1
|
Acharya D, Bavikatte AN, Ashok VV, Hegde SR, Macpherson CR, Scherf A, Vembar SS. Ectopic overexpression of Plasmodium falciparum DNA-/RNA-binding Alba proteins misregulates virulence gene homeostasis during asexual blood development. Microbiol Spectr 2025:e0088524. [PMID: 39868986 DOI: 10.1128/spectrum.00885-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 11/27/2024] [Indexed: 01/28/2025] Open
Abstract
Alba domain-containing proteins are ubiquitously found in archaea and eukaryotes. By binding to either DNA, RNA, or DNA:RNA hybrids, these proteins function in genome stabilization, chromatin organization, gene regulation, and/or translational modulation. In the malaria parasite Plasmodium falciparum, six Alba domain proteins PfAlba1-6 have been described, of which PfAlba1 has emerged as a "master regulator" of translation during parasite intra-erythrocytic development (IED). Given that a tight control of gene expression is especially important during IED, when malaria pathogenesis manifests, in this study, we focus on three other P. falciparum Albas, PfAlba2-4. Because genetic manipulation of the genomic loci of PfAlba2-4 was unsuccessful, we overexpressed each of these proteins from an episome under a strong constitutive promoter. We observed that PfAlba2 or PfAlba3 overexpression strongly reduced parasite growth and impacted IED stage transitions. In contrast, elevated levels of PfAlba4 were well-tolerated by the parasite. In keeping with this, differential gene expression analysis using RNA-seq of PfAlba2 or PfAlba3 overexpressing strains revealed a significant misregulation of mRNAs encoding virulence factors, such as those related to erythrocyte invasion; a general repression of var gene expression was also apparent. PfAlba4 overexpression, on the other hand, did not significantly perturb the steady-state transcriptome of IED stages and appeared to enhance var mRNA levels. Moreover, distinct sets of genes were targeted by each PfAlba for regulation. Taken together, this study highlights the nonredundant roles of PfAlba proteins in the P. falciparum IED, emphasizing their importance in subtelomeric chromatin biology and RNA regulation.IMPORTANCEThe malaria parasite Plasmodium falciparum tightly controls the expression of its genes at the epigenetic, transcriptional, post-transcriptional, and translational levels to synthesize essential proteins, including virulence factors, in a timely and spatially coordinated manner. A family of six proteins implicated in this process is called PfAlba, characterized by the presence of the DNA-, RNA- or DNA:RNA hybrid-binding Alba domain. To better understand the cellular pathways regulated by this protein family, we overexpressed three PfAlbas during P. falciparum intra-erythrocytic growth and found that high levels of PfAlba2 and PfAlba3 were detrimental to parasite development. This was accompanied by significant changes in the parasite's transcriptome, either with regards to mRNA steady-state levels or expression timing. PfAlba4 overexpression, on the other hand, was well-tolerated by the parasite. Overall, our results delineate specific pathways targeted by individual PfAlbas for regulation and link PfAlba2/PfAlba3 to mutually exclusive expression of the virulence-promoting surface antigen PfEMP1.
Collapse
Affiliation(s)
- Dimple Acharya
- Manipal Academy of Higher Education, Manipal, Karnataka, India
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, Karnataka, India
| | | | - Vishnu Vinayak Ashok
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, Karnataka, India
| | - Shubhada R Hegde
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, Karnataka, India
| | - Cameron Ross Macpherson
- Unité de Biologie des Interactions Hôte-Parasite, Institut Pasteur, Paris, France
- CNRS ERM9195, Paris, France
- INSERM U1201, Paris, France
| | - Artur Scherf
- Unité de Biologie des Interactions Hôte-Parasite, Institut Pasteur, Paris, France
- CNRS ERM9195, Paris, France
- INSERM U1201, Paris, France
| | | |
Collapse
|
2
|
Kamikawa R, Mochizuki T, Sakamoto M, Tanizawa Y, Nakayama T, Onuma R, Cenci U, Moog D, Speak S, Sarkozi K, Toseland A, van Oosterhout C, Oyama K, Kato M, Kume K, Kayama M, Azuma T, Ishii KI, Miyashita H, Henrissat B, Lombard V, Win J, Kamoun S, Kashiyama Y, Mayama S, Miyagishima SY, Tanifuji G, Mock T, Nakamura Y. Genome evolution of a nonparasitic secondary heterotroph, the diatom Nitzschia putrida. SCIENCE ADVANCES 2022; 8:eabi5075. [PMID: 35486731 PMCID: PMC9054022 DOI: 10.1126/sciadv.abi5075] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Secondary loss of photosynthesis is observed across almost all plastid-bearing branches of the eukaryotic tree of life. However, genome-based insights into the transition from a phototroph into a secondary heterotroph have so far only been revealed for parasitic species. Free-living organisms can yield unique insights into the evolutionary consequence of the loss of photosynthesis, as the parasitic lifestyle requires specific adaptations to host environments. Here, we report on the diploid genome of the free-living diatom Nitzschia putrida (35 Mbp), a nonphotosynthetic osmotroph whose photosynthetic relatives contribute ca. 40% of net oceanic primary production. Comparative analyses with photosynthetic diatoms and heterotrophic algae with parasitic lifestyle revealed that a combination of gene loss, the accumulation of genes involved in organic carbon degradation, a unique secretome, and the rapid divergence of conserved gene families involved in cell wall and extracellular metabolism appear to have facilitated the lifestyle of a free-living secondary heterotroph.
Collapse
Affiliation(s)
- Ryoma Kamikawa
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Takako Mochizuki
- Department of Informatics, National Institute of Genetics, Research Organization of Information and Systems, Shizuoka 411-8540, Japan
| | - Mika Sakamoto
- Department of Informatics, National Institute of Genetics, Research Organization of Information and Systems, Shizuoka 411-8540, Japan
| | - Yasuhiro Tanizawa
- Department of Informatics, National Institute of Genetics, Research Organization of Information and Systems, Shizuoka 411-8540, Japan
| | - Takuro Nakayama
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Ryo Onuma
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka 411-8540, Japan
| | - Ugo Cenci
- Université de Lille, CNRS, UMR 8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Daniel Moog
- Laboratory for Cell Biology, Philipps University Marburg, Karl-von-Frisch-Str. 8
- SYNMIKRO Research Center, Hans-Meerwein-Str. 6, 35032, Marburg, Germany
| | - Samuel Speak
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Krisztina Sarkozi
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Andrew Toseland
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Cock van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Kaori Oyama
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Misako Kato
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Keitaro Kume
- Department of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Motoki Kayama
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Tomonori Azuma
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Ken-ichiro Ishii
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Hideaki Miyashita
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Université Aix-Marseille, 163 Avenue de Luminy, 13288 Marseille, France
- INRA, USC 1408 AFMB, 13288 Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Vincent Lombard
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Université Aix-Marseille, 163 Avenue de Luminy, 13288 Marseille, France
- INRA, USC 1408 AFMB, 13288 Marseille, France
| | - Joe Win
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Yuichiro Kashiyama
- Graduate School of Engineering, Fukui University of Technology, Fukui, Japan
| | - Shigeki Mayama
- Advanced Support Center for Science Teachers, Tokyo Gakugei University, Koganei, Tokyo, Japan
| | - Shin-ya Miyagishima
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka 411-8540, Japan
| | - Goro Tanifuji
- Department of Zoology, National Museum of Nature and Science, Tsukuba 305-0005, Japan
| | - Thomas Mock
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Yasukazu Nakamura
- Department of Informatics, National Institute of Genetics, Research Organization of Information and Systems, Shizuoka 411-8540, Japan
| |
Collapse
|
3
|
Singh G, Gupta D. In-Silico Functional Annotation of Plasmodium falciparum Hypothetical Proteins to Identify Novel Drug Targets. Front Genet 2022; 13:821516. [PMID: 35444689 PMCID: PMC9013929 DOI: 10.3389/fgene.2022.821516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/07/2022] [Indexed: 11/16/2022] Open
Abstract
Plasmodium falciparum is one of the plasmodium species responsible for the majority of life-threatening malaria cases. The current antimalarial therapies are becoming less effective due to growing drug resistance, leading to the urgent requirement for alternative and more effective antimalarial drugs or vaccines. To facilitate the novel drug discovery or vaccine development efforts, recent advances in sequencing technologies provide valuable information about the whole genome of the parasite, yet a lot more needs to be deciphered due to its incomplete proteome annotation. Surprisingly, out of the 5,389 proteins currently annotated in the Plasmodium falciparum 3D7 strain, 1,626 proteins (∼30% data) are annotated as hypothetical proteins. In parasite genomic studies, the challenge to annotate hypothetical proteins is often ignored, which may obscure the crucial information related to the pathogenicity of the parasite. In this study, we attempt to characterize hypothetical proteins of the parasite to identify novel drug targets using a computational pipeline. The study reveals that out of the overall pool of the hypothetical proteins, 266 proteins have conserved functional signatures. Furthermore, the pathway analysis of these proteins revealed that 23 proteins have an essential role in various biochemical, signalling and metabolic pathways. Additionally, all the proteins (266) were subjected to computational structure analysis. We could successfully model 11 proteins. We validated and checked the structural stability of the models by performing molecular dynamics simulation. Interestingly, eight proteins show stable conformations, and seven proteins are specific for Plasmodium falciparum, based on homology analysis. Lastly, mapping the seven shortlisted hypothetical proteins on the Plasmodium falciparum protein-protein interaction network revealed 3,299 nodes and 2,750,692 edges. Our study revealed interesting functional details of seven hypothetical proteins of the parasite, which help learn more about the less-studied molecules and their interactions, providing valuable clues to unravel the role of these proteins via future experimental validation.
Collapse
Affiliation(s)
- Gagandeep Singh
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
4
|
Vendrely KM, Kumar S, Li X, Vaughan AM. Humanized Mice and the Rebirth of Malaria Genetic Crosses. Trends Parasitol 2020; 36:850-863. [PMID: 32891493 DOI: 10.1016/j.pt.2020.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/10/2020] [Accepted: 07/18/2020] [Indexed: 12/18/2022]
Abstract
The first experimental crosses carried out with the human malaria parasite Plasmodium falciparum played a key role in determining the genetic loci responsible for drug resistance, virulence, invasion, growth rate, and transmission. These crosses relied on splenectomized chimpanzees to complete the liver stage of the parasite's life cycle and the subsequent transition to asexual blood stage culture followed by cloning of recombinant progeny in vitro. Crosses can now be routinely carried out using human-liver-chimeric mice infused with human erythrocytes to generate hundreds of unique recombinant progeny for genetic linkage mapping, bulk segregant analysis, and high-throughput 'omics readouts. The high number of recombinant progeny should allow for unprecedented power and efficiency in the execution of a systems genetics approach to study P. falciparum biology.
