity and degree of orientation of the crystals were measured followed by a genome-wide association study in 839 F2 hens. The results showed that the total integral intensity was positively correlated with the eggshell strength, eggshell thickness, eggshell weight, mammillary layer thickness and effective layer thickness. The SNP-based heritabilities of total integral intensity and degree of orientation were 0.23 and 0.06, respectively. The 621 SNPs located in the range from 55.6 to 69.1 Mb in GGA1 were significantly associated with TA. PLCZ1, ABCC9, ITPR2, KCNJ8, CACNA1C and IAPP, which are involved in the biological process of regulating cytosolic calcium ion concentration, can be suggested as key genes regulating the total integral intensity. Conclusions The findings greatly advance the understanding of the genetic basis underlying the crystal ultrastructure of eggshell quality and thus will have practical significance in breeding programs for improving eggshell quality. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08103-1.
Collapse
Affiliation(s)
- Quanlin Li
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, 100193, Beijing, China
| | - Zhongyi Duan
- National Animal Husbandry Service, 100125, Beijing, China
| | - Congjiao Sun
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, 100193, Beijing, China
| | - Jiangxia Zheng
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, 100193, Beijing, China
| | - Guiyun Xu
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, 100193, Beijing, China
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
34
|
Feng X, Jiang S, Zhang F, Wang R, Zhang T, Zhao Y, Zeng M. Extraction and characterization of matrix protein from pacific oyster ( Crassostrea gigs) shell and its anti-osteoporosis properties in vitro and in vivo. Food Funct 2021; 12:9066-9076. [PMID: 34387295 DOI: 10.1039/d1fo00010a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Matrix protein is a kind of secretory protein that regulates the biomineralization of the bivalve shell. In this study, a water-soluble matrix protein (WSMP) from Pacific oysters (Crassostrea gigs) shell was isolated, and its structure was analyzed in detail, in addition to its anti-osteoporosis activity in vitro and in vivo. Results showed that WSMP was an acidic protein with an apparent molecular mass of 47 and 79 kDa and contained a glycoprotein structure. In vitro, the reduction of Tartrate-resistant acid phosphatase (TRAP) and deoxypyridinoline (DPD) indicated that osteoclast activity was inhibited compared with the model group. Moreover, the increased osteocalcin (OCN) and BMD levels suggested that the high osteoblast activity and bone mineralization was improved. SEM analysis of the femur showed that there were fewer bone pits in experimental groups, which was consistent with the above results. In vivo, WSMP promoted the expression of alkaline phosphatase (ALP) and osteogenic differentiation factor BMP-2 in osteoblasts. In addition, the activity of osteoclasts was inhibited by regulating the process of osteoclast differentiation induced by RANKL. Both in vitro and in vivo studies showed that WSMP could promote osteogenesis and inhibit osteoclast absorption, thus demonstrating their potential applications in osteoporosis.
Collapse
Affiliation(s)
- Xue Feng
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Suisui Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Fan Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Runfang Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Tietao Zhang
- College of Food Science and Engineering, Hainan Tropical Ocean University, Sanya, Hainan 572022, China
| | - Yuanhui Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Mingyong Zeng
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| |
Collapse
|
35
|
Ramos-Silva P, Wall-Palmer D, Marlétaz F, Marin F, Peijnenburg KTCA. Evolution and biomineralization of pteropod shells. J Struct Biol 2021; 213:107779. [PMID: 34474158 DOI: 10.1016/j.jsb.2021.107779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 01/19/2023]
Abstract
Shelled pteropods, known as sea butterflies, are a group of small gastropods that spend their entire lives swimming and drifting in the open ocean. They build thin shells of aragonite, a metastable polymorph of calcium carbonate. Pteropod shells have been shown to experience dissolution and reduced thickness with a decrease in pH and therefore represent valuable bioindicators to monitor the impacts of ocean acidification. Over the past decades, several studies have highlighted the striking diversity of shell microstructures in pteropods, with exceptional mechanical properties, but their evolution and future in acidified waters remains uncertain. Here, we revisit the body-of-work on pteropod biomineralization, focusing on shell microstructures and their evolution. The evolutionary history of pteropods was recently resolved, and thus it is timely to examine their shell microstructures in such context. We analyse new images of shells from fossils and recent species providing a comprehensive overview of their structural diversity. Pteropod shells are made of the crossed lamellar and prismatic microstructures common in molluscs, but also of curved nanofibers which are proposed to form a helical three-dimensional structure. Our analyses suggest that the curved fibres emerged before the split between coiled and uncoiled pteropods and that they form incomplete to multiple helical turns. The curved fibres are seen as an important trait in the adaptation to a planktonic lifestyle, giving maximum strength and flexibility to the pteropod thin and lightweight shells. Finally, we also elucidate on the candidate biomineralization genes underpinning the shell diversity in these important indicators of ocean health.
