1
|
Amani MS, Peymani M. Investigating the impact of SMAD2 and SMAD4 downregulation in colorectal cancer and their correlation with immune markers, prognosis, and drug resistance and sensitivity. Mol Biol Rep 2024; 51:831. [PMID: 39037563 DOI: 10.1007/s11033-024-09697-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/03/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND While many genes linked to colorectal cancer (CRC) contribute to cancer development, a thorough investigation is needed to explore crucial hub genes yet to be fully studied. A pivotal pathway in CRC is transforming growth factor-beta (TGF-β). This study aimed to assess SMAD2 and SMAD4 gene expression from this pathway. METHODS AND RESULTS Counted data from the Cancer Genome Atlas (TCGA) were examined, comparing 483 tumor and 41 normal samples. Using clinical data, genes impacting overall survival (OS) were evaluated. GSE39582 was employed to confirmed the levels of genes in CRC compared to the normal samples. Additionally, employing unhealthy samples and the RT-qPCR means our outcomes was validated. Finally, PharmacoGx information were utilized to connect the levels of potential genes to drug tolerance and susceptibility. Our findings showed SMAD2 and SMAD4 levels in TGF-β signaling were more significant than other pathway genes. Our findings indicated that the protein levels of these genes were lower in malignant tissues than in healthy tissues. Results revealed a significant correlation between low levels of SMAD2 and unfavorable OS in CRC individuals. RT-qPCR results demonstrated decreased expressions of both SMAD2 and SMAD4 in cancer tissues compared to elevated levels in adjacent normal samples. Our results showed significant association between selected genes and immune cell infiltration markers such as CD8+, and B-cells. Our results indicated a potential association among the levels of SMAD2 and SMAD4 genes and tolerance and susceptibility to Nilotinib and Panobinostat drugs. CONCLUSION Reduced expression of SMAD2 and SMAD4 may be pivotal in CRC progression, impacting downstream genes unrelated to patient OS. These findings suggest a potential role for SMAD2 and SMAD4 as predictive markers for drug response in CRC patients.
Collapse
Affiliation(s)
- Melika Saadat Amani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| |
Collapse
|
2
|
Vora M, Dietz J, Wing Z, Liu J, Rongo C, Savage-Dunn C. Genome-wide analysis of Smad and Schnurri transcription factors in C. elegans demonstrates widespread interaction and a function in collagen secretion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597576. [PMID: 38895257 PMCID: PMC11185707 DOI: 10.1101/2024.06.05.597576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Smads and their transcription factor partners mediate the transcriptional responses of target cells to secreted ligands of the Transforming Growth Factor-β (TGF-β) family, including those of the conserved bone morphogenetic protein (BMP) family, yet only a small number of direct target genes have been well characterized. In C. elegans, the BMP2/4 ortholog DBL-1 regulates multiple biological functions, including body size, via a canonical receptor-Smad signaling cascade. Here, we identify functional binding sites for SMA-3/Smad and its transcriptional partner SMA-9/Schnurri based on ChIP-seq peaks (identified by modEncode) and expression differences of nearby genes identified from RNA-seq analysis of corresponding mutants. We found that SMA-3 and SMA-9 have both overlapping and unique target genes. At a genome-wide scale, SMA-3/Smad acts as a transcriptional activator, whereas SMA-9/Schnurri direct targets include both activated and repressed genes. Mutations in sma-9 partially suppress the small body size phenotype of sma-3, suggesting some level of antagonism between these factors and challenging the prevailing model for Schnurri function. A functional analysis of target genes revealed a novel role in body size for genes involved in one-carbon metabolism and in the endoplasmic reticulum (ER) secretory pathway, including the disulfide reductase dpy-11. Our findings indicate that Smads and SMA-9/Schnurri have previously unappreciated complex genetic and genomic regulatory interactions that in turn regulate the secretion of extracellular components like collagen into the cuticle to mediate body size regulation.
Collapse
Affiliation(s)
- Mehul Vora
- Waksman Institute, Dept. of Genetics, Rutgers University, NJ, USA
- ModOmics Ltd, Southampton, UK
| | - Jonathan Dietz
- Waksman Institute, Dept. of Genetics, Rutgers University, NJ, USA
| | - Zachary Wing
- Department of Biology, Queens College, CUNY, NY, USA
| | - Jun Liu
- Department of Molecular Biology and Genetics, Cornell University, NY, USA
| | | | - Cathy Savage-Dunn
- Department of Biology, Queens College, CUNY, NY, USA
- PhD Program in Biology, the Graduate Center, CUNY, NY, USA
| |
Collapse
|
3
|
Chi LH, Redfern AD, Roslan S, Street IP, Burrows AD, Anderson RL. Loss of tumor-derived SMAD4 enhances primary tumor growth but not metastasis following BMP4 signalling. Cell Commun Signal 2024; 22:248. [PMID: 38689334 PMCID: PMC11060976 DOI: 10.1186/s12964-024-01559-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/04/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Bone morphogenetic protein 4 (BMP4) is a potent inhibitor of breast cancer metastasis. However, a tumor-promoting effect of BMP4 is reported in other tumor types, especially when SMAD4 is inactive. METHODS To assess the requirement for SMAD4 in BMP4-mediated suppression of metastasis, we knocked down SMAD4 in two different breast tumors and enforced SMAD4 expression in a third line with endogenous SMAD4 deletion. In addition, we assessed the requirement for SMAD4 in tumor cell-specific BMP signalling by expression of a constitutively active BMP receptor. Delineation of genes regulated by BMP4 in the presence or absence of SMAD4 was assessed by RNA sequencing and a BMP4-induced gene, MYO1F was assessed for its role in metastasis. Genes regulated by BMP4 and/or SMAD4 were assessed in a publicly available database of gene expression profiles of breast cancer patients. RESULTS In the absence of SMAD4, BMP4 promotes primary tumor growth that is accompanied by increased expression of genes associated with DNA replication, cell cycle, and MYC signalling pathways. Despite increased primary tumor growth, BMP4 suppresses metastasis in the absence of tumor cell expression of SMAD4. Consistent with the anti-metastatic activity of BMP4, enforced signalling through the constitutively active receptor in SMAD4 positive tumors that lacked BMP4 expression still suppressed metastasis, but in the absence of SMAD4, the suppression of metastasis was largely prevented. Thus BMP4 is required for suppression of metastasis regardless of tumor SMAD4 status. The BMP4 upregulated gene, MYO1F, was shown to be a potent suppressor of breast cancer metastasis. Gene signature upregulated by BMP4 in the absence of SMAD4 was associated with poor prognosis in breast cancer patients, whereas gene signature upregulated by BMP4 in the presence of SMAD4 was associated with improved prognosis. CONCLUSIONS BMP4 expression is required for suppression of metastasis regardless of the SMAD4 status of the tumor cells. Since BMP4 is a secreted protein, we conclude that it can act both in an autocrine manner in SMAD4-expressing tumor cells and in a paracrine manner on stromal cells to suppress metastasis. Deletion of SMAD4 from tumor cells does not prevent BMP4 from suppressing metastasis via a paracrine mechanism.
Collapse
Affiliation(s)
- Lap Hing Chi
- Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Andrew D Redfern
- Harry Perkins Institute of Medical Research, University of Western Australia, Perth, WA, Australia
| | - Suraya Roslan
- Department of Surgery, St. Vincent's Hospital, Fitzroy, VIC, Australia
| | - Ian P Street
- Children's Cancer Institute, University of New South Wales, New South Wales, Australia
| | - Allan D Burrows
- Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Robin L Anderson
- Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, VIC, 3084, Australia.
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia.
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
4
|
Tang S, Zhang J, Lou F, Zhou H, Cai X, Wang Z, Sun L, Sun Y, Li X, Fan L, Li Y, Jin X, Deng S, Yin Q, Bai J, Wang H, Wang H. A lncRNA Dleu2-encoded peptide relieves autoimmunity by facilitating Smad3-mediated Treg induction. EMBO Rep 2024; 25:1208-1232. [PMID: 38291338 PMCID: PMC10933344 DOI: 10.1038/s44319-024-00070-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
Micropeptides encoded by short open reading frames (sORFs) within long noncoding RNAs (lncRNAs) are beginning to be discovered and characterized as regulators of biological and pathological processes. Here, we find that lncRNA Dleu2 encodes a 17-amino-acid micropeptide, which we name Dleu2-17aa, that is abundantly expressed in T cells. Dleu2-17aa promotes inducible regulatory T (iTreg) cell generation by interacting with SMAD Family Member 3 (Smad3) and enhancing its binding to the Foxp3 conserved non-coding DNA sequence 1 (CNS1) region. Importantly, the genetic deletion of Dleu2-17aa in mice by start codon mutation impairs iTreg generation and worsens experimental autoimmune encephalomyelitis (EAE). Conversely, the exogenous supplementation of Dleu2-17aa relieves EAE. Our findings demonstrate an indispensable role of Dleu2-17aa in maintaining immune homeostasis and suggest therapeutic applications for this peptide in treating autoimmune diseases.
Collapse
Affiliation(s)
- Sibei Tang
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201610, China
| | - Junxun Zhang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Fangzhou Lou
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201610, China
| | - Hong Zhou
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201610, China
| | - Xiaojie Cai
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201610, China
| | - Zhikai Wang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Libo Sun
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201610, China
| | - Yang Sun
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201610, China
| | - Xiangxiao Li
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201610, China
| | - Li Fan
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201610, China
| | - Yan Li
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201610, China
| | - Xinping Jin
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Siyu Deng
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201610, China
| | - Qianqian Yin
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jing Bai
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201610, China
| | - Hong Wang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Honglin Wang
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201610, China.
| |
Collapse
|
5
|
Fox SC, Waskiewicz AJ. Transforming growth factor beta signaling and craniofacial development: modeling human diseases in zebrafish. Front Cell Dev Biol 2024; 12:1338070. [PMID: 38385025 PMCID: PMC10879340 DOI: 10.3389/fcell.2024.1338070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024] Open
Abstract
Humans and other jawed vertebrates rely heavily on their craniofacial skeleton for eating, breathing, and communicating. As such, it is vital that the elements of the craniofacial skeleton develop properly during embryogenesis to ensure a high quality of life and evolutionary fitness. Indeed, craniofacial abnormalities, including cleft palate and craniosynostosis, represent some of the most common congenital abnormalities in newborns. Like many other organ systems, the development of the craniofacial skeleton is complex, relying on specification and migration of the neural crest, patterning of the pharyngeal arches, and morphogenesis of each skeletal element into its final form. These processes must be carefully coordinated and integrated. One way this is achieved is through the spatial and temporal deployment of cell signaling pathways. Recent studies conducted using the zebrafish model underscore the importance of the Transforming Growth Factor Beta (TGF-β) and Bone Morphogenetic Protein (BMP) pathways in craniofacial development. Although both pathways contain similar components, each pathway results in unique outcomes on a cellular level. In this review, we will cover studies conducted using zebrafish that show the necessity of these pathways in each stage of craniofacial development, starting with the induction of the neural crest, and ending with the morphogenesis of craniofacial elements. We will also cover human skeletal and craniofacial diseases and malformations caused by mutations in the components of these pathways (e.g., cleft palate, craniosynostosis, etc.) and the potential utility of zebrafish in studying the etiology of these diseases. We will also briefly cover the utility of the zebrafish model in joint development and biology and discuss the role of TGF-β/BMP signaling in these processes and the diseases that result from aberrancies in these pathways, including osteoarthritis and multiple synostoses syndrome. Overall, this review will demonstrate the critical roles of TGF-β/BMP signaling in craniofacial development and show the utility of the zebrafish model in development and disease.
