1
|
Santisteban Celis IC, Matoba N. Lectibodies as antivirals. Antiviral Res 2024; 227:105901. [PMID: 38734211 DOI: 10.1016/j.antiviral.2024.105901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Growing concerns regarding the emergence of highly transmissible viral diseases highlight the urgent need to expand the repertoire of antiviral therapeutics. For this reason, new strategies for neutralizing and inhibiting these viruses are necessary. A promising approach involves targeting the glycans present on the surfaces of enveloped viruses. Lectins, known for their ability to recognize specific carbohydrate molecules, offer the potential for glycan-targeted antiviral strategies. Indeed, numerous studies have reported the antiviral effects of various lectins of both endogenous and exogenous origins. However, many lectins in their natural forms, are not suitable for use as antiviral therapeutics due to toxicity, other unfavorable pharmacological effects, and/or unreliable manufacturing sources. Therefore, improvements are crucial for employing lectins as effective antiviral therapeutics. A novel approach to enhance lectins' suitability as pharmaceuticals could be the generation of recombinant lectin-Fc fusion proteins, termed "lectibodies." In this review, we discuss the scientific rationale behind lectin-based antiviral strategies and explore how lectibodies could facilitate the development of new antiviral therapeutics. We will also share our perspective on the potential of these molecules to transcend their potential use as antiviral agents.
Collapse
Affiliation(s)
- Ian Carlosalberto Santisteban Celis
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville School of Medicine, Louisville, KY, USA
| | - Nobuyuki Matoba
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville School of Medicine, Louisville, KY, USA; UofL Health - Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
2
|
Stephens C, Naghavi MH. The host cytoskeleton: a key regulator of early HIV-1 infection. FEBS J 2024; 291:1835-1848. [PMID: 36527282 PMCID: PMC10272291 DOI: 10.1111/febs.16706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/29/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Due to its central role in cell biology, the cytoskeleton is a key regulator of viral infection, influencing nearly every step of the viral life cycle. In this review, we will discuss the role of two key components of the cytoskeleton, namely the actin and microtubule networks in early HIV-1 infection. We will discuss key contributions to processes ranging from the attachment and entry of viral particles at the cell surface to their arrival and import into the nucleus and identify areas where further research into this complex relationship may yield new insights into HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Christopher Stephens
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Mojgan H. Naghavi
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| |
Collapse
|
3
|
Shrestha J, Santerre M, Allen CN, Arjona SP, Hooper R, Mukerjee R, Kaul M, Shcherbik N, Soboloff J, Sawaya BE. HIV-1 gp120 protein promotes HAND through the calcineurin pathway activation. Mitochondrion 2023; 70:31-40. [PMID: 36925028 PMCID: PMC10484070 DOI: 10.1016/j.mito.2023.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/21/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023]
Abstract
For over two decades, highly active antiretroviral therapy (HAART) was able to help prolong the life expectancy of people living with HIV-1 (PLWH) and eliminate the virus to an undetectable level. However, an increased prevalence of HIV- associated neurocognitive disorders (HAND) was observed. These symptoms range from neuronal dysfunction to cell death. Among the markers of neuronal deregulation, we cite the alteration of synaptic plasticity and neuronal communications. Clinically, these dysfunctions led to neurocognitive disorders such as learning alteration and loss of spatial memory, which promote premature brain aging even in HAART-treated patients. In support of these observations, we showed that the gp120 protein deregulates miR-499-5p and its downstream target, the calcineurin (CaN) protein. The gp120 protein also promotes the accumulation of calcium (Ca2+) and reactive oxygen species (ROS) inside the neurons leading to the activation of CaN and the inhibition of miR-499-5p. gp120 protein also caused mitochondrial fragmentation and changes in shape and size. The use of mimic miR-499 restored mitochondrial functions, appearance, and size. These results demonstrated the additional effect of the gp120 protein on neurons through the miR-499-5p/calcineurin pathway.
Collapse
Affiliation(s)
- Jenny Shrestha
- Molecular Studies of Neurodegenerative Diseases Lab; FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA.
| | - Maryline Santerre
- Molecular Studies of Neurodegenerative Diseases Lab; FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA
| | - Charles N Allen
- Molecular Studies of Neurodegenerative Diseases Lab; FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA
| | - Sterling P Arjona
- Molecular Studies of Neurodegenerative Diseases Lab; FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA
| | - Robert Hooper
- FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA
| | - Ruma Mukerjee
- Molecular Studies of Neurodegenerative Diseases Lab; FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA
| | - Marcus Kaul
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA; Department of Psychiatry, UCSD, San Diego, CA, USA; Division of Biomedical Sciences, School of Medicine, UCR, Riverside, CA, USA
| | - Natalia Shcherbik
- Department for Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, 2 Medical Center Drive, Stratford, NJ 08084, USA
| | - Jonathan Soboloff
- FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA; Department of Cancer and Cellular Biology, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA
| | - Bassel E Sawaya
- Molecular Studies of Neurodegenerative Diseases Lab; FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA; Department of Cancer and Cellular Biology, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA.
| |
Collapse
|
4
|
Singh P, Kumar V, Lee G, Jung TS, Ha MW, Hong JC, Lee KW. Pharmacophore-Oriented Identification of Potential Leads as CCR5 Inhibitors to Block HIV Cellular Entry. Int J Mol Sci 2022; 23:ijms232416122. [PMID: 36555761 PMCID: PMC9784205 DOI: 10.3390/ijms232416122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Cysteine-cysteine chemokine receptor 5 (CCR5) has been discovered as a co-receptor for cellular entry of human immunodeficiency virus (HIV). Moreover, the role of CCR5 in a variety of cancers and various inflammatory responses was also discovered. Despite the fact that several CCR5 antagonists have been investigated in clinical trials, only Maraviroc has been licensed for use in the treatment of HIV patients. This indicates that there is a need for novel CCR5 antagonists. Keeping this in mind, the present study was designed. The active CCR5 inhibitors with known IC50 value were selected from the literature and utilized to develop a ligand-based common feature pharmacophore model. The validated pharmacophore model was further used for virtual screening of drug-like databases obtained from the Asinex, Specs, InterBioScreen, and Eximed chemical libraries. Utilizing computational methods such as molecular docking studies, molecular dynamics simulations, and binding free energy calculation, the binding mechanism of selected inhibitors was established. The identified Hits not only showed better binding energy when compared to Maraviroc, but also formed stable interactions with the key residues and showed stable behavior throughout the 100 ns MD simulation. Our findings suggest that Hit1 and Hit2 may be potential candidates for CCR5 inhibition, and, therefore, can be considered for further CCR5 inhibition programs.
Collapse
Affiliation(s)
- Pooja Singh
- Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Vikas Kumar
- Department of Bio & Medical Big Data (BK), Division of Life Sciences, Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Gihwan Lee
- Division of Applied Life Science (BK21 Four), ABC-RLRC, PMBBRC, Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Tae Sung Jung
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Min Woo Ha
- Jeju Research Institute of Pharmaceutical Sciences, College of Pharmacy, Jeju National University, Jeju 63243, Republic of Korea
| | - Jong Chan Hong
- Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea
- Correspondence: (J.C.H.); (K.W.L.)
| | - Keun Woo Lee
- Department of Bio & Medical Big Data (BK), Division of Life Sciences, Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea
- Correspondence: (J.C.H.); (K.W.L.)
| |
Collapse
|
5
|
Nickoloff-Bybel EA, Festa L, Meucci O, Gaskill PJ. Co-receptor signaling in the pathogenesis of neuroHIV. Retrovirology 2021; 18:24. [PMID: 34429135 PMCID: PMC8385912 DOI: 10.1186/s12977-021-00569-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022] Open
Abstract
The HIV co-receptors, CCR5 and CXCR4, are necessary for HIV entry into target cells, interacting with the HIV envelope protein, gp120, to initiate several signaling cascades thought to be important to the entry process. Co-receptor signaling may also promote the development of neuroHIV by contributing to both persistent neuroinflammation and indirect neurotoxicity. But despite the critical importance of CXCR4 and CCR5 signaling to HIV pathogenesis, there is only one therapeutic (the CCR5 inhibitor Maraviroc) that targets these receptors. Moreover, our understanding of co-receptor signaling in the specific context of neuroHIV is relatively poor. Research into co-receptor signaling has largely stalled in the past decade, possibly owing to the complexity of the signaling cascades and functions mediated by these receptors. Examining the many signaling pathways triggered by co-receptor activation has been challenging due to the lack of specific molecular tools targeting many of the proteins involved in these pathways and the wide array of model systems used across these experiments. Studies examining the impact of co-receptor signaling on HIV neuropathogenesis often show activation of multiple overlapping pathways by similar stimuli, leading to contradictory data on the effects of co-receptor activation. To address this, we will broadly review HIV infection and neuropathogenesis, examine different co-receptor mediated signaling pathways and functions, then discuss the HIV mediated signaling and the differences between activation induced by HIV and cognate ligands. We will assess the specific effects of co-receptor activation on neuropathogenesis, focusing on neuroinflammation. We will also explore how the use of substances of abuse, which are highly prevalent in people living with HIV, can exacerbate the neuropathogenic effects of co-receptor signaling. Finally, we will discuss the current state of therapeutics targeting co-receptors, highlighting challenges the field has faced and areas in which research into co-receptor signaling would yield the most therapeutic benefit in the context of HIV infection. This discussion will provide a comprehensive overview of what is known and what remains to be explored in regard to co-receptor signaling and HIV infection, and will emphasize the potential value of HIV co-receptors as a target for future therapeutic development. ![]()
Collapse
Affiliation(s)
- E A Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - L Festa
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 S. 40th Street, Philadelphia, PA, 19104, USA
| | - O Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.,Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - P J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.
| |
Collapse
|
6
|
Sutherland M, Kwon B, Hong M. Interactions of HIV gp41's membrane-proximal external region and transmembrane domain with phospholipid membranes from 31P NMR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183723. [PMID: 34352242 DOI: 10.1016/j.bbamem.2021.183723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/22/2021] [Accepted: 07/30/2021] [Indexed: 11/30/2022]
Abstract
HIV-1 entry into cells requires coordinated changes of the conformation and dynamics of both the fusion protein, gp41, and the lipids in the cell membrane and virus envelope. Commonly proposed features of membrane deformation during fusion include high membrane curvature, lipid disorder, and membrane surface dehydration. The virus envelope and target cell membrane contain a diverse set of phospholipids and cholesterol. To dissect how different lipids interact with gp41 to contribute to membrane fusion, here we use 31P solid-state NMR spectroscopy to investigate the curvature, dynamics, and hydration of POPE, POPC and POPS membranes, with and without cholesterol, in the presence of a peptide comprising the membrane proximal external region (MPER) and transmembrane domain (TMD) of gp41. Static 31P NMR spectra indicate that the MPER-TMD induces strong negative Gaussian curvature (NGC) to the POPE membrane but little curvature to POPC and POPC:POPS membranes. The NGC manifests as an isotropic peak in the static NMR spectra, whose intensity increases with the peptide concentration. Cholesterol inhibits the NGC formation and stabilizes the lamellar phase. Relative intensities of magic-angle spinning 31P cross-polarization and direct-polarization spectra indicate that all three phospholipids become more mobile upon peptide binding. Finally, 2D 1H-31P correlation spectra show that the MPER-TMD enhances water 1H polarization transfer to the lipids, indicating that the membrane surfaces become more hydrated. These results suggest that POPE is an essential component of the high-curvature fusion site, and lipid dynamic disorder is a general feature of membrane restructuring during fusion.
