1
|
Machha P, Gopalan A, Elangovan Y, Veeravalli SCM, Sowpati DT, Thangaraj K. Endogamy and high prevalence of deleterious mutations in India: evidence from strong founder events. J Genet Genomics 2025; 52:570-582. [PMID: 39955025 DOI: 10.1016/j.jgg.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 02/02/2025] [Accepted: 02/06/2025] [Indexed: 02/17/2025]
Abstract
Founder events influence recessive diseases in highly endogamous populations. Several Indian populations have experienced significant founder events due to strict endogamy. However, the clinical implications of it remain underexplored. Therefore, we perform whole-exome sequencing of 281 individuals from four South Indian populations, characterized by high IBD scores. Our study reveals a high inbreeding rate of 59% across the populations. We identify ∼29.2% of the variants that are exclusively present in a single population and uncover 1284 unreported exonic variants, underscoring the underrepresentation of Indian populations in global databases. Among these, 23 are predicted to be deleterious, all of which are present in a heterozygous state; they may be pathogenic when homozygous, an expected phenomenon in endogamous populations. Approximately 16%-33% of the identified pathogenic variants showed significantly higher occurrence rates compared with the South Asian populations from 1000 Genomes dataset. Pharmacogenomic analysis revealed distinct allele frequencies of variants in CYP450 and non-CYP450 genes, highlighting heterogeneous drug responses and associated risks. We report a high prevalence of ankylosing spondylitis in Reddy population, linked to the HLA-B∗27:04 allele and strong founder effect. Our findings highlight the need for extensive genomic research in understudied Indian populations for a better understanding of disease risk and evolving strategies for precision and preventive medicine.
Collapse
Affiliation(s)
- Pratheusa Machha
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amirtha Gopalan
- Department of Rheumatology and Clinical Immunology, Krishna Institute of Medical Sciences, Secunderabad, Telangana 500003, India; Department of Rheumatology and Clinical Immunology, Nizam's Institute of Medical Sciences, Hyderabad, Telangana 500082, India
| | - Yamini Elangovan
- Department of Biotechnology, Bharathidasan University, Tiruchirapalli, Tamil Nadu 620024, India
| | - Sarath Chandra Mouli Veeravalli
- Department of Rheumatology and Clinical Immunology, Krishna Institute of Medical Sciences, Secunderabad, Telangana 500003, India
| | - Divya Tej Sowpati
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kumarasamy Thangaraj
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Tata Institute for Genetics and Society, Bengaluru 560065, India.
| |
Collapse
|
2
|
Yamaguchi H, Meyer MD, Barrell WB, Faisal M, Berdeaux R, Liu KJ, Komatsu Y. The primary cilia: Orchestrating cranial neural crest cell development. Differentiation 2025; 142:100818. [PMID: 39500655 PMCID: PMC11911094 DOI: 10.1016/j.diff.2024.100818] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 03/17/2025]
Abstract
Primary cilia (hereafter "cilia") are microtubule-based antenna-like organelles projecting from the surface of vertebrate cells. Cilia can serve as cellular antennae controlling cell growth and differentiation. Absent or dysfunctional cilia frequently lead to craniofacial anomalies known as craniofacial ciliopathies. However, the detailed pathological mechanisms of craniofacial ciliopathies remain unclear. This perspective discusses our current understanding of the role of cilia in cranial neural crest cells. We also describe potential mechanisms of ciliogenesis in cranial neural crest cells, which may contribute to unraveling the complex pathogenesis of craniofacial ciliopathies.
Collapse
Affiliation(s)
- Hiroyuki Yamaguchi
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Matthew D Meyer
- Shared Equipment Authority, Rice University, Houston, TX, USA
| | - William B Barrell
- Centre for Craniofacial and Regenerative Biology, King's College London, SE1 9RT, London, UK
| | - Maryam Faisal
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, USA; Department of Bioengineering, Rice University George R. Brown School of Engineering, 77005, Houston, TX, USA
| | - Rebecca Berdeaux
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, USA; CellChorus INC, Houston, TX, USA
| | - Karen J Liu
- Centre for Craniofacial and Regenerative Biology, King's College London, SE1 9RT, London, UK
| | - Yoshihiro Komatsu
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, USA; Graduate Program in Genetics & Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 77030, Houston, TX, USA.
| |
Collapse
|
3
|
Kido T, Toba S, Yamasaki T, Asada D, Tsumura S. A case report of a rare cardiac anomaly associated with Ellis-van Creveld syndrome: common atrium, partial atrioventricular septal defect, and hypoplastic left ventricle. Eur Heart J Case Rep 2025; 9:ytaf005. [PMID: 39872675 PMCID: PMC11770385 DOI: 10.1093/ehjcr/ytaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/18/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025]
Abstract
Background A partial atrioventricular septal defect (AVSD) with a hypoplastic left ventricle and common atrium is a rare combination of cardiac anomalies that can be associated with Ellis-van Creveld (EVC) syndrome. Case summary A female neonate with EVC syndrome was diagnosed with an unbalanced AVSD and hypoplastic left ventricle. Pulmonary artery banding and ductus ligation were performed at 23 days after birth. The postoperative course was complicated by moderate atrioventricular valve (AVV) regurgitation and low cardiac output. On postoperative Day 6, emergent extracorporeal membrane oxygenation (ECMO) was performed to treat acute circulatory failure. Under suspicion of systemic ventricular outflow tract obstruction, the Damus-Kaye-Stansel procedure with a systemic-to-pulmonary artery shunt and AVV plasty were performed. Intraoperatively, no ventricular septal defect was found. The right and left AVV orifices were found to be separated. Postoperatively, the patient could not be weaned from cardiopulmonary bypass and continued to receive ECMO support. Eight days postoperatively, a right ventricle-to-pulmonary artery shunt and division of the systemic-to-pulmonary artery shunt were performed to increase the pulmonary blood flow. On postoperative Day 5, the ECMO was successfully removed under continuous infusion of adrenalin, but the patient died of severe renal failure 4 days later. The parents consented to autopsy. The heart was permanently preserved by perfusion-distention fixation and wax infiltration. Discussion We reported a rare combination of cardiac defects of common atrium, partial AVSD, and hypoplastic left ventricle associated with EVC syndrome. Accurately diagnosing the presence of ventricular septal defect is essential part in determining surgical treatment strategy.
Collapse
Affiliation(s)
- Takashi Kido
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Shuhei Toba
- Department of Thoracic and Cardiovascular Surgery, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Takato Yamasaki
- Department of Thoracic and Cardiovascular Surgery, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Dai Asada
- Department of Cardiovascular Surgery, Osaka Women’s and Children’s Hospital, Izumi, Osaka 594-1101, Japan
| | - Sanae Tsumura
- Department of Pediatric Cardiology, Osaka Women’s and Children’s Hospital, Izumi, Osaka 594-1101, Japan
| |
Collapse
|
4
|
Altunoglu U, Palencia-Campos A, Güneş N, Turgut GT, Nevado J, Lapunzina P, Valencia M, Iturrate A, Otaify G, Elhossini R, Ashour A, K Amin A, Elnahas RF, Fernandez-Nuñez E, Flores CL, Arias P, Tenorio J, Chamorro Fernández CI, Güven Y, Özsu E, Eklioğlu BS, Ibarra-Ramirez M, Diness BR, Burnyte B, Ajmi H, Yüksel Z, Yıldırım R, Ünal E, Abdalla E, Aglan M, Kayserili H, Tuysuz B, Ruiz-Pérez V. Variant characterisation and clinical profile in a large cohort of patients with Ellis-van Creveld syndrome and a family with Weyers acrofacial dysostosis. J Med Genet 2024; 61:633-644. [PMID: 38531627 DOI: 10.1136/jmg-2023-109546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Ellis-van Creveld syndrome (EvC) is a recessive disorder characterised by acromesomelic limb shortening, postaxial polydactyly, nail-teeth dysplasia and congenital cardiac defects, primarily caused by pathogenic variants in EVC or EVC2. Weyers acrofacial dysostosis (WAD) is an ultra-rare dominant condition allelic to EvC. The present work aimed to enhance current knowledge on the clinical manifestations of EvC and WAD and broaden their mutational spectrum. METHODS We conducted molecular studies in 46 individuals from 43 unrelated families with a preliminary clinical diagnosis of EvC and 3 affected individuals from a family with WAD and retrospectively analysed clinical data. The deleterious effect of selected variants of uncertain significance was evaluated by cellular assays. MAIN RESULTS We identified pathogenic variants in EVC/EVC2 in affected individuals from 41 of the 43 families with EvC. Patients from each of the two remaining families were found with a homozygous splicing variant in WDR35 and a de novo heterozygous frameshift variant in GLI3, respectively. The phenotype of these patients showed a remarkable overlap with EvC. A novel EVC2 C-terminal truncating variant was identified in the family with WAD. Deep phenotyping of the cohort recapitulated 'classical EvC findings' in the literature and highlighted findings previously undescribed or rarely described as part of EvC. CONCLUSIONS This study presents the largest cohort of living patients with EvC to date, contributing to better understanding of the full clinical spectrum of EvC. We also provide comprehensive information on the EVC/EVC2 mutational landscape and add GLI3 to the list of genes associated with EvC-like phenotypes.
Collapse
Affiliation(s)
- Umut Altunoglu
- Medical Genetics Department, School of Medicine (KUSoM), Koç University, Istanbul, Turkey
- Medical Genetics Department, Istanbul Faculty of Medicine, Istanbul University, Fatih, Turkey
| | - Adrian Palencia-Campos
- Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas Alberto Sols, Madrid, Spain
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Nilay Güneş
- Cerrahpasa Medical Faculty, Department of Pediatric Genetics, Istanbul Universitesi-Cerrahpasa, Istanbul, Turkey
| | - Gozde Tutku Turgut
- Medical Genetics Department, Istanbul Faculty of Medicine, Istanbul University, Fatih, Turkey
| | - Julian Nevado
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Genética Médica y Molecular (INGEMM), ITHACA-ERN, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
| | - Pablo Lapunzina
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Genética Médica y Molecular (INGEMM), ITHACA-ERN, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
| | - Maria Valencia
- Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas Alberto Sols, Madrid, Spain
| | - Asier Iturrate
- Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas Alberto Sols, Madrid, Spain
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Ghada Otaify
- Department of Clinical Genetics, Institute of Human Genetics and Genome Research, National Research Centre, Cairo, Egypt
| | - Rasha Elhossini
- Department of Clinical Genetics, Institute of Human Genetics and Genome Research, National Research Centre, Cairo, Egypt
| | - Adel Ashour
- Department of Clinical Genetics, Institute of Human Genetics and Genome Research, National Research Centre, Cairo, Egypt
| | - Asmaa K Amin
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Rania F Elnahas
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Elisa Fernandez-Nuñez
- Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas Alberto Sols, Madrid, Spain
| | - Carmen-Lisset Flores
- Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas Alberto Sols, Madrid, Spain
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Pedro Arias
- Instituto de Genética Médica y Molecular (INGEMM), ITHACA-ERN, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
| | - Jair Tenorio
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Genética Médica y Molecular (INGEMM), ITHACA-ERN, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
| | | | - Yeliz Güven
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - Elif Özsu
- Department of Pediatric Endocrinology and Diabetes, School of Medicine, Ankara University, Ankara, Turkey
| | - Beray Selver Eklioğlu
- Division of Pediatric Endocrinology, Department of Pediatrics, Necmettin Erbakan University, Konya, Turkey
| | - Marisol Ibarra-Ramirez
- Departamento de Genética, Facultad de Medicina, Universidad Autónoma de Nuevo León, Nuevo Leon, Mexico
| | - Birgitte Rode Diness
- Department of Clinical Genetics, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health, University of Copenhagen, Kobenhavn, Denmark
| | - Birute Burnyte
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Houda Ajmi
- Service de Pédiatrie, Centre Hôspitalier Universitaire (CHU) Sahloul, Sousse, Tunisia
| | - Zafer Yüksel
- Human Genetics Department, Bioscientia Healthcare GmbH, Ingelheim, Germany
| | - Ruken Yıldırım
- Department of Pediatric Endocrinology, Ministry of Health Diyarbakir Children's Hospital, Diyarbakir, Turkey
| | - Edip Ünal
- Department of Pediatric Endocrinology, Faculty of Medicine, Dicle University, Diyarbakir, Turkey
| | - Ebtesam Abdalla
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Mona Aglan
- Department of Clinical Genetics, Institute of Human Genetics and Genome Research, National Research Centre, Cairo, Egypt
| | - Hulya Kayserili
- Medical Genetics Department, School of Medicine (KUSoM), Koç University, Istanbul, Turkey
| | - Beyhan Tuysuz
- Cerrahpasa Medical Faculty, Department of Pediatric Genetics, Istanbul Universitesi-Cerrahpasa, Istanbul, Turkey
| | - Victor Ruiz-Pérez
- Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas Alberto Sols, Madrid, Spain
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Genética Médica y Molecular (INGEMM), ITHACA-ERN, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
| |
Collapse
|
5
|
Lai B, Jiang H, Gao Y, Zhou X. Skeletal ciliopathy: pathogenesis and related signaling pathways. Mol Cell Biochem 2024; 479:811-823. [PMID: 37188988 DOI: 10.1007/s11010-023-04765-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/09/2023] [Indexed: 05/17/2023]
Abstract
Cilia are tiny organelles with conserved structures and components in eukaryotic cells. Ciliopathy is a set of diseases resulting from cilium dysfunction classified into first-order and second-order ciliopathy. With the advancement of clinical diagnosis and radiography, numerous skeletal phenotypes, including polydactyly, short limbs, short ribs, scoliosis, a narrow thorax, and numerous anomalies in bone and cartilage, have been discovered in ciliopathies. Mutation in genes encoding cilia core components or other cilia-related molecules have been found in skeletal ciliopathies. Meanwhile, various signaling pathways associated with cilia and skeleton development have been deemed to be significant for the occurrence and progression of diseases. Herein, we review the structure and key components of the cilium and summarize several skeletal ciliopathies with their presumable pathology. We also emphasize the signaling pathways involved in skeletal ciliopathies, which may assist in developing potential therapies for these diseases.
Collapse
Affiliation(s)
- Bowen Lai
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Fengyang Road 415, Shanghai, 200003, China
| | - Heng Jiang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Fengyang Road 415, Shanghai, 200003, China
| | - Yuan Gao
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Fengyang Road 415, Shanghai, 200003, China
| | - Xuhui Zhou
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Fengyang Road 415, Shanghai, 200003, China.
| |
Collapse
|
6
|
Jain AM, Taksande A, Gaikwad S, Nath R, Javvaji CK. Weyers Acrofacial Dysostosis: A Case Report. Cureus 2024; 16:e53135. [PMID: 38420083 PMCID: PMC10900176 DOI: 10.7759/cureus.53135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Weyers acrofacial dysostosis (WAD) is a rare skeletal dysplasia, which is autosomal-dominant, and the clinical symptoms are presented as dental anomalies, polydactyly, nail dystrophy, and short physical stature. It is also termed "Curry‑Hall syndrome" and reported to be linked to genetic mutations mapped on chromosome 4p16, the region reported being commonly associated with a similar genetic syndrome, Ellis-van Creveld (EVC) syndrome. Most individuals with EVC have congenital heart abnormalities, most often atrial septal defects, unlike WAD. In this case, a 15‑year‑old girl presented with onychodystrophy and polydactyly observed in the hands and feet, microdontia, or agenesis of teeth, which were conical in shape, with a short stature. The patient had dystrophy of nails since birth, and physical growth in terms of height did not match the normal growth parameters with respect to age. The patient also had abnormal dentation with conical-shaped teeth, with the rest of the clinical presentations suggestive of WAD.
