1
|
Joud H, Asgari M, Emerick V, Sun M, Avila MY, Margo CE, Espana EM. A Core of Keratocan-Negative Cells Survives in Old Corneal Scars. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:281-292. [PMID: 39566825 PMCID: PMC11773616 DOI: 10.1016/j.ajpath.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/15/2024] [Accepted: 10/10/2024] [Indexed: 11/22/2024]
Abstract
Corneal scars originate from keratocyte-derived fibroblasts and myofibroblasts that are ultimately cleared through apoptosis or revert to keratocytes. A mouse model expressing the keratocyte lineage-specific reporter KeraRT/tetO-Cre/mTmG (I-KeramTmG) was used to elucidate cell phenotype dynamics during scar maturation. In this model, tdTomato (red) is expressed in all keratocan-negative cells, while enhanced green fluorescent protein (green) is expressed only by keratocytes. A 1-mm full-thickness keratotomy was generated in adult I-KeramTmG mice. The presence of keratocytes was determined at 3, 6, and 10 months after injury. At 3 and 6 months, few green cells were visualized at the scar borders, while few or no green cells were seen in the central (core) scar. At 10 months, a few green cells and a majority of red cells were observed throughout the scar. Proliferation of stromal cells after injury was studied by 5-ethynyl-2'-deoxyuridine labeling and Ki-67 staining. Both assays showed proliferation only during the first 2 weeks after injury. Second harmonic generation microscopy showed thickened and irregularly arranged collagen fibers in scars, suggesting that neither extracellular matrix organization nor cell phenotype had changed significantly at 10 months after injury. Findings from in vivo experiments suggest that in old corneal scars, a nonkeratocyte phenotype persists in an abnormal matrix with unique characteristics that probably prevent the regression of fibroblasts and myofibroblasts to keratocytes or invasion of surrounding keratocytes.
Collapse
Affiliation(s)
- Hadi Joud
- Department of Ophthalmology, USF Health Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Meisam Asgari
- Department of Medical Engineering, University of South Florida, Tampa, Florida
| | - Victoria Emerick
- Department of Ophthalmology, USF Health Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Mei Sun
- Department of Ophthalmology, USF Health Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Marcel Y Avila
- Department of Ophthalmology, Universidad Nacional de Colombia, Bogota, Colombia
| | - Curtis E Margo
- Department of Ophthalmology, USF Health Morsani College of Medicine, University of South Florida, Tampa, Florida; Department of Pathology and Cell Biology, USF Health Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Edgar M Espana
- Department of Ophthalmology, USF Health Morsani College of Medicine, University of South Florida, Tampa, Florida.
| |
Collapse
|
2
|
Ashworth S, Dhanuka M, Khodadadi-Jamayran A, Koduri MA, Maiti G, Chakravarti S. Matrix glycosaminoglycans and proteoglycans in human cornea organoids and similarities with fetal corneal stages. Ocul Surf 2025; 35:68-80. [PMID: 39615587 PMCID: PMC11874135 DOI: 10.1016/j.jtos.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 12/08/2024]
Abstract
PURPOSE We developed human cornea organoids (HCOs) from induced pluripotent stem cells (iPSCs) where single-cell RNA-sequence (scRNA-seq) analysis suggested similarity with developing rather than mature human corneas. We performed immunohistology to determine the presence of corneal glycosaminoglycans as an assessment of maturity. We undertook a detailed comparison of the HCO scRNA-seq data with a recent scRNA-seq study of human fetal corneas at different stages to gauge the HCO's maturity. METHODS We generated HCOs from a second iPSC line, NCRM-1, to assess the reproducibility of HCO development. We stained sections from both HCO lines with Alcian blue and picrosirius red to determine deposition of sulfated glycosaminoglycans and fibrillar collagens. We immunolocalized glycosaminoglycan biosynthetic enzymes and proteoglycan core proteins. The scRNA-seq data from IMR90.4 HCOs were compared to that of fetal corneas using MetaNeighbor analysis to assess the similarity of HCOs to different stages of human corneal development. RESULTS The MetaNeighbor analysis suggests closer alignment of the IMR90.4 HCOs with 17-18 post-conception week fetal human corneas. HCOs from both iPSC lines deposit sulfated glycosaminoglycans and fibrillar collagens. Immunohistology showed chondroitin/dermatan sulfate (CS/DS) and keratan sulfate in the presumptive stromal and some epithelial layers. The NCRM-1-derived HCOs show increased CS/DS staining compared to the IMR90.4 derived HCOs. CONCLUSIONS Both HCO lines show similar developmental patterns and timeline. The NCRM-1 HCO line may have more glycosaminoglycan deposition. Overall, the glycosaminoglycan deposition pattern is consistent with an immature tissue. Optimizations based on our current findings may yield more mature stromal cells and cornea-typical proteoglycans.