Collapse
Affiliation(s)
- Madeleine Sutherland
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Byungsu Kwon
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
7
|
Modeling of CCR5 Recognition by HIV-1 gp120: How the Viral Protein Exploits the Conformational Plasticity of the Coreceptor. Viruses 2021; 13:v13071395. [PMID: 34372601 PMCID: PMC8310383 DOI: 10.3390/v13071395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/05/2021] [Accepted: 07/12/2021] [Indexed: 01/14/2023] Open
Abstract
The chemokine receptor CCR5 is a key player in HIV-1 infection. The cryo-EM 3D structure of HIV-1 envelope glycoprotein (Env) subunit gp120 in complex with CD4 and CCR5 has provided important structural insights into HIV-1/host cell interaction, yet it has not explained the signaling properties of Env nor the fact that CCR5 exists in distinct forms that show distinct Env binding properties. We used classical molecular dynamics and site-directed mutagenesis to characterize the CCR5 conformations stabilized by four gp120s, from laboratory-adapted and primary HIV-1 strains, and which were previously shown to bind differentially to distinct CCR5 forms and to exhibit distinct cellular tropisms. The comparative analysis of the simulated structures reveals that the different gp120s do indeed stabilize CCR5 in different conformational ensembles. They differentially reorient extracellular loops 2 and 3 of CCR5 and thus accessibility to the transmembrane binding cavity. They also reshape this cavity differently and give rise to different positions of intracellular ends of transmembrane helices 5, 6 and 7 of the receptor and of its third intracellular loop, which may in turn influence the G protein binding region differently. These results suggest that the binding of gp120s to CCR5 may have different functional outcomes, which could result in different properties for viruses.
Collapse
|
8
|
Cabrera-Rodríguez R, Pérez-Yanes S, Estévez-Herrera J, Márquez-Arce D, Cabrera C, Espert L, Blanco J, Valenzuela-Fernández A. The Interplay of HIV and Autophagy in Early Infection. Front Microbiol 2021; 12:661446. [PMID: 33995324 PMCID: PMC8113651 DOI: 10.3389/fmicb.2021.661446] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022] Open
Abstract
HIV/AIDS is still a global threat despite the notable efforts made by the scientific and health communities to understand viral infection, to design new drugs or to improve existing ones, as well as to develop advanced therapies and vaccine designs for functional cure and viral eradication. The identification and analysis of HIV-1 positive individuals that naturally control viral replication in the absence of antiretroviral treatment has provided clues about cellular processes that could interact with viral proteins and RNA and define subsequent viral replication and clinical progression. This is the case of autophagy, a degradative process that not only maintains cell homeostasis by recycling misfolded/old cellular elements to obtain nutrients, but is also relevant in the innate and adaptive immunity against viruses, such as HIV-1. Several studies suggest that early steps of HIV-1 infection, such as virus binding to CD4 or membrane fusion, allow the virus to modulate autophagy pathways preparing cells to be permissive for viral infection. Confirming this interplay, strategies based on autophagy modulation are able to inhibit early steps of HIV-1 infection. Moreover, autophagy dysregulation in late steps of the HIV-1 replication cycle may promote autophagic cell-death of CD4+ T cells or control of HIV-1 latency, likely contributing to disease progression and HIV persistence in infected individuals. In this scenario, understanding the molecular mechanisms underlying HIV/autophagy interplay may contribute to the development of new strategies to control HIV-1 replication. Therefore, the aim of this review is to summarize the knowledge of the interplay between autophagy and the early events of HIV-1 infection, and how autophagy modulation could impair or benefit HIV-1 infection and persistence, impacting viral pathogenesis, immune control of viral replication, and clinical progression of HIV-1 infected patients.
Collapse
Affiliation(s)
- Romina Cabrera-Rodríguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, e IUETSPC de la Universidad de La Laguna, Campus de Ofra s/n, Tenerife, Spain
| | - Silvia Pérez-Yanes
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, e IUETSPC de la Universidad de La Laguna, Campus de Ofra s/n, Tenerife, Spain
| | - Judith Estévez-Herrera
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, e IUETSPC de la Universidad de La Laguna, Campus de Ofra s/n, Tenerife, Spain
| | - Daniel Márquez-Arce
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, e IUETSPC de la Universidad de La Laguna, Campus de Ofra s/n, Tenerife, Spain
| | - Cecilia Cabrera
- AIDS Research Institute IrsiCaixa, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Lucile Espert
- Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Julià Blanco
- AIDS Research Institute IrsiCaixa, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol (IGTP), Barcelona, Spain.,Universitat de Vic-Central de Catalunya (UVIC-UCC), Catalonia, Spain
| | - Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, e IUETSPC de la Universidad de La Laguna, Campus de Ofra s/n, Tenerife, Spain
| |
Collapse
|
9
|
Zuo W, Zhao X. Natural killer cells play an important role in virus infection control: Antiviral mechanism, subset expansion and clinical application. Clin Immunol 2021; 227:108727. [PMID: 33887436 PMCID: PMC8055501 DOI: 10.1016/j.clim.2021.108727] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/15/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023]
Abstract
With the global spread of coronavirus disease 2019 (COVID-19), the important role of natural killer (NK) cells in the control of various viral infections attracted more interest, via non-specific activation, such as antibody-dependent cell-mediated cytotoxicity (ADCC) and activating receptors, as well as specific activation, such as memory-like NK generation. In response to different viral infections, NK cells fight viruses in different ways, and different NK subsets proliferate. For instance, cytomegalovirus (CMV) induces NKG2C + CD57 + KIR+ NK cells to expand 3-6 months after hematopoietic stem cell transplantation (HSCT), but human immunodeficiency virus (HIV) induces KIR3DS1+/KIR3DL1 NK cells to expand in the acute phase of infection. However, the similarities and differences among these processes and their molecular mechanisms have not been fully discussed. In this article, we provide a summary and comparison of antiviral mechanisms, unique subset expansion and time periods in peripheral blood and tissues under different conditions of CMV, HIV, Epstein-Barr virus (EBV), COVID-19 and hepatitis B virus (HBV) infections. Accordingly, we also discuss current clinical NK-associated antiviral applications, including cell therapy and NK-related biological agents, and we state the progress and future prospects of NK cell antiviral treatment.
Collapse
Affiliation(s)
- Wei Zuo
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiangyu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.
| |
Collapse
|
10
|
He S, Wu Y. Relationships Between HIV-Mediated Chemokine Coreceptor Signaling, Cofilin Hyperactivation, Viral Tropism Switch and HIV-Mediated CD4 Depletion. Curr HIV Res 2021; 17:388-396. [PMID: 31702526 DOI: 10.2174/1570162x17666191106112018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/27/2019] [Accepted: 10/31/2019] [Indexed: 11/22/2022]
Abstract
HIV infection causes CD4 depletion and immune deficiency. The virus infects CD4 T cells through binding to CD4 and one of the chemokine coreceptors, CXCR4 (X4) or CCR5 (R5). It has also been known that HIV tropism switch, from R5 to X4, is associated with rapid CD4 depletion, suggesting a key role of viral factors in driving CD4 depletion. However, the virological driver for HIV-mediated CD4 depletion has not been fully elucidated. We hypothesized that HIV-mediated chemokine coreceptor signaling, particularly chronic signaling through CXCR4, plays a major role in CD4 dysfunction and depletion; we also hypothesized that there is an R5X4 signaling (R5X4sig) viral subspecies, evolving from the natural replication course of R5-utilizing viruses, that is responsible for CD4 T cell depletion in R5 virus infection. To gain traction for our hypothesis, in this review, we discuss a recent finding from Cui and co-authors who described the rapid tropism switch and high pathogenicity of an HIV-1 R5 virus, CRF01_AE. We speculate that CRF01_AE may be the hypothetical R5X4sig viral species that is rapidly evolving towards the X4 phenotype. We also attempt to discuss the intricate relationships between HIV-mediated chemokine coreceptor signaling, viral tropism switch and HIV-mediated CD4 depletion, in hopes of providing a deeper understanding of HIV pathogenesis in blood CD4 T cells.
Collapse
Affiliation(s)
- Sijia He
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, Virginia, United States
| | - Yuntao Wu
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, Virginia, United States
| |
Collapse
|
11
|
Coggins SA, Kim DH, Schinazi RF, Desrosier RC, Kim B. Enhanced enzyme kinetics of reverse transcriptase variants cloned from animals infected with SIVmac239 lacking viral protein X. J Biol Chem 2020; 295:16975-16986. [PMID: 33008888 PMCID: PMC7863885 DOI: 10.1074/jbc.ra120.015273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/01/2020] [Indexed: 12/14/2022] Open
Abstract
HIV Type 1 (HIV-1) and simian immunodeficiency virus (SIV) display differential replication kinetics in macrophages. This is because high expression levels of the active host deoxynucleotide triphosphohydrolase sterile α motif domain and histidine-aspartate domain-containing protein 1 (SAMHD1) deplete intracellular dNTPs, which restrict HIV-1 reverse transcription, and result in a restrictive infection in this myeloid cell type. Some SIVs overcome SAMHD1 restriction using viral protein X (Vpx), a viral accessory protein that induces proteasomal degradation of SAMHD1, increasing cellular dNTP concentrations and enabling efficient proviral DNA synthesis. We previously reported that SAMHD1-noncounteracting lentiviruses may have evolved to harbor RT proteins that efficiently polymerize DNA, even at low dNTP concentrations, to circumvent SAMHD1 restriction. Here we investigated whether RTs from SIVmac239 virus lacking a Vpx protein evolve during in vivo infection to more efficiently synthesize DNA at the low dNTP concentrations found in macrophages. Sequence analysis of RTs cloned from Vpx (+) and Vpx (-) SIVmac239-infected animals revealed that Vpx (-) RTs contained more extensive mutations than Vpx (+) RTs. Although the amino acid substitutions were dispersed indiscriminately across the protein, steady-state and pre-steady-state analysis demonstrated that selected SIVmac239 Vpx (-) RTs are characterized by higher catalytic efficiency and incorporation efficiency values than RTs cloned from SIVmac239 Vpx (+) infections. Overall, this study supports the possibility that the loss of Vpx may generate in vivo SIVmac239 RT variants that can counteract the limited availability of dNTP substrate in macrophages.
Collapse
Affiliation(s)
- Si'Ana A Coggins
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Dong-Hyun Kim
- Department of Pharmacy, Kyung-Hee University, Seoul, South Korea
| | - Raymond F Schinazi
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Ronald C Desrosier
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Baek Kim
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA; Children's Healthcare of Atlanta, Atlanta, Georgia, USA.
| |
Collapse
|
12
|
The V2 loop of HIV gp120 delivers costimulatory signals to CD4 + T cells through Integrin α 4β 7 and promotes cellular activation and infection. Proc Natl Acad Sci U S A 2020; 117:32566-32573. [PMID: 33288704 DOI: 10.1073/pnas.2011501117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Acute HIV infection is characterized by rapid viral seeding of immunologic inductive sites in the gut followed by the severe depletion of gut CD4+ T cells. Trafficking of α4β7-expressing lymphocytes to the gut is mediated by MAdCAM, the natural ligand of α4β7 that is expressed on gut endothelial cells. MAdCAM signaling through α4β7 costimulates CD4+ T cells and promotes HIV replication. Similar to MAdCAM, the V2 domain of the gp120 HIV envelope protein binds to α4β7 In this study, we report that gp120 V2 shares with MAdCAM the capacity to signal through α4β7 resulting in CD4+ T cell activation and proliferation. As with MAdCAM-mediated costimulation, cellular activation induced by gp120 V2 is inhibited by anti-α4β7 monoclonal antibodies (mAbs). It is also inhibited by anti-V2 domain antibodies including nonneutralizing mAbs that recognize an epitope in V2 that has been linked to reduced risk of acquisition in the RV144 vaccine trial. The capacity of the V2 domain of gp120 to mediate signaling through α4β7 likely impacts early events in HIV infection. The capacity of nonneutralizing V2 antibodies to block this activity reveals a previously unrecognized mechanism whereby such antibodies might impact HIV transmission and pathogenesis.