Collapse
Affiliation(s)
- Aditya M Jain
- Department of Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Amar Taksande
- Department of Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sarika Gaikwad
- Department of Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Ritwik Nath
- Department of Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Chaitanya Kumar Javvaji
- Department of Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to provide a background on osteocytes and the primary cilium, discussing the role it plays in osteocyte mechanosensing. RECENT FINDINGS Osteocytes are thought to be the primary mechanosensing cells in bone tissue, regulating bone adaptation in response to exercise, with the primary cilium suggested to be a key mechanosensing mechanism in bone. More recent work has suggested that, rather than being direct mechanosensors themselves, primary cilia in bone may instead form a key chemo-signalling nexus for processing mechanoregulated signalling pathways. Recent evidence suggests that pharmacologically induced lengthening of the primary cilium in osteocytes may potentiate greater mechanotransduction, rather than greater mechanosensing. While more research is required to delineate the specific osteocyte mechanobiological molecular mechanisms governed by the primary cilium, it is clear from the literature that the primary cilium has significant potential as a therapeutic target to treat mechanoregulated bone diseases, such as osteoporosis.
Collapse
Affiliation(s)
- Stefaan W Verbruggen
- Department of Mechanical Engineering, University of Sheffield, Sheffield, UK.
- INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK.
- Centre for Predictive in vitro Models, Centre for Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK.
| | - Anuphan Sittichokechaiwut
- Department of Preventive Dentistry, Faculty of Dentistry, Naresuan University, Phitsanulok, Thailand
- Center of Excellence in Biomaterials, Naresuan University, Phitsanulok, Thailand
| | - Gwendolen C Reilly
- INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK
- Kroto Research Institute, Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK
| |
Collapse
|
8
|
Li M, Ye B, Chen Y, Gao L, Wu Y, Cheng W. Analysis of genetic testing in fetuses with congenital heart disease of single atria and/or single ventricle in a Chinese prenatal cohort. BMC Pediatr 2023; 23:577. [PMID: 37980516 PMCID: PMC10656988 DOI: 10.1186/s12887-023-04382-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 10/23/2023] [Indexed: 11/20/2023] Open
Abstract
OBJECTIVE This study aimed to investigate the genetic etiologies of fetuses with single atria and/or ventricle (SA or/and SV) using different genetic detection methods in a Chinese prenatal cohort. METHODS In this retrospective study, the various genetic results of 44 fetuses with SA and/or SV were analyzed. All 44 cases were tested by chromosomal microarray analysis (CMA) and karyotyping simultaneously, and 8 underwent whole exome sequencing (WES). Data on the pregnancy outcomes and neonatal prognoses were collected from medical records and postnatal follow-up. RESULTS The whole cohort of 44 fetuses included 14 SA cases (31.8%), 12 SV cases (27.3%), and 18 SA and SV cases (40.9%). A total of 9 pathogenic genetic results were detected by conventional karyotyping, CMA and trio-WES, indicating an overall detection rate of 20.5% (9/44). Six pathogenic chromosomal abnormalities were identified by CMA among the 44 cases, showing a detection rate of 13.6% (6/44). Two microdeletions being missed by karyotyping were diagnosed by CMA, showing an additional diagnostic yield of 4.5% for CMA in present cohort(2/44). Three pathogenic variants in two fetuses were identified by WES, indicating an incremental diagnostic yield of 4.5%(2/44) for WES in fetuses with SA or/and SV. CONCLUSION In this study, WES achieved an additional diagnostic yield of 4.5% in fetuses with SA or/and SV. WES is valuable for fetal prognosis assessment and could add diagnostic value for fetuses with SA and/or SV when CMA is negative. It would be a valuable technique for the identification of underlying pathogenic variants in prenatal cohorts.
Collapse
Affiliation(s)
- Min Li
- Prenatal Diagnosis Center, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Baoying Ye
- Department of Ultrasonography, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yiyao Chen
- Department of Reproductive Genetics, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Gao
- Prenatal Diagnosis Center, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Wu
- Prenatal Diagnosis Center, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.
- Shanghai Municipal Key Clinical Specialty, Shanghai, China.
| | - Weiwei Cheng
- Prenatal Diagnosis Center, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.
- Shanghai Municipal Key Clinical Specialty, Shanghai, China.
| |
Collapse
|
9
|
Quadri N, Upadhyai P. Primary cilia in skeletal development and disease. Exp Cell Res 2023; 431:113751. [PMID: 37574037 DOI: 10.1016/j.yexcr.2023.113751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023]
Abstract
Primary cilia are non-motile, microtubule-based sensory organelle present in most vertebrate cells with a fundamental role in the modulation of organismal development, morphogenesis, and repair. Here we focus on the role of primary cilia in embryonic and postnatal skeletal development. We examine evidence supporting its involvement in physiochemical and developmental signaling that regulates proliferation, patterning, differentiation and homeostasis of osteoblasts, chondrocytes, and their progenitor cells in the skeleton. We discuss how signaling effectors in mechanotransduction and bone development, such as Hedgehog, Wnt, Fibroblast growth factor and second messenger pathways operate at least in part at the primary cilium. The relevance of primary cilia in bone formation and maintenance is underscored by a growing list of rare genetic skeletal ciliopathies. We collate these findings and summarize the current understanding of molecular factors and mechanisms governing primary ciliogenesis and ciliary function in skeletal development and disease.
Collapse
Affiliation(s)
- Neha Quadri
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Priyanka Upadhyai
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
10
|
Wang J, Wang X, Jia Y, Li X, Liu G, Sa R, Yu H. A homozygous EVC mutation in a prenatal fetus with Ellis-van Creveld syndrome. Mol Genet Genomic Med 2023; 11:e2183. [PMID: 37157924 PMCID: PMC10422067 DOI: 10.1002/mgg3.2183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 03/14/2023] [Accepted: 03/24/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND Ellis-van Creveld (EvC) syndrome, caused by variants in EVC, is a rare genetic skeletal dysplasia. Its clinical phenotype is highly diverse. EvC syndrome is rarely reported in prenatal stages because its presentation overlaps with other diseases. METHODS A Chinese pedigree diagnosed with EvC syndrome was enrolled in this study. Whole-exome sequencing (WES) was applied in the proband to screen potential genetic variant(s), and then Sanger sequencing was used to identify the variant in family members. Minigene experiments were applied. RESULTS WES identified a homozygous variant (NM_153717.3:c.153_174 + 42del) in EVC which was inherited from the heterozygous parents and confirmed by Sanger sequencing. Further experiments demonstrated that this variant disrupts the canonical splicing site and produces a new splicing site at NM_153717.3: c.-164_174del, which ultimately leads to a 337 bp deletion at the 3' end of exon 1 and loss of the start codon. CONCLUSION This is the first reported case of EvC syndrome based on a splicing variant and detailed delineation of the aberrant splicing effect in the fetus. Our study demonstrates the pathogenesis of this new variant, expands the spectrum of EVC mutations, and demonstrates that WES is a powerful tool in the clinical diagnosis of diseases with genetic heterogeneity.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (RRBGL)Inner Mongolia UniversityHohhot010070China
- Department of GeneticsInner Mongolia Maternity and Child Health Care HospitalHohhot010010China
| | - Xiaohua Wang
- Department of GeneticsInner Mongolia Maternity and Child Health Care HospitalHohhot010010China
| | - Yueqi Jia
- Department of GeneticsInner Mongolia Maternity and Child Health Care HospitalHohhot010010China
| | - Xiangnan Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (RRBGL)Inner Mongolia UniversityHohhot010070China
| | - Guohui Liu
- Department of Ultrasonic MedicineInner Mongolia Maternity and Child Health Care HospitalHohhot010010China
| | - Rula Sa
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (RRBGL)Inner Mongolia UniversityHohhot010070China
| | - Haiquan Yu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (RRBGL)Inner Mongolia UniversityHohhot010070China
| |
Collapse
|
11
|
Barbeito P, Martin-Morales R, Palencia-Campos A, Cerrolaza J, Rivas-Santos C, Gallego-Colastra L, Caparros-Martin JA, Martin-Bravo C, Martin-Hurtado A, Sánchez-Bellver L, Marfany G, Ruiz-Perez VL, Garcia-Gonzalo FR. EVC-EVC2 complex stability and ciliary targeting are regulated by modification with ubiquitin and SUMO. Front Cell Dev Biol 2023; 11:1190258. [PMID: 37576597 PMCID: PMC10413113 DOI: 10.3389/fcell.2023.1190258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
Ellis van Creveld syndrome and Weyers acrofacial dysostosis are two rare genetic diseases affecting skeletal development. They are both ciliopathies, as they are due to malfunction of primary cilia, microtubule-based plasma membrane protrusions that function as cellular antennae and are required for Hedgehog signaling, a key pathway during skeletal morphogenesis. These ciliopathies are caused by mutations affecting the EVC-EVC2 complex, a transmembrane protein heterodimer that regulates Hedgehog signaling from inside primary cilia. Despite the importance of this complex, the mechanisms underlying its stability, targeting and function are poorly understood. To address this, we characterized the endogenous EVC protein interactome in control and Evc-null cells. This proteomic screen confirmed EVC's main known interactors (EVC2, IQCE, EFCAB7), while revealing new ones, including USP7, a deubiquitinating enzyme involved in Hedgehog signaling. We therefore looked at EVC-EVC2 complex ubiquitination. Such ubiquitination exists but is independent of USP7 (and of USP48, also involved in Hh signaling). We did find, however, that monoubiquitination of EVC-EVC2 cytosolic tails greatly reduces their protein levels. On the other hand, modification of EVC-EVC2 cytosolic tails with the small ubiquitin-related modifier SUMO3 has a different effect, enhancing complex accumulation at the EvC zone, immediately distal to the ciliary transition zone, possibly via increased binding to the EFCAB7-IQCE complex. Lastly, we find that EvC zone targeting of EVC-EVC2 depends on two separate EFCAB7-binding motifs within EVC2's Weyers-deleted peptide. Only one of these motifs had been characterized previously, so we have mapped the second herein. Altogether, our data shed light on EVC-EVC2 complex regulatory mechanisms, with implications for ciliopathies.
Collapse
Affiliation(s)
- Pablo Barbeito
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAM, Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Instituto de Investigación del Hospital Universitario de La Paz (IdiPAZ), Madrid, Spain
| | - Raquel Martin-Morales
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAM, Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Instituto de Investigación del Hospital Universitario de La Paz (IdiPAZ), Madrid, Spain
| | - Adrian Palencia-Campos
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAM, Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Juan Cerrolaza
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAM, Madrid, Spain
| | - Celia Rivas-Santos
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAM, Madrid, Spain
| | - Leticia Gallego-Colastra
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAM, Madrid, Spain
| | - Jose Antonio Caparros-Martin
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAM, Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Carolina Martin-Bravo
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAM, Madrid, Spain
| | - Ana Martin-Hurtado
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAM, Madrid, Spain
| | - Laura Sánchez-Bellver
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Gemma Marfany
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
- Institut de Biomedicina—Institut de Recerca Sant Joan de Déu (IBUB-IRSJD), Universitat de Barcelona, Barcelona, Spain
- DBGen Ocular Genomics, Barcelona, Spain
| | - Victor L. Ruiz-Perez
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAM, Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Francesc R. Garcia-Gonzalo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAM, Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Instituto de Investigación del Hospital Universitario de La Paz (IdiPAZ), Madrid, Spain
| |
Collapse
|
12
|
Ahmad O, Sutter C, Hirsch S, Pfister SM, Schaaf CP. BRCA1/2 potential founder variants in the Jordanian population: an opportunity for a customized screening panel. Hered Cancer Clin Pract 2023; 21:11. [PMID: 37400873 DOI: 10.1186/s13053-023-00256-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/22/2023] [Indexed: 07/05/2023] Open
Abstract
A founder variant is a genetic alteration, that is inherited from a common ancestor together with a surrounding chromosomal segment, and is observed at a high frequency in a defined population. This founder effect occurs as a consequence of long-standing inbreeding of isolated populations. For high-risk cancer predisposition genes, such as BRCA1/2, the identification of founder variants in a certain population could help designing customized cost-effective cancer screening panels. This advantage has been best utilized in designing a customized breast cancer BRCA screening panel for the Ashkenazi Jews (AJ) population, composed of the three BRCA founder variants which account for approximately 90% of identified BRCA alterations. Indeed, the high prevalence of pathogenic BRCA1/2 variants among AJ (~ 2%) has additionally contributed to make population-based screening cost-effective in comparison to family-history-based screening. In Jordan there are multiple demographic characteristics supporting the proposal of a founder effect. A high consanguinity rate of ~ 57% in the nineties of the last century and ~ 30% more recently is a prominent factor, in addition to inbreeding which is often practiced by different sub-populations of the country.This review explains the concept of founder effect, then applies it to analyze published Jordanian BRCA variants, and concludes that nine pathogenic (P) and likely pathogenic (LP) BRCA2 variants together with one pathogenic BRCA1 variant are potential founder variants. Together they make up 43% and 55% of all identified BRCA1/2 alterations in the two largest studied cohorts of young patients and high-risk patients respectively. These variants were identified based on being recurrent and either specific to ethnic groups or being novel. In addition, the report highlights the required testing methodologies to validate these findings, and proposes a health economic evaluation model to test cost-effectiveness of a population-based customized BRCA screening panel for the Jordanian population. The aim of this report is to highlight the potential utilization of founder variants in establishing customized cancer predisposition services, in order to encourage more population-based genomic studies in Jordan and similar populations.
Collapse
Affiliation(s)
- Olfat Ahmad
- Division of Pediatric Neurooncology, Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
- University of Oxford, Oxford, UK
- King Hussein Cancer Center (KHCC), Amman, Jordan
| | - Christian Sutter
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Steffen Hirsch
- Division of Pediatric Neurooncology, Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Stefan M Pfister
- Division of Pediatric Neurooncology, Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian P Schaaf
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
13
|
Marincak Vrankova Z, Krivanek J, Danek Z, Zelinka J, Brysova A, Izakovicova Holla L, Hartsfield JK, Borilova Linhartova P. Candidate genes for obstructive sleep apnea in non-syndromic children with craniofacial dysmorphisms - a narrative review. Front Pediatr 2023; 11:1117493. [PMID: 37441579 PMCID: PMC10334820 DOI: 10.3389/fped.2023.1117493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/06/2023] [Indexed: 07/15/2023] Open
Abstract
Pediatric obstructive sleep apnea (POSA) is a complex disease with multifactorial etiopathogenesis. The presence of craniofacial dysmorphisms influencing the patency of the upper airway is considered a risk factor for POSA development. The craniofacial features associated with sleep-related breathing disorders (SRBD) - craniosynostosis, retrognathia and micrognathia, midface and maxillary hypoplasia - have high heritability and, in a less severe form, could be also found in non-syndromic children suffering from POSA. As genetic factors play a role in both POSA and craniofacial dysmorphisms, we hypothesize that some genes associated with specific craniofacial features that are involved in the development of the orofacial area may be also considered candidate genes for POSA. The genetic background of POSA in children is less explored than in adults; so far, only one genome-wide association study for POSA has been conducted; however, children with craniofacial disorders were excluded from that study. In this narrative review, we discuss syndromes that are commonly associated with severe craniofacial dysmorphisms and a high prevalence of sleep-related breathing disorders (SRBD), including POSA. We also summarized information about their genetic background and based on this, proposed 30 candidate genes for POSA affecting craniofacial development that may play a role in children with syndromes, and identified seven of these genes that were previously associated with craniofacial features risky for POSA development in non-syndromic children. The evidence-based approach supports the proposition that variants of these candidate genes could lead to POSA phenotype even in these children, and, thus, should be considered in future research in the general pediatric population.
