1
|
Bharathi JK, Suresh P, Prakash MAS, Muneer S. Exploring recent progress of molecular farming for therapeutic and recombinant molecules in plant systems. Heliyon 2024; 10:e37634. [PMID: 39309966 PMCID: PMC11416299 DOI: 10.1016/j.heliyon.2024.e37634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/10/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
An excellent technique for producing pharmaceuticals called "molecular farming" enables the industrial mass production of useful recombinant proteins in genetically modified organisms. Protein-based pharmaceuticals are rising in significance because of a variety of factors, including their bioreactivity, precision, safety, and efficacy rate. Heterologous expression methods for the manufacturing of pharmaceutical products have been previously employed using yeast, bacteria, and animal cells. However, the high cost of mammalian cell system, and production, the chance for product complexity, and contamination, and the hurdles of scaling up to commercial production are the limitations of these traditional expression methods. Plants have been raised as a hopeful replacement system for the expression of biopharmaceutical products due to their potential benefits, which include low production costs, simplicity in scaling up to commercial manufacturing levels, and a lower threat of mammalian toxin contaminations and virus infections. Since plants are widely utilized as a source of therapeutic chemicals, molecular farming offers a unique way to produce molecular medicines such as recombinant antibodies, enzymes, growth factors, plasma proteins, and vaccines whose molecular basis for use in therapy is well established. Biopharming provides more economical and extensive pharmaceutical drug supplies, including vaccines for contagious diseases and pharmaceutical proteins for the treatment of conditions like heart disease and cancer. To assess its technical viability and the efficacy resulting from the adoption of molecular farming products, the following review explores the various methods and methodologies that are currently employed to create commercially valuable molecules in plant systems.
Collapse
Affiliation(s)
- Jothi Kanmani Bharathi
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Annamalai University, Annamalai Nagar, 608002, Tamil Nadu, India
| | - Preethika Suresh
- School of Bioscience and Biotechnology, Vellore Institute of Technology, Vellore, Tamil-Nadu, India
- Department of Horticulture and Food Science, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil-Nadu, India
| | - Muthu Arjuna Samy Prakash
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Annamalai University, Annamalai Nagar, 608002, Tamil Nadu, India
| | - Sowbiya Muneer
- Department of Horticulture and Food Science, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil-Nadu, India
| |
Collapse
|
2
|
Senini I, Tengattini S, Rinaldi F, Massolini G, Gstöttner C, Reusch D, Donini M, Marusic C, van Veelen PA, Domínguez-Vega E, Wuhrer M, Temporini C, Nicolardi S. Direct glycosylation analysis of intact monoclonal antibodies combining ESI MS of glycoforms and MALDI-in source decay MS of glycan fragments. Commun Chem 2024; 7:203. [PMID: 39261598 PMCID: PMC11390885 DOI: 10.1038/s42004-024-01297-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024] Open
Abstract
Monoclonal antibody (mAb) glycoengineering has the potential to improve the efficacy of biopharmaceuticals by fine-tuning specific biological properties. Glycosylation analysis is key to monitoring the glycoengineering process. Various mass spectrometry (MS)-based methods are available to characterize mAb glycosylation at different structural levels, but comprehensive analysis is typically time-consuming and costly. Here, we present an approach that combines conventional intact mass measurement of glycoforms by direct infusion ESI-MS with an advanced MALDI-in-source decay FT-ICR MS method for direct analysis of glycans in intact mAbs, without the need for enzymatic release and separation. Using a sodium-doped MALDI matrix, glycans were directly released as ISD fragment ions from the intact mAbs during the ionization process. Measurement of 0,2A fragment signals yielded reproducible glycan profiles that were consistent with conventional methods, yet was achieved with unprecedented speed, providing complementary information to that obtained through intact mass measurement. The methods were applied to standard and glycoengineered trastuzumab and rituximab, allowing rapid glycosylation profiling and structural analysis of glycans by tandem MS of selected ISD fragment ions. This fast approach can facilitate the early-phase development of glycoengineering processes by constraining further in-depth analyses. We envision a broader applicability in studies focused on glycosylation changes in mAbs.
Collapse
Affiliation(s)
- Isabella Senini
- University of Pavia, via Taramelli 12, Pavia, Italy
- Leiden University Medical Center, Albinusdreef 2, Leiden, The Netherlands
| | | | | | | | | | - Dietmar Reusch
- Pharma Technical Development Penzberg, Roche Diagnostics GmbH, Penzberg, Germany
| | - Marcello Donini
- Laboratory of Biotechnology, ENEA Casaccia Research Center, Via Anguillarese 301, Roma, Italy
| | - Carla Marusic
- Laboratory of Biotechnology, ENEA Casaccia Research Center, Via Anguillarese 301, Roma, Italy
| | - Peter A van Veelen
- Leiden University Medical Center, Albinusdreef 2, Leiden, The Netherlands
| | | | - Manfred Wuhrer
- Leiden University Medical Center, Albinusdreef 2, Leiden, The Netherlands
| | | | - Simone Nicolardi
- Leiden University Medical Center, Albinusdreef 2, Leiden, The Netherlands.
| |
Collapse
|
3
|
Böhm C, Inckemann R, Burgis M, Baumann J, Brinkmann CK, Lipinska KE, Gilles S, Freudigmann J, Seiler VN, Clark LG, Jewett MC, Voll LM, Niederholtmeyer H. Chloroplast Cell-Free Systems from Different Plant Species as a Rapid Prototyping Platform. ACS Synth Biol 2024; 13:2412-2424. [PMID: 39028299 PMCID: PMC11334176 DOI: 10.1021/acssynbio.4c00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 07/20/2024]
Abstract
Climate change poses a significant threat to global agriculture, necessitating innovative solutions. Plant synthetic biology, particularly chloroplast engineering, holds promise as a viable approach to this challenge. Chloroplasts present a variety of advantageous traits for genetic engineering, but the development of genetic tools and genetic part characterization in these organelles is hindered by the lengthy time scales required to generate transplastomic organisms. To address these challenges, we have established a versatile protocol for generating highly active chloroplast-based cell-free gene expression (CFE) systems derived from a diverse range of plant species, including wheat (monocot), spinach, and poplar trees (dicots). We show that these systems work with conventionally used T7 RNA polymerase as well as the endogenous chloroplast polymerases, allowing for detailed characterization and prototyping of regulatory sequences at both transcription and translation levels. To demonstrate the platform for characterization of promoters and 5' and 3' untranslated regions (UTRs) in higher plant chloroplast gene expression, we analyze a collection of 23 5'UTRs, 10 3'UTRs, and 6 chloroplast promoters, assessed their expression in spinach and wheat extracts, and found consistency in expression patterns, suggesting cross-species compatibility. Looking forward, our chloroplast CFE systems open new avenues for plant synthetic biology, offering prototyping tools for both understanding gene expression and developing engineered plants, which could help meet the demands of a changing global climate.
Collapse
Affiliation(s)
- Clemens
V. Böhm
- Max-Planck
Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Center
for Synthetic Microbiology, Philipps-Universität
Marburg, 35032 Marburg, Germany
| | - René Inckemann
- Max-Planck
Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Center
for Synthetic Microbiology, Philipps-Universität
Marburg, 35032 Marburg, Germany
| | - Michael Burgis
- Center
for Synthetic Microbiology, Philipps-Universität
Marburg, 35032 Marburg, Germany
| | - Jessica Baumann
- Molecular
Plant Physiology, Philipps-Universität
Marburg, 35043 Marburg, Germany
| | | | - Katarzyna E. Lipinska
- Max-Planck
Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Center
for Synthetic Microbiology, Philipps-Universität
Marburg, 35032 Marburg, Germany
| | - Sara Gilles
- Max-Planck
Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Center
for Synthetic Microbiology, Philipps-Universität
Marburg, 35032 Marburg, Germany
| | - Jonas Freudigmann
- Molecular
Plant Physiology, Philipps-Universität
Marburg, 35043 Marburg, Germany
| | - Vinca N. Seiler
- Molecular
Plant Physiology, Philipps-Universität
Marburg, 35043 Marburg, Germany
| | - Lauren G. Clark
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Lars M. Voll
- Center
for Synthetic Microbiology, Philipps-Universität
Marburg, 35032 Marburg, Germany
- Molecular
Plant Physiology, Philipps-Universität
Marburg, 35043 Marburg, Germany
| | - Henrike Niederholtmeyer
- Max-Planck
Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Center
for Synthetic Microbiology, Philipps-Universität
Marburg, 35032 Marburg, Germany
- Technical
University of Munich, Campus Straubing for Biotechnology and Sustainability, 94315 Straubing, Germany
| |
Collapse
|
4
|
Krasley A, Li E, Galeana JM, Bulumulla C, Beyene AG, Demirer GS. Carbon Nanomaterial Fluorescent Probes and Their Biological Applications. Chem Rev 2024; 124:3085-3185. [PMID: 38478064 PMCID: PMC10979413 DOI: 10.1021/acs.chemrev.3c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
Fluorescent carbon nanomaterials have broadly useful chemical and photophysical attributes that are conducive to applications in biology. In this review, we focus on materials whose photophysics allow for the use of these materials in biomedical and environmental applications, with emphasis on imaging, biosensing, and cargo delivery. The review focuses primarily on graphitic carbon nanomaterials including graphene and its derivatives, carbon nanotubes, as well as carbon dots and carbon nanohoops. Recent advances in and future prospects of these fields are discussed at depth, and where appropriate, references to reviews pertaining to older literature are provided.
Collapse
Affiliation(s)
- Andrew
T. Krasley
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Eugene Li
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Jesus M. Galeana
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Chandima Bulumulla
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Abraham G. Beyene
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Gozde S. Demirer
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
5
|
LaManna L, Chou CH, Lei H, Barton ER, Maliga P. Chloroplast transformation for bioencapsulation and oral delivery using the immunoglobulin G fragment crystallizable (Fc) domain. Sci Rep 2023; 13:18916. [PMID: 37919321 PMCID: PMC10622566 DOI: 10.1038/s41598-023-45698-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023] Open
Abstract
Proinsulin Like Growth Factor I (prolGF-I) and myostatin (Mstn) regulate muscle regeneration and mass when intravenously delivered. We tested if chloroplast bioencapsulated forms of these proteins may serve as a non-invasive means of drug delivery through the digestive system. We created tobacco (Nicotiana tabacum) plants carrying GFP-Fc1, proIGF-I-Fc1, and Mstn-Fc1 fusion genes, in which fusion with the immunoglobulin G Fc domain improved both protein stability and absorption in the small intestine. No transplastomic plants were obtained with the Mstn-Fc1 gene, suggesting that the protein is toxic to plant cells. proIGF-I-Fc1 protein levels were too low to enable in vivo testing. However, GFP-Fc1 accumulated at a high level, enabling evaluation of chloroplast-made Fc fusion proteins for oral delivery. Tobacco leaves were lyophilized for testing in a mouse system. We report that the orally administered GFP-Fc1 fusion protein (5.45 µg/g GFP-Fc1) has been taken up by the intestinal epithelium cells, evidenced by confocal microscopy. GFP-Fc1 subsequently entered the circulation where it was detected by ELISA. Data reported here confirm that chloroplast expression and oral administration of lyophilized leaves is a potential delivery system of therapeutic proteins fused with Fc1, with the advantage that the proteins may be stored at room temperature.