Collapse
|
13
|
Koh WH, Lopez P, Ajibola O, Parvarchian R, Mohammad U, Hnatiuk R, Kindrachuk J, Murooka TT. HIV-Captured DCs Regulate T Cell Migration and Cell-Cell Contact Dynamics to Enhance Viral Spread. iScience 2020; 23:101427. [PMID: 32798973 PMCID: PMC7452485 DOI: 10.1016/j.isci.2020.101427] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/24/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023] Open
Abstract
Trafficking of cell-associated HIV-1 from the genital mucosa to lymphoid organs represents a critical first step toward systemic infection. Mature DCs capture and transmit HIV-1 to T cells, but insights into DC-to-T cell viral spread dynamics within a 3-dimensional environment is lacking. Using live-cell imaging, we show that mature DCs rapidly compartmentalize HIV-1 within surface-accessible invaginations near the uropod. HIV-1 capture did not interfere with DC migration toward lymph node homing chemo-attractants and their ability to enter lymphatic vessels. However, HIV-captured DCs engaged in prolonged contacts with autologous CD4+ T cells, which led to high T cell infection. Interestingly, we show that surface bound, virion-associated Env induced signal transduction in motile T cells that facilitated prolonged DC:T cell interactions, partially through high-affinity LFA-1 expression. Together, we describe a mechanism by which surface bound HIV-1 particles function as signaling receptors that regulate T cell motility, cell-cell contact dynamics, and productive infection. Mature DCs compartmentalize HIV particles near the uropodia via Siglec-1 receptor HIV-captured DCs respond to lymph node-homing chemokines and access lymphatics Prolonged contacts between HIV-captured DCs and CD4 T cells facilitate virus transfer Surface-accessible HIV particles can induce T cell signaling via Env:CD4 engagement
Collapse
Affiliation(s)
- Wan Hon Koh
- University of Manitoba, Rady Faculty of Health Sciences, Department of Immunology, Winnipeg, MB, Canada
| | - Paul Lopez
- University of Manitoba, Rady Faculty of Health Sciences, Department of Immunology, Winnipeg, MB, Canada
| | - Oluwaseun Ajibola
- University of Manitoba, Rady Faculty of Health Sciences, Department of Immunology, Winnipeg, MB, Canada
| | - Roshan Parvarchian
- University of Manitoba, Rady Faculty of Health Sciences, Department of Immunology, Winnipeg, MB, Canada
| | - Umar Mohammad
- University of Manitoba, Rady Faculty of Health Sciences, Department of Immunology, Winnipeg, MB, Canada
| | - Ryan Hnatiuk
- University of Manitoba, Rady Faculty of Health Sciences, Department of Immunology, Winnipeg, MB, Canada
| | - Jason Kindrachuk
- University of Manitoba, Rady Faculty of Health Sciences, Department of Medical Microbiology and Infectious Diseases, Winnipeg, Canada
| | - Thomas T Murooka
- University of Manitoba, Rady Faculty of Health Sciences, Department of Immunology, Winnipeg, MB, Canada; University of Manitoba, Rady Faculty of Health Sciences, Department of Medical Microbiology and Infectious Diseases, Winnipeg, Canada.
| |
Collapse
|
14
|
Li SW, Wright M, Healey JF, Hutchinson JM, O’Rourke S, Mesa KA, Lollar P, Berman PW. Gene editing in CHO cells to prevent proteolysis and enhance glycosylation: Production of HIV envelope proteins as vaccine immunogens. PLoS One 2020; 15:e0233866. [PMID: 32470085 PMCID: PMC7259603 DOI: 10.1371/journal.pone.0233866] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/13/2020] [Indexed: 01/12/2023] Open
Abstract
Several candidate HIV subunit vaccines based on recombinant envelope (Env) glycoproteins have been advanced into human clinical trials. To facilitate biopharmaceutical production, it is necessary to produce these in CHO (Chinese Hamster Ovary) cells, the cellular substrate used for the manufacturing of most recombinant protein therapeutics. However, previous studies have shown that when recombinant Env proteins from clade B viruses, the major subtype represented in North America, Europe, and other parts of the world, are expressed in CHO cells, they are proteolyzed and lack important glycan-dependent epitopes present on virions. Previously, we identified C1s, a serine protease in the complement pathway, as the endogenous CHO protease responsible for the cleavage of clade B laboratory isolates of -recombinant gp120s (rgp120s) expressed in stable CHO-S cell lines. In this paper, we describe the development of two novel CHOK1 cell lines with the C1s gene inactivated by gene editing, that are suitable for the production of any protein susceptible to C1s proteolysis. One cell line, C1s-/- CHOK1 2.E7, contains a deletion in the C1s gene. The other cell line, C1s-/- MGAT1- CHOK1 1.A1, contains a deletion in both the C1s gene and the MGAT1 gene, which limits glycosylation to mannose-5 or earlier intermediates in the N-linked glycosylation pathway. In addition, we compare the substrate specificity of C1s with thrombin on the cleavage of both rgp120 and human Factor VIII, two recombinant proteins known to undergo unintended proteolysis (clipping) when expressed in CHO cells. Finally, we demonstrate the utility and practicality of the C1s-/- MGAT1- CHOK1 1.A1 cell line for the expression of clinical isolates of clade B Envs from rare individuals that possess broadly neutralizing antibodies and are able to control virus replication without anti-retroviral drugs (elite neutralizer/controller phenotypes). The Envs represent unique HIV vaccine immunogens suitable for further immunogenicity and efficacy studies.
Collapse
Affiliation(s)
- Sophia W. Li
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, United States of America
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Meredith Wright
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - John F. Healey
- Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
| | - Jennie M. Hutchinson
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Sara O’Rourke
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Kathryn A. Mesa
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Pete Lollar
- Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
| | - Phillip W. Berman
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| |
Collapse
|
15
|
Klasse PJ, Ozorowski G, Sanders RW, Moore JP. Env Exceptionalism: Why Are HIV-1 Env Glycoproteins Atypical Immunogens? Cell Host Microbe 2020; 27:507-518. [PMID: 32272076 PMCID: PMC7187920 DOI: 10.1016/j.chom.2020.03.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/17/2020] [Accepted: 03/22/2020] [Indexed: 11/24/2022]
Abstract
Recombinant HIV-1 envelope (Env) glycoproteins of ever-increasing sophistication have been evaluated as vaccine candidates for over 30 years. Structurally defined mimics of native trimeric Env glycoproteins (e.g., SOSIP trimers) present multiple epitopes for broadly neutralizing antibodies (bNAbs) and their germline precursors, but elicitation of bNAbs remains elusive. Here, we argue that the interactions between Env and the immune system render it exceptional among viral vaccine antigens and hinder its immunogenicity in absolute and comparative terms. In other words, Env binds to CD4 on key immune cells and transduces signals that can compromise their function. Moreover, the extensive array of oligomannose glycans on Env shields peptidic B cell epitopes, impedes the presentation of T helper cell epitopes, and attracts mannose binding proteins, which could affect the antibody response. We suggest lines of research for assessing how to overcome obstacles that the exceptional features of Env impose on the creation of a successful HIV-1 vaccine.
Collapse
Affiliation(s)
- P J Klasse
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, Consortium for HIV Vaccine Development, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rogier W Sanders
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - John P Moore
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
16
|
Shepard C, Xu J, Holler J, Kim DH, Mansky LM, Schinazi RF, Kim B. Effect of induced dNTP pool imbalance on HIV-1 reverse transcription in macrophages. Retrovirology 2019; 16:29. [PMID: 31655617 PMCID: PMC6815395 DOI: 10.1186/s12977-019-0491-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/17/2019] [Indexed: 01/06/2023] Open
Abstract
Background Terminally differentiated/nondividing macrophages, a key target cell type of HIV-1, harbor extremely low dNTP concentrations established by a host dNTP triphosphohydrolase, SAM domain and HD domain containing protein 1 (SAMHD1). We tested whether the induction of dNTP pool imbalance can affect HIV-1 replication in macrophages. For this test, we induced a large dNTP pool imbalance by treating human primary monocyte derived macrophages with either one or three of the four deoxynucleosides (dNs), which are phosphorylated to dNTPs in cells, to establish two different dNTP imbalance conditions in macrophages. Results The transduction efficiency and 2-LTR circle copy number of HIV-1 GFP vector were greatly diminished in human primary macrophages treated with the biased dN treatments, compared to the untreated macrophages. We also observed the induced dNTP bias blocked the production of infectious dual tropic HIV-1 89.6 in macrophages. Moreover, biochemical DNA synthesis by HIV-1 reverse transcriptase was significantly inhibited by the induced dNTP pool imbalance. Third, the induced dNTP bias increased the viral mutant rate by approximately 20–30% per a single cycle infection. Finally, unlike HIV-1, the single dN treatment did not significantly affect the transduction of SIVmac239-based GFP vector encoding Vpx in macrophages. This is likely due to Vpx, which can elevate all four dNTP levels even with the single dN treatment. Conclusion Collectively, these data suggest that the elevated dNTP pool imbalance can induce kinetic block and mutation synthesis of HIV-1 in macrophages.
Collapse
Affiliation(s)
- Caitlin Shepard
- Department of Pediatrics, School of Medicine, Emory University, 1760 Haygood Drive E432, Atlanta, GA, 30322, USA
| | - Joella Xu
- Department of Pediatrics, School of Medicine, Emory University, 1760 Haygood Drive E432, Atlanta, GA, 30322, USA
| | - Jessica Holler
- Department of Pediatrics, School of Medicine, Emory University, 1760 Haygood Drive E432, Atlanta, GA, 30322, USA
| | - Dong-Hyun Kim
- School of Pharmacy, Kyung-Hee University, Seoul, South Korea
| | - Louis M Mansky
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
| | - Raymond F Schinazi
- Department of Pediatrics, School of Medicine, Emory University, 1760 Haygood Drive E432, Atlanta, GA, 30322, USA
| | - Baek Kim
- Department of Pediatrics, School of Medicine, Emory University, 1760 Haygood Drive E432, Atlanta, GA, 30322, USA. .,Center for Drug Discovery, Children's Healthcare of Atlanta, Atlanta, GA, USA.
| |
Collapse
|
17
|
Coggins SA, Holler JM, Kimata JT, Kim DH, Schinazi RF, Kim B. Efficient pre-catalytic conformational change of reverse transcriptases from SAMHD1 non-counteracting primate lentiviruses during dNTP incorporation. Virology 2019; 537:36-44. [PMID: 31442614 DOI: 10.1016/j.virol.2019.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 10/26/2022]
Abstract
Unlike HIV-1, HIV-2 and some SIV strains replicate at high dNTP concentrations even in macrophages due to their accessory proteins, Vpx or Vpr, that target SAMHD1 dNTPase for proteasomal degradation. We previously reported that HIV-1 reverse transcriptase (RT) efficiently synthesizes DNA even at low dNTP concentrations because HIV-1 RT displays faster pre-steady state kpol values than SAMHD1 counteracting lentiviral RTs. Here, since the kpol step consists of two sequential sub-steps post dNTP binding, conformational change and chemistry, we investigated which of the two sub-steps RTs from SAMHD1 non-counteracting viruses accelerate in order to complete reverse transcription in the limited dNTP pools found in macrophages. Our study demonstrates that RTs of SAMHD1 non-counteracting lentiviruses have a faster conformational change rate during dNTP incorporation, supporting that these lentiviruses may have evolved to harbor RTs that can efficiently execute the conformational change step in order to circumvent SAMHD1 restriction and dNTP depletion in macrophages.