Collapse
Affiliation(s)
- Paula Ramos-Silva
- Plankton Diversity and Evolution, Naturalis Biodiversity Center, the Netherlands.
| | - Deborah Wall-Palmer
- Plankton Diversity and Evolution, Naturalis Biodiversity Center, the Netherlands
| | - Ferdinand Marlétaz
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, United Kingdom
| | - Frédéric Marin
- University of Burgundy-Franche-Comté, Laboratoire Biogéosciences UMR CNRS 6282, France
| | - Katja T C A Peijnenburg
- Plankton Diversity and Evolution, Naturalis Biodiversity Center, the Netherlands; Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, the Netherlands
| |
Collapse
|
36
|
Kralj S, Marchesan S. Bioinspired Magnetic Nanochains for Medicine. Pharmaceutics 2021; 13:1262. [PMID: 34452223 PMCID: PMC8398308 DOI: 10.3390/pharmaceutics13081262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have been widely used for medicine, both in therapy and diagnosis. Their guided assembly into anisotropic structures, such as nanochains, has recently opened new research avenues; for instance, targeted drug delivery. Interestingly, magnetic nanochains do occur in nature, and they are thought to be involved in the navigation and geographic orientation of a variety of animals and bacteria, although many open questions on their formation and functioning remain. In this review, we will analyze what is known about the natural formation of magnetic nanochains, as well as the synthetic protocols to produce them in the laboratory, to conclude with an overview of medical applications and an outlook on future opportunities in this exciting research field.
Collapse
Affiliation(s)
- Slavko Kralj
- Department for Materials Synthesis, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Silvia Marchesan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy;
| |
Collapse
|
37
|
Gránásy L, Rátkai L, Tóth GI, Gilbert PUPA, Zlotnikov I, Pusztai T. Phase-Field Modeling of Biomineralization in Mollusks and Corals: Microstructure vs Formation Mechanism. JACS AU 2021; 1:1014-1033. [PMID: 34337606 PMCID: PMC8317440 DOI: 10.1021/jacsau.1c00026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Indexed: 05/10/2023]
Abstract
While biological crystallization processes have been studied on the microscale extensively, there is a general lack of models addressing the mesoscale aspects of such phenomena. In this work, we investigate whether the phase-field theory developed in materials' science for describing complex polycrystalline structures on the mesoscale can be meaningfully adapted to model crystallization in biological systems. We demonstrate the abilities of the phase-field technique by modeling a range of microstructures observed in mollusk shells and coral skeletons, including granular, prismatic, sheet/columnar nacre, and sprinkled spherulitic structures. We also compare two possible micromechanisms of calcification: the classical route, via ion-by-ion addition from a fluid state, and a nonclassical route, crystallization of an amorphous precursor deposited at the solidification front. We show that with an appropriate choice of the model parameters, microstructures similar to those found in biomineralized systems can be obtained along both routes, though the time-scale of the nonclassical route appears to be more realistic. The resemblance of the simulated and natural biominerals suggests that, underneath the immense biological complexity observed in living organisms, the underlying design principles for biological structures may be understood with simple math and simulated by phase-field theory.
Collapse
Affiliation(s)
- László Gránásy
- Laboratory
of Advanced Structural Studies, Institute for Solid State Physics
and Optics, Wigner Research Centre for Physics, P.O. Box 49, H−1525 Budapest, Hungary
- Brunel
Centre of Advanced Solidification Technology, Brunel University, Uxbridge, Middlesex UB8 3PH, U.K.
| | - László Rátkai
- Laboratory
of Advanced Structural Studies, Institute for Solid State Physics
and Optics, Wigner Research Centre for Physics, P.O. Box 49, H−1525 Budapest, Hungary
| | - Gyula I. Tóth
- Department
of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, U.K.