Collapse
Affiliation(s)
- Sean Ashworth
- Department of Ophthalmology, NYU Grossman School of Medicine, Science Building, Fifth Floor 435 E 30th, New York, NY, USA
| | - Manas Dhanuka
- Department of Medicine, New York University Grossman School of Medicine, New York University Langone Health, New York, NY, USA; Center for Human Genetics and Genomics, New York University Grossman School of Medicine, Science Building, Eighth Floor, 435 E 30th, New York, NY, USA
| | | | - Madhuri Amulya Koduri
- Department of Ophthalmology, NYU Grossman School of Medicine, Science Building, Fifth Floor 435 E 30th, New York, NY, USA
| | - George Maiti
- Department of Ophthalmology, NYU Grossman School of Medicine, Science Building, Fifth Floor 435 E 30th, New York, NY, USA
| | - Shukti Chakravarti
- Department of Ophthalmology, NYU Grossman School of Medicine, Science Building, Fifth Floor 435 E 30th, New York, NY, USA; Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Basol M, Ersoz‐Gulseven E, Ozaktas H, Kalyoncu S, Utine CA, Cakan‐Akdogan G. Loss of carbohydrate sulfotransferase 6 function leads to macular corneal dystrophy phenotypes and skeletal defects in zebrafish. FEBS J 2025; 292:373-390. [PMID: 39642091 PMCID: PMC11734872 DOI: 10.1111/febs.17337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/14/2024] [Accepted: 11/19/2024] [Indexed: 12/08/2024]
Abstract
The carbohydrate sulfotransferase 6 (chst6) gene is linked to macular corneal dystrophy (MCD), a rare disease that leads to bilateral blindness due to the accumulation of opaque aggregates in the corneal stroma. chst6 encodes for a keratan sulfate proteoglycan (KSPG) specific sulfotransferase. MCD patients lose sulfated KSPGs (cKS) in the cornea and the serum. The significance of serum cKS loss has not been understood. Zebrafish cornea structure is similar to that of humans and it contains high levels of sulfated cKS in the stroma. Here, zebrafish chst6 is shown to be expressed in the cornea and head structures of the embryos. An animal model of MCD is developed by generating chst6 mutant animals with CRISPR/Cas9-mediated gene editing. The dramatic decrease in cKS epitopes in the mutants was shown with ELISA and immunofluorescence. Morphological defects or alterations of jaw cartilage were detected in a minor fraction of the mutant larvae. Loss of cKS epitopes and morphological defects was fully rescued with wild-type chst6. Mutant adult zebrafish displayed all clinical manifestations of MCD, while a fraction also displayed jaw and skeleton defects. Opaque accumulations formed in the eye, which were alcian blue positive. Loss of cKS in the corneal stroma and a decrease in corneal thickness were shown. Interestingly, alteration of transforming growth factor beta-induced (BIGH3) expression which was not described in patients was also observed. This is the first report of an MCD model in a genetically tractable organism, providing a preclinical model and insight into the importance of KSPG sulfation for proper skeletal morphogenesis.