Collapse
Affiliation(s)
- Zuzana Marincak Vrankova
- Clinic of Stomatology, Institution Shared with St. Anne's University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Clinic of Maxillofacial Surgery, Institution Shared with the University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Jan Krivanek
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zdenek Danek
- Clinic of Maxillofacial Surgery, Institution Shared with the University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Jiri Zelinka
- Clinic of Maxillofacial Surgery, Institution Shared with the University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Alena Brysova
- Clinic of Stomatology, Institution Shared with St. Anne's University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lydie Izakovicova Holla
- Clinic of Stomatology, Institution Shared with St. Anne's University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - James K. Hartsfield
- E. Preston Hicks Professor of Orthodontics and Oral Health Research, University of Kentucky Center for the Biologic Basis of Oral/Systemic Diseases, Hereditary Genetics/Genomics Core, Lexington, KE, United States
| | - Petra Borilova Linhartova
- Clinic of Stomatology, Institution Shared with St. Anne's University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Clinic of Maxillofacial Surgery, Institution Shared with the University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| |
Collapse
|
14
|
Negrete-Torres N, Chima-Galán MDC, Sierra-López EA, Sánchez-Ramos J, Álvarez-González I, Reyes-Reali J, Mendoza-Ramos MI, Garrido-Guerrero E, Amato D, Méndez-Catalá CF, Pozo-Molina G, Méndez-Cruz AR. Identification of Compound Heterozygous EVC2 Gene Variants in Two Mexican Families with Ellis-van Creveld Syndrome. Genes (Basel) 2023; 14:genes14040887. [PMID: 37107645 PMCID: PMC10137610 DOI: 10.3390/genes14040887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/06/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Ellis-van Creveld syndrome (EvCS) is an autosomal recessive ciliopathy with a disproportionate short stature, polydactyly, dystrophic nails, oral defects, and cardiac anomalies. It is caused by pathogenic variants in the EVC or EVC2 genes. To obtain further insight into the genetics of EvCS, we identified the genetic defect for the EVC2 gene in two Mexican patients. METHODS Two Mexican families were enrolled in this study. Exome sequencing was applied in the probands to screen potential genetic variant(s), and then Sanger sequencing was used to identify the variant in the parents. Finally, a prediction of the three-dimensional structure of the mutant proteins was made. RESULTS One patient has a compound heterozygous EVC2 mutation: a novel heterozygous variant c.519_519 + 1delinsT inherited from her mother, and a heterozygous variant c.2161delC (p.L721fs) inherited from her father. The second patient has a previously reported compound heterozygous EVC2 mutation: nonsense mutation c.645G > A (p.W215*) in exon 5 inherited from her mother, and c.273dup (p.K92fs) in exon 2 inherited from her father. In both cases, the diagnostic was Ellis-van Creveld syndrome. Three-dimensional modeling of the EVC2 protein showed that truncated proteins are produced in both patients due to the generation of premature stop codons. CONCLUSION The identified novel heterozygous EVC2 variants, c.2161delC and c.519_519 + 1delinsT, were responsible for the Ellis-van Creveld syndrome in one of the Mexican patients. In the second Mexican patient, we identified a compound heterozygous variant, c.645G > A and c.273dup, responsible for EvCS. The findings in this study extend the EVC2 mutation spectrum and may provide new insights into the EVC2 causation and diagnosis with implications for genetic counseling and clinical management.
Collapse
Affiliation(s)
- Nancy Negrete-Torres
- Laboratorio de Genética y Oncología Molecular, Laboratorio 5, Edificio A4, Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas Zacatenco, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico
| | | | | | - Janet Sánchez-Ramos
- Laboratorio de Genética y Oncología Molecular, Laboratorio 5, Edificio A4, Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Isela Álvarez-González
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas Zacatenco, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico
| | - Julia Reyes-Reali
- Laboratorio de Inmunología, Unidad de Morfofisiología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - María Isabel Mendoza-Ramos
- Laboratorio de Inmunología, Unidad de Morfofisiología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Efraín Garrido-Guerrero
- Departamento de Genética y Biología Molecular, CINVESTAV-IPN, Ciudad de México 07360, Mexico
| | - Dante Amato
- Laboratorio de Genética y Oncología Molecular, Laboratorio 5, Edificio A4, Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Claudia Fabiola Méndez-Catalá
- Laboratorio de Genética y Oncología Molecular, Laboratorio 5, Edificio A4, Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
- División de Investigación y Posgrado, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Glustein Pozo-Molina
- Laboratorio de Genética y Oncología Molecular, Laboratorio 5, Edificio A4, Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Adolfo René Méndez-Cruz
- Laboratorio de Inmunología, Unidad de Morfofisiología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| |
Collapse
|
15
|
Aubert-Mucca M, Huber C, Baujat G, Michot C, Zarhrate M, Bras M, Boutaud L, Malan V, Attie-Bitach T, Cormier-Daire V. Ellis-Van Creveld Syndrome: Clinical and Molecular Analysis of 50 Individuals. J Med Genet 2023; 60:337-345. [PMID: 35927022 DOI: 10.1136/jmg-2022-108435] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 07/09/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Ellis-Van Creveld (EVC) syndrome is one of the entities belonging to the skeletal ciliopathies short rib-polydactyly subgroup. Major signs are ectodermal dysplasia, chondrodysplasia, polydactyly and congenital cardiopathy, with a high degree of variability in phenotypes ranging from lethal to mild clinical presentations. The EVC and EVC2 genes are the major genes causative of EVC syndrome. However, an increased number of genes involved in the ciliopathy complex have been identified in EVC syndrome, leading to a better understanding of its physiopathology, namely, WDR35, GLI1, DYNC2LI1, PRKACA, PRKACB and SMO. They all code for proteins located in the primary cilia, playing a key role in signal transduction of the Hedgehog pathways. METHODS The aim of this study was the analysis of 50 clinically identified EVC cases from 45 families to further define the phenotype and molecular bases of EVC. RESULTS Our detection rate in the cohort of 45 families was of 91.11%, with variants identified in EVC/EVC2 (77.8%), DYNC2H1 (6.7%), DYNC2LI1 (2.2%), SMO (2.2%) or PRKACB (2.2%). No distinctive feature was remarkable of a specific genotype-phenotype correlation. Interestingly, we identified a high proportion of heterozygous deletions in EVC/EVC2 of variable sizes (26.92%), mostly inherited from the mother, and probably resulting from recombinations involving Alu sequences. CONCLUSION We confirmed that EVC and EVC2 are the major genes involved in the EVC phenotype and highlighted the high prevalence of previously unreported CNVs (Copy Number Variation).
Collapse
Affiliation(s)
- Marion Aubert-Mucca
- Centre de Référence des Maladies Osseuses Constitutionnelles, Service de Médecine Génomique des Maladies Rares, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Céline Huber
- Université Paris Cité, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Genevieve Baujat
- Centre de Référence des Maladies Osseuses Constitutionnelles, Service de Médecine Génomique des Maladies Rares, Hôpital Universitaire Necker-Enfants Malades, Paris, France
- Université Paris Cité, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Caroline Michot
- Centre de Référence des Maladies Osseuses Constitutionnelles, Service de Médecine Génomique des Maladies Rares, Hôpital Universitaire Necker-Enfants Malades, Paris, France
- Université Paris Cité, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Mohammed Zarhrate
- Genomics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163 et INSERM US24/CNRS UMS3633, Imagine Institute, Paris, France
| | - Marc Bras
- Bioinformatics Platform, Imagine Institute, Paris, France
| | - Lucile Boutaud
- Université Paris Cité, INSERM UMR 1163, Imagine Institute, Paris, France
- Service de Médecine Génomique des Maladies Rares, Hopital Universitaire Necker-Enfants Malades, Paris, France
| | - Valérie Malan
- Université Paris Cité, INSERM UMR 1163, Imagine Institute, Paris, France
- Service de Médecine Génomique des Maladies Rares, Hopital Universitaire Necker-Enfants Malades, Paris, France
| | - Tania Attie-Bitach
- Université Paris Cité, INSERM UMR 1163, Imagine Institute, Paris, France
- Service de Médecine Génomique des Maladies Rares, Hopital Universitaire Necker-Enfants Malades, Paris, France
| | | | - Valerie Cormier-Daire
- Centre de Référence des Maladies Osseuses Constitutionnelles, Service de Médecine Génomique des Maladies Rares, Hôpital Universitaire Necker-Enfants Malades, Paris, France
- Université Paris Cité, INSERM UMR 1163, Imagine Institute, Paris, France
| |
Collapse
|
16
|
Piceci-Sparascio F, Micale L, Torres B, Guida V, Consoli F, Torrente I, Onori A, Frustaci E, D'Asdia MC, Petrizzelli F, Bernardini L, Mancini C, Soli F, Cocciadiferro D, Guadagnolo D, Mastromoro G, Putotto C, Fontana F, Brunetti-Pierri N, Novelli A, Pizzuti A, Marino B, Digilio MC, Mazza T, Dallapiccola B, Ruiz-Perez VL, Tartaglia M, Castori M, De Luca A. Clinical variability in DYNC2H1-related skeletal ciliopathies includes Ellis-van Creveld syndrome. Eur J Hum Genet 2023; 31:479-484. [PMID: 36599940 PMCID: PMC10133340 DOI: 10.1038/s41431-022-01276-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/17/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
Deleterious variants of DYNC2H1 gene are associated with a wide spectrum of skeletal ciliopathies (SC). We used targeted parallel sequencing to analyze 25 molecularly unsolved families with different SCs. Deleterious DYNC2H1 variants were found in six sporadic patients and two monozygotic (MZ) twins. Clinical diagnoses included short rib-polydactyly type 3 in two cases, and asphyxiating thoracic dystrophy (ATD) in one case. Remarkably, clinical diagnosis fitted with EvC, mixed ATD/EvC and short rib-polydactyly/EvC phenotypes in three sporadic patients and the MZ twins. EvC/EvC-like features always occurred in compound heterozygotes sharing a previously unreported splice site change (c.6140-5A>G) or compound heterozygotes for two missense variants. These results expand the DYNC2H1 mutational repertoire and its clinical spectrum, suggesting that EvC may be occasionally caused by DYNC2H1 variants presumably acting as hypomorphic alleles.
Collapse
Affiliation(s)
- Francesca Piceci-Sparascio
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Lucia Micale
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Barbara Torres
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Valentina Guida
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Federica Consoli
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Isabella Torrente
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Annamaria Onori
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Emanuela Frustaci
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Maria Cecilia D'Asdia
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Francesco Petrizzelli
- Laboratory of Bioinformatics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Laura Bernardini
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Cecilia Mancini
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Fiorenza Soli
- Medical Genetic Unit, Santa Chiara Hospital APSS, Trento, Italy
| | - Dario Cocciadiferro
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital and Research Institute, IRCCS, Rome, Italy
| | - Daniele Guadagnolo
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Gioia Mastromoro
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Carolina Putotto
- Department of Pediatrics, Obstetrics and Gynecology, "Sapienza" University of Rome, Rome, Italy
| | | | - Nicola Brunetti-Pierri
- Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital and Research Institute, IRCCS, Rome, Italy
| | - Antonio Pizzuti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Bruno Marino
- Department of Pediatrics, Obstetrics and Gynecology, "Sapienza" University of Rome, Rome, Italy
| | - Maria Cristina Digilio
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Tommaso Mazza
- Laboratory of Bioinformatics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Bruno Dallapiccola
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Victor Luis Ruiz-Perez
- Instituto de Investigaciones Biomédicas 'Alberto Sols', CSIC-UAM, Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz-IdiPaz-UAM, Madrid, Spain
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Marco Castori
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Alessandro De Luca
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.
| |
Collapse
|
17
|
Da Silva JD, Soares AR, Fortuna AM, Tkachenko N. Establishing an objective clinical spectrum, genotype-phenotype correlations, and CRMP1 as a modifier in the Ellis-van Creveld syndrome: The first systematic review of EVC- and EVC2-associated conditions. GENETICS IN MEDICINE OPEN 2023; 1:100781. [PMID: 39669252 PMCID: PMC11613718 DOI: 10.1016/j.gimo.2023.100781] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 12/14/2024]
Abstract
Purpose Ellis-van Creveld (EVC) syndrome is an autosomal recessive skeletal ciliopathy that was first identified in the Old Order Amish. Since its discovery, two causal genes have been identified, EVC and EVC2, showing that several cases were misdiagnosed and were, in fact, other entities. Nevertheless, there has not been any adequate phenotypic characterization of molecularly defined EVC syndrome so far. Methods We performed a systematic review of case reports of EVC syndrome with molecular confirmation of pathogenic variants in EVC or EVC2. Demographic, genetic, and clinical information of patients was assessed. Results We reviewed 725 papers and obtained 54 case reports/series that met the inclusion criteria, with a total subject sample of 310. Of these, 190 had biallelic variants, whereas 28 were affected heterozygotes. Our analysis revealed new phenotypes that have not been classically linked to the syndrome and others that have been linked but are very rare. Monoallelic symptomatic forms had less expressivity, and biallelic cases were milder if associated with EVC and/or missense variants. Finally, we identified CRMP1, a gene whose coding region partially overlaps with EVC, as a potential genetic modifier of the severity of the EVC syndrome. Conclusion We provided the first objective clinical characterization of molecularly defined EVC syndrome and identified the first associated genetic modifier, CRMP1, which had not been implicated in human disease before.
Collapse
Affiliation(s)
- Jorge Diogo Da Silva
- Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar Universitário de Santo António, Porto, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Unit for Multidisciplinary Research in Biomedicine, Abel Salazar Biomedical Sciences Institute, Porto University, Porto, Portugal
| | - Ana Rita Soares
- Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar Universitário de Santo António, Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine, Abel Salazar Biomedical Sciences Institute, Porto University, Porto, Portugal
| | - Ana Maria Fortuna
- Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar Universitário de Santo António, Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine, Abel Salazar Biomedical Sciences Institute, Porto University, Porto, Portugal
| | - Nataliya Tkachenko
- Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar Universitário de Santo António, Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine, Abel Salazar Biomedical Sciences Institute, Porto University, Porto, Portugal
| |
Collapse
|
18
|
Sailer SA, Burkhalter MD, Philipp M. Cholesterol and Phosphoinositides in Cilia Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:121-142. [PMID: 36988879 DOI: 10.1007/978-3-031-21547-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Cilia are evolutionarily conserved organelles that can be found on virtually every cell. They appear as hair-like structures emanating from the cellular surface either as single or as bundles of cilia. There, they sense external stimuli and translate them into intracellular signals. Motile cilia beat for the generation of locomotion of unicellular organisms or fluid flow in certain body cavities of vertebrate organisms. Defects in cilia are detrimental and account for the development of ciliopathies, one of the fastest-growing family of afflictions. In the past decade, membrane lipids, such as cholesterol and phosphoinositides, have emerged as essential elements in both the signal transduction via cilia and the building of cilia itself. Here, we summarize the current knowledge on the impact of cholesterol and phosphoinositides on cilium biology.
