1
|
Sharma M, Krishnan D, Singh A, Negi P, Rani K, Revikumar A, Munde M, Bansal A. Plasmodium falciparum raf kinase inhibitor is a lipid binding protein that interacts with and regulates the activity of PfCDPK1, an essential plant-like kinase required for red blood cell invasion. Biochem Biophys Res Commun 2025; 749:151350. [PMID: 39842334 DOI: 10.1016/j.bbrc.2025.151350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/31/2024] [Accepted: 01/15/2025] [Indexed: 01/24/2025]
Abstract
Raf Kinase Inhibitor Protein (RKIP) is an important regulator of the MAPK signaling pathway in multicellular eukaryotes. Plasmodium falciparum RKIP (PfRKIP) is a putative phosphatidylethanolamine binding protein (PEBP) that shares limited similarity with Homo sapiens RKIP (HsRKIP). Interestingly, critical components of the MAPK pathway are not expressed in malaria parasites and the physiological function of PfRKIP remains unknown. PfRKIP is expressed throughout the asexual schizogony with maximum expression in late schizonts. Interestingly, PfRKIP and HsRKIP show pH-dependent differential interaction profiles with various lipids. At physiological pH, PfRKIP shows interaction with phosphatidic acid and lipids containing phosphorylated phosphatidylinositol group; however, HsRKIP shows no interaction under the same conditions. Mutation of conserved residues in the PEBP domain of PfRKIP decreases its interaction with PtdIns(3)P. Additionally, in silico docking and mutagenesis studies identified a unique IKK motif within the PEBP domain of PfRKIP that is important for its interaction with the lipids. Using ELISA, we demonstrate the interaction of PfRKIP with PfCDPK1. Importantly, we establish the interaction of PfRKIP and PfCDPK1 within the parasites using immunofluorescence assay and proximity biotinylation technique. Furthermore, our results suggest that PfRKIP regulates the kinase activity of PfCDPK1. In the presence of its substrate, PfCDPK1 hyper-phosphorylates PfRKIP which leads to its dissociation from PfCDPK1. Dissociation of PfRKIP allows PfCDPK1 to trans-phosphorylate its substrates. The molecular mechanism of interaction between PfRKIP and PfCDPK1 may be explored further to identify novel anti-malarial compounds.
Collapse
Affiliation(s)
- Manish Sharma
- Molecular Parasitology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Deepak Krishnan
- Molecular Parasitology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ayushi Singh
- Molecular Parasitology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pooja Negi
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Komal Rani
- Molecular Parasitology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Amjesh Revikumar
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - Manoj Munde
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Abhisheka Bansal
- Molecular Parasitology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
2
|
Cheng L, Meliala I, Kong Y, Chen J, Proud CG, Björklund M. PEBP1 amplifies mitochondrial dysfunction-induced integrated stress response. eLife 2025; 13:RP102852. [PMID: 39878441 PMCID: PMC11778924 DOI: 10.7554/elife.102852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Mitochondrial dysfunction is involved in numerous diseases and the aging process. The integrated stress response (ISR) serves as a critical adaptation mechanism to a variety of stresses, including those originating from mitochondria. By utilizing mass spectrometry-based cellular thermal shift assay (MS-CETSA), we uncovered that phosphatidylethanolamine-binding protein 1 (PEBP1), also known as Raf kinase inhibitory protein (RKIP), is thermally stabilized by stresses which induce mitochondrial ISR. Depletion of PEBP1 impaired mitochondrial ISR activation by reducing eukaryotic translation initiation factor 2α (eIF2α) phosphorylation and subsequent ISR gene expression, which was independent of PEBP1's role in inhibiting the RAF/MEK/ERK pathway. Consistently, overexpression of PEBP1 potentiated ISR activation by heme-regulated inhibitor (HRI) kinase, the principal eIF2α kinase in the mitochondrial ISR pathway. Real-time interaction analysis using luminescence complementation in live cells revealed an interaction between PEBP1 and eIF2α, which was disrupted by eIF2α S51 phosphorylation. These findings suggest a role for PEBP1 in amplifying mitochondrial stress signals, thereby facilitating an effective cellular response to mitochondrial dysfunction. Therefore, PEBP1 may be a potential therapeutic target for diseases associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Ling Cheng
- Centre for Cellular Biology and Signalling, Zhejiang University-University of Edinburgh (ZJU-UoE) InstituteHainingChina
| | - Ian Meliala
- Centre for Cellular Biology and Signalling, Zhejiang University-University of Edinburgh (ZJU-UoE) InstituteHainingChina
| | - Yidi Kong
- Centre for Cellular Biology and Signalling, Zhejiang University-University of Edinburgh (ZJU-UoE) InstituteHainingChina
| | - Jingyuan Chen
- Centre for Cellular Biology and Signalling, Zhejiang University-University of Edinburgh (ZJU-UoE) InstituteHainingChina
| | - Christopher G Proud
- Lifelong Health, South Australian Health & Medical Research InstituteAdelaideAustralia
| | - Mikael Björklund
- Centre for Cellular Biology and Signalling, Zhejiang University-University of Edinburgh (ZJU-UoE) InstituteHainingChina
- University of Edinburgh Medical School, Biomedical Sciences, College of Medicine & Veterinary Medicine, University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
3
|
Cho HS, Mazid MFA, Lee EY, Rayhan MA, Kim HS, Lee BI, You HJ. Two Cysteines in Raf Kinase Inhibitor Protein Make Differential Contributions to Structural Dynamics In Vitro. Molecules 2025; 30:384. [PMID: 39860250 PMCID: PMC11767649 DOI: 10.3390/molecules30020384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
As a scaffolding protein, Raf kinase binding protein (RKIP) is involved in a variety of cellular pathways, including the Raf-MEK-ERK-cascade. It acts as a negative regulator by binding to its partners, making it an attractive target in the development of therapeutic strategies for cancer. Despite its structural stability as a monomer, RKIP may form a dimer, resulting in the switching of binding partners. It is still unclear how RKIP switches between monomeric and dimeric forms. Here, we identified the role of cysteine 133 in RKIP structural dynamics using recombinant human RKIP (rhRKIP) proteins purified from Escherichia coli BL21(DE3) cells. Mutation of alanine or serine instead of cysteine in RKIP proteins did not affect the biochemical characteristics, while dynamic light scattering and liquid chromatography (LC) quadrupole time-of-flight (Q-TOF) mass spectrometry (MS) suggested distinct peaks in solution, which were identified via LC-MS/MS analyses, and further clarified the role of cysteine in RKIP dimerization. rhRKIP dimer formation was abrogated by a 32-aa peptide mimicking the region between two RKIP proteins for dimerization. In addition, the 32-aa peptide and its short derivatives were investigated for effects on cancer cell viability. Taken together, our findings suggest that it may be possible to regulate RKIP function by controlling its dynamics with reducing agents, which could aid the targeting of cancer cells.
Collapse
Affiliation(s)
- Hyun Sang Cho
- Cancer Microenvironment Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang-si 10408, Republic of Korea; (H.S.C.); (E.-Y.L.)
| | - Mohammad Faysal Al Mazid
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si 10408, Republic of Korea; (M.F.A.M.); (M.A.R.); (B.I.L.)
| | - Eun-Young Lee
- Cancer Microenvironment Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang-si 10408, Republic of Korea; (H.S.C.); (E.-Y.L.)
| | - Md Abu Rayhan
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si 10408, Republic of Korea; (M.F.A.M.); (M.A.R.); (B.I.L.)
| | - Hyoun Sook Kim
- Targeted Therapy Branch, Division of Precision Medicine, Research Institute, National Cancer Center, Goyang-si 10408, Republic of Korea;
| | - Byung Il Lee
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si 10408, Republic of Korea; (M.F.A.M.); (M.A.R.); (B.I.L.)
- Targeted Therapy Branch, Division of Precision Medicine, Research Institute, National Cancer Center, Goyang-si 10408, Republic of Korea;
| | - Hye Jin You
- Cancer Microenvironment Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang-si 10408, Republic of Korea; (H.S.C.); (E.-Y.L.)
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si 10408, Republic of Korea; (M.F.A.M.); (M.A.R.); (B.I.L.)
| |
Collapse
|
4
|
Matsuda A, Masuzawa R, Takahashi K, Takano K, Endo T. MEK inhibitors and DA-Raf, a dominant-negative antagonist of the Ras-ERK pathway, prevent the migration and invasion of KRAS-mutant cancer cells. Cytoskeleton (Hoboken) 2025; 82:32-44. [PMID: 38872577 DOI: 10.1002/cm.21881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 06/15/2024]
Abstract
The Ras-induced ERK pathway (Raf-MEK-ERK signaling cascade) regulates a variety of cellular responses including cell proliferation, survival, and migration. Activating mutations in RAS genes, particularly in the KRAS gene, constitutively activate the ERK pathway, resulting in tumorigenesis, cancer cell invasion, and metastasis. DA-Raf1 (DA-Raf) is a splicing isoform of A-Raf and contains the Ras-binding domain but lacks the kinase domain. Consequently, DA-Raf antagonizes the Ras-ERK pathway in a dominant-negative manner and can serve as a tumor suppressor that targets mutant Ras protein-induced tumorigenesis. We show here that MEK inhibitors and DA-Raf interfere with the in vitro collective cell migration and invasion of human KRAS-mutant carcinoma cell lines, the lung adenocarcinoma A549, colorectal carcinoma HCT116, and pancreatic carcinoma MIA PaCa-2 cells. DA-Raf expression was silenced in these cancer cell lines. All these cell lines had high collective migration abilities and invasion properties in Matrigel, compared with nontumor cells. Their migration and invasion abilities were impaired by suppressing the ERK pathway with the MEK inhibitors U0126 and trametinib, an approved anticancer drug. Expression of DA-Raf in MIA PaCa-2 cells reduced the ERK activity and hindered the migration and invasion abilities. Therefore, DA-Raf may function as an invasion suppressor protein in the KRAS-mutant cancer cells by blocking the Ras-ERK pathway when DA-Raf expression is induced in invasive cancer cells.
Collapse
Affiliation(s)
- Aoi Matsuda
- Department of Biology, Graduate School of Science, Chiba University, Chiba, Chiba, Japan
| | - Ryuichi Masuzawa
- Department of Biology, Graduate School of Science, Chiba University, Chiba, Chiba, Japan
| | - Kazuya Takahashi
- Department of Biology, Graduate School of Science, Chiba University, Chiba, Chiba, Japan
| | - Kazunori Takano
- Department of Biology, Graduate School of Science, Chiba University, Chiba, Chiba, Japan
| | - Takeshi Endo
- Department of Biology, Graduate School of Science, Chiba University, Chiba, Chiba, Japan
| |
Collapse
|
5
|
Zou Y, Huang CF, Sturrock GR, Kelleher NL, Fitzgerald MC. Top-Down Stability of Proteins from Rates of Oxidation (TD-SPROX) Approach for Measuring Proteoform-Specific Folding Stability. Anal Chem 2024; 96:19597-19604. [PMID: 39602376 PMCID: PMC11809260 DOI: 10.1021/acs.analchem.4c04469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The crucial roles of proteoforms in biological processes and disease mechanisms have been increasingly recognized. However, the rate at which new proteoforms are being discovered using top-down proteomics has far outpaced the rate at which the functional significance of different proteoforms can be determined. Because of the close connection between protein folding and protein function, protein folding stability measurements on proteoforms have the potential to identify functionally significant proteoforms of a given protein. While a number of mass spectrometry-based proteomics methods for making protein folding stability measurements on the proteomic scale have been reported over the past decade, none have been interfaced with top-down proteomics. Described here is a top-down (TD) stability of proteins from the rates of oxidation (SPROX) approach for making proteoform specific folding stability measurements. This approach is validated using a mixture of three model proteins with well-characterized protein folding behavior by conventional SPROX as well as other more conventional biophysical techniques. The method is also used to evaluate the relative folding stabilities of the <30 kDa protein fraction isolated from an MCF-7 cell lysate. The relative folding stabilities of 150 proteoforms from 83 proteins were successfully characterized in the cell lysate analysis using the TD-SPROX approach.
Collapse
Affiliation(s)
- You Zou
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Che-Fan Huang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Molecular Biosciences and Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - Grace R. Sturrock
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Neil L. Kelleher
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Molecular Biosciences and Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C. Fitzgerald
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
6
|
Liu D, Yang S, Yu S. Interactions Between Ferroptosis and Oxidative Stress in Ischemic Stroke. Antioxidants (Basel) 2024; 13:1329. [PMID: 39594471 PMCID: PMC11591163 DOI: 10.3390/antiox13111329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024] Open
Abstract
Ischemic stroke is a devastating condition that occurs due to the interruption of blood flow to the brain, resulting in a range of cellular and molecular changes. In recent years, there has been growing interest in the role of ferroptosis, a newly identified form of regulated cell death, in ischemic stroke. Ferroptosis is driven by the accumulation of lipid peroxides and is characterized by the loss of membrane integrity. Additionally, oxidative stress, which refers to an imbalance between prooxidants and antioxidants, is a hallmark of ischemic stroke and significantly contributes to the pathogenesis of the disease. In this review, we explore the interactions between ferroptosis and oxidative stress in ischemic stroke. We examine the underlying mechanisms through which oxidative stress induces ferroptosis and how ferroptosis, in turn, exacerbates oxidative stress. Furthermore, we discuss potential therapeutic strategies that target both ferroptosis and oxidative stress in the treatment of ischemic stroke. Overall, this review highlights the complex interplay between ferroptosis and oxidative stress in ischemic stroke and underscores the need for further research to identify novel therapeutic targets for this condition.