Collapse
Affiliation(s)
- Merve Basol
- Izmir Biomedicine and Genome CenterTurkey
- Izmir International Biomedicine and Genome InstituteDokuz Eylül UniversityIzmirTurkey
| | | | - Helin Ozaktas
- Izmir Biomedicine and Genome CenterTurkey
- Izmir International Biomedicine and Genome InstituteDokuz Eylül UniversityIzmirTurkey
| | | | - Canan Asli Utine
- Izmir Biomedicine and Genome CenterTurkey
- Department of Ophthalmology, Faculty of MedicineDokuz Eylul UniversityIzmirTurkey
| | - Gulcin Cakan‐Akdogan
- Izmir Biomedicine and Genome CenterTurkey
- Department of Medical Biology, Faculty of MedicineDokuz Eylül UniversityIzmirTurkey
| |
Collapse
|
4
|
Reis LM, Seese SE, Costakos D, Semina EV. Congenital anterior segment ocular disorders: Genotype-phenotype correlations and emerging novel mechanisms. Prog Retin Eye Res 2024; 102:101288. [PMID: 39097141 PMCID: PMC11392650 DOI: 10.1016/j.preteyeres.2024.101288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Development of the anterior segment of the eye requires reciprocal sequential interactions between the arising tissues, facilitated by numerous genetic factors. Disruption of any of these processes results in congenital anomalies in the affected tissue(s) leading to anterior segment disorders (ASD) including aniridia, Axenfeld-Rieger anomaly, congenital corneal opacities (Peters anomaly, cornea plana, congenital primary aphakia), and primary congenital glaucoma. Current understanding of the genetic factors involved in ASD remains incomplete, with approximately 50% overall receiving a genetic diagnosis. While some genes are strongly associated with a specific clinical diagnosis, the majority of known factors are linked with highly variable phenotypic presentations, with pathogenic variants in FOXC1, CYP1B1, and PITX2 associated with the broadest spectrum of ASD conditions. This review discusses typical clinical presentations including associated systemic features of various forms of ASD; the latest functional data and genotype-phenotype correlations related to 25 ASD factors including newly identified genes; promising novel candidates; and current and emerging treatments for these complex conditions. Recent developments of interest in the genetics of ASD include identification of phenotypic expansions for several factors, discovery of multiple modes of inheritance for some genes, and novel mechanisms including a growing number of non-coding variants and alleles affecting specific domains/residues and requiring further studies.
Collapse
Affiliation(s)
- Linda M Reis
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Sarah E Seese
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Deborah Costakos
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Elena V Semina
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA; Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin and Children's Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
5
|
Melrose J. Keratan sulfate, an electrosensory neurosentient bioresponsive cell instructive glycosaminoglycan. Glycobiology 2024; 34:cwae014. [PMID: 38376199 PMCID: PMC10987296 DOI: 10.1093/glycob/cwae014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/21/2024] Open
Abstract
The roles of keratan sulfate (KS) as a proton detection glycosaminoglycan in neurosensory processes in the central and peripheral nervous systems is reviewed. The functional properties of the KS-proteoglycans aggrecan, phosphacan, podocalyxcin as components of perineuronal nets in neurosensory processes in neuronal plasticity, cognitive learning and memory are also discussed. KS-glycoconjugate neurosensory gels used in electrolocation in elasmobranch fish species and KS substituted mucin like conjugates in some tissue contexts in mammals need to be considered in sensory signalling. Parallels are drawn between KS's roles in elasmobranch fish neurosensory processes and its roles in mammalian electro mechanical transduction of acoustic liquid displacement signals in the cochlea by the tectorial membrane and stereocilia of sensory inner and outer hair cells into neural signals for sound interpretation. The sophisticated structural and functional proteins which maintain the unique high precision physical properties of stereocilia in the detection, transmittance and interpretation of acoustic signals in the hearing process are important. The maintenance of the material properties of stereocilia are essential in sound transmission processes. Specific, emerging roles for low sulfation KS in sensory bioregulation are contrasted with the properties of high charge density KS isoforms. Some speculations are made on how the molecular and electrical properties of KS may be of potential application in futuristic nanoelectronic, memristor technology in advanced ultrafast computing devices with low energy requirements in nanomachines, nanobots or molecular switches which could be potentially useful in artificial synapse development. Application of KS in such innovative areas in bioregulation are eagerly awaited.