Collapse
Affiliation(s)
- Si'Ana A Coggins
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Jessica M Holler
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Jason T Kimata
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, 77030, Texas, USA
| | - Dong-Hyun Kim
- College of Pharmacy, Kyung Hee University, Seoul, 04427, South Korea
| | - Raymond F Schinazi
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Baek Kim
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, 30322, USA; College of Pharmacy, Kyung Hee University, Seoul, 04427, South Korea; Children's Healthcare of Atlanta, Atlanta, 30322, USA.
| |
Collapse
|
18
|
He S, Fu Y, Guo J, Spear M, Yang J, Trinité B, Qin C, Fu S, Jiang Y, Zhang Z, Xu J, Ding H, Levy DN, Chen W, Petricoin E, Liotta LA, Shang H, Wu Y. Cofilin hyperactivation in HIV infection and targeting the cofilin pathway using an anti-α 4β 7 integrin antibody. SCIENCE ADVANCES 2019; 5:eaat7911. [PMID: 30662943 PMCID: PMC6326757 DOI: 10.1126/sciadv.aat7911] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
A functional HIV cure requires immune reconstitution for lasting viremia control. A major immune dysfunction persisting in HIV infection is the impairment of T helper cell migration and homing to lymphoid tissues such as GALTs (gut-associated lymphoid tissues). ART (antiretroviral therapy) does not fully restore T cell motility for tissue repopulation. The molecular mechanism dictating this persistent T cell dysfunction is not understood. Cofilin is an actin-depolymerizing factor that regulates actin dynamics for T cell migration. Here, we demonstrate that blood CD4 T cells from HIV-infected patients (n = 193), with or without ART, exhibit significantly lower levels of cofilin phosphorylation (hyperactivation) than those from healthy controls (n = 100; ratio, 1.1:2.3; P < 0.001); cofilin hyperactivation is also associated with poor CD4 T cell recovery following ART. These results suggest an HIV-mediated systemic dysregulation of T cell motility that cannot be repaired solely by ART. We further demonstrate that stimulating blood CD4 T cells with an anti-human α4β7 integrin antibody can trigger signal transduction and modulate the cofilin pathway, partially restoring T cell motility in vitro. However, we also observed that severe T cell motility defect caused by high degrees of cofilin hyperactivation was not repairable by the anti-integrin antibody, demonstrating a mechanistic hindrance to restore immune functions in vivo. Our study suggests that cofilin is a key molecule that may need to be therapeutically targeted early for T cell tissue repopulation, immune reconstitution, and immune control of viremia.
Collapse
Affiliation(s)
- Sijia He
- Key Laboratory of AIDS Immunology of National Health Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P. R. China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, Liaoning 110001, P. R. China
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| | - Yajing Fu
- Key Laboratory of AIDS Immunology of National Health Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P. R. China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, Liaoning 110001, P. R. China
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| | - Jia Guo
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| | - Mark Spear
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| | - Jiuling Yang
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| | - Benjamin Trinité
- Department of Basic Science, New York University College of Dentistry, New York, NY 10010, USA
| | - Chaolong Qin
- Key Laboratory of AIDS Immunology of National Health Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P. R. China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, Liaoning 110001, P. R. China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, P. R. China
| | - Shuai Fu
- Key Laboratory of AIDS Immunology of National Health Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P. R. China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, Liaoning 110001, P. R. China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, P. R. China
| | - Yongjun Jiang
- Key Laboratory of AIDS Immunology of National Health Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P. R. China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, Liaoning 110001, P. R. China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, P. R. China
| | - Zining Zhang
- Key Laboratory of AIDS Immunology of National Health Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P. R. China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, Liaoning 110001, P. R. China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, P. R. China
| | - Junjie Xu
- Key Laboratory of AIDS Immunology of National Health Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P. R. China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, Liaoning 110001, P. R. China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, P. R. China
| | - Haibo Ding
- Key Laboratory of AIDS Immunology of National Health Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P. R. China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, Liaoning 110001, P. R. China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, P. R. China
| | - David N. Levy
- Department of Basic Science, New York University College of Dentistry, New York, NY 10010, USA
| | - Wanjun Chen
- Mucosal Immunology Section, NIDCR, NIH, Bethesda, MD 20892, USA
| | - Emanuel Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Lance A. Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Hong Shang
- Key Laboratory of AIDS Immunology of National Health Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P. R. China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, Liaoning 110001, P. R. China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, P. R. China
| | - Yuntao Wu
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| |
Collapse
|
19
|
Mereby SA, Maehigashi T, Holler JM, Kim DH, Schinazi RF, Kim B. Interplay of ancestral non-primate lentiviruses with the virus-restricting SAMHD1 proteins of their hosts. J Biol Chem 2018; 293:16402-16412. [PMID: 30181218 PMCID: PMC6200947 DOI: 10.1074/jbc.ra118.004567] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/29/2018] [Indexed: 11/26/2022] Open
Abstract
Lentiviruses infect both dividing CD4+ T cells and nondividing myeloid cells, and the infected myeloid cells serve as long-living viral reservoirs. Host sterile alpha motif– and histidine-aspartate domain–containing protein 1 (SAMHD1) kinetically restricts reverse transcription of primate lentiviruses, including human immunodeficiency virus, type 1 (HIV-1) and simian immunodeficiency virus (SIV), in nondividing myeloid cells. SAMHD1 enforces this restriction through its dNTP triphosphohydrolase (dNTPase) activity that depletes cellular dNTPs. Some primate lentiviruses, such as HIV-2, SIVsm, and SIVagm, counteract SAMHD1 restriction by using their viral accessory proteins (Vpx or Vpr) that induce the proteosomal degradation of SAMHD1 and increase dNTP levels. SAMHD1 is conserved among non-primate mammals such as cats, cows, and horses that also carry their own lentiviruses (feline and bovine immunodeficiency viruses and equine infectious anemia viruses, respectively). However, whether these viruses also target SAMHD1 is unknown. Here, we tested whether these ancestral non-primate lentiviruses also can counteract their host SAMHD1 proteins by promoting their proteosomal degradation. Using biochemical and various cell-based assays, we observed that SAMHD1 proteins from the non-primate host species display dGTP-dependent dNTPase activity, but that the non-primate lentiviruses fail to proteosomally degrade the SAMHD1 proteins of their hosts. Our findings suggest that accessory protein–mediated proteosomal degradation of SAMHD1 did not exist among the ancestral non-primate lentiviruses and was uniquely gained by some primate lentiviruses after their transmission to primate species.
Collapse
Affiliation(s)
- Sarah A Mereby
- From the Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia 30322
| | - Tatsuya Maehigashi
- From the Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia 30322
| | - Jessica M Holler
- From the Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia 30322
| | - Dong-Hyun Kim
- Department of Pharmacy, Kyung-Hee University, Seoul 130-701, South Korea, and
| | - Raymond F Schinazi
- From the Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia 30322
| | - Baek Kim
- From the Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia 30322, .,Department of Pharmacy, Kyung-Hee University, Seoul 130-701, South Korea, and.,Center for Drug Discovery, Children's Healthcare of Atlanta, Atlanta, Georgia 30322
| |
Collapse
|
20
|
Wiredja DD, Tabler CO, Schlatzer DM, Li M, Chance MR, Tilton JC. Global phosphoproteomics of CCR5-tropic HIV-1 signaling reveals reprogramming of cellular protein production pathways and identifies p70-S6K1 and MK2 as HIV-responsive kinases required for optimal infection of CD4+ T cells. Retrovirology 2018; 15:44. [PMID: 29970186 PMCID: PMC6029029 DOI: 10.1186/s12977-018-0423-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/26/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Viral reprogramming of host cells enhances replication and is initiated by viral interaction with the cell surface. Upon human immunodeficiency virus (HIV) binding to CD4+ T cells, a signal transduction cascade is initiated that reorganizes the actin cytoskeleton, activates transcription factors, and alters mRNA splicing pathways. METHODS We used a quantitative mass spectrometry-based phosphoproteomic approach to investigate signal transduction cascades initiated by CCR5-tropic HIV, which accounts for virtually all transmitted viruses and the vast majority of viruses worldwide. RESULTS CCR5-HIV signaling induced significant reprogramming of the actin cytoskeleton and mRNA splicing pathways, as previously described. In addition, CCR5-HIV signaling induced profound changes to the mRNA transcription, processing, translation, and post-translational modifications pathways, indicating that virtually every stage of protein production is affected. Furthermore, we identified two kinases regulated by CCR5-HIV signaling-p70-S6K1 (RPS6KB1) and MK2 (MAPKAPK2)-that were also required for optimal HIV infection of CD4+ T cells. These kinases regulate protein translation and cytoskeletal architecture, respectively, reinforcing the importance of these pathways in viral replication. Additionally, we found that blockade of CCR5 signaling by maraviroc had relatively modest effects on CCR5-HIV signaling, in agreement with reports that signaling by CCR5 is dispensable for HIV infection but in contrast to the critical effects of CXCR4 on cortical actin reorganization. CONCLUSIONS These results demonstrate that CCR5-tropic HIV induces significant reprogramming of host CD4+ T cell protein production pathways and identifies two novel kinases induced upon viral binding to the cell surface that are critical for HIV replication in host cells.
Collapse
Affiliation(s)
- Danica D Wiredja
- Department of Nutrition, Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Caroline O Tabler
- Department of Nutrition, Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Daniela M Schlatzer
- Department of Nutrition, Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Ming Li
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Mark R Chance
- Department of Nutrition, Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - John C Tilton
- Department of Nutrition, Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
21
|
CCR5 Revisited: How Mechanisms of HIV Entry Govern AIDS Pathogenesis. J Mol Biol 2018; 430:2557-2589. [PMID: 29932942 DOI: 10.1016/j.jmb.2018.06.027] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/10/2018] [Accepted: 06/13/2018] [Indexed: 01/01/2023]
Abstract
The chemokine receptor CCR5 has been the focus of intensive studies since its role as a coreceptor for HIV entry was discovered in 1996. These studies lead to the development of small molecular drugs targeting CCR5, with maraviroc becoming in 2007 the first clinically approved chemokine receptor inhibitor. More recently, the apparent HIV cure in a patient transplanted with hematopoietic stem cells devoid of functional CCR5 rekindled the interest for inactivating CCR5 through gene therapy and pharmacological approaches. Fundamental research on CCR5 has also been boosted by key advances in the field of G-protein coupled receptor research, with the realization that CCR5 adopts a variety of conformations, and that only a subset of these conformations may be targeted by chemokine ligands. In addition, recent genetic and pathogenesis studies have emphasized the central role of CCR5 expression levels in determining the risk of HIV and SIV acquisition and disease progression. In this article, we propose to review the key properties of CCR5 that account for its central role in HIV pathogenesis, with a focus on mechanisms that regulate CCR5 expression, conformation, and interaction with HIV envelope glycoproteins.