Collapse
Affiliation(s)
- Steffen-Alexander Sailer
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Division of Pharmacogenomics, University Hospital Tübingen, Tübingen, Germany
| | - Martin D Burkhalter
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Division of Pharmacogenomics, University Hospital Tübingen, Tübingen, Germany
| | - Melanie Philipp
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Division of Pharmacogenomics, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
19
|
Piazza I, Ferrero P. First case reported of COVID-19 infection in an adult patient with Ellis-van Creveld Syndrome. PROGRESS IN PEDIATRIC CARDIOLOGY 2022; 67:101508. [PMID: 35250252 PMCID: PMC8885086 DOI: 10.1016/j.ppedcard.2022.101508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022]
Abstract
Ellis-van Creveld syndrome (EVC) is a rare autosomal recessive disorder, the features of the syndrome are: chondral and ectodermal dysplasia characterized by short ribs, polydactyly, growth retardation resulting in dwarfism, teeth and craniofacial abnormalities and heart defects (mostly endocardial cushions and atrial septal defects). We describe the first case reported of COVID-19 infection in a 24-years-old girl, diagnosed with EVC syndrome. The patient suffered only from a mild illness, she remained stable with normal saturation without need of neither respiratory support nor specific therapy and she was rapidly discharged. This case appraises the pathophysiological interplay between different specific prognostic variable in a syndromic patient with congenital heart disease and COVID-19. In patients with congenital heart disease, comorbidities related to syndromic picture may affect the clinical course of COVID-19 infection regardless of the anatomic complexity.
Collapse
Affiliation(s)
- Isabelle Piazza
- Emergency Medicine Department, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Paolo Ferrero
- ACHD Unit - Pediatric and Adult Congenital Heart Centre, IRCCS-Policlinico San Donato, San Donato Milanese, Milan, Italy
| |
Collapse
|
20
|
Novel Candidate Genes for Non-Syndromic Tooth Agenesis Identified Using Targeted Next-Generation Sequencing. J Clin Med 2022; 11:jcm11206089. [PMID: 36294409 PMCID: PMC9605476 DOI: 10.3390/jcm11206089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022] Open
Abstract
Non-syndromic tooth agenesis (ns-TA) is one of the most common dental anomalies characterized by the congenital absence of at least one permanent tooth (excluding third molars). Regarding the essential role of genetic factors in ns-TA aetiology, the present study aimed to identify novel pathogenic variants underlying hypodontia and oligodontia. In a group of 65 ns-TA patients and 127 healthy individuals from the genetically homogenous Polish population, the coding sequences of 423 candidate genes were screened using targeted next-generation sequencing. Pathogenic and likely pathogenic variants were identified in 37 (56.92%) patients, including eight nucleotide alternations of genes not previously implicated in ns-TA (CHD7, CREBBP, EVC, LEF1, ROR2, TBX22 and TP63). However, since only single variants were detected, future research is required to confirm and fully understand their role in the aetiology of ns-TA. Additionally, our results support the importance of already known ns-TA candidate genes (AXIN2, EDA, EDAR, IRF6, LAMA3, LRP6, MSX1, PAX9 and WNT10A) and provide additional evidence that ns-TA might be an oligogenic condition involving the cumulative effect of rare variants in two or more distinct genes.
Collapse
|
21
|
Zhang H, Chinoy A, Mousavi P, Beeler A, Louie K, Collier C, Mishina Y. Elevated WNT signaling and compromised Hedgehog signaling due to Evc2 loss of function contribute to the abnormal molar patterning. FRONTIERS IN DENTAL MEDICINE 2022; 3:876015. [PMID: 38606060 PMCID: PMC11007741 DOI: 10.3389/fdmed.2022.876015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
Ellis-van Creveld (EVC) syndrome is an autosomal recessive chondrodysplasia. The affected individuals bear a series of skeleton defects, congenital heart septum anomalies, midfacial defects, and dental defects. Previous studies using Evc or Evc2 mutant mice have characterized the pathological mechanism leading to various types of congenital defects. Some patients with EVC have supernumerary tooth; however, it is not known yet if there are supernumerary tooth formed in Evc or Evc2 mutant mice, and if yes, what is the pathological mechanism associated. In the present study, we used Evc2 mutant mice and analyze the pattern of molars in Evc2 mutant mice at various stages. Our studies demonstrate that Evc2 loss of function within the dental mesenchymal cells leads to abnormal molar patterning, and that the most anterior molar in the Evc2 mutant mandible represents a supernumerary tooth. Finally, we provide evidence supporting the idea that both compromised Hedgehog signaling and elevated WNT signaling due to Evc2 loss of function contributes to the supernumerary tooth formation.
Collapse
Affiliation(s)
- Honghao Zhang
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Afriti Chinoy
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Paymon Mousavi
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Aubrey Beeler
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Ke’ale Louie
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Crystal Collier
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Yuji Mishina
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
22
|
Microdeletion of 4p16.2 in Children: A Case Report and Literature Review. Case Rep Genet 2022; 2022:6253690. [PMID: 35437470 PMCID: PMC9013304 DOI: 10.1155/2022/6253690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/16/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
Copy number variations (CNV) are thought to play an important role in causing human diseases, including congenital anomalies, psychiatric disorders, and intellectual disabilities. We report here a one-year-old boy presented to our clinic as developmental delay. He presented a birth weight of 4.5 kg, motor delay, mental retardation, mild hypertonia, and some dysmorphic features (mild frontal bossing, hypertelorism, epicanthus, concave nasal ridge, slightly sparse hair, short hands, and mild nail dysplasia). The brain MRI indicated brain abnormalities; the Gross Motor Function Measure-66 score was 23.37; the Gesell test result showed the development quotient was 50, suggesting mental retardation. Chromosomal microarray analysis showed an approximately 97 kb microdeletion at 4p16.2 (4p16.2 CNV), including part of EVC and EVC2 genes, which were associated with Ellis-van Creveld syndrome (EvC) and Weyers acrofacial dysostosis (WAD). This report suggests 4p16.2 microdeletion may be associated with multiple developmental abnormalities, including motor delay and mental retardation.
Collapse
|
23
|
Djenoune L, Berg K, Brueckner M, Yuan S. A change of heart: new roles for cilia in cardiac development and disease. Nat Rev Cardiol 2022; 19:211-227. [PMID: 34862511 PMCID: PMC10161238 DOI: 10.1038/s41569-021-00635-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/11/2021] [Indexed: 12/27/2022]
Abstract
Although cardiac abnormalities have been observed in a growing class of human disorders caused by defective primary cilia, the function of cilia in the heart remains an underexplored area. The primary function of cilia in the heart was long thought to be restricted to left-right axis patterning during embryogenesis. However, new findings have revealed broad roles for cilia in congenital heart disease, valvulogenesis, myocardial fibrosis and regeneration, and mechanosensation. In this Review, we describe advances in our understanding of the mechanisms by which cilia function contributes to cardiac left-right axis development and discuss the latest findings that highlight a broader role for cilia in cardiac development. Specifically, we examine the growing line of evidence connecting cilia function to the pathogenesis of congenital heart disease. Furthermore, we also highlight research from the past 10 years demonstrating the role of cilia function in common cardiac valve disorders, including mitral valve prolapse and aortic valve disease, and describe findings that implicate cardiac cilia in mechanosensation potentially linking haemodynamic and contractile forces with genetic regulation of cardiac development and function. Finally, given the presence of cilia on cardiac fibroblasts, we also explore the potential role of cilia in fibrotic growth and summarize the evidence implicating cardiac cilia in heart regeneration.
Collapse
Affiliation(s)
- Lydia Djenoune
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kathryn Berg
- Department of Paediatrics, Yale University School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Martina Brueckner
- Department of Paediatrics, Yale University School of Medicine, New Haven, CT, USA.
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
| | - Shiaulou Yuan
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
24
|
Rasmussen SA, Pomputius A, Amberger JS, Hamosh A. Viewing Victor McKusick's legacy through the lens of his bibliography. Am J Med Genet A 2021; 185:3212-3223. [PMID: 34159717 PMCID: PMC8530872 DOI: 10.1002/ajmg.a.62394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/13/2021] [Accepted: 05/22/2021] [Indexed: 11/09/2022]
Abstract
Victor McKusick's contributions to the field of medical genetics are legendary and include his contributions as a mentor, as creator of Mendelian Inheritance in Man (now Online Mendelian Inheritance in Man [OMIM®]), and as a leader in the field of medical genetics. McKusick's full bibliography includes 772 publications. Here we review the 453 papers authored by McKusick and indexed in PubMed, from his earliest paper published in the New England Journal of Medicine in 1949 to his last paper published in American Journal of Medical Genetics Part A in 2008. This review of his bibliography chronicles McKusick's evolution from an internist and cardiologist with an interest in genetics to an esteemed leader in the growing field of medical genetics. Review of his bibliography also provides a historical perspective of the development of the discipline of medical genetics. This field came into its own during his lifetime, transitioning from the study of interesting cases and families used to codify basic medical genetics principles to an accredited medical specialty that is expected to transform healthcare. Along the way, he helped to unite the fields of medical and human genetics to focus on mapping the human genome, culminating in completion of the Human Genome Project. This review confirms the critical role played by Victor McKusick as the founding father of medical genetics.
Collapse
Affiliation(s)
- Sonja A. Rasmussen
- Departments of Pediatrics and Obstetrics and Gynecology, University of Florida College of Medicine, Gainesville, USA
- Department of Epidemiology, University of Florida College of Public Health and Health Professions and College of Medicine, Gainesville, USA
| | - Ariel Pomputius
- Health Science Center Libraries, University of Florida, Gainesville, USA
| | - Joanna S. Amberger
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ada Hamosh
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
25
|
Alessa N, Mahnashi MA, Fatehi L. Ellis-van Creveld Syndrome 2 With Novel Partial Exon 11 Deletion: A Case From Saudi Arabia. Cureus 2021; 13:e17750. [PMID: 34659963 PMCID: PMC8491797 DOI: 10.7759/cureus.17750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2021] [Indexed: 11/25/2022] Open
Abstract
Ellis-van Creveld syndrome (EVC) is a rare genetic disorder characterized by chondral and ectodermal dysplasia. Clinical features may include polydactyly, growth retardation, short ribs, and heart defects. The exact prevalence is still unclear; however, the Amish community in the United States is the most common community to report this rare disease. Until now, only six cases have been reported in Saudi Arabia so far. This is the first case to be reported in the Jazan region. Jazan covers an area of 11,671 km² and has a population of 1,567,547 at the 2017 census. This region has the highest population density with a high consanguinity marriage rate. We present a case of EVC with typical clinical findings, which was confirmed by homozygous mutation in the EVC2 gene in the region of Jazan, Saudi Arabia. Besides the six cases that were reported from Saudi Arabia, this makes it a total of seven cases. The prenatal findings are considered a good predictor of the disease outcome. More effort is needed in making a national registry of rare disorders to report such cases and provide more awareness among highly consanguinity marriage communities.
Collapse
Affiliation(s)
- Nouf Alessa
- Pediatrics, King Fahad Central Hospital, Jazan, SAU
| | | | - Lana Fatehi
- Genetics and Metabolism, King Fahad Central Hospital, Jazan, SAU
| |
Collapse
|
26
|
Primary cilia in hard tissue development and diseases. Front Med 2021; 15:657-678. [PMID: 34515939 DOI: 10.1007/s11684-021-0829-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/13/2020] [Indexed: 10/20/2022]
Abstract
Bone and teeth are hard tissues. Hard tissue diseases have a serious effect on human survival and quality of life. Primary cilia are protrusions on the surfaces of cells. As antennas, they are distributed on the membrane surfaces of almost all mammalian cell types and participate in the development of organs and the maintenance of homeostasis. Mutations in cilium-related genes result in a variety of developmental and even lethal diseases. Patients with multiple ciliary gene mutations present overt changes in the skeletal system, suggesting that primary cilia are involved in hard tissue development and reconstruction. Furthermore, primary cilia act as sensors of external stimuli and regulate bone homeostasis. Specifically, substances are trafficked through primary cilia by intraflagellar transport, which affects key signaling pathways during hard tissue development. In this review, we summarize the roles of primary cilia in long bone development and remodeling from two perspectives: primary cilia signaling and sensory mechanisms. In addition, the cilium-related diseases of hard tissue and the manifestations of mutant cilia in the skeleton and teeth are described. We believe that all the findings will help with the intervention and treatment of related hard tissue genetic diseases.
Collapse
|
27
|
Yasuhara J, Garg V. Genetics of congenital heart disease: a narrative review of recent advances and clinical implications. Transl Pediatr 2021; 10:2366-2386. [PMID: 34733677 PMCID: PMC8506053 DOI: 10.21037/tp-21-297] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/20/2021] [Indexed: 12/23/2022] Open
Abstract
Congenital heart disease (CHD) is the most common human birth defect and remains a leading cause of mortality in childhood. Although advances in clinical management have improved the survival of children with CHD, adult survivors commonly experience cardiac and non-cardiac comorbidities, which affect quality of life and prognosis. Therefore, the elucidation of genetic etiologies of CHD not only has important clinical implications for genetic counseling of patients and families but may also impact clinical outcomes by identifying at-risk patients. Recent advancements in genetic technologies, including massively parallel sequencing, have allowed for the discovery of new genetic etiologies for CHD. Although variant prioritization and interpretation of pathogenicity remain challenges in the field of CHD genomics, advances in single-cell genomics and functional genomics using cellular and animal models of CHD have the potential to provide novel insights into the underlying mechanisms of CHD and its associated morbidities. In this review, we provide an updated summary of the established genetic contributors to CHD and discuss recent advances in our understanding of the genetic architecture of CHD along with current challenges with the interpretation of genetic variation. Furthermore, we highlight the clinical implications of genetic findings to predict and potentially improve clinical outcomes in patients with CHD.
Collapse
Affiliation(s)
- Jun Yasuhara
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA.,Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Vidu Garg
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA.,Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA.,Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
28
|
El Mouatani A, Van Winckel G, Zaafrane-Khachnaoui K, Whalen S, Achaiaa A, Kaltenbach S, Superti-Furga A, Vekemans M, Fodstad H, Giuliano F, Attie-Bitach T. Homozygous GLI3 variants observed in three unrelated patients presenting with syndromic polydactyly. Am J Med Genet A 2021; 185:3831-3837. [PMID: 34296525 DOI: 10.1002/ajmg.a.62426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/01/2021] [Accepted: 06/12/2021] [Indexed: 11/08/2022]
Abstract
Polydactyly is a hallmark of GLI3 pathogenic variants, with Greig cephalopolysyndactyly syndrome and Pallister-Hall syndrome being the two main associated clinical presentations. Homozygous GLI3 variants are rare instances in the literature, and mendelian dominance is the accepted framework for GLI3-related diseases. Herein, we report three unrelated probands, presenting with polydactyly, and homozygous variants in the GLI3 gene. First, a 10-year-old girl, whose parents were first-degree cousins, presented with bilateral postaxial polydactyly of the hands, developmental delay and multiple malformations. Second, a male newborn, whose parents were first-degree cousins, presented with isolated bilateral postaxial polysyndactyly of the hands and the feet. Third, an adult male, whose parents were first-degree cousins, had bilateral mesoaxial polydactyly of the hands, with severe intellectual disability and multiple malformations. All three probands carried homozygous GLI3 variants. Strikingly, the parents also carried the child's variant, in the heterozygous state, without any clinical sign of GLI3 disease. Given the clinical presentation of our patients, the rarity and predicted high pathogenicity of the variants observed, and the absence of other pathogenic variants, we suggest that these GLI3 homozygous variants are causal. Moreover, the parents were heterozygous for the observed variants, but were clinically unremarkable, suggesting that these variants are hypomorphic alleles.