Collapse
Affiliation(s)
| | - Sha Yang
- College of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;
| | - Shuguang Yu
- College of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;
| |
Collapse
|
7
|
Jawed R, Bhatti H, Khan A. Genetic profile of ferroptosis in non-small cell lung carcinoma and pharmaceutical options for ferroptosis induction. Clin Transl Oncol 2024:10.1007/s12094-024-03754-4. [PMID: 39460894 DOI: 10.1007/s12094-024-03754-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024]
Abstract
Lung cancer (LC) is the leading cause of cancer-related deaths and the second most commonly diagnosed malignancy worldwide. Lung adenocarcinoma (LUAD) and lung squamous cell LC (LUSCC) are the most common subtypes of non-small cell LC (NSCLC). Early diagnosis of LC can be challenging due to a lack of biomarkers. The overall survival (OS) of patients with NSCLC is still poor despite the enormous efforts that have been made to develop novel treatments. Understanding fundamental molecular and genetic mechanisms is necessary to develop new therapeutic approaches for NSCLC. A recently identified type of programmed cell death known as ferroptosis is one potential approach. Ferroptosis causes oxidative damage and the death of cancerous cells by peroxidizing unsaturated phospholipids and accumulating reactive oxygen species (ROS) in an iron-dependent manner. Ferroptosis-related gene (FRG) signatures have recently been evaluated for their ability to predict patient OS and prognosis. These analyses show FRGs are involved in cancer progression, and may serve as promising biomarkers for tumor diagnosis and therapy. Moreover, we summarize the current pharmaceutical options of ferroptosis induction and their underlying molecular mechanism in LC. Therefore, this review aims to provide a comprehensive summary of FRG-based prognostic models, their associated metabolic and signaling pathways, and promising therapeutic options for ferroptosis induction in NSCLC.
Collapse
Affiliation(s)
- Rohil Jawed
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China.
| | - Huma Bhatti
- School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Adnan Khan
- Clinical and Molecular Labs, Karachi Institute of Radiotherapy and Nuclear Medicine (KIRAN), KDA Scheme 33 Near Safoora Chowk, Karachi, Pakistan
| |
Collapse
|
8
|
Bustamante A, Baritaki S, Zaravinos A, Bonavida B. Relationship of Signaling Pathways between RKIP Expression and the Inhibition of EMT-Inducing Transcription Factors SNAIL1/2, TWIST1/2 and ZEB1/2. Cancers (Basel) 2024; 16:3180. [PMID: 39335152 PMCID: PMC11430682 DOI: 10.3390/cancers16183180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Untreated primary carcinomas often lead to progression, invasion and metastasis, a process that involves the epithelial-to-mesenchymal transition (EMT). Several transcription factors (TFs) mediate the development of EMT, including SNAIL1/SNAIL2, TWIST1/TWIST2 and ZEB1/ZEB2, which are overexpressed in various carcinomas along with the under expression of the metastasis suppressor Raf Kinase Inhibitor Protein (RKIP). Overexpression of RKIP inhibits EMT and the above associated TFs. We, therefore, hypothesized that there are inhibitory cross-talk signaling pathways between RKIP and these TFs. Accordingly, we analyzed the various properties and biomarkers associated with the epithelial and mesenchymal tissues and the various molecular signaling pathways that trigger the EMT phenotype such as the TGF-β, the RTK and the Wnt pathways. We also presented the various functions and the transcriptional, post-transcriptional and epigenetic regulations for the expression of each of the EMT TFs. Likewise, we describe the transcriptional, post-transcriptional and epigenetic regulations of RKIP expression. Various signaling pathways mediated by RKIP, including the Raf/MEK/ERK pathway, inhibit the TFs associated with EMT and the stabilization of epithelial E-Cadherin expression. The inverse relationship between RKIP and the TF expressions and the cross-talks were further analyzed by bioinformatic analysis. High mRNA levels of RKIP correlated negatively with those of SNAIL1, SNAIL2, TWIST1, TWIST2, ZEB1, and ZEB2 in several but not all carcinomas. However, in these carcinomas, high levels of RKIP were associated with good prognosis, whereas high levels of the above transcription factors were associated with poor prognosis. Based on the inverse relationship between RKIP and EMT TFs, it is postulated that the expression level of RKIP in various carcinomas is clinically relevant as both a prognostic and diagnostic biomarker. In addition, targeting RKIP induction by agonists, gene therapy and immunotherapy will result not only in the inhibition of EMT and metastases in carcinomas, but also in the inhibition of tumor growth and reversal of resistance to various therapeutic strategies. However, such targeting strategies must be better investigated as a result of tumor heterogeneities and inherent resistance and should be better adapted as personalized medicine.
Collapse
Affiliation(s)
- Andrew Bustamante
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Stavroula Baritaki
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Apostolos Zaravinos
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia 1516, Cyprus
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 1516, Cyprus
| | - Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
9
|
Wu Y, Ma H, Liu Z. Genetically predicted metabolites mediate the association between lipidome and malignant melanoma of skin. Front Oncol 2024; 14:1430533. [PMID: 39319051 PMCID: PMC11419955 DOI: 10.3389/fonc.2024.1430533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
Objective To investigate the causal relationship between lipidome and malignant melanoma of skin (MMOS), while identifying and quantifying the role of metabolites as potential mediators. Methods A two-sample Mendelian randomization (MR) analysis of lipid species (n=7174) and MMOS was performed using pooled data from genome-wide association studies (GWAS). In addition, we quantified the proportion of metabolite-mediated lipidome effects on MMOS by two-step MR. Results This study identified potential causal relationships between 11 lipids and MMOS, and 40 metabolites and MMOS, respectively. Phosphatidylethanolamine (18:0_18:2) levels mined from 179 lipids by MR Analysis increased the risk of MMOS (OR: 1.962; 95%CI:1.298,2.964; P=0.001). There is no strong evidence for a relationship between genetically predicted MMOS and phosphatidylethanolamine (18:0_18:2) levels (P=0.628). The proportion of gene predictions for phosphatidylethanolamine (18:0_18:2) levels mediated by 1-stearoyl-(glycosylphosphatidylinositol) GPI (18:0) levels was 12.40%. Conclusion This study identifies 1-stearoyl-GPI (18:0) levels as a potential mediator that may mediate the causal relationship between phosphatidylethanolamine (18:0_18:2) levels and MMOS, This provides direction for the investigation of MMOS, but further research of other possible potential mediators is still needed.
Collapse
Affiliation(s)
- Yuzhou Wu
- The First Clinical College of Chongqing Medical University, Chongqing, China
| | - Hang Ma
- Rheumatology and Immunology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhenyu Liu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
10
|
Mohammed KAK, Madeddu P, Avolio E. MEK inhibitors: a promising targeted therapy for cardiovascular disease. Front Cardiovasc Med 2024; 11:1404253. [PMID: 39011492 PMCID: PMC11247000 DOI: 10.3389/fcvm.2024.1404253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/13/2024] [Indexed: 07/17/2024] Open
Abstract
Cardiovascular disease (CVD) represents the leading cause of mortality and disability all over the world. Identifying new targeted therapeutic approaches has become a priority of biomedical research to improve patient outcomes and quality of life. The RAS-RAF-MEK (mitogen-activated protein kinase kinase)-ERK (extracellular signal-regulated kinase) pathway is gaining growing interest as a potential signaling cascade implicated in the pathogenesis of CVD. This pathway is pivotal in regulating cellular processes like proliferation, growth, migration, differentiation, and survival, which are vital in maintaining cardiovascular homeostasis. In addition, ERK signaling is involved in controlling angiogenesis, vascular tone, myocardial contractility, and oxidative stress. Dysregulation of this signaling cascade has been linked to cell dysfunction and vascular and cardiac pathological remodeling, which contribute to the onset and progression of CVD. Recent and ongoing research has provided insights into potential therapeutic interventions targeting the RAS-RAF-MEK-ERK pathway to improve cardiovascular pathologies. Preclinical studies have demonstrated the efficacy of targeted therapy with MEK inhibitors (MEKI) in attenuating ERK activation and mitigating CVD progression in animal models. In this article, we first describe how ERK signaling contributes to preserving cardiovascular health. We then summarize current knowledge of the roles played by ERK in the development and progression of cardiac and vascular disorders, including atherosclerosis, myocardial infarction, cardiac hypertrophy, heart failure, and aortic aneurysm. We finally report novel therapeutic strategies for these CVDs encompassing MEKI and discuss advantages, challenges, and future developments for MEKI therapeutics.
Collapse
Affiliation(s)
- Khaled A K Mohammed
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Department of Cardiothoracic Surgery, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Paolo Madeddu
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Elisa Avolio
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
11
|
Keeney MT, Hoffman EK, Weir J, Wagner WG, Rocha EM, Castro S, Farmer K, Fazzari M, Di Maio R, Konradi A, Hastings TG, Pintchovski SA, Shrader WD, Greenamyre JT. 15-Lipoxygenase-Mediated Lipid Peroxidation Regulates LRRK2 Kinase Activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598654. [PMID: 38915558 PMCID: PMC11195290 DOI: 10.1101/2024.06.12.598654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) that increase its kinase activity are strongly linked to genetic forms of Parkinson's disease (PD). However, the regulation of endogenous wild-type (WT) LRRK2 kinase activity remains poorly understood, despite its frequent elevation in idiopathic PD (iPD) patients. Various stressors such as mitochondrial dysfunction, lysosomal dyshomeostasis, or vesicle trafficking deficits can activate WT LRRK2 kinase, but the specific molecular mechanisms are not fully understood. We found that the production of 4-hydroxynonenal (4-HNE), a lipid hydroperoxidation end-product, is a common biochemical response to these diverse stimuli. 4-HNE forms post-translational adducts with Cys2024 and Cys2025 in the kinase activation loop of WT LRRK2, significantly increasing its kinase activity. Additionally, we discovered that the 4-HNE responsible for regulating LRRK2 is generated by the action of 15-lipoxygenase (15-LO), making 15-LO an upstream regulator of the pathogenic hyperactivation of LRRK2 kinase activity. Pharmacological inhibition or genetic ablation of 15-LO prevents 4-HNE post-translational modification of LRRK2 kinase and its subsequent pathogenic hyperactivation. Therefore, 15-LO inhibitors, or methods to lower 4-HNE levels, or the targeting of Cys2024/2025 could provide new therapeutic strategies to modulate LRRK2 kinase activity and treat PD.
Collapse
|
12
|
Greco S, Pinheiro J, Cardoso-Carneiro D, Giantomassi F, Pellegrino P, Scaglione G, Delli Carpini G, Ciavattini A, Zannoni GF, Goteri G, Martinho O, Ciarmela P. Raf kinase inhibitor protein expression in smooth muscle tumours of the uterus: a diagnostic marker for leiomyosarcoma? Reprod Biomed Online 2024; 48:103816. [PMID: 38608337 DOI: 10.1016/j.rbmo.2024.103816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 04/14/2024]
Abstract
RESEARCH QUESTION What is the expression pattern of Raf kinase inhibitory protein (RKIP) in different subtypes of leiomyoma (usual type, cellular, apoplectic or haemorrhagic leiomyoma, leiomyoma with bizarre nuclei and lipoleiomyoma) and leiomyosarcoma specimens, and what is its biological role in leiomyosarcoma cells? DESIGN Leiomyoma and leiomyosarcoma specimens underwent immunohistochemistry staining. Leiomyosarcoma SK-LMS-1 cell line was RKIP knocked down and RKIP overexpressed, and cell viability, wound healing migration and clonogenicity assays were carried out. RESULTS A higher immunohistochemical expression of RKIP was observed in bizarre leiomyomas, than in usual-type leiomyomas. Decreased expression was also found in cellular leiomyoma, with generally absent staining in leiomyosarcomas. Upon RKIP expression manipulation in SK-LMS-1 cell line, no major differences were observed in cell viability and migration capacity over time. RKIP knockout, however, resulted in a significant increase in the cell's ability to form colonies (P = 0.011). CONCLUSION RKIP distinct expression pattern among leiomyoma histotype and leiomyosarcoma, and its effect on leiomyosarcoma cells on colony formation, encourages further studies of RKIP in uterine smooth muscle disorders.
Collapse
Affiliation(s)
- Stefania Greco
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Joana Pinheiro
- Life and Health Sciences Research Institute (ICVS), Health Sciences School, University of Minho, Braga, Portugal.; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Diana Cardoso-Carneiro
- Life and Health Sciences Research Institute (ICVS), Health Sciences School, University of Minho, Braga, Portugal.; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Federica Giantomassi
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Pamela Pellegrino
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Giulia Scaglione
- Department of Woman and Child Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovanni Delli Carpini
- Department of Specialist and Odontostomatological Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Andrea Ciavattini
- Department of Specialist and Odontostomatological Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Gian Franco Zannoni
- Department of Woman and Child Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gaia Goteri
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Olga Martinho
- Life and Health Sciences Research Institute (ICVS), Health Sciences School, University of Minho, Braga, Portugal.; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Pasquapina Ciarmela
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy..
| |
Collapse
|
13
|
Ho M, Bonavida B. Cross-Talks between Raf Kinase Inhibitor Protein and Programmed Cell Death Ligand 1 Expressions in Cancer: Role in Immune Evasion and Therapeutic Implications. Cells 2024; 13:864. [PMID: 38786085 PMCID: PMC11119125 DOI: 10.3390/cells13100864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Innovations in cancer immunotherapy have resulted in the development of several novel immunotherapeutic strategies that can disrupt immunosuppression. One key advancement lies in immune checkpoint inhibitors (ICIs), which have shown significant clinical efficacy and increased survival rates in patients with various therapy-resistant cancers. This immune intervention consists of monoclonal antibodies directed against inhibitory receptors (e.g., PD-1) on cytotoxic CD8 T cells or against corresponding ligands (e.g., PD-L1/PD-L2) overexpressed on cancer cells and other cells in the tumor microenvironment (TME). However, not all cancer cells respond-there are still poor clinical responses, immune-related adverse effects, adaptive resistance, and vulnerability to ICIs in a subset of patients with cancer. This challenge showcases the heterogeneity of cancer, emphasizing the existence of additional immunoregulatory mechanisms in many patients. Therefore, it is essential to investigate PD-L1's interaction with other oncogenic genes and pathways to further advance targeted therapies and address resistance mechanisms. Accordingly, our aim was to investigate the mechanisms governing PD-L1 expression in tumor cells, given its correlation with immune evasion, to uncover novel mechanisms for decreasing PD-L1 expression and restoring anti-tumor immune responses. Numerous studies have demonstrated that the upregulation of Raf Kinase Inhibitor Protein (RKIP) in many cancers contributes to the suppression of key hyperactive pathways observed in malignant cells, alongside its broadening involvement in immune responses and the modulation of the TME. We, therefore, hypothesized that the role of PD-L1 in cancer immune surveillance may be inversely correlated with the low expression level of the tumor suppressor Raf Kinase Inhibitor Protein (RKIP) expression in cancer cells. This hypothesis was investigated and we found several signaling cross-talk pathways between the regulations of both RKIP and PD-L1 expressions. These pathways and regulatory factors include the MAPK and JAK/STAT pathways, GSK3β, cytokines IFN-γ and IL-1β, Sox2, and transcription factors YY1 and NFκB. The pathways that upregulated PD-L1 were inhibitory for RKIP expression and vice versa. Bioinformatic analyses in various human cancers demonstrated the inverse relationship between PD-L1 and RKIP expressions and their prognostic roles. Therefore, we suspect that the direct upregulation of RKIP and/or the use of targeted RKIP inducers in combination with ICIs could result in a more targeted anti-tumor immune response-addressing the therapeutic challenges related to PD-1/PD-L1 monotherapy alone.