Collapse
|
22
|
The Pathway To Establishing HIV Latency Is Critical to How Latency Is Maintained and Reversed. J Virol 2018; 92:JVI.02225-17. [PMID: 29643247 DOI: 10.1128/jvi.02225-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/08/2018] [Indexed: 01/09/2023] Open
Abstract
HIV infection requires lifelong antiretroviral therapy because of the persistence of latently infected CD4+ T cells. The induction of virus expression from latently infected cells occurs following T cell receptor (TCR) activation, but not all latently infected cells respond to TCR stimulation. We compared two models of latently infected cells using an enhanced green fluorescent protein (EGFP) reporter virus to infect CCL19-treated resting CD4+ (rCD4+) T cells (preactivation latency) or activated CD4+ T cells that returned to a resting state (postactivation latency). We isolated latently infected cells by sorting for EGFP-negative (EGFP-) cells after infection. These cells were cultured with antivirals and stimulated with anti-CD3/anti-CD28, mitogens, and latency-reversing agents (LRAs) and cocultured with monocytes and anti-CD3. Spontaneous EGFP expression was more frequent in postactivation than in preactivation latency. Stimulation of latently infected cells with monocytes/anti-CD3 resulted in an increase in EGFP expression compared to that for unstimulated controls using the preactivation latency model but led to a reduction in EGFP expression in the postactivation latency model. The reduced EGFP expression was not associated with reductions in the levels of viral DNA or T cell proliferation but depended on direct contact between monocytes and T cells. Monocytes added to the postactivation latency model during the establishment of latency reduced spontaneous virus expression, suggesting that monocyte-T cell interactions at an early time point postinfection can maintain HIV latency. This direct comparison of pre- and postactivation latency suggests that effective strategies needed to reverse latency will depend on how latency is established.IMPORTANCE One strategy being evaluated to eliminate latently infected cells that persist in HIV-infected individuals on antiretroviral therapy (ART) is to activate HIV expression or production with the goal of inducing virus-mediated cytolysis or immune-mediated clearance of infected cells. The gold standard for the activation of latent virus is T cell receptor stimulation with anti-CD3/anti-CD28. However, this stimulus activates only a small proportion of latently infected cells. We show clear differences in the responses of latently infected cells to activating stimuli based on how latent infection is established, an observation that may potentially explain the persistence of noninduced intact proviruses in HIV-infected individuals on ART.
Collapse
|
23
|
Anderson JL, Mota TM, Evans VA, Kumar N, Rezaei SD, Cheong K, Solomon A, Wightman F, Cameron PU, Lewin SR. Understanding Factors That Modulate the Establishment of HIV Latency in Resting CD4+ T-Cells In Vitro. PLoS One 2016; 11:e0158778. [PMID: 27383184 PMCID: PMC4934909 DOI: 10.1371/journal.pone.0158778] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/21/2016] [Indexed: 11/18/2022] Open
Abstract
Developing robust in vitro models of HIV latency is needed to better understand how latency is established, maintained and reversed. In this study, we examined the effects of donor variability, HIV titre and co-receptor usage on establishing HIV latency in vitro using two models of HIV latency. Using the CCL19 model of HIV latency, we found that in up to 50% of donors, CCL19 enhanced latent infection of resting CD4+ T-cells by CXCR4-tropic HIV in the presence of low dose IL-2. Increasing the infectious titre of CXCR4-tropic HIV increased both productive and latent infection of resting CD4+ T-cells. In a different model where myeloid dendritic cells (mDC) were co-cultured with resting CD4+ T-cells, we observed a higher frequency of latently infected cells in vitro than CCL19-treated or unstimulated CD4+ T-cells in the presence of low dose IL-2. In the DC-T-cell model, latency was established with both CCR5- and CXCR4-tropic virus but higher titres of CCR5-tropic virus was required in most donors. The establishment of latency in vitro through direct infection of resting CD4+ T-cells is significantly enhanced by CCL19 and mDC, but the efficiency is dependent on virus titre, co-receptor usage and there is significant donor variability.
Collapse
Affiliation(s)
- Jenny L Anderson
- Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Talia M Mota
- Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Vanessa A Evans
- Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Nitasha Kumar
- Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Simin D Rezaei
- Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Karey Cheong
- Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ajantha Solomon
- Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Fiona Wightman
- Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Paul U Cameron
- Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia.,Department of Infectious Diseases, Monash University and Alfred Hospital, Melbourne, Victoria, Australia
| | - Sharon R Lewin
- Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia.,Department of Infectious Diseases, Monash University and Alfred Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
24
|
Graziano F, Vicenzi E, Poli G. Immuno-Pharmacological Targeting of Virus-Containing Compartments in HIV-1-Infected Macrophages. Trends Microbiol 2016; 24:558-567. [PMID: 27012511 DOI: 10.1016/j.tim.2016.02.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 02/23/2016] [Accepted: 02/26/2016] [Indexed: 01/26/2023]
Abstract
In addition to CD4 T lymphocytes, HIV-1 infects tissue macrophages that can actively accumulate infectious virions in vacuolar subcellular structures mostly connected to the plasma membrane and recently termed virus-containing compartments (VCCs). The VCC-associated HIV-1 reservoir of infected macrophages can be either increased or depleted by immunologic and pharmacologic agents, at least in vitro, thus suggesting that these factors (or related molecules) could be effective in curtailing the macrophage-associated HIV-1 reservoir in infected individuals receiving combination antiretroviral therapy (cART). Here we review evidence on the pathogenic role of tissue macrophages as long-term viral reservoirs in vivo and upon in vitro infection with a particular emphasis on the immuno-pharmacological modulation of VCCs.
Collapse
Affiliation(s)
- Francesca Graziano
- AIDS Immunopathogenesis Unit, San Raffaele Scientific Institute, Milano, Italy
| | - Elisa Vicenzi
- Viral Pathogens and Biosafety Unit, San Raffaele Scientific Institute, Milano, Italy
| | - Guido Poli
- AIDS Immunopathogenesis Unit, San Raffaele Scientific Institute, Milano, Italy; Vita-Salute San Raffaele University, School of Medicine, Milano, Italy; Institute of Human Virology, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
25
|
Remion A, Delord M, Hance AJ, Saragosti S, Mammano F. Kinetics of the establishment of HIV-1 viral interference and comprehensive analysis of the contribution of viral genes. Virology 2015; 487:59-67. [PMID: 26499042 DOI: 10.1016/j.virol.2015.09.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/01/2015] [Accepted: 09/26/2015] [Indexed: 10/22/2022]
Abstract
Viral interference defines the reduced susceptibility of an infected cell to reinfection. For HIV-1, both receptor-dependent and independent pathways were described. The relative importance of different receptor-independent pathways has not been addressed. We have used reporter viruses to quantify the percentage of single- and double-infected cells, as a function of the delay between the two infections. For co-infection experiments, the frequency of double infected cells was higher than expected for independent events. By delaying the second infection, this frequency progressively diminished, resulting in significant interference after 18h. Interference measured here was largely receptor-independent. By individually deleting viral genes or expressing them in isolation, we demonstrate that the viral protein Rev plays a dominant role, while other viral proteins contributes to optimal interference. Our study defines the kinetics of early HIV-1 interference, describing the transition from higher susceptibility to double-infection to viral interference, and identifies Rev as its dominant effector.
Collapse
Affiliation(s)
- Azaria Remion
- INSERM, U941, Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, Paris, France; Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France
| | - Marc Delord
- Univ Paris Diderot, Sorbonne Paris Cité, Paris, France; Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France
| | - Allan J Hance
- INSERM, U941, Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, Paris, France; Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France
| | - Sentob Saragosti
- INSERM, U941, Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, Paris, France; Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France
| | - Fabrizio Mammano
- INSERM, U941, Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, Paris, France; Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France.
| |
Collapse
|
26
|
Salmas RE, Yurtsever M, Durdagi S. Investigation of Inhibition Mechanism of Chemokine Receptor CCR5 by Micro-second Molecular Dynamics Simulations. Sci Rep 2015; 5:13180. [PMID: 26299310 PMCID: PMC4547396 DOI: 10.1038/srep13180] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 07/15/2015] [Indexed: 12/20/2022] Open
Abstract
Chemokine receptor 5 (CCR5) belongs to G protein coupled receptors (GPCRs) and plays an important role in treatment of human immunodeficiency virus (HIV) infection since HIV uses CCR5 protein as a co-receptor. Recently, the crystal structure of CCR5-bound complex with an approved anti-retroviral drug (maroviroc) was resolved. During the crystallization procedure, amino acid residues (i.e., Cys224, Arg225, Asn226 and Glu227) at the third intra-cellular loop were replaced by the rubredoxin for stability reasons. In the current study, we aimed to understand the impact of the incorporated rubredoxin on the conformations of TM domains of the target protein. For this reason, rubredoxin was deleted from the crystal structure and the missing amino acids were engineered. The resultant structure was subjected to long (μs) molecular dynamics (MD) simulations to shed light into the inhibitory mechanism. The derived model structure displayed a significant deviation in the cytoplasmic domain of TM5 and IC3 in the absence of rubredoxin. The principal component analyses (PCA) and MD trajectory analyses revealed important structural and dynamical differences at apo and holo forms of the CCR5.
Collapse
Affiliation(s)
| | - Mine Yurtsever
- Department of Chemistry, Istanbul Technical University, Istanbul, Turkey
| | - Serdar Durdagi
- Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| |
Collapse
|
27
|
Syncytial apoptosis signaling network induced by the HIV-1 envelope glycoprotein complex: an overview. Cell Death Dis 2015; 6:e1846. [PMID: 26247731 PMCID: PMC4558497 DOI: 10.1038/cddis.2015.204] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/17/2015] [Accepted: 06/17/2015] [Indexed: 02/07/2023]
Abstract
Infection by human immunodeficiency virus-1 (HIV-1) is associated with a progressive decrease in CD4 T-cell numbers and the consequent collapse of host immune defenses. The major pathogenic mechanism of AIDS is the massive apoptotic destruction of the immunocompetent cells, including uninfected cells. The latter process, also known as by-stander killing, operates by various mechanisms one of which involves the formation of syncytia which undergo cell death by following a complex pathway. We present here a detailed and curated map of the syncytial apoptosis signaling network, aimed at simplifying the whole mechanism that we have characterized at the molecular level in the last 15 years. The map was created using Systems Biology Graphical Notation language with the help of CellDesigner software and encompasses 36 components (proteins/genes) and 54 interactions. The simplification of this complex network paves the way for the development of novel therapeutic strategies to eradicate HIV-1 infection. Agents that induce the selective death of HIV-1-elicited syncytia might lead to the elimination of viral reservoirs and hence constitute an important complement to current antiretroviral therapies.
Collapse
|
28
|
Do T, Murphy G, Earl LA, Del Prete GQ, Grandinetti G, Li GH, Estes JD, Rao P, Trubey CM, Thomas J, Spector J, Bliss D, Nath A, Lifson JD, Subramaniam S. Three-dimensional imaging of HIV-1 virological synapses reveals membrane architectures involved in virus transmission. J Virol 2014; 88:10327-39. [PMID: 24965444 PMCID: PMC4178837 DOI: 10.1128/jvi.00788-14] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/12/2014] [Indexed: 01/25/2023] Open
Abstract
UNLABELLED HIV transmission efficiency is greatly increased when viruses are transmitted at virological synapses formed between infected and uninfected cells. We have previously shown that virological synapses formed between HIV-pulsed mature dendritic cells (DCs) and uninfected T cells contain interdigitated membrane surfaces, with T cell filopodia extending toward virions sequestered deep inside invaginations formed on the DC membrane. To explore membrane structural changes relevant to HIV transmission across other types of intercellular conjugates, we used a combination of light and focused ion beam scanning electron microscopy (FIB-SEM) to determine the three-dimensional (3D) architectures of contact regions between HIV-1-infected CD4(+) T cells and either uninfected human CD4(+) T cells or human fetal astrocytes. We present evidence that in each case, membrane extensions that originate from the uninfected cells, either as membrane sheets or filopodial bridges, are present and may be involved in HIV transmission from infected to uninfected cells. We show that individual virions are distributed along the length of astrocyte filopodia, suggesting that virus transfer to the astrocytes is mediated, at least in part, by processes originating from the astrocyte itself. Mechanisms that selectively disrupt the polarization and formation of such membrane extensions could thus represent a possible target for reducing viral spread. IMPORTANCE Our findings lead to new insights into unique aspects of HIV transmission in the brain and at T cell-T cell synapses, which are thought to be a predominant mode of rapid HIV transmission early in the infection process.