| | - Pupa U. P. A. Gilbert
- Departments
of Physics, Chemistry, Geoscience, Materials Science, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
- Lawrence
Berkeley National Laboratory, Chemical Sciences Division, Berkeley, California 94720, United States
| | - Igor Zlotnikov
- B
CUBE−Center
for Molecular Bioengineering, Technische
Universität Dresden, 01307 Dresden, Germany
| | - Tamás Pusztai
- Laboratory
of Advanced Structural Studies, Institute for Solid State Physics
and Optics, Wigner Research Centre for Physics, P.O. Box 49, H−1525 Budapest, Hungary
| |
Collapse
|
38
|
Dadhich P, Srivas PK, Das B, Pal P, Dutta J, Maity P, Guha Ray P, Roy S, Das SK, Dhara S. Direct 3D Printing of Seashell Precursor toward Engineering a Multiphasic Calcium Phosphate Bone Graft. ACS Biomater Sci Eng 2021; 7:3806-3820. [PMID: 34269559 DOI: 10.1021/acsbiomaterials.1c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multiphasic calcium phosphate (Ca-P) has widely been explored for bone graft replacement. This study represents a simple method of developing osteoinductive scaffolds by direct printing of seashell resources. The process demonstrates a coagulation-assisted extrusion-based three-dimensional (3D) printing process for rapid fabrication of multiphasic calcium phosphate-incorporated 3D scaffolds. These scaffolds demonstrated an interconnected open porous architecture with improved compressive strength and higher surface area. Multiphasic calcium phosphate (Ca-P) and hydroxyapatite present in the multi-scalar naturally resourced scaffold displayed differential protein adsorption, thus facilitating cell adhesion, migration, and differentiation, resulting in enhanced deposition of the extracellular matrix. The microstructural and physicochemical attributes of the scaffolds also lead to enhanced stem cell differentiation as witnessed from gene and protein expression analysis. Furthermore, the histological study of subcutaneous implantation evidently portrays promising biocompatibility without foreign body reaction. Neo-tissue in-growth was manifested with abundant blood vessels, thus indicative of excellent vascularization. Notably, cartilaginous and proteoglycan-rich tissue deposition indicated ectopic bone formation via an endochondral ossification pathway. The hierarchical interconnected porous architectural tribology accompanied with multiphasic calcium phosphate composition manifests its successful implication in enhancing stem cell differentiation and promoting excellent tissue in-growth, thus making it a plausible alternative in bone tissue engineering applications.
Collapse
Affiliation(s)
- Prabhash Dadhich
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Pavan Kumar Srivas
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Bodhisatwa Das
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Pallabi Pal
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Joy Dutta
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Pritiprasanna Maity
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Preetam Guha Ray
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sabyasachi Roy
- Department of Gynaecology, Midnapore Medical College and Hospital, Midnapore, West Bengal 721101, India
| | - Subrata K Das
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Santanu Dhara
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
39
|
Sun X, Tu K, Li L, Wu B, Wu L, Liu Z, Zhou L, Tian J, Yang A. Integrated transcriptome and metabolome analysis reveals molecular responses of the clams to acute hypoxia. MARINE ENVIRONMENTAL RESEARCH 2021; 168:105317. [PMID: 33819872 DOI: 10.1016/j.marenvres.2021.105317] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/13/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Mudflat shellfish have evolved well-adapted strategies for coping with dynamic environmental fluxes and stressful conditions, including oxygen availability. The Manila clams Ruditapes philippinarum are worldwide cultured shellfish in marine intertidal zone, which usually encounter great risk of acute hypoxia exposure in coastal habitats. To reveal the effects of acute hypoxia on metabolic changes of the clams, we performed the integrated analysis of transcriptomics and metabolomics to investigate the global changes of genes and metabolites during acute hypoxia stress at the whole-organism level. The comparative transcriptome analysis reveals that the clams show the remarkable depression in a variety of biological performance, such as metabolic rates, neuronal activity, biomineralization activity, and cell proliferation and differentiation at the hypoxic condition. The metabolomic analysis reveals that amino acid metabolism plays a critical role in the metabolic changes of the clams in response to acute hypoxia. A variety of free amino acids may not only be served as the potential osmolytes for osmotic regulation, but also may contribute to energy production during the acute hypoxia exposure. The metabolite analysis also reveals several important biomarkers for metabolic changes, and provides new insights into how clams deal with acute hypoxia. These findings suggest that clams may get through acute hypoxia stress by the adaptive metabolic strategy to survive short-period of acute hypoxia which is likely to occur in their typical habitat. The present findings will not only shed lights on the molecular and metabolic mechanisms of adaptive strategies under stressful conditions, but also provide the signaling metabolites to assess the physiological states of clams in aquaculture.
