1
|
Korn T, Hansen UP, Gabriel TS, Rauh O, Drexler N, Schroeder I. Binding kinetics of quaternary ammonium ions in Kcv potassium channels. Channels (Austin) 2024; 18:2402749. [PMID: 39383513 DOI: 10.1080/19336950.2024.2402749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/12/2024] [Accepted: 07/29/2024] [Indexed: 10/11/2024] Open
Abstract
Kcv channels from plant viruses represent the autonomous pore module of potassium channels, devoid of any regulatory domains. These small proteins show very reproducible single-channel behavior in planar lipid bilayers. Thus, they are an optimum system for the study of the biophysics of ion transport and gating. Structural models based on homology modeling have been used successfully, but experimental structural data are currently not available. Here we determine the size of the cytosolic pore entrance by studying the blocker kinetics. Blocker binding and dissociation rate constants ranging from 0.01 to 1000 ms-1 were determined for different quaternary ammonium ions. We found that the cytosolic pore entrance of KcvNTS must be at least 11 Å wide. The results further indicate that the residues controlling a cytosolic gate in one of the Kcv isoforms influence blocker binding/dissociation as well as a second gate even when the cytosolic gate is in the open state. The voltage dependence of the rate constant of blocker release is used to test, which blockers bind to the same binding site.
Collapse
Affiliation(s)
- Tobias Korn
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Ulf-Peter Hansen
- Department of Structural Biology, Christian-Albrechts-University, Kiel, Germany
| | | | - Oliver Rauh
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Nils Drexler
- Physiology II, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| | - Indra Schroeder
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
- Physiology II, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
2
|
Volovik MV, Batishchev OV. Viral fingerprints of the ion channel evolution: compromise of complexity and function. J Biomol Struct Dyn 2024:1-20. [PMID: 39365745 DOI: 10.1080/07391102.2024.2411523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/29/2024] [Indexed: 10/06/2024]
Abstract
Evolution from precellular supramolecular assemblies to cellular world originated from the ability to make a barrier between the interior of the cell and the outer environment. This step resulted from the possibility to form a membrane, which preserves the cell like a wall of the castle. However, every castle needs gates for trading, i.e. in the case of cell, for controlled exchange of substances. These 'gates' should have the mechanism of opening and closing, guards, entry rules, and so on. Different structures are known to be able to make membrane permeable to various substances, from ions to macromolecules. They are amphipathic peptides, their assemblies, sophisticated membrane channels with numerous transmembrane domains, etc. Upon evolving, cellular world preserved and selected many variants, which, finally, have provided both prokaryotes and eukaryotes with highly selective and regulated ion channels. However, various simpler variants of ion channels are found in viruses. Despite the origin of viruses is still under debates, they have evolved parallelly with the cellular forms of life. Being initial form of the enveloped organisms, reduction of protocells or their escaped parts, viruses might be fingerprints of the evolutionary steps of cellular structures like ion channels. Therefore, viroporins may provide us a necessary information about selection between high functionality and less complex structure in supporting all the requirements for controlled membrane permeability. In this review we tried to elucidate these compromises and show the possible way of the evolution of ion channels, from peptides to complex multi-subunit structures, basing on viral examples.
Collapse
Affiliation(s)
- Marta V Volovik
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Oleg V Batishchev
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
3
|
Qiao P, Odenkirk MT, Zheng W, Wang Y, Chen J, Xu W, Baker ES. Elucidating the role of lipid interactions in stabilizing the membrane protein KcsA. Biophys J 2024; 123:3205-3216. [PMID: 39030907 PMCID: PMC11427772 DOI: 10.1016/j.bpj.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/12/2024] [Accepted: 07/15/2024] [Indexed: 07/22/2024] Open
Abstract
The significant effects of lipid binding on the functionality of potassium channel KcsA have been validated by brilliant studies. However, the specific interactions between lipids and KcsA, such as binding parameters for each binding event, have not been fully elucidated. In this study, we employed native mass spectrometry to investigate the binding of lipids to KcsA and their effects on the channel. The tetrameric structure of KcsA remains intact even in the absence of lipid binding. However, the subunit architecture of the E71A mutant, which is constantly open at low pH, relies on tightly associated copurified lipids. Furthermore, we observed that lipids exhibit weak binding to KcsA at high pH when the channel is at a closed/inactivation state in the absence of permeant cation K+. This feeble interaction potentially facilitates the association of K+ ions, leading to the transition of the channel to a resting closed/open state. Interestingly, both anionic and zwitterionic lipids strongly bind to KcsA at low pH when the channel is in an open/inactivation state. We also investigated the binding patterns of KcsA with natural lipids derived from E. coli and Streptomyces lividans. Interestingly, lipids from E. coli exhibited much stronger binding affinity compared to the lipids from S. lividans. Among the natural lipids from S. lividans, free fatty acids and triacylglycerols demonstrated the tightest binding to KcsA, whereas no detectable binding events were observed with natural phosphatidic acid lipids. These findings suggest that the lipid association pattern in S. lividans, the natural host for KcsA, warrants further investigation. In conclusion, our study sheds light on the role of lipids in stabilizing KcsA and highlights the importance of specific lipid-protein interactions in modulating its conformational states.
Collapse
Affiliation(s)
- Pei Qiao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China; Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas.
| | - Melanie T Odenkirk
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina
| | - Weiyi Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yuchen Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Jinhui Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Wenhao Xu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Erin S Baker
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
4
|
Rojas-Palomino J, Gómez-Restrepo A, Salinas-Restrepo C, Segura C, Giraldo MA, Calderón JC. Electrophysiological evaluation of the effect of peptide toxins on voltage-gated ion channels: a scoping review on theoretical and methodological aspects with focus on the Central and South American experience. J Venom Anim Toxins Incl Trop Dis 2024; 30:e20230048. [PMID: 39263598 PMCID: PMC11389830 DOI: 10.1590/1678-9199-jvatitd-2023-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 05/02/2024] [Indexed: 09/13/2024] Open
Abstract
The effect of peptide toxins on voltage-gated ion channels can be reliably assessed using electrophysiological assays, such as the patch-clamp technique. However, much of the toxinological research done in Central and South America aims at purifying and characterizing biochemical properties of the toxins of vegetal or animal origin, lacking electrophysiological approaches. This may happen due to technical and infrastructure limitations or because researchers are unfamiliar with the techniques and cellular models that can be used to gain information about the effect of a molecule on ion channels. Given the potential interest of many research groups in the highly biodiverse region of Central and South America, we reviewed the most relevant conceptual and methodological developments required to implement the evaluation of the effect of peptide toxins on mammalian voltage-gated ion channels using patch-clamp. For that, we searched MEDLINE/PubMed and SciELO databases with different combinations of these descriptors: "electrophysiology", "patch-clamp techniques", "Ca2+ channels", "K+ channels", "cnidarian venoms", "cone snail venoms", "scorpion venoms", "spider venoms", "snake venoms", "cardiac myocytes", "dorsal root ganglia", and summarized the literature as a scoping review. First, we present the basics and recent advances in mammalian voltage-gated ion channel's structure and function and update the most important animal sources of channel-modulating toxins (e.g. cnidarian and cone snails, scorpions, spiders, and snakes), highlighting the properties of toxins electrophysiologically characterized in Central and South America. Finally, we describe the local experience in implementing the patch-clamp technique using two models of excitable cells, as well as the participation in characterizing new modulators of ion channels derived from the venom of a local spider, a toxins' source less studied with electrophysiological techniques. Fostering the implementation of electrophysiological methods in more laboratories in the region will strengthen our capabilities in many fields, such as toxinology, toxicology, pharmacology, natural products, biophysics, biomedicine, and bioengineering.
Collapse
Affiliation(s)
| | - Alejandro Gómez-Restrepo
- Physiology and Biochemistry Research Group -PHYSIS, Faculty of Medicine, University of Antioquia, Medellín, Colombia
| | - Cristian Salinas-Restrepo
- Toxinology, Therapeutic and Food Alternatives Research Group, Faculty of Pharmaceutical and Food Sciences, University of Antioquia, Medellín, Colombia
| | - César Segura
- Malaria Group, Faculty of Medicine, University of Antioquia, Medellín, Colombia
| | - Marco A Giraldo
- Biophysics Group, Institute of Physics, University of Antioquia, Medellín, Colombia
| | - Juan C Calderón
- Physiology and Biochemistry Research Group -PHYSIS, Faculty of Medicine, University of Antioquia, Medellín, Colombia
| |
Collapse
|
5
|
Catterall WA, Gamal El-Din TM, Wisedchaisri G. The chemistry of electrical signaling in sodium channels from bacteria and beyond. Cell Chem Biol 2024; 31:1405-1421. [PMID: 39151407 DOI: 10.1016/j.chembiol.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/27/2024] [Accepted: 07/22/2024] [Indexed: 08/19/2024]
Abstract
Electrical signaling is essential for all fast processes in biology, but its molecular mechanisms have been uncertain. This review article focuses on studies of bacterial sodium channels in order to home in on the essential molecular and chemical mechanisms underlying transmembrane ion conductance and voltage-dependent gating without the overlay of complex protein interactions and regulatory mechanisms in mammalian sodium channels. This minimalist approach has yielded a nearly complete picture of sodium channel function at the atomic level that are mostly conserved in mammalian sodium channels, including sodium selectivity and conductance, voltage sensing and activation, electromechanical coupling to pore opening and closing, slow inactivation, and pathogenic dysfunction in a debilitating channelopathy. Future studies of nature's simplest sodium channels may continue to yield key insights into the fundamental molecular and chemical principles of their function and further elucidate the chemical basis of electrical signaling.