Collapse
Affiliation(s)
- Thao Do
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Gavin Murphy
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Lesley A Earl
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Gregory Q Del Prete
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, USA
| | - Giovanna Grandinetti
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Guan-Han Li
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Jacob D Estes
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, USA
| | - Prashant Rao
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Charles M Trubey
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, USA
| | - James Thomas
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, USA
| | - Jeffrey Spector
- National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Donald Bliss
- National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, USA
| | - Sriram Subramaniam
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
29
|
Identification of molecular sub-networks associated with cell survival in a chronically SIVmac-infected human CD4+ T cell line. Virol J 2014; 11:152. [PMID: 25163480 PMCID: PMC4163169 DOI: 10.1186/1743-422x-11-152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 08/15/2014] [Indexed: 12/31/2022] Open
Abstract
Background The deciphering of cellular networks to determine susceptibility to infection by HIV or the related simian immunodeficiency virus (SIV) is a major challenge in infection biology. Results Here, we have compared gene expression profiles of a human CD4+ T cell line at 24 h after infection with a cell line of the same origin permanently releasing SIVmac. A new knowledge-based-network approach (Inter-Chain-Finder, ICF) has been used to identify sub-networks associated with cell survival of a chronically SIV-infected T cell line. Notably, the method can identify not only differentially expressed key hub genes but also non-differentially expressed, critical, ‘hidden’ regulators. Six out of the 13 predicted major hidden key regulators were among the landscape of proteins known to interact with HIV. Several sub-networks were dysregulated upon chronic infection with SIV. Most prominently, factors reported to be engaged in early stages of acute viral infection were affected, e.g. entry, integration and provirus transcription and other cellular responses such as apoptosis and proliferation were modulated. For experimental validation of the gene expression analyses and computational predictions, individual pathways/sub-networks and significantly altered key regulators were investigated further. We showed that the expression of caveolin-1 (Cav-1), the top hub in the affected protein-protein interaction network, was significantly upregulated in chronically SIV-infected CD4+ T cells. Cav-1 is the main determinant of caveolae and a central component of several signal transduction pathways. Furthermore, CD4 downregulation and modulation of the expression of alternate and co-receptors as well as pathways associated with viral integration into the genome were also observed in these cells. Putatively, these modifications interfere with re-infection and the early replication cycle and inhibit cell death provoked by syncytia formation and bystander apoptosis. Conclusions Thus, by using the novel approach for network analysis, ICF, we predict that in the T cell line chronically infected with SIV, cellular processes that are known to be crucial for early phases of HIV/SIV replication are altered and cellular responses that result in cell death are modulated. These modifications presumably contribute to cell survival despite chronic infection. Electronic supplementary material The online version of this article (doi:10.1186/1743-422X-11-152) contains supplementary material, which is available to authorized users.
Collapse
|
30
|
Spear M, Guo J, Wu Y. Novel anti-HIV therapeutics targeting chemokine receptors and actin regulatory pathways. Immunol Rev 2014; 256:300-12. [PMID: 24117829 DOI: 10.1111/imr.12106] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The human immunodeficiency virus-1 (HIV-1) infects helper CD4(+) T cells, and causes CD4(+) T-cell depletion and immunodeficiency. In the past 30 years, significant progress has been made in antiretroviral therapy, and the disease has become manageable. Nevertheless, an effective vaccine is still nowhere in sight, and a cure or a functional cure awaits discovery. Among possible curative therapies, traditional antiretroviral therapy, mostly targeting viral proteins, has been proven ineffective. It is possible that targeting HIV-dependent host cofactors may offer alternatives, both for preventing HIV transmission and for forestalling disease progression. Recently, the actin cytoskeleton and its regulators in blood CD4(+) T cells have emerged as major host cofactors that could be targeted. The novel concept that the cortical actin is a barrier to viral entry and early post-entry migration has led to the nascent model of virus-host interaction at the cortical actin layer. Deciphering the cellular regulatory pathways has manifested exciting prospects for future therapeutics. In this review, we describe the study of HIV interactions with actin cytoskeleton. We also examine potential pharmacological targets that emerge from this interaction. In addition, we briefly discuss several actin pathway-based anti-HIV drugs that are currently in development or testing.
Collapse
Affiliation(s)
- Mark Spear
- National Center for Biodefense and Infectious Diseases, Department of Molecular and Microbiology, George Mason University, Manassas, VA, USA
| | | | | |
Collapse
|
31
|
Velasquez S, Eugenin EA. Role of Pannexin-1 hemichannels and purinergic receptors in the pathogenesis of human diseases. Front Physiol 2014; 5:96. [PMID: 24672487 PMCID: PMC3953678 DOI: 10.3389/fphys.2014.00096] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 02/24/2014] [Indexed: 12/20/2022] Open
Abstract
In the last decade several groups have determined the key role of hemichannels formed by pannexins or connexins, extracellular ATP and purinergic receptors in physiological and pathological conditions. Our work and the work of others, indicate that the opening of Pannexin-1 hemichannels and activation of purinergic receptors by extracellular ATP is essential for HIV infection, cellular migration, inflammation, atherosclerosis, stroke, and apoptosis. Thus, this review discusses the importance of purinergic receptors, Panx-1 hemichannels and extracellular ATP in the pathogenesis of several human diseases and their potential use to design novel therapeutic approaches.
Collapse
Affiliation(s)
- Stephani Velasquez
- Public Health Research Institute, Rutgers the State University of New Jersey Newark, NJ, USA ; Department of Microbiology and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers the State University of New Jersey Newark, NJ, USA
| | - Eliseo A Eugenin
- Public Health Research Institute, Rutgers the State University of New Jersey Newark, NJ, USA ; Department of Microbiology and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers the State University of New Jersey Newark, NJ, USA
| |
Collapse
|
32
|
Flanagan CA. Receptor Conformation and Constitutive Activity in CCR5 Chemokine Receptor Function and HIV Infection. ADVANCES IN PHARMACOLOGY 2014; 70:215-63. [DOI: 10.1016/b978-0-12-417197-8.00008-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
33
|
Guo J, Xu X, Rasheed TK, Yoder A, Yu D, Liang H, Yi F, Hawley T, Jin T, Ling B, Wu Y. Genistein interferes with SDF-1- and HIV-mediated actin dynamics and inhibits HIV infection of resting CD4 T cells. Retrovirology 2013; 10:62. [PMID: 23782904 PMCID: PMC3693989 DOI: 10.1186/1742-4690-10-62] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 06/10/2013] [Indexed: 11/23/2022] Open
Abstract
Background Binding of HIV to the chemokine coreceptor CXCR4 mediates viral fusion and signal transduction that promotes actin dynamics critical for HIV infection of blood resting CD4 T cells. It has been suggested that this gp120-mediated actin activity resembles the chemotactic actin dynamics mediated by chemokines such as SDF-1. To determine whether inhibiting SDF-1-mediated chemotactic activity can also inhibit HIV infection, we screened several inhibitors known to reduce SDF-1-mediated chemotaxis of T cells. Results We found that a tyrosine kinase inhibitor, genistein, inhibited both SDF-1-mediated chemotaxis and HIV infection of resting CD4 T cells. Genistein was also found to interfere with SDF-1- and HIV-mediated actin dynamics in CD4 T cells. This reduction in actin activity correlates with genistein-mediated inhibition of viral DNA accumulation in resting CD4 T cells. In addition, we also tested two other tyrosine kinase inhibitors, sunitinib and AG1478. Sunitinib, but not AG1478, inhibited HIV infection of resting CD4 T cells. We further tested the safety of genistein in 3 Chinese rhesus macaques (Macaca mulatta), and each animal was given a monotherapy of genistein at 10 mg/kg orally for 12 weeks. No adverse drug effects were observed in these animals. Conclusions Our results suggest that novel therapeutic strategies can be developed based on targeting cellular proteins involved in HIV-dependent signaling. This approach can interfere with HIV-mediated actin dynamics and inhibit HIV infection.
Collapse
Affiliation(s)
- Jia Guo
- National Center for Biodefense and Infectious Diseases, Department of Molecular and Microbiology, George Mason University, Manassas VA 20110, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wojcechowskyj JA, Didigu CA, Lee JY, Parrish NF, Sinha R, Hahn BH, Bushman FD, Jensen ST, Seeholzer SH, Doms RW. Quantitative phosphoproteomics reveals extensive cellular reprogramming during HIV-1 entry. Cell Host Microbe 2013; 13:613-623. [PMID: 23684312 PMCID: PMC4104530 DOI: 10.1016/j.chom.2013.04.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 02/11/2013] [Accepted: 04/22/2013] [Indexed: 12/30/2022]
Abstract
Receptor engagement by HIV-1 during host cell entry activates signaling pathways that can reprogram the cell for optimal viral replication. To obtain a global view of the signaling events induced during HIV-1 entry, we conducted a quantitative phosphoproteomics screen of primary human CD4(+) T cells after infection with an HIV-1 strain that engages the receptors CD4 and CXCR4. We quantified 1,757 phosphorylation sites with high stringency. The abundance of 239 phosphorylation sites from 175 genes, including several proteins in pathways known to be impacted by HIV-receptor binding, changed significantly within a minute after HIV-1 exposure. Several previously uncharacterized HIV-1 host factors were also identified and confirmed through RNAi depletion studies. Surprisingly, five serine/arginine-rich (SR) proteins involved in messenger RNA splicing, including the splicing factor SRm300 (SRRM2), were differentially phosophorylated. Mechanistic studies with SRRM2 suggest that HIV-1 modulates host cell alternative splicing machinery during entry in order to facilitate virus replication and release.
Collapse
Affiliation(s)
- Jason A Wojcechowskyj
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Chuka A Didigu
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Jessica Y Lee
- Protein and Proteomics Core, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Nicholas F Parrish
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rohini Sinha
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Beatrice H Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shane T Jensen
- Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Steven H Seeholzer
- Protein and Proteomics Core, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Robert W Doms
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA.
| |
Collapse
|
35
|
Orellana JA, Velasquez S, Williams DW, Sáez JC, Berman JW, Eugenin EA. Pannexin1 hemichannels are critical for HIV infection of human primary CD4+ T lymphocytes. J Leukoc Biol 2013; 94:399-407. [PMID: 23456773 DOI: 10.1189/jlb.0512249] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
HIV is a major public health issue, and infection of CD4(+) T lymphocytes is one of its key features. Whereas several cellular proteins have been identified that facilitate viral infection and replication, the role of hemichannels in these processes has not been fully characterized. We now show that the HIV isolates, R5 and X4, induced a transient-early (5-30 min) and a later, persistent (48-120 h) opening of Panx1 hemichannels, which was dependent on the binding of HIV to CD4 and CCR5/CXCR4 receptors. Blocking Panx1 hemichannels by reducing their opening or protein expression inhibited HIV replication in CD4(+) T lymphocytes. Thus, our findings demonstrate that Panx1 hemichannels play an essential role in HIV infection.