Collapse
Affiliation(s)
- Katelyn M Vendrely
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Xue Li
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Ashley M Vaughan
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
5
|
Tajuddeen N, Van Heerden FR. Antiplasmodial natural products: an update. Malar J 2019; 18:404. [PMID: 31805944 PMCID: PMC6896759 DOI: 10.1186/s12936-019-3026-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/21/2019] [Indexed: 11/25/2022] Open
Abstract
Background Malaria remains a significant public health challenge in regions of the world where it is endemic. An unprecedented decline in malaria incidences was recorded during the last decade due to the availability of effective control interventions, such as the deployment of artemisinin-based combination therapy and insecticide-treated nets. However, according to the World Health Organization, malaria is staging a comeback, in part due to the development of drug resistance. Therefore, there is an urgent need to discover new anti-malarial drugs. This article reviews the literature on natural products with antiplasmodial activity that was reported between 2010 and 2017. Methods Relevant literature was sourced by searching the major scientific databases, including Web of Science, ScienceDirect, Scopus, SciFinder, Pubmed, and Google Scholar, using appropriate keyword combinations. Results and Discussion A total of 1524 compounds from 397 relevant references, assayed against at least one strain of Plasmodium, were reported in the period under review. Out of these, 39% were described as new natural products, and 29% of the compounds had IC50 ≤ 3.0 µM against at least one strain of Plasmodium. Several of these compounds have the potential to be developed into viable anti-malarial drugs. Also, some of these compounds could play a role in malaria eradication by targeting gametocytes. However, the research into natural products with potential for blocking the transmission of malaria is still in its infancy stage and needs to be vigorously pursued.
Collapse
Affiliation(s)
- Nasir Tajuddeen
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa
| | - Fanie R Van Heerden
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa.
| |
Collapse
|
6
|
Pedro L, Cross M, Hofmann A, Mak T, Quinn RJ. Development of an HPLC-based guanosine monophosphate kinase assay and application to Plasmodium vivax guanylate kinase. Anal Biochem 2019; 575:63-69. [PMID: 30943378 PMCID: PMC6494078 DOI: 10.1016/j.ab.2019.03.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/18/2019] [Accepted: 03/29/2019] [Indexed: 11/12/2022]
Abstract
The development of a high-performance liquid chromatography (HPLC)-based method, for guanosine monophosphate kinase activity assays, is presented. The method uses the intrinsic UV absorption (at 260 nm) of substrates and products of the enzymatic reaction (GMP, ATP, ADP and GDP) to unambiguously determine percent conversion of substrate into product. It uses a commercially available C18 column which can separate reaction samples by elution under isocratic conditions in 12 min per run. The kinetics of the forward reaction catalyzed by Plasmodium vivax guanylate kinase (PvGK), a potential drug target against malaria, was determined. The relative concentrations of the two substrates (GMP and ATP) have a distinct effect on reaction velocity. Kinetic analyses showed the PvGK-catalyzed reaction to be associated with atypical kinetics, where substrate inhibition kinetics and non-Michaelis-Menten (sigmoidal) kinetics were found with respect to GMP and ATP, respectively. Additionally, the method was used in inhibition assays to screen twenty fragment-like compounds. The assays were robust and reproducible, with a signal window of 3.8 and a Z’ factor of 0.6. For the best inhibitor, an IC50 curve was generated. Simple HPLC separation of nucleotides involved in the guanylate kinase reaction. Direct and unambiguous determination of percent conversion of substrate into product. Successful application to Plasmodium vivax guanylate kinase (PvGK) activity studies. Reaction catalyzed by PvGK found to be associated with atypical kinetics. Robust and reproducible inhibition assay for compound screening.
Collapse
Affiliation(s)
- Liliana Pedro
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Megan Cross
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Andreas Hofmann
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Tin Mak
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Ronald J Quinn
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia.
| |
Collapse
|
7
|
Pecenin MF, Borges-Pereira L, Levano-Garcia J, Budu A, Alves E, Mikoshiba K, Thomas A, Garcia CRS. Blocking IP 3 signal transduction pathways inhibits melatonin-induced Ca 2+ signals and impairs P. falciparum development and proliferation in erythrocytes. Cell Calcium 2018; 72:81-90. [PMID: 29748136 DOI: 10.1016/j.ceca.2018.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 10/17/2022]
Abstract
Inositol 1,4,5 trisphosphate (IP3) signaling plays a crucial role in a wide range of eukaryotic processes. In Plasmodium falciparum, IP3 elicits Ca2+ release from intracellular Ca2+ stores, even though no IP3 receptor homolog has been identified to date. The human host hormone melatonin plays a key role in entraining the P. falciparum life cycle in the intraerythrocytic stages, apparently through an IP3-dependent Ca2+ signal. The melatonin-induced cytosolic Ca2+ ([Ca2+]cyt) increase and malaria cell cycle can be blocked by the IP3 receptor blocker 2-aminoethyl diphenylborinate (2-APB). However, 2-APB also inhibits store-operated Ca2+ entry (SOCE). Therefore, we have used two novel 2-APB derivatives, DPB162-AE and DPB163-AE, which are 100-fold more potent than 2-APB in blocking SOCE in mammalian cells, and appear to act by interfering with clustering of STIM proteins. In the present work we report that DPB162-AE and DPB163-AE block the [Ca2+]cyt rise in response to melatonin in P. falciparum, but only at high concentrations. These compounds also block SOCE in the parasite at similarly high concentrations suggesting that P. falciparum SOCE is not activated in the same way as in mammalian cells. We further find that DPB162-AE and DPB163-AE affect the development of the intraerythrocytic parasites and invasion of new red blood cells. Our efforts to episomally express proteins that compete with native IP3 receptor like IP3-sponge and an IP3 sensor such as IRIS proved to be lethal to P. falciparum during intraerythrocytic cycle. The present findings point to an important role of IP3-induced Ca2+ release in intraerythrocytic stage of P. falciparum.
Collapse
Affiliation(s)
- Mateus Fila Pecenin
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil; Núcleo de Pesquisa em Sinalização Celular Patógeno-Hospedeiro (NUSCEP) Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Lucas Borges-Pereira
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil; New Jersey Medical School Rutgers, The State University of New Jersey, NJ, USA; Núcleo de Pesquisa em Sinalização Celular Patógeno-Hospedeiro (NUSCEP) Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Julio Levano-Garcia
- Núcleo de Pesquisa em Sinalização Celular Patógeno-Hospedeiro (NUSCEP) Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Alexandre Budu
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Eduardo Alves
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Katsuhiko Mikoshiba
- Lab. for Developmental Neurobiology, RIKEN Brain Science Institute, Saitama, Japan
| | - Andrew Thomas
- New Jersey Medical School Rutgers, The State University of New Jersey, NJ, USA
| | - Celia R S Garcia
- New Jersey Medical School Rutgers, The State University of New Jersey, NJ, USA; Núcleo de Pesquisa em Sinalização Celular Patógeno-Hospedeiro (NUSCEP) Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
8
|
Archigregarines of the English Channel revisited: New molecular data on Selenidium species including early described and new species and the uncertainties of phylogenetic relationships. PLoS One 2017; 12:e0187430. [PMID: 29099876 PMCID: PMC5669490 DOI: 10.1371/journal.pone.0187430] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/19/2017] [Indexed: 11/20/2022] Open
Abstract
Background Gregarines represent an important transition step from free-living predatory (colpodellids s.l.) and/or photosynthetic (Chromera and Vitrella) apicomplexan lineages to the most important pathogens, obligate intracellular parasites of humans and domestic animals such as coccidians and haemosporidians (Plasmodium, Toxoplasma, Eimeria, Babesia, etc.). While dozens of genomes of other apicomplexan groups are available, gregarines are barely entering the molecular age. Among the gregarines, archigregarines possess a unique mixture of ancestral (myzocytosis) and derived (lack of apicoplast, presence of subpellicular microtubules) features. Methodology/Principal findings In this study we revisited five of the early-described species of the genus Selenidium including the type species Selenidium pendula, with special focus on surface ultrastructure and molecular data. We were also able to describe three new species within this genus. All species were characterized at morphological (light and scanning electron microscopy data) and molecular (SSU rDNA sequence data) levels. Gregarine specimens were isolated from polychaete hosts collected from the English Channel near the Station Biologique de Roscoff, France: Selenidium pendula from Scolelepis squamata, S. hollandei and S. sabellariae from Sabellaria alveolata, S. sabellae from Sabella pavonina, Selenidium fallax from Cirriformia tentaculata, S. spiralis sp. n. and S. antevariabilis sp. n. from Amphitritides gracilis, and S. opheliae sp. n. from Ophelia roscoffensis. Molecular phylogenetic analyses of these data showed archigregarines clustering into five separate clades and support previous doubts about their monophyly. Conclusions/Significance Our phylogenies using the extended gregarine sampling show that the archigregarines are indeed not monophyletic with one strongly supported clade of Selenidium sequences around the type species S. pendula. We suggest the revision of the whole archigregarine taxonomy with only the species within this clade remaining in the genus Selenidium, while the other species should be moved into newly erected genera. However, the SSU rDNA phylogenies show very clearly that the tree topology and therefore the inferred relationships within and in between clades are unstable and such revision would be problematic without additional sequence data.