Collapse
Affiliation(s)
- James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Sydney Medical School, Northern, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| |
Collapse
|
6
|
Lall SP, Alsafwani ZW, Batra SK, Seshacharyulu P. ASPORIN: A root of the matter in tumors and their host environment. Biochim Biophys Acta Rev Cancer 2024; 1879:189029. [PMID: 38008263 PMCID: PMC10872503 DOI: 10.1016/j.bbcan.2023.189029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Asporin (ASPN) has been identified as one of the members of the class I small leucine-rich proteoglycans (SLRPs) family in the extracellular matrix (ECM). It is involved in classic ensigns of cancers such as self-dependent growth, resistance to growth inhibitors, restricting apoptosis, cancer metastasis, and bone-related disorders. ASPN is different from other members of SLRPs, such as decorin (DCN) and biglycan (BGN), in a way that it contains a distinctive length of aspartate (D) residues in the amino (N) -terminal region. These D-repeats residues possess germline polymorphisms and are identified to be linked with cancer progression and osteoarthritis (OA). The polyaspartate stretch in the N-terminal region of the protein and its resemblance to DCN are the reasons it is called asporin. In this review, we comprehensively summarized and updated the dual role of ASPN in various malignancies, its structure in mice and humans, variants, mutations, cancer-associated signalings and functions, the relationship between ASPN and cancer-epithelial, stromal fibroblast crosstalk, immune cells and immunosuppression in cancer and other diseases. In cancer and other bone-related diseases, ASPN is identified to be regulating various signaling pathways such as TGFβ, Wnt/β-catenin, notch, hedgehog, EGFR, HER2, and CD44-mediated Rac1. These pathways promote cancer cell invasion, proliferation, and migration by mediating the epithelial-to-mesenchymal transition (EMT) process. Finally, we discussed mouse models mimicking ASPN in vivo function in cancers and the probability of therapeutic targeting of ASPN in cancer cells, fibrosis, and other bone-related diseases.
Collapse
Affiliation(s)
- Shobhit P Lall
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Zahraa W Alsafwani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| | - Parthasarathy Seshacharyulu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| |
Collapse
|
7
|
Maiti G, Ashworth S, Choi T, Chakravarti S. Molecular cues for immune cells from small leucine-rich repeat proteoglycans in their extracellular matrix-associated and free forms. Matrix Biol 2023; 123:48-58. [PMID: 37793508 PMCID: PMC10841460 DOI: 10.1016/j.matbio.2023.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/14/2023] [Accepted: 10/01/2023] [Indexed: 10/06/2023]
Abstract
In this review we highlight emerging immune regulatory functions of lumican, keratocan, fibromodulin, biglycan and decorin, which are members of the small leucine-rich proteoglycans (SLRP) of the extracellular matrix (ECM). These SLRPs have been studied extensively as collagen-fibril regulatory structural components of the skin, cornea, bone and cartilage in homeostasis. However, SLRPs released from a remodeling ECM, or synthesized by activated fibroblasts and immune cells contribute to an ECM-free pool in tissues and circulation, that may have a significant, but poorly understood foot print in inflammation and disease. Their molecular interactions and the signaling networks they influence also require investigations. Here we present studies on the leucine-rich repeat (LRR) motifs of SLRP core proteins, their evolutionary and functional relationships with other LRR pathogen recognition receptors, such as the toll-like receptors (TLRs) to bring some molecular clarity in the immune regulatory functions of SLRPs. We discuss molecular interactions of fragments and intact SLRPs, and how some of these interactions are likely modulated by glycosaminoglycan side chains. We integrate findings on molecular interactions of these SLRPs together with what is known about their presence in circulation and lymph nodes (LN), which are important sites of immune cell regulation. Recent bulk and single cell RNA sequencing studies have identified subsets of stromal reticular cells that express these SLRPs within LNs. An understanding of the cellular source, molecular interactions and signaling consequences will lead to a fundamental understanding of how SLRPs modulate immune responses, and to therapeutic tools based on these SLRPs in the future.
Collapse
Affiliation(s)
- George Maiti
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, United States
| | - Sean Ashworth
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, United States
| | - Tansol Choi
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, United States
| | - Shukti Chakravarti
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, United States; Department of Pathology, NYU Grossman School of Medicine, New York, NY, United States.
| |
Collapse
|
8
|
Segars KL, Trinkaus-Randall V. Glycosaminoglycans: Roles in wound healing, formation of corneal constructs and synthetic corneas. Ocul Surf 2023; 30:85-91. [PMID: 37657650 PMCID: PMC11059988 DOI: 10.1016/j.jtos.2023.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/31/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Maintaining the clarity of the cornea is essential for vision, and is achieved through an exquisite array of collagen fibrils and proteoglycans in the corneal stroma. Alterations in the identity and modifications of the glycosaminoglycans (GAGs) are seen both throughout the normal wound healing process and in pathological conditions resulting in corneal opacity. Understanding these changes has been essential for the development of corneal prostheses and corneal reconstruction. The goal of this review article is to summarize and consolidate research in the alterations seen in glycosaminoglycans in injured and hypoxic states, address the role of proteins that can regulate glycosaminoglycans in the corneal wound healing process, and apply these findings to the context of corneal restoration through reconstruction or the insertion of synthetic devices.