Collapse
Affiliation(s)
- Ahmed El Mouatani
- Service Histologie-Embryologie-Cytogénétique, Hôpital Necker-Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Géraldine Van Winckel
- Service de Médecine Génétique, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | | | - Sandra Whalen
- Unité Fonctionnelle de Génétique Clinique, Centre de Référence Maladies Rares Anomalies du développement et syndromes malformatifs, Hôpital Armand Trousseau, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Amale Achaiaa
- Service Histologie-Embryologie-Cytogénétique, Hôpital Necker-Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Sophie Kaltenbach
- Service Histologie-Embryologie-Cytogénétique, Hôpital Necker-Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France.,INSERM UMR 1163, Université de Paris, Imagine Institute, Paris, France
| | - Andrea Superti-Furga
- Service de Médecine Génétique, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Michel Vekemans
- Service Histologie-Embryologie-Cytogénétique, Hôpital Necker-Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Heidi Fodstad
- Service de Médecine Génétique, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Fabienne Giuliano
- Service de Médecine Génétique, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Tania Attie-Bitach
- Service Histologie-Embryologie-Cytogénétique, Hôpital Necker-Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France.,INSERM UMR 1163, Université de Paris, Imagine Institute, Paris, France
| |
Collapse
|
29
|
Ciliary Signalling and Mechanotransduction in the Pathophysiology of Craniosynostosis. Genes (Basel) 2021; 12:genes12071073. [PMID: 34356089 PMCID: PMC8306115 DOI: 10.3390/genes12071073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/25/2022] Open
Abstract
Craniosynostosis (CS) is the second most prevalent inborn craniofacial malformation; it results from the premature fusion of cranial sutures and leads to dimorphisms of variable severity. CS is clinically heterogeneous, as it can be either a sporadic isolated defect, more frequently, or part of a syndromic phenotype with mendelian inheritance. The genetic basis of CS is also extremely heterogeneous, with nearly a hundred genes associated so far, mostly mutated in syndromic forms. Several genes can be categorised within partially overlapping pathways, including those causing defects of the primary cilium. The primary cilium is a cellular antenna serving as a signalling hub implicated in mechanotransduction, housing key molecular signals expressed on the ciliary membrane and in the cilioplasm. This mechanical property mediated by the primary cilium may also represent a cue to understand the pathophysiology of non-syndromic CS. In this review, we aimed to highlight the implication of the primary cilium components and active signalling in CS pathophysiology, dissecting their biological functions in craniofacial development and in suture biomechanics. Through an in-depth revision of the literature and computational annotation of disease-associated genes we categorised 18 ciliary genes involved in CS aetiology. Interestingly, a prevalent implication of midline sutures is observed in CS ciliopathies, possibly explained by the specific neural crest origin of the frontal bone.
Collapse
|
30
|
Calcagni G, Pugnaloni F, Digilio MC, Unolt M, Putotto C, Niceta M, Baban A, Piceci Sparascio F, Drago F, De Luca A, Tartaglia M, Marino B, Versacci P. Cardiac Defects and Genetic Syndromes: Old Uncertainties and New Insights. Genes (Basel) 2021; 12:genes12071047. [PMID: 34356063 PMCID: PMC8307133 DOI: 10.3390/genes12071047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 02/02/2023] Open
Abstract
Recent advances in understanding the genetic causes and anatomic subtypes of cardiac defects have revealed new links between genetic etiology, pathogenetic mechanisms and cardiac phenotypes. Although the same genetic background can result in different cardiac phenotypes, and similar phenotypes can be caused by different genetic causes, researchers’ effort to identify specific genotype–phenotype correlations remains crucial. In this review, we report on recent advances in the cardiac pathogenesis of three genetic diseases: Down syndrome, del22q11.2 deletion syndrome and Ellis–Van Creveld syndrome. In these conditions, the frequent and specific association with congenital heart defects and the recent characterization of the underlying molecular events contributing to pathogenesis provide significant examples of genotype–phenotype correlations. Defining these correlations is expected to improve diagnosis and patient stratification, and it has relevant implications for patient management and potential therapeutic options.
Collapse
Affiliation(s)
- Giulio Calcagni
- Department of Pediatric Cardiology and Cardiac Surgery, Ospedale Pediatrico Bambino Gesù, IRCCS, 00165 Rome, Italy; (M.U.); (A.B.); (F.D.)
- Correspondence: ; Tel.: +39-06-68594096
| | - Flaminia Pugnaloni
- Department of Pediatrics, Obstetrics and Gynecology, “Sapienza” University, 00161 Rome, Italy; (F.P.); (C.P.); (B.M.); (P.V.)
| | - Maria Cristina Digilio
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00165 Rome, Italy; (M.C.D.); (M.N.); (M.T.)
| | - Marta Unolt
- Department of Pediatric Cardiology and Cardiac Surgery, Ospedale Pediatrico Bambino Gesù, IRCCS, 00165 Rome, Italy; (M.U.); (A.B.); (F.D.)
| | - Carolina Putotto
- Department of Pediatrics, Obstetrics and Gynecology, “Sapienza” University, 00161 Rome, Italy; (F.P.); (C.P.); (B.M.); (P.V.)
| | - Marcello Niceta
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00165 Rome, Italy; (M.C.D.); (M.N.); (M.T.)
| | - Anwar Baban
- Department of Pediatric Cardiology and Cardiac Surgery, Ospedale Pediatrico Bambino Gesù, IRCCS, 00165 Rome, Italy; (M.U.); (A.B.); (F.D.)
| | - Francesca Piceci Sparascio
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (F.P.S.); (A.D.L.)
| | - Fabrizio Drago
- Department of Pediatric Cardiology and Cardiac Surgery, Ospedale Pediatrico Bambino Gesù, IRCCS, 00165 Rome, Italy; (M.U.); (A.B.); (F.D.)
| | - Alessandro De Luca
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (F.P.S.); (A.D.L.)
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00165 Rome, Italy; (M.C.D.); (M.N.); (M.T.)
| | - Bruno Marino
- Department of Pediatrics, Obstetrics and Gynecology, “Sapienza” University, 00161 Rome, Italy; (F.P.); (C.P.); (B.M.); (P.V.)
| | - Paolo Versacci
- Department of Pediatrics, Obstetrics and Gynecology, “Sapienza” University, 00161 Rome, Italy; (F.P.); (C.P.); (B.M.); (P.V.)
| |
Collapse
|
31
|
Diz OM, Toro R, Cesar S, Gomez O, Sarquella-Brugada G, Campuzano O. Personalized Genetic Diagnosis of Congenital Heart Defects in Newborns. J Pers Med 2021; 11:562. [PMID: 34208491 PMCID: PMC8235407 DOI: 10.3390/jpm11060562] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/08/2021] [Accepted: 06/13/2021] [Indexed: 12/26/2022] Open
Abstract
Congenital heart disease is a group of pathologies characterized by structural malformations of the heart or great vessels. These alterations occur during the embryonic period and are the most frequently observed severe congenital malformations, the main cause of neonatal mortality due to malformation, and the second most frequent congenital malformations overall after malformations of the central nervous system. The severity of different types of congenital heart disease varies depending on the combination of associated anatomical defects. The causes of these malformations are usually considered multifactorial, but genetic variants play a key role. Currently, use of high-throughput genetic technologies allows identification of pathogenic aneuploidies, deletions/duplications of large segments, as well as rare single nucleotide variants. The high incidence of congenital heart disease as well as the associated complications makes it necessary to establish a diagnosis as early as possible to adopt the most appropriate measures in a personalized approach. In this review, we provide an exhaustive update of the genetic bases of the most frequent congenital heart diseases as well as other syndromes associated with congenital heart defects, and how genetic data can be translated to clinical practice in a personalized approach.
Collapse
Affiliation(s)
- Olga María Diz
- UGC Laboratorios, Hospital Universitario Puerta del Mar, 11009 Cadiz, Spain;
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08950 Barcelona, Spain
| | - Rocio Toro
- Medicine Department, School of Medicine, Cádiz University, 11519 Cadiz, Spain;
| | - Sergi Cesar
- Arrhythmia, Inherited Cardiac Diseases and Sudden Death Unit, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, University of Barcelona, 08007 Barcelona, Spain;
| | - Olga Gomez
- Fetal Medicine Research Center, BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08950 Barcelona, Spain;
- Centre for Biomedical Research on Rare Diseases (CIBER-ER), 28029 Madrid, Spain
| | - Georgia Sarquella-Brugada
- Arrhythmia, Inherited Cardiac Diseases and Sudden Death Unit, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, University of Barcelona, 08007 Barcelona, Spain;
- Medical Science Department, School of Medicine, University of Girona, 17003 Girona, Spain
| | - Oscar Campuzano
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08950 Barcelona, Spain
- Medical Science Department, School of Medicine, University of Girona, 17003 Girona, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBER-CV), 28029 Madrid, Spain
| |
Collapse
|
32
|
Aparisi Gómez MP, Trisolino G, Sangiorgi L, Guglielmi G, Bazzocchi A. Imaging of Congenital Skeletal Disorders. Semin Musculoskelet Radiol 2021; 25:22-38. [PMID: 34020466 DOI: 10.1055/s-0041-1723964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Osteochondrodysplasias are the result of the expression of gene mutations. The phenotypes in osteochondrodysplasias evolve through life, with the possibility that previously unaffected bones may be involved at later stages of growth. Due to the variable time of onset, the diagnosis may be made prenatally, at birth, or later. Certainty in the diagnosis is sometimes only achieved as the patient matures and the disease evolves. Radiographic evaluation is a fundamental part of the diagnostic work-up of congenital skeletal disorders and in most cases the first tool used to arrive at a diagnosis. This review describes the imaging characteristics, specific signs, and evolution of several skeletal dysplasias in which diagnosis may be directly or indirectly suggested by radiologic findings. A definitive accurate diagnosis of a congenital skeletal abnormality is necessary to help provide a prognosis of expected outcomes and to counsel parents and patients.
Collapse
Affiliation(s)
- Maria Pilar Aparisi Gómez
- Department of Radiology, National Women's Ultrasound, Auckland City Hospital, Auckland, New Zealand.,Department of Radiology, Hospital Vithas Nueve de Octubre, Valencia, Spain
| | - Giovanni Trisolino
- Pediatric Orthopedics and Traumatology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Luca Sangiorgi
- Rare Skeletal Diseases, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giuseppe Guglielmi
- Department of Radiology, Hospital San Giovanni Rotondo, San Giovanni Rotondo, Italy.,Department of Radiology, University of Foggia, Foggia, Italy
| | - Alberto Bazzocchi
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
33
|
Yair S, Lee KM, Coop G. The timing of human adaptation from Neanderthal introgression. Genetics 2021; 218:iyab052. [PMID: 33787889 PMCID: PMC8128397 DOI: 10.1093/genetics/iyab052] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/26/2021] [Indexed: 12/26/2022] Open
Abstract
Admixture has the potential to facilitate adaptation by providing alleles that are immediately adaptive in a new environment or by simply increasing the long-term reservoir of genetic diversity for future adaptation. A growing number of cases of adaptive introgression are being identified in species across the tree of life, however the timing of selection, and therefore the importance of the different evolutionary roles of admixture, is typically unknown. Here, we investigate the spatio-temporal history of selection favoring Neanderthal-introgressed alleles in modern human populations. Using both ancient and present-day samples of modern humans, we integrate the known demographic history of populations, namely population divergence and migration, with tests for selection. We model how a sweep placed along different branches of an admixture graph acts to modify the variance and covariance in neutral allele frequencies among populations at linked loci. Using a method based on this model of allele frequencies, we study previously identified cases of adaptive Neanderthal introgression. From these, we identify cases in which Neanderthal-introgressed alleles were quickly beneficial and other cases in which they persisted at low frequency for some time. For some of the alleles that persisted at low frequency, we show that selection likely independently favored them later on in geographically separated populations. Our work highlights how admixture with ancient hominins has contributed to modern human adaptation and contextualizes observed levels of Neanderthal ancestry in present-day and ancient samples.
Collapse
Affiliation(s)
- Sivan Yair
- Center for Population Biology, University of California, Davis, Davis, CA 95616, USA
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| | - Kristin M Lee
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Graham Coop
- Center for Population Biology, University of California, Davis, Davis, CA 95616, USA
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
34
|
Hammarsjö A, Pettersson M, Chitayat D, Handa A, Anderlid BM, Bartocci M, Basel D, Batkovskyte D, Beleza-Meireles A, Conner P, Eisfeldt J, Girisha KM, Chung BHY, Horemuzova E, Hyodo H, Korņejeva L, Lagerstedt-Robinson K, Lin AE, Magnusson M, Moosa S, Nayak SS, Nilsson D, Ohashi H, Ohashi-Fukuda N, Stranneheim H, Taylan F, Traberg R, Voss U, Wirta V, Nordgren A, Nishimura G, Lindstrand A, Grigelioniene G. High diagnostic yield in skeletal ciliopathies using massively parallel genome sequencing, structural variant screening and RNA analyses. J Hum Genet 2021; 66:995-1008. [PMID: 33875766 PMCID: PMC8472897 DOI: 10.1038/s10038-021-00925-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022]
Abstract
Skeletal ciliopathies are a heterogenous group of disorders with overlapping clinical and radiographic features including bone dysplasia and internal abnormalities. To date, pathogenic variants in at least 30 genes, coding for different structural cilia proteins, are reported to cause skeletal ciliopathies. Here, we summarize genetic and phenotypic features of 34 affected individuals from 29 families with skeletal ciliopathies. Molecular diagnostic testing was performed using massively parallel sequencing (MPS) in combination with copy number variant (CNV) analyses and in silico filtering for variants in known skeletal ciliopathy genes. We identified biallelic disease-causing variants in seven genes: DYNC2H1, KIAA0753, WDR19, C2CD3, TTC21B, EVC, and EVC2. Four variants located in non-canonical splice sites of DYNC2H1, EVC, and KIAA0753 led to aberrant splicing that was shown by sequencing of cDNA. Furthermore, CNV analyses showed an intragenic deletion of DYNC2H1 in one individual and a 6.7 Mb de novo deletion on chromosome 1q24q25 in another. In five unsolved cases, MPS was performed in family setting. In one proband we identified a de novo variant in PRKACA and in another we found a homozygous intragenic deletion of IFT74, removing the first coding exon and leading to expression of a shorter message predicted to result in loss of 40 amino acids at the N-terminus. These findings establish IFT74 as a new skeletal ciliopathy gene. In conclusion, combined single nucleotide variant, CNV and cDNA analyses lead to a high yield of genetic diagnoses (90%) in a cohort of patients with skeletal ciliopathies.