Collapse
|
6
|
Gaba S, Jain U. Advanced biosensors for nanomaterial-based detection of transforming growth factor alpha and beta, a class of major polypeptide regulators. Int J Biol Macromol 2024; 257:128622. [PMID: 38065462 DOI: 10.1016/j.ijbiomac.2023.128622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023]
Abstract
Transforming growth factors (TGFs) regulate several cellular processes including, differentiation, growth, migration, extracellular matrix production, and apoptosis. TGF alpha (TGF-α) is a heterogeneous molecule containing 160 amino acid residues. It is a potent angiogenesis promoter that is activated by JAK-STAT signaling. Whereas TGF beta (TGF-β) consists of 390-412 amino acids. Smad and non-Smad signaling both occur in TGF beta. It is linked to immune cell activation, differentiation, and proliferation. It also triggers pre-apoptotic responses and inhibits cell proliferation. Both growth factors have a promising role in the development and homeostasis of tissues. Defects such as autoimmune diseases and cancer develop mechanisms to modulate checkpoints of the immune system resulting in altered growth factors profile. An accurate amount of these growth factors is essential for normal functioning, but an exceed or fall behind the normal level is alarming as it is linked to several disorders. This demands techniques for TGF-α and TGF-β profiling to effectively diagnose diseases, monitor their progression, and assess the efficacy of immunotherapeutic drugs. Quantitative detection techniques including the emergence of biosensing technology seem to accomplish the purpose. Until the present time, few biosensors have been designed in the context of TGF-α and TGF-β for disease detection, analyzing receptor binding, and interaction with carriers. In this paper, we have reviewed the physiology of transforming growth factor alpha and beta, including the types, structure, function, latent/active forms, signaling, and defects caused. It involves the description of biosensors on TGF-α and TGF-β, advances in technology, and future perspectives.
Collapse
Affiliation(s)
- Smriti Gaba
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India
| | - Utkarsh Jain
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India.
| |
Collapse
|
7
|
Jash R, Maparu K, Seksaria S, Das S. Decrypting the Pathological Pathways in IgA Nephropathy. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2024; 18:43-56. [PMID: 37870060 DOI: 10.2174/0127722708275167231011102924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023]
Abstract
IgAN is the most common form of glomerulonephritis affecting 2000000 people annually. The disease ultimately progresses to chronic renal failure and ESRD. In this article, we focused on a comprehensive understanding of the pathogenesis of the disease and thus identifying different target proteins that could be essential in therapeutic approaches in the management of the disease. Aberrantly glycosylated IgA1 produced by the suppression of the enzyme β-1, 3 galactosyltransferase ultimately triggered the formation of IgG autoantibodies which form complexes with Gd-IgA1. The complex gets circulated through the blood vessels through monocytes and ultimately gets deposited in the glomerular mesangial cells via CD71 receptors present locally. This complex triggers the inflammatory pathways activating the alternate complement system, various types of T Cells, toll-like receptors, cytokines, and chemokines ultimately recruiting the phagocytic cells to eliminate the Gd-IgA complex. The inflammatory proteins cause severe mesangial and podocyte damage in the kidney which ultimately initiates the repair process following chronic inflammation by an important protein named TGFβ1. TGF β1 is an important protein produced during chronic inflammation mediating the repair process via various downstream transduction proteins and ultimately producing fibrotic proteins which help in the repair process but permanently damage the glomerular cells.
Collapse
Affiliation(s)
- Rajiv Jash
- Department of Pharmacology, Sanaka Educational Trust's Group Of Institutions, Malandighi, Durgapur, 713212, West Bengal, India
- Department of Pharmacy, JIS University, Kolkata, 700109, West Bengal, India
| | - Kousik Maparu
- Department of Pharmacology, Sanaka Educational Trust's Group Of Institutions, Malandighi, Durgapur, 713212, West Bengal, India
| | - Sanket Seksaria
- Department of Pharmacology, Sanaka Educational Trust's Group Of Institutions, Malandighi, Durgapur, 713212, West Bengal, India
| | - Saptarshi Das
- Department of Pharmacy, JIS University, Kolkata, 700109, West Bengal, India
| |
Collapse
|
8
|
Teixeira AF, Wang Y, Iaria J, Ten Dijke P, Zhu HJ. Simultaneously targeting extracellular vesicle trafficking and TGF-β receptor kinase activity blocks signaling hyperactivation and metastasis. Signal Transduct Target Ther 2023; 8:456. [PMID: 38105247 PMCID: PMC10725874 DOI: 10.1038/s41392-023-01711-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/30/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023] Open
Abstract
Metastasis is the leading cause of cancer-related deaths. Transforming growth factor beta (TGF-β) signaling drives metastasis and is strongly enhanced during cancer progression. Yet, the use of on-target TGF-β signaling inhibitors in the treatment of cancer patients remains unsuccessful, highlighting a gap in the understanding of TGF-β biology that limits the establishment of efficient anti-metastatic therapies. Here, we show that TGF-β signaling hyperactivation in breast cancer cells is required for metastasis and relies on increased small extracellular vesicle (sEV) secretion. Demonstrating sEV's unique role, TGF-β signaling levels induced by sEVs exceed the activity of matching concentrations of soluble ligand TGF-β. Further, genetic disruption of sEV secretion in highly-metastatic breast cancer cells impairs cancer cell aggressiveness by reducing TGF-β signaling to nearly-normal levels. Otherwise, TGF-β signaling activity in non-invasive breast cancer cells is inherently low, but can be amplified by sEVs, enabling invasion and metastasis of poorly-metastatic breast cancer cells. Underscoring the translational potential of inhibiting sEV trafficking in advanced breast cancers, treatment with dimethyl amiloride (DMA) decreases sEV secretion, TGF-β signaling activity, and breast cancer progression in vivo. Targeting both the sEV trafficking and TGF-β signaling by combining DMA and SB431542 at suboptimal doses potentiated this effect, normalizing the TGF-β signaling in primary tumors to potently reduce circulating tumor cells, metastasis, and tumor self-seeding. Collectively, this study establishes sEVs as critical elements in TGF-β biology, demonstrating the feasibility of inhibiting sEV trafficking as a new therapeutic approach to impair metastasis by normalizing TGF-β signaling levels in breast cancer cells.
Collapse
Affiliation(s)
- Adilson Fonseca Teixeira
- Department of Surgery (The Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC, Australia
- Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing, Jiangsu, China
| | - Yanhong Wang
- Department of Surgery (The Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC, Australia
| | - Josephine Iaria
- Department of Surgery (The Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC, Australia
- Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing, Jiangsu, China
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Hong-Jian Zhu
- Department of Surgery (The Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC, Australia.
- Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing, Jiangsu, China.
| |
Collapse
|
9
|
Sarıekiz FG, Tomatır AG, Tokgün PE, Bir LS. Evaluation of Long Non-coding RNA Expression Profiles in Peripheral Blood Mononuclear Cells of Patients with Parkinson's Disease. Mol Neurobiol 2023; 60:6201-6211. [PMID: 37436601 DOI: 10.1007/s12035-023-03470-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 06/29/2023] [Indexed: 07/13/2023]
Abstract
As in many biological processes, the long non-coding RNAs (lncRNA) are currently known to have important roles in Parkinson's disease (PD). The aim of the study is to evaluate differentiated expressions of lncRNAs and their target mRNAs in the peripheral blood cells of individuals with Parkinson's disease. The peripheral blood samples were taken from 10 Parkinson's diagnosed people aging 50 years and more and from 10 healthy people as for the control group. Total RNA was isolated from peripheral blood mononuclear cells (PBMC), and a total of 5 samples were selected and evaluated by microarray analysis. lncRNAs with high fold change (fc < 1.5/fc > 1.5) were determined as a result of the analysis. Following this, the expression changes of some lncRNAs and their target mRNAs were examined by quantitative simultaneous polymerase chain reaction (qRT-PCR) in all individuals in the patient and control groups. Also, in order to determine the molecular level basic activities of lncRNAs determined by microarray analysis and which biological process and biochemical pathway they were in, Gene Ontology (GO) analysis ( http://geneontology.org/ ) database was used. Thirteen upregulated and 31 downregulated lncRNAs whose expression changes were determined by microarray analysis and confirmed by qRT-PCR method were found in Parkinson's patients. As they were evaluated by GO analysis, lncRNAs were expressed differently in patient and control groups and they are found to be related with the processes such as macromolecule metabolic processes, immune system, gene expression, cell activation, ATPase activity, DNA packaging complex, signal receptor activity, immune receptor activity, and protein binding were found to be significant.
Collapse
Affiliation(s)
- Fatma Gizem Sarıekiz
- Department of Medical Biology, Faculty of Medicine, Pamukkale University, Kınıklı/Denizli, Turkey.
| | - Ayşe Gaye Tomatır
- Department of Medical Biology, Faculty of Medicine, Pamukkale University, Kınıklı/Denizli, Turkey
| | - Pervin Elvan Tokgün
- Department of Medical Genetics, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Levent Sinan Bir
- Department of Neurology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| |
Collapse
|
10
|
Chen B, Jin W. A comprehensive review of stroke-related signaling pathways and treatment in western medicine and traditional Chinese medicine. Front Neurosci 2023; 17:1200061. [PMID: 37351420 PMCID: PMC10282194 DOI: 10.3389/fnins.2023.1200061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/19/2023] [Indexed: 06/24/2023] Open
Abstract
This review provides insight into the complex network of signaling pathways and mechanisms involved in stroke pathophysiology. It summarizes the historical progress of stroke-related signaling pathways, identifying potential interactions between them and emphasizing that stroke is a complex network disease. Of particular interest are the Hippo signaling pathway and ferroptosis signaling pathway, which remain understudied areas of research, and are therefore a focus of the review. The involvement of multiple signaling pathways, including Sonic Hedgehog (SHH), nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE), hypoxia-inducible factor-1α (HIF-1α), PI3K/AKT, JAK/STAT, and AMPK in pathophysiological mechanisms such as oxidative stress and apoptosis, highlights the complexity of stroke. The review also delves into the details of traditional Chinese medicine (TCM) therapies such as Rehmanniae and Astragalus, providing an analysis of the recent status of western medicine in the treatment of stroke and the advantages and disadvantages of TCM and western medicine in stroke treatment. The review proposes that since stroke is a network disease, TCM has the potential and advantages of a multi-target and multi-pathway mechanism of action in the treatment of stroke. Therefore, it is suggested that future research should explore more treasures of TCM and develop new therapies from the perspective of stroke as a network disease.
Collapse
Affiliation(s)
- Binhao Chen
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Weifeng Jin
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
11
|
Fang Gong Y, Hou S, Xu JC, Chen Y, Zhu LL, Xu YY, Chen YQ, Li MM, Li LL, Yang JJ, Yang Y. Amelioratory effects of astragaloside IV on hepatocarcinogenesis via Nrf2-mediated pSmad3C/3L transformation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 117:154903. [PMID: 37301185 DOI: 10.1016/j.phymed.2023.154903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/18/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Phosphorylated Smad3 isoforms are reversible and antagonistic, and the tumour-suppressive pSmad3C can shift to an oncogenic pSmad3L signal. In addition, Nrf2 has a two-way regulatory effect on tumours, protecting normal cells from carcinogens and promoting tumour cell survival in chemotherapeutics. Accordingly, we hypothesised that the transformation of pSmad3C/3L is the basis for Nrf2 to produce both pro- and/or anti-tumourigenic effects in hepatocarcinogenesis. Astragaloside IV (AS-IV), the major component of Astragalus membranaceus, exerts anti-fibrogenic and carcinogenic actions. Lately, AS-IV administration could delay the occurrence of primary liver cancer by persistently inhibiting the fibrogenesis and regulating pSmad3C/3 L and Nrf2/HO-1 pathways synchronously. However, effect of AS-IV on hepatocarcinogenesis implicated in the bidirectional cross-talking of pSmad3C/3 L and Nrf2/HO-1 signalling, especially which one contributes palpably than the other still remains unclear. PURPOSE This study aims to settle the above questions by using in vivo (pSmad3C+/- and Nrf2-/- mice) and in vitro (plasmid- or lentivirus- transfected HepG2 cells) models of HCC. STUDY DESIGN AND METHODS The correlation of Nrf2 to pSmad3C/pSmad3L in HepG2 cells was analysed by Co-immunoprecipitation and dual-luciferase reporter assay. Pathological changes of Nrf2, pSmad3C, and pSmad3L in human HCC patients, pSmad3C+/- mice, and Nrf2-/- mice were gauged by immunohistochemical, haematoxylin and eosin staining, Masson, and immunofluorescence assays. Finally, western blot and qPCR were used to verify the bidirectional cross-talking of pSmad3C/3L and Nrf2/HO-1 signalling protein and mRNA in vivo and in vitro models of HCC. RESULTS Histopathological manifestations and biochemical indicators revealed that pSmad3C+/- could abate the ameliorative effects of AS-IV on fibrogenic/carcinogenic mice with Nrf2/HO-1 deactivation and pSmad3C/p21 transform to pSmad3L/PAI-1//c-Myc. As expected, cell experiments confirmed that upregulating pSmad3C boosts the inhibitory activity of AS-IV on phenotypes (cell proliferation, migration and invasion), followed by a shift of pSmad3L to pSmad3C and activation of Nrf2/HO-1. Synchronously, experiments in Nrf2-/- mice and lentivirus-carried Nrf2shRNA cell echoed the results of pSmad3C knockdown. Complementarily, Nrf2 overexpression resulted in the opposite result. Furthermore, Nrf2/HO-1 contributes to AS-IV's anti-HCC effect palpably compared with pSmad3C/3L. CONCLUSION These studies highlight that harnessing the bidirectional crosstalk pSmad3C/3 L and Nrf2/HO-1, especially Nrf2/HO-1 signalling, acts more effectively in AS-IV's anti-hepatocarcinogenesis, which may provide an important theoretical foundation for the use of AS-IV against HCC.