Collapse
Affiliation(s)
| | - Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer, University of California, Los Angeles, CA 90095, USA;
| |
Collapse
|
14
|
Afshari-Behbahanizadeh S, Puglisi D, Esposito S, De Vita P. Allelic Variations in Vernalization ( Vrn) Genes in Triticum spp. Genes (Basel) 2024; 15:251. [PMID: 38397240 PMCID: PMC10887697 DOI: 10.3390/genes15020251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Rapid climate changes, with higher warming rates during winter and spring seasons, dramatically affect the vernalization requirements, one of the most critical processes for the induction of wheat reproductive growth, with severe consequences on flowering time, grain filling, and grain yield. Specifically, the Vrn genes play a major role in the transition from vegetative to reproductive growth in wheat. Recent advances in wheat genomics have significantly improved the understanding of the molecular mechanisms of Vrn genes (Vrn-1, Vrn-2, Vrn-3, and Vrn-4), unveiling a diverse array of natural allelic variations. In this review, we have examined the current knowledge of Vrn genes from a functional and structural point of view, considering the studies conducted on Vrn alleles at different ploidy levels (diploid, tetraploid, and hexaploid). The molecular characterization of Vrn-1 alleles has been a focal point, revealing a diverse array of allelic forms with implications for flowering time. We have highlighted the structural complexity of the different allelic forms and the problems linked to the different nomenclature of some Vrn alleles. Addressing these issues will be crucial for harmonizing research efforts and enhancing our understanding of Vrn gene function and evolution. The increasing availability of genome and transcriptome sequences, along with the improvements in bioinformatics and computational biology, offers a versatile range of possibilities for enriching genomic regions surrounding the target sites of Vrn genes, paving the way for innovative approaches to manipulate flowering time and improve wheat productivity.
Collapse
Affiliation(s)
- Sanaz Afshari-Behbahanizadeh
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA—Council for Agricultural Research and Economics, SS 673 Meters 25 200, 71122 Foggia, Italy; (S.A.-B.); (D.P.)
- Department of Agriculture, Food, Natural Science, Engineering, University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Damiano Puglisi
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA—Council for Agricultural Research and Economics, SS 673 Meters 25 200, 71122 Foggia, Italy; (S.A.-B.); (D.P.)
| | - Salvatore Esposito
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA—Council for Agricultural Research and Economics, SS 673 Meters 25 200, 71122 Foggia, Italy; (S.A.-B.); (D.P.)
- National Research Council of Italy, Institute of Biosciences and BioResources, Research Division Portici (CNR-IBBR), 80055 Portici, Italy
| | - Pasquale De Vita
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA—Council for Agricultural Research and Economics, SS 673 Meters 25 200, 71122 Foggia, Italy; (S.A.-B.); (D.P.)
| |
Collapse
|
15
|
Wang R, Zhang J, Ren H, Qi S, Xie L, Xie H, Shang Z, Liu C. Dysregulated palmitic acid metabolism promotes the formation of renal calcium-oxalate stones through ferroptosis induced by polyunsaturated fatty acids/phosphatidic acid. Cell Mol Life Sci 2024; 81:85. [PMID: 38345762 PMCID: PMC10861707 DOI: 10.1007/s00018-024-05145-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/04/2024] [Accepted: 01/25/2024] [Indexed: 02/15/2024]
Abstract
The pathogenesis of renal calcium-oxalate (CaOx) stones is complex and influenced by various metabolic factors. In parallel, palmitic acid (PA) has been identified as an upregulated lipid metabolite in the urine and serum of patients with renal CaOx stones via untargeted metabolomics. Thus, this study aimed to mechanistically assess whether PA is involved in stone formation. Lipidomics analysis of PA-treated renal tubular epithelial cells compared with the control samples revealed that α-linoleic acid and α-linolenic acid were desaturated and elongated, resulting in the formation of downstream polyunsaturated fatty acids (PUFAs). In correlation, the levels of fatty acid desaturase 1 and 2 (FADS1 and FADS2) and peroxisome proliferator-activated receptor α (PPARα) in these cells treated with PA were increased relative to the control levels, suggesting that PA-induced upregulation of PPARα, which in turn upregulated these two enzymes, forming the observed PUFAs. Lipid peroxidation occurred in these downstream PUFAs under oxidative stress and Fenton Reaction. Furthermore, transcriptomics analysis revealed significant changes in the expression levels of ferroptosis-related genes in PA-treated renal tubular epithelial cells, induced by PUFA peroxides. In addition, phosphatidyl ethanolamine binding protein 1 (PEBP1) formed a complex with 15-lipoxygenase (15-LO) to exacerbate PUFA peroxidation under protein kinase C ζ (PKC ζ) phosphorylation, and PKC ζ was activated by phosphatidic acid derived from PA. In conclusion, this study found that the formation of renal CaOx stones is promoted by ferroptosis of renal tubular epithelial cells resulting from PA-induced dysregulation of PUFA and phosphatidic acid metabolism, and PA can promote the renal adhesion and deposition of CaOx crystals by injuring renal tubular epithelial cells, consequently upregulating adhesion molecules. Accordingly, this study provides a new theoretical basis for understanding the correlation between fatty acid metabolism and the formation of renal CaOx stones, offering potential targets for clinical applications.
Collapse
Affiliation(s)
- Rui Wang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Jingdong Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Haotian Ren
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Shiyong Qi
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Linguo Xie
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Haijie Xie
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhiqun Shang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| | - Chunyu Liu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| |
Collapse
|
16
|
Sun W, Lv Z, Li W, Lu J, Xie Y, Wang P, Jiang R, Dong J, Guo H, Liu Z, Fei Y, Tan G, Wang M, Ren K, Xu J, Sun H, Jiang X, Shi D. XJB-5-131 protects chondrocytes from ferroptosis to alleviate osteoarthritis progression via restoring Pebp1 expression. J Orthop Translat 2024; 44:114-124. [PMID: 38304614 PMCID: PMC10830431 DOI: 10.1016/j.jot.2023.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/30/2023] [Accepted: 12/30/2023] [Indexed: 02/03/2024] Open
Abstract
Background Osteoarthritis (OA) is the most common age-related musculoskeletal disease. However, there is still a lack of therapy that can modify OA progression due to the complex pathogenic mechanisms. The aim of the study was to explore the role and mechanism of XJB-5-131 inhibiting chondrocytes ferroptosis to alleviate OA progression. Methods We treated tert-butyl hydroperoxide (TBHP)-induced ferroptosis of mouse primary chondrocytes with XJB-5-131 in vitro. The intracellular ferroptotic hallmarks, cartilage anabolic and catabolic markers, ferroptosis regulatory genes and proteins were detected. Then we established a mouse OA model via destabilization of the medial meniscus (DMM) surgery. The OA mice were treated with intra-articular injection of XJB-5-131 regularly (2 μM, 3 times per week). After 4 and 8 weeks, we performed micro-CT and histological examination to evaluate the protection role of XJB-5-131 in mouse OA subjects. RNA sequencing analysis was performed to unveil the key downstream gene of XJB-5-131 exerting the anti-ferroptotic effect in OA. Results XJB-5-131 significantly suppressed TBHP-induced increases of ferroptotic hallmarks (ROS, lipid peroxidation, and Fe2+ accumulation), ferroptotic drivers (Ptgs2, Pgd, Tfrc, Atf3, Cdo1), while restored the expression of ferroptotic suppressors (Gpx4, Fth1). XJB-5-131 evidently promoted the expression of cartilage anabolic and decreased the expression of cartilage catabolic markers. Moreover, intra-articular injection of XJB-5-131 significantly inhibited the expression of Cox2 and Mmp13, while promoted the expression of Col2a1, Gpx4 and Fth1 in DMM-induced mouse articular cartilage. Further, we identified Pebp1 as a potential target of XJB-5-131 by RNA sequencing analysis. The anti-ferroptosis and chondroprotective effects of XJB-5-131 were significantly diminished by Locostatin, a specific antagonist of Pebp1. Conclusion XJB-5-131 significantly protects chondrocytes from ferroptosis in TBHP-induced mouse primary chondrocytes and DMM surgery-induced OA mice model via restoring the expression of Pebp1. XJB-5-131 is a potential therapeutic drug in the management of OA progression.
Collapse
Affiliation(s)
- Wei Sun
- Department of Orthopedics, Jiangyin People's Hospital Affiliated to Nantong University, 163 Shoushan Road, Jiangyin, 214400, Jiangsu, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Department of Orthopedics, The Jiangyin Clinical College of Xuzhou Medical University, 163 Shoushan Road, Jiangyin, 214400, Jiangsu, PR China
| | - Zhongyang Lv
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, PR China
| | - Weitong Li
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, PR China
| | - Jun Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
| | - Ya Xie
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, PR China
| | - Peng Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
| | - Ruiyang Jiang
- Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Xuzhou Medical University, Nanjing, 210008, Jiangsu, PR China
| | - Jian Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
| | - Hu Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
| | - Zizheng Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
| | - Yuxiang Fei
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
| | - Guihua Tan
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
| | - Maochun Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
| | - Kewei Ren
- Department of Orthopedics, Jiangyin People's Hospital Affiliated to Nantong University, 163 Shoushan Road, Jiangyin, 214400, Jiangsu, PR China
| | - Jun Xu
- Department of Orthopedics, Jiangyin People's Hospital Affiliated to Nantong University, 163 Shoushan Road, Jiangyin, 214400, Jiangsu, PR China
| | - Huiqing Sun
- Department of Orthopedics, Jiangyin People's Hospital Affiliated to Nantong University, 163 Shoushan Road, Jiangyin, 214400, Jiangsu, PR China
| | - Xuefeng Jiang
- Department of Orthopedics, Jiangyin People's Hospital Affiliated to Nantong University, 163 Shoushan Road, Jiangyin, 214400, Jiangsu, PR China
- Department of Orthopedics, The Jiangyin Clinical College of Xuzhou Medical University, 163 Shoushan Road, Jiangyin, 214400, Jiangsu, PR China
| | - Dongquan Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, PR China
- Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Xuzhou Medical University, Nanjing, 210008, Jiangsu, PR China
| |
Collapse
|
17
|
Liu J, Miao P, Qin W, Hu W, Wei Z, Ding W, Zhang H, Wang Z. A novel single nucleotide mutation of TFL1 alters the plant architecture of Gossypium arboreum through changing the pre-mRNA splicing. PLANT CELL REPORTS 2023; 43:26. [PMID: 38155318 PMCID: PMC10754752 DOI: 10.1007/s00299-023-03086-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/10/2023] [Indexed: 12/30/2023]
Abstract
KEY MESSAGE A single nucleotide mutation from G to A at the 201st position changed the 5' splice site and deleted 31 amino acids in the first exon of GaTFL1. Growth habit is an important agronomic trait that plays a decisive role in the plant architecture and crop yield. Cotton (Gossypium) tends to indeterminate growth, which is unsuitable for the once-over mechanical harvest system. Here, we identified a determinate growth mutant (dt1) in Gossypium arboreum by EMS mutagenesis, in which the main axis was terminated with the shoot apical meristem (SAM) converted into flowers. The map-based cloning of the dt1 locus showed a single nucleotide mutation from G to A at the 201st positions in TERMINAL FLOWER 1 (GaTFL1), which changed the alternative RNA 5' splice site and resulted in 31 amino acids deletion and loss of function of GaTFL1. Comparative transcriptomic RNA-Seq analysis identified many transporters responsible for the phytohormones, auxin, sugar, and flavonoids, which may function downstream of GaTFL1 to involve the plant architecture regulation. These findings indicate a novel alternative splicing mechanism involved in the post-transcriptional modification and TFL1 may function upstream of the auxin and sugar pathways through mediating their transport to determine the SAM fate and coordinate the vegetative and reproductive development from the SAM of the plant, which provides clues for the TFL1 mechanism in plant development regulation and provide research strategies for plant architecture improvement.
Collapse
Affiliation(s)
- Ji Liu
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Pengfei Miao
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wenqiang Qin
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wei Hu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhenzhen Wei
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wusi Ding
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Huan Zhang
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhi Wang
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China.
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| |
Collapse
|
18
|
Ram A, Murphy D, DeCuzzi N, Patankar M, Hu J, Pargett M, Albeck JG. A guide to ERK dynamics, part 1: mechanisms and models. Biochem J 2023; 480:1887-1907. [PMID: 38038974 PMCID: PMC10754288 DOI: 10.1042/bcj20230276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023]
Abstract
Extracellular signal-regulated kinase (ERK) has long been studied as a key driver of both essential cellular processes and disease. A persistent question has been how this single pathway is able to direct multiple cell behaviors, including growth, proliferation, and death. Modern biosensor studies have revealed that the temporal pattern of ERK activity is highly variable and heterogeneous, and critically, that these dynamic differences modulate cell fate. This two-part review discusses the current understanding of dynamic activity in the ERK pathway, how it regulates cellular decisions, and how these cell fates lead to tissue regulation and pathology. In part 1, we cover the optogenetic and live-cell imaging technologies that first revealed the dynamic nature of ERK, as well as current challenges in biosensor data analysis. We also discuss advances in mathematical models for the mechanisms of ERK dynamics, including receptor-level regulation, negative feedback, cooperativity, and paracrine signaling. While hurdles still remain, it is clear that higher temporal and spatial resolution provide mechanistic insights into pathway circuitry. Exciting new algorithms and advanced computational tools enable quantitative measurements of single-cell ERK activation, which in turn inform better models of pathway behavior. However, the fact that current models still cannot fully recapitulate the diversity of ERK responses calls for a deeper understanding of network structure and signal transduction in general.