Collapse
Affiliation(s)
- Lisa LaManna
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Chih-Hsuan Chou
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, 32611, USA
| | - Hanqin Lei
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, 32611, USA
| | - Elisabeth R Barton
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, 32611, USA.
| | - Pal Maliga
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA.
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
6
|
Ehsasatvatan M, Kohnehrouz BB. The lyophilized chloroplasts store synthetic DARPin G3 as bioactive encapsulated organelles. J Biol Eng 2023; 17:63. [PMID: 37798746 PMCID: PMC10557345 DOI: 10.1186/s13036-023-00383-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 10/02/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND The high cost of fermentation, purification, cold storage and transportation, short shelf life, and sterile delivery methods of biopharmaceuticals, is a matter for producers and consumers as well. Since the FDA has now approved plant cells for large-scale, cost-effective biopharmaceutical production, the isolation and lyophilization of transplastomic chloroplasts can cover concerns about limitations. DARPins are engineered small single-domain proteins that have been selected to bind to HER2 with high affinity and specificity. HER2 is an oncogene involved in abnormal cell growth in some cancers and the target molecule for cancer immunotherapy. RESULTS In this study, we reported the prolonged stability and functionality of DARPin G3 in lyophilized transplastomic tobacco leaves and chloroplasts. Western blot analysis of lyophilized leaves and chloroplasts stored at room temperature for up to nine months showed that the DARPin G3 protein was stable and preserved proper folding. Lyophilization of leaves and isolated chloroplasts increased DARPin G3 protein concentrations by 16 and 32-fold, respectively. The HER2-binding assay demonstrated that the chloroplast-made DARPin G3 can maintain its stability and binding activity without any affinity drop in lyophilized leaf materials throughout this study for more than nine months at room temperature. CONCLUSION Lyophilization of chloroplasts expressing DARPin G3 would further reduce costs and simplify downstream processing, purification, and storage. Compressed packages of lyophilized chloroplasts were much more effective than lyophilized transplastomic leaves considering occupied space and downstream extraction and purification of DARPin G3 after nine months. These methods facilitate any relevant formulation practices for these compounds to meet any demand-oriented needs.
Collapse
Affiliation(s)
- Maryam Ehsasatvatan
- Department of Plant Breeding & Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, 51666, Iran
| | - Bahram Baghban Kohnehrouz
- Department of Plant Breeding & Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, 51666, Iran.
| |
Collapse
|
7
|
Bélanger S, Kramer MC, Payne HA, Hui AY, Slotkin RK, Meyers BC, Staub JM. Plastid dsRNA transgenes trigger phased small RNA-based gene silencing of nuclear-encoded genes. THE PLANT CELL 2023; 35:3398-3412. [PMID: 37309669 PMCID: PMC10473229 DOI: 10.1093/plcell/koad165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/16/2023] [Accepted: 06/12/2023] [Indexed: 06/14/2023]
Abstract
Plastid transformation technology has been widely used to express traits of potential commercial importance, though the technology has been limited to traits that function while sequestered in the organelle. Prior research indicates that plastid contents can escape from the organelle, suggesting a possible mechanism for engineering plastid transgenes to function in other cellular locations. To test this hypothesis, we created tobacco (Nicotiana tabacum cv. Petit Havana) plastid transformants that express a fragment of the nuclear-encoded Phytoene desaturase (PDS) gene capable of catalyzing post-transcriptional gene silencing if RNA escapes into the cytoplasm. We found multiple lines of direct evidence that plastid-encoded PDS transgenes affect nuclear PDS gene silencing: knockdown of the nuclear-encoded PDS mRNA and/or its apparent translational inhibition, biogenesis of 21-nucleotide (nt) phased small interfering RNAs (phasiRNAs), and pigment-deficient plants. Furthermore, plastid-expressed dsRNA with no cognate nuclear-encoded pairing partner also produced abundant 21-nt phasiRNAs in the cytoplasm, demonstrating that a nuclear-encoded template is not required for siRNA biogenesis. Our results indicate that RNA escape from plastids to the cytoplasm occurs generally, with functional consequences that include entry into the gene silencing pathway. Furthermore, we uncover a method to produce plastid-encoded traits with functions outside of the organelle and open additional fields of study in plastid development, compartmentalization, and small RNA biogenesis.
Collapse
Affiliation(s)
- Sébastien Bélanger
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132, USA
| | - Marianne C Kramer
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132, USA
| | - Hayden A Payne
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132, USA
| | - Alice Y Hui
- Plastomics Inc, 1100 Corporate Square Drive, St. Louis, MO 63132, USA
| | - R Keith Slotkin
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132, USA
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Blake C Meyers
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132, USA
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA
| | - Jeffrey M Staub
- Plastomics Inc, 1100 Corporate Square Drive, St. Louis, MO 63132, USA
| |
Collapse
|
8
|
Ehsasatvatan M, Kohnehrouz BB, Gholizadeh A, Ofoghi H, Shanehbandi D. The production of the first functional antibody mimetic in higher plants: the chloroplast makes the DARPin G3 for HER2 imaging in oncology. Biol Res 2022; 55:32. [PMID: 36274167 PMCID: PMC9590205 DOI: 10.1186/s40659-022-00400-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/12/2022] [Indexed: 12/05/2022] Open
Abstract
Background Designed mimetic molecules are attractive tools in biopharmaceuticals and synthetic biology. They require mass and functional production for the assessment of upcoming challenges in the near future. The DARPin family is considered a mimetic pharmaceutical peptide group with high affinity binding to specific targets. DARPin G3 is designed to bind to the HER2 (human epidermal growth factor receptor 2) tyrosine kinase receptor. Overexpression of HER2 is common in some cancers, including breast cancer, and can be used as a prognostic and predictive tool for cancer. The chloroplasts are cost-effective alternatives, equal to, and sometimes better than, bacterial, yeast, or mammalian expression systems. This research examined the possibility of the production of the first antibody mimetic, DARPin G3, in tobacco chloroplasts for HER2 imaging in oncology. Results The chloroplast specific DARPin G3 expression cassette was constructed and transformed into N. tabacum chloroplasts. PCR and Southern blot analysis confirmed integration of transgenes as well as chloroplastic and cellular homoplasmy. The Western blot analysis and ELISA confirmed the production of DARPin G3 at the commercial scale and high dose with the rate of 20.2% in leaf TSP and 33.7% in chloroplast TSP. The functional analysis by ELISA confirmed the binding of IMAC purified chloroplast-made DARPin G3 to the extracellular domain of the HER2 receptor with highly effective picomolar affinities. The carcinoma cellular studies by flow cytometry and immunofluorescence microscopy confirmed the correct functioning by the specific binding of the chloroplast-made DARPin G3 to the HER2 receptor on the surface of HER2-positive cancer cell lines. Conclusion The efficient functional bioactive production of DARPin G3 in chloroplasts led us to introduce plant chloroplasts as the site of efficient production of the first antibody mimetic molecules. This report, as the first case of the cost-effective production of mimetic molecules, enables researchers in pharmaceuticals, synthetic biology, and bio-molecular engineering to develop tool boxes by producing new molecular substitutes for diverse purposes.
Collapse
|
9
|
Reynolds B, McGarvey B, Todd J. Agronomics of high density tobacco (Nicotiana tabacum) production for protein and chemicals in Canada. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Current Strategies to Improve Yield of Recombinant Protein Production in Rice Suspension Cells. Processes (Basel) 2022. [DOI: 10.3390/pr10061120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A plant cell-based recombinant glucocerebrosidase was approved by the FDA in 2012 for the treatment of human inherited Gaucher disease, indicating that plant suspension cells have advantages in biosafety and a low production cost as a commercial pharmaceutical recombinant protein expression system. A low allergenic rice suspension cell-based recombinant protein expression system controlled by the αAmy3/RAmy3D promoter has been shown to result in relatively high protein yields in plant cell-based systems. Although several recombinant proteins have been produced in rice suspension cell-based systems, yields must be improved to compete with the current commercial protein expression systems. Different strategies were performed and showed successful improvements in recombinant protein yields in this rice system. The review updates and highlights strategies for potential improvements of the αAmy3-based rice suspension cell-based system.
Collapse
|
11
|
Biotechnological Approaches for Production of Artemisinin, an Anti-Malarial Drug from Artemisia annua L. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27093040. [PMID: 35566390 PMCID: PMC9103073 DOI: 10.3390/molecules27093040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 11/29/2022]
Abstract
Artemisinin is an anti-malarial sesquiterpene lactone derived from Artemisia annua L. (Asteraceae family). One of the most widely used modes of treatment for malaria is an artemisinin-based combination therapy. Artemisinin and its associated compounds have a variety of pharmacological qualities that have helped achieve economic prominence in recent years. So far, research on the biosynthesis of this bioactive metabolite has revealed that it is produced in glandular trichomes and that the genes responsible for its production must be overexpressed in order to meet demand. Using biotechnological applications such as tissue culture, genetic engineering, and bioreactor-based approaches would aid in the upregulation of artemisinin yield, which is needed for the future. The current review focuses on the tissue culture aspects of propagation of A. annua and production of artemisinin from A. annua L. cell and organ cultures. The review also focuses on elicitation strategies in cell and organ cultures, as well as artemisinin biosynthesis and metabolic engineering of biosynthetic genes in Artemisia and plant model systems.
Collapse
|
12
|
Singh VK, Phanindra MLV, Nain V, Gothandapani S, Dhandapani G, Rao KRSS, Kumar A, Kumar PA. Targeting delta-endotoxin (Cry1Ac) of Bacillus thuringiensis to subcellular compartments increases the protein expression, stability, and biological activity. Int J Biol Macromol 2022; 205:185-192. [PMID: 35182560 DOI: 10.1016/j.ijbiomac.2022.02.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 11/26/2022]
Abstract
Evolving insect resistance to delta-endotoxins can be delayed by using a few strategies like high dosage, refugia, and gene stacking which require the expression of delta-endotoxins at sufficiently high levels to kill the resistant insects. In this study, we comparatively analyzed the efficacy of targeting truncated cry1Ac protein to the cytoplasm, endoplasmic reticulum (ER), and chloroplast to obtain high protein expression. mRNA and protein profiling of cry1Ac showed that both ER and chloroplast are efficient targets for expressing high levels of truncated cry1Ac. A maximum of 0.8, 1.6, and 2.0% cry1Ac of total soluble protein were obtained when the truncated cry1Ac was expressed in the cytoplasm, routed through ER, and targeted to the chloroplast. We further showed that not only the protein content but also the biological activity of truncated cry1Ac increases by sub-cellular targeting and the biological activity is slightly greater in the ER routed transgenic lines by conducting different bioassays on Helicoverpa armigera. Using native Western analysis, we demonstrated that the truncated cry1Ac protein could exist as oligomers in plant cells and this oligomerization capability is low in the cytoplasm. In conclusion, routing of delta endotoxins through ER is the first choice to obtain high protein expression and bioactivity.