Collapse
Affiliation(s)
- Anna Hammarsjö
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, and Department of Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden.
| | - Maria Pettersson
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, and Department of Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - David Chitayat
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, and Mt. Sinai Hospital, Toronto, ON, Canada.,The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Atsuhiko Handa
- Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Britt-Marie Anderlid
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, and Department of Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Marco Bartocci
- Department of Women's and Children's Health, Neonatology, Karolinska Institutet, Stockholm, Sweden
| | - Donald Basel
- Division of Medical Genetics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Dominyka Batkovskyte
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ana Beleza-Meireles
- Department of Clinical Genetics, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Peter Conner
- Department of Women's and Children's Health, Karolinska Institutet and Center for Fetal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Jesper Eisfeldt
- Science for Life Laboratory, Department of Molecular Medicine and Surgery, Karolinska Institutet, and Department of Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Katta M Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Brian Hon-Yin Chung
- Department of Pediatrics and Adolescent Medicine, The University of Hong Kong and Shenzhen Hospital, Futian District, Shenzhen, China.,Department of Pediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Eva Horemuzova
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Women's and Children's Health, Karolinska Institutet and Paediatric Endocrinology Unit, Karolinska University Hospital, Stockholm, Sweden
| | - Hironobu Hyodo
- Department of Obstetrics and Gynecology, Tokyo Metropolitan Bokutoh Hospital, Kotobashi, Sumida-ku, Tokyo, Japan
| | - Liene Korņejeva
- Department of Prenatal Diagnostics, Riga Maternity Hospital, Riga, Latvia
| | - Kristina Lagerstedt-Robinson
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, and Department of Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Angela E Lin
- Medical Genetics, MassGeneral Hospital for Children, Boston, MA, USA
| | - Måns Magnusson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, and Centre for Inherited Metabolic Diseases, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden.,Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Shahida Moosa
- Medical Genetics, Tygerberg Hospital and Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Shalini S Nayak
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Daniel Nilsson
- Science for Life Laboratory, Department of Molecular Medicine and Surgery, Karolinska Institutet, and Department of Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Hirofumi Ohashi
- Division of Medical Genetics, Saitama Children's Medical Center, Saitama, Japan
| | - Naoko Ohashi-Fukuda
- Department of Obstetrics and Gynecology, Tokyo Metropolitan Bokutoh Hospital, Kotobashi, Sumida-ku, Tokyo, Japan
| | - Henrik Stranneheim
- Department of Molecular Medicine and Surgery, Karolinska Institutet, and Centre for Inherited Metabolic Diseases, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden.,Department of Microbiology, Tumor and Cell biology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Fulya Taylan
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, and Department of Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Rasa Traberg
- Department of Genetics and Molecular Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ulrika Voss
- Department of Pediatric Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - Valtteri Wirta
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.,Department of Microbiology, Tumor and Cell biology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, and Department of Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Gen Nishimura
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Pediatric Imaging, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, and Department of Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Giedre Grigelioniene
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, and Department of Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
35
|
Bosakova M, Abraham SP, Nita A, Hruba E, Buchtova M, Taylor SP, Duran I, Martin J, Svozilova K, Barta T, Varecha M, Balek L, Kohoutek J, Radaszkiewicz T, Pusapati GV, Bryja V, Rush ET, Thiffault I, Nickerson DA, Bamshad MJ, Rohatgi R, Cohn DH, Krakow D, Krejci P. Mutations in GRK2 cause Jeune syndrome by impairing Hedgehog and canonical Wnt signaling. EMBO Mol Med 2020; 12:e11739. [PMID: 33200460 PMCID: PMC7645380 DOI: 10.15252/emmm.201911739] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 09/08/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022] Open
Abstract
Mutations in genes affecting primary cilia cause ciliopathies, a diverse group of disorders often affecting skeletal development. This includes Jeune syndrome or asphyxiating thoracic dystrophy (ATD), an autosomal recessive skeletal disorder. Unraveling the responsible molecular pathology helps illuminate mechanisms responsible for functional primary cilia. We identified two families with ATD caused by loss-of-function mutations in the gene encoding adrenergic receptor kinase 1 (ADRBK1 or GRK2). GRK2 cells from an affected individual homozygous for the p.R158* mutation resulted in loss of GRK2, and disrupted chondrocyte growth and differentiation in the cartilage growth plate. GRK2 null cells displayed normal cilia morphology, yet loss of GRK2 compromised cilia-based signaling of Hedgehog (Hh) pathway. Canonical Wnt signaling was also impaired, manifested as a failure to respond to Wnt ligand due to impaired phosphorylation of the Wnt co-receptor LRP6. We have identified GRK2 as an essential regulator of skeletogenesis and demonstrate how both Hh and Wnt signaling mechanistically contribute to skeletal ciliopathies.
Collapse
Affiliation(s)
- Michaela Bosakova
- Department of BiologyFaculty of MedicineMasaryk UniversityBrnoCzech Republic
- International Clinical Research CenterSt. Anne's University HospitalBrnoCzech Republic
- Institute of Animal Physiology and Genetics of the CASBrnoCzech Republic
| | - Sara P Abraham
- Department of BiologyFaculty of MedicineMasaryk UniversityBrnoCzech Republic
| | - Alexandru Nita
- Department of BiologyFaculty of MedicineMasaryk UniversityBrnoCzech Republic
| | - Eva Hruba
- Institute of Animal Physiology and Genetics of the CASBrnoCzech Republic
| | - Marcela Buchtova
- Institute of Animal Physiology and Genetics of the CASBrnoCzech Republic
| | - S Paige Taylor
- Department of Orthopaedic SurgeryDavid Geffen School of Medicine at UCLALos AngelesCAUSA
| | - Ivan Duran
- Department of Orthopaedic SurgeryDavid Geffen School of Medicine at UCLALos AngelesCAUSA
| | - Jorge Martin
- Department of Orthopaedic SurgeryDavid Geffen School of Medicine at UCLALos AngelesCAUSA
| | - Katerina Svozilova
- Department of BiologyFaculty of MedicineMasaryk UniversityBrnoCzech Republic
- Institute of Animal Physiology and Genetics of the CASBrnoCzech Republic
| | - Tomas Barta
- Department of Histology and EmbryologyFaculty of MedicineMasaryk UniversityBrnoCzech Republic
| | - Miroslav Varecha
- Department of BiologyFaculty of MedicineMasaryk UniversityBrnoCzech Republic
| | - Lukas Balek
- Department of BiologyFaculty of MedicineMasaryk UniversityBrnoCzech Republic
| | | | - Tomasz Radaszkiewicz
- Institute of Experimental BiologyFaculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Ganesh V Pusapati
- Department of BiochemistryStanford UniversityPalo AltoCAUSA
- Department of MedicineStanford UniversityPalo AltoCAUSA
| | - Vitezslav Bryja
- Institute of Experimental BiologyFaculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Eric T Rush
- Children's Mercy Kansas City, Center for Pediatric Genomic MedicineKansas CityMOUSA
- Department of PediatricsUniversity of MissouriKansas CityMOUSA
| | - Isabelle Thiffault
- Children's Mercy Kansas City, Center for Pediatric Genomic MedicineKansas CityMOUSA
- Department of PediatricsUniversity of MissouriKansas CityMOUSA
| | | | - Michael J Bamshad
- Department of Genome SciencesUniversity of WashingtonSeattleWAUSA
- Department of PediatricsUniversity of WashingtonSeattleWAUSA
- Division of Genetic MedicineSeattle Children's HospitalSeattleWAUSA
| | | | - Rajat Rohatgi
- Department of BiochemistryStanford UniversityPalo AltoCAUSA
- Department of MedicineStanford UniversityPalo AltoCAUSA
| | - Daniel H Cohn
- Department of Orthopaedic SurgeryDavid Geffen School of Medicine at UCLALos AngelesCAUSA
- Department of Molecular Cell and Developmental BiologyUniversity of California at Los AngelesLos AngelesCAUSA
| | - Deborah Krakow
- Department of Orthopaedic SurgeryDavid Geffen School of Medicine at UCLALos AngelesCAUSA
- Department of Human GeneticsDavid Geffen School of Medicine at UCLALos AngelesCAUSA
- Department of Obstetrics and GynecologyDavid Geffen School of Medicine at UCLALos AngelesCAUSA
| | - Pavel Krejci
- Department of BiologyFaculty of MedicineMasaryk UniversityBrnoCzech Republic
- International Clinical Research CenterSt. Anne's University HospitalBrnoCzech Republic
- Institute of Animal Physiology and Genetics of the CASBrnoCzech Republic
| |
Collapse
|
36
|
Palencia-Campos A, Aoto PC, Machal EMF, Rivera-Barahona A, Soto-Bielicka P, Bertinetti D, Baker B, Vu L, Piceci-Sparascio F, Torrente I, Boudin E, Peeters S, Van Hul W, Huber C, Bonneau D, Hildebrand MS, Coleman M, Bahlo M, Bennett MF, Schneider AL, Scheffer IE, Kibæk M, Kristiansen BS, Issa MY, Mehrez MI, Ismail S, Tenorio J, Li G, Skålhegg BS, Otaify GA, Temtamy S, Aglan M, Jønch AE, De Luca A, Mortier G, Cormier-Daire V, Ziegler A, Wallis M, Lapunzina P, Herberg FW, Taylor SS, Ruiz-Perez VL. Germline and Mosaic Variants in PRKACA and PRKACB Cause a Multiple Congenital Malformation Syndrome. Am J Hum Genet 2020; 107:977-988. [PMID: 33058759 DOI: 10.1016/j.ajhg.2020.09.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/09/2020] [Indexed: 12/19/2022] Open
Abstract
PRKACA and PRKACB code for two catalytic subunits (Cα and Cβ) of cAMP-dependent protein kinase (PKA), a pleiotropic holoenzyme that regulates numerous fundamental biological processes such as metabolism, development, memory, and immune response. We report seven unrelated individuals presenting with a multiple congenital malformation syndrome in whom we identified heterozygous germline or mosaic missense variants in PRKACA or PRKACB. Three affected individuals were found with the same PRKACA variant, and the other four had different PRKACB mutations. In most cases, the mutations arose de novo, and two individuals had offspring with the same condition. Nearly all affected individuals and their affected offspring shared an atrioventricular septal defect or a common atrium along with postaxial polydactyly. Additional features included skeletal abnormalities and ectodermal defects of variable severity in five individuals, cognitive deficit in two individuals, and various unusual tumors in one individual. We investigated the structural and functional consequences of the variants identified in PRKACA and PRKACB through the use of several computational and experimental approaches, and we found that they lead to PKA holoenzymes which are more sensitive to activation by cAMP than are the wild-type proteins. Furthermore, expression of PRKACA or PRKACB variants detected in the affected individuals inhibited hedgehog signaling in NIH 3T3 fibroblasts, thereby providing an underlying mechanism for the developmental defects observed in these cases. Our findings highlight the importance of both Cα and Cβ subunits of PKA during human development.
Collapse
Affiliation(s)
- Adrian Palencia-Campos
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, 28029, Spain; CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, 28029, Spain
| | - Phillip C Aoto
- Department of Pharmacology, University of California, San Diego, 9400 Gilman Drive, La Jolla, CA 92093-0654, USA
| | - Erik M F Machal
- Institute for Biology, Department of Biochemistry, University of Kassel, Kassel, 34132, Germany
| | - Ana Rivera-Barahona
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, 28029, Spain; CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, 28029, Spain
| | - Patricia Soto-Bielicka
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, 28029, Spain
| | - Daniela Bertinetti
- Institute for Biology, Department of Biochemistry, University of Kassel, Kassel, 34132, Germany
| | - Blaine Baker
- Department of Pharmacology, University of California, San Diego, 9400 Gilman Drive, La Jolla, CA 92093-0654, USA
| | - Lily Vu
- Department of Pharmacology, University of California, San Diego, 9400 Gilman Drive, La Jolla, CA 92093-0654, USA
| | - Francesca Piceci-Sparascio
- Medical Genetics Unit, Casa Sollievo della Sofferenza Foundation, IRCCS, San Giovanni Rotondo, 71013, Italy
| | - Isabella Torrente
- Medical Genetics Unit, Casa Sollievo della Sofferenza Foundation, IRCCS, San Giovanni Rotondo, 71013, Italy
| | - Eveline Boudin
- Department of Medical Genetics, University of Antwerp, Edegem, 2650, Belgium
| | - Silke Peeters
- Department of Medical Genetics, University of Antwerp, Edegem, 2650, Belgium
| | - Wim Van Hul
- Department of Medical Genetics, University of Antwerp, Edegem, 2650, Belgium
| | - Celine Huber
- Clinical Genetics and Reference Center for Skeletal Dysplasia, AP-HP, Necker-Enfants Malades Hospital, Paris, 75015, France; Université De Paris, INSERM UMR1163, Institut Imagine, Paris, 75015, France
| | - Dominique Bonneau
- Biochemistry and Genetics Department, Angers Hospital, Angers Cedex 9, 49933, France; UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers Cedex 9, 49933, France
| | - Michael S Hildebrand
- Epilepsy Research Centre, Department of Medicine, Austin Health, University of Melbourne, Heidelberg, 3084, Victoria, Australia; Murdoch Children's Research Institute, Parkville, 3052, Victoria, Australia
| | - Matthew Coleman
- Epilepsy Research Centre, Department of Medicine, Austin Health, University of Melbourne, Heidelberg, 3084, Victoria, Australia; Murdoch Children's Research Institute, Parkville, 3052, Victoria, Australia
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, 3010, Victoria, Australia
| | - Mark F Bennett
- Epilepsy Research Centre, Department of Medicine, Austin Health, University of Melbourne, Heidelberg, 3084, Victoria, Australia; Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, 3010, Victoria, Australia
| | - Amy L Schneider
- Epilepsy Research Centre, Department of Medicine, Austin Health, University of Melbourne, Heidelberg, 3084, Victoria, Australia
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, Austin Health, University of Melbourne, Heidelberg, 3084, Victoria, Australia; Murdoch Children's Research Institute, Parkville, 3052, Victoria, Australia; Department of Paediatrics, University of Melbourne, Royal Children's Hospital, and Florey Institute of Neuroscience and Mental Health, Parkville, 3052, Victoria, Australia
| | - Maria Kibæk
- Children's Hospital of H.C. Andersen, Odense University Hospital, 5000 Odense, Denmark
| | - Britta S Kristiansen
- Department of Clinical Genetics, Odense University Hospital, 5000 Odense, Denmark
| | - Mahmoud Y Issa
- Department of Clinical Genetics, Division of Human Genetics and Genome Research, Center of Excellence for Human Genetics, National Research Centre, Cairo, 12622, Egypt
| | - Mennat I Mehrez
- Department of Oro-dental Genetics, Division of Human Genetics and Genome Research. Center of Excellence for Human Genetics, National Research Centre, Cairo, 12622, Egypt
| | - Samira Ismail
- Department of Clinical Genetics, Division of Human Genetics and Genome Research, Center of Excellence for Human Genetics, National Research Centre, Cairo, 12622, Egypt
| | - Jair Tenorio
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, 28029, Spain; Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Universidad Autónoma, Madrid, 28046, Spain; ITHACA, European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability
| | - Gaoyang Li
- Division for Molecular Nutrition, Institute for Basic Medical Sciences, University of Oslo, Oslo, 0316, Norway
| | - Bjørn Steen Skålhegg
- Division for Molecular Nutrition, Institute for Basic Medical Sciences, University of Oslo, Oslo, 0316, Norway
| | - Ghada A Otaify
- Department of Clinical Genetics, Division of Human Genetics and Genome Research, Center of Excellence for Human Genetics, National Research Centre, Cairo, 12622, Egypt
| | - Samia Temtamy
- Department of Clinical Genetics, Division of Human Genetics and Genome Research, Center of Excellence for Human Genetics, National Research Centre, Cairo, 12622, Egypt
| | - Mona Aglan
- Department of Clinical Genetics, Division of Human Genetics and Genome Research, Center of Excellence for Human Genetics, National Research Centre, Cairo, 12622, Egypt
| | - Aia E Jønch
- Department of Clinical Genetics, Odense University Hospital, 5000 Odense, Denmark
| | - Alessandro De Luca
- Medical Genetics Unit, Casa Sollievo della Sofferenza Foundation, IRCCS, San Giovanni Rotondo, 71013, Italy
| | - Geert Mortier
- Department of Medical Genetics, University of Antwerp, Edegem, 2650, Belgium; Antwerp University Hospital, Edegem, 2650, Belgium
| | - Valérie Cormier-Daire
- Clinical Genetics and Reference Center for Skeletal Dysplasia, AP-HP, Necker-Enfants Malades Hospital, Paris, 75015, France; Université De Paris, INSERM UMR1163, Institut Imagine, Paris, 75015, France
| | - Alban Ziegler
- Biochemistry and Genetics Department, Angers Hospital, Angers Cedex 9, 49933, France; UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers Cedex 9, 49933, France
| | - Mathew Wallis
- School of Medicine and Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, 7001, Australia; Clinical Genetics Service, Austin Health, Heidelberg, 3084, Victoria, Australia
| | - Pablo Lapunzina
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, 28029, Spain; Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Universidad Autónoma, Madrid, 28046, Spain; ITHACA, European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability
| | - Friedrich W Herberg
- Institute for Biology, Department of Biochemistry, University of Kassel, Kassel, 34132, Germany
| | - Susan S Taylor
- Department of Pharmacology, University of California, San Diego, 9400 Gilman Drive, La Jolla, CA 92093-0654, USA; Department of Chemistry and Biochemistry, University of California, San Diego, 9400 Gilman Drive, La Jolla, CA 92093-0654, USA
| | - Victor L Ruiz-Perez
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, 28029, Spain; CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, 28029, Spain; Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Universidad Autónoma, Madrid, 28046, Spain; ITHACA, European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability.
