1
|
Pratap PP, Cottrell CA, Quinn J, Carnathan DG, Bader DLV, Tran AS, Enemuo CA, Ngo JT, Richey ST, Gao H, Shen X, Greene KM, Hurtado J, Michaels KK, Ben-Akiva E, Allen JD, Ozorowski G, Crispin M, Briney B, Montefiori D, Silvestri G, Irvine DJ, Crotty S, Ward AB. Immunofocusing on the conserved fusion peptide of HIV envelope glycoprotein in rhesus macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.27.625755. [PMID: 39651156 PMCID: PMC11623688 DOI: 10.1101/2024.11.27.625755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
During infection, the fusion peptide (FP) of HIV envelope glycoprotein (Env) serves a central role in viral fusion with the host cell. As such, the FP is highly conserved and therefore an attractive epitope for vaccine design. Here, we describe a vaccination study in non-human primates (NHPs) where glycan deletions were made on soluble HIV Env to increase FP epitope exposure. When delivered via implantable osmotic pumps, this immunogen primed immune responses against the FP, which were then boosted with heterologous trimers resulting in a focused immune response targeting the conserved FP epitope. Although autologous immunizations did not elicit high affinity FP-targeting antibodies, the conserved FP epitope on a heterologous trimer further matured the lower affinity, FP-targeting B cells. This study suggests using epitope conservation strategies on distinct Env trimer immunogens can focus humoral responses on desired neutralizing epitopes and suppress immune-distracting antibody responses against non-neutralizing epitopes.
Collapse
|
2
|
Govindan R, Stephenson KE. HIV Vaccine Development at a Crossroads: New B and T Cell Approaches. Vaccines (Basel) 2024; 12:1043. [PMID: 39340073 PMCID: PMC11435826 DOI: 10.3390/vaccines12091043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Despite rigorous scientific efforts over the forty years since the onset of the global HIV pandemic, a safe and effective HIV-1 vaccine remains elusive. The challenges of HIV vaccine development have proven immense, in large part due to the tremendous sequence diversity of HIV and its ability to escape from antiviral adaptive immune responses. In recent years, several phase 3 efficacy trials have been conducted, testing a similar hypothesis, e.g., that non-neutralizing antibodies and classical cellular immune responses could prevent HIV-1 acquisition. These studies were not successful. As a result, the field has now pivoted to bold novel approaches, including sequential immunization strategies to drive the generation of broadly neutralizing antibodies and human CMV-vectored vaccines to elicit MHC-E-restricted CD8+ T cell responses. Many of these vaccine candidates are now in phase 1 trials, with early promising results.
Collapse
Affiliation(s)
- Ramesh Govindan
- Division of Infectious Diseases and Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA;
| | - Kathryn E. Stephenson
- Division of Infectious Diseases and Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA;
- Harvard Medical School, Boston, MA 02115, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| |
Collapse
|
3
|
Symmonds J, Gaufin T, Xu C, Raehtz KD, Ribeiro RM, Pandrea I, Apetrei C. Making a Monkey out of Human Immunodeficiency Virus/Simian Immunodeficiency Virus Pathogenesis: Immune Cell Depletion Experiments as a Tool to Understand the Immune Correlates of Protection and Pathogenicity in HIV Infection. Viruses 2024; 16:972. [PMID: 38932264 PMCID: PMC11209256 DOI: 10.3390/v16060972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Understanding the underlying mechanisms of HIV pathogenesis is critical for designing successful HIV vaccines and cure strategies. However, achieving this goal is complicated by the virus's direct interactions with immune cells, the induction of persistent reservoirs in the immune system cells, and multiple strategies developed by the virus for immune evasion. Meanwhile, HIV and SIV infections induce a pandysfunction of the immune cell populations, making it difficult to untangle the various concurrent mechanisms of HIV pathogenesis. Over the years, one of the most successful approaches for dissecting the immune correlates of protection in HIV/SIV infection has been the in vivo depletion of various immune cell populations and assessment of the impact of these depletions on the outcome of infection in non-human primate models. Here, we present a detailed analysis of the strategies and results of manipulating SIV pathogenesis through in vivo depletions of key immune cells populations. Although each of these methods has its limitations, they have all contributed to our understanding of key pathogenic pathways in HIV/SIV infection.
Collapse
Affiliation(s)
- Jen Symmonds
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Thaidra Gaufin
- Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA;
| | - Cuiling Xu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Kevin D. Raehtz
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ruy M. Ribeiro
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cristian Apetrei
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
4
|
Motamedi H, Ari MM, Alvandi A, Abiri R. Principle, application and challenges of development siRNA-based therapeutics against bacterial and viral infections: a comprehensive review. Front Microbiol 2024; 15:1393646. [PMID: 38939184 PMCID: PMC11208694 DOI: 10.3389/fmicb.2024.1393646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/28/2024] [Indexed: 06/29/2024] Open
Abstract
While significant progress has been made in understanding and applying gene silencing mechanisms and the treatment of human diseases, there have been still several obstacles in therapeutic use. For the first time, ONPATTRO, as the first small interfering RNA (siRNA) based drug was invented in 2018 for treatment of hTTR with polyneuropathy. Additionally, four other siRNA based drugs naming Givosiran, Inclisiran, Lumasiran, and Vutrisiran have been approved by the US Food and Drug Administration and the European Medicines Agency for clinical use by hitherto. In this review, we have discussed the key and promising advances in the development of siRNA-based drugs in preclinical and clinical stages, the impact of these molecules in bacterial and viral infection diseases, delivery system issues, the impact of administration methods, limitations of siRNA application and how to overcome them and a glimpse into future developments.
Collapse
Affiliation(s)
- Hamid Motamedi
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhoushang Alvandi
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ramin Abiri
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
5
|
Thavarajah JJ, Hønge BL, Wejse CM. The Use of Broadly Neutralizing Antibodies (bNAbs) in HIV-1 Treatment and Prevention. Viruses 2024; 16:911. [PMID: 38932203 PMCID: PMC11209272 DOI: 10.3390/v16060911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Although antiretroviral therapy (ART) effectively halts disease progression in HIV infection, the complete eradication of the virus remains elusive. Additionally, challenges such as long-term ART toxicity, drug resistance, and the demanding regimen of daily and lifelong adherence required by ART highlight the imperative need for alternative therapeutic and preventative approaches. In recent years, broadly neutralizing antibodies (bNAbs) have emerged as promising candidates, offering potential for therapeutic, preventative, and possibly curative interventions against HIV infection. OBJECTIVE This review aims to provide a comprehensive overview of the current state of knowledge regarding the passive immunization of bNAbs in HIV-1-infected individuals. MAIN FINDINGS Recent findings from clinical trials have highlighted the potential of bNAbs in the treatment, prevention, and quest for an HIV-1 cure. While monotherapy with a single bNAb is insufficient in maintaining viral suppression and preventing viral escape, ultimately leading to viral rebound, combination therapy with potent, non-overlapping epitope-targeting bNAbs have demonstrated prolonged viral suppression and delayed time to rebound by effectively restricting the emergence of escape mutations, albeit largely in individuals with bNAb-sensitive strains. Additionally, passive immunization with bNAb has provided a "proof of concept" for antibody-mediated prevention against HIV-1 acquisition, although complete prevention has not been obtained. Therefore, further research on the use of bNAbs in HIV-1 treatment and prevention remains imperative.
Collapse
Affiliation(s)
- Jannifer Jasmin Thavarajah
- Faculty of Health, Aarhus University, 8000 Aarhus C, Denmark
- Clinical Medicine, Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus N, Denmark; (B.L.H.); (C.M.W.)
| | - Bo Langhoff Hønge
- Clinical Medicine, Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus N, Denmark; (B.L.H.); (C.M.W.)
| | - Christian Morberg Wejse
- Clinical Medicine, Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus N, Denmark; (B.L.H.); (C.M.W.)
- GloHAU, Center of Global Health, Department of Public Health, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
6
|
Muheem A, Wasim M, Aldosari E, Baboota S, Ali J. Fabrication of TPGS decorated Etravirine loaded lipidic nanocarriers as a neoteric oral bioavailability enhancer for lymphatic targeting. DISCOVER NANO 2024; 19:5. [PMID: 38175319 PMCID: PMC10766915 DOI: 10.1186/s11671-023-03954-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024]
Abstract
Etravirine (ERVN) is a potential NNRTI (non-nucleoside reverse transcriptase inhibitor) in treating HIV infection. It possesses extremely low oral bioavailability. The present research aims to optimize the formulation and characterization of TPGS-enriched ERVN-loaded lipid-based nanocarriers (NLCs) for HIV-infected patients. The formulation, ERVN-TPGS-NLCs, was optimized by central composite rotational design using a modified-solvent emulsification process. Various characterization parameters of NLCs were evaluated, including globule size of 121.56 ± 2.174 nm, PDI of 0.172 ± 0.042, the zeta potential of - 7.32 ± 0.021 mV, %EE of 94.42 ± 8.65% of ERVN and %DL was 8.94 ± 0.759% of ERVN and spherical shape was revealed by TEM. PXRD was also performed to identify the crystallinity of the sample. In-vitro drug release showed % a cumulative drug release of 83.72 ± 8.35% at pH 1.2 and 90.61 ± 9.11% at pH 6.8, respectively, whereas the % cumulative drug release from drug suspension (ERVN-S) was found to be 21.13 ± 2.01% at pH 1.2 and 24.84 ± 2.51 at pH 6.8 at the end of 48 h. Further, the intestinal permeation study and confocal microscope showed approximately three-fold and two-fold increased permeation in ERVN-TPGS-NLCs and ERVN-NLCs across the gut sac compared to ERVN-S. Hemolysis compatibility and lipolysis studies were performed to predict the in-vivo fate of the formulation. The pharmacokinetic study revealed a 3.13-fold increment in the relative bioavailability, which agrees with the ex-vivo studies, and lymphatic uptake was validated by using cycloheximide along with designed formulation, which showed the impact of lymphatic uptake in AUC. This study ensures that ERVN-TPGS-NLCs take lymphatic uptake to minimize the first-pass metabolism followed by improved oral bioavailability of ERVN. Thus, the enhanced bioavailability of ERVN can reduce the high dose of ERVN to minimize the adverse effects related to dose-related burden.
Collapse
Affiliation(s)
- Abdul Muheem
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohd Wasim
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Eman Aldosari
- Department of Chemistry, College of Science, King Saud University, Riyadh-11451, Saudi Arabia
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Department of Chemistry, College of Science, King Saud University, Riyadh-11451, Saudi Arabia.
| |
Collapse
|
7
|
Goldberg BS, Spencer DA, Pandey S, Ordonez T, Barnette P, Yu Y, Gao L, Dufloo J, Bruel T, Schwartz O, Ackerman ME, Hessell AJ. Complement contributes to antibody-mediated protection against repeated SHIV challenge. Proc Natl Acad Sci U S A 2023; 120:e2221247120. [PMID: 37155897 PMCID: PMC10193994 DOI: 10.1073/pnas.2221247120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/10/2023] [Indexed: 05/10/2023] Open
Abstract
The first clinical efficacy trials of a broadly neutralizing antibody (bNAb) resulted in less benefit than expected and suggested that improvements are needed to prevent HIV infection. While considerable effort has focused on optimizing neutralization breadth and potency, it remains unclear whether augmenting the effector functions elicited by broadly neutralizing antibodies (bNAbs) may also improve their clinical potential. Among these effector functions, complement-mediated activities, which can culminate in the lysis of virions or infected cells, have been the least well studied. Here, functionally modified variants of the second-generation bNAb 10-1074 with ablated and enhanced complement activation profiles were used to examine the role of complement-associated effector functions. When administered prophylactically against simian-HIV challenge in rhesus macaques, more bNAb was required to prevent plasma viremia when complement activity was eliminated. Conversely, less bNAb was required to protect animals from plasma viremia when complement activity was enhanced. These results suggest that complement-mediated effector functions contribute to in vivo antiviral activity, and that their engineering may contribute to the further improvements in the efficacy of antibody-mediated prevention strategies.