Collapse
Affiliation(s)
- Yong Fang Gong
- Department of Pharmacology, School of Basic Medicine, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, 230032, 81 Meishan Road, Hefei, China; School of Nursing, Anhui Medical University, No.15, feicui Road, Economic and Technological Development Zone, Hefei, China
| | - Shu Hou
- Department of Pharmacology, School of Basic Medicine, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, 230032, 81 Meishan Road, Hefei, China
| | - Jia-Cheng Xu
- Department of Pharmacology, School of Basic Medicine, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, 230032, 81 Meishan Road, Hefei, China
| | - Yan Chen
- Department of Pharmacology, School of Basic Medicine, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, 230032, 81 Meishan Road, Hefei, China
| | - Le-Le Zhu
- Department of Pharmacology, School of Basic Medicine, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, 230032, 81 Meishan Road, Hefei, China
| | - Ying-Ying Xu
- Department of Pharmacology, School of Basic Medicine, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, 230032, 81 Meishan Road, Hefei, China
| | - Yu-Qing Chen
- Department of Pharmacology, School of Basic Medicine, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, 230032, 81 Meishan Road, Hefei, China
| | - Miao-Miao Li
- Department of Pharmacology, School of Basic Medicine, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, 230032, 81 Meishan Road, Hefei, China
| | - Li-Li Li
- Department of Pharmacology, School of Basic Medicine, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, 230032, 81 Meishan Road, Hefei, China
| | - Jing-Jing Yang
- Department of Pharmacology, School of Basic Medicine, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, 230032, 81 Meishan Road, Hefei, China; Department of Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Yan Yang
- Department of Pharmacology, School of Basic Medicine, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, 230032, 81 Meishan Road, Hefei, China.
| |
Collapse
|
12
|
Rozo V, Quan M, Aung T, Kang J, Thomasy SM, Leonard BC. Andrographolide Inhibits Corneal Fibroblast to Myofibroblast Differentiation In Vitro. Biomolecules 2022; 12:biom12101447. [PMID: 36291655 PMCID: PMC9599903 DOI: 10.3390/biom12101447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
Corneal opacification due to fibrosis is a leading cause of blindness worldwide. Fibrosis occurs from many causes including trauma, photorefractive surgery, microbial keratitis (infection of the cornea), and chemical burns, yet there is a paucity of therapeutics to prevent or treat corneal fibrosis. This study aimed to determine if andrographolide, a labdane diterpenoid found in Andrographis paniculate, has anti-fibrotic properties. Furthermore, we evaluated if andrographolide could prevent the differentiation of fibroblasts to myofibroblasts in vitro, given that the transforming growth factor beta-1(TGF-β1) stimulated persistence of myofibroblasts in the cornea is a primary component of fibrosis. We demonstrated that andrographolide inhibited the upregulation of alpha smooth muscle actin (αSMA) mRNA and protein in rabbit corneal fibroblasts (RCFs), thus, demonstrating a reduction in the transdifferentiation of myofibroblasts. Immunofluorescent staining of TGF-β1-stimulated RCFs confirmed a dose-dependent decrease in αSMA expression when treated with andrographolide. Additionally, andrographolide was well tolerated in vivo and had no impact on corneal epithelialization in a rat debridement model. These data support future studies investigating the use of andrographolide as an anti-fibrotic in corneal wound healing.
Collapse
Affiliation(s)
- Vanessa Rozo
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Melinda Quan
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Theint Aung
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Jennifer Kang
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Sara M. Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, CA 95616, USA
| | - Brian C. Leonard
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
- Correspondence:
| |
Collapse
|
13
|
Hwang CD, Pagani CA, Nunez JH, Cherief M, Qin Q, Gomez-Salazar M, Kadaikal B, Kang H, Chowdary AR, Patel N, James AW, Levi B. Contemporary perspectives on heterotopic ossification. JCI Insight 2022; 7:158996. [PMID: 35866484 PMCID: PMC9431693 DOI: 10.1172/jci.insight.158996] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Heterotopic ossification (HO) is the formation of ectopic bone that is primarily genetically driven (fibrodysplasia ossificans progressiva [FOP]) or acquired in the setting of trauma (tHO). HO has undergone intense investigation, especially over the last 50 years, as awareness has increased around improving clinical technologies and incidence, such as with ongoing wartime conflicts. Current treatments for tHO and FOP remain prophylactic and include NSAIDs and glucocorticoids, respectively, whereas other proposed therapeutic modalities exhibit prohibitive risk profiles. Contemporary studies have elucidated mechanisms behind tHO and FOP and have described new distinct niches independent of inflammation that regulate ectopic bone formation. These investigations have propagated a paradigm shift in the approach to treatment and management of a historically difficult surgical problem, with ongoing clinical trials and promising new targets.
Collapse
Affiliation(s)
- Charles D Hwang
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Massachusetts General Hospital, Harvard University, Boston, Massachusetts, USA
| | - Chase A Pagani
- Department of Surgery, Center for Organogenesis Research and Trauma, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Johanna H Nunez
- Department of Surgery, Center for Organogenesis Research and Trauma, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Masnsen Cherief
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Qizhi Qin
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Balram Kadaikal
- Department of Surgery, Center for Organogenesis Research and Trauma, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Heeseog Kang
- Department of Surgery, Center for Organogenesis Research and Trauma, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ashish R Chowdary
- Department of Surgery, Center for Organogenesis Research and Trauma, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Nicole Patel
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Benjamin Levi
- Department of Surgery, Center for Organogenesis Research and Trauma, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
14
|
OVOL1 inhibits breast cancer cell invasion by enhancing the degradation of TGF-β type I receptor. Signal Transduct Target Ther 2022; 7:126. [PMID: 35484112 PMCID: PMC9050647 DOI: 10.1038/s41392-022-00944-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 02/16/2022] [Accepted: 02/24/2022] [Indexed: 11/09/2022] Open
Abstract
Ovo-like transcriptional repressor 1 (OVOL1) is a key mediator of epithelial lineage determination and mesenchymal-epithelial transition (MET). The cytokines transforming growth factor-β (TGF-β) and bone morphogenetic proteins (BMP) control the epithelial-mesenchymal plasticity (EMP) of cancer cells, but whether this occurs through interplay with OVOL1 is not known. Here, we show that OVOL1 is inversely correlated with the epithelial-mesenchymal transition (EMT) signature, and is an indicator of a favorable prognosis for breast cancer patients. OVOL1 suppresses EMT, migration, extravasation, and early metastatic events of breast cancer cells. Importantly, BMP strongly promotes the expression of OVOL1, which enhances BMP signaling in turn. This positive feedback loop is established through the inhibition of TGF-β receptor signaling by OVOL1. Mechanistically, OVOL1 interacts with and prevents the ubiquitination and degradation of SMAD family member 7 (SMAD7), which is a negative regulator of TGF-β type I receptor stability. Moreover, a small-molecule compound 6-formylindolo(3,2-b)carbazole (FICZ) was identified to activate OVOL1 expression and thereby antagonizing (at least in part) TGF-β-mediated EMT and migration in breast cancer cells. Our results uncover a novel mechanism by which OVOL1 attenuates TGF-β/SMAD signaling and maintains the epithelial identity of breast cancer cells.
Collapse
|
15
|
Zhang J, Zhang Z, Holst S, Blöchl C, Madunic K, Wuhrer M, Ten Dijke P, Zhang T. Transforming growth factor-β challenge alters the N-, O-, and glycosphingolipid glycomes in PaTu-S pancreatic adenocarcinoma cells. J Biol Chem 2022; 298:101717. [PMID: 35151689 PMCID: PMC8914387 DOI: 10.1016/j.jbc.2022.101717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by poor prognosis and high mortality. Transforming growth factor-β (TGF-β) plays a key role in PDAC tumor progression, which is often associated with aberrant glycosylation. However, how PDAC cells respond to TGF-β and the role of glycosylation therein is not well known. Here, we investigated the TGF-β-mediated response and glycosylation changes in the PaTu-8955S (PaTu-S) cell line deficient in SMA-related and MAD-related protein 4 (SMAD4), a signal transducer of the TGF-β signaling. PaTu-S cells responded to TGF-β by upregulating SMAD2 phosphorylation and target gene expression. We found that TGF-β induced expression of the mesenchymal marker N-cadherin but did not significantly affect epithelial marker E-cadherin expression. We also examined differences in N-glycans, O-glycans, and glycosphingolipid-linked glycans in PaTu-S cells upon TGF-β stimulation. TGF-β treatment primarily induced N-glycome aberrations involving elevated levels of branching, core fucosylation, and sialylation in PaTu-S cells, in agreement with TGF-β-induced changes in the expression of glycosylation-associated genes. In addition, we observed differences in O glycosylation and glycosphingolipid glycosylation profiles after TGF-β treatment, including lower levels of sialylated Tn antigen and neoexpression of globosides. Furthermore, the expression of transcription factor sex-determining region Y-related high-mobility group box 4 was upregulated upon TGF-β stimulation, and its depletion blocked TGF-β-induced N-glycomic changes. Thus, TGF-β-induced N-glycosylation changes can occur in a sex-determining region Y-related high-mobility group box 4–dependent and SMAD4-independent manner in the pancreatic PaTu-S cancer cell line. Our results open up avenues to study the relevance of glycosylation in TGF-β signaling in SMAD4-inactivated PDAC.
Collapse
Affiliation(s)
- Jing Zhang
- Oncode Institute and Department of Cell Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Zejian Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Stephanie Holst
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Constantin Blöchl
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands; Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Katarina Madunic
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter Ten Dijke
- Oncode Institute and Department of Cell Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Tao Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
16
|
Hu X, Lin C, Ruan N, Huang Z, Zhang Y, Hu X. Operation of the Atypical Canonical Bone Morphogenetic Protein Signaling Pathway During Early Human Odontogenesis. Front Physiol 2022; 13:823275. [PMID: 35211032 PMCID: PMC8863179 DOI: 10.3389/fphys.2022.823275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/10/2022] [Indexed: 12/31/2022] Open
Abstract
Bone morphogenetic protein (BMP) signaling plays essential roles in the regulation of early tooth development. It is well acknowledged that extracellular BMP ligands bind to the type I and type II transmembrane serine/threonine kinase receptor complexes to trigger the BMP signaling pathway. Then, the receptor-activated Smad1/5/8 in cytoplasm binds to Smad4, the central mediator of the canonical BMP signaling pathway, to form transfer complexes for entering the nucleus and regulating target gene expression. However, a recent study revealed the functional operation of a novel BMP-mediated signaling pathway named the atypical BMP canonical signaling pathway in mouse developing tooth, which is Smad1/5/8 dependent but Smad4 independent. In this study, we investigated whether this atypical BMP canonical signaling is conserved in human odontogenesis. We showed that pSMAD1/5/8 is required for the expression of Msh homeobox 1 (MSX1), a well-defined BMP signaling target gene, in human dental mesenchyme, but the typical BMP canonical signaling is in fact not operating in the early human developing tooth, as evidenced by the absence of pSMAD1/5/8-SMAD4 complexes in the dental mesenchyme and translocation of pSMAD1/5/8, and the expression of MSX1 induced by BMP4 is mothers against decapentaplegic homolog 4 (SMAD4)-independent in human dental mesenchymal cells. Moreover, integrative analysis of RNA-Seq data sets comparing the transcriptome profiles of human dental mesenchymal cells with and without SMAD4 knockdown by siRNA displays unchanged expression profiles of pSMAD1/5/8 downstream target genes, further affirming the functional operation of the atypical canonical BMP signaling pathway in a SMAD1/5/8-dependent but SMAD4-independent manner in the dental mesenchyme during early odontogenesis in humans.