| |
Collapse
|
37
|
Piceci-Sparascio F, Palencia-Campos A, Soto-Bielicka P, D'Anzi A, Guida V, Rosati J, Caparros-Martin JA, Torrente I, D'Asdia MC, Versacci P, Briuglia S, Lapunzina P, Tartaglia M, Marino B, Digilio MC, Ruiz-Perez VL, De Luca A. Common atrium/atrioventricular canal defect and postaxial polydactyly: A mild clinical subtype of Ellis-van Creveld syndrome caused by hypomorphic mutations in the EVC gene. Hum Mutat 2020; 41:2087-2093. [PMID: 32906221 DOI: 10.1002/humu.24112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/04/2020] [Accepted: 09/06/2020] [Indexed: 11/08/2022]
Abstract
Clinical expression of Ellis-van Creveld syndrome (EvC) is variable and mild phenotypes have been described, including patients with mostly cardiac and limb involvement. Whether these cases are part of the EvC phenotypic spectrum or separate conditions is disputed. Herein, we describe a family with vertical transmission of atrioventricular canal defect (AVCD), common atrium, and postaxial polydactyly. Targeted sequencing of EVC, EVC2, WDR35, DYNC2LI1, and DYNC2H1 identified different compound heterozygosity in EVC genotypes in the two affected members, consisting of a nonsense (p.Arg622Ter) and a missense (p.Arg663Pro) variant in the father, and the same nonsense variant and a noncanonical splice-site in-frame change (c.1316-7A>G) in the daughter. Complementary DNA sequencing, immunoblot, and immunofluorescence experiments using patient-derived fibroblasts and Evc-/- mouse embryonic fibroblasts showed that p.Arg622Ter is a loss-of-function mutation, whereas p.Arg663Pro and the splice-site change c.1316-7A>G are hypomorphic variants resulting in proteins that retain, in part, the ability to complex with EVC2. Our molecular and functional data demonstrate that at least in some cases the condition characterized as "common atrium/AVCD with postaxial polydactyly" is a mild form of EvC due to hypomorphic EVC mutations, further supporting the occurrence of genotype-phenotype correlations in this syndrome.
Collapse
Affiliation(s)
- Francesca Piceci-Sparascio
- Medical Genetics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.,Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Adrian Palencia-Campos
- Instituto de Investigaciones Biomédicas de Madrid, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain.,CIBER de enfermedades Raras (CIBERER), Insitituto de Salud Carlos III, Madrid, Spain
| | - Patricia Soto-Bielicka
- Instituto de Investigaciones Biomédicas de Madrid, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Angela D'Anzi
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Valentina Guida
- Medical Genetics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Jessica Rosati
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Jose A Caparros-Martin
- Instituto de Investigaciones Biomédicas de Madrid, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain.,CIBER de enfermedades Raras (CIBERER), Insitituto de Salud Carlos III, Madrid, Spain
| | - Isabella Torrente
- Medical Genetics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - M Cecilia D'Asdia
- Medical Genetics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Paolo Versacci
- Department of Pediatrics, Università Sapienza, Rome, Italy
| | - Silvana Briuglia
- Department of Human Pathology of Adult and Childhood "Gaetano Barresi", Unit of Emergency Pediatrics, University of Messina, Messina, Italy
| | - Pablo Lapunzina
- CIBER de enfermedades Raras (CIBERER), Insitituto de Salud Carlos III, Madrid, Spain.,Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZm Hospital Universitario La Paz, Universidad Autónoma, Madrid, Spain
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Bruno Marino
- Department of Pediatrics, Università Sapienza, Rome, Italy
| | - M Cristina Digilio
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Victor L Ruiz-Perez
- Instituto de Investigaciones Biomédicas de Madrid, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain.,CIBER de enfermedades Raras (CIBERER), Insitituto de Salud Carlos III, Madrid, Spain.,Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZm Hospital Universitario La Paz, Universidad Autónoma, Madrid, Spain
| | - Alessandro De Luca
- Medical Genetics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| |
Collapse
|
38
|
Molecular and Cellular Pathogenesis of Ellis-van Creveld Syndrome: Lessons from Targeted and Natural Mutations in Animal Models. J Dev Biol 2020; 8:jdb8040025. [PMID: 33050204 PMCID: PMC7711556 DOI: 10.3390/jdb8040025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/29/2020] [Accepted: 10/06/2020] [Indexed: 02/01/2023] Open
Abstract
Ellis-van Creveld syndrome (EVC; MIM ID #225500) is a rare congenital disease with an occurrence of 1 in 60,000. It is characterized by remarkable skeletal dysplasia, such as short limbs, ribs and polydactyly, and orofacial anomalies. With two of three patients first noted as being offspring of consanguineous marriage, this autosomal recessive disease results from mutations in one of two causative genes: EVC or EVC2/LIMBIN. The recent identification and manipulation of genetic homologs in animals has deepened our understanding beyond human case studies and provided critical insight into disease pathogenesis. This review highlights the utility of animal-based studies of EVC by summarizing: (1) molecular biology of EVC and EVC2/LIMBIN, (2) human disease signs, (3) dysplastic limb development, (4) craniofacial anomalies, (5) tooth anomalies, (6) tracheal cartilage abnormalities, and (7) EVC-like disorders in non-human species.
Collapse
|
39
|
Abstract
Congenital heart disease (CHD) is the most common major congenital anomaly with an incidence of ∼1% of live births and is a significant cause of birth defect-related mortality. The genetic mechanisms underlying the development of CHD are complex and remain incompletely understood. Known genetic causes include all classes of genetic variation including chromosomal aneuploidies, copy number variants, and rare and common single-nucleotide variants, which can be either de novo or inherited. Among patients with CHD, ∼8%-12% have a chromosomal abnormality or aneuploidy, between 3% and 25% have a copy number variation, and 3%-5% have a single-gene defect in an established CHD gene with higher likelihood of identifying a genetic cause in patients with nonisolated CHD. These genetic variants disrupt or alter genes that play an important role in normal cardiac development and in some cases have pleiotropic effects on other organs. This work reviews some of the most common genetic causes of CHD as well as what is currently known about the underlying mechanisms.
Collapse
Affiliation(s)
| | - Wendy K Chung
- Department of Pediatrics
- Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, USA
| |
Collapse
|
40
|
Handa A, Voss U, Hammarsjö A, Grigelioniene G, Nishimura G. Skeletal ciliopathies: a pattern recognition approach. Jpn J Radiol 2020; 38:193-206. [PMID: 31965514 DOI: 10.1007/s11604-020-00920-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023]
Abstract
Ciliopathy encompasses a diverse group of autosomal recessive genetic disorders caused by mutations in genes coding for components of the primary cilia. Skeletal ciliopathy forms a subset of ciliopathies characterized by distinctive skeletal changes. Common skeletal ciliopathies include Jeune asphyxiating thoracic dysplasia, Ellis-van Creveld syndrome, Sensenbrenner syndrome, and short-rib polydactyly syndromes. These disorders share common clinical and radiological features. The clinical hallmarks comprise thoracic hypoplasia with respiratory failure, body disproportion with a normal trunk length and short limbs, and severely short digits occasionally accompanied by polydactyly. Reflecting the clinical features, the radiological hallmarks consist of a narrow thorax caused by extremely short ribs, normal or only mildly affected spine, shortening of the tubular bones, and severe brachydactyly with or without polydactyly. Other radiological clues include trident ilia/pelvis and cone-shaped epiphysis. Skeletal ciliopathies are commonly associated with extraskeletal anomalies, such as progressive renal degeneration, liver disease, retinopathy, cardiac anomalies, and cerebellar abnormalities. In this article, we discuss the radiological pattern recognition approach to skeletal ciliopathies. We also describe the clinical and genetic features of skeletal ciliopathies that the radiologists should know for them to play an appropriate role in multidisciplinary care and scientific advancement of these complicated disorders.
Collapse
Affiliation(s)
- Atsuhiko Handa
- Department of Radiology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242, USA.
| | - Ulrika Voss
- Department of Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Hammarsjö
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet and Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Giedre Grigelioniene
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet and Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Gen Nishimura
- Center for Intractable Diseases, Saitama University Hospital, Saitama, Japan
| |
Collapse
|
41
|
Ohashi I, Enomoto Y, Naruto T, Tsurusaki Y, Kuroda Y, Ishikawa H, Ohyama M, Aida N, Nishimura G, Kurosawa K. A severe form of Ellis-van Creveld syndrome caused by novel mutations in EVC2. Hum Genome Var 2019; 6:40. [PMID: 31645978 PMCID: PMC6804659 DOI: 10.1038/s41439-019-0071-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 07/26/2019] [Indexed: 11/29/2022] Open
Abstract
Ellis-van Creveld syndrome (EvC MIM. #225500) is an autosomal recessive skeletal dysplasia characterised by thoracic hypoplasia, cardiac anomalies, acromesomelic limb shortening, and postaxial polydactyly. Affected individuals commonly manifest with cardiorespiratory failure as neonates but generally survive neonatal difficulties. We report here on affected Japanese sibs with a lethal phenotype of EvC caused by novel compound heterozygous mutations of EVC2, c.871-3 C > G and c.1991dupA.
Collapse
Affiliation(s)
- Ikuko Ohashi
- 1Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yumi Enomoto
- 2Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Takuya Naruto
- 2Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yoshinori Tsurusaki
- 2Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yukiko Kuroda
- 1Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Hiroshi Ishikawa
- 3Department of Obstetrics and Gynecology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Makiko Ohyama
- 4Department of Neonatology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Noriko Aida
- 5Department of Radiology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Gen Nishimura
- 6Intractable Disease Center, Saitama Medical University Hospital, Saitama, Japan
| | - Kenji Kurosawa
- 1Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan.,2Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| |
Collapse
|
42
|
Huang X, Guo Y, Xu H, Yang Z, Deng X, Deng H, Yuan L. Identification of a novel EVC variant in a Han-Chinese family with Ellis-van Creveld syndrome. Mol Genet Genomic Med 2019; 7:e885. [PMID: 31338997 PMCID: PMC6732296 DOI: 10.1002/mgg3.885] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/23/2019] [Accepted: 07/01/2019] [Indexed: 12/31/2022] Open
Abstract
Background Ellis‐van Creveld syndrome (EVC), a very rare genetic skeletal dysplasia, is clinically characterized by a tetrad consisting of chondrodystrophy, polydactyly, ectodermal dysplasia, and cardiac anomalies. The aim of this study was to identify the genetic defect for EVC in a five‐generation consanguineous Han‐Chinese pedigree. Methods A five‐generation, 12‐member Han‐Chinese pedigree was enrolled in this study. Exome sequencing was applied in the proband to screen potential genetic variant(s), and then Sanger sequencing was used to identify the variant in family members and 200 unrelated ethnicity‐matched controls. Results A novel homozygous variant, c.2014C>T, p.(Q672*), in the EvC ciliary complex subunit 1 gene (EVC), was detected in the patient, which was cosegregated with the disease in the family and absent in the controls. Conclusion The identified novel homozygous EVC variant, c.2014C>T, p.(Q672*), was responsible for EVC in this Han‐Chinese pedigree. The findings in this study extend the EVC mutation spectrum and may provide new insights into EVC causation and diagnosis with implications for genetic counseling and clinical management.
Collapse
Affiliation(s)
- Xiangjun Huang
- Department of General Surgery, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yi Guo
- Department of Medical Information, School of Life Sciences, Central South University, Changsha, China
| | - Hongbo Xu
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhijian Yang
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiong Deng
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hao Deng
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lamei Yuan
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
43
|
Wang T, Xuan Z, Dou Y, Liu Y, Fu Y, Ren J, Lu L. Identification of novel mutations in preaxial polydactyly patients through whole-exome sequencing. Mol Genet Genomic Med 2019; 7:e690. [PMID: 30993914 PMCID: PMC6565585 DOI: 10.1002/mgg3.690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/26/2019] [Accepted: 03/06/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Polydactyly is one of the most common hereditary limb malformation characterized by additional digits in hands and/or feet. With extra fingers/toes, which could be very problematic, polydactyly patients are usually treated in early childhood by removing of extra digits with surgery. Genetically, polydactyly is caused by mutations of genes that involve in digit formation. METHODS In the current report, we performed genetic analysis for polydactyly using DNA samples from a cohort of 20 Chinese patients. All patients show preaxial polydactyly in one of their hands. RESULTS With whole-exome sequencing (WES), we have identified two novel heterozygous mutations c.G2844A in GLI3 gene (OMIM 165240) and c.1409_1410del in EVC gene (OMIM 604831). Compound heterozygous mutations that affect KIAA0586 gene (OMIM 610178) are also detected. Proteins encoded by the genes have important roles in primary cilia and regulate sonic hedgehog signaling pathway. CONCLUSION Our study highlights the important roles of primary cilia in limb development, and helps to further understand the molecular mechanisms for polydactyly formation.
Collapse
Affiliation(s)
- Tao Wang
- Department of hand surgeryThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Zhaopeng Xuan
- Department of hand surgeryThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Yichen Dou
- Department of hand surgeryThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Yang Liu
- Department of hand surgeryThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Yanyan Fu
- Department of hand surgeryThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Jingyan Ren
- Department of hand surgeryThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Laijin Lu
- Department of hand surgeryThe First Hospital of Jilin UniversityChangchunJilinChina
| |
Collapse
|
44
|
Pierpont ME, Brueckner M, Chung WK, Garg V, Lacro RV, McGuire AL, Mital S, Priest JR, Pu WT, Roberts A, Ware SM, Gelb BD, Russell MW. Genetic Basis for Congenital Heart Disease: Revisited: A Scientific Statement From the American Heart Association. Circulation 2018; 138:e653-e711. [PMID: 30571578 PMCID: PMC6555769 DOI: 10.1161/cir.0000000000000606] [Citation(s) in RCA: 381] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review provides an updated summary of the state of our knowledge of the genetic contributions to the pathogenesis of congenital heart disease. Since 2007, when the initial American Heart Association scientific statement on the genetic basis of congenital heart disease was published, new genomic techniques have become widely available that have dramatically changed our understanding of the causes of congenital heart disease and, clinically, have allowed more accurate definition of the pathogeneses of congenital heart disease in patients of all ages and even prenatally. Information is presented on new molecular testing techniques and their application to congenital heart disease, both isolated and associated with other congenital anomalies or syndromes. Recent advances in the understanding of copy number variants, syndromes, RASopathies, and heterotaxy/ciliopathies are provided. Insights into new research with congenital heart disease models, including genetically manipulated animals such as mice, chicks, and zebrafish, as well as human induced pluripotent stem cell-based approaches are provided to allow an understanding of how future research breakthroughs for congenital heart disease are likely to happen. It is anticipated that this review will provide a large range of health care-related personnel, including pediatric cardiologists, pediatricians, adult cardiologists, thoracic surgeons, obstetricians, geneticists, genetic counselors, and other related clinicians, timely information on the genetic aspects of congenital heart disease. The objective is to provide a comprehensive basis for interdisciplinary care for those with congenital heart disease.