Collapse
Affiliation(s)
- J A Orellana
- Departamento de Neurología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
36
|
Mocchetti I, Campbell LA, Harry GJ, Avdoshina V. When human immunodeficiency virus meets chemokines and microglia: neuroprotection or neurodegeneration? J Neuroimmune Pharmacol 2013; 8:118-31. [PMID: 22527632 PMCID: PMC3427402 DOI: 10.1007/s11481-012-9353-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 03/01/2012] [Indexed: 12/26/2022]
Abstract
Chemokines are chemotactic cytokines that were originally discovered as promoters of leukocyte proliferation and mobility. In recent years, however, evidence has demonstrated constitutive expression of chemokines and chemokine receptors in a variety of cells in the central and peripheral nervous system and has proposed a role for chemokines in neurodegenerative diseases characterized by inflammation and microglia proliferation. In addition, chemokine receptors, and in particular CXCR4 and CCR5, mediate human immunodeficiency virus type 1 (HIV) infection of immunocompetent cells as well as microglia. Subsequently, HIV, through a variety of mechanisms, promotes synapto-dendritic alterations and neuronal loss that ultimately lead to motor and cognitive impairments. These events are accompanied by microglia activation. Nevertheless, a microglia-mediated mechanism of neuronal degeneration alone cannot fully explain some of the pathological features of HIV infected brain such as synaptic simplification. In this article, we present evidence that some of the microglia responses to HIV are beneficial and neuroprotective. These include the ability of microglia to release anti-inflammatory cytokines, to remove dying cells and to promote axonal sprouting.
Collapse
Affiliation(s)
- Italo Mocchetti
- Department of Neuroscience, Georgetown University Medical Center, Research Building, Room EP04 Box 571464, Washington, DC 20057, USA.
| | | | | | | |
Collapse
|
37
|
Chan CN, Dietrich I, Hosie MJ, Willett BJ. Recent developments in human immunodeficiency virus-1 latency research. J Gen Virol 2013; 94:917-932. [PMID: 23364195 PMCID: PMC3709588 DOI: 10.1099/vir.0.049296-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Almost 30 years after its initial discovery, infection with the human immunodeficiency virus-1 (HIV-1) remains incurable and the virus persists due to reservoirs of latently infected CD4(+) memory T-cells and sanctuary sites within the infected individual where drug penetration is poor. Reactivating latent viruses has been a key strategy to completely eliminate the virus from the host, but many difficulties and unanswered questions remain. In this review, the latest developments in HIV-persistence and latency research are presented.
Collapse
Affiliation(s)
- Chi Ngai Chan
- MRC-University of Glasgow Centre for Virus Research, Bearsden Road, Glasgow G61 1QH, UK
| | - Isabelle Dietrich
- MRC-University of Glasgow Centre for Virus Research, Bearsden Road, Glasgow G61 1QH, UK
| | - Margaret J Hosie
- MRC-University of Glasgow Centre for Virus Research, Bearsden Road, Glasgow G61 1QH, UK
| | - Brian J Willett
- MRC-University of Glasgow Centre for Virus Research, Bearsden Road, Glasgow G61 1QH, UK
| |
Collapse
|
38
|
de Voux A, Chan MC, Folefoc AT, Madziva MT, Flanagan CA. Constitutively active CCR5 chemokine receptors differ in mediating HIV envelope-dependent fusion. PLoS One 2013; 8:e54532. [PMID: 23355876 PMCID: PMC3552960 DOI: 10.1371/journal.pone.0054532] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 12/12/2012] [Indexed: 11/18/2022] Open
Abstract
The CCR5 chemokine receptor is a rhodopsin-like G protein-coupled receptor that mediates the effects of pro-inflammatory β-chemokines. CCR5 is also the major co-receptor for entry of human immunodeficiency virus (HIV) into human cells. G protein-coupled receptors exist in ensembles of active and inactive conformations. Active receptor conformations can be stabilized by mutations. Although binding of the HIV envelope protein to CCR5 stimulates cellular signaling, the CCR5 conformation that induces fusion of the viral membrane with cellular membranes is not known. We mutated conserved amino acids to generate constitutively active CCR5 receptors, which are stabilized in active conformations, and tested the ability of constitutively active CCR5 receptors to mediate HIV envelope-directed membrane fusion. Mutation of the Asp3.49(125) and Arg6.32(225) residues of CCR5 did not cause constitutive activity, but Lys or Pro substitutions for Thr2.56(82), in the TxP motif, caused high basal inositol phosphate signaling. Signaling did not increase in response to MIP-1β, suggesting that the Thr2.56(82) mutants were fully stabilized in active conformations. The Thr2.56(82)Lys mutation severely decreased cell surface CCR5 expression. Combining the Thr2.56(82)Lys mutation with an Arg6.32(225)Gln mutation partially reversed the decrease in expression. Mutants with Thr2.56(82)Lys substitutions were poor mediators of HIV envelope-directed membrane fusion, but mutants with the Thr2.65(82)Pro substitution exhibited full co-receptor function. Our results suggest that the Thr2.65(82)Lys and Thr2.65(82)Pro mutations stabilize distinct constitutively active CCR5 conformations. Lys in position 2.65(82) stabilizes activated receptor conformations that appear to be constitutively internalized and do not induce envelope-dependent membrane fusion, whereas Pro stabilizes activated conformations that are not constitutively internalized and fully mediate envelope-directed membrane fusion.
Collapse
Affiliation(s)
- Alex de Voux
- Medical Research Council Receptor Biology Research Unit, Division of Medical Biochemistry, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Mei-Chi Chan
- Medical Research Council Receptor Biology Research Unit, Division of Medical Biochemistry, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Asongna T. Folefoc
- Medical Research Council Receptor Biology Research Unit, Division of Medical Biochemistry, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Michael T. Madziva
- Medical Research Council Receptor Biology Research Unit, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| | - Colleen A. Flanagan
- Medical Research Council Receptor Biology Research Unit, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
- * E-mail:
| |
Collapse
|
39
|
Cunningham AL, Harman A, Kim M, Nasr N, Lai J. Immunobiology of dendritic cells and the influence of HIV infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 762:1-44. [PMID: 22975870 DOI: 10.1007/978-1-4614-4433-6_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent progress in phenotyping of human dendritic cells (DCs) has allowed a closer alignment of the classification and functions of murine and human dendritic cell subsets. Marked differences in the functions of these human DC subsets and their response to HIV infection have become apparent, relevant to HIV pathogenesis and vaccine and microbicide development. Systems biology approaches to studying HIV uptake and infection of dendritic cells has revealed how markedly HIV subverts their functions, especially in relation to the trafficking pathways and viral transfer to T cells. Furthermore the interactions between DCs and other innate immune cells, NK cells, NKT cells and gamma delta T cells are now known to influence DC and T cell function and are also disturbed by HIV infection in vitro and in vivo. Such cellular interactions are potential targets for vaccine adjuvants and immunotherapy.
Collapse
|
40
|
Vicenzi E, Liò P, Poli G. The puzzling role of CXCR4 in human immunodeficiency virus infection. Theranostics 2013; 3:18-25. [PMID: 23382782 PMCID: PMC3563077 DOI: 10.7150/thno.5392] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 12/26/2012] [Indexed: 11/05/2022] Open
Abstract
The human immunodeficiency virus type-1 (HIV-1) is the etiological agent of the acquired immunodeficiency syndrome (AIDS), a disease highly lethal in the absence of combination antiretroviral therapy. HIV infects CD4(+) cells of the immune system (T cells, monocyte-macrophages and dendritic cells) via interaction with a universal primary receptor, the CD4 molecule, followed by a mandatory interaction with a second receptor (co-receptor) belonging to the chemokine receptor family. Apart from some rare cases, two chemokine receptors have been evolutionarily selected to accomplish this need for HIV-1: CCR5 and CXCR4. Yet, usage of these two receptors appears to be neither casual nor simply explained by their levels of cell surface expression. While CCR5 use is the universal rule at the start of every infection regardless of the transmission route (blood-related, sexual or mother to child), CXCR4 utilization emerges later in disease coinciding with the immunological deficient phase of infection. Moreover, in most instances CXCR4 use as viral entry co-receptor is associated with maintenance of CCR5 use. Since antiviral agents preventing CCR5 utilization by the virus are already in use, while others targeting either CCR5 or CXCR4 (or both) are under investigation, understanding the biological correlates of this "asymmetrical" utilization of HIV entry co-receptors bears relevance for the clinical choice of which therapeutics should be administered to infected individuals. We will here summarize the basic knowledge and the hypotheses underlying the puzzling and yet unequivocal role of CXCR4 in HIV-1 infection.
Collapse
|
41
|
White GE, Iqbal AJ, Greaves DR. CC chemokine receptors and chronic inflammation--therapeutic opportunities and pharmacological challenges. Pharmacol Rev 2013; 65:47-89. [PMID: 23300131 DOI: 10.1124/pr.111.005074] [Citation(s) in RCA: 210] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chemokines are a family of low molecular weight proteins with an essential role in leukocyte trafficking during both homeostasis and inflammation. The CC class of chemokines consists of at least 28 members (CCL1-28) that signal through 10 known chemokine receptors (CCR1-10). CC chemokine receptors are expressed predominantly by T cells and monocyte-macrophages, cell types associated predominantly with chronic inflammation occurring over weeks or years. Chronic inflammatory diseases including rheumatoid arthritis, atherosclerosis, and metabolic syndrome are characterized by continued leukocyte infiltration into the inflammatory site, driven in large part by excessive chemokine production. Over years or decades, persistent inflammation may lead to loss of tissue architecture and function, causing severe disability or, in the case of atherosclerosis, fatal outcomes such as myocardial infarction or stroke. Despite the existence of several clinical strategies for targeting chronic inflammation, these diseases remain significant causes of morbidity and mortality globally, with a concomitant economic impact. Thus, the development of novel therapeutic agents for the treatment of chronic inflammatory disease continues to be a priority. In this review we introduce CC chemokine receptors as critical mediators of chronic inflammatory responses and explore their potential role as pharmacological targets. We discuss functions of individual CC chemokine receptors based on in vitro pharmacological data as well as transgenic animal studies. Focusing on three key forms of chronic inflammation--rheumatoid arthritis, atherosclerosis, and metabolic syndrome--we describe the pathologic function of CC chemokine receptors and their possible relevance as therapeutic targets.
Collapse
Affiliation(s)
- Gemma E White
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
42
|
Spear M, Guo J, Wu Y. The trinity of the cortical actin in the initiation of HIV-1 infection. Retrovirology 2012; 9:45. [PMID: 22640593 PMCID: PMC3416652 DOI: 10.1186/1742-4690-9-45] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 05/03/2012] [Indexed: 12/16/2022] Open
Abstract
For an infecting viral pathogen, the actin cortex inside the host cell is the first line of intracellular components that it encounters. Viruses devise various strategies to actively engage or circumvent the actin structure. In this regard, the human immunodeficiency virus-1 (HIV-1) exemplifies command of cellular processes to take control of actin dynamics for the initiation of infection. It has becomes increasingly evident that cortical actin presents itself both as a barrier to viral intracellular migration and as a necessary cofactor that the virus must actively engage, particularly, in the infection of resting CD4 blood T cells, the primary targets of HIV-1. The coercion of this most fundamental cellular component permits infection by facilitating entry, reverse transcription, and nuclear migration, three essential processes for the establishment of viral infection and latency in blood T cells. It is the purpose of this review to examine, in detail, the manifestation of viral dependence on the actin cytoskeleton, and present a model of how HIV utilizes actin dynamics to initiate infection.