Collapse
Affiliation(s)
- Abhineet Ram
- Department of Molecular and Cellular Biology, University of California, Davis, U.S.A
| | - Devan Murphy
- Department of Molecular and Cellular Biology, University of California, Davis, U.S.A
| | - Nicholaus DeCuzzi
- Department of Molecular and Cellular Biology, University of California, Davis, U.S.A
| | - Madhura Patankar
- Department of Molecular and Cellular Biology, University of California, Davis, U.S.A
| | - Jason Hu
- Department of Molecular and Cellular Biology, University of California, Davis, U.S.A
| | - Michael Pargett
- Department of Molecular and Cellular Biology, University of California, Davis, U.S.A
| | - John G. Albeck
- Department of Molecular and Cellular Biology, University of California, Davis, U.S.A
| |
Collapse
|
19
|
Xie Z, Zhou Y, Lin M, Huang C. Binding of berberine to PEBP1 synergizes with sorafenib to induce the ferroptosis of hepatic stellate cells. Amino Acids 2023; 55:1867-1878. [PMID: 37814030 DOI: 10.1007/s00726-023-03345-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023]
Abstract
Hepatic stellate cell (HSC) activation is the key process in hepatic fibrosis (HF) development. Targeted death of HSCs could be effective in the prevention and treatment of HF. Phosphatidylethanolamine-binding protein (PEBP)1 can trigger ferroptosis by mediating peroxide production, but how it modulates HSC ferroptosis is not known. We screened natural small molecules that could bind with PEBP1, and investigated the mechanism by which it promotes HSC ferroptosis. The maximum binding energy of berberine with PEBP1 was - 8.51 kcal/mol, indicating that berberine could bind strongly with PEBP1. Berberine binding to PEBP1 could promote HSC ferroptosis via synergy of its actions with those of sorafenib, but it could not induce ferroptosis alone. Combined administration of berberine enhanced the ferroptotic effects of low-dose sorafenib upon HSCs. Herein, we revealed that PEBP1 might be a target that could enhance the effects of sorafenib, which could provide a new therapeutic approach for HF treatment.
Collapse
Affiliation(s)
- Zhongping Xie
- Physical Education Department, Xiamen University of Technology, Xiamen, China
| | - Yu Zhou
- Research Center of Innovation, Entrepreneurship, Minjiang University, Fuzhou, China
| | - Min Lin
- Research Center of Innovation, Entrepreneurship, Minjiang University, Fuzhou, China.
| | - Caihua Huang
- Physical Education Department, Xiamen University of Technology, Xiamen, China.
- Research and Communication Center of Exercise and Health, Xiamen University of Technology, Xiamen, China.
| |
Collapse
|
20
|
Huang Y, Zhen Y, Chen Y, Sui S, Zhang L. Unraveling the interplay between RAS/RAF/MEK/ERK signaling pathway and autophagy in cancer: From molecular mechanisms to targeted therapy. Biochem Pharmacol 2023; 217:115842. [PMID: 37802240 DOI: 10.1016/j.bcp.2023.115842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/08/2023]
Abstract
RAS/RAF/MEK/ERK signaling pathway is one of the most important pathways of Mitogen-activated protein kinases (MAPK), which widely participate in regulating cell proliferation, differentiation, apoptosis and signaling transduction. Autophagy is an essential mechanism that maintains cellular homeostasis by degrading aged and damaged organelles. Recently, some studies revealed RAS/RAF/MEK/ERK signaling pathway is closely related to autophagy regulation and has a dual effect in tumor cells. However, the specific mechanism by which RAS/RAF/MEK/ERK signaling pathway participates in autophagy regulation is not fully understood. This article provides a comprehensive review of the research progress with regard to the RAS/RAF/MEK/ERK signaling pathway and autophagy, as well as their interplay in cancer therapy. The impact of small molecule inhibitors that target the RAS/RAF/MEK/ERK signaling pathway on autophagy is discussed in this study. The advantages and limitations of the clinical combination of these small molecule inhibitors with autophagy inhibitors are also explored. The findings from this study may provide additional perspectives for future cancer treatment strategies.
Collapse
Affiliation(s)
- Yunli Huang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yongqi Zhen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanmei Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shaoguang Sui
- Emergency Department, The Second Hospital, Dalian Medical University, Dalian 116000, China.
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
21
|
Feng S, Tang D, Wang Y, Li X, Bao H, Tang C, Dong X, Li X, Yang Q, Yan Y, Yin Z, Shang T, Zheng K, Huang X, Wei Z, Wang K, Qi S. The mechanism of ferroptosis and its related diseases. MOLECULAR BIOMEDICINE 2023; 4:33. [PMID: 37840106 PMCID: PMC10577123 DOI: 10.1186/s43556-023-00142-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/23/2023] [Indexed: 10/17/2023] Open
Abstract
Ferroptosis, a regulated form of cellular death characterized by the iron-mediated accumulation of lipid peroxides, provides a novel avenue for delving into the intersection of cellular metabolism, oxidative stress, and disease pathology. We have witnessed a mounting fascination with ferroptosis, attributed to its pivotal roles across diverse physiological and pathological conditions including developmental processes, metabolic dynamics, oncogenic pathways, neurodegenerative cascades, and traumatic tissue injuries. By unraveling the intricate underpinnings of the molecular machinery, pivotal contributors, intricate signaling conduits, and regulatory networks governing ferroptosis, researchers aim to bridge the gap between the intricacies of this unique mode of cellular death and its multifaceted implications for health and disease. In light of the rapidly advancing landscape of ferroptosis research, we present a comprehensive review aiming at the extensive implications of ferroptosis in the origins and progress of human diseases. This review concludes with a careful analysis of potential treatment approaches carefully designed to either inhibit or promote ferroptosis. Additionally, we have succinctly summarized the potential therapeutic targets and compounds that hold promise in targeting ferroptosis within various diseases. This pivotal facet underscores the burgeoning possibilities for manipulating ferroptosis as a therapeutic strategy. In summary, this review enriched the insights of both investigators and practitioners, while fostering an elevated comprehension of ferroptosis and its latent translational utilities. By revealing the basic processes and investigating treatment possibilities, this review provides a crucial resource for scientists and medical practitioners, aiding in a deep understanding of ferroptosis and its effects in various disease situations.
Collapse
Affiliation(s)
- Shijian Feng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Dan Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yichang Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiang Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Hui Bao
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Chengbing Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiuju Dong
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xinna Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Qinxue Yang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yun Yan
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zhijie Yin
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Tiantian Shang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Kaixuan Zheng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiaofang Huang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zuheng Wei
- Chengdu Jinjiang Jiaxiang Foreign Languages High School, Chengdu, People's Republic of China
| | - Kunjie Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Shiqian Qi
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
22
|
Baritaki S, Zaravinos A. Cross-Talks between RKIP and YY1 through a Multilevel Bioinformatics Pan-Cancer Analysis. Cancers (Basel) 2023; 15:4932. [PMID: 37894300 PMCID: PMC10605344 DOI: 10.3390/cancers15204932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Recent studies suggest that PEBP1 (also known as RKIP) and YY1, despite having distinct molecular functions, may interact and mutually influence each other's activity. They exhibit reciprocal control over each other's expression through regulatory loops, prompting the hypothesis that their interplay could be pivotal in cancer advancement and resistance to drugs. To delve into this interplay's functional characteristics, we conducted a comprehensive analysis using bioinformatics tools across a range of cancers. Our results confirm the association between elevated YY1 mRNA levels and varying survival outcomes in diverse tumors. Furthermore, we observed differing degrees of inhibitory or activating effects of these two genes in apoptosis, cell cycle, DNA damage, and other cancer pathways, along with correlations between their mRNA expression and immune infiltration. Additionally, YY1/PEBP1 expression and methylation displayed connections with genomic alterations across different cancer types. Notably, we uncovered links between the two genes and different indicators of immunosuppression, such as immune checkpoint blockade response and T-cell dysfunction/exclusion levels, across different patient groups. Overall, our findings underscore the significant role of the interplay between YY1 and PEBP1 in cancer progression, influencing genomic changes, tumor immunity, or the tumor microenvironment. Additionally, these two gene products appear to impact the sensitivity of anticancer drugs, opening new avenues for cancer therapy.
Collapse
Affiliation(s)
- Stavroula Baritaki
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, 2404 Nicosia, Cyprus
- Cancer Genetics, Genomics and Systems Biology Group, Basic and Translational Cancer Research Center (BTCRC), 1516 Nicosia, Cyprus
| |
Collapse
|
23
|
Lin X, Pan M, Sun J, Wang M, Huang Z, Wang G, Wang R, Gong H, Huang R, Huang F, Sun W, Liu H, Kurihara H, Li Y, Duan W, He R. Membrane phospholipid peroxidation promotes loss of dopaminergic neurons in psychological stress-induced Parkinson's disease susceptibility. Aging Cell 2023; 22:e13970. [PMID: 37622525 PMCID: PMC10577563 DOI: 10.1111/acel.13970] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/15/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder associated with α-synuclein aggregation and dopaminergic neuron loss in the midbrain. There is evidence that psychological stress promotes PD progression by enhancing glucocorticoids-related oxidative damage, however, the mechanisms involved are unknown. The present study demonstrated that plasma membrane phospholipid peroxides, as determined by phospholipidomics, triggered ferroptosis in dopaminergic neurons, which in turn contributed to stress exacerbated PD-like motor disorder in mice overexpressing mutant human α-synuclein. Using hormonomics, we identified that stress stimulated corticosteroid release and promoted 15-lipoxygenase-1 (ALOX15)-mediated phospholipid peroxidation. ALOX15 was upregulated by α-synuclein overexpression and acted as a fundamental risk factor in the development of chronic stress-induced parkinsonism and neurodegeneration. Further, we demonstrated the mechanism by which corticosteroids activated the PKC pathway and induced phosphatidylethanolamine-binding protein-1 (PEBP1) to form a complex with ALOX15, thereby facilitating ALOX15 to locate on the plasma membrane phospholipids. A natural product isolated from herbs, leonurine, was screened with activities of inhibiting the ALOX15/PEBP1 interaction and thereby attenuating membrane phospholipid peroxidation. Collectively, our findings demonstrate that stress increases the susceptibility of PD by driving membrane lipid peroxidation of dopaminergic neurons and suggest the ALOX15/PEBP1 complex as a potential intervention target.
Collapse
Affiliation(s)
- Xiao‐Min Lin
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/The First Affiliated Hospital of Jinan UniversityJinan UniversityGuangzhouChina
| | - Ming‐Hai Pan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/The First Affiliated Hospital of Jinan UniversityJinan UniversityGuangzhouChina
| | - Jie Sun
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/The First Affiliated Hospital of Jinan UniversityJinan UniversityGuangzhouChina
| | - Meng Wang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/The First Affiliated Hospital of Jinan UniversityJinan UniversityGuangzhouChina
| | - Zi‐Han Huang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/The First Affiliated Hospital of Jinan UniversityJinan UniversityGuangzhouChina
| | - Guan Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center of BiotherapySichuan UniversityChengduChina
| | - Rong Wang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal UtilizationYunnan University of Chinese MedicineKunmingChina
| | - Hai‐Biao Gong
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/The First Affiliated Hospital of Jinan UniversityJinan UniversityGuangzhouChina
| | - Rui‐Ting Huang
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Feng Huang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal UtilizationYunnan University of Chinese MedicineKunmingChina
| | - Wan‐Yang Sun
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/The First Affiliated Hospital of Jinan UniversityJinan UniversityGuangzhouChina
| | - Hai‐Zhi Liu
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/The First Affiliated Hospital of Jinan UniversityJinan UniversityGuangzhouChina
| | - Hiroshi Kurihara
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/The First Affiliated Hospital of Jinan UniversityJinan UniversityGuangzhouChina
| | - Yi‐Fang Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/The First Affiliated Hospital of Jinan UniversityJinan UniversityGuangzhouChina
| | - Wen‐Jun Duan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/The First Affiliated Hospital of Jinan UniversityJinan UniversityGuangzhouChina
| | - Rong‐Rong He
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/The First Affiliated Hospital of Jinan UniversityJinan UniversityGuangzhouChina
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal UtilizationYunnan University of Chinese MedicineKunmingChina
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| |
Collapse
|
24
|
Wang X, Tan X, Zhang J, Wu J, Shi H. The emerging roles of MAPK-AMPK in ferroptosis regulatory network. Cell Commun Signal 2023; 21:200. [PMID: 37580745 PMCID: PMC10424420 DOI: 10.1186/s12964-023-01170-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/20/2023] [Indexed: 08/16/2023] Open
Abstract
Ferroptosis, a newform of programmed cell death, driven by peroxidative damages of polyunsaturated-fatty-acid-containing phospholipids in cellular membranes and is extremely dependent on iron ions, which is differs characteristics from traditional cell death has attracted greater attention. Based on the curiosity of this new form of regulated cell death, there has a tremendous progress in the field of mechanistic understanding of ferroptosis recent years. Ferroptosis is closely associated with the development of many diseases and involved in many diseases related signaling pathways. Not only a variety of oncoproteins and tumor suppressors can regulate ferroptosis, but multiple oncogenic signaling pathways can also have a regulatory effect on ferroptosis. Ferroptosis results in the accumulation of large amounts of lipid peroxides thus involving the onset of oxidative stress and energy stress responses. The MAPK pathway plays a critical role in oxidative stress and AMPK acts as a sensor of cellular energy and is involved in the regulation of the energy stress response. Moreover, activation of AMPK can induce the occurrence of autophagy-dependent ferroptosis and p53-activated ferroptosis. In recent years, there have been new advances in the study of molecular mechanisms related to the regulation of ferroptosis by both pathways. In this review, we will summarize the molecular mechanisms by which the MAPK-AMPK signaling pathway regulates ferroptosis. Meanwhile, we sorted out the mysterious relationship between MAPK and AMPK, described the crosstalk among ferroptosis and MAPK-AMPK signaling pathways, and summarized the relevant ferroptosis inducers targeting this regulatory network. This will provide a new field for future research on ferroptosis mechanisms and provide a new vision for cancer treatment strategies. Video Abstract.
Collapse
Affiliation(s)
- Xinyue Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Xiao Tan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China.