Collapse
Affiliation(s)
- William A Catterall
- Department of Pharmacology, University of Washington, Seattle WA 98195-7280, USA.
| | - Tamer M Gamal El-Din
- Department of Pharmacology, University of Washington, Seattle WA 98195-7280, USA.
| | - Goragot Wisedchaisri
- Department of Pharmacology, University of Washington, Seattle WA 98195-7280, USA.
| |
Collapse
|
6
|
Cholasseri R, De S. Deciphering the shape selective conformational equilibrium of E- and Z-locked azobenzene-tetraethylammonium ion in regulating photo-switchable K +-ion channel blocking. Phys Chem Chem Phys 2024; 26:19161-19175. [PMID: 38973424 DOI: 10.1039/d4cp01604a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
The search for photo-switchable optopharmacological agents that can block ion channels has been a prevalent area owing to its prime advantages of reversibility and specificity over the traditional blockers. However, the quest for a higher blocking ability shown by a less stable photo-isomer to perfectly suit the requirement of the optopharmacological agents is still ongoing. To date, only a marginal improvement in terms of blocking ability is observed by the less stable E-isomer of para-substituted locked azobenzene with TEA (LAB-TEA) for the K+-ion channel. Thus, rationalization of the limitation for achieving high activity by the E-isomer is rather essential to aid the improvement of the efficiency of photoswitchable blocker drugs. Herein, we report a molecular-level analysis on the mechanism of blocking by E- and Z-LAB-TEA with the bacterial KcsA K+-ion channel using Molecular Dynamics (MD) simulation and Quantum Mechanical (QM) calculations. The positively charged TEA fragment engages in stronger electrostatic interactions, while the neutral LAB fragment engages in weaker dispersive interactions. The binding free energy calculated by Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) for E-LAB-TEA (-22.3 kcal mol-1) shows less thermodynamic preference for binding with K+-ion channels than Z-LAB-TEA (-21.6 kcal mol-1) corroborating the experimental observation. The correlation between the structure and the binding ability of E- and Z-isomers of LAB-TEA indicates that the channel gate is narrow and acts as a bottleneck for the entry of the binder molecule inside the large cavity. Upon irradiation, the Z-isomer converts into a less stable but long and planar E-isomer (ΔE of photoisomerism = 7.0 kcal mol-1, at SA2-CASPT2(6,4)/6-31+G(d)//CASSCF(6,4)/6-31+G(d)), which is structurally more suitable to fit into the narrow channel gate rather than the curved and non-planar Z-LAB-TEA. Thus, a reduction in the ionic current is observed owing to the preferential entry and subsequent blocking by E-LAB-TEA. Discontinuing the irradiation leads to conversion to the Z-isomer, the curved nature of which hinders its spontaneous release outside the cavity, thereby contributing only a small increase in the ionic current.
Collapse
Affiliation(s)
- Rinsha Cholasseri
- Theoretical and Computational Chemistry Laboratory, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala, 673 601, India
| | - Susmita De
- Department of Chemistry, University of Calicut, Calicut University P. O, Malappuram, Kerala, 673 635, India.
| |
Collapse
|
7
|
Peisley A, Hernandez CC, Dahir NS, Koepping L, Raczkowski A, Su M, Ghamari-Langroudi M, Ji X, Gimenez LE, Cone RD. Structure of the Ion Channel Kir7.1 and Implications for its Function in Normal and Pathophysiologic States. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597981. [PMID: 38895219 PMCID: PMC11185801 DOI: 10.1101/2024.06.07.597981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Hereditary defects in the function of the Kir7.1 in the retinal pigment epithelium are associated with the ocular diseases retinitis pigmentosa, Leber congenital amaurosis, and snowflake vitreal degeneration. Studies also suggest that Kir7.1 may be regulated by a GPCR, the melanocortin-4 receptor, in certain hypothalamic neurons. We present the first structures of human Kir7.1 and describe the conformational bias displayed by two pathogenic mutations, R162Q and E276A, to provide an explanation for the basis of disease and illuminate the gating pathway. We also demonstrate the structural basis for the blockade of the channel by a small molecule ML418 and demonstrate that channel blockade in vivo activates MC4R neurons in the paraventricular nucleus of the hypothalamus (PVH), inhibiting food intake and inducing weight loss. Preliminary purification, and structural and pharmacological characterization of an in tandem construct of MC4R and Kir7.1 suggests that the fusion protein forms a homotetrameric channel that retains regulation by liganded MC4R molecules.
Collapse
Affiliation(s)
- Alys Peisley
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
| | | | - Naima S. Dahir
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
| | - Laura Koepping
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
| | | | - Min Su
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
| | | | - Xinrui Ji
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
| | - Luis E. Gimenez
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
| | - Roger D. Cone
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
- Department of Molecular and Integrative Physiology, School of Medicine, University of Michigan, Ann Arbor, MI
- Department of Molecular, Cellular and Developmental Biology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI
| |
Collapse
|
8
|
Wang X, Shen X, Qu Y, Zhang H, Wang C, Yang F, Shen H. Structural insights into ion selectivity and transport mechanisms of Oryza sativa HKT2;1 and HKT2;2/1 transporters. NATURE PLANTS 2024; 10:633-644. [PMID: 38570642 DOI: 10.1038/s41477-024-01665-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 03/06/2024] [Indexed: 04/05/2024]
Abstract
Plant high-affinity K+ transporters (HKTs) play a pivotal role in maintaining the balance of Na+ and K+ ions in plants, thereby influencing plant growth under K+-depleted conditions and enhancing tolerance to salinity stress. Here we report the cryo-electron microscopy structures of Oryza sativa HKT2;1 and HKT2;2/1 at overall resolutions of 2.5 Å and 2.3 Å, respectively. Both transporters adopt a dimeric assembly, with each protomer enclosing an ion permeation pathway. Comparison between the selectivity filters of the two transporters reveals the critical roles of Ser88/Gly88 and Val243/Gly243 in determining ion selectivity. A constriction site along the ion permeation pathway is identified, consisting of Glu114, Asn273, Pro392, Pro393, Arg525, Lys517 and the carboxy-terminal Trp530 from the neighbouring protomer. The linker between domains II and III adopts a stable loop structure oriented towards the constriction site, potentially participating in the gating process. Electrophysiological recordings, yeast complementation assays and molecular dynamics simulations corroborate the functional importance of these structural features. Our findings provide crucial insights into the ion selectivity and transport mechanisms of plant HKTs, offering valuable structural templates for developing new salinity-tolerant cultivars and strategies to increase crop yields.
Collapse
Affiliation(s)
- Xiaohui Wang
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Xiaoshuai Shen
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yannan Qu
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Heng Zhang
- Department of Biophysics and Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Chu Wang
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Fan Yang
- Department of Biophysics and Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.
| | - Huaizong Shen
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
| |
Collapse
|
9
|
Zhao Y, Zhang X, Liu L, Hu F, Chang F, Han Z, Li C. Insights into Activation Dynamics and Functional Sites of Inwardly Rectifying Potassium Channel Kir3.2 by an Elastic Network Model Combined with Perturbation Methods. J Phys Chem B 2024; 128:1360-1370. [PMID: 38308647 DOI: 10.1021/acs.jpcb.3c06739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
The inwardly rectifying potassium channel Kir3.2, a member of the inward rectifier potassium (Kir) channel family, exerts important biological functions through transporting potassium ions outside of the cell, during which a large-scale synergistic movement occurs among its different domains. Currently, it is not fully understood how the binding of the ligand to the Kir3.2 channel leads to the structural changes and which key residues are responsible for the channel gating and allosteric dynamics. Here, we construct the Gaussian network model (GNM) of the Kir3.2 channel with the secondary structure and covalent interaction information considered (sscGNM), which shows a better performance in reproducing the channel's flexibility compared with the traditional GNM. In addition, the sscANM-based perturbation method is used to simulate the channel's conformational transition caused by the activator PIP2's binding. By applying certain forces to the PIP2 binding pocket, the coarse-grained calculations generate the similar conformational changes to the experimental observation, suggesting that the topology structure as well as PIP2 binding are crucial to the allosteric activation of the Kir3.2 channel. We also utilize the sscGNM-based thermodynamic cycle method developed by us to identify the key residues whose mutations significantly alter the channel's binding free energy with PIP2. We identify not only the residues important for the specific binding but also the ones critical for the allosteric transition coupled with PIP2 binding. This study is helpful for understanding the working mechanism of Kir3.2 channels and can provide important information for related drug design.
Collapse
Affiliation(s)
- Yingchun Zhao
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Xinyu Zhang
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Lamei Liu
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Fangrui Hu
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Fubin Chang
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Zhongjie Han
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Chunhua Li
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
10
|
Wang M, Sadhukhan T, Lewis NHC, Wang M, He X, Yan G, Ying D, Hoenig E, Han Y, Peng G, Lee OS, Shi F, Tiede DM, Zhou H, Tokmakoff A, Schatz GC, Liu C. Anomalously enhanced ion transport and uptake in functionalized angstrom-scale two-dimensional channels. Proc Natl Acad Sci U S A 2024; 121:e2313616121. [PMID: 38165939 PMCID: PMC10786305 DOI: 10.1073/pnas.2313616121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/01/2023] [Indexed: 01/04/2024] Open
Abstract
Emulating angstrom-scale dynamics of the highly selective biological ion channels is a challenging task. Recent work on angstrom-scale artificial channels has expanded our understanding of ion transport and uptake mechanisms under confinement. However, the role of chemical environment in such channels is still not well understood. Here, we report the anomalously enhanced transport and uptake of ions under confined MoS2-based channels that are ~five angstroms in size. The ion uptake preference in the MoS2-based channels can be changed by the selection of surface functional groups and ion uptake sequence due to the interplay between kinetic and thermodynamic factors that depend on whether the ions are mixed or not prior to uptake. Our work offers a holistic picture of ion transport in 2D confinement and highlights ion interplay in this regime.