Collapse
Affiliation(s)
- Xiujun Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Kang Tu
- Putian Institute of Aquaculture Science of Fujian Province, Putian, 351100, China
| | - Li Li
- Marine Biology Institute of Shandong Province, Qingdao, 266104, China
| | - Biao Wu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Lei Wu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Jiangsu Ocean University, Lianyungang, 222005, China
| | - Zhihong Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Liqing Zhou
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Jiteng Tian
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Aiguo Yang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
40
|
Li Z, Li Q, Liu S, Han Z, Kong L, Yu H. Integrated Analysis of Coding Genes and Non-coding RNAs Associated with Shell Color in the Pacific Oyster (Crassostrea gigas). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:417-429. [PMID: 33929611 DOI: 10.1007/s10126-021-10034-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Molluscan shell color polymorphism is important in genetic breeding, while the molecular information mechanism for shell coloring is unclear. Here, high-throughput RNA sequencing was used to compare expression profiles of coding and non-coding RNAs (ncRNAs) from Pacific oyster Crassostrea gigas with orange and black shell, which were from an F2 family constructed by crossing an orange shell male with a black shell female. First, 458, 13, and 8 differentially expressed genes (DEGs), lncRNAs (DELs), and miRNAs (DEMs) were identified, respectively. Functional analysis suggested that the DEGs were significantly enriched in 9 pathways including tyrosine metabolism and oxidative phosphorylation pathways. Several genes related to melanin synthesis and biomineralization expressed higher whereas genes associated with carotenoid pigmentation or metabolism expressed lower in orange shell oyster. Then, based on the ncRNA analysis, 163 and 20 genes were targeted by 13 and 8 differentially expressed lncRNAs (DELs) and miRNAs (DEMs), severally. Potential DELs-DEMs-DEGs interactions were also examined. Seven DEMs-DEGs pairs were detected, in which tyrosinase-like protein 1 was targeted by lgi-miR-133-3p and lgi-miR-252a and cytochrome P450 was targeted by dme-miRNA-1-3p. These results revealed that melanin synthesis-related genes and miRNAs-mRNA interactions functioned on orange shell coloration, which shed light on the molecular regulation of shell coloration in marine shellfish.
Collapse
Affiliation(s)
- Zhuanzhuan Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Ziqiang Han
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
41
|
Shaheen N, Jalil A, Adnan F, Arsalan Khushnood R. Isolation of alkaliphilic calcifying bacteria and their feasibility for enhanced CaCO 3 precipitation in bio-based cementitious composites. Microb Biotechnol 2021; 14:1044-1059. [PMID: 33629805 PMCID: PMC8085925 DOI: 10.1111/1751-7915.13752] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 01/02/2021] [Indexed: 11/26/2022] Open
Abstract
Microbially induced calcite precipitation (MICP), secreted through biological metabolic activity, secured an imperative position in remedial measures within the construction industry subsequent to ecological, environmental and economical returns. However, this contemporary recurrent healing system is susceptible to microbial depletion in the highly alkaline cementitious environment. Therefore, researchers are probing for alkali resistant calcifying microbes. In the present study, alkaliphilic microbes were isolated from different soil sources and screened for probable CaCO3 precipitation. Non-ureolytic pathway (oxidation of organic carbon) was adopted for calcite precipitation to eliminate the production of toxic ammonia. For this purpose, calcium lactate Ca(C3 H5 O3 )2 and calcium acetate Ca(CH3 COO)2 were used as CaCO3 precipitation precursors. The quantification protocol for precipitated CaCO3 was established to select potent microbial species for implementation in the alkaline cementitious systems as more than 50% of isolates were able to precipitate CaCO3 . Results suggested 80% of potent calcifying strains isolated in this study, portrayed higher calcite precipitation at pH 10 when compared to pH 7. Ten superlative morphologically distinct isolates capable of CaCO3 production were identified by 16SrRNA sequencing. Sequenced microbes were identified as species of Bacillus, Arthrobacter, Planococcus, Chryseomicrobium and Corynebacterium. Further, microstructure of precipitated CaCO3 was inspected through scanning electron microscopy (SEM), X-ray diffraction (XRD) and thermal gravimetric (TG) analysis. Then, the selected microbes were investigated in the cementitious mortar to rule out any detrimental effects on mechanical properties. These strains showed maximum of 36% increase in compressive strength and 96% increase in flexural strength. Bacillus, Arthrobacter, Corynebacterium and Planococcus genera have been reported as CaCO3 producers but isolated strains have not yet been investigated in conjunction with cementitious mortar. Moreover, species of Chryseomicrobium and Glutamicibacter were reported first time as calcifying strains.