Collapse
Affiliation(s)
| | - David A. Spencer
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR97006
| | - Shilpi Pandey
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR97006
| | - Tracy Ordonez
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR97006
| | - Philip Barnette
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR97006
| | - Yun Yu
- Biostatistics Shared Resources, Knight Cancer Institute, Oregon Health and Science University, Portland, OR97239
- Biostatistics & Bioinformatics Core, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR97006
| | - Lina Gao
- Biostatistics Shared Resources, Knight Cancer Institute, Oregon Health and Science University, Portland, OR97239
- Biostatistics & Bioinformatics Core, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR97006
| | - Jérémy Dufloo
- Institut Pasteur, Université de Paris, CNRS UMR3569, Virus and Immunity Unit, 75015Paris, France
- Université de Paris, École doctorale BioSPC 562, 75013Paris, France
| | - Timothée Bruel
- Institut Pasteur, Université de Paris, CNRS UMR3569, Virus and Immunity Unit, 75015Paris, France
- Vaccine Research Institute, 94000Créteil, France
| | - Olivier Schwartz
- Institut Pasteur, Université de Paris, CNRS UMR3569, Virus and Immunity Unit, 75015Paris, France
- Vaccine Research Institute, 94000Créteil, France
| | - Margaret E. Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, NH03755
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH03755
| | - Ann J. Hessell
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR97006
| |
Collapse
|
8
|
Gristick HB, Hartweger H, Loewe M, van Schooten J, Ramos V, Oliviera TY, Nishimura Y, Koranda NS, Wall A, Yao KH, Poston D, Gazumyan A, Wiatr M, Horning M, Keeffe JR, Hoffmann MA, Yang Z, Abernathy ME, Dam KMA, Gao H, Gnanapragasam PN, Kakutani LM, Pavlovitch-Bedzyk AJ, Seaman MS, Howarth M, McGuire AT, Stamatatos L, Martin MA, West AP, Nussenzweig MC, Bjorkman PJ. CD4 binding site immunogens elicit heterologous anti-HIV-1 neutralizing antibodies in transgenic and wild-type animals. Sci Immunol 2023; 8:eade6364. [PMID: 36763635 PMCID: PMC10202037 DOI: 10.1126/sciimmunol.ade6364] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/20/2023] [Indexed: 02/12/2023]
Abstract
Passive transfer of broadly neutralizing anti-HIV-1 antibodies (bNAbs) protects against infection, and therefore, eliciting bNAbs by vaccination is a major goal of HIV-1 vaccine efforts. bNAbs that target the CD4 binding site (CD4bs) on HIV-1 Env are among the most broadly active, but to date, responses elicited against this epitope in vaccinated animals have lacked potency and breadth. We hypothesized that CD4bs bNAbs resembling the antibody IOMA might be easier to elicit than other CD4bs antibodies that exhibit higher somatic mutation rates, a difficult-to-achieve mechanism to accommodate Env's N276gp120 N-glycan, and rare five-residue light chain complementarity-determining region 3. As an initial test of this idea, we developed IOMA germline-targeting Env immunogens and evaluated a sequential immunization regimen in transgenic mice expressing germline-reverted IOMA. These mice developed CD4bs epitope-specific responses with heterologous neutralization, and cloned antibodies overcame neutralization roadblocks, including accommodating the N276gp120 glycan, with some neutralizing selected HIV-1 strains more potently than IOMA. The immunization regimen also elicited CD4bs-specific responses in mice containing polyclonal antibody repertoires as well as rabbits and rhesus macaques. Thus, germline targeting of IOMA-class antibody precursors represents a potential vaccine strategy to induce CD4bs bNAbs.
Collapse
Affiliation(s)
- Harry B. Gristick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Harald Hartweger
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Maximilian Loewe
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Jelle van Schooten
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Victor Ramos
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Thiago Y. Oliviera
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Yoshiaki Nishimura
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases,National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicholas S. Koranda
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Abigail Wall
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Global Health, University of Washington, Seattle, WA
| | - Kai-Hui Yao
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Daniel Poston
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Marie Wiatr
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Marcel Horning
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Jennifer R. Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Magnus A.G. Hoffmann
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Zhi Yang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Morgan E. Abernathy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kim-Marie A. Dam
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Han Gao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Leesa M. Kakutani
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Michael S. Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Mark Howarth
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Andrew T. McGuire
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Global Health, University of Washington, Seattle, WA
| | - Leonidas Stamatatos
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Global Health, University of Washington, Seattle, WA
| | - Malcolm A. Martin
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases,National Institutes of Health, Bethesda, MD 20892, USA
| | - Anthony P. West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
9
|
Tsamadou C, Ludwig C, Scholz J, Proffen M, Hägele J, Rode I, Körper S, Fabricius D, Jahrsdörfer B, Neuchel C, Amann E, Schrezenmeier H, Fürst D. Differentially induced immunity in buccal and nasal mucosae after vaccination for SARS–CoV–2: Prospects for mass scale immunity-screening in large populations. Front Immunol 2022; 13:999693. [DOI: 10.3389/fimmu.2022.999693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/02/2022] [Indexed: 11/19/2022] Open
Abstract
IntroductionHumoral immunity after SARS-CoV-2 vaccination has been extensively investigated in blood. Aim of this study was to develop an ELISA method in order to determine the prevalence of IgG and IgA SARS-CoV-2 domain 1 spike-protein (S) specific antibodies (Abs) in buccal and nasal mucosal surfaces of vaccinees.MethodsTo this end, we analyzed 69 individuals who received their first vaccine dose between February and July 2021. Vaccines administered were BNT162b2, mRNA-1273 or ChAdOx1-nCoV-19. Detection of IgG and IgA Abs was performed using commercial ELISA kits for both blood and swab samples after protocol modification for the latter.ResultsAnti-spike IgG and IgA Abs in the buccal and/or nasal swabs were detectable in >81% of the study subjects after the second dose. The IgG measurements in buccal swabs appeared to correlate in a more consistent way with the respective measurements in blood with a correlation coefficient of r=0.74. It is of note that IgA Abs appeared to be significantly more prevalent in the nasal compared to the buccal mucosa. Optimal selection of the assay cut-off for the IgG antibody detection in buccal swabs conferred a sensitivity of 91.8% and a specificity of 100%. Last, individuals vaccinated with mRNA-based vaccines exhibited higher antibody levels in both blood and mucosal surfaces compared to those receiving ChAdOx1-nCoV-19 confirming previously reported results.ConclusionIn conclusion, our findings show a differential prevalence of anti-S Abs on mucosal surfaces after vaccination for SARS-CoV-2, while they also set the basis for potential future use of IgG antibody detection in buccal swabs for extended immunity screening in large populations.
Collapse
|
10
|
Mark JKK, Lim CSY, Nordin F, Tye GJ. Expression of mammalian proteins for diagnostics and therapeutics: a review. Mol Biol Rep 2022; 49:10593-10608. [PMID: 35674877 PMCID: PMC9175168 DOI: 10.1007/s11033-022-07651-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/25/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Antibodies have proven to be remarkably successful for biomedical applications. They play important roles in epidemiology and medicine from diagnostics of diseases to therapeutics, treating diseases from incessant chronic diseases such as rheumatology to pandemic outbreaks. With no end in sight for the demand for antibody products, optimizations and new techniques must be expanded to accommodate this. METHODS AND RESULTS This review discusses optimizations and techniques for antibody production through choice of discovery platforms, expression systems, cell culture mediums, and other strategies to increase expression yield. Each system has its own merits and demerits, and the strategy chosen is critical in addressing various biological aspects. CONCLUSIONS There is still insufficient evidence to validate the efficacy of some of these techniques, and further research is needed to consolidate these industrial production systems. There is no doubt that more strategies, systems, and pipelines will contribute to enhance biopharmaceutical production.
Collapse
Affiliation(s)
- Jacqueline Kar Kei Mark
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Penang, Minden, Malaysia
| | - Crystale Siew Ying Lim
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, No 1 Jalan Menara Gading, UCSI Heights, Taman Connaught, 56000, Kuala Lumpur, Cheras, Malaysia
| | - Fazlina Nordin
- Tissue Engineering Centre (TEC), Universiti Kebangsaan Malaysia Medical Centre (UKMMC), 56000, Kuala Lumpur, Cheras, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Penang, Minden, Malaysia.
| |
Collapse
|
11
|
Chang MR, Tomasovic L, Kuzmina NA, Ronk AJ, Byrne PO, Johnson R, Storm N, Olmedillas E, Hou YJ, Schäfer A, Leist SR, Tse LV, Ke H, Coherd C, Nguyen K, Kamkaew M, Honko A, Zhu Q, Alter G, Saphire EO, McLellan JS, Griffiths A, Baric RS, Bukreyev A, Marasco WA. IgG-like bispecific antibodies with potent and synergistic neutralization against circulating SARS-CoV-2 variants of concern. Nat Commun 2022; 13:5814. [PMID: 36192374 PMCID: PMC9528872 DOI: 10.1038/s41467-022-33030-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 08/26/2022] [Indexed: 11/25/2022] Open
Abstract
Monoclonal antibodies are a promising approach to treat COVID-19, however the emergence of SARS-CoV-2 variants has challenged the efficacy and future of these therapies. Antibody cocktails are being employed to mitigate these challenges, but neutralization escape remains a major challenge and alternative strategies are needed. Here we present two anti-SARS-CoV-2 spike binding antibodies, one Class 1 and one Class 4, selected from our non-immune human single-chain variable fragment (scFv) phage library, that are engineered into four, fully-human IgG-like bispecific antibodies (BsAb). Prophylaxis of hACE2 mice and post-infection treatment of golden hamsters demonstrates the efficacy of the monospecific antibodies against the original Wuhan strain, while promising in vitro results with the BsAbs demonstrate enhanced binding and distinct synergistic effects on neutralizing activity against circulating variants of concern. In particular, one BsAb engineered in a tandem scFv-Fc configuration shows synergistic neutralization activity against several variants of concern including B.1.617.2. This work provides evidence that synergistic neutralization can be achieved using a BsAb scaffold, and serves as a foundation for the future development of broadly reactive BsAbs against emerging variants of concern.
Collapse
Affiliation(s)
- Matthew R Chang
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Luke Tomasovic
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Natalia A Kuzmina
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Galveston National Laboratory, Galveston, TX, 77555, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Adam J Ronk
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Galveston National Laboratory, Galveston, TX, 77555, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Patrick O Byrne
- Department of Molecular Biosciences, University of Texas, Austin, TX, 78712, USA
| | - Rebecca Johnson
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University, School of Medicine, Boston, MA, 02118, USA
| | - Nadia Storm
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University, School of Medicine, Boston, MA, 02118, USA
| | | | - Yixuan J Hou
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Longping V Tse
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Hanzhong Ke
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Christian Coherd
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Katrina Nguyen
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Maliwan Kamkaew
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Anna Honko
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University, School of Medicine, Boston, MA, 02118, USA
| | - Quan Zhu
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | | | - Jason S McLellan
- Department of Molecular Biosciences, University of Texas, Austin, TX, 78712, USA
| | - Anthony Griffiths
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University, School of Medicine, Boston, MA, 02118, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Galveston National Laboratory, Galveston, TX, 77555, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Wayne A Marasco
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
12
|
Chen JL, Fries CN, Berendam SJ, Rodgers NS, Roe EF, Wu Y, Li SH, Jain R, Watts B, Eudailey J, Barfield R, Chan C, Moody MA, Saunders KO, Pollara J, Permar SR, Collier JH, Fouda GG. Self-assembling peptide nanofiber HIV vaccine elicits robust vaccine-induced antibody functions and modulates Fc glycosylation. SCIENCE ADVANCES 2022; 8:eabq0273. [PMID: 36149967 PMCID: PMC9506727 DOI: 10.1126/sciadv.abq0273] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 08/04/2022] [Indexed: 06/16/2023]
Abstract
To develop vaccines for certain key global pathogens such as HIV, it is crucial to elicit both neutralizing and non-neutralizing Fc-mediated effector antibody functions. Clinical evidence indicates that non-neutralizing antibody functions including antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP) contribute to protection against several pathogens. In this study, we demonstrated that conjugation of HIV Envelope (Env) antigen gp120 to a self-assembling nanofiber material named Q11 induced antibodies with higher breadth and functionality when compared to soluble gp120. Immunization with Q11-conjugated gp120 vaccine (gp120-Q11) demonstrated higher tier 1 neutralization, ADCP, and ADCC as compared to soluble gp120. Moreover, Q11 conjugation altered the Fc N-glycosylation profile of antigen-specific antibodies, leading to a phenotype associated with increased ADCC in animals immunized with gp120-Q11. Thus, this nanomaterial vaccine strategy can enhance non-neutralizing antibody functions possibly through modulation of immunoglobulin G Fc N-glycosylation.