Collapse
Affiliation(s)
- Mingzhan Wang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| | - Tumpa Sadhukhan
- Department of Chemistry, Northwestern University, Evanston, IL60208
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu603203, India
| | - Nicholas H. C. Lewis
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, University of Chicago, Chicago, IL60637
| | - Maoyu Wang
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL60439
| | - Xiang He
- Advanced Materials for Energy-Water Systems Energy Frontier Research Center and Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL60439
| | - Gangbin Yan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| | - Dongchen Ying
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| | - Eli Hoenig
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| | - Yu Han
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| | - Guiming Peng
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| | - One-Sun Lee
- Department of Chemistry, Northwestern University, Evanston, IL60208
| | - Fengyuan Shi
- Electron Microscopy Core, University of Illinois Chicago, Chicago, IL60607
| | - David M. Tiede
- Advanced Materials for Energy-Water Systems Energy Frontier Research Center and Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL60439
| | - Hua Zhou
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL60439
| | - Andrei Tokmakoff
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, University of Chicago, Chicago, IL60637
| | - George C. Schatz
- Department of Chemistry, Northwestern University, Evanston, IL60208
| | - Chong Liu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| |
Collapse
|
11
|
Fan C, Flood E, Sukomon N, Agarwal S, Allen TW, Nimigean CM. Calcium-gated potassium channel blockade via membrane-facing fenestrations. Nat Chem Biol 2024; 20:52-61. [PMID: 37653172 PMCID: PMC10847966 DOI: 10.1038/s41589-023-01406-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/18/2023] [Indexed: 09/02/2023]
Abstract
Quaternary ammonium blockers were previously shown to bind in the pore to block both open and closed conformations of large-conductance calcium-activated potassium (BK and MthK) channels. Because blocker entry was assumed through the intracellular entryway (bundle crossing), closed-pore access suggested that the gate was not at the bundle crossing. Structures of closed MthK, a Methanobacterium thermoautotrophicum homolog of BK channels, revealed a tightly constricted intracellular gate, leading us to investigate the membrane-facing fenestrations as alternative pathways for blocker access directly from the membrane. Atomistic free energy simulations showed that intracellular blockers indeed access the pore through the fenestrations, and a mutant channel with narrower fenestrations displayed no closed-state TPeA block at concentrations that blocked the wild-type channel. Apo BK channels display similar fenestrations, suggesting that blockers may use them as access paths into closed channels. Thus, membrane fenestrations represent a non-canonical pathway for selective targeting of specific channel conformations, opening novel ways to selectively drug BK channels.
Collapse
Affiliation(s)
- Chen Fan
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Emelie Flood
- School of Science, RMIT University, Melbourne, Victoria, Australia
- Schrödinger, Inc., New York, NY, USA
| | - Nattakan Sukomon
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
| | - Shubhangi Agarwal
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
| | - Toby W Allen
- School of Science, RMIT University, Melbourne, Victoria, Australia.
| | - Crina M Nimigean
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA.
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
12
|
Rahman MA, Orfali R, Dave N, Lam E, Naguib N, Nam YW, Zhang M. K Ca 2.2 (KCNN2): A physiologically and therapeutically important potassium channel. J Neurosci Res 2023; 101:1699-1710. [PMID: 37466411 PMCID: PMC10932612 DOI: 10.1002/jnr.25233] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/20/2023]
Abstract
One group of the K+ ion channels, the small-conductance Ca2+ -activated potassium channels (KCa 2.x, also known as SK channels family), is widely expressed in neurons as well as the heart, endothelial cells, etc. They are named small-conductance Ca2+ -activated potassium channels (SK channels) due to their comparatively low single-channel conductance of about ~10 pS. These channels are insensitive to changes in membrane potential and are activated solely by rises in the intracellular Ca2+ . According to the phylogenic research done on the KCa 2.x channels family, there are three channels' subtypes: KCa 2.1, KCa 2.2, and KCa 2.3, which are encoded by KCNN1, KCNN2, and KCNN3 genes, respectively. The KCa 2.x channels regulate neuronal excitability and responsiveness to synaptic input patterns. KCa 2.x channels inhibit excitatory postsynaptic potentials (EPSPs) in neuronal dendrites and contribute to the medium afterhyperpolarization (mAHP) that follows the action potential bursts. Multiple brain regions, including the hippocampus, express the KCa 2.2 channel encoded by the KCNN2 gene on chromosome 5. Of particular interest, rat cerebellar Purkinje cells express KCa 2.2 channels, which are crucial for various cellular processes during development and maturation. Patients with a loss-of-function of KCNN2 mutations typically exhibit extrapyramidal symptoms, cerebellar ataxia, motor and language developmental delays, and intellectual disabilities. Studies have revealed that autosomal dominant neurodevelopmental movement disorders resembling rodent symptoms are caused by heterozygous loss-of-function mutations, which are most likely to induce KCNN2 haploinsufficiency. The KCa 2.2 channel is a promising drug target for spinocerebellar ataxias (SCAs). SCAs exhibit the dysregulation of firing in cerebellar Purkinje cells which is one of the first signs of pathology. Thus, selective KCa 2.2 modulators are promising potential therapeutics for SCAs.
Collapse
Affiliation(s)
- Mohammad Asikur Rahman
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, USA
| | - Razan Orfali
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, USA
| | - Nikita Dave
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, USA
| | - Elyn Lam
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, USA
| | - Nadeen Naguib
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, USA
| | - Young-Woo Nam
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, USA
| | - Miao Zhang
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, USA
| |
Collapse
|
13
|
Wu Y, Gu Z, Lu C, Hu C, Qu J. In situ regulation of selectivity and permeability by electrically tuning pore size in trans-membrane ion process. WATER RESEARCH 2023; 244:120478. [PMID: 37634453 DOI: 10.1016/j.watres.2023.120478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 08/29/2023]
Abstract
Regulating ion transport behavior through pore size variation is greatly attractive for membrane to meet the need for precise separation, but fabricating nanofiltration (NF) membranes with tunable pore size remains a huge challenge. Herein, a NF membrane with electrically tunable pores was fabricated by intercalating polypyrrole into reduced graphene oxide interlayers. As the potential switches from reduction to oxidation, the membrane pore size shrinks by 11%, resulting in a 16.2% increase in salt rejection. The membrane pore size expands/contracts at redox potentials due to the polypyrrole volume swelling/shrinking caused by the insertion/desertion of cations, respectively. In terms of the inserted cation, Na+ and K+ induce larger pore-size stretching range for the membrane than Ca2+ due to greater binding energy and larger doping amount. Such an electrical response characteristic remained stable after multiple cycles and enabled application in ion selective separation; e.g., the Na+/Mg2+ separation factor in the reduced state is increased by 41% compared to that in the oxide state. This work provides electrically tunable nanochannels for high-precision separation applications such as valuable substance purification and resource recovery from wastewater.
Collapse
Affiliation(s)
- You Wu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenao Gu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenghai Lu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Pantuso E, Ahmed E, Fontananova E, Brunetti A, Tahir I, Karothu DP, Alnaji NA, Dushaq G, Rasras M, Naumov P, Di Profio G. Smart dynamic hybrid membranes with self-cleaning capability. Nat Commun 2023; 14:5751. [PMID: 37717049 PMCID: PMC10505219 DOI: 10.1038/s41467-023-41446-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 09/01/2023] [Indexed: 09/18/2023] Open
Abstract
The growing freshwater scarcity has caused increased use of membrane desalination of seawater as a relatively sustainable technology that promises to provide long-term solution for the increasingly water-stressed world. However, the currently used membranes for desalination on an industrial scale are inevitably prone to fouling that results in decreased flux and necessity for periodic chemical cleaning, and incur unacceptably high energy cost while also leaving an environmental footprint with unforeseeable long-term consequences. This extant problem requires an immediate shift to smart separation approaches with self-cleaning capability for enhanced efficiency and prolonged operational lifetime. Here, we describe a conceptually innovative approach to the design of smart membranes where a dynamic functionality is added to the surface layer of otherwise static membranes by incorporating stimuli-responsive organic crystals. We demonstrate a gating effect in the resulting smart dynamic membranes, whereby mechanical instability caused by rapid mechanical response of the crystals to heating slightly above room temperature activates the membrane and effectively removes the foulants, thereby increasing the mass transfer and extending its operational lifetime. The approach proposed here sets a platform for the development of a variety of energy-efficient hybrid membranes for water desalination and other separation processes that are devoid of fouling issues and circumvents the necessity of chemical cleaning operations.
Collapse
Affiliation(s)
- Elvira Pantuso
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Tecnologia delle Membrane (ITM), Via P. Bucci, Cubo 17/C, 87036, Rende (CS), Italy
| | - Ejaz Ahmed
- Smart Materials Lab, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
| | - Enrica Fontananova
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Tecnologia delle Membrane (ITM), Via P. Bucci, Cubo 17/C, 87036, Rende (CS), Italy
| | - Adele Brunetti
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Tecnologia delle Membrane (ITM), Via P. Bucci, Cubo 17/C, 87036, Rende (CS), Italy
| | - Ibrahim Tahir
- Smart Materials Lab, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
| | - Durga Prasad Karothu
- Smart Materials Lab, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
| | - Nisreen Amer Alnaji
- Center for Smart Engineering Materials, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
- Division of Engineering, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
| | - Ghada Dushaq
- Division of Engineering, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
| | - Mahmoud Rasras
- Center for Smart Engineering Materials, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
- Division of Engineering, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
| | - Panče Naumov
- Smart Materials Lab, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE.
- Center for Smart Engineering Materials, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE.
- Research Center for Environment and Materials, Macedonian Academy of Sciences and Arts, Bul. Krste Misirkov 2, MK‒1000, Skopje, Macedonia.