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| | - Jinping Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Jiaping Wu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Hongjuan Shi
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| |
Collapse
|
25
|
Simão S, Agostinho RR, Martínez-Ruiz A, Araújo IM. Regulation of Ras Signaling by S-Nitrosylation. Antioxidants (Basel) 2023; 12:1562. [PMID: 37627556 PMCID: PMC10451275 DOI: 10.3390/antiox12081562] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Ras are a family of small GTPases that function as signal transduction mediators and are involved in cell proliferation, migration, differentiation and survival. The significance of Ras is further evidenced by the fact that Ras genes are among the most mutated oncogenes in different types of cancers. After translation, Ras proteins can be targets of post-translational modifications (PTM), which can alter the intracellular dynamics of the protein. In this review, we will focus on how S-nitrosylation of Ras affects the way these proteins interact with membranes, its cellular localization, and its activity. S-Nitrosylation occurs when a nitrosyl moiety of nitric oxide (NO) is covalently attached to a thiol group of a cysteine residue in a target protein. In Ras, the conserved Cys118 is the most surface-exposed Cys and the preferable residue for NO action, leading to the initiation of transduction events. Ras transduces the mitogen-activated protein kinases (MAPK), the phosphoinositide-3 kinase (PI3K) and the RalGEF cellular pathways. S-Nitrosylation of elements of the RalGEF cascade remains to be identified. On the contrary, it is well established that several components of the MAPK and PI3K pathways, as well as different proteins associated with these cascades, can be modified by S-nitrosylation. Overall, this review presents a better understanding of Ras S-nitrosylation, increasing the knowledge on the dynamics of these proteins in the presence of NO and the underlying implications in cellular signaling.
Collapse
Affiliation(s)
- Sónia Simão
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, 8005-139 Faro, Portugal;
- Faculty of Medicine and Biomedical Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Rafaela Ribeiro Agostinho
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, 8005-139 Faro, Portugal;
- Faculty of Medicine and Biomedical Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Antonio Martínez-Ruiz
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa, 28009 Madrid, Spain;
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Inês Maria Araújo
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, 8005-139 Faro, Portugal;
- Faculty of Medicine and Biomedical Sciences, University of Algarve, 8005-139 Faro, Portugal
- Champalimaud Research Program, 1400-038 Lisbon, Portugal
| |
Collapse
|
26
|
Lai TH, Ahmed M, Hwang JS, Bahar ME, Pham TM, Yang J, Kim W, Maulidi RF, Lee DK, Kim DH, Kim HJ, Kim DR. Manipulating RKIP reverses the metastatic potential of breast cancer cells. Front Oncol 2023; 13:1189350. [PMID: 37469399 PMCID: PMC10352845 DOI: 10.3389/fonc.2023.1189350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 06/16/2023] [Indexed: 07/21/2023] Open
Abstract
Breast cancer is a common tumor type among women, with a high fatality due to metastasis. Metastasis suppressors encode proteins that inhibit the metastatic cascade independent of the primary tumor growth. Raf kinase inhibitory protein (RKIP) is one of the promising metastasis suppressor candidates. RKIP is reduced or lost in aggressive variants of different types of cancer. A few pre-clinical or clinical studies have capitalized on this protein as a possible therapeutic target. In this article, we employed two breast cancer cells to highlight the role of RKIP as an antimetastatic gene. One is the low metastatic MCF-7 with high RKIP expression, and the other is MDA-MB-231 highly metastatic cell with low RKIP expression. We used high-throughput data to explore how RKIP is lost in human tissues and its effect on cell mobility. Based on our previous work recapitulating the links between RKIP and SNAI, we experimentally manipulated RKIP in the cell models through its novel upstream NME1 and investigated the subsequent genotypic and phenotypic changes. We also demonstrated that RKIP explained the uneven migration abilities of the two cell types. Furthermore, we identified the regulatory circuit that might carry the effect of an existing drug, Epirubicin, on activating gene transcription. In conclusion, we propose and test a potential strategy to reverse the metastatic capability of breast cancer cells by chemically manipulating RKIP expression.
Collapse
Affiliation(s)
- Trang Huyen Lai
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Mahmoud Ahmed
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Jin Seok Hwang
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Md Entaz Bahar
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Trang Minh Pham
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Jinsung Yang
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Wanil Kim
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Rizi Firman Maulidi
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Dong-Kun Lee
- Department of Physiology and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Dong-Hee Kim
- Department of Orthopaedic Surgery and Institute of Health Sciences, Gyeongsang National University Hospital, and Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Hyun Joon Kim
- Department of Anatomy and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| |
Collapse
|
27
|
Jordaens S, Oeyen E, Willems H, Ameye F, De Wachter S, Pauwels P, Mertens I. Protein Biomarker Discovery Studies on Urinary sEV Fractions Separated with UF-SEC for the First Diagnosis and Detection of Recurrence in Bladder Cancer Patients. Biomolecules 2023; 13:932. [PMID: 37371512 DOI: 10.3390/biom13060932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Urinary extracellular vesicles (EVs) are an attractive source of bladder cancer biomarkers. Here, a protein biomarker discovery study was performed on the protein content of small urinary EVs (sEVs) to identify possible biomarkers for the primary diagnosis and recurrence of non-muscle-invasive bladder cancer (NMIBC). The sEVs were isolated by ultrafiltration (UF) in combination with size-exclusion chromatography (SEC). The first part of the study compared healthy individuals with NMIBC patients with a primary diagnosis. The second part compared tumor-free patients with patients with a recurrent NMIBC diagnosis. The separated sEVs were in the size range of 40 to 200 nm. Based on manually curated high quality mass spectrometry (MS) data, the statistical analysis revealed 69 proteins that were differentially expressed in these sEV fractions of patients with a first bladder cancer tumor vs. an age- and gender-matched healthy control group. When the discriminating power between healthy individuals and first diagnosis patients is taken into account, the biomarkers with the most potential are MASP2, C3, A2M, CHMP2A and NHE-RF1. Additionally, two proteins (HBB and HBA1) were differentially expressed between bladder cancer patients with a recurrent diagnosis vs. tumor-free samples of bladder cancer patients, but their biological relevance is very limited.
Collapse
Affiliation(s)
- Stephanie Jordaens
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium
| | - Eline Oeyen
- Health Unit, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
- Centre for Proteomics (CfP), University of Antwerp, 2020 Antwerp, Belgium
| | - Hanny Willems
- Health Unit, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Filip Ameye
- Department of Urology, AZ Maria Middelares, 9000 Ghent, Belgium
| | - Stefan De Wachter
- Department of Urology, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Patrick Pauwels
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium
- Laboratory of Pathological Anatomy, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Inge Mertens
- Health Unit, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
- Centre for Proteomics (CfP), University of Antwerp, 2020 Antwerp, Belgium
| |
Collapse
|
28
|
Sun Y, Jia X, Yang Z, Fu Q, Yang H, Xu X. Genome-Wide Identification of PEBP Gene Family in Solanum lycopersicum. Int J Mol Sci 2023; 24:ijms24119185. [PMID: 37298136 DOI: 10.3390/ijms24119185] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
The PEBP gene family is crucial for the growth and development of plants, the transition between vegetative and reproductive growth, the response to light, the production of florigen, and the reaction to several abiotic stressors. The PEBP gene family has been found in numerous species, but the SLPEBP gene family has not yet received a thorough bioinformatics investigation, and the members of this gene family are currently unknown. In this study, bioinformatics was used to identify 12 members of the SLPEBP gene family in tomato and localize them on the chromosomes. The physicochemical characteristics of the proteins encoded by members of the SLPEBP gene family were also examined, along with their intraspecific collinearity, gene structure, conserved motifs, and cis-acting elements. In parallel, a phylogenetic tree was built and the collinear relationships of the PEBP gene family among tomato, potato, pepper, and Arabidopsis were examined. The expression of 12 genes in different tissues and organs of tomato was analyzed using transcriptomic data. It was also hypothesized that SLPEBP3, SLPEBP5, SLPEBP6, SLPEBP8, SLPEBP9, and SLPEBP10 might be related to tomato flowering and that SLPEBP2, SLPEBP3, SLPEBP7, and SLPEBP11 might be related to ovary development based on the tissue-specific expression analysis of SLPEBP gene family members at five different stages during flower bud formation to fruit set. This article's goal is to offer suggestions and research directions for further study of tomato PEBP gene family members.
Collapse
Affiliation(s)
- Yimeng Sun
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Mucai Street 59, Harbin 150030, China
| | - Xinyi Jia
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Mucai Street 59, Harbin 150030, China
| | - Zhenru Yang
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Mucai Street 59, Harbin 150030, China
| | - Qingjun Fu
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Mucai Street 59, Harbin 150030, China
| | - Huanhuan Yang
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Mucai Street 59, Harbin 150030, China
| | - Xiangyang Xu
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Mucai Street 59, Harbin 150030, China
| |
Collapse
|
29
|
Ye LX, Wu YM, Zhang JX, Zhang JX, Zhou H, Zeng RF, Zheng WX, Qiu MQ, Zhou JJ, Xie ZZ, Hu CG, Zhang JZ. A bZIP transcription factor (CiFD) regulates drought- and low-temperature-induced flowering by alternative splicing in citrus. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:674-691. [PMID: 36250511 DOI: 10.1111/jipb.13390] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/13/2022] [Indexed: 05/20/2023]
Abstract
Drought and low temperature are two key environmental factors that induce adult citrus flowering. However, the underlying regulation mechanism is poorly understood. The bZIP transcription factor FD is a key component of the florigen activation complex (FAC) which is composed of FLOWERING LOCUS T (FT), FD, and 14-3-3 proteins. In this study, isolation and characterization of CiFD in citrus found that there was alternative splicing (AS) of CiFD, forming two different proteins (CiFDα and CiFDβ). Further investigation found that their expression patterns were similar in different tissues of citrus, but the subcellular localization and transcriptional activity were different. Overexpression of the CiFD DNA sequence (CiFD-DNA), CiFDα, or CiFDβ in tobacco and citrus showed early flowering, and CiFD-DNA transgenic plants were the earliest, followed by CiFDβ and CiFDα. Interestingly, CiFDα and CiFDβ were induced by low temperature and drought, respectively. Further analysis showed that CiFDα can form a FAC complex with CiFT, Ci14-3-3, and then bind to the citrus APETALA1 (CiAP1) promoter and promote its expression. However, CiFDβ can directly bind to the CiAP1 promoter independently of CiFT and Ci14-3-3. These results showed that CiFDβ can form a more direct and simplified pathway that is independent of the FAC complex to regulate drought-induced flowering through AS. In addition, a bHLH transcription factor (CibHLH96) binds to CiFD promoter and promotes the expression of CiFD under drought condition. Transgenic analysis found that CibHLH96 can promote flowering in transgenic tobacco. These results suggest that CiFD is involved in drought- and low-temperature-induced citrus flowering through different regulatory patterns.
Collapse
Affiliation(s)
- Li-Xia Ye
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Yan-Mei Wu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jin-Xia Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jin-Xin Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huan Zhou
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ren-Fang Zeng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei-Xuan Zheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mei-Qi Qiu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing-Jing Zhou
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zong-Zhou Xie
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chun-Gen Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jin-Zhi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
30
|
Argueta CE, Figy C, Bouali S, Guo A, Yeung KC, Fenteany G. RKIP localizes to the nucleus through a bipartite nuclear localization signal and interaction with importin α to regulate mitotic progression. J Biol Chem 2023; 299:103023. [PMID: 36805338 PMCID: PMC10060766 DOI: 10.1016/j.jbc.2023.103023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 01/13/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Raf kinase inhibitor protein (RKIP) is a multifunctional modulator of intracellular signal transduction. Although most of its functions have been considered cytosolic, we show here that the localization of RKIP is primarily nuclear in both growing and quiescent Madin-Darby canine kidney epithelial cells and in Cal-51 and BT-20 human breast cancer cells. We have identified a putative bipartite nuclear localization signal (NLS) in RKIP that maps to the surface of the protein surrounding a known regulatory region. Like classical NLS sequences, the putative NLS of RKIP is rich in arginine and lysine residues. Deletion of and point mutations in the putative NLS lead to decreased nuclear localization. Point mutation of all the basic residues in the putative NLS of RKIP particularly strongly reduces nuclear localization. We found consistent results in reexpression experiments with wildtype or mutant RKIP in RKIP-silenced cells. A fusion construct of the putative NLS of RKIP alone to a heterologous reporter protein leads to nuclear localization of the fusion protein, demonstrating that this sequence alone is sufficient for import into the nucleus. We found that RKIP interacts with the nuclear transport factor importin α in BT-20 and MDA-MB-231 human breast cancer cells, suggesting importin-mediated active nuclear translocation. Taken together, these findings suggest that a bipartite NLS in RKIP interacts with importin α for active transport of RKIP into the nucleus and that this process may be involved in the regulation of mitotic progression. Evaluating the biological function of nuclear localization of RKIP, we found that the presence of the putative NLS is important for the role of RKIP in mitotic checkpoint regulation in MCF-7 human breast cancer cells.
Collapse
Affiliation(s)
- Christian E Argueta
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - Christopher Figy
- Department of Cell and Cancer Biology, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - Sawssen Bouali
- Department of Medical Chemistry, University of Szeged, Szeged, Hungary
| | - Anna Guo
- Department of Cell and Cancer Biology, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - Kam C Yeung
- Department of Cell and Cancer Biology, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - Gabriel Fenteany
- Department of Medical Chemistry, University of Szeged, Szeged, Hungary; ELKH-SZTE Biomimetic Systems Research Group, Eötvös Loránd Research Network, Szeged, Hungary.
| |
Collapse
|
31
|
Figy C, Guo A, Fernando VR, Furuta S, Al-Mulla F, Yeung KC. Changes in Expression of Tumor Suppressor Gene RKIP Impact How Cancers Interact with Their Complex Environment. Cancers (Basel) 2023; 15:cancers15030958. [PMID: 36765912 PMCID: PMC9913418 DOI: 10.3390/cancers15030958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/20/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Tumor microenvironment (TME) is the immediate environment where cancer cells reside in a tumor. It is composed of multiple cell types and extracellular matrix. Microenvironments can be restrictive or conducive to the progression of cancer cells. Initially, microenvironments are suppressive in nature. Stepwise accumulation of mutations in oncogenes and tumor suppressor genes enables cancer cells to acquire the ability to reshape the microenvironment to advance their growth and metastasis. Among the many genetic events, the loss-of-function mutations in tumor suppressor genes play a pivotal role. In this review, we will discuss the changes in TME and the ramifications on metastasis upon altered expression of tumor metastasis suppressor gene RKIP in breast cancer cells.