Collapse
Affiliation(s)
- Kristen L Segars
- Departments of Pharmacology, Physiology and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Vickery Trinkaus-Randall
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA; Department of Ophthalmology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA.
| |
Collapse
|
9
|
Yam GHF, Pi S, Du Y, Mehta JS. Posterior corneoscleral limbus: Architecture, stem cells, and clinical implications. Prog Retin Eye Res 2023; 96:101192. [PMID: 37392960 DOI: 10.1016/j.preteyeres.2023.101192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023]
Abstract
The limbus is a transition from the cornea to conjunctiva and sclera. In human eyes, this thin strip has a rich variation of tissue structures and composition, typifying a change from scleral irregularity and opacity to corneal regularity and transparency; a variation from richly vascularized conjunctiva and sclera to avascular cornea; the neural passage and drainage of aqueous humor. The limbal stroma is enriched with circular fibres running parallel to the corneal circumference, giving its unique role in absorbing small pressure changes to maintain corneal curvature and refractivity. It contains specific niches housing different types of stem cells for the corneal epithelium, stromal keratocytes, corneal endothelium, and trabecular meshwork. This truly reflects the important roles of the limbus in ocular physiology, and the limbal functionality is crucial for corneal health and the entire visual system. Since the anterior limbus containing epithelial structures and limbal epithelial stem cells has been extensively reviewed, this article is focused on the posterior limbus. We have discussed the structural organization and cellular components of the region beneath the limbal epithelium, the characteristics of stem cell types: namely corneal stromal stem cells, endothelial progenitors and trabecular meshwork stem cells, and recent advances leading to the emergence of potential cell therapy options to replenish their respective mature cell types and to correct defects causing corneal abnormalities. We have reviewed different clinical disorders associated with defects of the posterior limbus and summarized the available preclinical and clinical evidence about the developing topic of cell-based therapy for corneal disorders.
Collapse
Affiliation(s)
- Gary Hin-Fai Yam
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore; McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA.
| | - Shaohua Pi
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yiqin Du
- Department of Ophthalmology, University of South Florida, Tampa, FL, USA
| | - Jodhbir S Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore; Department of Cornea and External Eye Disease, Singapore National Eye Centre, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-National University of Singapore (NUS) Medical School, Singapore.
| |
Collapse
|
10
|
Gesteira TF, Verma S, Coulson-Thomas VJ. Small leucine rich proteoglycans: Biology, function and their therapeutic potential in the ocular surface. Ocul Surf 2023; 29:521-536. [PMID: 37355022 PMCID: PMC11092928 DOI: 10.1016/j.jtos.2023.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
Small leucine rich proteoglycans (SLRPs) are the largest family of proteoglycans, with 18 members that are subdivided into five classes. SLRPs are small in size and can be present in tissues as glycosylated and non-glycosylated proteins, and the most studied SLRPs include decorin, biglycan, lumican, keratocan and fibromodulin. SLRPs specifically bind to collagen fibrils, regulating collagen fibrillogenesis and the biomechanical properties of tissues, and are expressed at particularly high levels in fibrous tissues, such as the cornea. However, SLRPs are also very active components of the ECM, interacting with numerous growth factors, cytokines and cell surface receptors. Therefore, SLRPs regulate major cellular processes and have a central role in major fundamental biological processes, such as maintaining corneal homeostasis and transparency and regulating corneal wound healing. Over the years, mutations and/or altered expression of SLRPs have been associated with various corneal diseases, such as congenital stromal corneal dystrophy and cornea plana. Recently, there has been great interest in harnessing the various functions of SLRPs for therapeutic purposes. In this comprehensive review, we describe the structural features and the related functions of SLRPs, and how these affect the therapeutic potential of SLRPs, with special emphasis on the use of SLRPs for treating ocular surface pathologies.