Collapse
Affiliation(s)
- Jui-Lin Chen
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Chelsea N. Fries
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Stella J. Berendam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nicole S. Rodgers
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Emily F. Roe
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Yaoying Wu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Shuk Hang Li
- The Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rishabh Jain
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Brian Watts
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Joshua Eudailey
- Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Richard Barfield
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham NC 27710, USA
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC 27707, USA
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham NC 27710, USA
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC 27707, USA
| | - M. Anthony Moody
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kevin O. Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Justin Pollara
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sallie R. Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Joel H. Collier
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Genevieve G. Fouda
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
13
|
Ximba P, Chapman R, Meyers A, Margolin E, van Diepen MT, Sander AF, Woodward J, Moore PL, Williamson AL, Rybicki EP. Development of a synthetic nanoparticle vaccine presenting the HIV-1 envelope glycoprotein. NANOTECHNOLOGY 2022; 33:485102. [PMID: 35882111 DOI: 10.1088/1361-6528/ac842c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Two-component self-assembling virus-like particles (VLPs) are promising scaffolds for achieving high-density display of HIV-1 envelope (gp140) trimers, which can improve the induction of neutralising antibodies (NAbs). In this study gp140 was displayed on the surface of VLPs formed by the AP205 phage coat protein. The CAP256 SU gp140 antigen was selected as the patient who this virus was isolated from developed broadly neutralising antibodies (bNAbs) shortly after superinfection with this virus. The CAP256 SU envelope is also sensitive to several bNAbs and has shown enhanced reactivity for certain bNAb precursors. A fusion protein comprising the HIV-1 CAP256 SU gp140 and the SpyTag (ST) (gp140-ST) was produced in HEK293 cells, and trimers were purified to homogeneity using gel filtration. SpyCatcher (SC)-AP205 VLPs were produced inEscherichia coliand purified by ultracentrifugation. The gp140-ST trimers and the SC-AP205 VLPs were mixed in varying molar ratios to generate VLPs displaying the glycoprotein (AP205-gp140-ST particles). Dynamic light scattering, negative stain electron microscopy and 2D classification indicated that gp140-ST was successfully bound to the VLPs, although not all potential binding sites were occupied. The immunogenicity of the coupled VLPs was evaluated in a pilot study in rabbits. One group was injected four times with coupled VLPs, and the second group was primed with DNA vaccines expressing Env and a mosaic Gag, followed by modified vaccinia Ankara expressing the same antigens. The animals were then boosted twice with coupled VLPs. Encouragingly, gp140-ST displayed on SC-AP205 VLPs was an effective boost to heterologously primed rabbits, leading to induction of autologous Tier 2 neutralising antibodies in 2/5 rabbits. However, four inoculations of coupled VLPs alone failed to elicit any Tier 2 antibodies. These results demonstrate that the native-like structure of HIV-1 envelope trimers and selection of a geometrically-suitable nanoparticle scaffold to achieve a high-density display of the trimers are important considerations that could improve the effect of nanoparticle-displayed gp140.
Collapse
Affiliation(s)
- Phindile Ximba
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Biopharming Research Unit, Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rosamund Chapman
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Ann Meyers
- Biopharming Research Unit, Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
| | - Emmanuel Margolin
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Biopharming Research Unit, Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Michiel T van Diepen
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Adam F Sander
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jeremy Woodward
- Structural Biology Research Unit, University of Cape Town, South Africa
| | - Penny L Moore
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Anna-Lise Williamson
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Edward P Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
14
|
Engineering pan-HIV-1 neutralization potency through multispecific antibody avidity. Proc Natl Acad Sci U S A 2022; 119:2112887119. [PMID: 35064083 PMCID: PMC8795538 DOI: 10.1073/pnas.2112887119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2021] [Indexed: 02/08/2023] Open
Abstract
The high genetic diversity of HIV-1 continues to be a major barrier to the development of therapeutics for prevention and treatment. Here, we describe the design of an antibody platform that allows assembly of a highly avid, multispecific molecule that targets, simultaneously, the most conserved epitopes on the HIV-1 envelope glycoprotein. The combined multivalency and multispecificity translates into extraordinary neutralization potency and pan-neutralization of HIV-1 strains, surpassing that of the most potent anti-HIV broadly neutralizing antibody cocktails. Deep mining of B cell repertoires of HIV-1–infected individuals has resulted in the isolation of dozens of HIV-1 broadly neutralizing antibodies (bNAbs). Yet, it remains uncertain whether any such bNAbs alone are sufficiently broad and potent to deploy therapeutically. Here, we engineered HIV-1 bNAbs for their combination on a single multispecific and avid molecule via direct genetic fusion of their Fab fragments to the human apoferritin light chain. The resulting molecule demonstrated a remarkable median IC50 value of 0.0009 µg/mL and 100% neutralization coverage of a broad HIV-1 pseudovirus panel (118 isolates) at a 4 µg/mL cutoff—a 32-fold enhancement in viral neutralization potency compared to a mixture of the corresponding HIV-1 bNAbs. Importantly, Fc incorporation on the molecule and engineering to modulate Fc receptor binding resulted in IgG-like bioavailability in vivo. This robust plug-and-play antibody design is relevant against indications where multispecificity and avidity are leveraged simultaneously to mediate optimal biological activity.
Collapse
|
15
|
Ganapathy K. Infectious Bronchitis Virus Infection of Chicken: The Essential Role of Mucosal Immunity. Avian Dis 2021; 65:619-623. [DOI: 10.1637/aviandiseases-d-21-00100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Kannan Ganapathy
- Institute of Infection, Veterinary & Ecology Sciences, University of Liverpool, Neston, Cheshire, CH64 7TE, United Kingdom
| |
Collapse
|
16
|
Escolano A, Gristick HB, Gautam R, DeLaitsch AT, Abernathy ME, Yang Z, Wang H, Hoffmann MA, Nishimura Y, Wang Z, Koranda N, Kakutani LM, Gao H, Gnanapragasam PNP, Raina H, Gazumyan A, Cipolla M, Oliveira TY, Ramos V, Irvine DJ, Silva M, West AP, Keeffe JR, Barnes CO, Seaman MS, Nussenzweig MC, Martin MA, Bjorkman PJ. Sequential immunization of macaques elicits heterologous neutralizing antibodies targeting the V3-glycan patch of HIV-1 Env. Sci Transl Med 2021; 13:eabk1533. [PMID: 34818054 PMCID: PMC8932345 DOI: 10.1126/scitranslmed.abk1533] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Broadly neutralizing antibodies (bNAbs) against HIV-1 develop after prolonged virus and antibody coevolution. Previous studies showed that sequential immunization with a V3-glycan patch germline-targeting HIV-1 envelope trimer (Env) followed by variant Envs can reproduce this process in mice carrying V3-glycan bNAb precursor B cells. However, eliciting bNAbs in animals with polyclonal antibody repertoires is more difficult. We used a V3-glycan immunogen multimerized on virus-like particles (VLPs), followed by boosting with increasingly native-like Env-VLPs, to elicit heterologous neutralizing antibodies in nonhuman primates (NHPs). Structures of antibody/Env complexes after prime and boost vaccinations demonstrated target epitope recognition with apparent maturation to accommodate glycans. However, we also observed increasing off-target antibodies with boosting. Eight vaccinated NHPs were subsequently challenged with simian-human immunodeficiency virus (SHIV), and seven of eight animals became infected. The single NHP that remained uninfected after viral challenge exhibited one of the lowest neutralization titers against the challenge virus. These results demonstrate that more potent heterologous neutralization resulting from sequential immunization is necessary for protection in this animal model. Thus, improved prime-boost regimens to increase bNAb potency and stimulate other immune protection mechanisms are essential for developing anti–HIV-1 vaccines.
Collapse
Affiliation(s)
- Amelia Escolano
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Harry B. Gristick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Rajeev Gautam
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Present address: Virology Branch, Basic Research Section, NIAID, NIH. 5601 Fisher’s Lane. Rockville, MD 20892, USA
| | - Andrew T. DeLaitsch
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Morgan E. Abernathy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Zhi Yang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Haoqing Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Present address: Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | - Magnus A.G. Hoffmann
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yoshiaki Nishimura
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zijun Wang
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Nicholas Koranda
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Leesa M. Kakutani
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Han Gao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Henna Raina
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ana Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Melissa Cipolla
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Thiago Y. Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Victor Ramos
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Darrell J. Irvine
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Murillo Silva
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anthony P. West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jennifer R. Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Christopher O. Barnes
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Present address: Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Michael S. Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Malcolm A. Martin
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
17
|
Astronomo RD, Lemos MP, Narpala SR, Czartoski J, Fleming LB, Seaton KE, Prabhakaran M, Huang Y, Lu Y, Westerberg K, Zhang L, Gross MK, Hural J, Tieu HV, Baden LR, Hammer S, Frank I, Ochsenbauer C, Grunenberg N, Ledgerwood JE, Mayer K, Tomaras G, McDermott AB, McElrath MJ. Rectal tissue and vaginal tissue from intravenous VRC01 recipients show protection against ex vivo HIV-1 challenge. J Clin Invest 2021; 131:e146975. [PMID: 34166231 DOI: 10.1172/jci146975] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/22/2021] [Indexed: 11/17/2022] Open
Abstract
BackgroundVRC01, a potent, broadly neutralizing monoclonal antibody, inhibits simian-HIV infection in animal models. The HVTN 104 study assessed the safety and pharmacokinetics of VRC01 in humans. We extend the clinical evaluation to determine intravenously infused VRC01 distribution and protective function at mucosal sites of HIV-1 entry.MethodsHealthy, HIV-1-uninfected men (n = 7) and women (n = 5) receiving VRC01 every 2 months provided mucosal and serum samples once, 4-13 days after infusion. Eleven male and 8 female HIV-seronegative volunteers provided untreated control samples. VRC01 levels were measured in serum, secretions, and tissue, and HIV-1 inhibition was determined in tissue explants.ResultsMedian VRC01 levels were quantifiable in serum (96.2 μg/mL or 1.3 pg/ng protein), rectal tissue (0.11 pg/ng protein), rectal secretions (0.13 pg/ng protein), vaginal tissue (0.1 pg/ng protein), and cervical secretions (0.44 pg/ng protein) from all recipients. VRC01/IgG ratios in male serum correlated with those in paired rectal tissue (r = 0.893, P = 0.012) and rectal secretions (r = 0.9643, P = 0.003). Ex vivo HIV-1Bal26 challenge infected 4 of 21 rectal explants from VRC01 recipients versus 20 of 22 from controls (P = 0.005); HIV-1Du422.1 infected 20 of 21 rectal explants from VRC01 recipients and 12 of 12 from controls (P = 0.639). HIV-1Bal26 infected 0 of 14 vaginal explants of VRC01 recipients compared with 23 of 28 control explants (P = 0.003).ConclusionIntravenous VRC01 distributes into the female genital and male rectal mucosa and retains anti-HIV-1 functionality, inhibiting a highly neutralization-sensitive but not a highly resistant HIV-1 strain in mucosal tissue. These findings lend insight into VRC01 mucosal infiltration and provide perspective on in vivo protective efficacy.FundingNational Institute of Allergy and Infectious Diseases and Bill & Melinda Gates Foundation.
Collapse
Affiliation(s)
- Rena D Astronomo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Maria P Lemos
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Sandeep R Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Julie Czartoski
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Lamar Ballweber Fleming
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Kelly E Seaton
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Madhu Prabhakaran
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Yunda Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Yiwen Lu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Katharine Westerberg
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Lily Zhang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Mary K Gross
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - John Hural
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Lindsey R Baden
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Scott Hammer
- Columbia University Medical Center, New York, New York, USA
| | - Ian Frank
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Nicole Grunenberg
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Julie E Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | | | - Georgia Tomaras
- Department of Surgery, Duke University, Durham, North Carolina, USA.,Department of Immunology and Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
18
|
Garber DA, Guenthner P, Mitchell J, Ellis S, Gazumyan A, Nason M, Seaman MS, McNicholl JM, Nussenzweig MC, Heneine W. Broadly neutralizing antibody-mediated protection of macaques against repeated intravenous exposures to simian-human immunodeficiency virus. AIDS 2021; 35:1567-1574. [PMID: 33966028 DOI: 10.1097/qad.0000000000002934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The opioid epidemic has increased parentally acquired HIV infection. To inform the development of a long-acting prevention strategy, we evaluated the protective efficacy of broadly neutralizing antibodies (bNAbs) against intravenous simian-human immunodeficiency virus (SHIV) infection in macaques. DESIGN Five cynomolgus macaques were injected once subcutaneously with 10-1074 and 3BNC117 (10 mg each kg-1) and were repeatedly challenged intravenously once weekly with SHIVAD8-EO (130 TCID50), until infection was confirmed via plasma viral load assay. Two control macaques, which received no antibody, were challenged identically. METHODS Plasma viremia was monitored via RT-qPCR assay. bNAb concentrations were determined longitudinally in plasma samples via TZM-bl neutralization assays using virions pseudotyped with 10-1074-sensitive (X2088_c9) or 3BNC117-sensitive (Q769.d22) HIV envelope proteins. RESULTS Passively immunized macaques were protected against a median of five weekly intravenous SHIV challenges, as compared to untreated controls, which were infected following a single challenge. Of the two bNAbs, 10-1074 exhibited relatively longer persistence in vivo. The median plasma level of 10-1074 at SHIV breakthrough was 1.1 μg ml-1 (range: 0.6-1.6 μg ml-1), whereas 3BNC117 was undetectable. Probit modeling estimated that 6.6 μg ml-1 of 10-1074 in plasma corresponded to a 99% reduction in per-challenge infection probability, as compared to controls. CONCLUSIONS Significant protection against repeated intravenous SHIV challenges was observed following administration of 10-1074 and 3BNC117 and was due primarily to 10-1074. Our findings extend preclinical studies of bNAb-mediated protection against mucosal SHIV acquisition and support the possibility that intermittent subcutaneous injections of 10-1074 could serve as long-acting preexposure prophylaxis for persons who inject drugs.