- Molecular Design Institute, Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA.
| | - Gianluca Di Profio
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Tecnologia delle Membrane (ITM), Via P. Bucci, Cubo 17/C, 87036, Rende (CS), Italy.
| |
Collapse
|
15
|
Liang KK. On the crucial features of a single‐file transport model for ion channels. J CHIN CHEM SOC-TAIP 2023. [DOI: 10.1002/jccs.202200517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Kuo Kan Liang
- Department of Physics National Taiwan University Taipei Taiwan
| |
Collapse
|
16
|
Wang Y, Yang S, Zhang J, Chen Z, Zhu B, Li J, Liang S, Bai Y, Xu J, Rao D, Dong L, Zhang C, Yang X. Scalable and switchable CO 2-responsive membranes with high wettability for separation of various oil/water systems. Nat Commun 2023; 14:1108. [PMID: 36849553 PMCID: PMC9970982 DOI: 10.1038/s41467-023-36685-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
Smart membranes with responsive wettability show promise for controllably separating oil/water mixtures, including immiscible oil-water mixtures and surfactant-stabilized oil/water emulsions. However, the membranes are challenged by unsatisfactory external stimuli, inadequate wettability responsiveness, difficulty in scalability and poor self-cleaning performance. Here, we develop a capillary force-driven confinement self-assembling strategy to construct a scalable and stable CO2-responsive membrane for the smart separation of various oil/water systems. In this process, the CO2-responsive copolymer can homogeneously adhere to the membrane surface by manipulating the capillary force, generating a membrane with a large area up to 3600 cm2 and excellent switching wettability between high hydrophobicity/underwater superoleophilicity and superhydrophilicity/underwater superoleophobicity under CO2/N2 stimulation. The membrane can be applied to various oil/water systems, including immiscible mixtures, surfactant-stabilized emulsions, multiphase emulsions and pollutant-containing emulsions, demonstrating high separation efficiency (>99.9%), recyclability, and self-cleaning performance. Due to robust separation properties coupled with the excellent scalability, the membrane shows great implications for smart liquid separation.
Collapse
Affiliation(s)
- Yangyang Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, P. R. China
| | - Shaokang Yang
- School of Materials Science and Engineering, Jiangsu University, 212013, Zhenjiang, P. R. China
| | - Jingwei Zhang
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, P. R. China
| | - Zhuo Chen
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, P. R. China
| | - Bo Zhu
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, 214122, Wuxi, P. R. China
| | - Jian Li
- Laboratory of Environmental Biotechnology, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, 214122, Wuxi, P. R. China
| | - Shijing Liang
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, 350002, P. R. China
| | - Yunxiang Bai
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, P. R. China
| | - Jianhong Xu
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, P. R. China
| | - Dewei Rao
- School of Materials Science and Engineering, Jiangsu University, 212013, Zhenjiang, P. R. China
| | - Liangliang Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, P. R. China.
| | - Chunfang Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, P. R. China
| | - Xiaowei Yang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
17
|
Yang B, Yu Q, Zhang Y. Applying Dynamic Magnetic Field To Promote Anaerobic Digestion via Enhancing the Electron Transfer of a Microbial Respiration Chain. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2138-2148. [PMID: 36696287 DOI: 10.1021/acs.est.2c08577] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Electrochemical methods have been reported to strengthen anaerobic digestion, but the continuous electrical power supply and the complicated electrode installed inside the digester have restricted it from practical use. In this study, a dynamic magnetic field (DMF) was placed outside a digester to induce an electromotive force to electrically promote anaerobic digestion. With the applied DMF, an electromotive force of 0.14 mV was generated in the anaerobic sludge, and a 65.02% methane increment was obtained from the anaerobic digestion of waste-activated sludge. Experiments on each stage of anaerobic digestion showed that acidification and methanogenesis that involve electron transfer of respiration chains were promoted with the DMF, while solubilization and hydrolysis less related to respiration chains were not enhanced. Further analysis indicated that the induced electromotive force polarized the protein-like substances in the sludge to increase the conductivity and capacitance of the sludge. Electrotrophic methanogens (Methanothrix) and exoelectrogens (Exiguobacterium) were enriched with DMF. The kinetic isotope effect test confirmed that electron transfer was accelerated with DMF. Consistently, the concentration ratio of co-enzymes (NADH/NAD+ and F420H2/F420) that reflects the electron exchange with respiration chains significantly increased. Applying the DMF seemed a more accessible strategy to electrically strengthen anaerobic digestion.
Collapse
Affiliation(s)
- Bowen Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qilin Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
18
|
Liu HL, Zhan K, Wang K, Xia XH. Recent advances in nanotechnologies combining surface-enhanced Raman scattering and nanopore. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
19
|
Kurauskas V, Tonelli M, Henzler-Wildman K. Full opening of helix bundle crossing does not lead to NaK channel activation. J Gen Physiol 2022; 154:213659. [PMID: 36326620 PMCID: PMC9640265 DOI: 10.1085/jgp.202213196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/11/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022] Open
Abstract
A critical part of ion channel function is the ability to open and close in response to stimuli and thus conduct ions in a regulated fashion. While x-ray diffraction studies of ion channels suggested a general steric gating mechanism located at the helix bundle crossing (HBC), recent functional studies on several channels indicate that the helix bundle crossing is wide-open even in functionally nonconductive channels. Two NaK channel variants were crystallized in very different open and closed conformations, which served as important models of the HBC gating hypothesis. However, neither of these NaK variants is conductive in liposomes unless phenylalanine 92 is mutated to alanine (F92A). Here, we use NMR to probe distances at near-atomic resolution of the two NaK variants in lipid bicelles. We demonstrate that in contrast to the crystal structures, both NaK variants are in a fully open conformation, akin to Ca2+-bound MthK channel structure where the HBC is widely open. While we were not able to determine what a conductive NaK structure is like, our further inquiry into the gating mechanism suggests that the selectivity filter and pore helix are coupled to the M2 helix below and undergo changes in the structure when F92 is mutated. Overall, our data show that NaK exhibits coupling between the selectivity filter and HBC, similar to K+ channels, and has a more complex gating mechanism than previously thought, where the full opening of HBC does not lead to channel activation.
Collapse
Affiliation(s)
- Vilius Kurauskas
- Department of Biochemistry, University of Wisconsin—Madison, Madison, WI
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison, University of Wisconsin—Madison, Madison, WI
| | - Katherine Henzler-Wildman
- Department of Biochemistry, University of Wisconsin—Madison, Madison, WI
- National Magnetic Resonance Facility at Madison, University of Wisconsin—Madison, Madison, WI
- Correspondence to Katherine Henzler-Wildman:
| |
Collapse
|
20
|
Rothberg BS. Interrogating the gating motions of the NaK channel. J Gen Physiol 2022; 154:e202213257. [PMID: 36326621 PMCID: PMC9640267 DOI: 10.1085/jgp.202213257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Previous crystallographic studies depicted a physical gate of the NaK channel localized at a bundle crossing of pore-lining helices, but solution NMR studies in the current issue of JGP suggest otherwise.
Collapse
Affiliation(s)
- Brad S Rothberg
- Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA
| |
Collapse
|
21
|
Abbott GW. Kv Channel Ancillary Subunits: Where Do We Go from Here? Physiology (Bethesda) 2022; 37:0. [PMID: 35797055 PMCID: PMC9394777 DOI: 10.1152/physiol.00005.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 01/10/2023] Open
Abstract
Voltage-gated potassium (Kv) channels each comprise four pore-forming α-subunits that orchestrate essential duties such as voltage sensing and K+ selectivity and conductance. In vivo, however, Kv channels also incorporate regulatory subunits-some Kv channel specific, others more general modifiers of protein folding, trafficking, and function. Understanding all the above is essential for a complete picture of the role of Kv channels in physiology and disease.
Collapse
Affiliation(s)
- Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California
| |
Collapse
|
22
|
Palmitoylation of Voltage-Gated Ion Channels. Int J Mol Sci 2022; 23:ijms23169357. [PMID: 36012639 PMCID: PMC9409123 DOI: 10.3390/ijms23169357] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/30/2022] Open
Abstract
Protein lipidation is one of the most common forms of posttranslational modification. This alteration couples different lipids, such as fatty acids, phospho- and glycolipids and sterols, to cellular proteins. Lipidation regulates different aspects of the protein’s physiology, including structure, stability and affinity for cellular membranes and protein–protein interactions. In this scenario, palmitoylation is the addition of long saturated fatty acid chains to amino acid residues of the proteins. The enzymes responsible for this modification are acyltransferases and thioesterases, which control the protein’s behavior by performing a series of acylation and deacylation cycles. These enzymes target a broad repertoire of substrates, including ion channels. Thus, protein palmitoylation exhibits a pleiotropic role by differential modulation of the trafficking, spatial organization and electrophysiological properties of ion channels. Considering voltage-gated ion channels (VGICs), dysregulation of lipidation of both the channels and the associated ancillary subunits correlates with the development of various diseases, such as cancer or mental disorders. Therefore, a major role for protein palmitoylation is currently emerging, affecting not only the dynamism and differential regulation of a moiety of cellular proteins but also linking to human health. Therefore, palmitoylation of VGIC, as well as related enzymes, constitutes a novel pharmacological tool for drug development to target related pathologies.
Collapse
|
23
|
|
24
|
Structure of the Human BK Ion Channel in Lipid Environment. MEMBRANES 2022; 12:membranes12080758. [PMID: 36005673 PMCID: PMC9414842 DOI: 10.3390/membranes12080758] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 02/04/2023]
Abstract
Voltage-gated and ligand-modulated ion channels play critical roles in excitable cells. To understand the interplay among voltage sensing, ligand binding, and channel opening, the structures of ion channels in various functional states and in lipid membrane environments need to be determined. Here, the random spherically constrained (RSC) single-particle cryo-EM method was employed to study human large conductance voltage- and calcium-activated potassium (hBK or hSlo1) channels reconstituted into liposomes. The hBK structure was determined at 3.5 Å resolution in the absence of Ca2+. Instead of the common fourfold symmetry observed in ligand-modulated ion channels, a twofold symmetry was observed in hBK in liposomes. Compared with the structure of isolated hSlo1 Ca2+ sensing gating rings, two opposing subunits in hBK unfurled, resulting in a wider opening towards the transmembrane region of hBK. In the pore gate domain, two opposing subunits also moved downwards relative to the two other subunits.