Collapse
|
9
|
Genetic Validation of Leishmania donovani Lysyl-tRNA Synthetase Shows that It Is Indispensable for Parasite Growth and Infectivity. mSphere 2017; 2:mSphere00340-17. [PMID: 28875178 PMCID: PMC5577655 DOI: 10.1128/mspheredirect.00340-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 08/04/2017] [Indexed: 12/31/2022] Open
Abstract
Leishmania donovani is a protozoan parasite that causes visceral leishmaniasis. Increasing resistance and severe side effects of existing drugs have led to the need to identify new chemotherapeutic targets. Aminoacyl-tRNA synthetases (aaRSs) are ubiquitous and are required for protein synthesis. aaRSs are known drug targets for bacterial and fungal pathogens. Here, we have characterized and evaluated the essentiality of L. donovani lysyl-tRNA synthetase (LdLysRS). Two different coding sequences for lysyl-tRNA synthetases are annotated in the Leishmania genome database. LdLysRS-1 (LdBPK_150270.1), located on chromosome 15, is closer to apicomplexans and eukaryotes, whereas LdLysRS-2 (LdBPK_300130.1), present on chromosome 30, is closer to bacteria. In the present study, we have characterized LdLysRS-1. Recombinant LdLysRS-1 displayed aminoacylation activity, and the protein localized to the cytosol. The LdLysRS-1 heterozygous mutants had a restrictive growth phenotype and attenuated infectivity. LdLysRS-1 appears to be an essential gene, as a chromosomal knockout of LdLysRS-1 could be generated when the gene was provided on a rescuing plasmid. Cladosporin, a fungal secondary metabolite and a known inhibitor of LysRS, was more potent against promastigotes (50% inhibitory concentration [IC50], 4.19 µM) and intracellular amastigotes (IC50, 1.09 µM) than were isomers of cladosporin (3-epi-isocladosporin and isocladosporin). These compounds exhibited low toxicity to mammalian cells. The specificity of inhibition of parasite growth caused by these inhibitors was further assessed using LdLysRS-1 heterozygous mutant strains and rescue mutant promastigotes. These inhibitors inhibited the aminoacylation activity of recombinant LdLysRS. Our data provide a framework for the development of a new class of drugs against this parasite. IMPORTANCE Aminoacyl-tRNA synthetases are housekeeping enzymes essential for protein translation, providing charged tRNAs for the proper construction of peptide chains. These enzymes provide raw materials for protein translation and also ensure fidelity of translation. L. donovani is a protozoan parasite that causes visceral leishmaniasis. It is a continuously proliferating parasite that depends heavily on efficient protein translation. Lysyl-tRNA synthetase is one of the aaRSs which charges lysine to its cognate tRNA. Two different coding sequences for lysyl-tRNA synthetases (LdLysRS) are present in this parasite. LdLysRS-1 is closer to apicomplexans and eukaryotes, whereas LdLysRS-2 is closer to bacteria. Here, we have characterized LdLysRS-1 of L. donovani. LdLysRS-1 appears to be an essential gene, as the chromosomal null mutants did not survive. The heterozygous mutants showed slower growth kinetics and exhibited attenuated virulence. This study also provides a platform to explore LdLysRS-1 as a potential drug target.
Collapse
|
10
|
Mehrizi AA, Torabi F, Zakeri S, Djadid ND. Limited genetic diversity in the global Plasmodium vivax Cell traversal protein of Ookinetes and Sporozoites (CelTOS) sequences; implications for PvCelTOS-based vaccine development. INFECTION GENETICS AND EVOLUTION 2017; 53:239-247. [PMID: 28600217 DOI: 10.1016/j.meegid.2017.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/04/2017] [Accepted: 06/05/2017] [Indexed: 01/04/2023]
Abstract
Cell traversal protein of Ookinetes and Sporozoites (CelTOS) is a new malaria vaccine candidate antigen. Since one of the main challenges in malaria vaccine development is the extensive antigenic diversity of this parasite, local and global gene diversity analysis is of particular importance. Therefore, in this study, the genetic diversity of pvceltos gene was investigated among Iranian P. vivax isolates (n=46) and compared with available worldwide pvceltos sequences. One synonymous (C109A) and three amino acid replacements (V118L, K178T, and G179R) were observed in Iranian pvceltos sequences in compare with Sal-1 sequence leading to five haplotypes including PvCelt-A (GSVKGL, 13%), PvCelt-B (GSLKGL, 50%), PvCelt-C (GSLTGL, 17.4%), PvCelt-D (GSVTGL, 13%) and PvCelt-E (GSLTRL, 6.5%). However, amino acid replacements were observed in six positions (G10S, S40N, V118L/M, K178T, G179R/D and L181R) in PvCelTOS antigen of global isolates leading to 11 distinct haplotypes. PvCelt-A and PvCelt-B haplotypes were the most common haplotypes in the world. The overall nucleotide diversity for Iranian isolates was 0.00169, while, the level of nucleotide diversity was ranged from 0.00252 for Thailand to 0.00022 for Peru populations in the world. The analysis of SNPs in relation with the predicted immunodominant regions revealed that only K178T and G179R SNPs are located in putative B-cell epitopes. All replacements were located in CD4+ and/or CD8+ T-cell epitopes. However, the majority of epitopes are located in conserved regions. Knowing whether these changes may alter the affinity of the epitopes for antibodies and/or MHC molecules remains to be investigated in experimental studies. In conclusion, the present study showed a very limited genetic diversity in pvceltos gene among the global clinical isolates that can be regarded as a potential candidate antigen to apply for vivax-based malaria vaccine development.
Collapse
Affiliation(s)
- Akram Abouie Mehrizi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, P.O. Box 1316943551, Tehran, Iran.
| | - Fatemeh Torabi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, P.O. Box 1316943551, Tehran, Iran; Department of Genetics, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Sedigheh Zakeri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, P.O. Box 1316943551, Tehran, Iran
| | - Navid Dinparast Djadid
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, P.O. Box 1316943551, Tehran, Iran
| |
Collapse
|
11
|
Zhu L, Mok S, Imwong M, Jaidee A, Russell B, Nosten F, Day NP, White NJ, Preiser PR, Bozdech Z. New insights into the Plasmodium vivax transcriptome using RNA-Seq. Sci Rep 2016; 6:20498. [PMID: 26858037 PMCID: PMC4746618 DOI: 10.1038/srep20498] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/05/2016] [Indexed: 12/13/2022] Open
Abstract
Historically seen as a benign disease, it is now becoming clear that Plasmodium vivax can cause significant morbidity. Effective control strategies targeting P. vivax malaria is hindered by our limited understanding of vivax biology. Here we established the P. vivax transcriptome of the Intraerythrocytic Developmental Cycle (IDC) of two clinical isolates in high resolution by Illumina HiSeq platform. The detailed map of transcriptome generates new insights into regulatory mechanisms of individual genes and reveals their intimate relationship with specific biological functions. A transcriptional hotspot of vir genes observed on chromosome 2 suggests a potential active site modulating immune evasion of the Plasmodium parasite across patients. Compared to other eukaryotes, P. vivax genes tend to have unusually long 5′ untranslated regions and also present multiple transcription start sites. In contrast, alternative splicing is rare in P. vivax but its association with the late schizont stage suggests some of its significance for gene function. The newly identified transcripts, including up to 179 vir like genes and 3018 noncoding RNAs suggest an important role of these gene/transcript classes in strain specific transcriptional regulation.
Collapse
Affiliation(s)
- Lei Zhu
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Sachel Mok
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Mallika Imwong
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Anchalee Jaidee
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Bruce Russell
- Yong Loo Lin School of Medicine, National University Singapore, Singapore
| | - Francois Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Nicholas P Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Peter R Preiser
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
12
|
Salinas JL, Kissinger JC, Jones DP, Galinski MR. Metabolomics in the fight against malaria. Mem Inst Oswaldo Cruz 2015; 109:589-97. [PMID: 25185001 PMCID: PMC4156452 DOI: 10.1590/0074-0276140043] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 03/11/2014] [Indexed: 02/06/2023] Open
Abstract
Metabolomics uses high-resolution mass spectrometry to provide a chemical fingerprint of thousands of metabolites present in cells, tissues or body fluids. Such metabolic phenotyping has been successfully used to study various biologic processes and disease states. High-resolution metabolomics can shed new light on the intricacies of host-parasite interactions in each stage of the Plasmodium life cycle and the downstream ramifications on the host's metabolism, pathogenesis and disease. Such data can become integrated with other large datasets generated using top-down systems biology approaches and be utilised by computational biologists to develop and enhance models of malaria pathogenesis relevant for identifying new drug targets or intervention strategies. Here, we focus on the promise of metabolomics to complement systems biology approaches in the quest for novel interventions in the fight against malaria. We introduce the Malaria Host-Pathogen Interaction Center (MaHPIC), a new systems biology research coalition. A primary goal of the MaHPIC is to generate systems biology datasets relating to human and non-human primate (NHP) malaria parasites and their hosts making these openly available from an online relational database. Metabolomic data from NHP infections and clinical malaria infections from around the world will comprise a unique global resource.
Collapse
Affiliation(s)
- Jorge L Salinas
- Division of Infectious Diseases, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Jessica C Kissinger
- Department of Genetics, Institute of Bioinformatics, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Dean P Jones
- Division of Pulmonary Medicine, Department of Medicine, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Mary R Galinski
- Division of Infectious Diseases, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
13
|
Erythrocyte lysis and Xenopus laevis oocyte rupture by recombinant Plasmodium falciparum hemolysin III. EUKARYOTIC CELL 2014; 13:1337-45. [PMID: 25148832 DOI: 10.1128/ec.00088-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Malaria kills more than 1 million people per year worldwide, with severe malaria anemia accounting for the majority of the deaths. Malaria anemia is multifactorial in etiology, including infected erythrocyte destruction and decrease in erythrocyte production, as well as destruction or clearance of noninfected erythrocytes. We identified a panspecies Plasmodium hemolysin type III related to bacterial hemolysins. The identification of a hemolysin III homologue in Plasmodium suggests a potential role in host erythrocyte lysis. Here, we report the first characterization of Plasmodium falciparum hemolysin III, showing that the soluble recombinant P. falciparum hemolysin III is a pore-forming protein capable of lysing human erythrocytes in a dose-, time-, and temperature-dependent fashion. The recombinant P. falciparum hemolysin III-induced hemolysis was partially inhibited by glibenclamide, a known channel antagonist. Studies with polyethylene glycol molecules of different molecular weights indicated a pore size of approximately 3.2 nm. Heterologous expression of recombinant P. falciparum hemolysin III in Xenopus oocytes demonstrated early hypotonic lysis similar to that of the pore-forming aquaporin control. Live fluorescence microscopy localized transfected recombinant green fluorescent protein (GFP)-tagged P. falciparum hemolysin III to the essential digestive vacuole of the P. falciparum parasite. These transfected trophozoites also possessed a swollen digestive vacuole phenotype. Native Plasmodium hemolysin III in the digestive vacuole may contribute to lysis of the parasitophorous vacuole membrane derived from the host erythrocyte. After merozoite egress from infected erythrocytes, remnant P. falciparum hemolysin III released from digestive vacuoles could potentially contribute to lysis of uninfected erythrocytes to contribute to severe life-threatening anemia.
Collapse
|
14
|
Hain AUP, Bosch J. Autophagy in Plasmodium, a multifunctional pathway? Comput Struct Biotechnol J 2013; 8:e201308002. [PMID: 24688742 PMCID: PMC3962217 DOI: 10.5936/csbj.201308002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/18/2013] [Accepted: 07/24/2013] [Indexed: 11/23/2022] Open
Abstract
Autophagy is a catabolic process that normally utilizes the lysosome. The far-reaching implications of this system in disease are being increasingly understood. Studying autophagy is complicated by its role in cell survival and programmed cell death and the involvement of the canonical marker of autophagy, Atg8/LC3, in numerous non-autophagic roles. The malaria parasite, Plasmodium, has conserved certain aspects of the autophagic machinery but for what purpose has long remained a mystery. Major advances have recently been gained and suggest a role for Atg8 in apicoplast maintenance, degradation of heme inside the food vacuole, and possibly trafficking of proteins or organelles outside the parasite membrane. Autophagy may also participate in programmed cell death under drug treatment or as a selective tool to limit parasite load. We review the current findings and discuss discrepancies in the field of autophagy in the Plasmodium parasite.