Collapse
Affiliation(s)
- David A Garber
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, GA
| | - Patricia Guenthner
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, GA
| | - James Mitchell
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, GA
| | - Shanon Ellis
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, GA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Martha Nason
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Janet M McNicholl
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, GA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Walid Heneine
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, GA
| |
Collapse
|
19
|
Cai F, Chen WH, Wu W, Jones JA, Choe M, Gohain N, Shen X, LaBranche C, Eaton A, Sutherland L, Lee EM, Hernandez GE, Wu NR, Scearce R, Seaman MS, Moody MA, Santra S, Wiehe K, Tomaras GD, Wagh K, Korber B, Bonsignori M, Montefiori DC, Haynes BF, de Val N, Joyce MG, Saunders KO. Structural and genetic convergence of HIV-1 neutralizing antibodies in vaccinated non-human primates. PLoS Pathog 2021; 17:e1009624. [PMID: 34086838 PMCID: PMC8216552 DOI: 10.1371/journal.ppat.1009624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/21/2021] [Accepted: 05/07/2021] [Indexed: 11/19/2022] Open
Abstract
A primary goal of HIV-1 vaccine development is the consistent elicitation of protective, neutralizing antibodies. While highly similar neutralizing antibodies (nAbs) have been isolated from multiple HIV-infected individuals, it is unclear whether vaccination can consistently elicit highly similar nAbs in genetically diverse primates. Here, we show in three outbred rhesus macaques that immunization with Env elicits a genotypically and phenotypically conserved nAb response. From these vaccinated macaques, we isolated four antibody lineages that had commonalities in immunoglobulin variable, diversity, and joining gene segment usage. Atomic-level structures of the antigen binding fragments of the two most similar antibodies showed nearly identical paratopes. The Env binding modes of each of the four vaccine-induced nAbs were distinct from previously known monoclonal HIV-1 neutralizing antibodies, but were nearly identical to each other. The similarities of these antibodies show that the immune system in outbred primates can respond to HIV-1 Env vaccination with a similar structural and genotypic solution for recognizing a particular neutralizing epitope. These results support rational vaccine design for HIV-1 that aims to reproducibly elicit, in genetically diverse primates, nAbs with specific paratope structures capable of binding conserved epitopes.
Collapse
Affiliation(s)
- Fangping Cai
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Wei-Hung Chen
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Weimin Wu
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland, United States of America
| | - Julia A. Jones
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Misook Choe
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Neelakshi Gohain
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Celia LaBranche
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Amanda Eaton
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Laura Sutherland
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Esther M. Lee
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Giovanna E. Hernandez
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Nelson R. Wu
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Richard Scearce
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Michael S. Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - M. Anthony Moody
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Sampa Santra
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Georgia D. Tomaras
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Kshitij Wagh
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Bette Korber
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Mattia Bonsignori
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David C. Montefiori
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Natalia de Val
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland, United States of America
| | - M. Gordon Joyce
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Kevin O. Saunders
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
20
|
Spencer DA, Shapiro MB, Haigwood NL, Hessell AJ. Advancing HIV Broadly Neutralizing Antibodies: From Discovery to the Clinic. Front Public Health 2021; 9:690017. [PMID: 34123998 PMCID: PMC8187619 DOI: 10.3389/fpubh.2021.690017] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022] Open
Abstract
Despite substantial progress in confronting the global HIV-1 epidemic since its inception in the 1980s, better approaches for both treatment and prevention will be necessary to end the epidemic and remain a top public health priority. Antiretroviral therapy (ART) has been effective in extending lives, but at a cost of lifelong adherence to treatment. Broadly neutralizing antibodies (bNAbs) are directed to conserved regions of the HIV-1 envelope glycoprotein trimer (Env) and can block infection if present at the time of viral exposure. The therapeutic application of bNAbs holds great promise, and progress is being made toward their development for widespread clinical use. Compared to the current standard of care of small molecule-based ART, bNAbs offer: (1) reduced toxicity; (2) the advantages of extended half-lives that would bypass daily dosing requirements; and (3) the potential to incorporate a wider immune response through Fc signaling. Recent advances in discovery technology can enable system-wide mining of the immunoglobulin repertoire and will continue to accelerate isolation of next generation potent bNAbs. Passive transfer studies in pre-clinical models and clinical trials have demonstrated the utility of bNAbs in blocking or limiting transmission and achieving viral suppression. These studies have helped to define the window of opportunity for optimal intervention to achieve viral clearance, either using bNAbs alone or in combination with ART. None of these advances with bNAbs would be possible without technological advancements and expanding the cohorts of donor participation. Together these elements fueled the remarkable growth in bNAb development. Here, we review the development of bNAbs as therapies for HIV-1, exploring advances in discovery, insights from animal models and early clinical trials, and innovations to optimize their clinical potential through efforts to extend half-life, maximize the contribution of Fc effector functions, preclude escape through multiepitope targeting, and the potential for sustained delivery.
Collapse
Affiliation(s)
- David A. Spencer
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
| | - Mariya B. Shapiro
- Molecular Microbiology & Immunology Department, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Nancy L. Haigwood
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
- Molecular Microbiology & Immunology Department, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Ann J. Hessell
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
| |
Collapse
|
21
|
Abstract
Extensive experiments performed mostly in a variety of animal models convincingly demonstrated the protective effect of polyclonal or monoclonal antibodies administered by the mucosal route. Because of the independence of the mucosal and systemic compartments of the immune system, antibodies from the circulation are not effectively transported in sufficient quantities into external secretions. Nevertheless, local application of antibodies of the desired specificity to mucosal membranes of the respiratory, gastrointestinal, and female genital tracts protected experimental animals from the subsequent challenge by corresponding viral or bacterial pathogens. Thus, generation of monoclonal antibodies of desired specificity and the selection of delivery systems to extend their otherwise short survival on some mucosal surfaces are essential aims of their usability in humans for the effective prevention of mucosally acquired infectious diseases.
Collapse
Affiliation(s)
- Jiri Mestecky
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.,Laboratory of Cellular and Molecular Immunology, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
22
|
Mangold JF, Goswami R, Nelson AN, Martinez DR, Fouda GG, Permar SR. Maternal Intervention to Prevent Mother-to-Child Transmission of HIV: Moving Beyond Antiretroviral Therapy. Pediatr Infect Dis J 2021; 40:S5-S10. [PMID: 34042904 PMCID: PMC9215267 DOI: 10.1097/inf.0000000000002774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Widespread availability of antiretroviral therapy among pregnant women living with HIV has greatly reduced the rate of mother-to-child transmission (MTCT) of HIV across the globe. However, while Joint United Nations Programme on HIV/AIDS has set targets to reduce the annual number of new pediatric HIV infections to fewer than 40,000 in 2018 and fewer than 20,000 in 2020, progress towards these targets has plateaued at an unacceptably high global estimate of greater than 160,000 children newly infected with HIV in 2018. Moreover, it has become clear that expansion of maternal antiretroviral therapy alone will not be sufficient to close the remaining gap and eliminate MTCT of HIV. Additional strategies such as maternal or infant passive and/or active immunization that synergize with maternal antiretroviral therapy will be required to end the pediatric HIV epidemic. In this review, we outline the landscape of existing maternal interventions and emerging maternal immune-based approaches to prevent MTCT of HIV.
Collapse
Affiliation(s)
- Jesse F. Mangold
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Ria Goswami
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Ashley N. Nelson
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - David R. Martinez
- Department of Epidemiology, University of North Carolina at Chapel Hill School of Global Public Health, Chapel Hill, NC, USA
| | - Genevieve G. Fouda
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
- Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Sallie R. Permar
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
- Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
23
|
Seydoux E, Wan YH, Feng J, Wall A, Aljedani S, Homad LJ, MacCamy AJ, Weidle C, Gray MD, Brumage L, Taylor JJ, Pancera M, Stamatatos L, McGuire AT. Development of a VRC01-class germline targeting immunogen derived from anti-idiotypic antibodies. Cell Rep 2021; 35:109084. [PMID: 33951425 PMCID: PMC8127986 DOI: 10.1016/j.celrep.2021.109084] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/08/2021] [Accepted: 04/13/2021] [Indexed: 10/27/2022] Open
Abstract
An effective HIV-1 vaccine will likely need to elicit broadly neutralizing antibodies (bNAbs). Broad and potent VRC01-class bNAbs have been isolated from multiple infected individuals, suggesting that they could be reproducibly elicited by vaccination. Several HIV-1 envelope-derived germline-targeting immunogens have been designed to engage naive VRC01-class precursor B cells. However, they also present off-target epitopes that could hinder development of VRC01-class bNAbs. We characterize a panel of anti-idiotypic monoclonal antibodies (ai-mAbs) raised against inferred-germline (iGL) VRC01-class antibodies. By leveraging binding, structural, and B cell sorting data, we engineered a bispecific molecule derived from two ai-mAbs; one specific for VRC01-class heavy chains and one specific for VRC01-class light chains. The bispecific molecule preferentially activates iGL-VRC01 B cells in vitro and induces specific antibody responses in a murine adoptive transfer model with a diverse polyclonal B cell repertoire. This molecule represents an alternative non-envelope-derived germline-targeting immunogen that can selectively activate VRC01-class precursors in vivo.
Collapse
Affiliation(s)
- Emilie Seydoux
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA
| | - Yu-Hsin Wan
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA
| | - Junli Feng
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA
| | - Abigail Wall
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA
| | - Safia Aljedani
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA
| | - Leah J Homad
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA
| | - Anna J MacCamy
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA
| | - Connor Weidle
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA
| | - Matthew D Gray
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA
| | - Lauren Brumage
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA
| | - Justin J Taylor
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA; University of Washington, Department of Global Health, Seattle, WA 98195, USA; University of Washington, Department of Immunology, Seattle, WA 98109, USA
| | - Marie Pancera
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA
| | - Leonidas Stamatatos
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA; University of Washington, Department of Global Health, Seattle, WA 98195, USA.
| | - Andrew T McGuire
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA; University of Washington, Department of Global Health, Seattle, WA 98195, USA.
| |
Collapse
|
24
|
Frenkel LM, Kuller L, Beck IA, Tsai CC, Joy JP, Mulvania TM, Hu SL, Montefiori DC, Anderson DM. Immunization by exposure to live virus (SIVmne/HIV-2287) during antiretroviral drug prophylaxis may reduce risk of subsequent viral challenge. PLoS One 2021; 16:e0240495. [PMID: 33914754 PMCID: PMC8084236 DOI: 10.1371/journal.pone.0240495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 04/11/2021] [Indexed: 11/18/2022] Open
Abstract
Rationale/Study design A major challenge in the development of HIV vaccines is finding immunogens that elicit protection against a broad range of viral strains. Immunity to a narrow range of viral strains may protect infants of HIV-infected women or partners discordant for HIV. We hypothesized that immunization to the relevant viral variants could be achieved by exposure to infectious virus during prophylaxis with antiretroviral drugs. To explore this approach in an animal model, macaques were exposed to live virus (SIVmne or HIV-2287) during prophylaxis with parenteral tenofovir and humoral and cellular immune responses were quantified. Subsequently, experimental animals were challenged with homologous virus to evaluate protection from infection, and if infection occurred, the course of disease was compared to control animals. Experimental animals uninfected with SIVmne were challenged with heterologous HIV-2287 to assess resistance to retroviral infection. Methodology/Principal findings Juvenile female Macaca nemestrina (N = 8) were given ten weekly intravaginal exposures with either moderately (SIVmne) or highly (HIV-2287) pathogenic virus during tenofovir prophylaxis. Tenofovir protected all 8 experimental animals from infection, while all untreated control animals became infected. Specific non-neutralizing antibodies were elicited in blood and vaginal secretions of experimental animals, but no ELISPOT responses were detected. Six weeks following the cessation of tenofovir, intravaginal challenge with homologous virus infected 2/4 (50%) of the SIVmne-immunized animals and 4/4 (100%) of the HIV-2287-immunized animals. The two SIVmne-infected and 3 (75%) HIV-2287-infected had attenuated disease, suggesting partial protection. Conclusions/Significance Repeated exposure to SIVmne or HIV-2287, during antiretroviral prophylaxis that blocked infection, induced binding antibodies in the blood and mucosa, but not neutralizing antibodies or specific cellular immune responses. Studies to determine whether antibodies are similarly induced in breastfeeding infants and sexual partners discordant for HIV infection and receiving pre-exposure antiretroviral prophylaxis are warranted, including whether these antibodies appear to confer partial or complete protection from infection.