Collapse
Affiliation(s)
| | - Sudhir Verma
- College of Optometry, University of Houston, USA; Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, Delhi, India
| | | |
Collapse
|
11
|
Almubrad T, Mencucci R, Smedowski A, Samivel R, Almutleb E, Alkanaan A, Khan AA, Masmali A, Akhtar S. Ultrastructural study of collagen fibrils, proteoglycans and lamellae of the cornea treated with iontophoresis - UVA cross-linking and hypotonic riboflavin solution. Saudi J Biol Sci 2021; 28:7160-7174. [PMID: 34867019 PMCID: PMC8626267 DOI: 10.1016/j.sjbs.2021.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 11/02/2022] Open
Abstract
To investigate the effects of iontophoresis-ultraviolet A (UVA) cross-linking (CXL) with hypotonic riboflavin solution on the ultrastructural changes in the lamellae, collagen fibrils (CFs), and proteoglycans (PGs) in the central and peripheral stroma of the human corneal buttons. The iontophoresis method was used for the trans-epithelial application of hypotonic riboflavin in ex vivo corneal culture for 5 min. The corneas were irradiated using three methods: Group 1 (G1) , a UVA irradiance of 3 mW/cm2 for 30 min; Group 2 (G2) , a UVA irradiance of 10 mW/cm2 for 9 min; Group 3 (G3) , without UVA irradiation. Three untreated corneas were used as controls ( G0 ). After the CXL procedure, the corneas were processed for electron microscopy. The CF diameter and PGs in each sample were analyzed using the iTEM program. The keratocyte organelles and stromal architecture in the peripheral cornea were better preserved than those in the central cornea. In G1 and G2, the mean CF diameter in the peripheral cornea was significantly higher than that in the central cornea. In G3, the CF diameter in the central cornea was significantly larger than that in the peripheral cornea. Furthermore, differences in PG area size were observed between the central and peripheral corneas in all groups. Riboflavin + UVA application at 3 mW/cm2 for 30 min and 10 mW/cm2 for 9 min was a suitable method of CXL; however, 3 mW/cm2 for 30 min improved the organization and size of the collagen fibrils. CXL treatment applied at the periphery was more effective than that applied at the center.
Collapse
Affiliation(s)
- Turki Almubrad
- Cornea Research Chair, Department of Optics and Vision Sciences, College of Applied Medical Science, King Saud University, Riyadh, Saudi Arabia
| | - Rita Mencucci
- Department of Oto-Neuro-Ophthalmology Surgical Sciences, Eye Clinic, University of Florence, Italy
| | - Adrian Smedowski
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland.,Department of Oto-Neuro-Ophthalmology Surgical Sciences, Eye Clinic, University of Florence, Italy
| | - Ramachandran Samivel
- Cornea Research Chair, Department of Optics and Vision Sciences, College of Applied Medical Science, King Saud University, Riyadh, Saudi Arabia
| | - Essam Almutleb
- Cornea Research Chair, Department of Optics and Vision Sciences, College of Applied Medical Science, King Saud University, Riyadh, Saudi Arabia
| | - Aljoharah Alkanaan
- Cornea Research Chair, Department of Optics and Vision Sciences, College of Applied Medical Science, King Saud University, Riyadh, Saudi Arabia
| | - Adnan Ali Khan
- Cornea Research Chair, Department of Optics and Vision Sciences, College of Applied Medical Science, King Saud University, Riyadh, Saudi Arabia
| | - Ali Masmali
- Cornea Research Chair, Department of Optics and Vision Sciences, College of Applied Medical Science, King Saud University, Riyadh, Saudi Arabia
| | - Saeed Akhtar
- Cornea Research Chair, Department of Optics and Vision Sciences, College of Applied Medical Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
12
|
Wee NK, Sims NA, Morello R. The Osteocyte Transcriptome: Discovering Messages Buried Within Bone. Curr Osteoporos Rep 2021; 19:604-615. [PMID: 34757588 PMCID: PMC8720072 DOI: 10.1007/s11914-021-00708-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE OF THE REVIEW Osteocytes are cells embedded within the bone matrix, but their function and specific patterns of gene expression remain only partially defined; this is beginning to change with recent studies using transcriptomics. This unbiased approach can generate large amounts of data and is now being used to identify novel genes and signalling pathways within osteocytes both at baseline conditions and in response to stimuli. This review outlines the methods used to isolate cell populations containing osteocytes, and key recent transcriptomic studies that used osteocyte-containing preparations from bone tissue. RECENT FINDINGS Three common methods are used to prepare samples to examine osteocyte gene expression: digestion followed by sorting, laser capture microscopy, and the isolation of cortical bone shafts. All these methods present challenges in interpreting the data generated. Genes previously not known to be expressed by osteocytes have been identified and variations in osteocyte gene expression have been reported with age, sex, anatomical location, mechanical loading, and defects in bone strength. A substantial proportion of newly identified transcripts in osteocytes remain functionally undefined but several have been cross-referenced with functional data. Future work and improved methods (e.g. scRNAseq) likely provide useful resources for the study of osteocytes and important new information on the identity and functions of this unique cell type within the skeleton.