Collapse
Affiliation(s)
- Adelaide U P Hain
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins Malaria Research Institute, Baltimore, MD 21205, United States
| | - Jürgen Bosch
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins Malaria Research Institute, Baltimore, MD 21205, United States
| |
Collapse
|
15
|
Fraunholz MJ, Roos DS. PlasmoDB: exploring genomics and post-genomics data of the malaria parasite,Plasmodium falciparum. Redox Rep 2013; 8:317-20. [PMID: 14962373 DOI: 10.1179/135100003225002961] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The recent completion of the genome sequence of Plasmodium falciparum 3D7 provides the foundation for genome-wide analysis of the parasite. In addition to DNA and gene sequence data, postgenomic methods including microarray-based transcript profiling and high-throughput proteomics are now accessible to Plasmodium researchers. The Plasmodium Genome database (<http://PlasmoDB.org>) was developed to provide rapid and convenient access to the terabytes of genomic-scale data now being generated around the world. All data are available in a relational framework, permitting convenient downloading, browsing, and analysis. Combinatorial use of data analysis tools enables powerful data mining queries, such as combining gene and protein expression data to monitor changes through various life-cycle stages. Functional predictions can be used to explore potential targets for antimalarial drug development. This report outlines the use of PlasmoDB to examine redox-active functions in Plasmodium.
Collapse
Affiliation(s)
- Martin J Fraunholz
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018, USA.
| | | |
Collapse
|
16
|
Roberts RN, Schlarman MS, Kariuki MM, Lacrue AN, Ou R, Beerntsen BT. Expression profile of the Plasmodium falciparum intra-erythrocytic stage protein, PF3D7_1363700. Malar J 2013; 12:66. [PMID: 23418676 PMCID: PMC3637116 DOI: 10.1186/1475-2875-12-66] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 02/12/2013] [Indexed: 11/30/2022] Open
Abstract
Background Efforts to control malaria are demanding due to drug-resistant parasites, insecticide-resistant mosquitoes and poor health infrastructure in malaria-endemic countries. Therefore, the research and development of additional malaria control methods are crucial. For host-parasite interactions, surface antigens and secreted proteins are likely to be involved in infectivity and invasion of host tissues and therefore can be effective targets for control by vaccines, drug therapy, or novel mosquito control methods. In an effort to identify and characterize genes that may have a role in host-parasite interaction, this study describes the expression profile of Plasmodium falciparum PF3D7_1363700. Methods A P. falciparum gene, PF3D7_1363700, was identified by a search of the annotated Plasmodium genome database. Protein alignments of PF3D7_1363700 orthologues from various Plasmodium species were performed to demonstrate protein similarity. Transcript expression profiles of PF3D7_1363700 were determined via reverse-transcriptase PCR and protein expression was investigated by immunofluorescence assays, western blot analysis and green fluorescent trafficking studies. Results The PF3D7_1363700 protein demonstrates significant similarity with orthologues in other Plasmodium species and appears to be unique to Apicomplexans. The PF3D7_1363700 transcription profile demonstrated expression during the intra-erythrocytic, oocyst sporozoite, and salivary gland sporozoite stages while the PF3D7_1363700 protein was only detected during the intra-erythrocytic stages. Conclusions This research utilized an in silico approach to identify a well-conserved protein known as PF3D7_1363700. By molecular, biochemical and cellular analyses, PF3D7_1363700 was discovered to be an intra-erythrocytic-specific stage protein that is unique to Apicomplexans.
Collapse
Affiliation(s)
- Renee N Roberts
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | | | | | | | | | | |
Collapse
|
17
|
Schlarman MS, Roberts RN, Kariuki MM, LaCrue AN, Ou R, Beerntsen BT. PFE0565w, a Plasmodium falciparum protein expressed in salivary gland sporozoites. Am J Trop Med Hyg 2012; 86:943-54. [PMID: 22665598 DOI: 10.4269/ajtmh.2012.11-0797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Because malaria is still a significant problem worldwide, additional control methods need to be developed. The Plasmodium sporozoite is a good target for control measures because it displays dual infectivity for both mosquito and vertebrate host tissues. The Plasmodium falciparum gene, PFE0565w, was chosen as a candidate for study based on data from PlasmoDB, the Plasmodium database, indicating that it is expressed both at the transcriptional and protein levels in sporozoites, likely encodes a putative surface protein, and may have a potential role in the invasion of host tissues. Additional sequence analysis shows that the PFE0565w protein has orthologs in other Plasmodium species, but none outside of the genus Plasmodium. PFE0565w expresses transcript during both the sporozoite and erythrocytic stages of the parasite life cycle, where an alternative transcript was discovered during the erythrocytic stages. Data show that transcript is not present during axenic exoerythrocytic stages. Despite transcript being present in several life cycle stages, the PFE0565w protein is present only during the salivary gland sporozoite stage. Because the PFE0565w protein is present in salivary gland sporozoites, it could be a novel candidate for a pre-erythrocytic stage vaccine.
Collapse
Affiliation(s)
- Maggie S Schlarman
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Schlarman MS, Roberts RN, Kariuki MM, LaCrue AN, Ou R, Beerntsen BT. Transcript and protein expression profile of PF11_0394, a Plasmodium falciparum protein expressed in salivary gland sporozoites. Malar J 2012; 11:80. [PMID: 22443220 PMCID: PMC3355004 DOI: 10.1186/1475-2875-11-80] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 03/23/2012] [Indexed: 11/12/2022] Open
Abstract
Background Plasmodium falciparum malaria is a significant problem around the world today, thus there is still a need for new control methods to be developed. Because the sporozoite displays dual infectivity for both the mosquito salivary glands and vertebrate host tissue, it is a good target for vaccine development. Methods The P. falciparum gene, PF11_0394, was chosen as a candidate for study due to its potential role in the invasion of host tissues. This gene, which was selected using a data mining approach from PlasmoDB, is expressed both at the transcriptional and protein levels in sporozoites and likely encodes a putative surface protein. Using reverse transcription-polymerase chain reaction (RT-PCR) and green fluorescent protein (GFP)-trafficking studies, a transcript and protein expression profile of PF11_0394 was determined. Results The PF11_0394 protein has orthologs in other Plasmodium species and Apicomplexans, but none outside of the group Apicomplexa. PF11_0394 transcript was found to be present during both the sporozoite and erythrocytic stages of the parasite life cycle, but no transcript was detected during axenic exoerythrocytic stages. Despite the presence of transcript throughout several life cycle stages, the PF11_0394 protein was only detected in salivary gland sporozoites. Conclusions PF11_0394 appears to be a protein uniquely detected in salivary gland sporozoites. Even though a specific function of PF11_0394 has not been determined in P. falciparum biology, it could be another candidate for a new vaccine.
Collapse
Affiliation(s)
- Maggie S Schlarman
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | | | | | | | | | | |
Collapse
|
19
|
Dorin-Semblat D, Schmitt S, Semblat JP, Sicard A, Reininger L, Goldring D, Patterson S, Quashie N, Chakrabarti D, Meijer L, Doerig C. Plasmodium falciparum NIMA-related kinase Pfnek-1: sex specificity and assessment of essentiality for the erythrocytic asexual cycle. MICROBIOLOGY-SGM 2011; 157:2785-2794. [PMID: 21757488 PMCID: PMC3353393 DOI: 10.1099/mic.0.049023-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Plasmodium falciparum kinome includes a family of four protein kinases (Pfnek-1 to -4) related to the NIMA (never-in-mitosis) family, members of which play important roles in mitosis and meiosis in eukaryotic cells. Only one of these, Pfnek-1, which we previously characterized at the biochemical level, is expressed in asexual parasites. The other three (Pfnek-2, -3 and -4) are expressed predominantly in gametocytes, and a role for nek-2 and nek-4 in meiosis has been documented. Here we show by reverse genetics that Pfnek-1 is required for completion of the asexual cycle in red blood cells and that its expression in gametocytes in detectable by immunofluorescence in male (but not in female) gametocytes, in contrast with Pfnek-2 and Pfnek-4. This indicates that the function of Pfnek-1 is non-redundant with those of the other members of the Pfnek family and identifies Pfnek-1 as a potential target for antimalarial chemotherapy. A medium-throughput screen of a small-molecule library provides proof of concept that recombinant Pfnek-1 can be used as a target in drug discovery.
Collapse
Affiliation(s)
- Dominique Dorin-Semblat
- INSERM U609, Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow G12 8TA, UK.,INSERM-EPFL Joint Laboratory, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, GHI-SV-EPFL Station 19, CH-1015 Lausanne, Switzerland
| | - Sophie Schmitt
- Cell Cycle Group, C.N.R.S., Station Biologique, 29680 Roscoff, Bretagne, France
| | - Jean-Philippe Semblat
- INSERM U609, Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow G12 8TA, UK.,INSERM-EPFL Joint Laboratory, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, GHI-SV-EPFL Station 19, CH-1015 Lausanne, Switzerland
| | - Audrey Sicard
- INSERM U609, Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow G12 8TA, UK.,INSERM-EPFL Joint Laboratory, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, GHI-SV-EPFL Station 19, CH-1015 Lausanne, Switzerland
| | - Luc Reininger
- INSERM U609, Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow G12 8TA, UK.,INSERM-EPFL Joint Laboratory, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, GHI-SV-EPFL Station 19, CH-1015 Lausanne, Switzerland
| | - Dean Goldring
- Biochemistry, University of Kwazulu-Natal, PB X01 Scottsville, South Africa
| | - Shelley Patterson
- Department of Molecular Biology and Microbiology, University of Central Florida, 12722 Research Parkway, Orlando, FL 32826, USA
| | - Neils Quashie
- Infection and Immunity, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Debopam Chakrabarti
- Department of Molecular Biology and Microbiology, University of Central Florida, 12722 Research Parkway, Orlando, FL 32826, USA
| | - Laurent Meijer
- Cell Cycle Group, C.N.R.S., Station Biologique, 29680 Roscoff, Bretagne, France
| | - Christian Doerig
- INSERM U609, Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow G12 8TA, UK.,INSERM-EPFL Joint Laboratory, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, GHI-SV-EPFL Station 19, CH-1015 Lausanne, Switzerland
| |
Collapse
|
20
|
Zilversmit MM, Volkman SK, DePristo MA, Wirth DF, Awadalla P, Hartl DL. Low-complexity regions in Plasmodium falciparum: missing links in the evolution of an extreme genome. Mol Biol Evol 2010; 27:2198-209. [PMID: 20427419 PMCID: PMC2922621 DOI: 10.1093/molbev/msq108] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Over the past decade, attempts to explain the unusual size and prevalence of low-complexity regions (LCRs) in the proteins of the human malaria parasite Plasmodium falciparum have used both neutral and adaptive models. This past research has offered conflicting explanations for LCR characteristics and their role in, and influence on, the evolution of genome structure. Here we show that P. falciparum LCRs (PfLCRs) are not a single phenomenon, but rather consist of at least three distinct types of sequence, and this heterogeneity is the source of the conflict in the literature. Using molecular and population genetics, we show that these families of PfLCRs are evolving by different mechanisms. One of these families, named here the HighGC family, is of particular interest because these LCRs act as recombination hotspots, both in genes under positive selection for high levels of diversity which can be created by recombination (antigens) and those likely to be evolving neutrally or under negative selection (metabolic enzymes). We discuss how the discovery of these distinct species of PfLCRs helps to resolve previous contradictory studies on LCRs in malaria and contributes to our understanding of the evolution of the of the parasite's unusual genome.