Collapse
Affiliation(s)
- Lisa M. Frenkel
- Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| | - LaRene Kuller
- Washington National Primate Research Center (WaNPRC), Seattle, Washington, United States of America
| | - Ingrid A. Beck
- Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Che-Chung Tsai
- Washington National Primate Research Center (WaNPRC), Seattle, Washington, United States of America
| | - Jaimy P. Joy
- Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Thera M. Mulvania
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Shiu-Lok Hu
- Department of Pharmaceutics, University of Washington, Seattle, Washington, United States of America
| | - David C. Montefiori
- Duke University Medical Center, Durham, North Carolina, United States of America
| | - David M. Anderson
- Washington National Primate Research Center (WaNPRC), Seattle, Washington, United States of America
| |
Collapse
|
25
|
Julg B, Barouch D. Broadly neutralizing antibodies for HIV-1 prevention and therapy. Semin Immunol 2021; 51:101475. [PMID: 33858765 DOI: 10.1016/j.smim.2021.101475] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 12/21/2022]
Abstract
Despite immense progress in our ability to prevent and treat HIV-1 infection, HIV-1 remains an incurable disease and a highly efficacious HIV-1 vaccine is not yet available. Additional tools to prevent and treat HIV-1 are therefore necessary. The identification of potent and broadly neutralizing antibodies (bNAbs) against HIV-1 has revolutionized the field and may prove clinically useful. Significant advances have been made in identifying broader and more potent antibodies, characterizing antibodies in preclinical animal models, engineering antibodies to extend half-life and expand breadth and functionality, and evaluating the efficacy of single bNAbs and bNAb combinations in people with and without HIV-1. Here, we review recent progress in developing bNAbs for the prevention and treatment of HIV-1.
Collapse
Affiliation(s)
- Boris Julg
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA; Beth Israel Deaconess Medical Center, Boston, MA, 02115, USA.
| | - Dan Barouch
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA; Beth Israel Deaconess Medical Center, Boston, MA, 02115, USA.
| |
Collapse
|
26
|
Rawat P, Gupta S. Dual engineered gold nanoparticle based synergistic prophylaxis delivery system for HIV/AIDS. Med Hypotheses 2021; 150:110576. [PMID: 33799160 DOI: 10.1016/j.mehy.2021.110576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 11/15/2022]
Abstract
HIV is a pandemic and continuously raises problem across the world. This disease puts an immense pressure on treatment modalities. There are only few clinically accepted drugs available for the treatment and few molecules under clinical development. Although, the antiretroviral drugs give reliable and positive response on control of virus replication but during the long treatment, it has been affirmed that there are number of side effects. With recent advancements in biotechnology, nanomaterials such as gold and silver etc. are proving to be a game changer in targeted drug delivery treatment. As gold nanoparticles (AuNPs) are biocompatible natural excipients, a lot of scientists are very eager to investigate more about the immune effects of AuNPs to create a safe and cost effective treatment that could potentially help in the reduction of numerous toxic effects present in the existing treatments of various critical diseases like cancer and HIV etc. In this context, the present hypothesis recommends the use of combination drug delivery strategy based on gold nanoparticles that could pave the way to overcome adverse results of existing delivery techniques of antiretroviral drugs to treat HIV. This review also highlights the fact that a proper development of this gold nanoparticle combination antiretroviral drug delivery approach will not only help to suppress the virus multiplication but also target the viral entry area by attaching with gp120 (glycoprotein 120), and inhibit the binding with CD4 (Cluster of differentiation 4) T cells.
Collapse
Affiliation(s)
- Purnima Rawat
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh 453552, India.
| | - Sharad Gupta
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh 453552, India.
| |
Collapse
|
27
|
Dispinseri S, Cavarelli M, Tolazzi M, Plebani AM, Jansson M, Scarlatti G. Continuous HIV-1 Escape from Autologous Neutralization and Development of Cross-Reactive Antibody Responses Characterizes Slow Disease Progression of Children. Vaccines (Basel) 2021; 9:vaccines9030260. [PMID: 33799407 PMCID: PMC7999787 DOI: 10.3390/vaccines9030260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 11/16/2022] Open
Abstract
The antibodies with different effector functions evoked by Human Immunodeficiency Virus type 1 (HIV-1) transmitted from mother to child, and their role in the pathogenesis of infected children remain unresolved. So, too, the kinetics and breadth of these responses remain to be clearly defined, compared to those developing in adults. Here, we studied the kinetics of the autologous and heterologous neutralizing antibody (Nab) responses, in addition to antibody-dependent cellular cytotoxicity (ADCC), in HIV-1 infected children with different disease progression rates followed from close after birth and five years on. Autologous and heterologous neutralization were determined by Peripheral blood mononuclear cells (PBMC)- and TZMbl-based assays, and ADCC was assessed with the GranToxiLux assay. The reactivity to an immunodominant HIV-1 gp41 epitope, and childhood vaccine antigens, was assessed by ELISA. Newborns displayed antibodies directed towards the HIV-1 gp41 epitope. However, antibodies neutralizing the transmitted virus were undetectable. Nabs directed against the transmitted virus developed usually within 12 months of age in children with slow progression, but rarely in rapid progressors. Thereafter, autologous Nabs persisted throughout the follow-up of the slow progressors and induced a continuous emergence of escape variants. Heterologous cross-Nabs were detected within two years, but their subsequent increase in potency and breadth was mainly a trait of slow progressors. Analogously, titers of antibodies mediating ADCC to gp120 BaL pulsed target cells increased in slow progressors during follow-up. The kinetics of antibody responses to the immunodominant viral antigen and the vaccine antigens were sustained and independent of disease progression. Persistent autologous Nabs triggering viral escape and an increase in the breadth and potency of cross-Nabs are exclusive to HIV-1 infected slowly progressing children.
Collapse
Affiliation(s)
- Stefania Dispinseri
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (S.D.); (M.T.)
| | - Mariangela Cavarelli
- Inserm, CEA, Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), University Paris-Saclay, 92265 Fontenay-aux-Roses & Le Kremlin-Bicêtre, France;
| | - Monica Tolazzi
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (S.D.); (M.T.)
| | - Anna Maria Plebani
- Pediatric Emergency Unit, Filippo Del Ponte Hospital, ASST-Settelaghi, 21100 Varese, Italy;
| | - Marianne Jansson
- Department of Laboratory Medicine, Lund University, 22242 Lund, Sweden;
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (S.D.); (M.T.)
- Correspondence: ; Tel.: +39-022643-4906; Fax: +39-022643-4905
| |
Collapse
|
28
|
Xiao P, Dienger-Stambaugh K, Chen X, Wei H, Phan S, Beavis AC, Singh K, Adhikary NRD, Tiwari P, Villinger F, He B, Spearman P. Parainfluenza Virus 5 Priming Followed by SIV/HIV Virus-Like-Particle Boosting Induces Potent and Durable Immune Responses in Nonhuman Primates. Front Immunol 2021; 12:623996. [PMID: 33717130 PMCID: PMC7946978 DOI: 10.3389/fimmu.2021.623996] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/13/2021] [Indexed: 11/26/2022] Open
Abstract
The search for a preventive vaccine against HIV infection remains an ongoing challenge, indicating the need for novel approaches. Parainfluenza virus 5 (PIV5) is a paramyxovirus replicating in the upper airways that is not associated with any animal or human pathology. In animal models, PIV5-vectored vaccines have shown protection against influenza, RSV, and other human pathogens. Here, we generated PIV5 vaccines expressing HIV envelope (Env) and SIV Gag and administered them intranasally to macaques, followed by boosting with virus-like particles (VLPs) containing trimeric HIV Env. Moreover, we compared the immune responses generated by PIV5-SHIV prime/VLPs boost regimen in naïve vs a control group in which pre-existing immunity to the PIV5 vector was established. We demonstrate for the first time that intranasal administration of PIV5-based HIV vaccines is safe, well-tolerated and immunogenic, and that boosting with adjuvanted trimeric Env VLPs enhances humoral and cellular immune responses. The PIV5 prime/VLPs boost regimen induced robust and durable systemic and mucosal Env-specific antibody titers with functional activities including ADCC and neutralization. This regimen also induced highly polyfunctional antigen-specific T cell responses. Importantly, we show that diminished responses due to PIV5 pre-existing immunity can be overcome in part with VLP protein boosts. Overall, these results establish that PIV5-based HIV vaccine candidates are promising and warrant further investigation including moving on to primate challenge studies.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Administration, Intranasal
- Animals
- Antibodies, Viral/blood
- Cattle
- Cell Line
- Gene Products, gag/administration & dosage
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- HIV-1/genetics
- HIV-1/immunology
- Host-Pathogen Interactions
- Immunity, Cellular
- Immunity, Humoral
- Immunity, Mucosal
- Immunogenicity, Vaccine
- Macaca mulatta
- Male
- Nasal Mucosa/immunology
- Nasal Mucosa/virology
- Parainfluenza Virus 5/genetics
- Parainfluenza Virus 5/immunology
- Simian Immunodeficiency Virus/genetics
- Simian Immunodeficiency Virus/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/virology
- Vaccination
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- Virion/genetics
- Virion/immunology
- env Gene Products, Human Immunodeficiency Virus/administration & dosage
- env Gene Products, Human Immunodeficiency Virus/genetics
- env Gene Products, Human Immunodeficiency Virus/immunology
Collapse
Affiliation(s)
- Peng Xiao
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, United States
| | - Krista Dienger-Stambaugh
- Division of Infectious Diseases, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, OH, United States
| | - Xuemin Chen
- Division of Infectious Diseases, Emory University, Atlanta, GA, United States
| | - Huiling Wei
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States
| | - Shannon Phan
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States
| | - Ashley C. Beavis
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States
| | - Karnail Singh
- Division of Infectious Diseases, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, OH, United States
| | - Nihar R. Deb Adhikary
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, United States
| | - Pooja Tiwari
- Wallace H Coulter Department of Bioengineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, United States
| | - Biao He
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States
| | - Paul Spearman
- Division of Infectious Diseases, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
29
|
HIV-1 Envelope Glycosylation and the Signal Peptide. Vaccines (Basel) 2021; 9:vaccines9020176. [PMID: 33669676 PMCID: PMC7922494 DOI: 10.3390/vaccines9020176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/07/2021] [Accepted: 02/16/2021] [Indexed: 12/25/2022] Open
Abstract
The RV144 trial represents the only vaccine trial to demonstrate any protective effect against HIV-1 infection. While the reason(s) for this protection are still being evaluated, it serves as justification for widespread efforts aimed at developing new, more effective HIV-1 vaccines. Advances in our knowledge of HIV-1 immunogens and host antibody responses to these immunogens are crucial to informing vaccine design. While the envelope (Env) protein is the only viral protein present on the surface of virions, it exists in a complex trimeric conformation and is decorated with an array of variable N-linked glycans, making it an important but difficult target for vaccine design. Thus far, efforts to elicit a protective humoral immune response using structural mimics of native Env trimers have been unsuccessful. Notably, the aforementioned N-linked glycans serve as a component of many of the epitopes crucial for the induction of potentially protective broadly neutralizing antibodies (bnAbs). Thus, a greater understanding of Env structural determinants, most critically Env glycosylation, will no doubt be of importance in generating effective immunogens. Recent studies have identified the HIV-1 Env signal peptide (SP) as an important contributor to Env glycosylation. Further investigation into the mechanisms by which the SP directs glycosylation will be important, both in the context of understanding HIV-1 biology and in order to inform HIV-1 vaccine design.
Collapse
|
30
|
Carr LE, Virmani MD, Rosa F, Munblit D, Matazel KS, Elolimy AA, Yeruva L. Role of Human Milk Bioactives on Infants' Gut and Immune Health. Front Immunol 2021; 12:604080. [PMID: 33643310 PMCID: PMC7909314 DOI: 10.3389/fimmu.2021.604080] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/22/2021] [Indexed: 12/26/2022] Open
Abstract
Exclusive human milk feeding of the newborn is recommended during the first 6 months of life to promote optimal health outcomes during early life and beyond. Human milk contains a variety of bioactive factors such as hormones, cytokines, leukocytes, immunoglobulins, lactoferrin, lysozyme, stem cells, human milk oligosaccharides (HMOs), microbiota, and microRNAs. Recent findings highlighted the potential importance of adding HMOs into infant formula for their roles in enhancing host defense mechanisms in neonates. Therefore, understanding the roles of human milk bioactive factors on immune function is critical to build the scientific evidence base around breastfeeding recommendations, and to enhance positive health outcomes in formula fed infants through modifications to formulas. However, there are still knowledge gaps concerning the roles of different milk components, the interactions between the different components, and the mechanisms behind health outcomes are poorly understood. This review aims to show the current knowledge about HMOs, milk microbiota, immunoglobulins, lactoferrin, and milk microRNAs (miRNAs) and how these could have similar mechanisms of regulating gut and microbiota function. It will also highlight the knowledge gaps for future research.