Collapse
|
25
|
Malik C, Ghosh S. A mutation in the S6 segment of the KvAP channel changes the secondary structure and alters ion channel activity in a lipid bilayer membrane. Amino Acids 2022; 54:1461-1475. [PMID: 35896819 DOI: 10.1007/s00726-022-03188-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/04/2022] [Indexed: 11/01/2022]
Abstract
The peptide segment S6 is known to form the inner lining of the voltage-gated K+ channel KvAP (potassium channel of archaea-bacterium, Aeropyrum pernix). In our previous work, it has been demonstrated that S6 itself can form an ion channel on a bilayer lipid membrane (BLM). In the present work, the role of a specific amino acid sequence 'LIG' in determining the secondary structure of S6 has been investigated. For this purpose, 22-residue synthetic peptides named S6-Wild (S6W) and S6-Mutant (S6M) were used. Sequences of these peptides are similar except that the two amino acids isoleucine and glycine of the wild peptide interchanged in the mutant peptide. Channel forming capabilities of both the peptides were checked electro-physiologically on BLM composed of DPhPC and cholesterol. Bilayer electrophysiological experiments showed that the conductance of S6M is higher than that of S6W. Significant differences in the current versus voltage (I-V) plot, open probability, and gating characteristics were observed. Interestingly, two sub-types of channels, S6M Type 1 and Type 2, were identified in S6M differing in conductances and open probability patterns. Circular dichroism (CD) spectroscopy indicated that the secondary structures of the two peptides are different in phosphatidyl choline/asolectin liposomes and 1% SDS detergent. Reduced helicity of S6M was also noticed in membrane mimetic liposomes and 1% SDS detergent micelles. These results are interpreted in view of the difference in hydrophobicity of the two amino acids, isoleucine and glycine. It is concluded that the 'LIG' stretch regulates the structure and pore-forming ability of the S6 peptide.
Collapse
Affiliation(s)
- Chetan Malik
- Department of Biophysics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Subhendu Ghosh
- Department of Biophysics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
26
|
Castro EV, Shepherd JW, Guggenheim RS, Sengvoravong M, Hall BC, Chappell MK, Hearn JA, Caraccio ON, Bissman C, Lantow S, Buehner D, Costlow HR, Prather DM, Zonza AM, Witt M, Zahratka JA. ChanFAD: A Functional Annotation Database for Ion Channels. FRONTIERS IN BIOINFORMATICS 2022; 2:835805. [PMID: 36304304 PMCID: PMC9580856 DOI: 10.3389/fbinf.2022.835805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Ion channels are integral membrane protein complexes critical for regulation of membrane potential, cell volume, and other signaling events. As complex molecular assemblies with many interacting partners, ion channels have multiple structural and functional domains. While channel sequence and functional data are readily available across multiple online resources, there is an unmet need for functional annotation directly relating primary sequence information, 2D interactions, and three-dimensional protein structure. To this end, we present ChanFAD (Channel Functional Annotation Database), to provide the research community with a centralized resource for ion channel structure and functional data. ChanFAD provides functional annotation of PDB structures built on the National Center for Biotechnology Information’s iCn3D structure viewing tool while providing additional information such as primary sequence, organism, and relevant links to other databases. Here we provide a brief tour of ChanFAD functionality while showing example use cases involving drug-channel interactions and structural changes based on mutation. ChanFAD is freely available and can be accessed at https://www.chanfad.org/.
Collapse
Affiliation(s)
- Elizabeth V. Castro
- Department of Neuroscience, Baldwin Wallace University, Berea, OH, United States
- Department of Psychology, Baldwin Wallace University, Berea, OH, United States
| | - John W. Shepherd
- Department of Neuroscience, Baldwin Wallace University, Berea, OH, United States
| | - Ryan S. Guggenheim
- Department of Neuroscience, Baldwin Wallace University, Berea, OH, United States
- Department of Psychology, Baldwin Wallace University, Berea, OH, United States
| | | | - Bailey C. Hall
- Department of Neuroscience, Baldwin Wallace University, Berea, OH, United States
| | - McKenzie K. Chappell
- Department of Neuroscience, Baldwin Wallace University, Berea, OH, United States
- Department of Biology and Geology, Baldwin Wallace University, Berea, OH, United States
| | - Jessica A. Hearn
- Department of Neuroscience, Baldwin Wallace University, Berea, OH, United States
- Department of Biology and Geology, Baldwin Wallace University, Berea, OH, United States
| | - Olivia N. Caraccio
- Department of Neuroscience, Baldwin Wallace University, Berea, OH, United States
| | - Cora Bissman
- Department of Neuroscience, Baldwin Wallace University, Berea, OH, United States
- Department of Biology and Geology, Baldwin Wallace University, Berea, OH, United States
| | - Sydney Lantow
- Department of Neuroscience, Baldwin Wallace University, Berea, OH, United States
| | - Damian Buehner
- Department of Neuroscience, Baldwin Wallace University, Berea, OH, United States
| | - Harry R. Costlow
- Department of Neuroscience, Baldwin Wallace University, Berea, OH, United States
| | - David M. Prather
- Department of Chemistry, Baldwin Wallace University, Berea, OH, United States
| | - Abigail M. Zonza
- Department of Biology and Geology, Baldwin Wallace University, Berea, OH, United States
| | - Mallory Witt
- Department of Neuroscience, Baldwin Wallace University, Berea, OH, United States
| | - Jeffrey A. Zahratka
- Department of Neuroscience, Baldwin Wallace University, Berea, OH, United States
- Department of Biology and Geology, Baldwin Wallace University, Berea, OH, United States
- *Correspondence: Jeffrey A. Zahratka,
| |
Collapse
|
27
|
Lam AKM, Rutz S, Dutzler R. Inhibition mechanism of the chloride channel TMEM16A by the pore blocker 1PBC. Nat Commun 2022; 13:2798. [PMID: 35589730 PMCID: PMC9120017 DOI: 10.1038/s41467-022-30479-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/29/2022] [Indexed: 11/09/2022] Open
Abstract
TMEM16A, a calcium-activated chloride channel involved in multiple cellular processes, is a proposed target for diseases such as hypertension, asthma, and cystic fibrosis. Despite these therapeutic promises, its pharmacology remains poorly understood. Here, we present a cryo-EM structure of TMEM16A in complex with the channel blocker 1PBC and a detailed functional analysis of its inhibition mechanism. A pocket located external to the neck region of the hourglass-shaped pore is responsible for open-channel block by 1PBC and presumably also by its structural analogs. The binding of the blocker stabilizes an open-like conformation of the channel that involves a rearrangement of several pore helices. The expansion of the outer pore enhances blocker sensitivity and enables 1PBC to bind at a site within the transmembrane electric field. Our results define the mechanism of inhibition and gating and will facilitate the design of new, potent TMEM16A modulators.
Collapse
Affiliation(s)
- Andy K M Lam
- Department of Biochemistry, University of Zurich, Winterthurer Str. 190, CH-8057, Zurich, Switzerland.
| | - Sonja Rutz
- Department of Biochemistry, University of Zurich, Winterthurer Str. 190, CH-8057, Zurich, Switzerland
| | - Raimund Dutzler
- Department of Biochemistry, University of Zurich, Winterthurer Str. 190, CH-8057, Zurich, Switzerland.
| |
Collapse
|
28
|
The role of axonal voltage-gated potassium channels in tDCS. Brain Stimul 2022; 15:861-869. [DOI: 10.1016/j.brs.2022.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022] Open
|
29
|
Guan F, Li T, Dong W, Guo R, Chai H, Chen Z, Ren Z, Li Y, Ye S. Novel insights into the allosteric gating mechanism of MthK channel. Natl Sci Rev 2022; 9:nwac072. [PMID: 36072506 PMCID: PMC9440719 DOI: 10.1093/nsr/nwac072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 02/28/2022] [Accepted: 03/29/2022] [Indexed: 11/29/2022] Open
Abstract
Allostery is a fundamental element during channel gating in response to an appropriate stimulus by which events occurring at one site are transmitted to distal sites to regulate activity. To address how binding of the first Ca2+ ion at one of the eight chemically identical subunits facilitates the other Ca2+-binding events in MthK, a Ca2+-gated K+ channel containing a conserved ligand-binding RCK domain, we analysed a large collection of MthK structures and performed the corresponding thermodynamic and electrophysiological measurements. These structural and functional studies led us to conclude that the conformations of the Ca2+-binding sites alternate between two quaternary states and exhibit significant differences in Ca2+ affinity. We further propose an allosteric model of the MthK-gating mechanism by which a cascade of structural events connect the initial Ca2+-binding to the final changes of the ring structure that open the ion-conduction pore. This mechanical model reveals the exquisite design that achieves the allosteric gating and could be of general relevance for the action of other ligand-gated ion channels containing the RCK domain.
Collapse
Affiliation(s)
- Fenghui Guan
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin300072, China
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang310022, China
| | - Tianyu Li
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing100049, China
| | - Wei Dong
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058Zhejiang, China
| | - Rui Guo
- Department of Logistics, Tianjin University, 92 Weijin Road, Nankai District, Tianjin300072, China
| | - Hao Chai
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing100049, China
| | - Zhiqiu Chen
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing100049, China
| | - Zhong Ren
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL60607, USA
- Renz Research Inc., Westmont, IL60559, USA
| | - Yang Li
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing100049, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, China
| | - Sheng Ye
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin300072, China
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058Zhejiang, China
| |
Collapse
|
30
|
Gain of function due to increased opening probability by two KCNQ5 pore variants causing developmental and epileptic encephalopathy. Proc Natl Acad Sci U S A 2022; 119:e2116887119. [PMID: 35377796 PMCID: PMC9169635 DOI: 10.1073/pnas.2116887119] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Variants in genes encoding neuronally expressed potassium channel subunits are frequent causes of developmental and epileptic encephalopathies (DEEs). Characterization of their functional consequences is critical to confirm diagnosis, assess prognosis, and implement personalized treatments. In the present work, we describe two patients carrying variants in KCNQ5, a gene very recently and rarely found involved in DEEs, and reveal that they both cause remarkable gain-of-function consequences on channel activity. A PIP2-independent increase in open probability, without effects on membrane abundance or single-channel conductance, was responsible for the observed mutation-induced functional changes, thus revealing a pathomolecular disease mechanism for DEEs. Developmental and epileptic encephalopathies (DEEs) are neurodevelopmental diseases characterized by refractory epilepsy, distinct electroencephalographic and neuroradiological features, and various degrees of developmental delay. Mutations in KCNQ2, KCNQ3, and, more rarely, KCNQ5 genes encoding voltage-gated potassium channel subunits variably contributing to excitability control of specific neuronal populations at distinct developmental stages have been associated to DEEs. In the present work, the clinical features of two DEE patients carrying de novo KCNQ5 variants affecting the same residue in the pore region of the Kv7.5 subunit (G347S/A) are described. The in vitro functional properties of channels incorporating these variants were investigated with electrophysiological and biochemical techniques to highlight pathophysiological disease mechanisms. Currents carried by Kv7.5 G347 S/A channels displayed: 1) large (>10 times) increases in maximal current density, 2) the occurrence of a voltage-independent component, 3) slower deactivation kinetics, and 4) hyperpolarization shift in activation. All these functional features are consistent with a gain-of-function (GoF) pathogenetic mechanism. Similar functional changes were also observed when the same variants were introduced at the corresponding position in Kv7.2 subunits. Nonstationary noise analysis revealed that GoF effects observed for both Kv7.2 and Kv7.5 variants were mainly attributable to an increase in single-channel open probability, without changes in membrane abundance or single-channel conductance. The mutation-induced increase in channel opening probability was insensitive to manipulation of membrane levels of the critical Kv7 channel regulator PIP2. These results reveal a pathophysiological mechanism for KCNQ5-related DEEs, which might be exploited to implement personalized treatments.