Collapse
|
45
|
Mooney JA, Huber CD, Service S, Sul JH, Marsden CD, Zhang Z, Sabatti C, Ruiz-Linares A, Bedoya G, Freimer N, Lohmueller KE. Understanding the Hidden Complexity of Latin American Population Isolates. Am J Hum Genet 2018; 103:707-726. [PMID: 30401458 PMCID: PMC6218714 DOI: 10.1016/j.ajhg.2018.09.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 09/26/2018] [Indexed: 12/12/2022] Open
Abstract
Most population isolates examined to date were founded from a single ancestral population. Consequently, there is limited knowledge about the demographic history of admixed population isolates. Here we investigate genomic diversity of recently admixed population isolates from Costa Rica and Colombia and compare their diversity to a benchmark population isolate, the Finnish. These Latin American isolates originated during the 16th century from admixture between a few hundred European males and Amerindian females, with a limited contribution from African founders. We examine whole-genome sequence data from 449 individuals, ascertained as families to build mutigenerational pedigrees, with a mean sequencing depth of coverage of approximately 36×. We find that Latin American isolates have increased genetic diversity relative to the Finnish. However, there is an increase in the amount of identity by descent (IBD) segments in the Latin American isolates relative to the Finnish. The increase in IBD segments is likely a consequence of a very recent and severe population bottleneck during the founding of the admixed population isolates. Furthermore, the proportion of the genome that falls within a long run of homozygosity (ROH) in Costa Rican and Colombian individuals is significantly greater than that in the Finnish, suggesting more recent consanguinity in the Latin American isolates relative to that seen in the Finnish. Lastly, we find that recent consanguinity increased the number of deleterious variants found in the homozygous state, which is relevant if deleterious variants are recessive. Our study suggests that there is no single genetic signature of a population isolate.
Collapse
Affiliation(s)
- Jazlyn A Mooney
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Christian D Huber
- Department of Ecology & Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Susan Service
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jae Hoon Sul
- Department of Psychiatry and Biobehavioral Sciences, Semel Center for Informatics and Personalized Genomics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Clare D Marsden
- Department of Ecology & Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Zhongyang Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chiara Sabatti
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA; Department of Statistics, Stanford University, Stanford, CA 94305, USA
| | - Andrés Ruiz-Linares
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200438, China; Aix-Marseille Univ, CNRS, EFS, ADES, Marseille, France
| | - Gabriel Bedoya
- Genética Molecular (GENMOL), Universidad de Antioquia, Medellín, Colombia
| | - Nelson Freimer
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Kirk E Lohmueller
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Ecology & Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
46
|
Palencia-Campos A, Ullah A, Nevado J, Yildirim R, Unal E, Ciorraga M, Barruz P, Chico L, Piceci-Sparascio F, Guida V, De Luca A, Kayserili H, Ullah I, Burmeister M, Lapunzina P, Ahmad W, Morales AV, Ruiz-Perez VL. GLI1 inactivation is associated with developmental phenotypes overlapping with Ellis-van Creveld syndrome. Hum Mol Genet 2018; 26:4556-4571. [PMID: 28973407 DOI: 10.1093/hmg/ddx335] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 08/22/2017] [Indexed: 01/29/2023] Open
Abstract
GLI1, GLI2 and GLI3 form a family of transcription factors which regulate development by mediating the action of Hedgehog (Hh) morphogens. Accordingly, inactivating variants in GLI2 and GLI3 are found in several developmental disorders. In contrast, loss-of-function mutations in GLI1 have remained elusive, maintaining enigmatic the role of this gene in the human embryo. We describe eight patients from three independent families having biallelic truncating variants in GLI1 and developmental defects overlapping with Ellis-van Creveld syndrome (EvC), a disease caused by diminished Hh signaling. Two families had mutations in the last exon of the gene and a third family was identified with an N-terminal stop gain variant predicted to be degraded by the NMD-pathway. Analysis of fibroblasts from one of the patients with homozygous C-terminal truncation of GLI1 demonstrated that the corresponding mutant GLI1 protein is fabricated by patient cells and becomes upregulated in response to Hh signaling. However, the transcriptional activity of the truncated GLI1 factor was found to be severely impaired by cell culture and in vivo assays, indicating that the balance between GLI repressors and activators is altered in affected subjects. Consistent with this, reduced expression of the GLI target PTCH1 was observed in patient fibroblasts after chemical induction of the Hh pathway. We conclude that GLI1 inactivation is associated with a phenotypic spectrum extending from isolated postaxial polydactyly to an EvC-like condition.
Collapse
Affiliation(s)
- Adrian Palencia-Campos
- Instituto de Investigaciones Biomédicas 'Alberto Sols', CSIC-UAM, 28029 Madrid, Spain.,CIBER de Enfermedades Raras (CIBERER), ISCIII, Spain
| | - Asmat Ullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Julian Nevado
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz-IdiPaz-UAM, 28046 Madrid, Spain
| | - Ruken Yildirim
- Diyarbakir Children State Hospital, Clinic of Pediatric Endocrinology, Diyarbakir, Turkey
| | - Edip Unal
- Department of Pediatric Endocrinology, Dicle University, Diyarbakir, Turkey
| | - Maria Ciorraga
- Department of Cellular, Molecular and Developmental Neurobiology, Instituto Cajal, CSIC, 28002 Madrid, Spain
| | - Pilar Barruz
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz-IdiPaz-UAM, 28046 Madrid, Spain
| | - Lucia Chico
- Instituto de Investigaciones Biomédicas 'Alberto Sols', CSIC-UAM, 28029 Madrid, Spain
| | - Francesca Piceci-Sparascio
- Molecular Genetics Unit, Casa Sollievo della Sofferenza Hospital, IRCCS, 71013 San Giovanni Rotondo, Italy
| | - Valentina Guida
- Molecular Genetics Unit, Casa Sollievo della Sofferenza Hospital, IRCCS, 71013 San Giovanni Rotondo, Italy
| | - Alessandro De Luca
- Molecular Genetics Unit, Casa Sollievo della Sofferenza Hospital, IRCCS, 71013 San Giovanni Rotondo, Italy
| | - Hülya Kayserili
- Medical Genetics Department, Koç University School of Medicine (KUSoM) Istanbul, Istanbul 34010, Turkey
| | - Irfan Ullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Margit Burmeister
- Department of Psychiatry.,Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Pablo Lapunzina
- CIBER de Enfermedades Raras (CIBERER), ISCIII, Spain.,Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz-IdiPaz-UAM, 28046 Madrid, Spain
| | - Wasim Ahmad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Aixa V Morales
- Department of Cellular, Molecular and Developmental Neurobiology, Instituto Cajal, CSIC, 28002 Madrid, Spain
| | - Victor L Ruiz-Perez
- Instituto de Investigaciones Biomédicas 'Alberto Sols', CSIC-UAM, 28029 Madrid, Spain.,CIBER de Enfermedades Raras (CIBERER), ISCIII, Spain.,Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz-IdiPaz-UAM, 28046 Madrid, Spain
| |
Collapse
|
47
|
Williams MA, Letra A. The Changing Landscape in the Genetic Etiology of Human Tooth Agenesis. Genes (Basel) 2018; 9:genes9050255. [PMID: 29772684 PMCID: PMC5977195 DOI: 10.3390/genes9050255] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/01/2018] [Accepted: 05/09/2018] [Indexed: 02/08/2023] Open
Abstract
Despite much progress in understanding the genetics of syndromic tooth agenesis (TA), the causes of the most common, isolated TA remain elusive. Recent studies have identified novel genes and variants contributing to the etiology of TA, and revealed new pathways in which tooth development genes belong. Further, the use of new research approaches including next-generation sequencing has provided increased evidence supporting an oligogenic inheritance model for TA, and may explain the phenotypic variability of the condition. In this review, we present current knowledge about the genetic mechanisms underlying syndromic and isolated TA in humans, and highlight the value of incorporating next-generation sequencing approaches to identify causative and/or modifier genes that contribute to the etiology of TA.
Collapse
Affiliation(s)
- Meredith A Williams
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA.
| | - Ariadne Letra
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA.
- Center for Craniofacial Research, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA.
- Pediatric Research Center, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA.
| |
Collapse
|
48
|
Elliott KH, Brugmann SA. Sending mixed signals: Cilia-dependent signaling during development and disease. Dev Biol 2018; 447:28-41. [PMID: 29548942 DOI: 10.1016/j.ydbio.2018.03.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 03/03/2018] [Accepted: 03/06/2018] [Indexed: 01/09/2023]
Abstract
Molecular signals are the guiding force of development, imparting direction upon cells to divide, migrate, differentiate, etc. The mechanisms by which a cell can receive and transduce these signals into measurable actions remains a 'black box' in developmental biology. Primary cilia are ubiquitous, microtubule-based organelles that dynamically extend from a cell to receive and process molecular and mechanical signaling cues. In the last decade, this organelle has become increasingly intriguing to the research community due to its ability to act as a cellular antenna, receive and transduce molecular stimuli, and initiate a cellular response. In this review, we discuss the structure of primary cilia, emphasizing how the ciliary components contribute to the transduction of signaling pathways. Furthermore, we address how the cilium integrates these signals and conveys them into cellular processes such as proliferation, migration and tissue patterning. Gaining a deeper understanding of the mechanisms used by primary cilia to receive and integrate molecular signals is essential, as it opens the door for the identification of therapeutic targets within the cilium that could alleviate pathological conditions brought on by aberrant molecular signaling.
Collapse
Affiliation(s)
- Kelsey H Elliott
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Samantha A Brugmann
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
49
|
Niceta M, Margiotti K, Digilio MC, Guida V, Bruselles A, Pizzi S, Ferraris A, Memo L, Laforgia N, Dentici ML, Consoli F, Torrente I, Ruiz-Perez VL, Dallapiccola B, Marino B, De Luca A, Tartaglia M. Biallelic mutations in DYNC2LI1 are a rare cause of Ellis-van Creveld syndrome. Clin Genet 2018; 93:632-639. [PMID: 28857138 DOI: 10.1111/cge.13128] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/31/2017] [Accepted: 08/15/2017] [Indexed: 01/15/2023]
Abstract
Ellis-van Creveld syndrome (EvC) is a chondral and ectodermal dysplasia caused by biallelic mutations in the EVC, EVC2 and WDR35 genes. A proportion of cases with clinical diagnosis of EvC, however, do not carry mutations in these genes. To identify the genetic cause of EvC in a cohort of mutation-negative patients, exome sequencing was undertaken in a family with 3 affected members, and mutation scanning of a panel of clinically and functionally relevant genes was performed in 24 additional subjects with features fitting/overlapping EvC. Compound heterozygosity for the c.2T>C (p.Met1?) and c.662C>T (p.Thr221Ile) variants in DYNC2LI1, which encodes a component of the intraflagellar transport-related dynein-2 complex previously found mutated in other short-rib thoracic dysplasias, was identified in the 3 affected members of the first family. Targeted resequencing detected compound heterozygosity for the same missense variant and a truncating change (p.Val141*) in 2 siblings with EvC from a second family, while a newborn with a more severe phenotype carried 2 DYNC2LI1 truncating variants. Our findings indicate that DYNC2LI1 mutations are associated with a wider clinical spectrum than previously appreciated, including EvC, with the severity of the phenotype likely depending on the extent of defective DYNC2LI1 function.
Collapse
Affiliation(s)
- M Niceta
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - K Margiotti
- Department of Experimental Medicine, Policlinico Umberto 1, Università "Sapienza", Rome, Italy.,Molecular Genetics Unit, Ospedale Casa Sollievo della Sofferenza, IRCCS, San Giovanni Rotondo, Italy
| | - M C Digilio
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - V Guida
- Molecular Genetics Unit, Ospedale Casa Sollievo della Sofferenza, IRCCS, San Giovanni Rotondo, Italy
| | - A Bruselles
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - S Pizzi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - A Ferraris
- Molecular Genetics Unit, Ospedale Casa Sollievo della Sofferenza, IRCCS, San Giovanni Rotondo, Italy
| | - L Memo
- Pediatric Unit, Ospedale San Martino, Belluno, Italy
| | - N Laforgia
- Department of Biomedical Science and Human Oncology, Università di Bari, Bari, Italy
| | - M L Dentici
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - F Consoli
- Molecular Genetics Unit, Ospedale Casa Sollievo della Sofferenza, IRCCS, San Giovanni Rotondo, Italy
| | - I Torrente
- Molecular Genetics Unit, Ospedale Casa Sollievo della Sofferenza, IRCCS, San Giovanni Rotondo, Italy
| | - V L Ruiz-Perez
- Department of Experimental Models of Human Diseases, Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-UAM, Madrid, Spain.,CIBER de enfermedades Raras (CIBERER), ISCIII, València, Spain.,Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz, Madrid, Spain
| | - B Dallapiccola
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - B Marino
- Department of Pediatrics, Università "Sapienza", Rome, Italy
| | - A De Luca
- Molecular Genetics Unit, Ospedale Casa Sollievo della Sofferenza, IRCCS, San Giovanni Rotondo, Italy
| | - M Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| |
Collapse
|
50
|
Sigg MA, Menchen T, Lee C, Johnson J, Jungnickel MK, Choksi SP, Garcia G, Busengdal H, Dougherty GW, Pennekamp P, Werner C, Rentzsch F, Florman HM, Krogan N, Wallingford JB, Omran H, Reiter JF. Evolutionary Proteomics Uncovers Ancient Associations of Cilia with Signaling Pathways. Dev Cell 2018; 43:744-762.e11. [PMID: 29257953 DOI: 10.1016/j.devcel.2017.11.014] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 09/18/2017] [Accepted: 11/17/2017] [Indexed: 12/19/2022]
Abstract
Cilia are organelles specialized for movement and signaling. To infer when during evolution signaling pathways became associated with cilia, we characterized the proteomes of cilia from sea urchins, sea anemones, and choanoflagellates. We identified 437 high-confidence ciliary candidate proteins conserved in mammals and discovered that Hedgehog and G-protein-coupled receptor pathways were linked to cilia before the origin of bilateria and transient receptor potential (TRP) channels before the origin of animals. We demonstrated that candidates not previously implicated in ciliary biology localized to cilia and further investigated ENKUR, a TRP channel-interacting protein identified in the cilia of all three organisms. ENKUR localizes to motile cilia and is required for patterning the left-right axis in vertebrates. Moreover, mutation of ENKUR causes situs inversus in humans. Thus, proteomic profiling of cilia from diverse eukaryotes defines a conserved ciliary proteome, reveals ancient connections to signaling, and uncovers a ciliary protein that underlies development and human disease.
Collapse
Affiliation(s)
- Monika Abedin Sigg
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Tabea Menchen
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster 48149, Germany
| | - Chanjae Lee
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Jeffery Johnson
- Gladstone Institute of Cardiovascular Disease and Gladstone Institute of Virology and Immunology, San Francisco, CA 94158, USA
| | - Melissa K Jungnickel
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Semil P Choksi
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Galo Garcia
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Henriette Busengdal
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen 5008, Norway
| | - Gerard W Dougherty
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster 48149, Germany
| | - Petra Pennekamp
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster 48149, Germany
| | - Claudius Werner
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster 48149, Germany
| | - Fabian Rentzsch
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen 5008, Norway
| | - Harvey M Florman
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Nevan Krogan
- Gladstone Institute of Cardiovascular Disease and Gladstone Institute of Virology and Immunology, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
| | - John B Wallingford
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Heymut Omran
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster 48149, Germany
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|