Collapse
Affiliation(s)
- Vivek Kumar Singh
- ICAR-National Institute for Plant Biotechnology (Formerly, National Research Centre on Plant Biotechnology), New Delhi, India; Department of Biotechnology, National Institute of Technology, Raipur, India
| | | | - Vikrant Nain
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Sellamuthu Gothandapani
- ICAR-National Institute for Plant Biotechnology (Formerly, National Research Centre on Plant Biotechnology), New Delhi, India
| | - Gurusamy Dhandapani
- ICAR-National Institute for Plant Biotechnology (Formerly, National Research Centre on Plant Biotechnology), New Delhi, India
| | | | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, India.
| | - Polumetla Ananda Kumar
- ICAR-National Institute for Plant Biotechnology (Formerly, National Research Centre on Plant Biotechnology), New Delhi, India.
| |
Collapse
|
13
|
Song SJ, Diao HP, Moon B, Yun A, Hwang I. The B1 Domain of Streptococcal Protein G Serves as a Multi-Functional Tag for Recombinant Protein Production in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:878677. [PMID: 35548280 PMCID: PMC9083265 DOI: 10.3389/fpls.2022.878677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/21/2022] [Indexed: 05/17/2023]
Abstract
Plants have long been considered a cost-effective platform for recombinant production. A recently recognized additional advantage includes the low risk of contamination of human pathogens, such as viruses and bacterial endotoxins. Indeed, a great advance has been made in developing plants as a "factory" to produce recombinant proteins to use for biopharmaceutical purposes. However, there is still a need to develop new tools for recombinant protein production in plants. In this study, we provide data showing that the B1 domain of Streptococcal protein G (GB1) can be a multi-functional domain of recombinant proteins in plants. N-terminal fusion of the GB1 domain increased the expression level of various target proteins ranging from 1.3- to 3.1-fold at the protein level depending on the target proteins. GB1 fusion led to the stabilization of the fusion proteins. Furthermore, the direct detection of GB1-fusion proteins by the secondary anti-IgG antibody eliminated the use of the primary antibody for western blot analysis. Based on these data, we propose that the small GB1 domain can be used as a versatile tag for recombinant protein production in plants.
Collapse
|
14
|
He W, Baysal C, Lobato Gómez M, Huang X, Alvarez D, Zhu C, Armario‐Najera V, Blanco Perera A, Cerda Bennaser P, Saba‐Mayoral A, Sobrino‐Mengual G, Vargheese A, Abranches R, Alexandra Abreu I, Balamurugan S, Bock R, Buyel JF, da Cunha NB, Daniell H, Faller R, Folgado A, Gowtham I, Häkkinen ST, Kumar S, Sathish Kumar R, Lacorte C, Lomonossoff GP, Luís IM, K.‐C. Ma J, McDonald KA, Murad A, Nandi S, O’Keef B, Parthiban S, Paul MJ, Ponndorf D, Rech E, Rodrigues JC, Ruf S, Schillberg S, Schwestka J, Shah PS, Singh R, Stoger E, Twyman RM, Varghese IP, Vianna GR, Webster G, Wilbers RHP, Christou P, Oksman‐Caldentey K, Capell T. Contributions of the international plant science community to the fight against infectious diseases in humans-part 2: Affordable drugs in edible plants for endemic and re-emerging diseases. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1921-1936. [PMID: 34181810 PMCID: PMC8486237 DOI: 10.1111/pbi.13658] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 05/05/2023]
Abstract
The fight against infectious diseases often focuses on epidemics and pandemics, which demand urgent resources and command attention from the health authorities and media. However, the vast majority of deaths caused by infectious diseases occur in endemic zones, particularly in developing countries, placing a disproportionate burden on underfunded health systems and often requiring international interventions. The provision of vaccines and other biologics is hampered not only by the high cost and limited scalability of traditional manufacturing platforms based on microbial and animal cells, but also by challenges caused by distribution and storage, particularly in regions without a complete cold chain. In this review article, we consider the potential of molecular farming to address the challenges of endemic and re-emerging diseases, focusing on edible plants for the development of oral drugs. Key recent developments in this field include successful clinical trials based on orally delivered dried leaves of Artemisia annua against malarial parasite strains resistant to artemisinin combination therapy, the ability to produce clinical-grade protein drugs in leaves to treat infectious diseases and the long-term storage of protein drugs in dried leaves at ambient temperatures. Recent FDA approval of the first orally delivered protein drug encapsulated in plant cells to treat peanut allergy has opened the door for the development of affordable oral drugs that can be manufactured and distributed in remote areas without cold storage infrastructure and that eliminate the need for expensive purification steps and sterile delivery by injection.
Collapse
Affiliation(s)
- Wenshu He
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Can Baysal
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Maria Lobato Gómez
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Xin Huang
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Derry Alvarez
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Changfu Zhu
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Victoria Armario‐Najera
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Aamaya Blanco Perera
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Pedro Cerda Bennaser
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Andrea Saba‐Mayoral
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | | | - Ashwin Vargheese
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Rita Abranches
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Isabel Alexandra Abreu
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Shanmugaraj Balamurugan
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityTamil NaduIndia
| | - Ralph Bock
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Johannes F. Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
- Institute for Molecular BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Nicolau B. da Cunha
- Centro de Análise Proteômicas e Bioquímicas de BrasíliaUniversidade Católica de BrasíliaBrasíliaBrazil
| | - Henry Daniell
- School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Roland Faller
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
| | - André Folgado
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Iyappan Gowtham
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityTamil NaduIndia
| | - Suvi T. Häkkinen
- Industrial Biotechnology and Food SolutionsVTT Technical Research Centre of Finland LtdEspooFinland
| | - Shashi Kumar
- International Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Ramalingam Sathish Kumar
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityTamil NaduIndia
| | - Cristiano Lacorte
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in Biology, Parque Estação BiológicaBrasiliaBrazil
| | | | - Ines M. Luís
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Julian K.‐C. Ma
- Institute for Infection and ImmunitySt. George’s University of LondonLondonUK
| | - Karen A. McDonald
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
- Global HealthShare InitiativeUniversity of California, DavisDavisCAUSA
| | - Andre Murad
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in Biology, Parque Estação BiológicaBrasiliaBrazil
| | - Somen Nandi
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
- Global HealthShare InitiativeUniversity of California, DavisDavisCAUSA
| | - Barry O’Keef
- Division of Cancer Treatment and DiagnosisMolecular Targets ProgramCenter for Cancer ResearchNational Cancer Institute, and Natural Products Branch, Developmental Therapeutics ProgramNational Cancer Institute, NIHFrederickMDUSA
| | - Subramanian Parthiban
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityTamil NaduIndia
| | - Mathew J. Paul
- Institute for Infection and ImmunitySt. George’s University of LondonLondonUK
| | - Daniel Ponndorf
- Department of Biological ChemistryJohn Innes CentreNorwich Research Park, NorwichUK
| | - Elibio Rech
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in Biology, Parque Estação BiológicaBrasiliaBrazil
| | - Julio C.M. Rodrigues
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in Biology, Parque Estação BiológicaBrasiliaBrazil
| | - Stephanie Ruf
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
- Institute for PhytopathologyJustus‐Liebig‐University GiessenGiessenGermany
| | - Jennifer Schwestka
- Institute of Plant Biotechnology and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Priya S. Shah
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
- Department of Microbiology and Molecular GeneticsUniversity of California, DavisDavisCAUSA
| | - Rahul Singh
- School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Eva Stoger
- Institute of Plant Biotechnology and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | | | - Inchakalody P. Varghese
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityTamil NaduIndia
| | - Giovanni R. Vianna
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in Biology, Parque Estação BiológicaBrasiliaBrazil
| | - Gina Webster
- Institute for Infection and ImmunitySt. George’s University of LondonLondonUK
| | - Ruud H. P. Wilbers
- Laboratory of NematologyPlant Sciences GroupWageningen University and ResearchWageningenThe Netherlands
| | - Paul Christou
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
- ICREACatalan Institute for Research and Advanced StudiesBarcelonaSpain
| | | | - Teresa Capell
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| |
Collapse
|
15
|
Ahmadabadi M. Transfer and Expression of Native Human Insulin-Like Growth Factor-1 in Tobacco Chloroplasts. IRANIAN JOURNAL OF BIOTECHNOLOGY 2021; 19:e2911. [PMID: 35350639 PMCID: PMC8926313 DOI: 10.30498/ijb.2021.256630.2911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background Insulin-like growth factor-1 (IGF-1), in addition to having insulin-like effects, has boosting effects on all cells in human body. Most of the recombinant IGF-1 required for patients suffering from its deficiency is currently produced by bacterial and yeast systems. Plant systems, especially chloroplasts, have many benefits for producing human blood proteins. Production costs are low in these systems, and their side effects are less than other systems. Objectives In this study, the transfer and expression of mature IGF-1 protein cDNA in tobacco chloroplasts under the control of strong plastid transcription and translation elements was evaluated. Materials and Methods The biolistic transformation method was used to transfer the IGF-1 gene cloned into the pRB94-IGF1 chloroplast vector. Homoplasmic transplastomic plants were produced through four selection rounds on the selective medium. Transfer of foreign genes to chloroplast genome was confirmed by PCR, Southern blotting and seed progeny test. RT-PCR and SDS-PAGE methods were used to evaluate the expression of IGF-1 gene in transgenic line. Results A truly transformed line was identified from selected seedlings by PCR method. The seed progeny test of 4th-regeneration-round transgenic plants of this line showed maternal inheritance and homoplasmic level for the selectable marker gene, which confirms the transfer and expression of the marker gene in the chloroplast genome. The Southern blot test also confirmed the transfer of the IGF-1 gene into the chloroplast genome. RT-PCR test showed that IGF-1 gene transcription is performed correctly in transgenic plants. Finally, accumulation of IGF-1 protein in transgenic plants was detected by SDS-PAGE. Conclusions Successful transfer and expression of the native human IGF-1 gene in tobacco chloroplast genome is reported.
Collapse
Affiliation(s)
- Mohammad Ahmadabadi
- Department of Biotechnology, Faculty of Agriculture, Azarbaijan Shahid Madani University km 35 Tabriz-Maraqeh Road, Tabriz, Iran
| |
Collapse
|
16
|
Chin-Fatt A, Menassa R. A V HH-Fc Fusion Targeted to the Chloroplast Thylakoid Lumen Assembles and Neutralizes Enterohemorrhagic E. coli O157:H7. FRONTIERS IN PLANT SCIENCE 2021; 12:686421. [PMID: 34122494 PMCID: PMC8193579 DOI: 10.3389/fpls.2021.686421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Chimeric fusion proteins comprising a single domain antibody (VHH) fused to a crystallizable fragment (Fc) of an immunoglobulin are modular glycoproteins that are becoming increasingly in demand because of their value as diagnostics, research reagents and passive immunization therapeutics. Because ER-associated degradation and misfolding may potentially be limiting factors in the oxidative folding of VHH-Fc fusion proteins in the ER, we sought to explore oxidative folding in an alternative sub-compartment, the chloroplast thylakoid lumen, and determine its viability in a molecular farming context. We developed a set of in-house expression vectors for transient transformation of Nicotiana benthamiana leaves that target a VHH-Fc to the thylakoid lumen via either secretory (Sec) or twin-arginine translocation (Tat) import pathways. Compared to stromal [6.63 ± 3.41 mg/kg fresh weight (FW)], cytoplasmic (undetectable) and Tat-import pathways (5.43 ± 2.41 mg/kg FW), the Sec-targeted VHH-Fc showed superior accumulation (30.56 ± 5.19 mg/kg FW), but was less than that of the ER (51.16 ± 9.11 mg/kg FW). Additionally, the introduction of a rationally designed de novo disulfide bond enhances in planta accumulation when introduced into the Sec-targeted Fc fusion protein from 50.24 ± 4.08 mg/kg FW to 110.90 ± 6.46 mg/kg FW. In vitro immunofluorescent labeling assays on VHH-Fc purified from Sec, Tat, and stromal pathways demonstrate that the antibody still retains VHH functionality in binding Escherichia coli O157:H7 and neutralizing its intimate adherence to human epithelial type 2 cells. These results overall provide a proof of concept that the oxidative folding environment of the thylakoid lumen may be a viable compartment for stably folding disulfide-containing recombinant VHH-Fc proteins.