Collapse
Affiliation(s)
- Xiaoxiao Hu
- Center for Biomedical Research of South China, Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Chensheng Lin
- Center for Biomedical Research of South China, Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Ningsheng Ruan
- Center for Biomedical Research of South China, Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Zhen Huang
- Center for Biomedical Research of South China, Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Yanding Zhang
- Center for Biomedical Research of South China, Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Xuefeng Hu
- Center for Biomedical Research of South China, Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, China
| |
Collapse
|
17
|
Jansen C, Paraiso KD, Zhou JJ, Blitz IL, Fish MB, Charney RM, Cho JS, Yasuoka Y, Sudou N, Bright AR, Wlizla M, Veenstra GJC, Taira M, Zorn AM, Mortazavi A, Cho KWY. Uncovering the mesendoderm gene regulatory network through multi-omic data integration. Cell Rep 2022; 38:110364. [PMID: 35172134 PMCID: PMC8917868 DOI: 10.1016/j.celrep.2022.110364] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 10/30/2021] [Accepted: 01/19/2022] [Indexed: 01/01/2023] Open
Abstract
Mesendodermal specification is one of the earliest events in embryogenesis, where cells first acquire distinct identities. Cell differentiation is a highly regulated process that involves the function of numerous transcription factors (TFs) and signaling molecules, which can be described with gene regulatory networks (GRNs). Cell differentiation GRNs are difficult to build because existing mechanistic methods are low throughput, and high-throughput methods tend to be non-mechanistic. Additionally, integrating highly dimensional data composed of more than two data types is challenging. Here, we use linked self-organizing maps to combine chromatin immunoprecipitation sequencing (ChIP-seq)/ATAC-seq with temporal, spatial, and perturbation RNA sequencing (RNA-seq) data from Xenopus tropicalis mesendoderm development to build a high-resolution genome scale mechanistic GRN. We recover both known and previously unsuspected TF-DNA/TF-TF interactions validated through reporter assays. Our analysis provides insights into transcriptional regulation of early cell fate decisions and provides a general approach to building GRNs using highly dimensional multi-omic datasets.
Collapse
Affiliation(s)
- Camden Jansen
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA; Center for Complex Biological Systems, University of California, Irvine, CA, USA
| | - Kitt D Paraiso
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA; Center for Complex Biological Systems, University of California, Irvine, CA, USA
| | - Jeff J Zhou
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Ira L Blitz
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Margaret B Fish
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Rebekah M Charney
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Jin Sun Cho
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Yuuri Yasuoka
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Norihiro Sudou
- Department of Anatomy, School of Medicine, Toho University, Tokyo, Japan
| | - Ann Rose Bright
- Department of Molecular Developmental Biology, Radboud University, Nijmegen, the Netherlands
| | - Marcin Wlizla
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Gert Jan C Veenstra
- Department of Molecular Developmental Biology, Radboud University, Nijmegen, the Netherlands
| | - Masanori Taira
- Department of Biological Sciences, Chuo University, Tokyo, Japan
| | - Aaron M Zorn
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA; Center for Complex Biological Systems, University of California, Irvine, CA, USA.
| | - Ken W Y Cho
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA; Center for Complex Biological Systems, University of California, Irvine, CA, USA.
| |
Collapse
|
18
|
Brown MA, Ried T. Shifting the Focus of Signaling Abnormalities in Colon Cancer. Cancers (Basel) 2022; 14:784. [PMID: 35159051 PMCID: PMC8834070 DOI: 10.3390/cancers14030784] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/26/2022] [Accepted: 01/30/2022] [Indexed: 12/12/2022] Open
Abstract
Colon cancer tumorigenesis occurs incrementally. The process involves the acquisition of mutations which typically follow an established pattern: activation of WNT signaling, activation of RAS signaling, and inhibition of TGF-β signaling. This arrangement recapitulates, to some degree, the stem cell niche of the intestinal epithelium, which maintains WNT and EGF activity while suppressing TGF-β. The resemblance between the intestinal stem cell environment and colon cancer suggests that the concerted activity of these pathways generates and maintains a potent growth-inducing stimulus. However, each pathway has a myriad of downstream targets, making it difficult to identify which aspects of these pathways are drivers. To address this, we utilize the cell cycle, the ultimate regulator of cell proliferation, as a foundation for cross-pathway integration. We attempt to generate an overview of colon cancer signaling patterns by integrating the major colon cancer signaling pathways in the context of cell replication, specifically, the entrance from G1 into S-phase.
Collapse
Affiliation(s)
| | - Thomas Ried
- Genetics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA;
| |
Collapse
|
19
|
McCarthy SS, Karolak M, Oxburgh L. Smad4 controls proliferation of interstitial cells in the neonatal kidney. Development 2022; 149:273660. [PMID: 34878095 PMCID: PMC8783041 DOI: 10.1242/dev.199984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/29/2021] [Indexed: 01/07/2023]
Abstract
Expansion of interstitial cells in the adult kidney is a hallmark of chronic disease, whereas their proliferation during fetal development is necessary for organ formation. An intriguing difference between adult and neonatal kidneys is that the neonatal kidney has the capacity to control interstitial cell proliferation when the target number has been reached. In this study, we define the consequences of inactivating the TGFβ/Smad response in the mouse interstitial cell lineage. We find that pathway inactivation through loss of Smad4 leads to overproliferation of interstitial cells regionally in the kidney medulla. Analysis of markers for BMP and TGFβ pathway activation reveals that loss of Smad4 primarily reduces TGFβ signaling in the interstitium. Whereas TGFβ signaling is reduced in these cells, marker analysis shows that Wnt/β-catenin signaling is increased. Our analysis supports a model in which Wnt/β-catenin-mediated proliferation is attenuated by TGFβ/Smad to ensure that proliferation ceases when the target number of interstitial cells has been reached in the neonatal medulla.
Collapse
Affiliation(s)
- Sarah S. McCarthy
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME 04074, USA
| | - Michele Karolak
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME 04074, USA
| | - Leif Oxburgh
- Kidney Regenerative Medicine Laboratory, The Rogosin Institute, New York, NY 10065, USA,Author for correspondence ()
| |
Collapse
|
20
|
Kwon DH, Malpica A, Zaleski M, Euscher ED, Ramalingam P. Immunohistochemical Loss of DPC4 in Tumors With Mucinous Differentiation Arising in or Involving the Gynecologic Tract. Int J Gynecol Pathol 2021; 40:523-532. [PMID: 33405429 DOI: 10.1097/pgp.0000000000000754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
DPC4 immunohistochemistry (IHC) is usually part of the work-up of mucinous neoplasms in the ovary where the distinction between an ovarian primary and metastatic pancreaticobiliary adenocarcinoma (PanACa) must be made. Although DPC4 IHC is lost in about 55% (46%-61%) of PanACas and typically retained in most primary ovarian mucinous neoplasms, no study has evaluated the expression of this marker in a large cohort of neoplasms arising in or involving gynecologic (GYN) organs. In this study, we retrospectively analyzed the expression of DPC4 IHC in a total of 251 tumors and lesions related to the GYN tract in which DPC4 IHC stain was performed during the initial pathology evaluation. Of these, 138 were primary GYN tumors and lesions, 31 were metastatic GYN tumors involving non-GYN sites, and 83 were metastatic non-GYN tumors involving the GYN tract. We identified 27 cases with loss of DPC4 IHC expression of which 20 cases met the inclusion criteria (i.e. clinical information was available to determine the site of tumor origin). We observed that loss of DPC4 nuclear expression was most commonly seen in tumors of endocervical origin (n=7), of which 5 were gastric-type cervical adenocarcinomas (GCxACa) and 2 were usual-type cervical adenocarcinomas, either primary or metastatic. This was followed by tumors of the pancreaticobiliary tract (n=5), ovary (n=2), and appendix (n=1). In addition, 1 gastric-type vaginal adenocarcinoma (GVaACa) also showed loss of DPC4. Our findings indicate that in female patients with mucinous neoplasms involving the ovary or other sites, with loss of DPC4 by IHC, and negative pancreaticobiliary imaging, the possibility of an occult GCx/GVaACa, and rarely an ovarian primary must be considered.
Collapse
Affiliation(s)
- Dong Hyang Kwon
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | | | | |
Collapse
|
21
|
Gomes T, Martin-Malpartida P, Ruiz L, Aragón E, Cordeiro TN, Macias MJ. Conformational landscape of multidomain SMAD proteins. Comput Struct Biotechnol J 2021; 19:5210-5224. [PMID: 34630939 PMCID: PMC8479633 DOI: 10.1016/j.csbj.2021.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/21/2022] Open
Abstract
SMAD transcription factors, the main effectors of the TGFβ (transforming growth factor β) network, have a mixed architecture of globular domains and flexible linkers. Such a complicated architecture precluded the description of their full-length (FL) structure for many years. In this study, we unravel the structures of SMAD4 and SMAD2 proteins through an integrative approach combining Small-angle X-ray scattering, Nuclear Magnetic Resonance spectroscopy, X-ray, and computational modeling. We show that both proteins populate ensembles of conformations, with the globular domains tethered by disordered and flexible linkers, which defines a new dimension of regulation. The flexibility of the linkers facilitates DNA and protein binding and modulates the protein structure. Yet, SMAD4FL is monomeric, whereas SMAD2FL is in different monomer-dimer-trimer states, driven by interactions of the MH2 domains. Dimers are present regardless of the SMAD2FL activation state and concentration. Finally, we propose that SMAD2FL dimers are key building blocks for the quaternary structures of SMAD complexes.
Collapse
Affiliation(s)
- Tiago Gomes
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
| | - Pau Martin-Malpartida
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
| | - Lidia Ruiz
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
| | - Eric Aragón
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
| | - Tiago N. Cordeiro
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB), Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Maria J. Macias
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
- ICREA, Passeig Lluís Companys 23, Barcelona 08010, Spain
| |
Collapse
|
22
|
Xia Y, Yu E, Li Z, Zhang K, Tian J, Wang G, Xie J, Gong W. Both TGF-β1 and Smad4 regulate type I collagen expression in the muscle of grass carp, Ctenopharyngodon idella. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:907-917. [PMID: 33813689 DOI: 10.1007/s10695-021-00941-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Type I collagen is proven to make an important contribution to fish muscle quality. Our previous study has shown the Smad4-dependent regulation of type I collagen expression in the muscle of crisp grass carp fed with faba bean. However, the regulatory roles of TGF-β1 or TGF-β1/Smad4 on type I collagen remain unclear in ordinary grass carp fed with normal diets or in other fish species. To clarify this point, the effect of TGF-β1 and Smad4 over-expression and RNAi knockdown on type I collagen (COL1-α1 and COL1-α2) expression were tested in vitro (zebrafish ZF4 cells) and in vivo (grass carp) along with the TGF-β1/Smad4 co-expression and co-knockdown. The mRNA levels of TGF-β1, Smad4, and type I collagen were upregulated in the groups with over-expressed TGF-β1 and Smad4 and downregulated in the groups of TGF-β1 and Smad4 RNAi in comparison to controls in vitro (P < 0.05). Similarly, in the in vivo experiment, the mRNA abundance of TGF-β1, Smad4, and type I collagen of over-expression group was higher than the controls at 36 h (P < 0.05). Co-injection of TGF-β1/Smad4 over-expression and RNAi vectors generally showed the higher efficacy. This study revealed that TGF-β1 and Smad4 genes regulated type I collagen expression in grass carp muscle and zebrafish. These findings will provide references for the collagen regulation of other freshwater fishes.