Collapse
Affiliation(s)
- Laura E. Carr
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Arkansas Children's Nutrition Center, Little Rock, AR, United States
| | - Misty D. Virmani
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Fernanda Rosa
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Arkansas Children's Nutrition Center, Little Rock, AR, United States
| | - Daniel Munblit
- Department of Pediatrics and Pediatric Infectious Diseases, Institute of Child's Health, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Inflammation, Repair and Development Section, Faculty of Medicine, Imperial College London, National Heart and Lung Institute, London, United Kingdom
- Research and Clinical Center for Neuropsychiatry, Moscow, Russia
| | | | - Ahmed A. Elolimy
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Arkansas Children's Nutrition Center, Little Rock, AR, United States
| | - Laxmi Yeruva
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Arkansas Children's Nutrition Center, Little Rock, AR, United States
- Arkansas Children's Research Institute, Little Rock, AR, United States
| |
Collapse
|
31
|
Kwon YD, Asokan M, Gorman J, Zhang B, Liu Q, Louder MK, Lin BC, McKee K, Pegu A, Verardi R, Yang ES, Program VRCP, Carlton K, Doria-Rose NA, Lusso P, Mascola JR, Kwong PD. A matrix of structure-based designs yields improved VRC01-class antibodies for HIV-1 therapy and prevention. MAbs 2021; 13:1946918. [PMID: 34328065 PMCID: PMC8331036 DOI: 10.1080/19420862.2021.1946918] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 06/16/2021] [Accepted: 06/20/2021] [Indexed: 12/29/2022] Open
Abstract
Passive transfer of broadly neutralizing antibodies is showing promise in the treatment and prevention of HIV-1. One class of antibodies, the VRC01 class, appears especially promising. To improve VRC01-class antibodies, we combined structure-based design with a matrix-based approach to generate VRC01-class variants that filled an interfacial cavity, used diverse third-complementarity-determining regions, reduced potential steric clashes, or exploited extended contacts to a neighboring protomer within the envelope trimer. On a 208-strain panel, variant VRC01.23LS neutralized 90% of the panel at a geometric mean IC80 less than 1 μg/ml, and in transgenic mice with human neonatal-Fc receptor, the serum half-life of VRC01.23LS was indistinguishable from that of the parent VRC01LS, which has a half-life of 71 d in humans. A cryo-electron microscopy structure of VRC01.23 Fab in complex with BG505 DS-SOSIP.664 Env trimer determined at 3.4-Å resolution confirmed the structural basis for its ~10-fold improved potency relative to VRC01. Another variant, VRC07-523-F54-LS.v3, neutralized 95% of the 208-isolated panel at a geometric mean IC80 of less than 1 μg/ml, with a half-life comparable to that of the parental VRC07-523LS. Our matrix-based structural approach thus enables the engineering of VRC01 variants for HIV-1 therapy and prevention with improved potency, breadth, and pharmacokinetics.
Collapse
Affiliation(s)
- Young D. Kwon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mangaiarkarasi Asokan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Qingbo Liu
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mark K. Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bob C. Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Raffaello Verardi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - VRC Production Program
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kevin Carlton
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicole A. Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Paolo Lusso
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
32
|
Singh T, Otero CE, Li K, Valencia SM, Nelson AN, Permar SR. Vaccines for Perinatal and Congenital Infections-How Close Are We? Front Pediatr 2020; 8:569. [PMID: 33384972 PMCID: PMC7769834 DOI: 10.3389/fped.2020.00569] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/04/2020] [Indexed: 12/26/2022] Open
Abstract
Congenital and perinatal infections are transmitted from mother to infant during pregnancy across the placenta or during delivery. These infections not only cause pregnancy complications and still birth, but also result in an array of pediatric morbidities caused by physical deformities, neurodevelopmental delays, and impaired vision, mobility and hearing. Due to the burden of these conditions, congenital and perinatal infections may result in lifelong disability and profoundly impact an individual's ability to live to their fullest capacity. While there are vaccines to prevent congenital and perinatal rubella, varicella, and hepatitis B infections, many more are currently in development at various stages of progress. The spectrum of our efforts to understand and address these infections includes observational studies of natural history of disease, epidemiological evaluation of risk factors, immunogen design, preclinical research of protective immunity in animal models, and evaluation of promising candidates in vaccine trials. In this review we summarize this progress in vaccine development research for Cytomegalovirus, Group B Streptococcus, Herpes simplex virus, Human Immunodeficiency Virus, Toxoplasma, Syphilis, and Zika virus congenital and perinatal infections. We then synthesize this evidence to examine how close we are to developing a vaccine for these infections, and highlight areas where research is still needed.
Collapse
Affiliation(s)
- Tulika Singh
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, United States
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
| | - Claire E. Otero
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, United States
| | - Katherine Li
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, United States
| | - Sarah M. Valencia
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, United States
| | - Ashley N. Nelson
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, United States
| | - Sallie R. Permar
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, United States
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
| |
Collapse
|
33
|
Wang Z, Barnes CO, Gautam R, Cetrulo Lorenzi JC, Mayer CT, Oliveira TY, Ramos V, Cipolla M, Gordon KM, Gristick HB, West AP, Nishimura Y, Raina H, Seaman MS, Gazumyan A, Martin M, Bjorkman PJ, Nussenzweig MC, Escolano A. A broadly neutralizing macaque monoclonal antibody against the HIV-1 V3-Glycan patch. eLife 2020; 9:e61991. [PMID: 33084569 PMCID: PMC7577740 DOI: 10.7554/elife.61991] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/09/2020] [Indexed: 12/22/2022] Open
Abstract
A small fraction of HIV-1- infected humans develop broadly neutralizing antibodies (bNAbs) against HIV-1 that protect macaques from simian immunodeficiency HIV chimeric virus (SHIV). Similarly, a small number of macaques infected with SHIVs develop broadly neutralizing serologic activity, but less is known about the nature of simian antibodies. Here, we report on a monoclonal antibody, Ab1485, isolated from a macaque infected with SHIVAD8 that developed broadly neutralizing serologic activity targeting the V3-glycan region of HIV-1 Env. Ab1485 neutralizes 38.1% of HIV-1 isolates in a 42-pseudovirus panel with a geometric mean IC50 of 0.055 µg/mLl and SHIVAD8 with an IC50 of 0.028 µg/mLl. Ab1485 binds the V3-glycan epitope in a glycan-dependent manner. A 3.5 Å cryo-electron microscopy structure of Ab1485 in complex with a native-like SOSIP Env trimer showed conserved contacts with the N332gp120 glycan and gp120 GDIR peptide motif, but in a distinct Env-binding orientation relative to human V3/N332gp120 glycan-targeting bNAbs. Intravenous infusion of Ab1485 protected macaques from a high dose challenge with SHIVAD8. We conclude that macaques can develop bNAbs against the V3-glycan patch that resemble human V3-glycan bNAbs.
Collapse
Affiliation(s)
- Zijun Wang
- Laboratory of Molecular Immunology, The Rockefeller UniversityNew YorkUnited States
| | - Christopher O Barnes
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Rajeev Gautam
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | | | - Christian T Mayer
- Laboratory of Molecular Immunology, The Rockefeller UniversityNew YorkUnited States
| | - Thiago Y Oliveira
- Laboratory of Molecular Immunology, The Rockefeller UniversityNew YorkUnited States
| | - Victor Ramos
- Laboratory of Molecular Immunology, The Rockefeller UniversityNew YorkUnited States
| | - Melissa Cipolla
- Laboratory of Molecular Immunology, The Rockefeller UniversityNew YorkUnited States
| | - Kristie M Gordon
- Laboratory of Molecular Immunology, The Rockefeller UniversityNew YorkUnited States
| | - Harry B Gristick
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Anthony P West
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Yoshiaki Nishimura
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Henna Raina
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical CenterBostonUnited States
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller UniversityNew YorkUnited States
| | - Malcolm Martin
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical Institute. The Rockefeller UniversityNew YorkUnited States
| | - Amelia Escolano
- Laboratory of Molecular Immunology, The Rockefeller UniversityNew YorkUnited States
| |
Collapse
|
34
|
Cavarelli M, Le Grand R. The importance of semen leukocytes in HIV-1 transmission and the development of prevention strategies. Hum Vaccin Immunother 2020; 16:2018-2032. [PMID: 32614649 PMCID: PMC7553688 DOI: 10.1080/21645515.2020.1765622] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
HIV-1 sexual transmission occurs mostly through contaminated semen, which is a complex mixture of soluble factors with immunoregulatory functions and cells. It is well established that semen cells from HIV-1-infected men are able to produce the virus and that are harnessed to efficiently interact with mucosal barriers exposed during sexual intercourse. Several cofactors contribute to semen infectivity and may enhance the risk of HIV-1 transmission to a partner by increasing local HIV-1 replication in the male genital tract, thereby increasing the number of HIV-1-infected cells and the local HIV-1 shedding in semen. The introduction of combination antiretroviral therapy has improved the life expectancy of HIV-1 infected individuals; however, there is evidence that systemic viral suppression does not always reflect full viral suppression in the seminal compartment. This review focus on the role semen leukocytes play in HIV-1 transmission and discusses implications of the increased resistance of cell-mediated transmission to immune-based prevention strategies.
Collapse
Affiliation(s)
- Mariangela Cavarelli
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT) , Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Roger Le Grand
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT) , Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| |
Collapse
|
35
|
Wieczorek L, Peachman K, Adams DJ, Barrows B, Molnar S, Schoen J, Dawson P, Bryant C, Chenine AL, Sanders-Buell E, Srithanaviboonchai K, Pathipvanich P, Michael NL, Robb ML, Tovanabutra S, Rao M, Polonis VR. Evaluation of HIV-1 neutralizing and binding antibodies in maternal-infant transmission in Thailand. Virology 2020; 548:152-159. [PMID: 32838936 DOI: 10.1016/j.virol.2020.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 11/25/2022]
Abstract
Despite anti-retroviral therapy (ART) interventions for HIV+ pregnant mothers, over 43,000 perinatal infections occur yearly. Understanding risk factors that lead to mother-to-child transmission (MTCT) of HIV are critical. We evaluated maternal and infant plasma binding and neutralizing antibody responses in a drug-naïve, CRF01_AE infected MTCT cohort from Thailand to determine associations with transmission risk. Env V3-specific IgG and neutralizing antibody responses were significantly higher in HIV- infants, as compared to HIV+ infants. In fact, infant plasma neutralizing antibodies significantly associated with non-transmission. Conversely, increased maternal Env V3-specific IgG and neutralizing antibody responses were significantly associated with increased transmission risk, after controlling for maternal viral load. Our results highlight the importance of evaluating both maternal and infant humoral immune responses to better understand mechanisms of protection, as selective placental antibody transport may have a role in MTCT. This study further emphasizes the complex role of Env-specific antibodies in MTCT of CRF01_AE HIV.
Collapse
Affiliation(s)
- Lindsay Wieczorek
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Kristina Peachman
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Daniel J Adams
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA; Department of Pediatrics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Brittani Barrows
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Sebastian Molnar
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Jesse Schoen
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Peter Dawson
- The Emmes Corporation, 401 North Washington Street Suite 700, Rockville, MD, 20850, USA
| | - Chris Bryant
- The Emmes Corporation, 401 North Washington Street Suite 700, Rockville, MD, 20850, USA
| | - Agnès-Laurence Chenine
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Eric Sanders-Buell
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, 20817, USA
| | | | - Panita Pathipvanich
- Chiang Mai University, 239 Huaykaew Road, Suthep Mueang Chiang Mai District, Chiang Mai, 50200, Thailand
| | - Nelson L Michael
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Merlin L Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Mangala Rao
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA.
| | - Victoria R Polonis
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA.
| |
Collapse
|
36
|
Targeting broadly neutralizing antibody precursors: a naïve approach to vaccine design. Curr Opin HIV AIDS 2020; 14:294-301. [PMID: 30946041 DOI: 10.1097/coh.0000000000000548] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW It is believed that broadly neutralizing antibodies (bNAbs) will be an important component of an effective HIV-1 vaccine. Several immunogens have been designed that can target specific precursor B cells as a first step in a vaccine strategy to elicit bNAbs. RECENT FINDINGS Germline-targeting immunogens have been developed that specifically engage precursors of reproducible classes of anti-HIV antibodies, such as VRC01-class and apex-directed bNAbs. However, these precursors represent only a small portion of the immune repertoire and any antigen will inherently present off-target epitopes to the immune system that may confound bNAb development. Novel animal models are being utilized to understand the competitive fitness of bNAb precursors in the context of immunization with germline-targeting immunogens. In parallel, immunogen design efforts are being pursued to favor the development of bNAb responses over off-target responses following immunization. New studies of bNAb precursor interactions with glycosylated Env variants can inform prime-boost regimens geared towards accelerating bNAb development. SUMMARY Germline-targeting immunogens hold promise as a first step in eliciting a bNAb response through vaccination. A better understating of how efficiently germline-targeting immunogens can specifically target rare bNAb precursors is emerging. In addition, a more comprehensive structure-based understanding of critical barriers to bNAb elicitation, as well as commonalities between bNAb classes can further inform vaccine design.