Collapse
Affiliation(s)
- Nafeesa Shaheen
- NUST Institute of Civil Engineering (NICE)School of Civil and Environmental Engineering (SCEE)National University of Sciences and Technology (NUST)Sector H‐12Islamabad44000Pakistan
| | - Amna Jalil
- Atta‐ur‐Rahman School of Applied Biosciences (ASAB)National University of Sciences and Technology (NUST)Sector H‐12Islamabad44000Pakistan
| | - Fazal Adnan
- Atta‐ur‐Rahman School of Applied Biosciences (ASAB)National University of Sciences and Technology (NUST)Sector H‐12Islamabad44000Pakistan
| | - Rao Arsalan Khushnood
- NUST Institute of Civil Engineering (NICE)School of Civil and Environmental Engineering (SCEE)National University of Sciences and Technology (NUST)Sector H‐12Islamabad44000Pakistan
| |
Collapse
|
42
|
Amooei M, Meshkati Z, Nasiri R, Dakhili AB. Cognitive decline prevention in offspring of Pb +2 exposed mice by maternal aerobic training and Cur/CaCO 3@Cur supplementations: In vitro and in vivo studies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111785. [PMID: 33348254 DOI: 10.1016/j.ecoenv.2020.111785] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Heavy metals are considered contaminants that hazardously influence the healthy life of humans and animals as they are widely used in industry. Contact of youngsters and women at ages of parturition with lead (Pb+2) is a main related concern, which passes through the placental barricade and its better absorption in the intestine leads to flaws in the fetal developfment. However, the metals threaten animal and human life, in particular throughout developmental stages. Products existing in the nature have a major contribution to innovating chemo-preventives. As a naturally available polyphenol and necessary curcuminoid, curcumin (Cur) is a derivative of the herb Curcuma longa (L.) rhizome, which globally recognized as "wonder drug of life"; however, Cur has a limited clinical use as it is poorly dissolved in water. Therefore, to enhance its clinically relevant parameters, curcumin-loaded calcium carbonate (CaCO3@Cur) was synthesized by one step coprecipitation method as a newly introduced in this research. Initially, its structure was physio chemically characterized using FT-IR, FESEM and DLS equipment and then the cytotoxicity of lead when it was pretreated with Cur/CaCO3@Cur were assessed by MTT assay. Both Cur and CaCO3@Cur diminished the toxic effects of Pb+2 while the most protective effect on the Pb+2 cytotoxicity was achieved by pre-incubation of cells with CaCO3@Cur. Besides, the morphological changes of Pb+2-treated cells that were pre-incubated with or without Cur/CaCO3@Cur were observed by normal and florescent microscopes. A non-pharmacologic method that lowers the hazard of brain damage is exercise training that is capable of both improving and alleviating memory. In the current study, the role of regular aerobic training and CaCO3@Cur was assessed in reducing the risk of brain damage induced by lead nitrate contact. To achieve the mentioned goal, pregnant Balb/C mice were assigned to five groups (six mice/group) at random: negative and positive controls, aerobic training group and Cur and CaCO3@Cur treated (50 mg/kg/b.wt) trained groups that exposed to Pb+2 (2 mg/kg) by drinking water during breeding and pregnancy. With the completion of study, offspring were subjected to the behavioral tasks that was tested by step-through ORT, DLB, MWM and YM tests. As a result, having regular aerobic training and CaCO3@Cur co-administration with lead nitrate could reverse the most defected behavioral indicators; yet, this was not visible for both sexes and it seems that gender can also be a source of different effects in the animal's body. In fact, having regular aerobic training along with CaCO3@Cur supplementation during pregnancy may be encouraging protecting potential agents towards the toxicity of Pb+2 that could be recommended in the areas with high pollution of heavy metals.