Collapse
Affiliation(s)
- Martine M Zilversmit
- Department of Organismic and Evolutionary Biology, Harvard University, Boston, MA, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Guiguemde WA, Shelat AA, Bouck D, Duffy S, Crowther GJ, Davis PH, Smithson DC, Connelly M, Clark J, Zhu F, Jiménez-Díaz MB, Martinez MS, Wilson EB, Tripathi AK, Gut J, Sharlow ER, Bathurst I, El Mazouni F, Fowble JW, Forquer I, McGinley PL, Castro S, Angulo-Barturen I, Ferrer S, Rosenthal PJ, Derisi JL, Sullivan DJ, Lazo JS, Roos DS, Riscoe MK, Phillips MA, Rathod PK, Van Voorhis WC, Avery VM, Guy RK. Chemical genetics of Plasmodium falciparum. Nature 2010; 465:311-5. [PMID: 20485428 PMCID: PMC2874979 DOI: 10.1038/nature09099] [Citation(s) in RCA: 450] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 04/21/2010] [Indexed: 01/21/2023]
Abstract
Malaria caused by Plasmodium falciparum is a catastrophic disease worldwide (880,000 deaths yearly). Vaccine development has proved difficult and resistance has emerged for most antimalarials. In order to discover new antimalarial chemotypes, we have employed a phenotypic forward chemical genetic approach to assay 309,474 chemicals. Here we disclose structures and biological activity of the entire library, many of which exhibited potent in vitro activity against drug resistant strains, and detailed profiling of 172 representative candidates. A reverse chemical genetic study identified 19 new inhibitors of 4 validated drug targets and 15 novel binders among 61 malarial proteins. Phylochemogenetic profiling in multiple organisms revealed similarities between Toxoplasma gondii and mammalian cell lines and dissimilarities between P. falciparum and related protozoans. One exemplar compound displayed efficacy in a murine model. Overall, our findings provide the scientific community with new starting points for malaria drug discovery.
Collapse
Affiliation(s)
- W Armand Guiguemde
- Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Stoeckert CJ, Parkinson H. The MGED ontology: a framework for describing functional genomics experiments. Comp Funct Genomics 2010; 4:127-32. [PMID: 18629093 PMCID: PMC2447379 DOI: 10.1002/cfg.234] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2002] [Accepted: 11/19/2002] [Indexed: 11/11/2022] Open
Abstract
The Microarray Gene Expression Data (MGED) society was formed with an initial focus on experiments involving microarray technology. Despite the diversity of
applications, there are common concepts used and a common need to capture
experimental information in a standardized manner. In building the MGED ontology,
it was recognized that it would be impractical to cover all the different types of
experiments on all the different types of organisms by listing and defining all the
types of organisms and their properties. Our solution was to create a framework for
describing microarray experiments with an initial focus on the biological sample and
its manipulation. For concepts that are common for many species, we could provide a
manageable listing of controlled terms. For concepts that are species-specific or whose
values cannot be readily listed, we created an ‘OntologyEntry’ concept that referenced
an external resource. The MGED ontology is a work in progress that needs additional
instances and particularly needs constraints to be added. The ontology currently
covers the experimental sample and design, and we have begun capturing aspects of
the microarrays themselves as well. The primary application of the ontology will be
to develop forms for entering information into databases, and consequently allowing
queries, taking advantage of the structure provided by the ontology. The application
of an ontology of experimental conditions extends beyond microarray experiments
and, as the scope of MGED includes other aspects of functional genomics, so too will
the MGED ontology.
Collapse
Affiliation(s)
- Christian J Stoeckert
- Department of Genetics and Center for Bioinformatics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
23
|
Genome desertification in eutherians: can gene deserts explain the uneven distribution of genes in placental mammalian genomes? J Mol Evol 2009; 69:207-16. [PMID: 19568804 PMCID: PMC2746894 DOI: 10.1007/s00239-009-9251-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 05/15/2009] [Indexed: 10/28/2022]
Abstract
The evolution of genome size as well as structure and organization of genomes belongs among the key questions of genome biology. Here we show, based on a comparative analysis of 30 genomes, that there is generally a tight correlation between the number of genes per chromosome and the length of the respective chromosome in eukaryotic genomes. The surprising exceptions to this pattern are placental mammalian genomes. We identify the number and, more importantly, the uneven distribution of gene deserts among chromosomes, i.e., long (>500 kb) stretches of DNA that do not encode for genes, as the main contributing factor for the observed anomaly of eutherian genomes. Gene-rich placental mammalian chromosomes have smaller proportions of gene deserts and vice versa. We show that the uneven distribution of gene deserts is a derived character state of eutherians. The functional and evolutionary significance of this particular feature of eutherian genomes remains to be explained.
Collapse
|
24
|
Balu B, Chauhan C, Maher SP, Shoue DA, Kissinger JC, Fraser MJ, Adams JH. piggyBac is an effective tool for functional analysis of the Plasmodium falciparum genome. BMC Microbiol 2009; 9:83. [PMID: 19422698 PMCID: PMC2686711 DOI: 10.1186/1471-2180-9-83] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 05/07/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Much of the Plasmodium falciparum genome encodes hypothetical proteins with limited homology to other organisms. A lack of robust tools for genetic manipulation of the parasite limits functional analysis of these hypothetical proteins and other aspects of the Plasmodium genome. Transposon mutagenesis has been used widely to identify gene functions in many organisms and would be extremely valuable for functional analysis of the Plasmodium genome. RESULTS In this study, we investigated the lepidopteran transposon, piggyBac, as a molecular genetic tool for functional characterization of the Plasmodium falciparum genome. Through multiple transfections, we generated 177 unique P. falciparum mutant clones with mostly single piggyBac insertions in their genomes. Analysis of piggyBac insertion sites revealed random insertions into the P. falciparum genome, in regards to gene expression in parasite life cycle stages and functional categories. We further explored the possibility of forward genetic studies in P. falciparum with a phenotypic screen for attenuated growth, which identified several parasite genes and pathways critical for intra-erythrocytic development. CONCLUSION Our results clearly demonstrate that piggyBac is a novel, indispensable tool for forward functional genomics in P. falciparum that will help better understand parasite biology and accelerate drug and vaccine development.
Collapse
Affiliation(s)
- Bharath Balu
- Department of Global Health, University of South Florida, Tampa, Florida 33612, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Klein M, Dinér P, Dorin-Semblat D, Doerig C, Grøtli M. Synthesis of 3-(1,2,3-triazol-1-yl)- and 3-(1,2,3-triazol-4-yl)-substituted pyrazolo[3,4-d]pyrimidin-4-amines via click chemistry: potential inhibitors of the Plasmodium falciparum PfPK7 protein kinase. Org Biomol Chem 2009; 7:3421-9. [DOI: 10.1039/b906482f] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Ginsburg H. Caveat emptor: limitations of the automated reconstruction of metabolic pathways in Plasmodium. Trends Parasitol 2008; 25:37-43. [PMID: 18986839 DOI: 10.1016/j.pt.2008.08.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 07/10/2008] [Accepted: 08/22/2008] [Indexed: 10/21/2022]
Abstract
The functional reconstruction of metabolic pathways from an annotated genome is a tedious and demanding enterprise. Automation of this endeavor using bioinformatics algorithms could cope with the ever-increasing number of sequenced genomes and accelerate the process. Here, the manual reconstruction of metabolic pathways in the functional genomic database of Plasmodium falciparum--Malaria Parasite Metabolic Pathways--is described and compared with pathways generated automatically as they appear in PlasmoCyc, metaSHARK and the Kyoto Encyclopedia for Genes and Genomes. A critical evaluation of this comparison discloses that the automatic reconstruction of pathways generates manifold paths that need an expert manual verification to accept some and reject most others based on manually curated gene annotation.
Collapse
Affiliation(s)
- Hagai Ginsburg
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Edmund J. Safra Campus, Jerusalem 91904, Israel.
| |
Collapse
|
27
|
Maher SP, Balu B, Shoue DA, Weissenbach ME, Adams JH. A highly sensitive, PCR-based method for the detection of Plasmodium falciparum clones in microtiter plates. Malar J 2008; 7:222. [PMID: 18959784 PMCID: PMC2588632 DOI: 10.1186/1475-2875-7-222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 10/29/2008] [Indexed: 11/25/2022] Open
Abstract
Background Cloning of parasites by limiting dilution is an essential and rate-limiting step in many aspects of malaria research including genomic and genetic manipulation studies. The standard Giemsa-stained blood smears to detect parasites is time-consuming, whereas the more sensitive parasite lactate dehydrogenase assay involves multiple steps and requires fresh reagents. A simple PCR-based method was therefore tested for parasite detection that can be adapted to high throughput studies. Methods Approximately 1 μL of packed erythrocytes from each well of a microtiter cloning plate was directly used as template DNA for a PCR reaction with primers for the parasite 18s rRNA gene. Positive wells containing parasites were identified after rapid separation of PCR products by gel electrophoresis. Results The PCR-based method can consistently detect a parasitaemia as low as 0.0005%, which is equivalent to 30 parasite genomes in a single well of a 96-well plate. Parasite clones were easily detected from cloning plates using this method and a comparison of PCR results with Giemsa-stained blood smears showed that PCR not only detected all the positive wells identified in smears, but also detected wells not identified otherwise, thereby confirming its sensitivity. Conclusion The PCR-based method reported here is a simple, sensitive and efficient method for detecting parasite clones in culture. This method requires very little manual labor and can be completely automated for high throughput studies. The method is sensitive enough to detect parasites a week before they can be seen in Giemsa smears and is highly effective in identifying slow growing parasite clones.