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW In the absence of a protective vaccine against HIV-1, passive immunization using novel broadly neutralizing antibodies (bNAbs) is an attractive concept for HIV-1 prevention. Here, we summarize the results of preclinical and clinical studies of bNAbs, discuss strategies for optimizing bNAb efficacy and lay out current pathways for the development of bNAbs as prophylaxis. RECENT FINDINGS Passive transfer of second-generation bNAbs results inpotent protection against infection in preclinical animal models. Furthermore, multiple bNAbs targeting different epitopes on the HIV-1 envelope trimer are in clinical evaluation and have demonstrated favorable safety profiles and robust antiviral activity in chronically infected individuals. The confirmation that passive immunization with bNAb(s) will prevent HIV-1 acquisition in humans is pending and the focus of ongoing investigations. Given the global diversity of HIV-1, bNAb combinations or multispecific antibodies will most likely be required to produce the necessary breadth for effective protection. SUMMARY Encouraging results from preclinical and clinical studies support the development of bNAbs for prevention and a number of antibodies with exceptional breadth and potency are available for clinical evaluation. Further optimization of viral coverage and antibody half-life will accelerate the clinical implementation of bNAbs as a critical tool for HIV-1 prevention strategies.
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW Broadly neutralizing antibodies (bnAbs) are considered a key component of an effective HIV-1 vaccine, but despite intensive efforts, induction of bnAbs by vaccination has thus far not been possible. Potent bnAb activity is rare in natural infection and a deeper understanding of factors that promote or limit bnAb evolution is critical to guide bnAb vaccine development. This review reflects on recent key discoveries on correlates of bnAb development and discusses what further insights are needed to move forward. RECENT FINDINGS An increasing number of parameters have been implicated to influence bnAb development in natural infection. Most recent findings highlight a range of immune factors linked with bnAb evolution. Novel approaches have brought exciting progress in defining signatures of the viral envelope associated with bnAb activity. SUMMARY Focused efforts of recent years have unraveled a multiply layered process of HIV-1 bnAb development. As it is understood today, bnAb evolution can be triggered and influenced by a range of factors and several different pathways may exist how bnAb induction and maturation can occur. To capitalize on the gained knowledge, future research needs to validate factors to identify independent drivers of bnAb induction to advance vaccine design.
Collapse
|
39
|
Suphaphiphat K, Bernard-Stoecklin S, Gommet C, Delache B, Dereuddre-Bosquet N, Kent SJ, Wines BD, Hogarth PM, Le Grand R, Cavarelli M. Innate and Adaptive Anti-SIV Responses in Macaque Semen: Implications for Infectivity and Risk of Transmission. Front Immunol 2020; 11:850. [PMID: 32528466 PMCID: PMC7247827 DOI: 10.3389/fimmu.2020.00850] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/14/2020] [Indexed: 12/16/2022] Open
Abstract
HIV-1 infection is transmitted primarily by sexual exposure, with semen being the principal contaminated fluid. However, HIV-specific immune response in semen has been understudied. We investigated specific parameters of the innate, cellular, and humoral immune response that may affect semen infectivity in macaques infected with SIVmac251. Serial semen levels of cytokines and chemokines, SIV-specific antibodies, neutralization, and FcγR-mediated functions and SIV-specific T-cell responses were assessed and compared to systemic responses across 53 cynomolgus macaques. SIV infection induced an overall inflammatory state in the semen. Several pro-inflammatory molecules correlated with SIV virus levels. Effector CD8+ T cells were expanded in semen upon infection. SIV-specific CD8+ T-cells that expressed multiple effector molecules (IFN-γ+MIP-1β+TNF+/-) were induced in the semen of a subset of SIV-infected macaques, but this did not correlate with local viral control. SIV-specific IgG, commonly capable of engaging the FcγRIIIa receptor, was detected in most semen samples although this positively correlated with seminal viral load. Several inflammatory immune responses in semen develop in the context of higher levels of SIV seminal plasma viremia. These inflammatory immune responses could play a role in viral transmission and should be considered in the development of preventive and prophylactic vaccines.
Collapse
Affiliation(s)
- Karunasinee Suphaphiphat
- CEA-Université Paris Sud-INSERM U1184, “Immunology of Viral Infections and Auto-Immune Diseases”, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Sibylle Bernard-Stoecklin
- CEA-Université Paris Sud-INSERM U1184, “Immunology of Viral Infections and Auto-Immune Diseases”, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Céline Gommet
- CEA-Université Paris Sud-INSERM U1184, “Immunology of Viral Infections and Auto-Immune Diseases”, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Benoit Delache
- CEA-Université Paris Sud-INSERM U1184, “Immunology of Viral Infections and Auto-Immune Diseases”, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Nathalie Dereuddre-Bosquet
- CEA-Université Paris Sud-INSERM U1184, “Immunology of Viral Infections and Auto-Immune Diseases”, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Stephen J. Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, Australia
- ARC Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, VIC, Australia
| | - Bruce D. Wines
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - P. Mark Hogarth
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Roger Le Grand
- CEA-Université Paris Sud-INSERM U1184, “Immunology of Viral Infections and Auto-Immune Diseases”, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Mariangela Cavarelli
- CEA-Université Paris Sud-INSERM U1184, “Immunology of Viral Infections and Auto-Immune Diseases”, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| |
Collapse
|
40
|
Abstract
Development of improved approaches for HIV-1 prevention will likely be required for a durable end to the global AIDS pandemic. Recent advances in preclinical studies and early phase clinical trials offer renewed promise for immunologic strategies for blocking acquisition of HIV-1 infection. Clinical trials are currently underway to evaluate the efficacy of two vaccine candidates and a broadly neutralizing antibody (bNAb) to prevent HIV-1 infection in humans. However, the vast diversity of HIV-1 is a major challenge for both active and passive immunization. Here we review current immunologic strategies for HIV-1 prevention, with a focus on current and next-generation vaccines and bNAbs.
Collapse
Affiliation(s)
- Kathryn E Stephenson
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA;
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Boston, Massachusetts 02114, USA
| | - Kshitij Wagh
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
- New Mexico Consortium, Los Alamos, New Mexico 87545, USA
| | - Bette Korber
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
- New Mexico Consortium, Los Alamos, New Mexico 87545, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA;
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Boston, Massachusetts 02114, USA
| |
Collapse
|
41
|
Gardner MR. Promise and Progress of an HIV-1 Cure by Adeno-Associated Virus Vector Delivery of Anti-HIV-1 Biologics. Front Cell Infect Microbiol 2020; 10:176. [PMID: 32391289 PMCID: PMC7190809 DOI: 10.3389/fcimb.2020.00176] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
Despite the success of antiretroviral therapy (ART) at suppressing HIV-1 infection, a cure that eradicates all HIV-1-infected cells has been elusive. The latent viral reservoir remains intact in tissue compartments that are not readily targeted by the host immune response that could accelerate the rate of reservoir decline during ART. However, over the past decade, numerous broadly neutralizing antibodies (bNAbs) have been discovered and characterized. These bNAbs have also given rise to engineered antibody-like inhibitors that are just as or more potent than bNAbs themselves. The question remains whether bNAbs and HIV-1 inhibitors will be the effective “kill” to a shock-and-kill approach to eliminate the viral reservoir. Additional research over the past few years has sought to develop recombinant adeno-associated virus (rAAV) vectors to circumvent the need for continual administration of bNAbs and maintain persistent expression in a host. This review discusses the advancements made in using rAAV vectors for the delivery of HIV-1 bNAbs and inhibitors and the future of this technology in HIV-1 cure research. Numerous groups have demonstrated with great efficacy that rAAV vectors can successfully express protective concentrations of bNAbs and HIV-1 inhibitors. Yet, therapeutic concentrations, especially in non-human primate (NHP) models, are not routinely achieved. As new studies have been reported, more challenges have been identified for utilizing rAAV vectors, specifically how the host immune response limits the attainable concentrations of bNAbs and inhibitors. The next few years should provide improvements to rAAV vector delivery that will ultimately show whether they can be used for expressing bNAbs and HIV-1 inhibitors to eliminate the HIV-1 viral reservoir.
Collapse
Affiliation(s)
- Matthew R Gardner
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, United States
| |
Collapse
|
42
|
Ndlovu B, Gounder K, Muema D, Raju N, Hermanus T, Mthethwa Q, Robertson K, Walker BD, Georgiev IS, Morris L, Moore PL, Ndung'u T. Envelope characteristics in individuals who developed neutralizing antibodies targeting different epitopes in HIV-1 subtype C infection. Virology 2020; 546:1-12. [PMID: 32275203 DOI: 10.1016/j.virol.2020.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 11/29/2022]
Abstract
Broadly neutralizing antibodies (bNAbs) may constitute an essential component of a protective vaccine against HIV-1, yet no immunogen has been able to elicit them. To characterize the development of bNAbs in HIV-1 subtype C infected individuals, a panel of 18 Env-pseudotyped viruses was used to screen 18 study participants. The specificity of plasma neutralization was mapped against Env mutants and MPER chimeras. Envelope (env) gene sequence evolution was characterized by single genome amplification and sequencing. Three out of eighteen individuals developed broad plasma neutralizing activity (>60% breadth). Two of the three participants may target epitopes comprising glycans at position 276 of the D loop in the CD4 binding site and 332 glycan supersite, respectively. Deletion of these glycans was associated with neutralization resistance. Our study describes the kinetics of the development of plasma neutralizing activity and identified amino acid residue changes suggestive of immune pressure on putative epitopes. The study enhances our understanding of how neutralization breadth develops in the course of HIV-1 subtype C infection.
Collapse
Affiliation(s)
- Bongiwe Ndlovu
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.
| | - Kamini Gounder
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa; Africa Health Research Institute, Durban, South Africa.
| | - Daniel Muema
- Africa Health Research Institute, Durban, South Africa.
| | - Nagarajan Raju
- Vanderbilt Vaccine Center and Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Tandile Hermanus
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa.
| | - Qiniso Mthethwa
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.
| | - Kim Robertson
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.
| | - Bruce D Walker
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.
| | - Ivelin S Georgiev
- Vanderbilt Vaccine Center and Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Lynn Morris
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa; University of the Witwatersrand, Johannesburg, South Africa.
| | - Penny L Moore
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa; University of the Witwatersrand, Johannesburg, South Africa.
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa; Africa Health Research Institute, Durban, South Africa; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA; Max Planck Institute for Infection Biology, Berlin, Germany; Division of Infection and Immunity, University College London, UK.
| |
Collapse
|
43
|
Broadly neutralizing antibodies and vaccine design against HIV-1 infection. Front Med 2019; 14:30-42. [PMID: 31858368 PMCID: PMC8320319 DOI: 10.1007/s11684-019-0721-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 09/07/2019] [Indexed: 12/31/2022]
Abstract
Remarkable progress has been achieved for prophylactic and therapeutic interventions against human immunodeficiency virus type I (HIV-1) through antiretroviral therapy. However, vaccine development has remained challenging. Recent discoveries in broadly neutralizing monoclonal antibodies (bNAbs) has led to the development of multiple novel vaccine approaches for inducing bNAbs-like antibody response. Structural and dynamic studies revealed several vulnerable sites and states of the HIV-1 envelop glycoprotein (Env) during infection. Our review aims to highlight these discoveries and rejuvenate our endeavor in HIV-1 vaccine design and development.