Collapse
Affiliation(s)
- Adam Chin-Fatt
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Rima Menassa
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
17
|
Dahlin LR, Guarnieri MT. Development of the high-productivity marine microalga, Picochlorum renovo, as a photosynthetic protein secretion platform. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Daniell H, Jin S, Zhu X, Gitzendanner MA, Soltis DE, Soltis PS. Green giant-a tiny chloroplast genome with mighty power to produce high-value proteins: history and phylogeny. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:430-447. [PMID: 33484606 PMCID: PMC7955891 DOI: 10.1111/pbi.13556] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/11/2021] [Accepted: 01/16/2021] [Indexed: 05/04/2023]
Abstract
Free-living cyanobacteria were entrapped by eukaryotic cells ~2 billion years ago, ultimately giving rise to chloroplasts. After a century of debate, the presence of chloroplast DNA was demonstrated in the 1960s. The first chloroplast genomes were sequenced in the 1980s, followed by ~100 vegetable, fruit, cereal, beverage, oil and starch/sugar crop chloroplast genomes in the past three decades. Foreign genes were expressed in isolated chloroplasts or intact plant cells in the late 1980s and stably integrated into chloroplast genomes, with typically maternal inheritance shown in the 1990s. Since then, chloroplast genomes conferred the highest reported levels of tolerance or resistance to biotic or abiotic stress. Although launching products with agronomic traits in important crops using this concept has been elusive, commercial products developed include enzymes used in everyday life from processing fruit juice, to enhancing water absorption of cotton fibre or removal of stains as laundry detergents and in dye removal in the textile industry. Plastid genome sequences have revealed the framework of green plant phylogeny as well as the intricate history of plastid genome transfer events to other eukaryotes. Discordant historical signals among plastid genes suggest possible variable constraints across the plastome and further understanding and mitigation of these constraints may yield new opportunities for bioengineering. In this review, we trace the evolutionary history of chloroplasts, status of autonomy and recent advances in products developed for everyday use or those advanced to the clinic, including treatment of COVID-19 patients and SARS-CoV-2 vaccine.
Collapse
Affiliation(s)
- Henry Daniell
- Department of Basic and Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Xin‐Guang Zhu
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | | | - Douglas E. Soltis
- Florida Museum of Natural History and Department of BiologyUniversity of FloridaGainesvilleFLUSA
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFLUSA
| | - Pamela S. Soltis
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|
19
|
Ghag SB, Adki VS, Ganapathi TR, Bapat VA. Plant Platforms for Efficient Heterologous Protein Production. BIOTECHNOL BIOPROC E 2021; 26:546-567. [PMID: 34393545 PMCID: PMC8346785 DOI: 10.1007/s12257-020-0374-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 02/07/2023]
Abstract
Production of recombinant proteins is primarily established in cultures of mammalian, insect and bacterial cells. Concurrently, concept of using plants to produce high-value pharmaceuticals such as vaccines, antibodies, and dietary proteins have received worldwide attention. Newer technologies for plant transformation such as plastid engineering, agroinfiltration, magnifection, and deconstructed viral vectors have been used to enhance the protein production in plants along with the inherent advantage of speed, scale, and cost of production in plant systems. Production of therapeutic proteins in plants has now a more pragmatic approach when several plant-produced vaccines and antibodies successfully completed Phase I clinical trials in humans and were further scheduled for regulatory approvals to manufacture clinical grade products on a large scale which are safe, efficacious, and meet the quality standards. The main thrust of this review is to summarize the data accumulated over the last two decades and recent development and achievements of the plant derived therapeutics. It also attempts to discuss different strategies employed to increase the production so as to make plants more competitive with the established production systems in this industry.
Collapse
Affiliation(s)
- Siddhesh B. Ghag
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai campus, Kalina, Santacruz, Mumbai, 400098 India
| | - Vinayak S. Adki
- V. G. Shivdare College of Arts, Commerce and Science, Solapur, Maharashtra 413004 India
| | - Thumballi R. Ganapathi
- Plant Cell Culture Technology Section, Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India
| | - Vishwas A. Bapat
- Department of Biotechnology, Shivaji University, Vidyanagar, Kolhapur, Maharashtra 416004 India
| |
Collapse
|
20
|
Abstract
Expression of transgenes from the plastid genome offers a number of attractions to biotechnologists, with the potential to attain very high protein accumulation levels arguably being the most attractive one. High-level transgene expression is of particular importance in resistance engineering (e.g., for expression of insecticidal proteins) and molecular farming (e.g., for expression of pharmaceutical proteins and industrial enzymes). Over the past decades, the production of many commercially valuable proteins in chloroplast-transgenic (transplastomic) plants has been attempted, including pharmaceutical proteins (e.g., subunit vaccines and protein antibiotics) and industrial enzymes. Although in some cases, spectacularly high foreign protein accumulation levels have been obtained, expression levels were disappointingly poor in other cases. In this review, I summarize our current knowledge about the factors influencing the efficiency of plastid transgene expression, and highlight possible optimization strategies to alleviate problems with poor expression levels. I also discuss available techniques for inducible expression of chloroplast transgenes.
Collapse
|
21
|
Staub JM. Transformation of the Plastid Genome in Tobacco Suspension Cell Cultures. Methods Mol Biol 2021; 2317:167-175. [PMID: 34028768 DOI: 10.1007/978-1-0716-1472-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Chloroplast transformation has been extremely valuable for the study of plastid biology and gene expression, but the tissue culture methodology involved can be laborious and it can take several months to obtain homoplasmic regenerated plants useful for molecular or physiological studies. In contrast, transformation of tobacco suspension cell plastids provides an easy and efficient system to rapidly evaluate the efficacy of multiple constructs prior to plant regeneration. Suspension cell cultures can be initiated from many cell types, and once established, can be maintained by subculture for more than a year with no loss of transformation efficiency. Using antibiotic selection, homoplasmy is readily achieved in uniform cell colonies useful for comparative gene expression analyses, with the added flexibility to subsequently regenerate plants for in planta studies. Plastids from suspension cells grown in the dark are similar in size and cellular morphology to those in embryogenic culture systems of monocot species, thus providing a useful model for understanding the steps leading to plastid transformation in those recalcitrant species.
Collapse
|
22
|
Verma P, Tandon R, Yadav G, Gaur V. Structural Aspects of DNA Repair and Recombination in Crop Improvement. Front Genet 2020; 11:574549. [PMID: 33024442 PMCID: PMC7516265 DOI: 10.3389/fgene.2020.574549] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
Abstract
The adverse effects of global climate change combined with an exponentially increasing human population have put substantial constraints on agriculture, accelerating efforts towards ensuring food security for a sustainable future. Conventional plant breeding and modern technologies have led to the creation of plants with better traits and higher productivity. Most crop improvement approaches (conventional breeding, genome modification, and gene editing) primarily rely on DNA repair and recombination (DRR). Studying plant DRR can provide insights into designing new strategies or improvising the present techniques for crop improvement. Even though plants have evolved specialized DRR mechanisms compared to other eukaryotes, most of our insights about plant-DRRs remain rooted in studies conducted in animals. DRR mechanisms in plants include direct repair, nucleotide excision repair (NER), base excision repair (BER), mismatch repair (MMR), non-homologous end joining (NHEJ) and homologous recombination (HR). Although each DRR pathway acts on specific DNA damage, there is crosstalk between these. Considering the importance of DRR pathways as a tool in crop improvement, this review focuses on a general description of each DRR pathway, emphasizing on the structural aspects of key DRR proteins. The review highlights the gaps in our understanding and the importance of studying plant DRR in the context of crop improvement.
Collapse
Affiliation(s)
- Prabha Verma
- National Institute of Plant Genome Research, New Delhi, India
| | - Reetika Tandon
- National Institute of Plant Genome Research, New Delhi, India
| | - Gitanjali Yadav
- National Institute of Plant Genome Research, New Delhi, India
| | - Vineet Gaur
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
23
|
Yarra R. Plastome engineering in vegetable crops: current status and future prospects. Mol Biol Rep 2020; 47:8061-8074. [PMID: 32880066 DOI: 10.1007/s11033-020-05770-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 08/28/2020] [Indexed: 01/12/2023]
Abstract
Plastome (plastid genome) engineering has grown up and got smarter for the transgene expression. Plastid transformation has profound benefits over nuclear transformation, includes a higher level of transgene expression, integration via homologous recombination, transgene containment, lack of gene silencing, and position effect. Substantial and fruitful progress has been achieved in plastome engineering of vegetable crops through the use of improved regeneration/selection procedures, plastid transformation vectors with efficient promoters, and 3/, 5/regulatory sequences. Plastid transformation technology developed for vegetable crops being used as a platform for the production of industrially important proteins and some of the genes of agronomic importance has been stably integrated and expressed in plastome. Although great progress has been accomplished in the plastid transformation of vegetable crops, still it is restricted to few species because of the unavailability of whole plastome sequencing. In this review, the author focus on the technology, progress, and advancements in plastid transformation of vegetable plants such as lettuce, tomato, potato, cabbage, cauliflower, eggplant, carrot, soybean, and bitter melon are reviewed. The conclusions, future prospects, and expansion of plastid transformation technology to other vegetable crops for genetic improvement and production of edible vaccines are proposed.
Collapse
Affiliation(s)
- Rajesh Yarra
- Department of Agronomy, University of Florida, IFAS, Gainesville, FL, 32611, USA.
| |
Collapse
|
24
|
Progress in the Production of Virus-Like Particles for Vaccination against Hepatitis E Virus. Viruses 2020; 12:v12080826. [PMID: 32751441 PMCID: PMC7472025 DOI: 10.3390/v12080826] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/16/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatitis E virus (HEV), a pathogen that causes acute viral hepatitis, is a small icosahedral, quasi-enveloped, positive ssRNA virus. Its genome has three open reading frames (ORFs), with ORF1 and ORF3 encoding for nonstructural and regulatory proteins, respectively, while ORF2 is translated into the structural, capsid protein. ORF2 is most widely used for vaccine development in viral hepatitis. Hepatitis E virus-like particles (VLPs) are potential vaccine candidates against HEV infection. VLPs are composed of capsid subunits mimicking the natural configuration of the native virus but lack the genetic material needed for replication. As a result, VLPs are unable to replicate and cause disease, constituting safe vaccine platforms. Currently, the recombinant VLP-based vaccine Hecolin® against HEV is only licensed in China. Herein, systematic information about the expression of various HEV ORF2 sequences and their ability to form VLPs in different systems is provided.