Collapse
Affiliation(s)
- Steven P Maher
- Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida, USA.
| | | | | | | | | |
Collapse
|
28
|
Balu B, Blair PL, Adams JH. Identification of the transcription initiation site reveals a novel transcript structure for Plasmodium falciparum maebl. Exp Parasitol 2008; 121:110-4. [PMID: 18950624 DOI: 10.1016/j.exppara.2008.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 08/12/2008] [Accepted: 10/01/2008] [Indexed: 10/21/2022]
Abstract
Strict regulation of gene expression is critical for the development of the malaria parasite within multiple host cell types. However, much remains unexplored regarding gene regulation in Plasmodium falciparum with only a few components of the gene regulation machinery identified thus far. Better characterization of transcript structures with precise mapping of transcript ends will greatly aid in the search of conserved regulatory sequences in the genome. Transcript analysis of maebl, a member of the ebl gene family, in P. falciparum intra-erythrocytic stages has revealed a unique transcript structure for maebl. The 5'-untranslated region of maebl transcript is exceptionally long (>2 kb) with a small multi-exon open reading frame, annotated as a putative mitochondrial ATP synthase (PF11_0485) in the Plasmodium database. Northern blot hybridizations and RT-PCR analysis confirmed a bicistronic message for maebl along with PF11_0485. We further identified the minimal maebl promoter to be upstream of PF11_0485 by using transient chloramphenicol acetyl transferase (CAT) reporter assays. The occurrence of a bicistronic mRNA in Plasmodium is both novel and unusual for a lower eukaryote and adds on to the complexity of gene regulation in malaria parasites.
Collapse
Affiliation(s)
- Bharath Balu
- Global Health and Infectious Disease Research, Department of Global Health, College of Public Health, University of South Florida, 3720 Spectrum Boulevard, Suite 304, Tampa, FL 33612, USA
| | | | | |
Collapse
|
29
|
Bouloc N, Large JM, Smiljanic E, Whalley D, Ansell KH, Edlin CD, Bryans JS. Synthesis and in vitro evaluation of imidazopyridazines as novel inhibitors of the malarial kinase PfPK7. Bioorg Med Chem Lett 2008; 18:5294-8. [DOI: 10.1016/j.bmcl.2008.08.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 08/08/2008] [Accepted: 08/14/2008] [Indexed: 11/30/2022]
|
30
|
Computational analysis of constraints on noncoding regions, coding regions and gene expression in relation to Plasmodium phenotypic diversity. PLoS One 2008; 3:e3122. [PMID: 18769675 PMCID: PMC2518851 DOI: 10.1371/journal.pone.0003122] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 08/02/2008] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Malaria-causing Plasmodium species exhibit marked differences including host choice and preference for invading particular cell types. The genetic bases of phenotypic differences between parasites can be understood, in part, by investigating constraints on gene expression and genic sequences, both coding and regulatory. METHODOLOGY/PRINCIPAL FINDINGS We investigated the evolutionary constraints on sequence and expression of parasitic genes by applying comparative genomics approaches to 6 Plasmodium genomes and 2 genome-wide expression studies. We found that the coding regions of Plasmodium transcription factor and sexual development genes are relatively less constrained, as are those of genes encoding CCCH zinc fingers and invasion proteins, which all play important roles in these parasites. Transcription factors and genes with stage-restricted expression have conserved upstream regions and so do several gene classes critical to the parasite's lifestyle, namely, ion transport, invasion, chromatin assembly and CCCH zinc fingers. Additionally, a cross-species comparison of expression patterns revealed that Plasmodium-specific genes exhibit significant expression divergence. CONCLUSIONS/SIGNIFICANCE Overall, constraints on Plasmodium's protein coding regions confirm observations from other eukaryotes in that transcription factors are under relatively lower constraint. Proteins relevant to the parasite's unique lifestyle also have lower constraint on their coding regions. Greater conservation between Plasmodium species in terms of promoter motifs suggests tight regulatory control of lifestyle genes. However, an interspecies divergence in expression patterns of these genes suggests that either expression is controlled via genomic or epigenomic features not encoded in the proximal promoter sequence, or alternatively, the combinatorial interactions between motifs confer species-specific expression patterns.
Collapse
|
31
|
Breton V, Jacq N, Kasam V, Hofmann-Apitius M. Grid-Added Value to Address Malaria. ACTA ACUST UNITED AC 2008; 12:173-81. [DOI: 10.1109/titb.2007.895930] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - N. Jacq
- Univ. Blaise Pascal, Aubiere
| | | | | |
Collapse
|
32
|
Potential and limits of in silico target discovery - Case study of the search for new antimalarial chemotherapeutic targets. INFECTION GENETICS AND EVOLUTION 2008; 9:359-67. [PMID: 18294927 DOI: 10.1016/j.meegid.2008.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 01/05/2008] [Indexed: 01/25/2023]
Abstract
In medical sciences, a target is a broad concept to qualify a biological entity and/or a biological phenomenon, on which one aims to act as part of a therapy. It follows that a target can be defined as a phenotype, a biological process, a subcellular organelle, a protein or a protein domain. It also follows that a target cannot be defined independently of the type of intervention one considers implementing. In this brief review, we describe how in silico organization of genomic and post-genomic information of all partners involved in malaria (human patient, Plasmodium parasite and Anopheles vector), complying with knowledge of the disease in etiologic terms, appears as an efficient source of information not only to help selecting but also discarding target candidates. Some limitations in our capacity to explore the stored biological information, due to the current quality of genomic annotation, level of database integration, or to the performances of existing analytic and mining tools, are discussed. In silico strategies to assess the feasibility of bringing a target to a therapeutic development pipeline, in terms of target "druggability", are introduced.
Collapse
|
33
|
Sherman IW. References. ADVANCES IN PARASITOLOGY 2008. [DOI: 10.1016/s0065-308x(08)00430-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Dubovsky F, Malkin E. Malaria vaccines. Vaccines (Basel) 2008. [DOI: 10.1016/b978-1-4160-3611-1.50056-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
35
|
Scholz M, Fraunholz M, Selbig J. Nonlinear Principal Component Analysis: Neural Network Models and Applications. LECTURE NOTES IN COMPUTATIONAL SCIENCE AND ENGINEE 2008. [DOI: 10.1007/978-3-540-73750-6_2] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
36
|
Disruption of the PfPK7 gene impairs schizogony and sporogony in the human malaria parasite Plasmodium falciparum. EUKARYOTIC CELL 2007; 7:279-85. [PMID: 18083830 DOI: 10.1128/ec.00245-07] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PfPK7 is an orphan protein kinase of Plasmodium falciparum with maximal homology to MEK3/6 and to fungal protein kinase A proteins in its C-terminal and N-terminal regions, respectively. We showed previously that recombinant PfPK7 is active on various substrates but is unable to phosphorylate the Plasmodium falciparum mitogen-activated protein kinase homologues, suggesting that it is not a MEK functional homologue. Using a reverse genetics approach to investigate the function of this enzyme in live parasites, we now show that PfPK7(-) parasite clones display phenotypes at two stages of their life cycle: first, a decrease in the rate of asexual growth in erythrocytes associated with a lower number of daughter merozoites generated per schizont, and second, a dramatic reduction in the ability to produce oocysts in the mosquito vector. A normal asexual growth rate and the ability to produce oocysts are restored if a functional copy of the PfPK7 gene is reintroduced into the PfPK7(-) parasites. Hence, PfPK7 is involved in a pathway that regulates parasite proliferation and development.
Collapse
|
37
|
Vinayak S, Sharma YD. Inhibition of Plasmodium falciparum ispH (lytB) gene expression by hammerhead ribozyme. Oligonucleotides 2007; 17:189-200. [PMID: 17638523 DOI: 10.1089/oli.2007.0075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The nonmevalonate pathway of isoprenoid biosynthesis in the apicoplast of the human malaria parasite Plasmodium falciparum is distinct from the mevalonate-dependent pathway of humans and thus a good drug target. We describe here the hammerhead ribozyme based cleavage of the ispH (lytB) gene transcript involved in the last step of this nonmevalonate pathway. Using RNA folding program, three hammerhead ribozymes named as RZ(876), RZ(1260), and RZ(1331) were predicted against ispH (lytB) mRNA. Messenger walk screening (RNaseH) assay confirmed the target accessibility for these ribozymes. All three ribozymes cleaved the target RNA in vitro but RZ(876) exhibited the highest catalytic potential (62.92%). Therefore, RZ(876) was chemically synthesized with appropriate chemical modifications to protect it from nuclease attack while using it for in vitro parasite growth inhibition assay. This ribozyme RZ(876) was able to inhibit 87.36% parasite growth at 30 microM concentration compared to the untreated culture. However, an absolute inhibition of 29.41% was achieved compared to the control ribozyme (RZ(ctrl)). Nonetheless, the growth inhibition effect was found to be sequence-specific as indicated by the decreased level of ispH (lytB) transcript after ribozyme treatment. In conclusion, we have identified the ispH (lytB) as a potential target whose transcript can be cleaved by a ribozyme RZ(876).
Collapse
Affiliation(s)
- Sumiti Vinayak
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi-110029, India
| | | |
Collapse
|
38
|
Casta LJ, Buguliskis JS, Matsumoto Y, Taraschi TF. Expression and biochemical characterization of the Plasmodium falciparum DNA repair enzyme, flap endonuclease-1 (PfFEN-1). Mol Biochem Parasitol 2007; 157:1-12. [PMID: 17928073 DOI: 10.1016/j.molbiopara.2007.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 08/24/2007] [Accepted: 08/27/2007] [Indexed: 11/29/2022]
Abstract
Flap endonuclease-1 (FEN-1) is a structure-specific endonuclease that is critical for the resolution of single-stranded DNA flap intermediates that form during long patch DNA base excision repair (BER). This investigation reports that Plasmodium species encode FEN-1 homologs. Protein sequence analysis revealed the N and I domains of Plasmodium falciparum (PfFEN-1) and Plasmodium yoelii (PyFEN-1) to be homologous to FEN-1 from other species. However, each possessed an extended C domain which had limited homology to apicomplexan FEN-1s and no homology to eukaryotic FEN-1s. A conserved proliferating cell nuclear antigen (PCNA)-binding site was identified at an internal location rather than the extreme C-terminal location typically seen in FEN-1 from other organisms. The endonuclease and exonuclease activities of PfFEN-1 and PyFEN-1 were investigated using recombinant protein produced in Escherichia coli. Pf and PyFEN-1 possessed DNA structure-specific flap endonuclease and 5'-->3' exonuclease activities, similar to FEN-1s from other species. Endonuclease activity was stimulated by Mg(2+) or Mn(2+) and inhibited by monovalent ions (>20.0 mM). A PfFEN-1 C-terminal truncation mutant lacking the terminal 250 amino acids (PfFEN-1DeltaC) had endonuclease activity that was approximately 130-fold greater (k(cat)=1.2x10(-1)) than full-length PfFEN-1 (k(cat)=9.1x10(-4)) or approximately 240-fold greater than PyFEN-1 (k(cat)=4.9x10(-4)) in vitro. PfFEN-1 generated a nicked DNA substrate that was ligated by recombinant Pf DNA Ligase I (PfLigI) using an in vitro DNA repair assay. Plasmodium FEN-1s have enzymatic activities similar to other species but contain extended C-termini and a more internally located PCNA-binding site.