Collapse
Affiliation(s)
- Yun Xia
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Ermeng Yu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China.
| | - Zhifei Li
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Kai Zhang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Jingjing Tian
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Guangjun Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Jun Xie
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Wangbao Gong
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| |
Collapse
|
23
|
Jabbour SK, Williams TM, Sayan M, Miller ED, Ajani JA, Chang AC, Coleman N, El-Rifai W, Haddock M, Ilson D, Jamorabo D, Kunos C, Lin S, Liu G, Prasanna PG, Rustgi AK, Wong R, Vikram B, Ahmed MM. Potential Molecular Targets in the Setting of Chemoradiation for Esophageal Malignancies. J Natl Cancer Inst 2021; 113:665-679. [PMID: 33351071 PMCID: PMC8600025 DOI: 10.1093/jnci/djaa195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/03/2020] [Accepted: 11/30/2020] [Indexed: 11/14/2022] Open
Abstract
Although the development of effective combined chemoradiation regimens for esophageal cancers has resulted in statistically significant survival benefits, the majority of patients treated with curative intent develop locoregional and/or distant relapse. Further improvements in disease control and survival will require the development of individualized therapy based on the knowledge of host and tumor genomics and potentially harnessing the host immune system. Although there are a number of gene targets that are amplified and proteins that are overexpressed in esophageal cancers, attempts to target several of these have not proven successful in unselected patients. Herein, we review our current state of knowledge regarding the molecular pathways implicated in esophageal carcinoma, and the available agents for targeting these pathways that may rationally be combined with standard chemoradiation, with the hope that this commentary will guide future efforts of novel combinations of therapy.
Collapse
Affiliation(s)
- Salma K Jabbour
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Terence M Williams
- Department of Radiation Oncology, The Ohio State University, Columbus, OH, USA
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Mutlay Sayan
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Eric D Miller
- Department of Radiation Oncology, The Ohio State University, Columbus, OH, USA
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew C Chang
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Surgery, Section of Thoracic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Norman Coleman
- National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Wael El-Rifai
- Department of Surgery, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Veterans Affairs, Miami Healthcare System, Miami, FL, USA
| | - Michael Haddock
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - David Ilson
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | - Charles Kunos
- Investigational Drug Branch, Cancer Therapy Evaluation Program, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Steven Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Geoffrey Liu
- Division of Medical Oncology, Princess Margaret Cancer Centre, Toronto, Canada
| | - Pataje G Prasanna
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Anil K Rustgi
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Rosemary Wong
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Bhadrasain Vikram
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Mansoor M Ahmed
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
24
|
Li HL, Li QY, Jin MJ, Lu CF, Mu ZY, Xu WY, Song J, Zhang Y, Zhang SY. A review: hippo signaling pathway promotes tumor invasion and metastasis by regulating target gene expression. J Cancer Res Clin Oncol 2021; 147:1569-1585. [PMID: 33864521 DOI: 10.1007/s00432-021-03604-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/16/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND The Hippo pathway is widely considered to inhibit cell growth and play an important role in regulating the size of organs. However, recent studies have shown that abnormal regulation of the Hippo pathway can also affect tumor invasion and metastasis. Therefore, finding out how the Hippo pathway promotes tumor development by regulating the expression of target genes provides new ideas for future research on targeted drugs that inhibit tumor progression. METHODS PubMed, Embase, Web of Science, and the Cochrane Library were systematically searched. RESULTS The search strategy identified 1892 hits and 196 publications were finally included in this review. As the core molecule of the Hippo pathway, YAP/TAZ are usually highly expressed in tumors that undergo invasion and migration and are accompanied by abnormally strong nuclear metastasis. Through its interaction with nuclear transcription factors TEADs, it directly or indirectly regulates and the expressions of target genes related to tumor metastasis and invasion. These target genes can induce the formation of invasive pseudopodia in tumor cells, reduce intercellular adhesion, degrade extracellular matrix (ECM), and cause epithelial-mesenchymal transition (EMT), or indirectly promote through other signaling pathways, such as mitogen-activated protein kinases (MAPK), TGF/Smad, etc, which facilitate the invasion and metastasis of tumors. CONCLUSION This article mainly introduces the research progress of YAP/TAZ which are the core molecules of the Hippo pathway regulating related target genes to promote tumor invasion and metastasis. Focus on the target genes that affect tumor invasion and metastasis, providing the possibility for the selection of clinical drug treatment targets, to provide some help for a more in-depth study of tumor invasion and migration mechanism and the development of clinical drugs.
Collapse
Affiliation(s)
- Hong-Li Li
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Qian-Yu Li
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Min-Jie Jin
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chao-Fan Lu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhao-Yang Mu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wei-Yi Xu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jian Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China. .,School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Institute of Drug Discovery and Development, Zhengzhou, 450001, China.
| | - Yan Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Sai-Yang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China. .,School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Institute of Drug Discovery and Development, Zhengzhou, 450001, China. .,Zhengzhou University, Henan Institute of Advanced Technology, Zhengzhou, 450001, China.
| |
Collapse
|
25
|
SMADS-Mediate Molecular Mechanisms in Sjögren's Syndrome. Int J Mol Sci 2021; 22:ijms22063203. [PMID: 33801157 PMCID: PMC8004153 DOI: 10.3390/ijms22063203] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
There is considerable interest in delineating the molecular mechanisms of action of transforming growth factor-β (TGF-β), considered as central player in a plethora of human conditions, including cancer, fibrosis and autoimmune disease. TGF-β elicits its biological effects through membrane bound serine/threonine kinase receptors which transmit their signals via downstream signalling molecules, SMADs, which regulate the transcription of target genes in collaboration with various co-activators and co-repressors. Until now, therapeutic strategy for primary Sjögren’s syndrome (pSS) has been focused on inflammation, but, recently, the involvement of TGF-β/SMADs signalling has been demonstrated in pSS salivary glands (SGs) as mediator of the epithelial-mesenchymal transition (EMT) activation. Although EMT seems to cause pSS SG fibrosis, TGF-β family members have ambiguous effects on the function of pSS SGs. Based on these premises, this review highlights recent advances in unravelling the molecular basis for the multi-faceted functions of TGF-β in pSS that are dictated by orchestrations of SMADs, and describe TGF-β/SMADs value as both disease markers and/or therapeutic target for pSS.
Collapse
|
26
|
Abdel Mouti M, Pauklin S. TGFB1/INHBA Homodimer/Nodal-SMAD2/3 Signaling Network: A Pivotal Molecular Target in PDAC Treatment. Mol Ther 2021; 29:920-936. [PMID: 33429081 PMCID: PMC7934636 DOI: 10.1016/j.ymthe.2021.01.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/17/2020] [Accepted: 01/02/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer remains a grueling disease that is projected to become the second-deadliest cancer in the next decade. Standard treatment of pancreatic cancer is chemotherapy, which mainly targets the differentiated population of tumor cells; however, it paradoxically sets the roots of tumor relapse by the selective enrichment of intrinsically chemoresistant pancreatic cancer stem cells that are equipped with an indefinite capacity for self-renewal and differentiation, resulting in tumor regeneration and an overall anemic response to chemotherapy. Crosstalk between pancreatic tumor cells and the surrounding stromal microenvironment is also involved in the development of chemoresistance by creating a supportive niche, which enhances the stemness features and tumorigenicity of pancreatic cancer cells. In addition, the desmoplastic nature of the tumor-associated stroma acts as a physical barrier, which limits the intratumoral delivery of chemotherapeutics. In this review, we mainly focus on the transforming growth factor beta 1 (TGFB1)/inhibin subunit beta A (INHBA) homodimer/Nodal-SMAD2/3 signaling network in pancreatic cancer as a pivotal central node that regulates multiple key mechanisms involved in the development of chemoresistance, including enhancement of the stem cell-like properties and tumorigenicity of pancreatic cancer cells, mediating cooperative interactions between pancreatic cancer cells and the surrounding stroma, as well as regulating the deposition of extracellular matrix proteins within the tumor microenvironment.
Collapse
Affiliation(s)
- Mai Abdel Mouti
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Headington, University of Oxford, Oxford OX3 7LD, UK
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Headington, University of Oxford, Oxford OX3 7LD, UK.
| |
Collapse
|
27
|
Characterization of the different oligomeric states of the DAN family antagonists SOSTDC1 and SOST. Biochem J 2021; 477:3167-3182. [PMID: 32779697 PMCID: PMC7473711 DOI: 10.1042/bcj20200552] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 12/16/2022]
Abstract
The DAN (differential screening-selected gene aberrative in neuroblastoma) family are a group of secreted extracellular proteins which typically bind to and antagonize BMP (bone morphogenetic protein) ligands. Previous studies have revealed discrepancies between the oligomerization state of certain DAN family members, with SOST (a poor antagonist of BMP signaling) forming a monomer while Grem1, Grem2, and NBL1 (more potent BMP antagonists) form non-disulfide linked dimers. The protein SOSTDC1 (Sclerostin domain containing protein 1) is sequentially similar to SOST, but has been shown to be a better BMP inhibitor. In order to determine the oligomerization state of SOSTDC1 and determine what effect dimerization might have on the mechanism of DAN family antagonism of BMP signaling, we isolated the SOSTDC1 protein and, using a battery of biophysical, biochemical, and structural techniques, showed that SOSTDC1 forms a highly stable non-covalent dimer. Additionally, this SOSTDC1 dimer was shown, using an in vitro cell based assay system, to be an inhibitor of multiple BMP signaling growth factors, including GDF5, while monomeric SOST was a very poor antagonist. These results demonstrate that SOSTDC1 is distinct from paralogue SOST in terms of both oligomerization and strength of BMP inhibition.
Collapse
|
28
|
Lee SU, Kim MO, Kang MJ, Oh ES, Ro H, Lee RW, Song YN, Jung S, Lee JW, Lee SY, Bae T, Hong ST, Kim TD. Transforming Growth Factor β Inhibits MUC5AC Expression by Smad3/HDAC2 Complex Formation and NF-κB Deacetylation at K310 in NCI-H292 Cells. Mol Cells 2021; 44:38-49. [PMID: 33510050 PMCID: PMC7854180 DOI: 10.14348/molcells.2020.0188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/29/2020] [Accepted: 01/12/2021] [Indexed: 01/17/2023] Open
Abstract
Airway mucus secretion is an essential innate immune response for host protection. However, overproduction and hypersecretion of mucus, mainly composed of the gel- forming MUC5AC protein, are significant risk factors for patients with asthma and chronic obstructive pulmonary disease (COPD). The transforming growth factor β (TGFβ) signaling pathway negatively regulates MUC5AC expression; however, the underlying molecular mechanism is not fully understood. Here, we showed that TGFβ significantly reduces the expression of MUC5AC mRNA and its protein in NCI-H292 cells, a human mucoepidermoid carcinoma cell line. This reduced MUC5AC expression was restored by a TGFβ receptor inhibitor (SB431542), but not by the inhibition of NF-κB (BAY11-7082 or Triptolide) or PI3K (LY294002) activities. TGFβ-activated Smad3 dose-dependently bound to MUC5AC promoter. Notably, TGFβ-activated Smad3 recruited HDAC2 and facilitated nuclear translocation of HDAC2, thereby inducing the deacetylation of NF-κB at K310, which is essential for a reduction in NF-κB transcriptional activity. Both TGFβ-induced nuclear translocation of Smad3/HDAC2 and deacetylation of NF-κB at K310 were suppressed by a Smad3 inhibitor (SIS3). These results suggest that the TGFβ-activated Smad3/HDAC2 complex is an essential negative regulator for MUC5AC expression and an epigenetic regulator for NF-κB acetylation. Therefore, these results collectively suggest that modulation of the TGFβ1/Smad3/HDAC2/NF-κB pathway axis can be a promising way to improve lung function as a treatment strategy for asthma and COPD.