Collapse
Affiliation(s)
- Christopher Figy
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH 43614, USA
| | - Anna Guo
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH 43614, USA
| | - Veani Roshale Fernando
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH 43614, USA
| | - Saori Furuta
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH 43614, USA
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City 15462, Kuwait
| | - Kam C. Yeung
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH 43614, USA
- Correspondence:
| |
Collapse
|
32
|
Moghaddam M, Vivarelli S, Falzone L, Libra M, Bonavida B. Cancer resistance via the downregulation of the tumor suppressors RKIP and PTEN expressions: therapeutic implications. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:170-207. [PMID: 37205308 PMCID: PMC10185445 DOI: 10.37349/etat.2023.00128] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/12/2022] [Indexed: 05/21/2023] Open
Abstract
The Raf kinase inhibitor protein (RKIP) has been reported to be underexpressed in many cancers and plays a role in the regulation of tumor cells' survival, proliferation, invasion, and metastasis, hence, a tumor suppressor. RKIP also regulates tumor cell resistance to cytotoxic drugs/cells. Likewise, the tumor suppressor, phosphatase and tensin homolog (PTEN), which inhibits the phosphatidylinositol 3 kinase (PI3K)/AKT pathway, is either mutated, underexpressed, or deleted in many cancers and shares with RKIP its anti-tumor properties and its regulation in resistance. The transcriptional and posttranscriptional regulations of RKIP and PTEN expressions and their roles in resistance were reviewed. The underlying mechanism of the interrelationship between the signaling expressions of RKIP and PTEN in cancer is not clear. Several pathways are regulated by RKIP and PTEN and the transcriptional and post-transcriptional regulations of RKIP and PTEN is significantly altered in cancers. In addition, RKIP and PTEN play a key role in the regulation of tumor cells response to chemotherapy and immunotherapy. In addition, molecular and bioinformatic data revealed crosstalk signaling networks that regulate the expressions of both RKIP and PTEN. These crosstalks involved the mitogen-activated protein kinase (MAPK)/PI3K pathways and the dysregulated nuclear factor-kappaB (NF-κB)/Snail/Yin Yang 1 (YY1)/RKIP/PTEN loop in many cancers. Furthermore, further bioinformatic analyses were performed to investigate the correlations (positive or negative) and the prognostic significance of the expressions of RKIP or PTEN in 31 different human cancers. These analyses were not uniform and only revealed that there was a positive correlation between the expression of RKIP and PTEN only in few cancers. These findings demonstrated the existence of signaling cross-talks between RKIP and PTEN and both regulate resistance. Targeting either RKIP or PTEN (alone or in combination with other therapies) may be sufficient to therapeutically inhibit tumor growth and reverse the tumor resistance to cytotoxic therapies.
Collapse
Affiliation(s)
- Matthew Moghaddam
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles (UCLA), East Los Angeles, CA 90095, USA
| | - Silvia Vivarelli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125 Messina, Italy
| | - Luca Falzone
- Epidemiology and Biostatistics Unit, National Cancer Institute IRCCS Fondazione G. Pascale, 80131 Naples, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Research Centre for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy
| | - Benjamin Bonavida
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles (UCLA), East Los Angeles, CA 90095, USA
- Correspondence: Benjamin Bonavida, Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles (UCLA), 1602 Molecular Sciences Building, 609 Charles E. Young Drive, East Los Angeles, CA 90095, USA.
| |
Collapse
|
33
|
Yuan X, Quan S, Liu J, Guo C, Zhang Z, Kang C, Niu J. Evolution of the PEBP gene family in Juglandaceae and their regulation of flowering pathway under the synergistic effect of JrCO and JrNF-Y proteins. Int J Biol Macromol 2022; 223:202-212. [PMID: 36347378 DOI: 10.1016/j.ijbiomac.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/23/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Phosphatidyl ethanolamine-binding protein (PEBP) has a conserved PEBP domain and plays an important role in regulating the flowering time and growth of angiosperms. To understand the evolution of PEBP family genes in walnut family and the mechanism of regulating flowering in photoperiod pathway, 53 genes with PEBP domain were identified from 5 Juglandaceae plants. The PEBP gene family of Juglandaceae can be divided into four subgroups, FT-like, TFL-like, MFT-like and PEBP-like subgroups. These genes all show very high homology for motifs and gene structure in Juglandaceae. In addition, the results of gene replication and collinearity analysis showed that the evolution of PEBP genes was mainly purified and selected, and segmental repetition was the main driving force for the evolution of PEBP gene family in walnut family. We found that PEBP gene family played an important role in female flower bud differentiation, and most JrPEBP genes were highly expressed in leaf bud and female flower bud by qRT-PCR. In Arabidopsis, AtCO can not only directly bind to CORE2, but also interact with NF-Y complex to positively regulate the expression of AtFT gene. In this study, we proved that JrCO (the lineal homologue of AtCO) could not directly regulate the expression of JrFT gene, but could enhance the binding of JrNF-YB4/6 protein to the promoter of JrFT gene by forming a heteropolymer with NF-YB4/NF-YB6. We also confirmed that JrNF-YC1/3/7, JrNF-YB4/6 and JrCO can form a trimer structure similar to AtNF-YB-YC-CO of Arabidopsis, and then bind to the promoter of JrFT gene to promote the transcription of JrFT gene. In a word, through identification and analysis of PEBP gene family in Juglandaceae and study on the mechanism of photoperiod pathway regulating flowering in walnut, we have found that nuclear transcription factor NF-YB/YC plays a more important role in the trimer structure of NF-YB-YC-CO in walnut species. Our study has further perfected the flowering regulatory network of walnut species.
Collapse
Affiliation(s)
- Xing Yuan
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China; Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, Xinjiang, China
| | - Shaowen Quan
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China; Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, Xinjiang, China
| | - Jinming Liu
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China; Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, Xinjiang, China
| | - Caihua Guo
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China; Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, Xinjiang, China
| | - Zhongrong Zhang
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China; Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, Xinjiang, China
| | - Chao Kang
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China; Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, Xinjiang, China
| | - Jianxin Niu
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China; Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, Xinjiang, China.
| |
Collapse
|
34
|
Bonavida B. RKIP: A Pivotal Gene Product in the Pathogenesis of Cancer. Cancers (Basel) 2022; 14:cancers14246092. [PMID: 36551578 PMCID: PMC9776012 DOI: 10.3390/cancers14246092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Raf kinase inhibitor protein (RKIP), previously known as a phosphatidylethanolamine-binding protein (PEBP), was cloned by Yeung et al [...].
Collapse
Affiliation(s)
- Benjamin Bonavida
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, College of Life Sciences, UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
35
|
Tian Z, Feng B, Wang XQ, Tian J. Focusing on cyclin-dependent kinases 5: A potential target for neurological disorders. Front Mol Neurosci 2022; 15:1030639. [PMID: 36438186 PMCID: PMC9687395 DOI: 10.3389/fnmol.2022.1030639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/25/2022] [Indexed: 11/20/2023] Open
Abstract
Cyclin-dependent kinases 5 (Cdk5) is a special member of proline-directed serine threonine kinase family. Unlike other Cdks, Cdk5 is not directly involved in cell cycle regulation but plays important roles in nervous system functions. Under physiological conditions, the activity of Cdk5 is tightly controlled by p35 or p39, which are specific activators of Cdk5 and highly expressed in post-mitotic neurons. However, they will be cleaved into the corresponding truncated forms namely p25 and p29 under pathological conditions, such as neurodegenerative diseases and neurotoxic insults. The binding to truncated co-activators results in aberrant Cdk5 activity and contributes to the initiation and progression of multiple neurological disorders through affecting the down-stream targets. Although Cdk5 kinase activity is mainly regulated through combining with co-activators, it is not the only way. Post-translational modifications of Cdk5 including phosphorylation, S-nitrosylation, sumoylation, and acetylation can also affect its kinase activity and then participate in physiological and pathological processes of nervous system. In this review, we focus on the regulatory mechanisms of Cdk5 and its roles in a series of common neurological disorders such as neurodegenerative diseases, stroke, anxiety/depression, pathological pain and epilepsy.
Collapse
Affiliation(s)
- Zhen Tian
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Bin Feng
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Pharmacy, School of Stomatology, Fourth Military Medical University, Xi’an, China
| | - Xing-Qin Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiao Tian
- Department of Infection, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, The First Batch of Key Disciplines On Public Health in Chongqing, Chongqing, China
| |
Collapse
|
36
|
Suzuki K, Ohi Y, Sato T, Tsuda Y, Madokoro Y, Mizuno M, Adachi K, Uchida Y, Haji A, Ojika K, Matsukawa N. Reduction of glutamatergic activity through cholinergic dysfunction in the hippocampus of hippocampal cholinergic neurostimulating peptide precursor protein knockout mice. Sci Rep 2022; 12:19161. [PMID: 36357544 PMCID: PMC9649636 DOI: 10.1038/s41598-022-23846-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Cholinergic activation can enhance glutamatergic activity in the hippocampus under pathologic conditions, such as Alzheimer's disease. The aim of the present study was to elucidate the relationship between glutamatergic neural functional decline and cholinergic neural dysfunction in the hippocampus. We report the importance of hippocampal cholinergic neurostimulating peptide (HCNP) in inducing acetylcholine synthesis in the medial septal nucleus. Here, we demonstrate that HCNP-precursor protein (pp) knockout (KO) mice electrophysiologically presented with glutamatergic dysfunction in the hippocampus with age. The impairment of cholinergic function via a decrease in vesicular acetylcholine transporter in the pre-synapse with reactive upregulation of the muscarinic M1 receptor may be partly involved in glutamatergic dysfunction in the hippocampus of HCNP-pp KO mice. The results, in combination with our previous reports that show the reduction of hippocampal theta power through a decrease of a region-specific choline acetyltransferase in the stratum oriens of CA1 and the decrease of acetylcholine concentration in the hippocampus, may indicate the defined cholinergic dysfunction in HCNP-pp KO mice. This may also support that HCNP-pp KO mice are appropriate genetic models for cholinergic functional impairment in septo-hippocampal interactions. Therefore, according to the cholinergic hypothesis, the model mice might are potential partial pathological animal models for Alzheimer's disease.
Collapse
Affiliation(s)
- Kengo Suzuki
- grid.260433.00000 0001 0728 1069Department of Neurology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-Ku, Nagoya, 467-8602 Japan
| | - Yoshiaki Ohi
- grid.411253.00000 0001 2189 9594Laboratory of Neuropharmacology, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa-Ku, Nagoya, 464-8650 Japan
| | - Toyohiro Sato
- grid.260433.00000 0001 0728 1069Department of Neurology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-Ku, Nagoya, 467-8602 Japan
| | - Yo Tsuda
- grid.260433.00000 0001 0728 1069Department of Neurology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-Ku, Nagoya, 467-8602 Japan
| | - Yuta Madokoro
- grid.260433.00000 0001 0728 1069Department of Neurology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-Ku, Nagoya, 467-8602 Japan
| | - Masayuki Mizuno
- grid.260433.00000 0001 0728 1069Department of Neurology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-Ku, Nagoya, 467-8602 Japan
| | - Kenichi Adachi
- grid.260433.00000 0001 0728 1069Department of Neurology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-Ku, Nagoya, 467-8602 Japan
| | - Yuto Uchida
- grid.260433.00000 0001 0728 1069Department of Neurology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-Ku, Nagoya, 467-8602 Japan
| | - Akira Haji
- grid.411253.00000 0001 2189 9594Laboratory of Neuropharmacology, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa-Ku, Nagoya, 464-8650 Japan
| | - Kosei Ojika
- grid.260433.00000 0001 0728 1069Department of Neurology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-Ku, Nagoya, 467-8602 Japan
| | - Noriyuki Matsukawa
- grid.260433.00000 0001 0728 1069Department of Neurology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-Ku, Nagoya, 467-8602 Japan
| |
Collapse
|
37
|
Valencia-Lozano E, Herrera-Isidrón L, Flores-López JA, Recoder-Meléndez OS, Barraza A, Cabrera-Ponce JL. Solanum tuberosum Microtuber Development under Darkness Unveiled through RNAseq Transcriptomic Analysis. Int J Mol Sci 2022; 23:ijms232213835. [PMID: 36430314 PMCID: PMC9696990 DOI: 10.3390/ijms232213835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/12/2022] Open
Abstract
Potato microtuber (MT) development through in vitro techniques are ideal propagules for producing high quality potato plants. MT formation is influenced by several factors, i.e., photoperiod, sucrose, hormones, and osmotic stress. We have previously developed a protocol of MT induction in medium with sucrose (8% w/v), gelrite (6g/L), and 2iP as cytokinin under darkness. To understand the molecular mechanisms involved, we performed a transcriptome-wide analysis. Here we show that 1715 up- and 1624 down-regulated genes were involved in this biological process. Through the protein-protein interaction (PPI) network analyses performed in the STRING database (v11.5), we found 299 genes tightly associated in 14 clusters. Two major clusters of up-regulated proteins fundamental for life growth and development were found: 29 ribosomal proteins (RPs) interacting with 6 PEBP family members and 117 cell cycle (CC) proteins. The PPI network of up-regulated transcription factors (TFs) revealed that at least six TFs-MYB43, TSF, bZIP27, bZIP43, HAT4 and WOX9-may be involved during MTs development. The PPI network of down-regulated genes revealed a cluster of 83 proteins involved in light and photosynthesis, 110 in response to hormone, 74 in hormone mediate signaling pathway and 22 related to aging.
Collapse
Affiliation(s)
- Eliana Valencia-Lozano
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato 36824, Guanajuato, Mexico
| | - Lisset Herrera-Isidrón
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato (UPIIG), Instituto Politécnico Nacional, Av. Mineral de Valenciana 200, Puerto Interior, Silao de la Victoria 36275, Guanajuato, Mexico
| | - Jorge Abraham Flores-López
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato (UPIIG), Instituto Politécnico Nacional, Av. Mineral de Valenciana 200, Puerto Interior, Silao de la Victoria 36275, Guanajuato, Mexico
| | - Osiel Salvador Recoder-Meléndez
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato (UPIIG), Instituto Politécnico Nacional, Av. Mineral de Valenciana 200, Puerto Interior, Silao de la Victoria 36275, Guanajuato, Mexico
| | - Aarón Barraza
- CONACYT-Centro de Investigaciones Biológicas del Noreste, SC. IPN 195, Playa Palo de Santa Rita Sur, La Paz 23096, Baja California Sur, Mexico
| | - José Luis Cabrera-Ponce
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato 36824, Guanajuato, Mexico
- Correspondence: ; Tel.: +52-462-6239600 (ext. 9421)
| |
Collapse
|
38
|
Elumalai S, Karunakaran U, Moon JS, Won KC. Ferroptosis Signaling in Pancreatic β-Cells: Novel Insights & Therapeutic Targeting. Int J Mol Sci 2022; 23:13679. [PMID: 36430158 PMCID: PMC9690757 DOI: 10.3390/ijms232213679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022] Open
Abstract
Metabolic stress impairs pancreatic β-cell survival and function in diabetes. Although the pathophysiology of metabolic stress is complex, aberrant tissue damage and β-cell death are brought on by an imbalance in redox equilibrium due to insufficient levels of endogenous antioxidant expression in β-cells. The vulnerability of β-cells to oxidative damage caused by iron accumulation has been linked to contributory β-cell ferroptotic-like malfunction under diabetogenic settings. Here, we take into account recent findings on how iron metabolism contributes to the deregulation of the redox response in diabetic conditions as well as the ferroptotic-like malfunction in the pancreatic β-cells, which may offer insights for deciphering the pathomechanisms and formulating plans for the treatment or prevention of metabolic stress brought on by β-cell failure.