Collapse
|
25
|
Plastid Transformation: How Does it Work? Can it Be Applied to Crops? What Can it Offer? Int J Mol Sci 2020; 21:ijms21144854. [PMID: 32659946 PMCID: PMC7402345 DOI: 10.3390/ijms21144854] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/04/2020] [Accepted: 07/05/2020] [Indexed: 12/31/2022] Open
Abstract
In recent years, plant genetic engineering has advanced agriculture in terms of crop improvement, stress and disease resistance, and pharmaceutical biosynthesis. Cells from land plants and algae contain three organelles that harbor DNA: the nucleus, plastid, and mitochondria. Although the most common approach for many plant species is the introduction of foreign DNA into the nucleus (nuclear transformation) via Agrobacterium- or biolistics-mediated delivery of transgenes, plastid transformation offers an alternative means for plant transformation. Since there are many copies of the chloroplast genome in each cell, higher levels of protein accumulation can often be achieved from transgenes inserted in the chloroplast genome compared to the nuclear genome. Chloroplasts are therefore becoming attractive hosts for the introduction of new agronomic traits, as well as for the biosynthesis of high-value pharmaceuticals, biomaterials and industrial enzymes. This review provides a comprehensive historical and biological perspective on plastid transformation, with a focus on current and emerging approaches such as the use of single-walled carbon nanotubes (SWNTs) as DNA delivery vehicles, overexpressing morphogenic regulators to enhance regeneration ability, applying genome editing techniques to accelerate double-stranded break formation, and reconsidering protoplasts as a viable material for plastid genome engineering, even in transformation-recalcitrant species.
Collapse
|
26
|
Shanmugaraj B, I. Bulaon CJ, Phoolcharoen W. Plant Molecular Farming: A Viable Platform for Recombinant Biopharmaceutical Production. PLANTS 2020; 9:plants9070842. [PMID: 32635427 PMCID: PMC7411908 DOI: 10.3390/plants9070842] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/20/2020] [Accepted: 06/30/2020] [Indexed: 12/20/2022]
Abstract
The demand for recombinant proteins in terms of quality, quantity, and diversity is increasing steadily, which is attracting global attention for the development of new recombinant protein production technologies and the engineering of conventional established expression systems based on bacteria or mammalian cell cultures. Since the advancements of plant genetic engineering in the 1980s, plants have been used for the production of economically valuable, biologically active non-native proteins or biopharmaceuticals, the concept termed as plant molecular farming (PMF). PMF is considered as a cost-effective technology that has grown and advanced tremendously over the past two decades. The development and improvement of the transient expression system has significantly reduced the protein production timeline and greatly improved the protein yield in plants. The major factors that drive the plant-based platform towards potential competitors for the conventional expression system are cost-effectiveness, scalability, flexibility, versatility, and robustness of the system. Many biopharmaceuticals including recombinant vaccine antigens, monoclonal antibodies, and other commercially viable proteins are produced in plants, some of which are in the pre-clinical and clinical pipeline. In this review, we consider the importance of a plant- based production system for recombinant protein production, and its potential to produce biopharmaceuticals is discussed.
Collapse
Affiliation(s)
- Balamurugan Shanmugaraj
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences Chulalongkorn University, Bangkok 10330, Thailand;
| | - Christine Joy I. Bulaon
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences Chulalongkorn University, Bangkok 10330, Thailand;
| | - Waranyoo Phoolcharoen
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences Chulalongkorn University, Bangkok 10330, Thailand;
- Correspondence: ; Tel.: +66-2-218-8359; Fax: +66-2-218-8357
| |
Collapse
|
27
|
Morgenfeld MM, Vater CF, Alfano EF, Boccardo NA, Bravo-Almonacid FF. Translocation from the chloroplast stroma into the thylakoid lumen allows expression of recombinant epidermal growth factor in transplastomic tobacco plants. Transgenic Res 2020; 29:295-305. [PMID: 32318934 DOI: 10.1007/s11248-020-00199-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/13/2020] [Indexed: 12/20/2022]
Abstract
Chloroplast transformation has many potential advantages for the production of recombinant proteins in plants. However, it has been reported that chloroplast expression of many proteins, such as human epidermal growth factor (hEGF), results hindered by post-transcriptional mechanisms. hEGF degradation has been related to the redox potential of the stroma and protein misfolding. To solve this problem, we proposed the redirection of hEGF into the thylakoid lumen where the environment could improve disulfide bonds formation stabilizing the functional conformation of the protein. We generated transplastomic tobacco plants targeting hEGF protein to the thylakoid lumen by adding a transit peptide (Str). Following this approach, we could detect thylakoid lumen-targeted hEGF by western blotting while stromal accumulation of hEGF remained undetectable. Southern blot analysis confirmed the integration of the transgene through homologous recombination into the plastome. Northern blot analysis showed similar levels of egf transcripts in the EGF and StrEGF lines. These results suggest that higher stability of the hEGF peptide in the thylakoid lumen is the primary cause of the increased accumulation of the recombinant protein observed in StrEGF lines. They also highlight the necessity of exploring different sub-organellar destinations to improve the accumulation levels of a specific recombinant protein in plastids.
Collapse
Affiliation(s)
- Mauro M Morgenfeld
- Instituto de Ingeniería Genética y Biología Molecular "Dr, Héctor Torres" (INGEBI-CONICET), Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular (FCEN-UBA), Buenos Aires, Argentina
| | - Catalina F Vater
- Instituto de Ingeniería Genética y Biología Molecular "Dr, Héctor Torres" (INGEBI-CONICET), Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires, Argentina
| | - E Federico Alfano
- Instituto de Ingeniería Genética y Biología Molecular "Dr, Héctor Torres" (INGEBI-CONICET), Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires, Argentina
| | - Noelia A Boccardo
- Instituto de Ingeniería Genética y Biología Molecular "Dr, Héctor Torres" (INGEBI-CONICET), Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires, Argentina
| | - Fernando F Bravo-Almonacid
- Instituto de Ingeniería Genética y Biología Molecular "Dr, Héctor Torres" (INGEBI-CONICET), Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires, Argentina.
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina.
| |
Collapse
|
28
|
Ancín M, Sanz-Barrio R, Santamaría E, Fernández-San Millán A, Larraya L, Veramendi J, Farran I. Functional Improvement of Human Cardiotrophin 1 Produced in Tobacco Chloroplasts by Co-expression with Plastid Thioredoxin m. PLANTS 2020; 9:plants9020183. [PMID: 32024318 PMCID: PMC7076529 DOI: 10.3390/plants9020183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/24/2020] [Accepted: 01/30/2020] [Indexed: 12/24/2022]
Abstract
Human cardiotrophin 1 (CT1), a cytokine with excellent therapeutic potential, was previously expressed in tobacco chloroplasts. However, the growth conditions required to reach the highest expression levels resulted in an impairment of its bioactivity. In the present study, we have examined new strategies to modulate the expression of this recombinant protein in chloroplasts so as to enhance its production and bioactivity. In particular, we assessed the effect of both the fusion and co-expression of Trx m with CT1 on the production of a functional CT1 by using plastid transformation. Our data revealed that the Trx m fusion strategy was useful to increase the expression levels of CT1 inside the chloroplasts, although CT1 bioactivity was significantly impaired, and this was likely due to steric hindrance between both proteins. By contrast, the expression of functional CT1 was increased when co-expressed with Trx m, because we demonstrated that recombinant CT1 was functionally active during an in vitro signaling assay. While Trx m/CT1 co-expression did not increase the amount of CT1 in young leaves, our results revealed an increase in CT1 protein stability as the leaves aged in this genotype, which also improved the recombinant protein's overall production. This strategy might be useful to produce other functional biopharmaceuticals in chloroplasts.
Collapse
Affiliation(s)
- María Ancín
- Institute for Multidisciplinary Research in Applied Biology, UPNA, 31006 Pamplona, Spain; (M.A.); (A.F.-S.M.); (L.L.); (J.V.)
| | - Ruth Sanz-Barrio
- National Centre for Biotechnology, Plant Molecular Genetics Department, CSIC, 28049 Madrid, Spain
| | - Eva Santamaría
- Hepatology Program, University of Navarra, CIMA, E-31008 Pamplona, Spain;
- CIBERehd, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Alicia Fernández-San Millán
- Institute for Multidisciplinary Research in Applied Biology, UPNA, 31006 Pamplona, Spain; (M.A.); (A.F.-S.M.); (L.L.); (J.V.)
| | - Luis Larraya
- Institute for Multidisciplinary Research in Applied Biology, UPNA, 31006 Pamplona, Spain; (M.A.); (A.F.-S.M.); (L.L.); (J.V.)
| | - Jon Veramendi
- Institute for Multidisciplinary Research in Applied Biology, UPNA, 31006 Pamplona, Spain; (M.A.); (A.F.-S.M.); (L.L.); (J.V.)
| | - Inmaculada Farran
- Institute for Multidisciplinary Research in Applied Biology, UPNA, 31006 Pamplona, Spain; (M.A.); (A.F.-S.M.); (L.L.); (J.V.)
- Correspondence: ; Tel.: +34-948-168034
| |
Collapse
|
29
|
Lai LTF, Ye H, Zhang W, Jiang L, Lau WCY. Structural Biology and Electron Microscopy of the Autophagy Molecular Machinery. Cells 2019; 8:E1627. [PMID: 31842460 PMCID: PMC6952983 DOI: 10.3390/cells8121627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 12/30/2022] Open
Abstract
Autophagy is a highly regulated bulk degradation process that plays a key role in the maintenance of cellular homeostasis. During autophagy, a double membrane-bound compartment termed the autophagosome is formed through de novo nucleation and assembly of membrane sources to engulf unwanted cytoplasmic components and targets them to the lysosome or vacuole for degradation. Central to this process are the autophagy-related (ATG) proteins, which play a critical role in plant fitness, immunity, and environmental stress response. Over the past few years, cryo-electron microscopy (cryo-EM) and single-particle analysis has matured into a powerful and versatile technique for the structural determination of protein complexes at high resolution and has contributed greatly to our current understanding of the molecular mechanisms underlying autophagosome biogenesis. Here we describe the plant-specific ATG proteins and summarize recent structural and mechanistic studies on the protein machinery involved in autophagy initiation with an emphasis on those by single-particle analysis.
Collapse
Affiliation(s)
- Louis Tung Faat Lai
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Hao Ye
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Wenxin Zhang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| | - Wilson Chun Yu Lau
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
30
|
|
31
|
|
32
|
Islam MR, Kwak J, Lee J, Hong S, Khan MRI, Lee Y, Lee Y, Lee S, Hwang I. Cost-effective production of tag-less recombinant protein in Nicotiana benthamiana. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1094-1105. [PMID: 30468023 PMCID: PMC6523591 DOI: 10.1111/pbi.13040] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/02/2018] [Accepted: 11/04/2018] [Indexed: 05/03/2023]
Abstract
Plants have recently received a great deal of attention as a means of producing recombinant proteins. Despite this, a limited number of recombinant proteins are currently on the market and, if plants are to be more widely used, a cost-effective and efficient purification method is urgently needed. Although affinity tags are convenient tools for protein purification, the presence of a tag on the recombinant protein is undesirable for many applications. A cost-effective method of purification using an affinity tag and the removal of the tag after purification has been developed. The family 3 cellulose-binding domain (CBM3), which binds to microcrystalline cellulose, served as the affinity tag and the small ubiquitin-related modifier (SUMO) and SUMO-specific protease were used to remove it. This method, together with size-exclusion chromatography, enabled purification of human interleukin-6 (hIL6) with a yield of 18.49 mg/kg fresh weight from leaf extracts of Nicotiana benthamiana following Agrobacterium-mediated transient expression. Plant-produced hIL6 (P-hIL6) contained less than 0.2 EU/μg (0.02 ng/mL) endotoxin. P-hIL6 activated the Janus kinase-signal transducer and activator of transcriptional pathways in human LNCaP cells, and induced expression of IL-21 in activated mouse CD4+ T cells. This approach is thus a powerful method for producing recombinant proteins in plants.