Collapse
|
31
|
Hu ZH, Lv WP, Hui DX, Wang XJ, Wang YN. Permeability enhancement of the KcsA channel under radiation of a terahertz wave. Phys Rev E 2022; 105:024104. [PMID: 35291137 DOI: 10.1103/physreve.105.024104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Potassium ion channels are essential elements in cellular electrical excitability and help maintain a resting potential in nonexcitable cells. Their universality is based on a unique combination of strong selectivity for K^{+} ions and near-diffusion-limited permeation efficiency. Understanding how the channel regulates the ion conduction would be instructive to the treatment of ion channelopathies. In this work, by means of molecular dynamics simulations, we demonstrate the significantly enhanced permeation of KcsA channel in reaction to an external terahertz wave, due to the effective response of the K^{+} ions in the selectivity filter regions of the channel. Compared to the case without external terahertz wave, a fourfold increase in the ion current through the channel is found.
Collapse
Affiliation(s)
- Zhang-Hu Hu
- School of Physics, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Wen-Ping Lv
- Warshel Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, People's Republic of China
| | - De-Xuan Hui
- School of Physics, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Xiao-Juan Wang
- School of Physics, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - You-Nian Wang
- School of Physics, Dalian University of Technology, Dalian 116024, People's Republic of China
| |
Collapse
|
32
|
Jin R, He S, Black KA, Clarke OB, Wu D, Bolla JR, Johnson P, Periasamy A, Wardak A, Czabotar P, Colman PM, Robinson CV, Laver D, Smith BJ, Gulbis JM. Ion currents through Kir potassium channels are gated by anionic lipids. Nat Commun 2022; 13:490. [PMID: 35079013 PMCID: PMC8789855 DOI: 10.1038/s41467-022-28148-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 01/10/2022] [Indexed: 02/08/2023] Open
Abstract
AbstractIon currents through potassium channels are gated. Constriction of the ion conduction pathway at the inner helix bundle, the textbook gate of Kir potassium channels, has been shown to be an ineffective permeation control, creating a rift in our understanding of how these channels are gated. Here we present evidence that anionic lipids act as interactive response elements sufficient to gate potassium conduction. We demonstrate the limiting barrier to K+ permeation lies within the ion conduction pathway and show that this gate is operated by the fatty acyl tails of lipids that infiltrate the conduction pathway via fenestrations in the walls of the pore. Acyl tails occupying a surface groove extending from the cytosolic interface to the conduction pathway provide a potential means of relaying cellular signals, mediated by anionic lipid head groups bound at the canonical lipid binding site, to the internal gate.
Collapse
|
33
|
Irie K. The insights into calcium ion selectivity provided by ancestral prokaryotic ion channels. Biophys Physicobiol 2022; 18:274-283. [PMID: 35004101 PMCID: PMC8677417 DOI: 10.2142/biophysico.bppb-v18.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/16/2021] [Indexed: 12/01/2022] Open
Abstract
Prokaryotic channels play an important role in the structural biology of ion channels. At the end of the 20th century, the first structure of a prokaryotic ion channel was revealed. Subsequently, the reporting of structures of various prokaryotic ion channels have provided fundamental insights into the structure of ion channels of higher organisms. Voltage-dependent Ca2+ channels (Cavs) are indispensable for coupling action potentials with Ca2+ signaling. Similar to other proteins, Cavs were predicted to have a prokaryotic counterpart; however, it has taken more than 20 years for one to be identified. The homotetrameric channel obtained from Meiothermus ruber generates the calcium ion specific current, so it is named as CavMr. Its selectivity filter contains a smaller number of negatively charged residues than mutant Cavs generated from other prokaryotic channels. CavMr belonged to a different cluster of phylogenetic trees than canonical prokaryotic cation channels. The glycine residue of the CavMr selectivity filter is a determinant for calcium selectivity. This glycine residue is conserved among eukaryotic Cavs, suggesting that there is a universal mechanism for calcium selectivity. A family of homotetrameric channels has also been identified from eukaryotic unicellular algae, and the investigation of these channels can help to understand the mechanism for ion selection that is conserved from prokaryotes to eukaryotes.
Collapse
Affiliation(s)
- Katsumasa Irie
- Department of Biophysical Chemistry, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama 640-8156, Japan.,Cellular and Structural Physiology Institute (CeSPI), Nagoya University, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
34
|
Small molecule modulation of the Drosophila Slo channel elucidated by cryo-EM. Nat Commun 2021; 12:7164. [PMID: 34887422 PMCID: PMC8660915 DOI: 10.1038/s41467-021-27435-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/18/2021] [Indexed: 12/16/2022] Open
Abstract
Slowpoke (Slo) potassium channels display extraordinarily high conductance, are synergistically activated by a positive transmembrane potential and high intracellular Ca2+ concentrations and are important targets for insecticides and antiparasitic drugs. However, it is unknown how these compounds modulate ion translocation and whether there are insect-specific binding pockets. Here, we report structures of Drosophila Slo in the Ca2+-bound and Ca2+-free form and in complex with the fungal neurotoxin verruculogen and the anthelmintic drug emodepside. Whereas the architecture and gating mechanism of Slo channels are conserved, potential insect-specific binding pockets exist. Verruculogen inhibits K+ transport by blocking the Ca2+-induced activation signal and precludes K+ from entering the selectivity filter. Emodepside decreases the conductance by suboptimal K+ coordination and uncouples ion gating from Ca2+ and voltage sensing. Our results expand the mechanistic understanding of Slo regulation and lay the foundation for the rational design of regulators of Slo and other voltage-gated ion channels. Slowpoke (Slo) channels are voltage-gated potassium channels that are activated by high intracellular Ca2+ concentrations, and they are targets for insecticides and antiparasitic drugs. Here, the authors present the cryo-EM structures of the Drosophila melanogaster Slo channel in the Ca2+-bound and Ca2+-free conformations, as well as in complex with the fungal neurotoxin verruculogen and the anthelmintic drug emodepside and discuss the mechanisms by which they affect the activity of Slo.
Collapse
|
35
|
Reddi R, Matulef K, Riederer E, Moenne-Loccoz P, Valiyaveetil FI. Structures of Gating Intermediates in a K + channel. J Mol Biol 2021; 433:167296. [PMID: 34627789 DOI: 10.1016/j.jmb.2021.167296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 11/30/2022]
Abstract
Regulation of ion conduction through the pore of a K+ channel takes place through the coordinated action of the activation gate at the bundle crossing of the inner helices and the inactivation gate located at the selectivity filter. The mechanism of allosteric coupling of these gates is of key interest. Here we report new insights into this allosteric coupling mechanism from studies on a W67F mutant of the KcsA channel. W67 is in the pore helix and is highly conserved in K+ channels. The KcsA W67F channel shows severely reduced inactivation and an enhanced rate of activation. We use continuous wave EPR spectroscopy to establish that the KcsA W67F channel shows an altered pH dependence of activation. Structural studies on the W67F channel provide the structures of two intermediate states: a pre- open state and a pre-inactivated state of the KcsA channel. These structures highlight key nodes in the allosteric pathway. The structure of the KcsA W67F channel with the activation gate open shows altered ion occupancy at the second ion binding site (S2) in the selectivity filter. This finding in combination with previous studies strongly support a requirement for ion occupancy at the S2 site for the channel to inactivate.
Collapse
Affiliation(s)
- Ravikumar Reddi
- Program in Chemical Biology, Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, United States. https://twitter.com/Ravi_K_Reddi
| | - Kimberly Matulef
- Program in Chemical Biology, Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, United States
| | - Erika Riederer
- Program in Chemical Biology, Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, United States
| | - Pierre Moenne-Loccoz
- Program in Chemical Biology, Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, United States
| | - Francis I Valiyaveetil
- Program in Chemical Biology, Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, United States.
| |
Collapse
|
36
|
Gabriel TS, Hansen UP, Urban M, Drexler N, Winterstein T, Rauh O, Thiel G, Kast SM, Schroeder I. Asymmetric Interplay Between K + and Blocker and Atomistic Parameters From Physiological Experiments Quantify K + Channel Blocker Release. Front Physiol 2021; 12:737834. [PMID: 34777005 PMCID: PMC8586521 DOI: 10.3389/fphys.2021.737834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/04/2021] [Indexed: 11/23/2022] Open
Abstract
Modulating the activity of ion channels by blockers yields information on both the mode of drug action and on the biophysics of ion transport. Here we investigate the interplay between ions in the selectivity filter (SF) of K+ channels and the release kinetics of the blocker tetrapropylammonium in the model channel KcvNTS. A quantitative expression calculates blocker release rate constants directly from voltage-dependent ion occupation probabilities in the SF. The latter are obtained by a kinetic model of single-channel currents recorded in the absence of the blocker. The resulting model contains only two adjustable parameters of ion-blocker interaction and holds for both symmetric and asymmetric ionic conditions. This data-derived model is corroborated by 3D reference interaction site model (3D RISM) calculations on several model systems, which show that the K+ occupation probability is unaffected by the blocker, a direct consequence of the strength of the ion-carbonyl attraction in the SF, independent of the specific protein background. Hence, KcvNTS channel blocker release kinetics can be reduced to a small number of system-specific parameters. The pore-independent asymmetric interplay between K+ and blocker ions potentially allows for generalizing these results to similar potassium channels.