Collapse
Affiliation(s)
- Suma Elumalai
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu 42415, Korea
| | - Udayakumar Karunakaran
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu 42415, Korea
| | - Jun-Sung Moon
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu 42415, Korea
- Department of Internal Medicine, College of Medicine, Yeungnam University, Daegu 42415, Korea
| | - Kyu-Chang Won
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu 42415, Korea
- Department of Internal Medicine, College of Medicine, Yeungnam University, Daegu 42415, Korea
| |
Collapse
|
39
|
Phosphoproteomics reveals the BRAF-ERK1/2 axis as an important pathogenic signaling node in cartilage degeneration. Osteoarthritis Cartilage 2022; 30:1443-1454. [PMID: 36100125 DOI: 10.1016/j.joca.2022.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) causes gradual cellular alterations, structural anomalies and joint dysfunction. Progressive decline of chondrocyte function plays a vital role on OA pathogenesis. Although protein phosphorylation controls cartilage metabolism, its regulation mechanism in OA remains unclear. Thus, proteomic methods were used to investigate phosphorylation changes in preserved and OA articular cartilage samples, and to explore the intervention targets of phosphorylated kinase. METHODS Preserved (control) and lesioned (OA) cartilage samples from OA cases were assessed by phosphoproteomics. Immobilized metal affinity chromatography was performed for phosphopeptide enrichment. Quantitated phosphosites were comparatively assessed in the cartilage sample pair. Kinase-substrate enrichment analyses were carried out for identifying OA-related kinases. BRAF expression in cartilage tissues was assessed by immunohistochemical staining. The effects of BRAF inhibitor on cartilage degeneration were examined in mouse chondrocytes and OA mouse model. RESULTS High-sensitivity mass spectrometry-based proteomics revealed 7,471 peptides and 4,375 phosphorylated peptides differing between preserved and lesioned cartilage samples, which represented the significant alteration of kinase hubs and transduction pathways. Phosphoproteomics identified BRAF may be involved in developing OA. BRAF regulated the downstream ERK signaling pathway. In addition, BRAF was upregulated in human OA cartilage as shown by immunohistochemistry. Remarkably, BRAF inhibition alleviated cartilage degradation in a mouse model of OA through its downstream of ERK pathway activation. CONCLUSIONS Jointly, these findings provide an overview of phosphoproteomic alterations occurring during cartilage degeneration, identifying the BRAF-ERK1/2 Axis signaling as a potential signaling pathway involved in OA.
Collapse
|
40
|
Rao Y, Zhu J, Zheng H, Dong W, Lin Q. A novel melanoma prognostic model based on the ferroptosis-related long non-coding RNA. Front Oncol 2022; 12:929960. [PMID: 36313708 PMCID: PMC9598429 DOI: 10.3389/fonc.2022.929960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/23/2022] [Indexed: 08/27/2023] Open
Abstract
Ferroptosis is an iron-dependent programmed cell death related to the biological process of many kinds of tumors. Long noncoding RNAs (LncRNA) have been found to play essential roles in the tumor, and their functions in the ferroptosis of tumor cells have been partially discovered. However, there is no summary of ferroptosis-related LncRNA and its functions in melanoma. In the present study, we aim to explore the expression profile of ferroptosis-related LncRNA genes and their value in melanoma prognosis by bioinformatics analysis. The expression of ferroptosis-related gene (FRG) from melanoma clinical data was extracted based on the Cancer Genome Atlas (TCGA) database. By screening the RNA expression data of 472 cases of melanoma and 810 cases of normal skin, eighteen ferroptosis-related differential genes were found to be related to the overall survival rate. Furthermore, 384 ferroptosis-related LncRNAs were discovered through constructing the mRNA-LncRNA co-expression network, and ten of them were found with prognostic significance in melanoma by multivariate Cox analysis. Risk assessment showed that the high expression of LncRNA00520 is associated with poor prognosis, while the increased expression of the other LncRNA is beneficial to the prognosis of patients with melanoma. From univariate and multivariate Cox regression analysis, there were ten ferroptosis-related LncRNA risk models towards to be significant independent prognostic factors for patients with melanoma and valuable predictive factors for overall survival (OS)(P<0.05). The ROC curve further suggested that the risk score has relatively reliable predictive ability (AUC=0.718). The protein level of ferroptosis-related genes was verified by the HPA database and IHC test, leading to the discovery that the expressions of ALOX5, PEBP1, ACSL4, and ZEB1 proteins up-regulated in tumor tissues, and existed differences between tumor tissues and normal tissues. In conclusion, we identified ten ferroptosis-related LncRNA and constructed a prognosis model base.
Collapse
Affiliation(s)
- Yamin Rao
- Department of Pathology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinchao Zhu
- Department of Pathology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiyan Zheng
- Department of Pathology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Dong
- Department of Pathology, Eastern Hepatobilliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Qingyuan Lin
- Department of Pathology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
41
|
Cessna H, Baritaki S, Zaravinos A, Bonavida B. The Role of RKIP in the Regulation of EMT in the Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14194596. [PMID: 36230521 PMCID: PMC9559516 DOI: 10.3390/cancers14194596] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Raf kinase inhibitor protein (RKIP) expression in cancer cells is significantly reduced and promoting cancer cells growth and invasiveness. Overexpresssion of RKIP has been reported to mediate pleiotropic anti-cancer activities including the inhibition of survival signaling pathways, sensitization to cell death by cytotoxic drugs, inhibition of invasion, EMT and metastasis. The molecular mechanism by which RKIP inhibits EMT is not clear. In this review, we have examined how RKIP inhibits the selected EMT gene products (Snail, vimentin, N-cadherin, laminin alpha) and found that it involves signaling cross-talks between RKIP and each of the EMT gene products. These findings were validated by bioinformatic analyses demonstrating in various human cancers a negative correlation between the expression of RKIP and the expression of the EMT gene products. These findings suggest that targeting RKIP induction in cancer cells will result in multiple hits by inhibiting tumor growth, metastasis and reversal of chemo-immuno resistance. Abstract The Raf Kinase Inhibitor Protein (RKIP) is a unique gene product that directly inhibits the Raf/Mek/Erk and NF-kB pathways in cancer cells and resulting in the inhibition of cell proliferation, viability, EMT, and metastasis. Additionally, RKIP is involved in the regulation of cancer cell resistance to both chemotherapy and immunotherapy. The low expression of RKIP expression in many cancer types is responsible, in part, for the pathogenesis of cancer and its multiple properties. The inhibition of EMT and metastasis by RKIP led to its classification as a tumor suppressor. However, the mechanism by which RKIP mediates its inhibitory effects on EMT and metastases was not clear. We have proposed that one mechanism involves the negative regulation by RKIP of the expression of various gene products that mediate the mesenchymal phenotype as well as the positive regulation of gene products that mediate the epithelial phenotype via signaling cross talks between RKIP and each gene product. We examined several EMT mesenchymal gene products such as Snail, vimentin, N-cadherin, laminin and EPCAM and epithelial gene products such as E-cadherin and laminin. We have found that indeed these negative and positive correlations were detected in the signaling cross-talks. In addition, we have also examined bioinformatic data sets on different human cancers and the findings corroborated, in large part, the findings observed in the signaling cross-talks with few exceptions in some cancer types. The overall findings support the underlying mechanism by which the tumor suppressor RKIP regulates the expression of gene products involved in EMT and metastasis. Hence, the development of agent that can selectively induce RKIP expression in cancers with low expressions should result in the activation of the pleiotropic anti-cancer activities of RKIP and resulting in multiple effects including inhibition of tumor cell proliferation, EMT, metastasis and sensitization of resistant tumor cells to respond to both chemotherapeutics and immunotherapeutics.
Collapse
Affiliation(s)
- Hannah Cessna
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Stavroula Baritaki
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus
- Basic and Translational Cancer Research Center (BTCRC), Cancer Genetics, Genomics and Systems Biology Laboratory, Nicosia 1516, Cyprus
| | - Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Correspondence:
| |
Collapse
|
42
|
Masri R, Al Housseiny A, Aftimos G, Bitar N. Incidence of BRAF V600E Gene Mutation Among Lebanese Population in Melanoma and Colorectal Cancer: A Retrospective Study Between 2010 and 2019. Cureus 2022; 14:e29315. [PMID: 36277559 PMCID: PMC9580600 DOI: 10.7759/cureus.29315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction: Cancers arise owing to the accumulation of mutations in critical genes that leads to uncontrolled cell division and the avoidance of apoptosis. Among these oncogenes, BRAF is a potent mitogen-activated protein kinase (MAPK) pathway activator known to be somatically mutated by a glutamic acid to valine substitution at codon 600 (V600E). It is a common finding in various types of human cancers, including malignant melanoma and colorectal cancer (CRC), and is considered a poor prognostic factor and a predictive biomarker. The study aims to determine the incidence of BRAF V600E gene mutation in Lebanese patients with melanoma and CRC and its correlation with gender and age. Methods: We conducted a retrospective cohort design study in which 210 and 132 patients diagnosed to have melanoma and CRC, respectively, were recruited from 2010 to 2019 from "L’Institut National de Pathologie," where a specific polymerase chain reaction is used to detect BRAF mutations. Data from digitized records were collected, including demographic characteristics (age and gender), cancer type, and BRAF mutation. The collected data were analyzed using SPSS Statistics version 20.0 (IBM Corp., Armonk, NY). A p-value < 0.05 was considered significant. Results: The incidence of BRAF mutation in melanoma is 88.10%. There is female predominance with a ratio of 2.6:1 (p = 0.240) and the majority of patients aged between 40 and 60 years (51.2%) with a mean age of 53.74 years. While in CRC, BRAF is mutated in 7.5% with a ratio of 1.2:1 of male predominance (p = 0.999). The majority of patients (54.8%) were between the ages of 60 and 80 years, with a mean age of 65.5 years. Conclusion: BRAF is a frequent oncogenic mutation that is found in lethal tumors. Targeted therapies for these cancers interfere with developing more effective therapeutic strategies, which affect the treatment response in BRAF mutants and improve the prognosis of the patients.
Collapse
|
43
|
Rasl J, Grusanovic J, Klimova Z, Caslavsky J, Grousl T, Novotny J, Kolar M, Vomastek T. ERK2 signaling regulates cell-cell adhesion of epithelial cells and enhances growth factor-induced cell scattering. Cell Signal 2022; 99:110431. [PMID: 35933033 DOI: 10.1016/j.cellsig.2022.110431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/13/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022]
Abstract
The ERK signaling pathway, consisting of core protein kinases Raf, MEK and effector kinases ERK1/2, regulates various biological outcomes such as cell proliferation, differentiation, apoptosis, or cell migration. Signal transduction through the ERK signaling pathway is tightly controlled at all levels of the pathway. However, it is not well understood whether ERK pathway signaling can be modulated by the abundance of ERK pathway core kinases. In this study, we investigated the effects of low-level overexpression of the ERK2 isoform on the phenotype and scattering of cuboidal MDCK epithelial cells growing in discrete multicellular clusters. We show that ERK2 overexpression reduced the vertical size of lateral membranes that contain cell-cell adhesion complexes. Consequently, ERK2 overexpressing cells were unable to develop cuboidal shape, remained flat with increased spread area and intercellular adhesive contacts were present only on the basal side. Interestingly, ERK2 overexpression was not sufficient to increase phosphorylation of multiple downstream targets including transcription factors and induce global changes in gene expression, namely to increase the expression of pro-migratory transcription factor Fra1. However, ERK2 overexpression enhanced HGF/SF-induced cell scattering as these cells scattered more rapidly and to a greater extent than parental cells. Our results suggest that an increase in ERK2 expression primarily reduces cell-cell cohesion and that weakened intercellular adhesion synergizes with upstream signaling in the conversion of the multicellular epithelium into single migrating cells. This mechanism may be clinically relevant as the analysis of clinical data revealed that in one type of cancer, pancreatic adenocarcinoma, ERK2 overexpression correlates with a worse prognosis.
Collapse
Affiliation(s)
- Jan Rasl
- Laboratory of Cell Signalling Institute of Microbiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic; Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Josipa Grusanovic
- Laboratory of Cell Signalling Institute of Microbiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic
| | - Zuzana Klimova
- Laboratory of Cell Signalling Institute of Microbiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic
| | - Josef Caslavsky
- Laboratory of Cell Signalling Institute of Microbiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic
| | - Tomas Grousl
- Laboratory of Cell Signalling Institute of Microbiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic
| | - Jiri Novotny
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; Department of Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, 160 00 Prague, Czech Republic
| | - Michal Kolar
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Tomas Vomastek
- Laboratory of Cell Signalling Institute of Microbiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic.
| |
Collapse
|
44
|
Bach VN, Ding J, Yeung M, Conrad T, Odeh HN, Cubberly P, Figy C, Ding HF, Trumbly R, Yeung KC. A Negative Regulatory Role for RKIP in Breast Cancer Immune Response. Cancers (Basel) 2022; 14:cancers14153605. [PMID: 35892864 PMCID: PMC9330697 DOI: 10.3390/cancers14153605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Breast cancer is the second most common cancer in women worldwide. Regulation of breast cancer metastasis remains an elusive phenomenon. Elucidating the mechanistic pathway of metastatic signaling may identify targets for regulating cancer metastatic potential. Raf-1 kinase inhibitor protein (RKIP) has been shown to negatively regulate signaling pathways involved in cancer progression and metastasis. RKIP may suppress metastasis of breast cancer cells by downregulating elements of the immune system. Abstract Raf-1 kinase inhibitor protein was first identified as a negative regulator of the Raf signaling pathway. Subsequently, it was shown to have a causal role in containing cancer progression and metastasis. Early studies suggested that RKIP blocks cancer progression by inhibiting the Raf-1 pathway. However, it is not clear if the RKIP tumor and metastasis suppression function involve other targets. In addition to the Raf signaling pathway, RKIP has been found to modulate several other signaling pathways, affecting diverse biological functions including immune response. Recent advances in medicine have identified both positive and negative roles of immune response in cancer initiation, progression and metastasis. It is possible that one way that RKIP exerts its effect on cancer is by targeting an immune response mechanism. Here, we provide evidence supporting the causal role of tumor and metastasis suppressor RKIP in downregulating signaling pathways involved with immune response in breast cancer cells and discuss its potential ramification on cancer therapy.