Collapse
Affiliation(s)
- Su Ui Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Mun-Ock Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Myung-Ji Kang
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Eun Sol Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Ro Woon Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Yu Na Song
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Sunin Jung
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Soo Yun Lee
- Immunotherapy Research Center, KRIBB, Daejeon 34141, Korea
| | - Taeyeol Bae
- Immunotherapy Research Center, KRIBB, Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Korea
| | - Sung-Tae Hong
- Department of Anatomy & Cell Biology, Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea
- Chungnam National University Hospital, Daejeon 35015, Korea
| | - Tae-Don Kim
- Immunotherapy Research Center, KRIBB, Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Korea
| |
Collapse
|
29
|
Sinha A, Iyengar PV, ten Dijke P. E3 Ubiquitin Ligases: Key Regulators of TGFβ Signaling in Cancer Progression. Int J Mol Sci 2021; 22:E476. [PMID: 33418880 PMCID: PMC7825147 DOI: 10.3390/ijms22020476] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/25/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023] Open
Abstract
Transforming growth factor β (TGFβ) is a secreted growth and differentiation factor that influences vital cellular processes like proliferation, adhesion, motility, and apoptosis. Regulation of the TGFβ signaling pathway is of key importance to maintain tissue homeostasis. Perturbation of this signaling pathway has been implicated in a plethora of diseases, including cancer. The effect of TGFβ is dependent on cellular context, and TGFβ can perform both anti- and pro-oncogenic roles. TGFβ acts by binding to specific cell surface TGFβ type I and type II transmembrane receptors that are endowed with serine/threonine kinase activity. Upon ligand-induced receptor phosphorylation, SMAD proteins and other intracellular effectors become activated and mediate biological responses. The levels, localization, and function of TGFβ signaling mediators, regulators, and effectors are highly dynamic and regulated by a myriad of post-translational modifications. One such crucial modification is ubiquitination. The ubiquitin modification is also a mechanism by which crosstalk with other signaling pathways is achieved. Crucial effector components of the ubiquitination cascade include the very diverse family of E3 ubiquitin ligases. This review summarizes the diverse roles of E3 ligases that act on TGFβ receptor and intracellular signaling components. E3 ligases regulate TGFβ signaling both positively and negatively by regulating degradation of receptors and various signaling intermediates. We also highlight the function of E3 ligases in connection with TGFβ's dual role during tumorigenesis. We conclude with a perspective on the emerging possibility of defining E3 ligases as drug targets and how they may be used to selectively target TGFβ-induced pro-oncogenic responses.
Collapse
Affiliation(s)
| | | | - Peter ten Dijke
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (A.S.); (P.V.I.)
| |
Collapse
|
30
|
Yang H, Shang X, Zhong G, Hong L, Li Z, Zhuang W, Cheng J. Berberine protects human and rat cardiomyocytes from hypoxia/reoxygenation-triggered apoptosis. Am J Transl Res 2021; 13:659-671. [PMID: 33594316 PMCID: PMC7868847 DOI: pmid/33594316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/07/2020] [Indexed: 02/05/2023]
Abstract
Berberine (BBR) confers potential cardioprotective effects. However, the relevant mechanisms underlying its regulation of cardiomyocyte survival following hypoxia/reoxygenation (H/R) treatment remain unknown. The present study investigated whether BBR could protect H/R by suppressing apoptosis and explored how TGF-β/Smad4 signaling pathway influenced H/R in vitro. Two cardiomyocyte cell lines-AC16 and H9c2- were treated with H/R and BBR. The survival and apoptosis of these two cell lines were assessed using the MTT and BrdU assays and western blotting (WB) and flow cytometry. Mitochondrial reactive oxygen species (ROS) and caspase (Cas)-3, Cas-8, and Cas-9 activation were evaluated using enzyme-linked immunosorbent assay as well as WB. Compared to the control group, H/R resulted in notable cell apoptosis, whereas BBR treatment evidently counteracted the process. BBR also markedly suppressed H/R-triggered excessive mitochondrial ROS generation and inhibited Smad4 expression. Overexpressing Smad4 in BBR-treated H/R-exposed cardiomyocytes reversed the effect of BBR treatment on apoptosis. Therefore, BBR protects H/R-treated cardiomyocytes from apoptosis by inhibiting the TGF-β/Smad4 signaling pathway.
Collapse
Affiliation(s)
- Haiyan Yang
- The First Affiliated Hospital of Shantou University Medical College & Laboratory of Molecular Cardiology & Laboratory of Molecular ImagingShantou 515041, China
| | - Xu Shang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong KongShantou 515041, China
| | - Guoqing Zhong
- Shantou University Medical CollegeShantou 515041, China
| | - Liangli Hong
- The First Affiliated Hospital of Shantou University Medical CollegeShantou 515041, China
| | - Zhi Li
- The Second Affiliated Hospital of Shantou University Medical CollegeShantou 515041, China
| | - Wanling Zhuang
- The First Affiliated Hospital of Shantou University Medical CollegeShantou 515041, China
| | - Jidong Cheng
- School Medical, Xiamen UniversityShantou 515041, China
| |
Collapse
|
31
|
Gipson GR, Goebel EJ, Hart KN, Kappes EC, Kattamuri C, McCoy JC, Thompson TB. Structural perspective of BMP ligands and signaling. Bone 2020; 140:115549. [PMID: 32730927 PMCID: PMC7502536 DOI: 10.1016/j.bone.2020.115549] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022]
Abstract
The Bone Morphogenetic Proteins (BMPs) are the largest class signaling molecules within the greater Transforming Growth Factor Beta (TGFβ) family, and are responsible for a wide array of biological functions, including dorsal-ventral patterning, skeletal development and maintenance, as well as cell homeostasis. As such, dysregulation of BMPs results in a number of diseases, including fibrodysplasia ossificans progressiva (FOP) and pulmonary arterial hypertension (PAH). Therefore, understanding BMP signaling and regulation at the molecular level is essential for targeted therapeutic intervention. This review discusses the recent advances in the structural and biochemical characterization of BMPs, from canonical ligand-receptor interactions to co-receptors and antagonists. This work aims to highlight how BMPs differ from other members of the TGFβ family, and how that information can be used to further advance the field. Lastly, this review discusses several gaps in the current understanding of BMP structures, with the aim that discussion of these gaps will lead to advancements in the field.
Collapse
Affiliation(s)
- Gregory R Gipson
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA
| | - Erich J Goebel
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA
| | - Kaitlin N Hart
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA
| | - Emily C Kappes
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA
| | - Chandramohan Kattamuri
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA
| | - Jason C McCoy
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA
| | - Thomas B Thompson
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA.
| |
Collapse
|
32
|
Sanchez-Duffhues G, Williams E, Goumans MJ, Heldin CH, Ten Dijke P. Bone morphogenetic protein receptors: Structure, function and targeting by selective small molecule kinase inhibitors. Bone 2020; 138:115472. [PMID: 32522605 DOI: 10.1016/j.bone.2020.115472] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022]
Abstract
Bone morphogenetic proteins (BMPs) are secreted cytokines that control the fate and function of many different cell types. They exert their cellular responses via heteromeric complexes of specific BMP type I and type II serine/threonine kinase receptors, e.g. BMPRIA and BMPRII. Three type II and four type I receptors, also termed activin receptor-like kinases (ALKs), have been identified. The constitutively active type II kinase phosphorylates the type I receptor, which upon activation initiates intracellular signaling by phosphorylating SMAD effectors. Auxiliary cell surface receptors without intrinsic enzymatic motifs, such as Endoglin and Repulsive guidance molecules (RGM), can fine-tune signaling by regulating the interaction of the BMP ligands with the BMPRs. The functional annotation of the BMPR encoding genes has helped to understand underlying mechanisms of diseases in which these genes are mutated. Loss of function mutations in BMPRII, Endoglin or RGMc are causally linked to pulmonary arterial hypertension, hereditary hemorrhagic telangiectasia and juvenile hemochromatosis, respectively. In contrast, gain of function mutations in ACVR1, encoding ALK2, are linked to Fibrodysplasia ossificans progressiva and diffuse intrinsic pontine glioma. Here, we discuss BMPR identification, structure and function in health and disease. Moreover, we highlight the therapeutic promise of small chemical compounds that act as selective BMPR kinase inhibitors to normalize overactive BMPR signaling.
Collapse
Affiliation(s)
- Gonzalo Sanchez-Duffhues
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands.
| | - Eleanor Williams
- Structural Genomics Consortium, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Marie-Jose Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands; Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Uppsala University, SE-751 23 Uppsala, Sweden; Oncode Institute, Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands.
| |
Collapse
|
33
|
Jiang S, Fang DA, Xu D. Transcriptome analysis of Takifugu obscurus liver in response to acute retene exposure. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:1188-1200. [PMID: 32558618 DOI: 10.1080/10934529.2020.1780852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Retene (1-methyl-7-isopropyl-phenanthrene, RET) is an alkyl polycyclic aromatic hydrocarbon (PAH) with environmental risk to aquatic animals. Takifugu obscurus is a migratory fish species with high economic and ecological value. To assess the toxic effects of RET on molecular metabolism, juvenile T. obscurus in this study were acutely exposed to 44.30 µg/L of RET for four days. The transcriptome profiles of livers were compared between RET treatment group and the control, and the results revealed that 1,897 genes were significantly differentially expressed (DEGs) after exposure to RET, which enriched 17 KEGG pathways. Among these, glycerolipid metabolism, glycerophospholipid metabolism, insulin signaling pathway, and FOXO signaling pathways were significantly activated. Further exploration indicated that RET exposure disrupted glucose metabolism, stimulated insulin metabolism, and activated cell proliferation genes. Overall, these findings help explain the molecular mechanisms underlying RET toxicity, and may offer evidence to support T. obscurus protection.
Collapse
Affiliation(s)
- Shulun Jiang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Di-An Fang
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Dongpo Xu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| |
Collapse
|
34
|
Gonadal development and sex determination in mouse. Reprod Biol 2020; 20:115-126. [DOI: 10.1016/j.repbio.2020.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 01/21/2020] [Accepted: 01/25/2020] [Indexed: 12/18/2022]
|
35
|
Reich S, Kayastha P, Teegala S, Weinstein DC. Tbx2 mediates dorsal patterning and germ layer suppression through inhibition of BMP/GDF and Activin/Nodal signaling. BMC Mol Cell Biol 2020; 21:39. [PMID: 32466750 PMCID: PMC7257154 DOI: 10.1186/s12860-020-00282-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/11/2020] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Members of the T-box family of DNA-binding proteins play a prominent role in the differentiation of the three primary germ layers. VegT, Brachyury, and Eomesodermin function as transcriptional activators and, in addition to directly activating the transcription of endoderm- and mesoderm-specific genes, serve as regulators of growth factor signaling during induction of these germ layers. In contrast, the T-box gene, tbx2, is expressed in the embryonic ectoderm, where Tbx2 functions as a transcriptional repressor and inhibits mesendodermal differentiation by the TGFβ ligand Activin. Tbx2 misexpression also promotes dorsal ectodermal fate via inhibition of the BMP branch of the TGFβ signaling network. RESULTS Here, we report a physical association between Tbx2 and both Smad1 and Smad2, mediators of BMP and Activin/Nodal signaling, respectively. We perform structure/function analysis of Tbx2 to elucidate the roles of both Tbx2-Smad interaction and Tbx2 DNA-binding in germ layer suppression. CONCLUSION Our studies demonstrate that Tbx2 associates with intracellular mediators of the Activin/Nodal and BMP/GDF pathways. We identify a novel repressor domain within Tbx2, and have determined that Tbx2 DNA-binding activity is required for repression of TGFβ signaling. Finally, our data also point to overlapping yet distinct mechanisms for Tbx2-mediated repression of Activin/Nodal and BMP/GDF signaling.