Collapse
Affiliation(s)
- Md Reyazul Islam
- Division of Integrative Biosciences and BiotechnologyPohang University of Science and TechnologyPohangKorea
| | - Ju‐Won Kwak
- Division of Integrative Biosciences and BiotechnologyPohang University of Science and TechnologyPohangKorea
| | - Jeon‐soo Lee
- Department of Life SciencePohang University of Science and TechnologyPohangKorea
| | - Sung‐Wook Hong
- Department of Life SciencePohang University of Science and TechnologyPohangKorea
| | - Md Rezaul Islam Khan
- Division of Integrative Biosciences and BiotechnologyPohang University of Science and TechnologyPohangKorea
| | - Yongjik Lee
- Division of Integrative Biosciences and BiotechnologyPohang University of Science and TechnologyPohangKorea
| | - Yoontae Lee
- Department of Life SciencePohang University of Science and TechnologyPohangKorea
| | - Seung‐Woo Lee
- Department of Life SciencePohang University of Science and TechnologyPohangKorea
| | - Inhwan Hwang
- Division of Integrative Biosciences and BiotechnologyPohang University of Science and TechnologyPohangKorea
| |
Collapse
|
33
|
Kwak SY, Lew TTS, Sweeney CJ, Koman VB, Wong MH, Bohmert-Tatarev K, Snell KD, Seo JS, Chua NH, Strano MS. Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers. NATURE NANOTECHNOLOGY 2019; 14:447-455. [PMID: 30804482 DOI: 10.1038/s41565-019-0375-4] [Citation(s) in RCA: 237] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 01/14/2019] [Indexed: 05/19/2023]
Abstract
Plant genetic engineering is an important tool used in current efforts in crop improvement, pharmaceutical product biosynthesis and sustainable agriculture. However, conventional genetic engineering techniques target the nuclear genome, prompting concerns about the proliferation of foreign genes to weedy relatives. Chloroplast transformation does not have this limitation, since the plastid genome is maternally inherited in most plants, motivating the need for organelle-specific and selective nanocarriers. Here, we rationally designed chitosan-complexed single-walled carbon nanotubes, utilizing the lipid exchange envelope penetration mechanism. The single-walled carbon nanotubes selectively deliver plasmid DNA to chloroplasts of different plant species without external biolistic or chemical aid. We demonstrate chloroplast-targeted transgene delivery and transient expression in mature Eruca sativa, Nasturtium officinale, Nicotiana tabacum and Spinacia oleracea plants and in isolated Arabidopsis thaliana mesophyll protoplasts. This nanoparticle-mediated chloroplast transgene delivery tool provides practical advantages over current delivery techniques as a potential transformation method for mature plants to benefit plant bioengineering and biological studies.
Collapse
Affiliation(s)
- Seon-Yeong Kwak
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Connor J Sweeney
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Volodymyr B Koman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Min Hao Wong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | - Jun Sung Seo
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Nam-Hai Chua
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
34
|
RAZMI SHAHLA, JALALI JAVARAN MOKHTAR, BAGHERI ABDOLREZA, HONARI HOSSEIN, SOLEIMANI ZADEH MOJGAN. Expression of human interferon gamma in tobacco chloroplasts. ROMANIAN BIOTECHNOLOGICAL LETTERS 2019. [DOI: 10.25083/rbl/24.2/208.215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
35
|
Queiroz LN, Maldaner FR, Mendes ÉA, Sousa AR, D'Allastta RC, Mendonça G, Mendonça DBS, Aragão FJL. Evaluation of lettuce chloroplast and soybean cotyledon as platforms for production of functional bone morphogenetic protein 2. Transgenic Res 2019; 28:213-224. [PMID: 30888592 DOI: 10.1007/s11248-019-00116-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/20/2019] [Indexed: 12/20/2022]
Abstract
The bone morphogenetic protein BMP2 plays a crucial role in the formation and regeneration of bone and cartilage, which is critical for maintaining skeletal integrity and bone fracture repair. Because of its important role in osteogenic properties it has been commercially produced for clinical use. Here we report attempts to express human BMP2 using two plant systems (lettuce chloroplast and soybean seeds). The rhBMP2 gene (coding for the 13 kDa active polypeptide) was introduced in two regions of the lettuce chloroplast genome. Two homoplasmic events were achieved and RT-PCR demonstrated that the BMP2 gene was transcribed. However, it was not possible to detect accumulation of rhBMP2 in leaves. Two soybean events were achieved to express a full-length hBMP2 gene (coding for the 45 kDa pro-BMP2) fused with the α-coixin signal peptide, under control of the β-conglycinin promoter. Pro-BMP2 was expressed in the transgenic seeds at levels of up to 9.28% of the total soluble seed protein as determined by ELISA. It was demonstrated that this recombinant form was biologically active upon administration to C2C12 cell cultures, because it was able to induce an osteogenic cascade, as observed by the enhanced expression of SP7 (osterix) and ALPI (alkaline phosphatase) genes. Collectively, these results corroborated our previous observation that soybean seeds provide an effective strategy for achieving stable accumulation of functional therapeutic proteins, such as BMP2.
Collapse
Affiliation(s)
- Lídia N Queiroz
- Embrapa Recursos Genéticos e Biotecnologia, PqEB W5 Norte, Brasília, DF, 70770-900, Brazil
- Departamento de Biologia Celular, Universidade de Brasília, Campus Universitário, Brasília, DF, 70910-900, Brazil
- Biological and Material Sciences, School of Dentistry, University of Michigan, 1011 North University, Ann Arbor, MI, 49109-1078, USA
| | - Franciele R Maldaner
- Embrapa Recursos Genéticos e Biotecnologia, PqEB W5 Norte, Brasília, DF, 70770-900, Brazil
| | - Érica A Mendes
- Embrapa Recursos Genéticos e Biotecnologia, PqEB W5 Norte, Brasília, DF, 70770-900, Brazil
| | - Aline R Sousa
- Embrapa Recursos Genéticos e Biotecnologia, PqEB W5 Norte, Brasília, DF, 70770-900, Brazil
| | - Rebeca C D'Allastta
- Embrapa Recursos Genéticos e Biotecnologia, PqEB W5 Norte, Brasília, DF, 70770-900, Brazil
| | - Gustavo Mendonça
- Biological and Material Sciences, School of Dentistry, University of Michigan, 1011 North University, Ann Arbor, MI, 49109-1078, USA
| | - Daniela B S Mendonça
- Biological and Material Sciences, School of Dentistry, University of Michigan, 1011 North University, Ann Arbor, MI, 49109-1078, USA
| | - Francisco J L Aragão
- Embrapa Recursos Genéticos e Biotecnologia, PqEB W5 Norte, Brasília, DF, 70770-900, Brazil.
| |
Collapse
|
36
|
Tien NQD, Huy NX, Kim MY. Improved expression of porcine epidemic diarrhea antigen by fusion with cholera toxin B subunit and chloroplast transformation in Nicotiana tabacum. PLANT CELL, TISSUE AND ORGAN CULTURE 2019; 137:213-223. [PMID: 32214566 PMCID: PMC7089040 DOI: 10.1007/s11240-019-01562-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 01/21/2019] [Indexed: 05/24/2023]
Abstract
The porcine epidemic diarrhea virus (PEDV) belongs to the coronavirus family, which causes acute diarrhea in pigs with higher mortality in piglets less than 2 weeks old. The PEDV is one of the major concerns of the pig industry around the world, including Asian countries and Noth America since first identified in Europe. Currently, there is no PEDV licensed vaccine to effectively prevent this disease. This study was performed for the development of a mucosal PEDV vaccine and B subunit of cholera toxin (CTB) as a carrier was employed to surpass the tolerogenic nature of GALT and induce potent immune responses against the target antigen fused to CTB. An epitope (S1D) alone or conjugated with CTB was constructed into the tobacco chloroplasts expression vector which is controlled under the chloroplast rRNA operon promoter with T7g10 5' UTR and the psbA 3'UTR as a terminator. The homoplastomic lines were obtained by third round screening via organogenesis from the leaf tissues which were verified by PCR with antigen and chloroplast specific primers and then confirmed by Southern blot analysis. While the expression level of the S1D alone as detected by Western blotting was approximately 0.07% of total soluble protein, the CTB-S1D fusion protein was expressed up to 1.4%. The fusion protein showed binding to the intestinal membrane GM1-ganglioside receptor, demonstrating its functionality. The result shows that the highest expression of S1D could be achieved by fusion with a stable CTB protein and chloroplast transformation. Furthermore, the CTB-S1D expressed in chloroplasts of Nicotiana tabacum cv. Maryland could be assembled to pentameric form which increases the possibility to develop a mucosal vaccine against PEDV.
Collapse
Affiliation(s)
- Nguyen-Quang-Duc Tien
- Bioactive Material Science, Chonbuk National University, Jeonju, South Korea
- College of Sciences, Hue University, Hue City, Vietnam
| | - Nguyen-Xuan Huy
- Department of Molecular Biology, Chonbuk National University, Jeonju, South Korea
- College of Education, Hue University, Hue City, Vietnam
| | - Mi-Young Kim
- Department of Molecular Biology, Chonbuk National University, Jeonju, South Korea
| |
Collapse
|
37
|
Mirzaee M, Jalali-Javaran M, Moieni A, Zeinali S, Behdani M. Expression of VGRNb-PE immunotoxin in transplastomic lettuce (Lactuca sativa L.). PLANT MOLECULAR BIOLOGY 2018; 97:103-112. [PMID: 29633168 DOI: 10.1007/s11103-018-0726-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 04/03/2018] [Indexed: 05/03/2023]
Abstract
KEY MESSAGE This research has shown, for the first time, that plant chloroplasts are a suitable compartment for synthesizing recombinant immunotoxins and the transgenic immunotoxin efficiently causes the inhibition of VEGFR2 overexpression, cell growth and proliferation. Angiogenesis refers to the formation of new blood vessels, which resulted in the growth, invasion and metastasis of cancer. The vascular endothelial growth factor receptor 2 (VEGFR2) plays a major role in angiogenesis and blocking of its signaling inhibits neovascularization and tumor metastasis. Immunotoxins are promising therapeutics for targeted cancer therapy. They consist of an antibody linked to a protein toxin and are designed to specifically kill the tumor cells. In our previous study, VGRNb-PE immunotoxin protein containing anti-VEGFR2 nanobody fused to the truncated form of Pseudomonas exotoxin A has been established. Here, we expressed this immunotoxin in lettuce chloroplasts. Chloroplast genetic engineering offers several advantages, including high levels of transgene expression, multigene engineering in a single transformation event and maternal inheritance of the transgenes. Site specific integration of transgene into chloroplast genomes, and homoplasmy were confirmed. Immunotoxin levels reached up to 1.1% of total soluble protein or 33.7 µg per 100 mg of leaf tissue (fresh weight). We demonstrated that transgenic immunotoxin efficiently causes the inhibition of VEGFR2 overexpression, cell growth and proliferation. These results indicate that plant chloroplasts are a suitable compartment for synthesizing recombinant immunotoxins.