Collapse
Affiliation(s)
- Vu N. Bach
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH 43614, USA; (V.N.B.); (M.Y.); (T.C.); (H.N.O.); (P.C.); (C.F.)
| | - Jane Ding
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Georgia, GA 30912, USA; (J.D.); (H.-F.D.)
| | - Miranda Yeung
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH 43614, USA; (V.N.B.); (M.Y.); (T.C.); (H.N.O.); (P.C.); (C.F.)
| | - Taylor Conrad
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH 43614, USA; (V.N.B.); (M.Y.); (T.C.); (H.N.O.); (P.C.); (C.F.)
| | - Hussain N. Odeh
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH 43614, USA; (V.N.B.); (M.Y.); (T.C.); (H.N.O.); (P.C.); (C.F.)
| | - Paige Cubberly
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH 43614, USA; (V.N.B.); (M.Y.); (T.C.); (H.N.O.); (P.C.); (C.F.)
| | - Christopher Figy
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH 43614, USA; (V.N.B.); (M.Y.); (T.C.); (H.N.O.); (P.C.); (C.F.)
| | - Han-Fei Ding
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Georgia, GA 30912, USA; (J.D.); (H.-F.D.)
| | - Robert Trumbly
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH 43614, USA; (V.N.B.); (M.Y.); (T.C.); (H.N.O.); (P.C.); (C.F.)
- Department of Medical Education, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH 43614, USA
- Correspondence: (R.T.); (K.C.Y.)
| | - Kam C. Yeung
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH 43614, USA; (V.N.B.); (M.Y.); (T.C.); (H.N.O.); (P.C.); (C.F.)
- Correspondence: (R.T.); (K.C.Y.)
| |
Collapse
|
45
|
Xu Z, Chen S, Liu R, Chen H, Xu B, Xu W, Chen M. Circular RNA circPOLR2A promotes clear cell renal cell carcinoma progression by facilitating the UBE3C-induced ubiquitination of PEBP1 and, thereby, activating the ERK signaling pathway. Mol Cancer 2022; 21:146. [PMID: 35840930 PMCID: PMC9284792 DOI: 10.1186/s12943-022-01607-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 06/19/2022] [Indexed: 02/07/2023] Open
Abstract
Background Increasing evidence has demonstrated that circular RNAs (circRNAs) are implicated in cancer progression. However, the aberrant expression and biological functions of circRNAs in clear cell renal cell carcinoma (cRCC) remain largely elusive. Method Differentially expressed circRNAs in cRCC were filtered via bioinformatics analysis. Aberrant circPOLR2A expression was validated in cRCC tissues and cell lines via qRT-PCR. Sanger sequencing was used to identify the backsplicing site of circPOLR2A. In vitro and in vivo functional experiments were performed to evaluate the role of circPOLR2A in cRCC malignancy. RNA pull-down, mass spectrometry, RIP, FISH and immunofluorescence assays were used to identify and validate the circPOLR2A-interacting proteins. Ubiquitination modification and interaction between proteins were detected via Co-IP and western blotting. The m6A modification in circPOLR2A was validated by the meRIP assay. Results Bioinformatics analysis revealed that circPOLR2A was highly expressed in cRCC tissues and metastatic cRCC tissues. CircPOLR2A expression was associated with tumor size and TNM stage in cRCC patients. In vitro and in vivo functional assays revealed that circPOLR2A accelerated cRCC cell proliferation, migration, invasion and angiogenesis, while inhibiting apoptosis. Further mechanistic research suggested that circPOLR2A could interact with UBE3C and PEBP1 proteins, and that UBE3C could act as a specific ubiquitin E3 ligase for the PEBP1 protein. The UBE3C/circPOLR2A/PEBP1 protein-RNA ternary complex enhanced the UBE3C-mediated ubiquitination and degradation of the PEBP1 protein which could inactivate the ERK signaling pathway. Rescue experiments revealed that the PEBP1 protein was the functional downstream target of circPOLR2A. Furthermore, m6A modification in circPOLR2A was confirmed, and the m6A reader YTHDF2 could regulate circPOLR2A expression. Conclusion Our study demonstrated that circPOLR2A modulated the UBE3C-mediated ubiquitination and degradation of the PEBP1 protein, and further activated the ERK pathway during cRCC progression and metastasis. The m6A reader, YTHDF2, regulated circPOLR2A expression in cRCC. Hence, circPOLR2A could be a potential target for the diagnosis and treatment of cRCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01607-8.
Collapse
Affiliation(s)
- Zhipeng Xu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, No.87 Dingjiaqiao Road, Nanjing, 210009, People's Republic of China.,Urology Research Center, Southeast University Medical School, No.87 Dingjiaqiao Road, Nanjing, 210009, People's Republic of China
| | - Shuqiu Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, No.87 Dingjiaqiao Road, Nanjing, 210009, People's Republic of China.,Urology Research Center, Southeast University Medical School, No.87 Dingjiaqiao Road, Nanjing, 210009, People's Republic of China
| | - Ruiji Liu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, No.87 Dingjiaqiao Road, Nanjing, 210009, People's Republic of China.,Urology Research Center, Southeast University Medical School, No.87 Dingjiaqiao Road, Nanjing, 210009, People's Republic of China
| | - Hui Chen
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Bin Xu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, No.87 Dingjiaqiao Road, Nanjing, 210009, People's Republic of China.,Urology Research Center, Southeast University Medical School, No.87 Dingjiaqiao Road, Nanjing, 210009, People's Republic of China
| | - Weizhang Xu
- Department of Urology, Jiangsu Institute of Cancer Research & Jiangsu Cancer Hospital, No.42 Baiziting Road, Nanjing, 210000, People's Republic of China.
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, No.87 Dingjiaqiao Road, Nanjing, 210009, People's Republic of China. .,Urology Research Center, Southeast University Medical School, No.87 Dingjiaqiao Road, Nanjing, 210009, People's Republic of China. .,Department of Urology, Nanjing Lishui District People's Hospital, No.86 Chongwen Road, Nanjing, 211200, People's Republic of China.
| |
Collapse
|
46
|
Thapa K, Khan H, Kanojia N, Singh TG, Kaur A, Kaur G. Therapeutic Insights on Ferroptosis in Parkinson's disease. Eur J Pharmacol 2022; 930:175133. [DOI: 10.1016/j.ejphar.2022.175133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/11/2022] [Accepted: 06/29/2022] [Indexed: 12/27/2022]
|
47
|
Lee J, Olivieri C, Ong C, Masterson LR, Gomes S, Lee BS, Schaefer F, Lorenz K, Veglia G, Rosner MR. Raf Kinase Inhibitory Protein regulates the cAMP-dependent protein kinase signaling pathway through a positive feedback loop. Proc Natl Acad Sci U S A 2022; 119:e2121867119. [PMID: 35696587 PMCID: PMC9231499 DOI: 10.1073/pnas.2121867119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 04/22/2022] [Indexed: 12/15/2022] Open
Abstract
Raf Kinase Inhibitory Protein (RKIP) maintains cellular robustness and prevents the progression of diseases such as cancer and heart disease by regulating key kinase cascades including MAP kinase and protein kinase A (PKA). Phosphorylation of RKIP at S153 by Protein Kinase C (PKC) triggers a switch from inhibition of Raf to inhibition of the G protein coupled receptor kinase 2 (GRK2), enhancing signaling by the β-adrenergic receptor (β-AR) that activates PKA. Here we report that PKA-phosphorylated RKIP promotes β-AR-activated PKA signaling. Using biochemical, genetic, and biophysical approaches, we show that PKA phosphorylates RKIP at S51, increasing S153 phosphorylation by PKC and thereby triggering feedback activation of PKA. The S51V mutation blocks the ability of RKIP to activate PKA in prostate cancer cells and to induce contraction in primary cardiac myocytes in response to the β-AR activator isoproterenol, illustrating the functional importance of this positive feedback circuit. As previously shown for other kinases, phosphorylation of RKIP at S51 by PKA is enhanced upon RKIP destabilization by the P74L mutation. These results suggest that PKA phosphorylation at S51 may lead to allosteric changes associated with a higher-energy RKIP state that potentiates phosphorylation of RKIP at other key sites. This allosteric regulatory mechanism may have therapeutic potential for regulating PKA signaling in disease states.
Collapse
Affiliation(s)
- Jiyoung Lee
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637
| | - Cristina Olivieri
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Colin Ong
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637
| | - Larry R. Masterson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Suzana Gomes
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637
| | - Bok-Soon Lee
- Department of Biochemistry & Molecular Medicine, George Washington University, Washington, DC 20037
- George Washington University Cancer Center, George Washington University, Washington, DC 20037
| | - Florian Schaefer
- Department of Pharmacology and Toxicology, Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany
| | - Kristina Lorenz
- Department of Pharmacology and Toxicology, Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany
- Leibniz-Institut für Analytische Wissenschaften, 44139 Dortmund, Germany
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455
| | - Marsha Rich Rosner
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637
| |
Collapse
|
48
|
Genomic Survey of PEBP Gene Family in Rice: Identification, Phylogenetic Analysis, and Expression Profiles in Organs and under Abiotic Stresses. PLANTS 2022; 11:plants11121576. [PMID: 35736727 PMCID: PMC9228618 DOI: 10.3390/plants11121576] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022]
Abstract
Phosphatidylethanolamine-binding-protein (PEBP) domain-containing proteins play important roles in multiple developmental processes of plants; however, functions of few members in the PEBP gene family have been elucidated in rice and other crops. In this study, we found that twenty OsPEBPs genes identified in rice are not evenly distributed on the chromosomes. Four colinear pairs are identified, suggesting the duplication of OsPEBPs during evolution. The OsPEBPs are classified into six subgroups by phylogenetic analysis. The structure of all the OsPEBP genes and encoded proteins are similar. The 262 PEBP domain-containing proteins from crops are divided into six groups. The number of colinear pairs varies between rice and other crops. More than thirty cis-acting elements in the promoter region of OsPEBPs are discovered. Expression profiles of OsPEBP genes are differential. Most of the OsPEBPs expression can be regulated by NaCl, ABA, JA, and light, indicating that OsPEBPs may be involved in the control of the response to the environmental signals. These results lay sound foundation to further explore their functions in development of rice and crops.
Collapse
|
49
|
Anticancer and Anti-Metastatic Role of Thymoquinone: Regulation of Oncogenic Signaling Cascades by Thymoquinone. Int J Mol Sci 2022; 23:ijms23116311. [PMID: 35682990 PMCID: PMC9181073 DOI: 10.3390/ijms23116311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 12/04/2022] Open
Abstract
Cancer is a life-threatening and multifaceted disease. Pioneering research works in the past three decades have mechanistically disentangled intertwined signaling networks which play contributory roles in carcinogenesis and metastasis. Phenomenal strides have been made in leveraging our scientific knowledge altogether to a new level of maturity. Rapidly accumulating wealth of information has underlined a myriad of transduction cascades which can be pharmaceutically exploited for cancer prevention/inhibition. Natural products serve as a treasure trove and compel interdisciplinary researchers to study the cancer chemopreventive roles of wide-ranging natural products in cell culture and preclinical studies. Experimental research related to thymoquinone has gradually gained momentum because of the extra-ordinary cancer chemopreventive multifunctionalities of thymoquinone. In this mini-review, we provide an overview of different cell signaling cascades reported to be regulated by thymoquinone for cancer chemoprevention. Essentially, thymoquinone efficacy has also been notably studied in animal models, which advocates for a rationale-based transition of thymoquinone from the pre-clinical pipeline to clinical trials.
Collapse
|
50
|
Zhao J, Luo Z. Discovery of Raf Family Is a Milestone in Deciphering the Ras-Mediated Intracellular Signaling Pathway. Int J Mol Sci 2022; 23:ijms23095158. [PMID: 35563547 PMCID: PMC9101324 DOI: 10.3390/ijms23095158] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 01/27/2023] Open
Abstract
The Ras-Raf-MEK-ERK signaling pathway, the first well-established MAPK pathway, plays essential roles in cell proliferation, survival, differentiation and development. It is activated in over 40% of human cancers owing to mutations of Ras, membrane receptor tyrosine kinases and other oncogenes. The Raf family consists of three isoforms, A-Raf, B-Raf and C-Raf. Since the first discovery of a truncated mutant of C-Raf as a transforming oncogene carried by a murine retrovirus, forty years of extensive studies have provided a wealth of information on the mechanisms underlying the activation, regulation and biological functions of the Raf family. However, the mechanisms by which activation of A-Raf and C-Raf is accomplished are still not completely understood. In contrast, B-Raf can be easily activated by binding of Ras-GTP, followed by cis-autophosphorylation of the activation loop, which accounts for the fact that this isoform is frequently mutated in many cancers, especially melanoma. The identification of oncogenic B-Raf mutations has led to accelerated drug development that targets Raf signaling in cancer. However, the effort has not proved as effective as anticipated, inasmuch as the mechanism of Raf activation involves multiple steps, factors and phosphorylation of different sites, as well as complex interactions between Raf isoforms. In this review, we will focus on the physiological complexity of the regulation of Raf kinases and their connection to the ERK phosphorylation cascade and then discuss the role of Raf in tumorigenesis and the clinical application of Raf inhibitors in the treatment of cancer.
Collapse
Affiliation(s)
- Jingtong Zhao
- Queen Mary School, Nanchang University, Nanchang 330031, China;
| | - Zhijun Luo
- Queen Mary School, Nanchang University, Nanchang 330031, China;
- Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University, Nanchang 330031, China
- NCU-QMUL Joint Research Institute of Precision Medical Science, Nanchang 330031, China
- Correspondence:
| |
Collapse
|