Collapse
Affiliation(s)
- Tobias S Gabriel
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Ulf-Peter Hansen
- Department of Structural Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Martin Urban
- Physikalische Chemie III, Technische Universita̋t Dortmund, Dortmund, Germany
| | - Nils Drexler
- Institute of Physiology II, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany
| | - Tobias Winterstein
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Oliver Rauh
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Gerhard Thiel
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Stefan M Kast
- Physikalische Chemie III, Technische Universita̋t Dortmund, Dortmund, Germany
| | - Indra Schroeder
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany.,Institute of Physiology II, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
37
|
Cui J. BK Channel Gating Mechanisms: Progresses Toward a Better Understanding of Variants Linked Neurological Diseases. Front Physiol 2021; 12:762175. [PMID: 34744799 PMCID: PMC8567085 DOI: 10.3389/fphys.2021.762175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/01/2021] [Indexed: 12/21/2022] Open
Abstract
The large conductance Ca2+-activated potassium (BK) channel is activated by both membrane potential depolarization and intracellular Ca2+ with distinct mechanisms. Neural physiology is sensitive to the function of BK channels, which is shown by the discoveries of neurological disorders that are associated with BK channel mutations. This article reviews the molecular mechanisms of BK channel activation in response to voltage and Ca2+ binding, including the recent progress since the publication of the atomistic structure of the whole BK channel protein, and the neurological disorders associated with BK channel mutations. These results demonstrate the unique mechanisms of BK channel activation and that these mechanisms are important factors in linking BK channel mutations to neurological disorders.
Collapse
Affiliation(s)
- Jianmin Cui
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO, United States
| |
Collapse
|
38
|
Li M, Cao Y, Zhang X, Wang D, Qian S, Li G, Zhang F, Xiong Y, Qing G. Biomimetic calcium-inactivated ion/molecular channel. Chem Commun (Camb) 2021; 57:7914-7917. [PMID: 34279527 DOI: 10.1039/d1cc03058b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A phosphopeptide-modified nanochannel was prepared based on a conical polymeric nanopore. It shows a reversible Ca2+-induced inactivation effect toward the ion flow and molecular transport, resulting from Ca2+ binding-caused surface charge neutralization and hydrophilicity reduction, and Ca2+ removal by the competitive binding.
Collapse
Affiliation(s)
- Minmin Li
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, 418 Guanglan Avenue, Nanchang 330013, China. and CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Yuchen Cao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China. and Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Xin Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Dongdong Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Shengxu Qian
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Guodong Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Fusheng Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Yuting Xiong
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, 418 Guanglan Avenue, Nanchang 330013, China. and CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Guangyan Qing
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| |
Collapse
|
39
|
Function-Related Dynamics in Multi-Spanning Helical Membrane Proteins Revealed by Solution NMR. MEMBRANES 2021; 11:membranes11080604. [PMID: 34436367 PMCID: PMC8398610 DOI: 10.3390/membranes11080604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 01/02/2023]
Abstract
A primary biological function of multi-spanning membrane proteins is to transfer information and/or materials through a membrane by changing their conformations. Therefore, particular dynamics of the membrane proteins are tightly associated with their function. The semi-atomic resolution dynamics information revealed by NMR is able to discriminate function-related dynamics from random fluctuations. This review will discuss several studies in which quantitative dynamics information by solution NMR has contributed to revealing the structural basis of the function of multi-spanning membrane proteins, such as ion channels, GPCRs, and transporters.
Collapse
|
40
|
Vouga AG, Rockman ME, Yan J, Jacobson MA, Rothberg BS. State-dependent inhibition of BK channels by the opioid agonist loperamide. J Gen Physiol 2021; 153:212539. [PMID: 34357374 PMCID: PMC8352719 DOI: 10.1085/jgp.202012834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/19/2021] [Accepted: 07/08/2021] [Indexed: 12/20/2022] Open
Abstract
Large-conductance Ca2+-activated K+ (BK) channels control a range of physiological functions, and their dysfunction is linked to human disease. We have found that the widely used drug loperamide (LOP) can inhibit activity of BK channels composed of either α-subunits (BKα channels) or α-subunits plus the auxiliary γ1-subunit (BKα/γ1 channels), and here we analyze the molecular mechanism of LOP action. LOP applied at the cytosolic side of the membrane rapidly and reversibly inhibited BK current, an effect that appeared as a decay in voltage-activated BK currents. The apparent affinity for LOP decreased with hyperpolarization in a manner consistent with LOP behaving as an inhibitor of open, activated channels. Increasing LOP concentration reduced the half-maximal activation voltage, consistent with relative stabilization of the LOP-inhibited open state. Single-channel recordings revealed that LOP did not reduce unitary BK channel current, but instead decreased BK channel open probability and mean open times. LOP elicited use-dependent inhibition, in which trains of brief depolarizing steps lead to accumulated reduction of BK current, whereas single brief depolarizing steps do not. The principal effects of LOP on BK channel gating are described by a mechanism in which LOP acts as a state-dependent pore blocker. Our results suggest that therapeutic doses of LOP may act in part by inhibiting K+ efflux through intestinal BK channels.
Collapse
Affiliation(s)
- Alexandre G Vouga
- Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA
| | - Michael E Rockman
- Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA
| | - Jiusheng Yan
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Marlene A Jacobson
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia PA
| | - Brad S Rothberg
- Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA
| |
Collapse
|
41
|
Paul A, Singh S. Identification of a novel calcium activated potassium channel from Leishmania donovani and in silico predictions of its antigenic features. Acta Trop 2021; 220:105922. [PMID: 33878308 DOI: 10.1016/j.actatropica.2021.105922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/08/2021] [Accepted: 04/08/2021] [Indexed: 11/18/2022]
Abstract
Visceral Leishmaniasis is a major neglected tropical disease with increasing incidences of drug resistance. This has led to the search for a suitable drug target for chemotherapeutic intervention. Potassium channels are a family of membrane proteins which play a vital role in homeostasis and any perturbation in them alters cell survival which makes them an attractive target. To characterize a calcium-activated potassium channel from Leishmania donovani (LdKCa), a putative ion-channel like protein which showed sequence similarity with other Trypanosoma cruzi putative potassium channels was selected. It was cloned and expressed with a histidine tag. MALDI confirmed that it is a potassium channel. Homology model of LdKCa was generated by I-TASSER. It is a transmembrane protein localized in the plasma membrane as predicted by DeepLoc tool. In silico analyses of the protein showed that it is a small conductance calcium activated potassium channel. Point mutation in conserved signature domain 'TXGYGD' affects the protein function as predicted by heat map analysis. The LdKCa model predicted amino acids S207, T208 and M236 as ligand-binding sites. The sequence HSLRGRSARVIQLAWRLRKARKVGPHAPSLKQKVYTLVLSWLLT was the highest scoring B-cell epitope. The highest scoring T-cell epitope was RLYSVIVYL. This study may provide new insights into antigenicity features of leishmanial calcium-activated potassium channels.
Collapse
Affiliation(s)
- Anindita Paul
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062, Punjab, India
| | - Sushma Singh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062, Punjab, India.
| |
Collapse
|
42
|
Wu X, Perez ME, Noskov SY, Larsson HP. A general mechanism of KCNE1 modulation of KCNQ1 channels involving non-canonical VSD-PD coupling. Commun Biol 2021; 4:887. [PMID: 34285340 PMCID: PMC8292421 DOI: 10.1038/s42003-021-02418-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/05/2021] [Indexed: 01/10/2023] Open
Abstract
Voltage-gated KCNQ1 channels contain four separate voltage-sensing domains (VSDs) and a pore domain (PD). KCNQ1 expressed alone opens when the VSDs are in an intermediate state. In cardiomyocytes, KCNQ1 co-expressed with KCNE1 opens mainly when the VSDs are in a fully activated state. KCNE1 also drastically slows the opening of KCNQ1 channels and shifts the voltage dependence of opening by >40 mV. We here show that mutations of conserved residues at the VSD-PD interface alter the VSD-PD coupling so that the mutant KCNQ1/KCNE1 channels open in the intermediate VSD state. Using recent structures of KCNQ1 and KCNE beta subunits in different states, we present a mechanism by which KCNE1 rotates the VSD relative to the PD and affects the VSD-PD coupling of KCNQ1 channels in a non-canonical way, forcing KCNQ1/KCNE1 channels to open in the fully-activated VSD state. This would explain many of the KCNE1-induced effects on KCNQ1 channels.
Collapse
Affiliation(s)
- Xiaoan Wu
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Marta E Perez
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Sergei Yu Noskov
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - H Peter Larsson
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
43
|
Cao E. Structural mechanisms of transient receptor potential ion channels. J Gen Physiol 2021; 152:133640. [PMID: 31972006 PMCID: PMC7054860 DOI: 10.1085/jgp.201811998] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 01/03/2020] [Indexed: 12/26/2022] Open
Abstract
Transient receptor potential (TRP) ion channels are evolutionarily ancient sensory proteins that detect and integrate a wide range of physical and chemical stimuli. TRP channels are fundamental for numerous biological processes and are therefore associated with a multitude of inherited and acquired human disorders. In contrast to many other major ion channel families, high-resolution structures of TRP channels were not available before 2013. Remarkably, however, the subsequent “resolution revolution” in cryo-EM has led to an explosion of TRP structures in the last few years. These structures have confirmed that TRP channels assemble as tetramers and resemble voltage-gated ion channels in their overall architecture. But beyond the relatively conserved transmembrane core embedded within the lipid bilayer, each TRP subtype appears to be endowed with a unique set of soluble domains that may confer diverse regulatory mechanisms. Importantly, TRP channel structures have revealed sites and mechanisms of action of numerous synthetic and natural compounds, as well as those for endogenous ligands such as lipids, Ca2+, and calmodulin. Here, I discuss these recent findings with a particular focus on the conserved transmembrane region and how these structures may help to rationally target this important class of ion channels for the treatment of numerous human conditions.