Collapse
Affiliation(s)
- Malihe Mirzaee
- Department of Plant Breeding & Biotechnology, Faculty of Agriculture, Tarbiat Modares University, P.O. Box 1497713111, Tehran, Iran
| | - Mokhtar Jalali-Javaran
- Department of Plant Breeding & Biotechnology, Faculty of Agriculture, Tarbiat Modares University, P.O. Box 1497713111, Tehran, Iran.
| | - Ahmad Moieni
- Department of Plant Breeding & Biotechnology, Faculty of Agriculture, Tarbiat Modares University, P.O. Box 1497713111, Tehran, Iran
| | - Sirous Zeinali
- Department of Molecular Medicine, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Behdani
- Biotechnology Research Center, Biotechnology Department, Venom & Biotherapeutics Molecules Lab., Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
38
|
Protein-Based Bioproducts. PLANT BIOPRODUCTS 2018. [PMCID: PMC7121387 DOI: 10.1007/978-1-4939-8616-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Plant proteins can be used for the production of a variety of bioproducts, including films and coatings, adhesives, fibres and pharmaceuticals. Proteins derived from plant production systems have many advantages: they are safe, low-cost and rapidly deployable, allow for simple product storage and result in proteins that are properly folded, assembled and post-translationally modified. While plant-derived protein-based products are natural, renewable, biodegradable and environmentally friendly, they tend to be lower in strength and elasticity than their corresponding synthetic products. Current research in this area is focused on overcoming challenges in plant production platforms related to yield, purification, regulatory approval and customer acceptance.
Collapse
|
39
|
Singh A, Kaur G, Singh S, Singh N, Saxena G, Verma PC. Recombinant Plant Engineering for Immunotherapeutic Production. CURRENT MOLECULAR BIOLOGY REPORTS 2017; 3:306-316. [PMID: 32226727 PMCID: PMC7099902 DOI: 10.1007/s40610-017-0078-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
PURPOSE OF REVIEW The requirement for large quantities of therapeutic proteins has fueled a great interest in the production of recombinant proteins in plant bioreactors. The vaccines and bio-therapeutic protein production in plants hold the promise of significantly lowering the cost of manufacturing life-saving drugs. This review will reflect the current status and challenges that the molecular farming platform faces becoming a strategic solution for the development of low-cost bio-therapeutics for developing countries. RECENT FINDINGS Different plant parts have been successfully identified as suitable expression systems for the commercial production of therapeutic proteins for some human and animal diseases ranging from common cold to AIDS. The processed therapeutics from such sources are devoid of any toxic components. The large-scale cultivation of these transgenic plants would be possible anywhere in the world including developing countries, which lack sophisticated drug manufacturing units. A couple of such commercially generated products have already hit the market with success. Newer methods using suitable plant viruses and recombinant gene expression systems have already been devised for producing therapeutic proteins and peptides. SUMMARY Plants are promising bio-factories for therapeutic protein production because of their several advantages over the other expression systems especially the advanced mechanisms for protein synthesis and post-translational modification which are very much similar to animal cells. Plant biotechnologists are much attracted to the bio-farming because of its flexibility, scalability, low manufacturing cost, as well as the lack of risk of toxic or pathogenic contamination. A number of projects on bio-farming are designed and are at various developmental stages but have not yet become available to the pharmaceutical industry. Therefore, we need further advancement in the optimization of lab protocols for up-scaling the production of such therapeutics at commercial level with a promise to offer their best clinical use.
Collapse
Affiliation(s)
- Ankit Singh
- Department of Biosciences, Jamia Millia Islamia University, New Delhi, 110025 India
| | - Gurminder Kaur
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, 201303 India
| | - Sanchita Singh
- Genetics and Plant Molecular Biology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, U.P 226001 India
| | - Neetu Singh
- Instrumentation Research Facility, Jawahar Lal Nehru University, New Delhi, 110067 India
| | - Gauri Saxena
- Department of Botany, University of Lucknow, Lucknow, 226001 India
| | - Praveen C. Verma
- Genetics and Plant Molecular Biology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, U.P 226001 India
| |
Collapse
|
40
|
Adem M, Beyene D, Feyissa T. Recent achievements obtained by chloroplast transformation. PLANT METHODS 2017; 13:30. [PMID: 28428810 PMCID: PMC5395794 DOI: 10.1186/s13007-017-0179-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/09/2017] [Indexed: 05/22/2023]
Abstract
Chloroplasts play a great role for sustained wellbeing of life on the planet. They have the power and raw materials that can be used as sophisticated biological factories. They are rich in energy as they have lots of pigment-protein complexes capable of collecting sunlight, in sugar produced by photosynthesis and in minerals imported from the plant cell. Chloroplast genome transformation offers multiple advantages over nuclear genome which among others, include: integration of the transgene via homologus recombination that enables to eliminate gene silencing and position effect, higher level of transgene expression resulting into higher accumulations of foreign proteins, and significant reduction in environmental dispersion of the transgene due to maternal inheritance which helps to minimize the major critic of plant genetic engineering. Chloroplast genetic engineering has made fruit full progresses in the development of plants resistance to various stresses, phytoremediation of toxic metals, and production of vaccine antigens, biopharmaceuticals, biofuels, biomaterials and industrial enzymes. Although successful results have been achieved, there are still difficulties impeding full potential exploitation and expansion of chloroplast transformation technology to economical plants. These include, lack of species specific regulatory sequences, problem of selection and shoot regeneration, and massive expression of foreign genes resulting in phenotypic alterations of transplastomic plants. The aim of this review is to critically recapitulate the latest development of chloroplast transformation with special focus on the different traits of economic interest.
Collapse
Affiliation(s)
- Muhamed Adem
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, P.O. Box. 1176, Addis Ababa, Ethiopia
- Department of Forestry, School of Agriculture and Natural Resources, Madawalabu University, P.O. Box 247, Bale Robe, Oromiya Ethiopia
| | - Dereje Beyene
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, P.O. Box. 1176, Addis Ababa, Ethiopia
| | - Tileye Feyissa
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, P.O. Box. 1176, Addis Ababa, Ethiopia
- Institute of Biotechnology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
41
|
Zhang B, Shanmugaraj B, Daniell H. Expression and functional evaluation of biopharmaceuticals made in plant chloroplasts. Curr Opin Chem Biol 2017; 38:17-23. [PMID: 28229907 DOI: 10.1016/j.cbpa.2017.02.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/05/2017] [Accepted: 02/06/2017] [Indexed: 12/19/2022]
Abstract
After approval of the first plant-made biopharmaceutical by FDA for human use, many protein drugs are now in clinical development. Within the last decade, significant advances have been made in expression of heterologous complex/large proteins in chloroplasts of edible plants using codon optimized human or viral genes. Furthermore, advances in quantification enable determination of in-planta drug dosage. Oral delivery of plastid-made biopharmaceuticals (PMB) is affordable because it eliminates prohibitively expensive fermentation, purification processes addressing major challenges of short shelf-life after cold storage. In this review, we discuss recent advances in PMBs against metabolic, inherited or infectious diseases, and also mechanisms of post-translational modifications (PTM) in order to increase our understanding of functional PMBs.
Collapse
Affiliation(s)
- Bei Zhang
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104-6030, USA
| | - Balamurugan Shanmugaraj
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104-6030, USA
| | - Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104-6030, USA.
| |
Collapse
|
42
|
Tabatabaei I, Ruf S, Bock R. A bifunctional aminoglycoside acetyltransferase/phosphotransferase conferring tobramycin resistance provides an efficient selectable marker for plastid transformation. PLANT MOLECULAR BIOLOGY 2017; 93:269-281. [PMID: 27858324 PMCID: PMC5306187 DOI: 10.1007/s11103-016-0560-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/10/2016] [Indexed: 05/22/2023]
Abstract
KEY MESSAGE A new selectable marker gene for stable transformation of the plastid genome was developed that is similarly efficient as the aadA, and produces no background of spontaneous resistance mutants. More than 25 years after its development for Chlamydomonas and tobacco, the transformation of the chloroplast genome still represents a challenging technology that is available only in a handful of species. The vast majority of chloroplast transformation experiments conducted thus far have relied on a single selectable marker gene, the spectinomycin resistance gene aadA. Although a few alternative markers have been reported, the aadA has remained unrivalled in efficiency and is, therefore, nearly exclusively used. The development of new marker genes for plastid transformation is of crucial importance to all efforts towards extending the species range of the technology as well as to those applications in basic research, biotechnology and synthetic biology that involve the multistep engineering of plastid genomes. Here, we have tested a bifunctional resistance gene for its suitability as a selectable marker for chloroplast transformation. The bacterial enzyme aminoglycoside acetyltransferase(6')-Ie/aminoglycoside phosphotransferase(2″)-Ia possesses an N-terminal acetyltransferase domain and a C-terminal phosphotransferase domain that can act synergistically and detoxify aminoglycoside antibiotics highly efficiently. We report that, in combination with selection for resistance to the aminoglycoside tobramycin, the aac(6')-Ie/aph(2″)-Ia gene represents an efficient marker for plastid transformation in that it produces similar numbers of transplastomic lines as the spectinomycin resistance gene aadA. Importantly, no spontaneous antibiotic resistance mutants appear under tobramycin selection.
Collapse
Affiliation(s)
- Iman Tabatabaei
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Stephanie Ruf
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
| |
Collapse
|
43
|
Daniell H, Chan HT, Pasoreck EK. Vaccination via Chloroplast Genetics: Affordable Protein Drugs for the Prevention and Treatment of Inherited or Infectious Human Diseases. Annu Rev Genet 2016; 50:595-618. [PMID: 27893966 PMCID: PMC5496655 DOI: 10.1146/annurev-genet-120215-035349] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Plastid-made biopharmaceuticals treat major metabolic or genetic disorders, including Alzheimer's, diabetes, hypertension, hemophilia, and retinopathy. Booster vaccines made in chloroplasts prevent global infectious diseases, such as tuberculosis, malaria, cholera, and polio, and biological threats, such as anthrax and plague. Recent advances in this field include commercial-scale production of human therapeutic proteins in FDA-approved cGMP facilities, development of tags to deliver protein drugs to targeted human cells or tissues, methods to deliver precise doses, and long-term stability of protein drugs at ambient temperature, maintaining their efficacy. Codon optimization utilizing valuable information from sequenced chloroplast genomes enhanced expression of eukaryotic human or viral genes in chloroplasts and offered unique insights into translation in chloroplasts. Support from major biopharmaceutical companies, development of hydroponic production systems, and evaluation by regulatory agencies, including the CDC, FDA, and USDA, augur well for advancing this novel concept to the clinic and revolutionizing affordable healthcare.