Collapse
Affiliation(s)
- Maryam Amooei
- Department of physical education and sport sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Zohreh Meshkati
- Department of physical education and sport sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
| | - Rozita Nasiri
- Iran National Elite Foundation, Tehran 93111-14578, Iran; Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Amir Bahador Dakhili
- Department of physical education and sport science, Faculty of shahid chamran Branch, Technical and Vocational University (TVU), Kerman, Iran
| |
Collapse
|
43
|
Shimizu K, Kintsu H, Awaji M, Matumoto T, Suzuki M. Evolution of Biomineralization Genes in the Prismatic Layer of the Pen Shell Atrina pectinata. J Mol Evol 2020; 88:742-758. [PMID: 33236260 DOI: 10.1007/s00239-020-09977-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/18/2020] [Indexed: 11/29/2022]
Abstract
Molluscan shells are composed of calcium carbonates, with small amounts of extracellular matrices secreted from mantle epithelial cells. Many types of shell matrix proteins (SMPs) have been identified from molluscan shells or mantle cells. The pen shell Atrina pectinata (Pinnidae) has two different shell microstructures, the nacreous and prismatic layers. Nacreous and prismatic layer-specific matrix proteins have been reported in Pteriidae bivalves, but remain unclear in Pinnidae. We performed transcriptome analysis using the mantle cells of A. pectinata to screen the candidate transcripts involved in its prismatic layer formation. We found Asprich and nine highly conserved prismatic layer-specific SMPs encoding transcript in P. fucata, P. margaritifera, and P. maxima (Tyrosinase, Chitinase, EGF-like proteins, Fibronectin, valine-rich proteins, and prismatic uncharacterized shell protein 2 [PUSP2]) using molecular phylogenetic analysis or multiple alignment. We confirmed these genes were expressed in the epithelial cells of the mantle edge (outer surface of the outer fold) and the mantle pallium. Phylogenetic character mapping of these SMPs was used to infer a possible evolutionary scenario of them in Pteriomorphia. EGF-like proteins, Fibronectin, and valine-rich proteins encoding genes each evolved in the linage leading to four Pteriomorphia (Mytilidae, Pinnidae, Ostreidae, and Pteriidae), PUSP2 evolved in the linage leading to three Pteriomorphia families (Pinnidae, Ostreidae, and Pteriidae), and chitinase was independently evolved as SMPs in Mytilidae and in other Pteriomorphia (Pinnidae, Ostreidae, and Pteriidae). Our results provide a new dataset for A. pectinata SMP annotation, and a basis for understanding the evolution of prismatic layer formation in bivalves.
Collapse
Affiliation(s)
- Keisuke Shimizu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Hiroyuki Kintsu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan.,Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Masahiko Awaji
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 422-1 Nakatsuhama, Minami-Ise, Watarai, Mie, 516-0193, Japan
| | - Toshie Matumoto
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 422-1 Nakatsuhama, Minami-Ise, Watarai, Mie, 516-0193, Japan
| | - Michio Suzuki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan.
| |
Collapse
|
44
|
Zhou Y, Yan Y, Yang D, Zheng G, Xie L, Zhang R. Cloning, characterization, and functional analysis of chitinase-like protein 1 in the shell of Pinctada fucata. Acta Biochim Biophys Sin (Shanghai) 2020; 52:954-966. [PMID: 32634202 DOI: 10.1093/abbs/gmaa076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/01/2020] [Accepted: 06/05/2020] [Indexed: 11/14/2022] Open
Abstract
Biomineralization, especially shell formation, is a sophisticated process regulated by various matrix proteins. Pinctada fucata chitinase-like protein 1 (Pf-Clp1), which belongs to the GH18 family, was discovered by our group using in-depth proteomic analysis. However, its function is still unclear. In this study, we first obtained the full-length cDNA sequence of Pf-Clp1 by RACE. Real-time polymerase chain reaction results revealed that Pf-Clp1 was highly expressed in the important biomineralization tissues, the mantle edge and the mantle pallial. We expressed and purified recombinant protein rPf-Clp1 in vitro to investigate the function of Pf-Clp1 on CaCO3 crystallization. Scanning electron microscopy imaging and Raman spectroscopy revealed that rPf-Clp1 was able to affect the morphologies of calcite crystal in vitro. Shell notching experiments suggested that Pf-Clp1 might function as a negative regulator during shell formation in vivo. Knockdown of Pf-Clp1 by RNAi led to the overgrowth of aragonite tablets, further confirming its potential negative regulation on biomineralization, especially in the nacreous layer. Our work revealed the potential function of molluscan Clp in shell biomineralization for the first time and unveiled some new understandings toward the molecular mechanism of shell formation.
Collapse
Affiliation(s)
- Yunpin Zhou
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yi Yan
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Dong Yang
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guilan Zheng
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Liping Xie
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Rongqing Zhang
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| |
Collapse
|
45
|
Livne A, Mijowska SC, Polishchuk I, Mashikoane W, Katsman A, Pokroy B. A fungal mycelium templates the growth of aragonite needles. J Mater Chem B 2020; 7:5725-5731. [PMID: 31482938 DOI: 10.1039/c9tb01169b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fungi live within diverse environments and survive well under extreme conditions that are usually beyond the tolerance of most other organisms. In different environments fungi are known to induce precipitation of a wide range of minerals. Various species of fungi have been shown to facilitate calcium carbonate mineralization. Here, inspired by examples of needle-fiber calcite formed via fungus-induced biomineralization typically observed in soils and sediments, we utilized inactivated fungus to synthetically induce precipitation of CaCO3 needles. To our knowledge, the feasibility of growing aragonitic needles within fungal mycelium in vitro has not been previously demonstrated. The needles we obtained were curved, displayed hexagonal facets, and demonstrated high-aspect ratios close to 60. The size and shape of these synthetic needles matched those of the mycelium of the natural fungus. Utilizing high-resolution characterization techniques, we studied the morphology and the micro- and nanostructures of the aragonitic needles. Our findings showed that even inactivated fungal mycelium, if present in the crystallization environment, can serve as a template for the formation of high-aspect ratio fibers and can stabilize metastable polymorphs.