Collapse
Affiliation(s)
- Louis J Casta
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107-6731, USA
| | | | | | | |
Collapse
|
39
|
Lu F, Jiang H, Ding J, Mu J, Valenzuela JG, Ribeiro JMC, Su XZ. cDNA sequences reveal considerable gene prediction inaccuracy in the Plasmodium falciparum genome. BMC Genomics 2007; 8:255. [PMID: 17662120 PMCID: PMC1978503 DOI: 10.1186/1471-2164-8-255] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Accepted: 07/27/2007] [Indexed: 11/17/2022] Open
Abstract
Background The completion of the Plasmodium falciparum genome represents a milestone in malaria research. The genome sequence allows for the development of genome-wide approaches such as microarray and proteomics that will greatly facilitate our understanding of the parasite biology and accelerate new drug and vaccine development. Designing and application of these genome-wide assays, however, requires accurate information on gene prediction and genome annotation. Unfortunately, the genes in the parasite genome databases were mostly identified using computer software that could make some erroneous predictions. Results We aimed to obtain cDNA sequences to examine the accuracy of gene prediction in silico. We constructed cDNA libraries from mixed blood stages of P. falciparum parasite using the SMART cDNA library construction technique and generated 17332 high-quality expressed sequence tags (EST), including 2198 from primer-walking experiments. Assembly of our sequence tags produced 2548 contigs and 2671 singletons versus 5220 contigs and 5910 singletons when our EST were assembled with EST in public databases. Comparison of all the assembled EST/contigs with predicted CDS and genomic sequences in the PlasmoDB database identified 356 genes with predicted coding sequences fully covered by EST, including 85 genes (23.6%) with introns incorrectly predicted. Careful automatic software and manual alignments found an additional 308 genes that have introns different from those predicted, with 152 new introns discovered and 182 introns with sizes or locations different from those predicted. Alternative spliced and antisense transcripts were also detected. Matching cDNA to predicted genes also revealed silent chromosomal regions, mostly at subtelomere regions. Conclusion Our data indicated that approximately 24% of the genes in the current databases were predicted incorrectly, although some of these inaccuracies could represent alternatively spliced transcripts, and that more genes than currently predicted have one or more additional introns. It is therefore necessary to annotate the parasite genome with experimental data, although obtaining complete cDNA sequences from this parasite will be a formidable task due to the high AT nature of the genome. This study provides valuable information for genome annotation that will be critical for functional analyses.
Collapse
Affiliation(s)
- Fangli Lu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, PRoC
| | - Hongying Jiang
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jinhui Ding
- Bioinformatics Unit, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Jianbing Mu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jesus G Valenzuela
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - José MC Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Xin-zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
40
|
Bethke L, Thomas S, Walker K, Lakhia R, Rangarajan R, Wirth D. The role of DNA mismatch repair in generating genetic diversity and drug resistance in malaria parasites. Mol Biochem Parasitol 2007; 155:18-25. [PMID: 17583362 PMCID: PMC3683857 DOI: 10.1016/j.molbiopara.2007.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Revised: 04/19/2007] [Accepted: 05/08/2007] [Indexed: 12/25/2022]
Abstract
Although the mechanisms by which malaria parasites develop resistance to drugs are unclear, current knowledge suggests a main mechanism of resistance is the alteration of target enzymes by point mutation. In other organisms, defects in DNA mismatch repair have been linked to increased mutation rates and drug resistance. We have identified an unusual complement of mismatch repair genes in the Plasmodium genome. An initial functional test of two of these genes (PfMSH2-1 and PfMSH2-2) using a dominant mutator assay showed an elevation in mutation frequency with the PfMSH2-2 homolog, indirectly demonstrating a role for this gene in mismatch repair. We successfully disrupted PbMSH2-2 in the Plasmodium berghei laboratory isolate NK65, and showed that this gene is not essential for parasite growth in either the asexual (rodent) or sexual (mosquito) stages of the lifecycle. Although we observed some differences in levels of drug resistance between wild type and mutant parasites, no uniform trend emerged and preliminary evidence does not support a strong link between PbMSH2-2 disruption and dramatically increased drug resistance. We found microsatellite polymorphism in the PbMSH2-2 disrupted parasites in less than 40 life cycles post-transfection, but not in PbMap2K disrupted controls or mosquito-passaged wild type parasites, which suggests a possible role for PbMSH2-2 in preventing microsatellite slippage, similar to MSH2 in other organisms. Our studies suggest that Plasmodium species may have evolved a unique variation on the highly conserved system of DNA repair compared to the mismatch repair systems in other eukaryotes.
Collapse
Affiliation(s)
- Lara Bethke
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, United States.
| | | | | | | | | | | |
Collapse
|
41
|
Clastre M, Goubard A, Prel A, Mincheva Z, Viaud-Massuart MC, Bout D, Rideau M, Velge-Roussel F, Laurent F. The methylerythritol phosphate pathway for isoprenoid biosynthesis in coccidia: presence and sensitivity to fosmidomycin. Exp Parasitol 2007; 116:375-84. [PMID: 17399705 DOI: 10.1016/j.exppara.2007.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Revised: 02/04/2007] [Accepted: 02/09/2007] [Indexed: 11/16/2022]
Abstract
The apicoplast is a recently discovered, plastid-like organelle present in most apicomplexa. The methylerythritol phosphate (MEP) pathway involved in isoprenoid biosynthesis is one of the metabolic pathways associated with the apicoplast, and is a new promising therapeutic target in Plasmodium falciparum. Here, we check the presence of isoprenoid genes in four coccidian parasites according to genome database searches. Cryptosporidium parvum and C. hominis, which have no plastid genome, lack the MEP pathway. In contrast, gene expression studies suggest that this metabolic pathway is present in several development stages of Eimeria tenella and in tachyzoites of Toxoplasma gondii. We studied the potential of fosmidomycin, an antimalarial drug blocking the MEP pathway, to inhibit E. tenella and T. gondii growth in vitro. The drug was poorly effective even at high concentrations. Thus, both fosmidomycin sensitivity and isoprenoid metabolism differs substantially between apicomplexan species.
Collapse
Affiliation(s)
- Marc Clastre
- EA2106 Biomolécules et Biotechnologies Végétales, UFR Sciences Pharmaceutiques, Université de Tours, 37200 Tours, France
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Guerra CA, Hay SI, Lucioparedes LS, Gikandi PW, Tatem AJ, Noor AM, Snow RW. Assembling a global database of malaria parasite prevalence for the Malaria Atlas Project. Malar J 2007; 6:17. [PMID: 17306022 PMCID: PMC1805762 DOI: 10.1186/1475-2875-6-17] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Accepted: 02/16/2007] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Open access to databases of information generated by the research community can synergize individual efforts and are epitomized by the genome mapping projects. Open source models for outputs of scientific research funded by tax-payers and charities are becoming the norm. This has yet to be extended to malaria epidemiology and control. METHODS The exhaustive searches and assembly process for a global database of malaria parasite prevalence as part of the Malaria Atlas Project (MAP) are described. The different data sources visited and how productive these were in terms of availability of parasite rate (PR) data are presented, followed by a description of the methods used to assemble a relational database and an associated geographic information system. The challenges facing spatial data assembly from varied sources are described in an effort to help inform similar future applications. RESULTS At the time of writing, the MAP database held 3,351 spatially independent PR estimates from community surveys conducted since 1985. These include 3,036 Plasmodium falciparum and 1,347 Plasmodium vivax estimates in 74 countries derived from 671 primary sources. More than half of these data represent malaria prevalence after the year 2000. CONCLUSION This database will help refine maps of the global spatial limits of malaria and be the foundation for the development of global malaria endemicity models as part of MAP. A widespread application of these maps is envisaged. The data compiled and the products generated by MAP are planned to be released in June 2009 to facilitate a more informed approach to global malaria control.
Collapse
Affiliation(s)
- Carlos A Guerra
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, Tinbergen Building, South Parks Road, Oxford, OX1 3PS, UK
- Malaria Public Health & Epidemiology Group, Centre for Geographic Medicine, KEMRI-Wellcome Trust-Collaborative Programme, Kenyatta National Hospital Grounds, P.O. Box 43640-00100 Nairobi, Kenya
| | - Simon I Hay
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, Tinbergen Building, South Parks Road, Oxford, OX1 3PS, UK
- Malaria Public Health & Epidemiology Group, Centre for Geographic Medicine, KEMRI-Wellcome Trust-Collaborative Programme, Kenyatta National Hospital Grounds, P.O. Box 43640-00100 Nairobi, Kenya
| | - Lorena S Lucioparedes
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, Tinbergen Building, South Parks Road, Oxford, OX1 3PS, UK
| | - Priscilla W Gikandi
- Malaria Public Health & Epidemiology Group, Centre for Geographic Medicine, KEMRI-Wellcome Trust-Collaborative Programme, Kenyatta National Hospital Grounds, P.O. Box 43640-00100 Nairobi, Kenya
| | - Andrew J Tatem
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, Tinbergen Building, South Parks Road, Oxford, OX1 3PS, UK
- Malaria Public Health & Epidemiology Group, Centre for Geographic Medicine, KEMRI-Wellcome Trust-Collaborative Programme, Kenyatta National Hospital Grounds, P.O. Box 43640-00100 Nairobi, Kenya
| | - Abdisalan M Noor
- Malaria Public Health & Epidemiology Group, Centre for Geographic Medicine, KEMRI-Wellcome Trust-Collaborative Programme, Kenyatta National Hospital Grounds, P.O. Box 43640-00100 Nairobi, Kenya
| | - Robert W Snow
- Malaria Public Health & Epidemiology Group, Centre for Geographic Medicine, KEMRI-Wellcome Trust-Collaborative Programme, Kenyatta National Hospital Grounds, P.O. Box 43640-00100 Nairobi, Kenya
- Centre for Tropical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| |
Collapse
|
43
|
Peters JM, Fowler EV, Krause DR, Cheng Q, Gatton ML. Differential changes in Plasmodium falciparum var transcription during adaptation to culture. J Infect Dis 2007; 195:748-55. [PMID: 17262719 PMCID: PMC1866257 DOI: 10.1086/511436] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2006] [Accepted: 10/02/2006] [Indexed: 11/03/2022] Open
Abstract
Plasmodium falciparum erythrocyte membrane protein 1, which is encoded by the var multigene family, is expressed on the surface of P. falciparum-infected erythrocytes and has been implicated in many of the complications associated with falciparum malaria. Transcriptional switching of var is commonly investigated using in vitro cultured parasites, because parasite material from patients is limited. We investigated the affect of short-term in vitro cultivation on var gene transcription in patient samples. A significant reduction in the overall abundance of var transcripts was observed during the first approximately 10 days of culture. The rate of down-regulation was not constant among all var genes; genes with an upsA, -D, and -E 5' flanking region had a significantly faster rate than genes with an upsB or -C flanking region. These results have significant implications for the investigation of associations between var transcription and clinical manifestations using parasites that have been enriched by in vitro culture.