Collapse
|
44
|
Su B, Dispinseri S, Iannone V, Zhang T, Wu H, Carapito R, Bahram S, Scarlatti G, Moog C. Update on Fc-Mediated Antibody Functions Against HIV-1 Beyond Neutralization. Front Immunol 2019; 10:2968. [PMID: 31921207 PMCID: PMC6930241 DOI: 10.3389/fimmu.2019.02968] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 12/03/2019] [Indexed: 12/31/2022] Open
Abstract
Antibodies (Abs) are the major component of the humoral immune response and a key player in vaccination. The precise Ab-mediated inhibitory mechanisms leading to in vivo protection against HIV have not been elucidated. In addition to the desired viral capture and neutralizing Ab functions, complex Ab-dependent mechanisms that involve engaging immune effector cells to clear infected host cells, immune complexes, and opsonized virus have been proposed as being relevant. These inhibitory mechanisms involve Fc-mediated effector functions leading to Ab-dependent cellular cytotoxicity, phagocytosis, cell-mediated virus inhibition, aggregation, and complement inhibition. Indeed, the decreased risk of infection observed in the RV144 HIV-1 vaccine trial was correlated with the production of non-neutralizing inhibitory Abs, highlighting the role of Ab inhibitory functions besides neutralization. Moreover, Ab isotypes and subclasses recognizing specific HIV envelope epitopes as well as pecular Fc-receptor polymorphisms have been associated with disease progression. These findings further support the need to define which Fc-mediated Ab inhibitory functions leading to protection are critical for HIV vaccine design. Herein, based on our previous review Su & Moog Front Immunol 2014, we update the different inhibitory properties of HIV-specific Abs that may potentially contribute to HIV protection.
Collapse
Affiliation(s)
- Bin Su
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Stefania Dispinseri
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation, and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Iannone
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation, and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Tong Zhang
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Hao Wu
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Raphael Carapito
- INSERM U1109, LabEx TRANSPLANTEX, Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Seiamak Bahram
- INSERM U1109, LabEx TRANSPLANTEX, Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation, and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Christiane Moog
- INSERM U1109, LabEx TRANSPLANTEX, Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Vaccine Research Institute (VRI), Créteil, France
| |
Collapse
|
45
|
Moshoette T, Ali SA, Papathanasopoulos MA, Killick MA. Engineering and characterising a novel, highly potent bispecific antibody iMab-CAP256 that targets HIV-1. Retrovirology 2019; 16:31. [PMID: 31703699 PMCID: PMC6842167 DOI: 10.1186/s12977-019-0493-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 10/29/2019] [Indexed: 01/07/2023] Open
Abstract
The existing repertoire of HIV-1 patient derived broadly neutralising antibodies (bNAbs) that target the HIV-1 envelope glycoprotein (Env) present numerous and exciting opportunities for immune-based therapeutic and preventative strategies against HIV-1. Combination antibody therapy is required to ensure greater neutralization coverage and limit Env mediated escape mutations following treatment pressure. Engineered bispecific bNAbs (bibNAbs) assimilate the advantages of combination therapy into a single antibody molecule with several configurations reporting potency enhancement as a result of the increased avidity and simultaneous engagement of targeted epitopes. We report the engineering of a novel bibNAb (iMab-CAP256) comprising the highly potent, CAP256.VRC26.25 bNAb with anticipated extension in neutralization coverage through pairing with the host directed, anti-CD4 antibody, ibalizumab (iMab). Recombinant expression of parental monoclonal antibodies and the iMab-CAP256 bibNAb was performed in HEK293T (Human embryonic kidney 293 T antigen) cells, purified to homogeneity by Protein-A affinity chromatography followed by size exclusion chromatography. Antibody assembly and binding functionality of Fab moieties was confirmed by SDS-PAGE (sodium dodecyl sulphate polyacrylamide gel electrophoresis) and ELISA, respectively. Breadth and potency were evaluated against a geographical diverse HIV-1 pseudovirus panel (n = 20). Overall, iMab-CAP256 demonstrated an expanded neutralizing coverage, neutralizing single, parental antibody resistant pseudovirus strains and an enhanced neutralization potency against all dual sensitive strains (average fold increase over the more potent parental antibody of 11.4 (range 2 to 31.8). Potency enhancement was not observed for the parental antibody combination treatment (iMab + CAP256) suggesting the presence of a synergistic relationship between the CAP256 and iMab paratope combination in this bibNAb configuration. In addition, iMab-CAP256 bibNAbs exhibited comparable efficacy to other bibNAbs PG9-iMab and 10E08-iMab previously reported in the literature. The enhanced neutralization coverage and potency of iMAb-CAP256 over the parental bNAbs should facilitate superior clinical performance as a therapeutic or preventative strategy against HIV-1.
Collapse
Affiliation(s)
- Tumelo Moshoette
- HIV Pathogenesis Research Unit, Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Stuart Alvaro Ali
- HIV Pathogenesis Research Unit, Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Maria Antonia Papathanasopoulos
- HIV Pathogenesis Research Unit, Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Mark Andrew Killick
- HIV Pathogenesis Research Unit, Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa.
| |
Collapse
|
46
|
Einav T, Yazdi S, Coey A, Bjorkman PJ, Phillips R. Harnessing Avidity: Quantifying the Entropic and Energetic Effects of Linker Length and Rigidity for Multivalent Binding of Antibodies to HIV-1. Cell Syst 2019; 9:466-474.e7. [PMID: 31668801 PMCID: PMC6892280 DOI: 10.1016/j.cels.2019.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/10/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022]
Abstract
IgG antibodies increase their apparent affinities by using both of their Fabs to simultaneously attach to antigens. HIV-1 foils this strategy by having few, and highly separated, Envelope (Env) spike targets for antibodies, forcing most IgGs to bind monovalently. Here, we develop a statistical mechanics model of synthetic diFabs joined by DNA linkers of different lengths and flexibilities. This framework enables us to translate the energetic and entropic effects of the linker into the neutralization potency of a diFab. We demonstrate that the strongest neutralization potencies are predicted to require a rigid linker that optimally spans the distance between two Fab binding sites on an Env trimer and that avidity can be further boosted by incorporating more Fabs into these constructs. These results inform the design of multivalent anti-HIV-1 therapeutics that utilize avidity effects to remain potent against HIV-1 in the face of the rapid mutation of Env spikes. Synthetic antibodies that bivalently bind to HIV-1 can markedly enhance avidity Linkers that enable bivalent binding are fully characterized by the linker entropy Properly sized rigid linkers outperform long, flexible linkers Avidity can be further enhanced by increasing antibody valency
Collapse
Affiliation(s)
- Tal Einav
- Department of Physics, California Institute of Technology, Pasadena, CA 91125, USA
| | - Shahrzad Yazdi
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aaron Coey
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Rob Phillips
- Department of Physics, California Institute of Technology, Pasadena, CA 91125, USA; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Department of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
47
|
Abstract
Neutralizing antibodies against human immunodeficiency virus subtype 1 (HIV-1) bind to its envelope glycoprotein (Env). Half of the molecular mass of Env is carbohydrate making it one of the most heavily glycosylated proteins known in nature. HIV-1 Env glycans are derived from the host and present a formidable challenge for host anti-glycan antibody induction. Anti-glycan antibody induction is challenging because anti-HIV-1 glycan antibodies should recognize Env antigen while not acquiring autoreactivity. Thus, the glycan network on HIV-1 Env is referred to as the glycan shield. Despite the challenges presented by immune recognition of host-derived glycans, neutralizing antibodies capable of binding the glycans on HIV-1 Env can be generated by the host immune system in the setting of HIV-1 infection. In particular, a cluster of high mannose glycans, including an N-linked glycan at position 332, form the high mannose patch and are targeted by a variety of broadly neutralizing antibodies. These high mannose patch-directed HIV-1 antibodies can be categorized into distinct categories based on their antibody paratope structure, neutralization activity, and glycan and peptide reactivity. Below we will compare and contrast each of these classes of HIV-1 glycan-dependent antibodies and describe vaccine design efforts to elicit each of these antibody types.
Collapse
|
48
|
Duerr R, Gorny MK. V2-Specific Antibodies in HIV-1 Vaccine Research and Natural Infection: Controllers or Surrogate Markers. Vaccines (Basel) 2019; 7:vaccines7030082. [PMID: 31390725 PMCID: PMC6789775 DOI: 10.3390/vaccines7030082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/26/2019] [Accepted: 07/27/2019] [Indexed: 12/20/2022] Open
Abstract
Most human immunodeficiency virus (HIV) vaccine trials have lacked efficacy and empirical vaccine lead targets are scarce. Thus far, the only independent correlate of reduced risk of HIV-1 acquisition in humans is elevated levels of V2-specific antibodies identified in the modestly protective RV144 vaccine trial. Ten years after RV144, human and non-human primate vaccine studies have reassessed the potential contribution of V2-specific antibodies to vaccine efficacy. In addition, studies of natural HIV-1 infection in humans have provided insight into the development of V1V2-directed antibody responses and their impact on clinical parameters and disease progression. Functionally diverse anti-V2 monoclonal antibodies were isolated and their structurally distinct V2 epitope regions characterized. After RV144, a plethora of research studies were performed using different model systems, immunogens, protocols, and challenge viruses. These diverse studies failed to provide a clear picture regarding the contribution of V2 antibodies to vaccine efficacy. Here, we summarize the biological functions and clinical findings associated with V2-specific antibodies and discuss their impact on HIV vaccine research.
Collapse
Affiliation(s)
- Ralf Duerr
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.
| | - Miroslaw K Gorny
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
49
|
Allers K, Kunkel D, Hofmann J, Stahl-Hennig C, Moos V, Schneider T. Cell-Associated Simian Immunodeficiency Virus Accelerates Initial Virus Spread and CD4+ T-Cell Depletion in the Intestinal Mucosa. J Infect Dis 2019; 217:1421-1425. [PMID: 29390066 DOI: 10.1093/infdis/jiy055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/25/2018] [Indexed: 11/12/2022] Open
Abstract
Cell-free and cell-associated human immunodeficiency virus (HIV) may differently affect the immune system and the efficacy of prevention strategies. Here we examined mucosal events in simian immunodeficiency virus (SIV) infection, using infected cells together with cell-free virus and cell-free virus alone. Intravenously inoculated SIV-infected cells disseminated virus to the intestine within 16 hours. Infection with both virus forms accelerated viral dissemination in the intestinal mucosa and the loss of mucosal CD4+ T cells as compared to infection with cell-free virus only. As all natural sources of HIV infection contain both virus forms, future prevention studies should focus on efficacy against both cell-free and cell-associated virus.
Collapse
Affiliation(s)
- Kristina Allers
- Department of Gastroenterology, Infectious Diseases, and Rheumatology
| | - Désirée Kunkel
- Department of Gastroenterology, Infectious Diseases, and Rheumatology
| | - Jörg Hofmann
- Institute of Medical Virology, Charité-Universitätsmedizin Berlin, Berlin
| | | | - Verena Moos
- Department of Gastroenterology, Infectious Diseases, and Rheumatology
| | - Thomas Schneider
- Department of Gastroenterology, Infectious Diseases, and Rheumatology
| |
Collapse
|
50
|
Shcherbakova NS, Chikaev AN, Rudometov AP, Shcherbakov DN, Il'ichev AA, Karpenko LI. Characteristics of Artificial Immunogens Containing Peptide Mimotopes of HIV-1 Epitopes Recognized by Monoclonal Antibodies 2F5 and 2G12. Bull Exp Biol Med 2019; 167:259-262. [PMID: 31243678 DOI: 10.1007/s10517-019-04504-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Indexed: 11/29/2022]
Abstract
The paper describes construction of TBI-based recombinant proteins TBI-2F5 and TBI-2G12 that contain peptide mimotopes of HIV-1 epitopes recognized by broadly neutralizing antibodies 2F5 and 2G12, respectively. The capacity of the immunogens to induce neutralizing antibodies was evaluated. The sera of BALB/c mice immunized with recombinant proteins TBI, TBI-2F5, and TBI-2G12 neutralized HIV-1 env-pseudoviruses. Moreover, pooled serum from mice immunized with TBI-2F5 and TBI-2G12 neutralized env-pseudoviruses of HIV-1 subtype B more effectively than individual sera.
Collapse
Affiliation(s)
- N S Shcherbakova
- State Research Center of Virology and Biotechnology Vector, Federal Service on Surveillance for Consumer Rights Protection and Human Well-Being (Rospotrebnadzor), Kol'tsovo, Novosibirsk region, Russia.
| | - A N Chikaev
- Institute of Molecular and Cellular Biology, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A P Rudometov
- State Research Center of Virology and Biotechnology Vector, Federal Service on Surveillance for Consumer Rights Protection and Human Well-Being (Rospotrebnadzor), Kol'tsovo, Novosibirsk region, Russia
| | - D N Shcherbakov
- State Research Center of Virology and Biotechnology Vector, Federal Service on Surveillance for Consumer Rights Protection and Human Well-Being (Rospotrebnadzor), Kol'tsovo, Novosibirsk region, Russia
| | - A A Il'ichev
- State Research Center of Virology and Biotechnology Vector, Federal Service on Surveillance for Consumer Rights Protection and Human Well-Being (Rospotrebnadzor), Kol'tsovo, Novosibirsk region, Russia
| | - L I Karpenko
- State Research Center of Virology and Biotechnology Vector, Federal Service on Surveillance for Consumer Rights Protection and Human Well-Being (Rospotrebnadzor), Kol'tsovo, Novosibirsk region, Russia
| |
Collapse
|