Collapse
Affiliation(s)
- Achiya Livne
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Technion City, 3200003 Haifa, Israel.
| | | | | | | | | | | |
Collapse
|
46
|
Suzuki M. Structural and functional analyses of organic molecules regulating biomineralization. Biosci Biotechnol Biochem 2020; 84:1529-1540. [DOI: 10.1080/09168451.2020.1762068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Abstract
Biomineralization by living organisms are common phenomena observed everywhere. Molluskan shells are representative biominerals that have fine microstructures with controlled morphology, polymorph, and orientation of CaCO3 crystals. A few organic molecules involved in the biominerals play important roles in the formation of such microstructures. Analyses of structure–function relationships for matrix proteins in biominerals revealed that almost all matrix proteins have an acidic region for the binding of calcium ion in CaCO3 crystals and interaction domains for other organic molecules. On the other hand, biomineralization of metal nanoparticles by microorganisms were also investigated. Gold nanoparticles and quantum dots containing cadmium were successfully synthesized by bacteria or a fungus. The analyses of components revealed that glycolipids, oligosaccharides, and lactic acids have key roles to synthesize the gold nanoparticle in Lactobacillus casei as reductants and dispersants. These researches about biomineralization will give new insights for material and environmental sciences in the human society.
Collapse
Affiliation(s)
- Michio Suzuki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo, Japan
| |
Collapse
|
47
|
Wang S, Zhang L, Chen W, Jin H, Zhang Y, Wu L, Shao H, Fang Z, He X, Zheng S, Cao CY, Wong HM, Li Q. Rapid regeneration of enamel-like-oriented inorganic crystals by using rotary evaporation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111141. [PMID: 32600729 DOI: 10.1016/j.msec.2020.111141] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/20/2020] [Accepted: 05/28/2020] [Indexed: 10/24/2022]
Abstract
Enamel, the hardest tissue in the human body, has excellent mechanical properties, mainly due to its highly ordered spatial structure. Fabricating enamel-like structure is still a challenge today. In this work, a simple and highly efficient method was introduced, using the silk fibroin as a template to regulate calcium- and phosphate- supersaturated solution to regenerate enamel-like hydroxyapatite crystals on various substrates (enamel, dentin, titanium, and polyethylene) under rotary evaporation. The enamel-like zinc oxide nanorod array structure was also successfully synthesized using the aforementioned method. This strategy provides a new approach to design and fabricate mineral crystals with particular orientation coatings for materials.
Collapse
Affiliation(s)
- Shengrui Wang
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Le Zhang
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, The Prince Philip Dental Hospital, Hong Kong 999077, China
| | - Wendy Chen
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Huimin Jin
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Ya Zhang
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Leping Wu
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Hui Shao
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Zehui Fang
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Xiaoxue He
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Shunli Zheng
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Chris Ying Cao
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Hai Ming Wong
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, The Prince Philip Dental Hospital, Hong Kong 999077, China.
| | - Quanli Li
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
48
|
Zhu X, Chen Y, Zhang Z, Zhao S, Xie L, Zhang R. A species-specific miRNA participates in biomineralization by targeting CDS regions of Prisilkin-39 and ACCBP in Pinctada fucata. Sci Rep 2020; 10:8971. [PMID: 32488043 PMCID: PMC7265298 DOI: 10.1038/s41598-020-65708-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 04/20/2020] [Indexed: 12/17/2022] Open
Abstract
Biomineralization is a sophisticated biological process precisely regulated by multiple molecules and pathways. Accumulating miRNAs have been identified in invertebrates but their functions in biomineralization are poorly studied. Here, an oyster species-specific miRNA, novel_miR_1 was found to regulate biomineralization in Pinctada fucata. Target prediction showed that novel_miR_1 could target Prisilkin-39 and ACCBP by binding to their coding sequences (CDS). Tissue distribution analysis revealed that the expression level of novel_miR_1 was highest in the mantle, which was a key tissue participating in biomineralization. Gain-of-function assay in vivo showed that biomineralization-related genes including Prisilkin-39 and ACCBP were down-regulated and shell inner surfaces of both prismatic and nacreous layer were disrupted after the over-expression of novel_miR_1, indicating its dual roles in biomineralization. Furthermore, the shell notching results indicated that novel_miR_1 was involved in shell regeneration. Dual-luciferase reporter assay in vitro demonstrated that novel_miR_1 directly suppressed Prisilkin-39 and ACCBP genes by binding to the CDS regions. Taken together, these results suggest that novel_miR_1 is a direct negative regulator to Prisilkin-39 and ACCBP and plays an indispensable and important role in biomineralization in both prismatic and nacreous layer of P. fucata.