Collapse
Affiliation(s)
- Shoshana Reich
- The Graduate Center, The City University of New York, New York, NY, 10016, USA
| | - Peter Kayastha
- Department of Biology, Queens College, The City University of New York, Queens, NY, 11367, USA
| | - Sushma Teegala
- Department of Biology, Queens College, The City University of New York, Queens, NY, 11367, USA
| | - Daniel C Weinstein
- The Graduate Center, The City University of New York, New York, NY, 10016, USA. .,Department of Biology, Queens College, The City University of New York, Queens, NY, 11367, USA.
| |
Collapse
|
36
|
Affiliation(s)
- Soner Duman
- Department of Nephrology Ege University Izmir, Turkey
| | | |
Collapse
|
37
|
Borok MJ, Mademtzoglou D, Relaix F. Bu-M-P-ing Iron: How BMP Signaling Regulates Muscle Growth and Regeneration. J Dev Biol 2020; 8:jdb8010004. [PMID: 32053985 PMCID: PMC7151139 DOI: 10.3390/jdb8010004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/16/2022] Open
Abstract
The bone morphogenetic protein (BMP) pathway is best known for its role in promoting bone formation, however it has been shown to play important roles in both development and regeneration of many different tissues. Recent work has shown that the BMP proteins have a number of functions in skeletal muscle, from embryonic to postnatal development. Furthermore, complementary studies have recently demonstrated that specific components of the pathway are required for efficient muscle regeneration.
Collapse
Affiliation(s)
- Matthew J Borok
- Inserm, IMRB U955-E10, 94010 Créteil, France; (M.J.B.); (D.M.)
- Faculté de santé, Université Paris Est, 94000 Creteil, France
| | - Despoina Mademtzoglou
- Inserm, IMRB U955-E10, 94010 Créteil, France; (M.J.B.); (D.M.)
- Faculté de santé, Université Paris Est, 94000 Creteil, France
| | - Frederic Relaix
- Inserm, IMRB U955-E10, 94010 Créteil, France; (M.J.B.); (D.M.)
- Faculté de santé, Université Paris Est, 94000 Creteil, France
- Ecole Nationale Veterinaire d’Alfort, 94700 Maison Alfort, France
- Etablissement Français du Sang, 94017 Créteil, France
- APHP, Hopitaux Universitaires Henri Mondor, DHU Pepsy & Centre de Référence des Maladies Neuromusculaires GNMH, 94000 Créteil, France
- Correspondence: ; Tel.: +33-149-813-940
| |
Collapse
|
38
|
Chen G, Liu L, Sun J, Zeng L, Cai H, He Y. Foxf2 and Smad6 co-regulation of collagen 5A2 transcription is involved in the pathogenesis of intrauterine adhesion. J Cell Mol Med 2020; 24:2802-2818. [PMID: 32022446 PMCID: PMC7077542 DOI: 10.1111/jcmm.14708] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 12/16/2022] Open
Abstract
The replacement of normal endometrial epithelium by fibrotic tissue is the pathological feature of intrauterine adhesion (IUA), which is caused by trauma to the basal layer of the endometrium. COL5A2 is a molecular subtype of collagen V that regulates collagen production in fibrotic tissue. Here, we investigated the roles of Foxf2 and Smad6 in regulating the transcription of COL5A2 and their involvement in the pathogenesis of IUA. Small interference‐mediated Foxf2 (si‐Foxf2) silencing and pcDNA3.1‐mediated Smad6 (pcDNA3.1‐Smad6) up‐regulation were performed in a TGF‐β1‐induced human endometrial stromal cell line (HESC) fibrosis model. Assessment of collagen expression by Western blotting, immunofluorescence and qRT‐PCR showed that COL5A2, COL1A1 and FN were significantly down‐regulated in response to si‐Foxf2 and pcDNA3.1‐Smad6. Transfection of lentivirus vector‐Foxf2 (LV‐Foxf2) and pcDNA3.1‐Smad6 into HESCs and qRT‐PCR showed that Foxf2 promoted COL5A2 expression and Smad6 inhibited Foxf2‐induced COL5A2 expression. Co‐immunoprecipitation, chromatin immunoprecipitation and dual‐luciferase reporter assays to detect the interaction between Foxf2 and Smad6 and their role in COL5A2 transcription showed that Foxf2 interacted with Smad6 and bond the same promoter region of COL5A2. In a rat IUA model, injection of ADV2‐Foxf2‐1810 and ADV4‐Smad6 into the uterine wall showed that Foxf2 down‐regulation and Smad6 up‐regulation decreased fibrosis and the expression of COL5A2 and COL1A1, as detected by haematoxylin/eosin, Masson trichrome staining and immunohistochemistry. Taken together, these results suggested that Foxf2 interacted with Smad6 and co‐regulated COL5A2 transcription in the pathogenesis of IUA, whereas they played opposite roles in fibrosis.
Collapse
Affiliation(s)
- Guobin Chen
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Limin Liu
- Department of Obstetrics and Gynecology, Shenzhen Maternity and Childcare Hospital, Shenzhen, China
| | - Jing Sun
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Liying Zeng
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Huihua Cai
- Department of Obstetrics and Gynecology, Guangdong Provincial People`s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuanli He
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
39
|
Pin1 Plays Essential Roles in NASH Development by Modulating Multiple Target Proteins. Cells 2019; 8:cells8121545. [PMID: 31795496 PMCID: PMC6952946 DOI: 10.3390/cells8121545] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023] Open
Abstract
Pin1 is one of the three known prolyl-isomerase types and its hepatic expression level is markedly enhanced in the obese state. Pin1 plays critical roles in favoring the exacerbation of both lipid accumulation and fibrotic change accompanying inflammation. Indeed, Pin1-deficient mice are highly resistant to non-alcoholic steatohepatitis (NASH) development by either a high-fat diet or methionine-choline-deficient diet feeding. The processes of NASH development can basically be separated into lipid accumulation and subsequent fibrotic change with inflammation. In this review, we outline the molecular mechanisms by which increased Pin1 promotes both of these phases of NASH. The target proteins of Pin1 involved in lipid accumulation include insulin receptor substrate 1 (IRS-1), AMP-activated protein kinase (AMPK) and acetyl CoA carboxylase 1 (ACC1), while the p60 of the NF-kB complex and transforming growth factor β (TGF-β) pathway appear to be involved in the fibrotic process accelerated by Pin1. Interestingly, Pin1 deficiency does not cause abnormalities in liver size, appearance or function. Therefore, we consider the inhibition of increased Pin1 to be a promising approach to treating NASH and preventing hepatic fibrosis.
Collapse
|
40
|
Reich S, Weinstein DC. Repression of Inappropriate Gene Expression in the Vertebrate Embryonic Ectoderm. Genes (Basel) 2019; 10:E895. [PMID: 31698780 PMCID: PMC6895975 DOI: 10.3390/genes10110895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 01/01/2023] Open
Abstract
During vertebrate embryogenesis, precise regulation of gene expression is crucial for proper cell fate determination. Much of what we know about vertebrate development has been gleaned from experiments performed on embryos of the amphibian Xenopus laevis; this review will focus primarily on studies of this model organism. An early critical step during vertebrate development is the formation of the three primary germ layers-ectoderm, mesoderm, and endoderm-which emerge during the process of gastrulation. While much attention has been focused on the induction of mesoderm and endoderm, it has become clear that differentiation of the ectoderm involves more than the simple absence of inductive cues; rather, it additionally requires the inhibition of mesendoderm-promoting genes. This review aims to summarize our current understanding of the various inhibitors of inappropriate gene expression in the presumptive ectoderm.
Collapse
Affiliation(s)
- Shoshana Reich
- PhD Program in Biology, The Graduate Center, The City University of New York, New York, NY 10016, USA
| | - Daniel C. Weinstein
- PhD Program in Biology, The Graduate Center, The City University of New York, New York, NY 10016, USA
- Department of Biology, Queens College, The City University of New York, Queens, NY 11367, USA
| |
Collapse
|
41
|
Chen C, Nelson LJ, Ávila MA, Cubero FJ. Mitogen-Activated Protein Kinases (MAPKs) and Cholangiocarcinoma: The Missing Link. Cells 2019; 8:cells8101172. [PMID: 31569444 PMCID: PMC6829385 DOI: 10.3390/cells8101172] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/18/2019] [Accepted: 09/25/2019] [Indexed: 02/07/2023] Open
Abstract
In recent years, the incidence of both liver and biliary tract cancer has increased. Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) are the two most common types of hepatic malignancies. Whereas HCC is the fifth most common malignant tumor in Western countries, the prevalence of CCA has taken an alarming increase from 0.3 to 2.1 cases per 100,000 people. The lack of specific biomarkers makes diagnosis very difficult in the early stages of this fatal cancer. Thus, the prognosis of CCA is dismal and surgery is the only effective treatment, whilst recurrence after resection is common. Even though chemotherapy and radiotherapy may prolong survival in patients with CCA, the 5-year survival rate is still very low—a significant global problem in clinical diagnosis and therapy. The mitogen-activated protein kinase (MAPK) pathway plays an important role in signal transduction by converting extracellular stimuli into a wide range of cellular responses including inflammatory response, stress response, differentiation, survival, and tumorigenesis. Dysregulation of the MAPK cascade involves key signaling components and phosphorylation events that play an important role in tumorigenesis. In this review, we discuss the pathophysiological role of MAPK, current therapeutic options, and the current situation of MAPK-targeted therapies in CCA.
Collapse
Affiliation(s)
- Chaobo Chen
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, 28040 Madrid, Spain.
- de Octubre Health Research Institute (imas12), 28040 Madrid, Spain.
- Department of General Surgery, Wuxi Xishan People's Hospital, Wuxi 214000, China.
| | - Leonard J Nelson
- Institute for Bioengineering (IBioE), School of Engineering, Faraday Building, The University of Edinburgh, Edinburgh EH9 3 JL, Scotland, UK.
| | - Matías A Ávila
- Hepatology Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain.
- Centro de Investigacion Biomedica en Red, Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain.
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, 28040 Madrid, Spain.
- de Octubre Health Research Institute (imas12), 28040 Madrid, Spain.
| |
Collapse
|
42
|
Mazzocchi M, Wyatt SL, Mercatelli D, Morari M, Morales-Prieto N, Collins LM, Sullivan AM, O’Keeffe GW. Gene Co-expression Analysis Identifies Histone Deacetylase 5 and 9 Expression in Midbrain Dopamine Neurons and as Regulators of Neurite Growth via Bone Morphogenetic Protein Signaling. Front Cell Dev Biol 2019; 7:191. [PMID: 31572723 PMCID: PMC6753186 DOI: 10.3389/fcell.2019.00191] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/26/2019] [Indexed: 12/27/2022] Open
Abstract
Parkinson's disease is characterized by the intracellular accumulation of α-synuclein which has been linked to early dopaminergic axonal degeneration. Identifying druggable targets that can promote axonal growth in cells overexpressing α-synuclein is important in order to develop strategies for early intervention. Class-IIa histone deacetylases (HDACs) have previously emerged as druggable targets, however, it is not known which specific class-IIa HDACs should be targeted to promote neurite growth in dopaminergic neurons. To provide insight into this, we used gene co-expression analysis to identify which, if any, of the class-IIa HDACs had a positive correlation with markers of dopaminergic neurons in the human substantia nigra. This revealed that two histone deacetylases, HDAC5 and HDAC9, are co-expressed with TH, GIRK2 and ALDH1A1 in the human SN. We further found that HDAC5 and HDAC9 are expressed in dopaminergic neurons in the adult mouse substantia nigra. We show that siRNAs targeting HDAC5 or HDAC9 can promote neurite growth in SH-SY5Y cells, and that their pharmacological inhibition, using the drug MC1568, promoted neurite growth in cultured rat dopaminergic neurons. Moreover, MC1568 treatment upregulated the expression of the neurotrophic factor, BMP2, and its downstream transcription factor, SMAD1. In addition, MC1568 or siRNAs targeting HDAC5 or HDAC9 led to an increase in Smad-dependent GFP expression in a reporter assay. Furthermore, MC1568 treatment of cultured rat dopaminergic neurons increased cellular levels of phosphorylated Smad1, which was prevented by the BMP receptor inhibitor, dorsomorphin. Dorsomorphin treatment prevented the neurite growth-promoting effects of siRNAs targeting HDAC5, as did overexpression of dominant-negative Smad4 or of the inhibitory Smad7, demonstrating a functional link to BMP signaling. Supplementation with BMP2 prevented the neurite growth-inhibitory effects of nuclear-restricted HDAC5. Finally, we report that siRNAs targeting HDAC5 or HDAC9 promoted neurite growth in cells overexpressing wild-type or A53T-α-synuclein and that MC1568 protected cultured rat dopaminergic neurons against the neurotoxin, MPP+. These findings establish HDAC5 and HDAC9 as novel regulators of BMP-Smad signaling, that additionally may be therapeutic targets worthy of further exploration in iPSC-derived human DA neurons and in vivo models of Parkinson's disease.