Collapse
Affiliation(s)
- Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| | - Hui-Ting Chan
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| | - Elise K Pasoreck
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| |
Collapse
|
44
|
Ahmad N, Michoux F, Lössl AG, Nixon PJ. Challenges and perspectives in commercializing plastid transformation technology. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5945-5960. [PMID: 27697788 DOI: 10.1093/jxb/erw360] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Plastid transformation has emerged as an alternative platform to generate transgenic plants. Attractive features of this technology include specific integration of transgenes-either individually or as operons-into the plastid genome through homologous recombination, the potential for high-level protein expression, and transgene containment because of the maternal inheritance of plastids. Several issues associated with nuclear transformation such as gene silencing, variable gene expression due to the Mendelian laws of inheritance, and epigenetic regulation have not been observed in the plastid genome. Plastid transformation has been successfully used for the production of therapeutics, vaccines, antigens, and commercial enzymes, and for engineering various agronomic traits including resistance to biotic and abiotic stresses. However, these demonstrations have usually focused on model systems such as tobacco, and the technology per se has not yet reached the market. Technical factors limiting this technology include the lack of efficient protocols for the transformation of cereals, poor transgene expression in non-green plastids, a limited number of selection markers, and the lengthy procedures required to recover fully segregated plants. This article discusses the technology of transforming the plastid genome, the positive and negative features compared with nuclear transformation, and the current challenges that need to be addressed for successful commercialization.
Collapse
Affiliation(s)
- Niaz Ahmad
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad, Pakistan
| | - Franck Michoux
- Alkion Biopharma SAS, 4 rue Pierre Fontaine, 91058 Evry, France
| | - Andreas G Lössl
- Department of Applied Plant Sciences and Plant Biotechnology, University of Natural Resources and Applied Life Sciences (BOKU), Vienna, Austria
| | - Peter J Nixon
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
45
|
Schulga A, Mechev P, Kirpichnikov M, Skryabin K, Deyev S. Construction of the plasmid-free strain for human growth hormone production. Biochimie 2016; 128-129:148-53. [DOI: 10.1016/j.biochi.2016.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/13/2016] [Indexed: 10/21/2022]
|
46
|
Ivleva NB, Groat J, Staub JM, Stephens M. Expression of Active Subunit of Nitrogenase via Integration into Plant Organelle Genome. PLoS One 2016; 11:e0160951. [PMID: 27529475 PMCID: PMC4986947 DOI: 10.1371/journal.pone.0160951] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 07/27/2016] [Indexed: 12/29/2022] Open
Abstract
Nitrogen availability is crucial for crop yield with nitrogen fertilizer accounting for a large percentage of farmers' expenses. However, an untimely or excessive application of fertilizer can increase risks of negative environmental effects. These factors, along with the environmental and energy costs of synthesizing nitrogen fertilizer, led us to seek out novel biotechnology-driven approaches to supply nitrogen to plants. The strategy we focused on involves transgenic expression of nitrogenase, a bacterial multi-subunit enzyme that can capture atmospheric nitrogen. Here we report expression of the active Fe subunit of nitrogenase via integration into the tobacco plastid genome of bacterial gene sequences modified for expression in plastid. Our study suggests that it will be possible to engineer plants that are able to produce their own nitrogen fertilizer by expressing nitrogenase genes in plant plastids.
Collapse
Affiliation(s)
- Natalia B. Ivleva
- Monsanto Company, 700 Chesterfield Village Parkway, Chesterfield, MO, United States of America
| | - Jeanna Groat
- Monsanto Company, 700 Chesterfield Village Parkway, Chesterfield, MO, United States of America
| | - Jeffrey M. Staub
- Monsanto Company, 700 Chesterfield Village Parkway, Chesterfield, MO, United States of America
| | - Michael Stephens
- Monsanto Company, 700 Chesterfield Village Parkway, Chesterfield, MO, United States of America
| |
Collapse
|
47
|
Nielsen AZ, Mellor SB, Vavitsas K, Wlodarczyk AJ, Gnanasekaran T, Perestrello Ramos H de Jesus M, King BC, Bakowski K, Jensen PE. Extending the biosynthetic repertoires of cyanobacteria and chloroplasts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:87-102. [PMID: 27005523 DOI: 10.1111/tpj.13173] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 03/16/2016] [Accepted: 03/18/2016] [Indexed: 05/20/2023]
Abstract
Chloroplasts in plants and algae and photosynthetic microorganisms such as cyanobacteria are emerging hosts for sustainable production of valuable biochemicals, using only inorganic nutrients, water, CO2 and light as inputs. In the past decade, many bioengineering efforts have focused on metabolic engineering and synthetic biology in the chloroplast or in cyanobacteria for the production of fuels, chemicals and complex, high-value bioactive molecules. Biosynthesis of all these compounds can be performed in photosynthetic organelles/organisms by heterologous expression of the appropriate pathways, but this requires optimization of carbon flux and reducing power, and a thorough understanding of regulatory pathways. Secretion or storage of the compounds produced can be exploited for the isolation or confinement of the desired compounds. In this review, we explore the use of chloroplasts and cyanobacteria as biosynthetic compartments and hosts, and we estimate the levels of production to be expected from photosynthetic hosts in light of the fraction of electrons and carbon that can potentially be diverted from photosynthesis. The supply of reducing power, in the form of electrons derived from the photosynthetic light reactions, appears to be non-limiting, but redirection of the fixed carbon via precursor molecules presents a challenge. We also discuss the available synthetic biology tools and the need to expand the molecular toolbox to facilitate cellular reprogramming for increased production yields in both cyanobacteria and chloroplasts.
Collapse
Affiliation(s)
- Agnieszka Zygadlo Nielsen
- Copenhagen Plant Science Center, VILLUM Research Center for Plant Plasticity, Center for Synthetic Biology 'bioSYNergy', Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Silas Busck Mellor
- Copenhagen Plant Science Center, VILLUM Research Center for Plant Plasticity, Center for Synthetic Biology 'bioSYNergy', Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Konstantinos Vavitsas
- Copenhagen Plant Science Center, VILLUM Research Center for Plant Plasticity, Center for Synthetic Biology 'bioSYNergy', Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Artur Jacek Wlodarczyk
- Copenhagen Plant Science Center, VILLUM Research Center for Plant Plasticity, Center for Synthetic Biology 'bioSYNergy', Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Thiyagarajan Gnanasekaran
- Copenhagen Plant Science Center, VILLUM Research Center for Plant Plasticity, Center for Synthetic Biology 'bioSYNergy', Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Maria Perestrello Ramos H de Jesus
- Copenhagen Plant Science Center, VILLUM Research Center for Plant Plasticity, Center for Synthetic Biology 'bioSYNergy', Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Brian Christopher King
- Copenhagen Plant Science Center, VILLUM Research Center for Plant Plasticity, Center for Synthetic Biology 'bioSYNergy', Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Kamil Bakowski
- Copenhagen Plant Science Center, VILLUM Research Center for Plant Plasticity, Center for Synthetic Biology 'bioSYNergy', Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Poul Erik Jensen
- Copenhagen Plant Science Center, VILLUM Research Center for Plant Plasticity, Center for Synthetic Biology 'bioSYNergy', Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| |
Collapse
|
48
|
Daniell H, Lin CS, Yu M, Chang WJ. Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol 2016; 17:134. [PMID: 27339192 PMCID: PMC4918201 DOI: 10.1186/s13059-016-1004-2] [Citation(s) in RCA: 782] [Impact Index Per Article: 97.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chloroplasts play a crucial role in sustaining life on earth. The availability of over 800 sequenced chloroplast genomes from a variety of land plants has enhanced our understanding of chloroplast biology, intracellular gene transfer, conservation, diversity, and the genetic basis by which chloroplast transgenes can be engineered to enhance plant agronomic traits or to produce high-value agricultural or biomedical products. In this review, we discuss the impact of chloroplast genome sequences on understanding the origins of economically important cultivated species and changes that have taken place during domestication. We also discuss the potential biotechnological applications of chloroplast genomes.
Collapse
Affiliation(s)
- Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, South 40th St, Philadelphia, PA, 19104-6030, USA.
| | - Choun-Sea Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ming Yu
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, South 40th St, Philadelphia, PA, 19104-6030, USA
| | - Wan-Jung Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
49
|
Kwon KC, Daniell H. Oral Delivery of Protein Drugs Bioencapsulated in Plant Cells. Mol Ther 2016; 24:1342-50. [PMID: 27378236 PMCID: PMC5023392 DOI: 10.1038/mt.2016.115] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/29/2016] [Indexed: 12/11/2022] Open
Abstract
Plants cells are now approved by the FDA for cost-effective production of protein drugs (PDs) in large-scale current Good Manufacturing Practice (cGMP) hydroponic growth facilities. In lyophilized plant cells, PDs are stable at ambient temperature for several years, maintaining their folding and efficacy. Upon oral delivery, PDs bioencapsulated in plant cells are protected in the stomach from acids and enzymes but are subsequently released into the gut lumen by microbes that digest the plant cell wall. The large mucosal area of the human intestine offers an ideal system for oral drug delivery. When tags (receptor-binding proteins or cell-penetrating peptides) are fused to PDs, they efficiently cross the intestinal epithelium and are delivered to the circulatory or immune system. Unique tags to deliver PDs to human immune or nonimmune cells have been developed recently. After crossing the epithelium, ubiquitous proteases cleave off tags at engineered sites. PDs are also delivered to the brain or retina by crossing the blood–brain or retinal barriers. This review highlights recent advances in PD delivery to treat Alzheimer's disease, diabetes, hypertension, Gaucher's or ocular diseases, as well as the development of affordable drugs by eliminating prohibitively expensive purification, cold chain and sterile delivery.
Collapse
Affiliation(s)
- Kwang-Chul Kwon
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
50
|
Wannathong T, Waterhouse JC, Young REB, Economou CK, Purton S. New tools for chloroplast genetic engineering allow the synthesis of human growth hormone in the green alga Chlamydomonas reinhardtii. Appl Microbiol Biotechnol 2016; 100:5467-77. [PMID: 26887319 PMCID: PMC4875957 DOI: 10.1007/s00253-016-7354-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/18/2016] [Accepted: 01/23/2016] [Indexed: 01/09/2023]
Abstract
In recent years, there has been an increasing interest in the exploitation of microalgae in industrial biotechnology. Potentially, these phototrophic eukaryotes could be used for the low-cost synthesis of valuable recombinant products such as bioactive metabolites and therapeutic proteins. The algal chloroplast in particular represents an attractive target for such genetic engineering, both because it houses major metabolic pathways and because foreign genes can be targeted to specific loci within the chloroplast genome, resulting in high-level, stable expression. However, routine methods for chloroplast genetic engineering are currently available only for one species-Chlamydomonas reinhardtii-and even here, there are limitations to the existing technology, including the need for an expensive biolistic device for DNA delivery, the lack of robust expression vectors, and the undesirable use of antibiotic resistance markers. Here, we describe a new strain and vectors for targeted insertion of transgenes into a neutral chloroplast locus that (i) allow scar-less fusion of a transgenic coding sequence to the promoter/5'UTR element of the highly expressed endogenous genes psaA or atpA, (ii) employ the endogenous gene psbH as an effective but benign selectable marker, and (iii) ensure the successful integration of the transgene construct in all transformant lines. Transformation is achieved by a simple and cheap method of agitation of a DNA/cell suspension with glass beads, with selection based on the phototrophic rescue of a cell wall-deficient ΔpsbH strain. We demonstrate the utility of these tools in the creation of a transgenic line that produces high levels of functional human growth hormone.
Collapse
Affiliation(s)
- Thanyanan Wannathong
- Department of Biology, Faculty of Science, Silpakorn University, Nakornpathom, 73000, Thailand
| | - Janet C Waterhouse
- Algal Research Group, Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Rosanna E B Young
- Algal Research Group, Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Chloe K Economou
- Algal Research Group, Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Saul Purton
- Algal Research Group, Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|