Collapse
Affiliation(s)
- Xuejing Zhu
- The Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yan Chen
- The Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhen Zhang
- The Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, 705 Yatai Road, Jiaxing, 314006, China
| | - Shuyan Zhao
- The Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, 705 Yatai Road, Jiaxing, 314006, China
| | - Liping Xie
- The Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Rongqing Zhang
- The Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, 705 Yatai Road, Jiaxing, 314006, China.
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China.
| |
Collapse
|
49
|
Troncoso OP, Torres FG, Arroyo J, Gonzales KN, Fernández-García M, López D. Mechanical properties of calcite- and aragonite-based structures by nanoindentation tests. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2020. [DOI: 10.1680/jbibn.19.00069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nacre has been considered as one of the most important models for the development of hard bioinspired materials. This aragonite-based layered structure has been extensively studied because of its excellent mechanical properties, superior to those of monolithic aragonite. Calcite-based seashells have received less attention, as they display lower hardness and Young’s modulus. However, layered calcitic structures also have a superior fracture toughness value compared with monolithic calcite. In this paper, seashells of six species were studied by correlating the mechanical properties of the calcite- and aragonite-based layers with their mineral building blocks. Morphological studies revealed nacreous and fibrous prismatic microstructures for aragonite-based layers, whereas calcite-based layers have prismatic and foliated microstructures. The hardness and stiffness of the aragonitic structures were slightly higher than those of calcite. A toughening factor was calculated comparing the fracture toughness of the aragonitic and calcitic layers with the toughness of monolithic aragonite and calcite. The toughening factors of calcitic and aragonitic structures were in the same range (1.6–9.2).
Collapse
Affiliation(s)
- Omar P Troncoso
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Lima, Peru
| | - Fernando G Torres
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Lima, Peru
| | - Junior Arroyo
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Lima, Peru
| | - Karen N Gonzales
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Lima, Peru
| | - Marta Fernández-García
- Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Daniel López
- Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
50
|
Qu Y, Gu T, Du Q, Shao C, Wang J, Jin B, Kong W, Sun J, Chen C, Pan H, Tang R, Gu X. Polydopamine Promotes Dentin Remineralization via Interfacial Control. ACS Biomater Sci Eng 2020; 6:3327-3334. [PMID: 33463183 DOI: 10.1021/acsbiomaterials.0c00035] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Biomineralization has intrigued researchers for decades. Although mineralization of type I collagen has been universally investigated, this process remains a great challenge due to the lack of mechanistic understanding of the roles of biomolecules. In our study, dentine was successfully repaired using the biomolecule polydopamine (PDA), and the remineralized dentine exhibited mechanical properties comparable to those of natural dentine. Detailed analyses of the collagen mineralization process facilitated by PDA showed that PDA can promote intrafibrillar mineralization with a decreased heterogeneous nucleation barrier for hydroxyapatite (HAP) by reducing the interfacial energy between collagen fibrils and amorphous calcium phosphate (ACP), resulting in the conversion of an increasing amount of nanoprecursors into collagen fibrils. The present work highlights the importance of interfacial control in dentine remineralization and provides profound insight into the regulatory effect of biomolecules in collagen mineralization as well as the clinical application of dentine restoration.
Collapse
Affiliation(s)
- Yinan Qu
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, P. R. China
| | - Tianyi Gu
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou 310000, P. R. China
| | - Qiaolin Du
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, P. R. China
| | - Changyu Shao
- Centre for Biopathways and Biomaterials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jing Wang
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, P. R. China
| | - Biao Jin
- Centre for Biopathways and Biomaterials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Weijing Kong
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jian Sun
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, P. R. China
| | - Chaoqun Chen
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, P. R. China
| | - Haihua Pan
- Centre for Biopathways and Biomaterials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Ruikang Tang
- Centre for Biopathways and Biomaterials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Xinhua Gu
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|