Collapse
Affiliation(s)
- Erhu Cao
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT
| |
Collapse
|
44
|
Roy RN, Hendriks K, Kopec W, Abdolvand S, Weiss KL, de Groot BL, Lange A, Sun H, Coates L. Structural plasticity of the selectivity filter in a nonselective ion channel. IUCRJ 2021; 8:421-430. [PMID: 33953928 PMCID: PMC8086165 DOI: 10.1107/s205225252100213x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
The sodium potassium ion channel (NaK) is a nonselective ion channel that conducts both sodium and potassium across the cellular membrane. A new crystallographic structure of NaK reveals conformational differences in the residues that make up the selectivity filter between the four subunits that form the ion channel and the inner helix of the ion channel. The crystallographic structure also identifies a side-entry, ion-conduction pathway for Na+ permeation that is unique to NaK. NMR studies and molecular dynamics simulations confirmed the dynamical nature of the top part of the selectivity filter and the inner helix in NaK as also observed in the crystal structure. Taken together, these results indicate that the structural plasticity of the selectivity filter combined with the dynamics of the inner helix of NaK are vital for the efficient conduction of different ions through the non-selective ion channel of NaK.
Collapse
Affiliation(s)
- Raktim N. Roy
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Kitty Hendriks
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Wojciech Kopec
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Saeid Abdolvand
- Structural Chemistry and Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Kevin L. Weiss
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Bert L. de Groot
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Adam Lange
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Han Sun
- Structural Chemistry and Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Leighton Coates
- Second Target Station, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| |
Collapse
|
45
|
Schmidpeter PAM, Nimigean CM. Correlating ion channel structure and function. Methods Enzymol 2021; 652:3-30. [PMID: 34059287 DOI: 10.1016/bs.mie.2021.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Recent developments in cryogenic electron microscopy (cryo-EM) led to an exponential increase in high-resolution structures of membrane proteins, and in particular ion channels. However, structures alone can only provide limited information about the workings of these proteins. In order to understand ion channel function and regulation in molecular detail, the obtained structural data need to be correlated to functional states of the same protein. Here, we describe several techniques that can be employed to study ion channel structure and function in vitro and under defined, similar conditions. Lipid nanodiscs provide a native-like environment for membrane proteins and have become a valuable tool in membrane protein structural biology and biophysics. Combined with liposome-based flux assays for the kinetic analysis of ion channel activity as well as electrophysiological recordings, researchers now have access to an array of experimental techniques allowing for detailed structure-function correlations using purified components. Two examples are presented where we put emphasis on the lipid environment and time-resolved techniques together with mutations and protein engineering to interpret structural data obtained from single particle cryo-EM on cyclic nucleotide-gated or Ca2+-gated K+ channels. Furthermore, we provide short protocols for all the assays used in our work so that others can adapt these techniques to their experimental needs. Comprehensive structure-function correlations are essential in order to pharmacologically target channelopathies.
Collapse
Affiliation(s)
| | - Crina M Nimigean
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States.
| |
Collapse
|
46
|
Tikhonov DB. Channel Blockers of Ionotropic Glutamate
Receptors. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021020149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Cholasseri R, De S. Dual-Site Binding of Quaternary Ammonium Ions as Internal K +-Ion Channel Blockers: Nonclassical (C-H···O) H Bonding vs Dispersive (C-H···H-C) Interaction. J Phys Chem B 2021; 125:86-100. [PMID: 33371683 DOI: 10.1021/acs.jpcb.0c09604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A molecular-level study of the influence of the alkyl chain length of quaternary ammonium ions (QAs) on the blocking action and the mode of binding with the bacterial KcsA K+-ion channel is carried out by molecular dynamics (MD) simulations as well as quantum mechanics/molecular mechanics (QM/MM) methods. The present work unveils distinct modes of binding for different QAs, due to differences in size and hydrophobicity. The QAs bind near the channel gate as well as at the central cavity, leading to a possible dual-site blocking action. Small-sized tetraethylammonium (TEA) and tetrabutylammonium (TBA) ions enter inside the channel cavity in the open state of KcsA but bind strongly in the closed state. TEA binds to the polar hydroxyl group of threonine residues situated at the channel gate via nonclassical H-bonding interaction (C-H···O), while TBA binds to a second binding site, the central cavity, with hydrophobic benzyl and sec-butyl side chains of phenylalanine and isoleucine residues via alkyl-π and hydrophobic interactions (C-H···H-C). On the contrary, large tetrahexylammonium (THA) and tetraoctylammonium (TOA) ions bind the hydrophobic side-chain methyl and isopropyl of alanine and valine at the channel gate both in the open and closed states, thereby restricting the free movement of large QAs toward the center of the cavity. However, the binding to the hydrophobic benzyl and sec-butyl side chains of phenylalanine and isoleucine residues in the closed state is thermodynamically preferable. Also, the binding energy is found to increase with an increase in the alkyl chain length from ethyl (-16.4 kcal/mol) to octyl (-65.5 kcal/mol), due to an almost linear increase in dispersive interaction.
Collapse
Affiliation(s)
- Rinsha Cholasseri
- Theoretical and Computational Chemistry Laboratory, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala 673 601, India
| | - Susmita De
- Department of Applied Chemistry, Cochin University of Science and Technology, Trikakkara, Kochi, Kerala 682 022, India.,Inter University Centre for Nanomaterials and Devices, Cochin University of Science and Technology, Trikakkara, Kochi, Kerala 682 022, India
| |
Collapse
|
48
|
Schmidt M, Schroeder I, Bauer D, Thiel G, Hamacher K. Inferring functional units in ion channel pores via relative entropy. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:37-57. [PMID: 33523249 PMCID: PMC7872957 DOI: 10.1007/s00249-020-01480-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 10/11/2020] [Accepted: 11/09/2020] [Indexed: 11/25/2022]
Abstract
Coarse-grained protein models approximate the first-principle physical potentials. Among those modeling approaches, the relative entropy framework yields promising and physically sound results, in which a mapping from the target protein structure and dynamics to a model is defined and subsequently adjusted by an entropy minimization of the model parameters. Minimization of the relative entropy is equivalent to maximization of the likelihood of reproduction of (configurational ensemble) observations by the model. In this study, we extend the relative entropy minimization procedure beyond parameter fitting by a second optimization level, which identifies the optimal mapping to a (dimension-reduced) topology. We consider anisotropic network models of a diverse set of ion channels and assess our findings by comparison to experimental results.
Collapse
Affiliation(s)
- Michael Schmidt
- Department of Physics, TU Darmstadt, Karolinenpl. 5, 64289 Darmstadt, Germany
| | - Indra Schroeder
- Department of Biology, TU Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| | - Daniel Bauer
- Department of Biology, TU Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| | - Gerhard Thiel
- Department of Biology, TU Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| | - Kay Hamacher
- Department of Physics, Department of Biology, Department of Computer Science, TU Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| |
Collapse
|
49
|
Abstract
Potassium channels are the most diverse and ubiquitous family of ion channels found in cells. The Ca2+ and voltage gated members form a subfamily that play a variety of roles in both excitable and non-excitable cells and are further classified on the basis of their single channel conductance to form the small conductance (SK), intermediate conductance (IK) and big conductance (BK) K+ channels.In this chapter, we will focus on the mechanisms underlying the gating of BK channels, whose function is modified in different tissues by different splice variants as well as the expanding array of regulatory accessory subunits including β, γ and LINGO subunits. We will examine how BK channels are modified by these regulatory subunits and describe how the channel gating is altered by voltage and Ca2+ whilst setting this in context with the recently published structures of the BK channel. Finally, we will discuss how BK and other calcium-activated channels are modulated by novel ion channel modulators and describe some of the challenges associated with trying to develop compounds with sufficient efficacy, potency and selectivity to be of therapeutic benefit.
Collapse
|
50
|
Abstract
Potassium channels are present in every living cell and essential to setting up a stable, non-zero transmembrane electrostatic potential which manifests the off-equilibrium livelihood of the cell. They are involved in other cellular activities and regulation, such as the controlled release of hormones, the activation of T-cells for immune response, the firing of action potential in muscle cells and neurons, etc. Pharmacological reagents targeting potassium channels are important for treating various human diseases linked to dysfunction of the channels. High-resolution structures of these channels are very useful tools for delineating the detailed chemical basis underlying channel functions and for structure-based design and optimization of their pharmacological and pharmaceutical agents. Structural studies of potassium channels have revolutionized biophysical understandings of key concepts in the field - ion selectivity, conduction, channel gating, and modulation, making them multi-modality targets of pharmacological regulation. In this chapter, I will select a few high-resolution structures to illustrate key structural insights, proposed allostery behind channel functions, disagreements still open to debate, and channel-lipid interactions and co-evolution. The known structural consensus allows the inference of conserved molecular mechanisms shared among subfamilies of K+ channels and makes it possible to develop channel-specific pharmaceutical agents.
Collapse
Affiliation(s)
- Qiu-Xing Jiang
- Laboratory of Molecular Physiology and Biophysics and the Cryo-EM Center, Hauptmann-Woodward Medical Research Institute, Buffalo, NY, USA.
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, USA.
- Departments of Materials Design and Invention and Physiology and Biophysics, University of Buffalo (SUNY), Buffalo, NY, USA.
| |
Collapse
|