Collapse
Affiliation(s)
- Martina Mazzocchi
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland
| | - Sean L. Wyatt
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Daniela Mercatelli
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, National Institute of Neuroscience, Ferrara, Italy
| | - Michele Morari
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, National Institute of Neuroscience, Ferrara, Italy
| | | | - Louise M. Collins
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
| | - Aideen M. Sullivan
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Gerard W. O’Keeffe
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
43
|
Ritterhouse LL, Wu EY, Kim WG, Dillon DA, Hirsch MS, Sholl LM, Agoston AT, Setia N, Lauwers GY, Park DY, Srivastava A, Doyle LA. Loss of SMAD4 protein expression in gastrointestinal and extra-gastrointestinal carcinomas. Histopathology 2019; 75:546-551. [PMID: 31054158 DOI: 10.1111/his.13894] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/30/2019] [Indexed: 12/19/2022]
Abstract
AIMS SMAD4 (DPC4) is a tumour suppressor gene that is dysregulated in various tumour types, particularly pancreaticobiliary and gastrointestinal carcinomas. Corresponding loss of protein expression has been reported in approximately 50% of pancreatic and 25% of colonic adenocarcinomas. In the evaluation of carcinoma of unknown primary site, immunohistochemical loss of SMAD4 expression is often used to suggest pancreaticobiliary origin, but there are limited data on the spectrum of SMAD4 expression in carcinomas of other sites. This study evaluates the frequency of SMAD4 loss in a large cohort of carcinomas from diverse anatomical sites. METHODS AND RESULTS Immunohistochemistry for SMAD4 was performed on tissue microarrays or whole tissue sections of 1210 carcinomas from various organs: gastrointestinal tract, liver, pancreas/biliary tract, lung, breast, thyroid, kidney, ovary and uterus. Expression was considered lost when there was complete absence of staining in tumour cell nuclei, in the presence of intact staining in non-neoplastic cells. SMAD4 loss was seen in 58% of pancreatic adenocarcinomas, 27% of appendiceal adenocarcinomas, 19% of colorectal adenocarcinomas, 16% of cholangiocarcinomas, 10% of lung adenocarcinomas and <5% of oesophageal, breast, gastric and mucinous ovarian adenocarcinomas. All papillary thyroid, hepatocellular, non-mucinous ovarian, endometrial and renal cell carcinomas showed intact SMAD4 nuclear expression. CONCLUSION In addition to pancreaticobiliary, appendiceal and colonic tumours, SMAD4 loss is also seen in a small subset of other carcinomas, specifically breast, lung, oesophageal and gastric adenocarcinomas, all of which are typically CK7-positive, similar to pancreaticobiliary carcinoma. Awareness of SMAD4 loss in these other carcinoma types is helpful in the evaluation of carcinomas of unknown or uncertain primary site.
Collapse
Affiliation(s)
| | - Elizabeth Yiru Wu
- Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Woo Gyeong Kim
- Haeundae Paik Hospital, University of Inje College of Medicine, Busan, Korea
| | - Deborah A Dillon
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michelle S Hirsch
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lynette M Sholl
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Agoston T Agoston
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Do Youn Park
- Pusan National University Medical School, Busan, Korea
| | | | - Leona A Doyle
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
44
|
Epigenetic Reprogramming of TGF-β Signaling in Breast Cancer. Cancers (Basel) 2019; 11:cancers11050726. [PMID: 31137748 PMCID: PMC6563130 DOI: 10.3390/cancers11050726] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 12/16/2022] Open
Abstract
The Transforming Growth Factor-β (TGF-β) signaling pathway has a well-documented, context-dependent role in breast cancer development. In normal and premalignant cells, it acts as a tumor suppressor. By contrast, during the malignant phases of breast cancer progression, the TGF-β signaling pathway elicits tumor promoting effects particularly by driving the epithelial to mesenchymal transition (EMT), which enhances tumor cell migration, invasion and ultimately metastasis to distant organs. The molecular and cellular mechanisms that govern this dual capacity are being uncovered at multiple molecular levels. This review will focus on recent advances relating to how epigenetic changes such as acetylation and methylation control the outcome of TGF-β signaling and alter the fate of breast cancer cells. In addition, we will highlight how this knowledge can be further exploited to curb tumorigenesis by selective targeting of the TGF-β signaling pathway.
Collapse
|
45
|
Cabezas F, Farfán P, Marzolo MP. Participation of the SMAD2/3 signalling pathway in the down regulation of megalin/LRP2 by transforming growth factor beta (TGF-ß1). PLoS One 2019; 14:e0213127. [PMID: 31120873 PMCID: PMC6532859 DOI: 10.1371/journal.pone.0213127] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/08/2019] [Indexed: 12/19/2022] Open
Abstract
Megalin/LRP2 is a receptor that plays important roles in the physiology of several organs, such as kidney, lung, intestine, and gallbladder and also in the physiology of the nervous system. Megalin expression is reduced in diseases associated with fibrosis, including diabetic nephropathy, hepatic fibrosis and cholelithiasis, as well as in some breast and prostate cancers. One of the hallmarks of these conditions is the presence of the cytokine transforming growth factor beta (TGF-ß). Although TGF-ß has been implicated in the reduction of megalin levels, the molecular mechanism underlying this regulation is not well understood. Here, we show that treatment of two epithelial cell lines (from kidney and gallbladder) with TGF-ß1 is associated with decreased megalin mRNA and protein levels, and that these effects are reversed by inhibiting the TGF-ß1 type I receptor (TGF-ßRI). Based on in silico analyses, the two SMAD-binding elements (SBEs) in the megalin promoter are located at positions -57 and -605. Site-directed mutagenesis of the SBEs and chromatin immunoprecipitation (ChIP) experiments revealed that SMAD2/3 transcription factors interact with SBEs. Both the presence of SMAD2/3 and intact SBEs were associated with repression of the megalin promoter, in the absence as well in the presence of TGF-ß1. Also, reduced megalin expression and promoter activation triggered by high concentration of albumin are dependent on the expression of SMAD2/3. Interestingly, the histone deacetylase inhibitor Trichostatin A (TSA), which induces megalin expression, reduced the effects of TGF-ß1 on megalin mRNA levels. These data show the significance of TGF-ß and the SMAD2/3 signalling pathway in the regulation of megalin and explain the decreased megalin levels observed under conditions in which TGF-ß is upregulated, including fibrosis-associated diseases and cancer.
Collapse
Affiliation(s)
- Felipe Cabezas
- Laboratorio de Tráfico Intracelular y Señalización, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pamela Farfán
- Laboratorio de Tráfico Intracelular y Señalización, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María-Paz Marzolo
- Laboratorio de Tráfico Intracelular y Señalización, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
46
|
Abstract
Breast cancer is the most prevalent type of cancer amongst women worldwide. The mortality rate for patients with early-stage breast cancer has been decreasing, however, the 5-year survival rate for patients with metastatic disease remains poor, currently at 27%. Here, we have reviewed the current understanding of the role of bone morphogenetic protein (BMP) signaling in breast cancer progression, and have highlighted the discordant results that are reported in different studies. We propose that some of these contradictory outcomes may result from signaling through either the canonical or non-canonical pathways in different cell lines and tumors, or from different tumor-stromal interactions that occur in vivo.
Collapse
Affiliation(s)
- Lap Hing Chi
- a Metastasis Research Laboratory, Olivia Newton-John Cancer Research Institute , Heidelberg , Australia
- b School of Cancer Medicine, La Trobe University , Bundoora , Australia
| | - Allan D Burrows
- a Metastasis Research Laboratory, Olivia Newton-John Cancer Research Institute , Heidelberg , Australia
- b School of Cancer Medicine, La Trobe University , Bundoora , Australia
| | - Robin L Anderson
- a Metastasis Research Laboratory, Olivia Newton-John Cancer Research Institute , Heidelberg , Australia
- b School of Cancer Medicine, La Trobe University , Bundoora , Australia
- c Department of Clinical Pathology, The University of Melbourne , Parkville , VIC , Australia
- d Sir Peter MacCallum Department of Oncology, The University of Melbourne , Parkville , Australia
| |
Collapse
|
47
|
Duan L, Yang W, Wang X, Zhou W, Zhang Y, Liu J, Zhang H, Zhao Q, Hong L, Fan D. Advances in prognostic markers for colorectal cancer. Expert Rev Mol Diagn 2019; 19:313-324. [PMID: 30907673 DOI: 10.1080/14737159.2019.1592679] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Lili Duan
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Wanli Yang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Xiaoqian Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Wei Zhou
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Yujie Zhang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Jinqiang Liu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Hongwei Zhang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Qingchuan Zhao
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Liu Hong
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
| |
Collapse
|
48
|
Regulatory cytokine function in the respiratory tract. Mucosal Immunol 2019; 12:589-600. [PMID: 30874596 PMCID: PMC7051906 DOI: 10.1038/s41385-019-0158-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/22/2019] [Accepted: 02/27/2019] [Indexed: 02/04/2023]
Abstract
The respiratory tract is an important site of immune regulation; required to allow protective immunity against pathogens, while minimizing tissue damage and avoiding aberrant inflammatory responses to inhaled allergens. Several cell types work in concert to control pulmonary immune responses and maintain tolerance in the respiratory tract, including regulatory and effector T cells, airway and interstitial macrophages, dendritic cells and the airway epithelium. The cytokines transforming growth factor β, interleukin (IL-) 10, IL-27, and IL-35 are key coordinators of immune regulation in tissues such as the lung. Here, we discuss the role of these cytokines during respiratory infection and allergic airway disease, highlighting the critical importance of cellular source and immunological context for the effects of these cytokines in vivo.
Collapse
|
49
|
BMP Signaling Determines Body Size via Transcriptional Regulation of Collagen Genes in Caenorhabditis elegans. Genetics 2018; 210:1355-1367. [PMID: 30274988 DOI: 10.1534/genetics.118.301631] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/25/2018] [Indexed: 01/10/2023] Open
Abstract
Body size is a tightly regulated phenotype in metazoans that depends on both intrinsic and extrinsic factors. While signaling pathways are known to control organ and body size, the downstream effectors that mediate their effects remain poorly understood. In the nematode Caenorhabditis elegans, a Bone Morphogenetic Protein (BMP)-related signaling pathway is the major regulator of growth and body size. We investigated the transcriptional network through which the BMP pathway regulates body size and identified cuticle collagen genes as major effectors of growth control. We demonstrate that cuticle collagens can act as positive regulators (col-41), negative regulators (col-141), or dose-sensitive regulators (rol-6) of body size. Moreover, we find a requirement of BMP signaling for stage-specific expression of cuticle collagen genes. We show that the Smad signal transducers directly bind conserved Smad-binding elements in regulatory regions of col-141 and col-142, but not of col-41 Hence, cuticle collagen genes may be directly and indirectly regulated via the BMP pathway. Our work thus connects a conserved signaling pathway with its critical downstream effectors, advancing insight into how body size is specified. Since collagen mutations and misregulation are implicated in numerous human genetic disorders and injury sequelae, understanding how collagen gene expression is regulated has broad implications.
Collapse
|
50
|
Ma Y, Yuan H, Jin R, Bao X, Wang H, Su X, Mu MGSL, Liang J, Zhang J, Wu X. Flavonoid-rich Scabiosa comosa inflorescence extract attenuates CCl4-induced hepatic fibrosis by modulating TGF-β-induced Smad3 phosphorylation. Biomed Pharmacother 2018; 106:426-433. [DOI: 10.1016/j.biopha.2018.06.118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 01/07/2023] Open
|