Collapse
Affiliation(s)
- Mark Spear
- National Center for Biodefense and Infectious Diseases, Department of Molecular and Microbiology, George Mason University, Manassas, VA 20110, USA
| | | | | |
Collapse
|
43
|
Hazleton JE, Berman JW, Eugenin EA. Purinergic receptors are required for HIV-1 infection of primary human macrophages. THE JOURNAL OF IMMUNOLOGY 2012; 188:4488-95. [PMID: 22450808 DOI: 10.4049/jimmunol.1102482] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Macrophages play a significant role in HIV infection, viral rebound, and the development of AIDS. However, the function of host proteins in viral replication is incompletely characterized in macrophages. Purinergic receptors P2X and P2Y are major components of the macrophage immune response to pathogens, inflammation, and cellular damage. We demonstrate that these receptors are necessary for HIV infection of primary human macrophages. Inhibition of purinergic receptors results in a significant reduction in HIV replication in macrophages. This inhibition is independent of viral strain and is dose dependent. We also identify that P2X(1), P2X(7), and P2Y(1) receptors are involved in viral replication. We show that P2X(1), but not P2X(7) or P2Y(1), is necessary for HIV entry into macrophages. We demonstrate that interaction of the HIV surface protein gp120 with macrophages stimulates an increase in ATP release. Thus, we propose that HIV's binding to macrophages triggers a local release of ATP that stimulates purinergic receptors and facilitates HIV entry and subsequent stages of viral replication. Our data implicate a novel role for a family of host proteins in HIV replication in macrophages and suggest new therapeutic targets to reduce the devastating consequences of HIV infection and AIDS.
Collapse
Affiliation(s)
- Joy E Hazleton
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
44
|
|
45
|
Zhou C, Lu L, Tan S, Jiang S, Chen YH. HIV-1 glycoprotein 41 ectodomain induces activation of the CD74 protein-mediated extracellular signal-regulated kinase/mitogen-activated protein kinase pathway to enhance viral infection. J Biol Chem 2011; 286:44869-77. [PMID: 22039051 DOI: 10.1074/jbc.m111.267393] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Besides mediating the viral entry process, the human immunodeficiency virus (HIV-1) envelope protein gp41 can bind to many host cell components and regulate cell functions. Using a yeast two-hybrid system, we screened a human bone marrow cDNA library and identified a novel gp41-binding protein, CD74 (the MHC class II-associated invariant chain). Here, we report possible biological effects mediated by interaction between gp41 and CD74. We found that HIV-1 gp41 could bind directly to host CD74 in HIV-1-infected cells, and the peptide 6358 derived from gp41 loop region (aa 597-611) could effectively block the gp41-CD74 interaction. As a result of this binding, recombinant soluble gp41 and gp41 peptide 6358 activated the CD74-mediated ERK/MAPK pathway and significantly enhanced HIV-1 infection in vitro. Conversely, the enhancing effect could be suppressed by the recombinant CD74 extracellular domain. These results reveal a novel mechanism underlying gp41 mediation of HIV-1 infection and replication.
Collapse
Affiliation(s)
- Chang Zhou
- Laboratory of Immunology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | | | | | | |
Collapse
|
46
|
Jones KL, Maguire JJ, Davenport AP. Chemokine receptor CCR5: from AIDS to atherosclerosis. Br J Pharmacol 2011; 162:1453-69. [PMID: 21133894 DOI: 10.1111/j.1476-5381.2010.01147.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
There is increasing recognition of an important contribution of chemokines and their receptors in the pathology of atherosclerosis and related cardiovascular disease. The chemokine receptor CCR5 was initially known for its role as a co-receptor for HIV infection of macrophages and is the target of the recently approved CCR5 antagonist maraviroc. However, evidence is now emerging supporting a role for CCR5 and its ligands CCL3 (MIP-1α), CCL4 (MIP-1β) and CCL5 (RANTES) in the initiation and progression of atherosclerosis. Specifically, the CCR5 deletion polymorphism CCR5delta32, which confers resistance to HIV infection, has been associated with a reduced risk of cardiovascular disease and both CCR5 antagonism and gene deletion reduce atherosclerosis in mouse models of the disease. Antagonism of CCL5 has also been shown to reduce atherosclerotic burden in these animal models. Crucially, CCR5 and its ligands CCL3, CCL4 and CCL5 have been identified in human and mouse vasculature and have been detected in human atherosclerotic plaque. Not unexpectedly, CC chemokines have also been linked to saphenous vein graft disease, which shares similarity to native vessel atherosclerosis. Distinct roles for chemokine-receptor systems in atherogenesis have been proposed, with CCR5 likely to be critical in recruitment of monocytes to developing plaques. With an increased burden of cardiovascular disease observed in HIV-infected individuals, the potential cardiovascular-protective effects of drugs that target the CCR5 receptor warrant greater attention. The availability of clinically validated antagonists such as maraviroc currently provides an advantage for targeting of CCR5 over other chemokine receptors.
Collapse
Affiliation(s)
- K L Jones
- Clinical Pharmacology Unit, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, UK
| | | | | |
Collapse
|
47
|
HIV infection of dendritic cells subverts the IFN induction pathway via IRF-1 and inhibits type 1 IFN production. Blood 2011; 118:298-308. [PMID: 21411754 DOI: 10.1182/blood-2010-07-297721] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Many viruses have developed mechanisms to evade the IFN response. Here, HIV-1 was shown to induce a distinct subset of IFN-stimulated genes (ISGs) in monocyte-derived dendritic cells (DCs), without detectable type I or II IFN. These ISGs all contained an IFN regulatory factor 1 (IRF-1) binding site in their promoters, and their expression was shown to be driven by IRF-1, indicating this subset was induced directly by viral infection by IRF-1. IRF-1 and -7 protein expression was enriched in HIV p24 antigen-positive DCs. A HIV deletion mutant with the IRF-1 binding site deleted from the long terminal repeat showed reduced growth kinetics. Early and persistent induction of IRF-1 was coupled with sequential transient up-regulation of its 2 inhibitors, IRF-8, followed by IRF-2, suggesting a mechanism for IFN inhibition. HIV-1 mutants with Vpr deleted induced IFN, showing that Vpr is inhibitory. However, HIV IFN inhibition was mediated by failure of IRF-3 activation rather than by its degradation, as in T cells. In contrast, herpes simplex virus type 2 markedly induced IFNβ and a broader range of ISGs to higher levels, supporting the hypothesis that HIV-1 specifically manipulates the induction of IFN and ISGs to enhance its noncytopathic replication in DCs.
Collapse
|
48
|
Cicala C, Arthos J, Fauci AS. HIV-1 envelope, integrins and co-receptor use in mucosal transmission of HIV. J Transl Med 2011; 9 Suppl 1:S2. [PMID: 21284901 PMCID: PMC3105502 DOI: 10.1186/1479-5876-9-s1-s2] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
It is well established that HIV-1 infection typically involves an interaction between the viral envelope protein gp120/41 and the CD4 molecule followed by a second interaction with a chemokine receptor, usually CCR5 or CXCR4. In the early stages of an HIV-1 infection CCR5 using viruses (R5 viruses) predominate. In some viral subtypes there is a propensity to switch to CXCR4 usage (X4 viruses). The receptor switch occurs in ~ 40% of the infected individuals and is associated with faster disease progression. This holds for subtypes B and D, but occurs less frequently in subtypes A and C. There are several hypotheses to explain the preferential transmission of R5 viruses and the mechanisms that lead to switching of co-receptor usage; however, there is no definitive explanation for either. One important consideration regarding transmission is that signaling by R5 gp120 may facilitate transmission of R5 viruses by inducing a permissive environment for HIV replication. In the case of sexual transmission, infection by HIV requires the virus to breach the mucosal barrier to gain access to the immune cell targets that it infects; however, the immediate events that follow HIV exposure at genital mucosal sites are not well understood. Upon transmission, the HIV quasispecies that is replicating in an infected donor contracts through a “genetic bottleneck”, and often infection results from a single infectious event. Many details surrounding this initial infection remain unresolved. In mucosal tissues, CD4+ T cells express high levels of CCR5, and a subset of these CD4+/CCR5high cells express the integrin α4β7, the gut homing receptor. CD4+/CCR5high/ α4β7high T cells are highly susceptible to infection by HIV-1 and are ideal targets for an efficient productive infection at the point of transmission. In this context we have demonstrated that the HIV-1 envelope protein gp120 binds to α4β7 on CD4+ T cells. On CD4+/CCR5high/ α4β7high T cells, α4β7 is closely associated with CD4 and CCR5. Furthermore, α4β7 is ~3 times the size of CD4 on the cell surface, that makes it a prominent receptor for an efficient virus capture. gp120-α4β7 interactions mediate the activation of the adhesion-associated integrin LFA-1. LFA-1 facilitates the formation of virological synapses and cell-to-cell spread of HIV-1. gp120 binding to α4β7 is mediated by a tripeptide located in the V1/V2 domain of gp120. Of note, the V1/V2 domain of gp120 has been linked to variations in transmission fitness among viral isolates raising the intriguing possibility that gp120-α4β7 interactions may be linked to transmission fitness. Although many details remain unresolved, we hypothesize that gp120-α4β7 interactions play an important role in the very early events following sexual transmission of HIV and may have important implication in the design of vaccine strategies for the prevention of acquisition of HIV infection
Collapse
Affiliation(s)
- Claudia Cicala
- Laboratory of Immunoregulation National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
49
|
Mariani SA, Vicenzi E, Poli G. Asymmetric HIV-1 co-receptor use and replication in CD4(+) T lymphocytes. J Transl Med 2011; 9 Suppl 1:S8. [PMID: 21284907 PMCID: PMC3105508 DOI: 10.1186/1479-5876-9-s1-s8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Susceptibility to infection by the human immunodeficiency virus type-1 (HIV-1), both in vitro and in vivo, requires the interaction between its envelope (Env) glycoprotein gp120 Env and the primary receptor (R), CD4, and Co-R, either CCR5 or CXCR4, members of the chemokine receptor family. CCR5-dependent (R5) viruses are responsible for both inter-individual transmission and for sustaining the viral pandemics, while CXCR4-using viruses, usually dualtropic R5X4, emerge in ca. 50% of individuals only in the late, immunologically suppressed stage of disease. The hypothesis that such a major biological asymmetry is explained exclusively by the availability of cells expressing CCR5 or CXCR4 is challenged by several evidences. In this regard, binding of the HIV-1 gp120 Env to the entry R complex, i.e. CD4 and a chemokine R, leads to two major events: virion-cell membrane fusion and a cascade of cell signaling. While the fusion/entry process has been well defined, the role of R/Co-R signaling in the HIV-1 life cycle has been less characterized. Indeed, depending on the cellular model studied, the capacity of HIV-1 to trigger a flow of events favoring either its own latency or replication remains a debated issue. In this article, we will review the major findings related to the role of HIV R/Co-R signaling in the steps following viral entry and leading to viral spreading in CD4+ T lymphocytes.
Collapse
Affiliation(s)
- Samanta A Mariani
- AIDS Immunopathogenesis Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy
| | | | | |
Collapse
|
50
|
Tagliamonte M, Tornesello ML, Buonaguro FM, Buonaguro L. Conformational HIV-1 envelope on particulate structures: a tool for chemokine coreceptor binding studies. J Transl Med 2011; 9 Suppl 1:S1. [PMID: 21284899 PMCID: PMC3105500 DOI: 10.1186/1479-5876-9-s1-s1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) external envelope glycoprotein gp120 presents conserved binding sites for binding to the primary virus receptor CD4 as well as the major HIV chemokine coreceptors, CCR5 and CXCR4. Concerted efforts are underway to understand the specific interactions between gp120 and coreceptors as well as their contribution to the subsequent membrane fusion process. The present review summarizes the current knowledge on this biological aspect, which represents one of the key and essential points of the HIV-host cell interplay and HIV life cycle. The relevance of conformational HIV-1 Envelope proteins presented on Virus-like Particles for appropriate assessment of this molecular interaction, is also discussed.
Collapse
Affiliation(s)
- Maria Tagliamonte
- Lab, of Molecular Biology and Viral Oncogenesis & AIDS Reference Center, Istituto Nazionale Tumori Fond, G, Pascale, Naples, Italy
| | | | | | | |
Collapse
|