Collapse
Affiliation(s)
- Jennifer M Peters
- Malaria Drug Resistance and Chemotherapy Laboratory, Queensland Institute of Medical Research, Herston, Australia
| | | | | | | | | |
Collapse
|
44
|
Wengelnik K, Vial HJ. Characterisation of the phosphatidylinositol synthase gene of Plasmodium species. Res Microbiol 2006; 158:51-9. [PMID: 17223316 DOI: 10.1016/j.resmic.2006.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 11/14/2006] [Accepted: 11/15/2006] [Indexed: 12/21/2022]
Abstract
Phosphatidylinositol (PI) is a versatile lipid that not only serves as a structural component of cellular membranes, but also plays important roles in membrane anchorage of proteins and in signal transduction through distinct phosphorylated derivatives of the inositol head group. PI is synthesised by PI synthase from CDP-diacylglycerol and myo-inositol. The enzymatic activity in Plasmodium falciparum and P. knowlesi has previously been characterised at the biochemical level. Here we characterise the PI synthase gene of P. falciparum and P. knowlesi. The cDNA sequence identified a highly spliced gene consisting of nine exons and encoding a protein of 209 and 207 amino acids, respectively. High sequence conservation enabled the prediction of the PI synthase genes of P. berghei, P. chabaudi and P. vivax. All Plasmodium PI synthase proteins appear to be highly hydrophobic, although no consensus for the number and location of distinct transmembrane domains could be detected. The P. falciparum PI synthase (PfPIS) gene successfully complemented a Saccharomyces cerevisiae PIS1 deletion mutant, demonstrating its enzymatic function. Complementation efficiency was dramatically improved when hybrid constructs between N-terminal S. cerevisiae and C-terminal P. falciparum sequences were used. Determination of in vitro PIS activities of complemented yeast strains confirmed the enzymatic function of the Plasmodium protein.
Collapse
Affiliation(s)
- Kai Wengelnik
- UMR5539, CNRS-Université Montpellier II, Place Eugène Bataillon, cc 107, 34095 Montpellier Cedex 05, France.
| | | |
Collapse
|
45
|
Mu J, Awadalla P, Duan J, McGee KM, Keebler J, Seydel K, McVean GAT, Su XZ. Genome-wide variation and identification of vaccine targets in the Plasmodium falciparum genome. Nat Genet 2006; 39:126-30. [PMID: 17159981 DOI: 10.1038/ng1924] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Accepted: 11/02/2006] [Indexed: 11/09/2022]
Abstract
One goal in sequencing the Plasmodium falciparum genome, the agent of the most lethal form of malaria, is to discover vaccine and drug targets. However, identifying those targets in a genome in which approximately 60% of genes have unknown functions is an enormous challenge. Because the majority of known malaria antigens and drug-resistant genes are highly polymorphic and under various selective pressures, genome-wide analysis for signatures of selection may lead to discovery of new vaccine and drug candidates. Here we surveyed 3,539 P. falciparum genes ( approximately 65% of the predicted genes) for polymorphisms and identified various highly polymorphic loci and genes, some of which encode new antigens that we confirmed using human immune sera. Our collections of genome-wide SNPs ( approximately 65% nonsynonymous) and polymorphic microsatellites and indels provide a high-resolution map (one marker per approximately 4 kb) for mapping parasite traits and studying parasite populations. In addition, we report new antigens, providing urgently needed vaccine candidates for disease control.
Collapse
Affiliation(s)
- Jianbing Mu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Kwiek JJ, Alker AP, Wenink EC, Chaponda M, Kalilani LV, Meshnick SR. Estimating true antimalarial efficacy by heteroduplex tracking assay in patients with complex Plasmodium falciparum infections. Antimicrob Agents Chemother 2006; 51:521-7. [PMID: 17116685 PMCID: PMC1797746 DOI: 10.1128/aac.00902-06] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heteroduplex tracking assays (HTAs) of Plasmodium falciparum merozoite surface protein 1 block-2 were used to assess complexity of infection and treatment efficacy in a trial of three antimalarial treatments in 141 Malawian pregnant women. An elevated complexity of infection (COI) was associated with anemia, parasite burden, and human immunodeficiency virus infection but was not associated with age or gravidity. Comparisons of HTA patterns before and after treatment allowed the classification of 20 of 30 (66%) recurrent episodes as either definite treatment failures or reinfections. An elevated COI was strongly associated with treatment failure (P=0.003). An algorithm was developed to assign a probability of failure for the 10 indeterminate participants, some of whose infections shared a single variant of high prevalence (>10%). By summing these probabilities, treatment efficacy was estimated.
Collapse
Affiliation(s)
- Jesse J Kwiek
- University of North Carolina at Chapel Hill School of Public Health, Department of Epidemiology, CB# 7435, Chapel Hill, NC 27599-7435, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Integration and mining of malaria molecular, functional and pharmacological data: how far are we from a chemogenomic knowledge space? Malar J 2006; 5:110. [PMID: 17112376 PMCID: PMC1665468 DOI: 10.1186/1475-2875-5-110] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Accepted: 11/17/2006] [Indexed: 11/21/2022] Open
Abstract
The organization and mining of malaria genomic and post-genomic data is important to significantly increase the knowledge of the biology of its causative agents, and is motivated, on a longer term, by the necessity to predict and characterize new biological targets and new drugs. Biological targets are sought in a biological space designed from the genomic data from Plasmodium falciparum, but using also the millions of genomic data from other species. Drug candidates are sought in a chemical space containing the millions of small molecules stored in public and private chemolibraries. Data management should, therefore, be as reliable and versatile as possible. In this context, five aspects of the organization and mining of malaria genomic and post-genomic data were examined: 1) the comparison of protein sequences including compositionally atypical malaria sequences, 2) the high throughput reconstruction of molecular phylogenies, 3) the representation of biological processes, particularly metabolic pathways, 4) the versatile methods to integrate genomic data, biological representations and functional profiling obtained from X-omic experiments after drug treatments and 5) the determination and prediction of protein structures and their molecular docking with drug candidate structures. Recent progress towards a grid-enabled chemogenomic knowledge space is discussed.
Collapse
|
48
|
Bethke LL, Zilversmit M, Nielsen K, Daily J, Volkman SK, Ndiaye D, Lozovsky ER, Hartl DL, Wirth DF. Duplication, gene conversion, and genetic diversity in the species-specific acyl-CoA synthetase gene family of Plasmodium falciparum. Mol Biochem Parasitol 2006; 150:10-24. [PMID: 16860410 DOI: 10.1016/j.molbiopara.2006.06.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 06/05/2006] [Accepted: 06/07/2006] [Indexed: 10/24/2022]
Abstract
While genes encoding antigens and other highly polymorphic proteins are commonly found in subtelomeres, it is unusual to find a small family of housekeeping genes in these regions. We found that in the species Plasmodium falciparum only, a non-subtelomeric acyl-CoA synthetase (ACS) gene has expanded into a family of duplicated genes mainly located in the subtelomeres of the genome. We identified the putative parent of the duplicated family by analysis of synteny and phylogeny relative to other Plasmodium ACS genes. All ten ACS paralogs are transcribed in erythrocytic stages of laboratory and field isolates. We identified and confirmed a recent double gene conversion event involving ACS genes on three different chromosomes of isolate 3D7, resulting in the creation of a new hybrid gene. Southern hybridization analysis of geographically diverse P. falciparum isolates provides evidence for the strikingly global conservation of the ACS gene family, but also for some chromosomal events, including deletion and recombination, involving the duplicated paralogs. We found a dramatically higher rate of non-synonymous substitutions per non-synonymous site than synonymous substitutions per synonymous site in the closely related ACS paralogs we sequenced, suggesting that these genes are under a form of selection that favors change in the state of the protein. We also found that the gene encoding acyl-CoA binding protein has expanded and diversified in P. falciparum. We have described a new class of subtelomeric gene family with a unique capacity for diversity in P. falciparum.
Collapse
Affiliation(s)
- Lara L Bethke
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Stoeckert CJ, Fischer S, Kissinger JC, Heiges M, Aurrecoechea C, Gajria B, Roos DS. PlasmoDB v5: new looks, new genomes. Trends Parasitol 2006; 22:543-6. [PMID: 17029963 DOI: 10.1016/j.pt.2006.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 08/30/2006] [Accepted: 09/26/2006] [Indexed: 10/24/2022]
Abstract
Version 5.1 of PlasmoDB, a resource for malaria parasite genomic and functional genomics datasets, was released in August 2006. This new release includes additional Plasmodium genomes and a newly designed website. The new site reflects the status of PlasmoDB as a member of a linked family of Apicomplexan databases.
Collapse
Affiliation(s)
- Christian J Stoeckert
- Department of Genetics, 1415 Blockley Hall, Center for Bioinformatics, 423 Guardian Drive, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Plasmodium falciparum is the causative agent for the most lethal form of human malaria, killing millions annually. Genetic analyses of P. falciparum have been relatively limited due to the lack of robust techniques to manipulate this parasite. Development of transfection technologies and whole genome analyses have helped in understanding the complex biology of this parasite. Even with this wealth of information functional genomics approaches are still very limited in P. falciparum due to the cumbersome and inefficient methods of genetic manipulation. This review focuses on a recently developed, highly efficient method for transposon-based mutagenesis and transgene expression in P. falciparum that will allow functional genomics studies to be performed proficiently on this deadly malaria parasite. By using a piggyBac-based transposition system, multiple random integrations have been obtained into the genome of the parasite. This technique could hence be employed to set up several biological screens in this lethal protozoan parasite that may lead to identification of novel drug targets and vaccine candidates.
Collapse
Affiliation(s)
- Bharath Balu
- Center for Global Health and Infectious Diseases, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | | |
Collapse
|