Collapse
Affiliation(s)
- Natalie Ky Wee
- Bone Cell Biology and Disease Unit, St Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, 3065, Australia
| | - Natalie A Sims
- Bone Cell Biology and Disease Unit, St Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, 3065, Australia
- Department of Medicine, The University of Melbourne, St. Vincent's Hospital, Melbourne, 3065, Australia
| | - Roy Morello
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Division of Genetics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
13
|
Mizumoto S, Yamada S. Congenital Disorders of Deficiency in Glycosaminoglycan Biosynthesis. Front Genet 2021; 12:717535. [PMID: 34539746 PMCID: PMC8446454 DOI: 10.3389/fgene.2021.717535] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/12/2021] [Indexed: 12/04/2022] Open
Abstract
Glycosaminoglycans (GAGs) including chondroitin sulfate, dermatan sulfate, and heparan sulfate are covalently attached to specific core proteins to form proteoglycans, which are distributed at the cell surface as well as in the extracellular matrix. Proteoglycans and GAGs have been demonstrated to exhibit a variety of physiological functions such as construction of the extracellular matrix, tissue development, and cell signaling through interactions with extracellular matrix components, morphogens, cytokines, and growth factors. Not only connective tissue disorders including skeletal dysplasia, chondrodysplasia, multiple exostoses, and Ehlers-Danlos syndrome, but also heart and kidney defects, immune deficiencies, and neurological abnormalities have been shown to be caused by defects in GAGs as well as core proteins of proteoglycans. These findings indicate that GAGs and proteoglycans are essential for human development in major organs. The glycobiological aspects of congenital disorders caused by defects in GAG-biosynthetic enzymes including specific glysocyltransferases, epimerases, and sulfotransferases, in addition to core proteins of proteoglycans will be comprehensively discussed based on the literature to date.
Collapse
Affiliation(s)
- Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| |
Collapse
|
14
|
Liu H, Xu J, Lan Y, Lim HW, Jiang R. The Scleraxis Transcription Factor Directly Regulates Multiple Distinct Molecular and Cellular Processes During Early Tendon Cell Differentiation. Front Cell Dev Biol 2021; 9:654397. [PMID: 34150754 PMCID: PMC8211106 DOI: 10.3389/fcell.2021.654397] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/05/2021] [Indexed: 12/13/2022] Open
Abstract
Proper development of tendons is crucial for the integration and function of the musculoskeletal system. Currently little is known about the molecular mechanisms controlling tendon development and tendon cell differentiation. The transcription factor Scleraxis (Scx) is expressed throughout tendon development and plays essential roles in both embryonic tendon development and adult tendon healing, but few direct target genes of Scx in tendon development have been reported and genome-wide identification of Scx direct target genes in vivo has been lacking. In this study, we have generated a ScxFlag knockin mouse strain, which produces fully functional endogenous Scx proteins containing a 2xFLAG epitope tag at the carboxy terminus. We mapped the genome-wide Scx binding sites in the developing limb tendon tissues, identifying 12,097 high quality Scx regulatory cis-elements in-around 7,520 genes. Comparative analysis with previously reported embryonic tendon cell RNA-seq data identified 490 candidate Scx direct target genes in early tendon development. Furthermore, we characterized a new Scx gene-knockout mouse line and performed whole transcriptome RNA sequencing analysis of E15.5 forelimb tendon cells from Scx–/– embryos and control littermates, identifying 68 genes whose expression in the developing tendon tissues significantly depended on Scx function. Combined analysis of the ChIP-seq and RNA-seq data yielded 32 direct target genes that required Scx for activation and an additional 17 target genes whose expression was suppressed by Scx during early tendon development. We further analyzed and validated Scx-dependent tendon-specific expression patterns of a subset of the target genes, including Fmod, Kera, Htra3, Ssc5d, Tnmd, and Zfp185, by in situ hybridization and real-time quantitative polymerase chain reaction assays. These results provide novel insights into the molecular mechanisms mediating Scx function in tendon development and homeostasis. The ChIP-seq and RNA-seq data provide a rich resource for aiding design of further studies of the mechanisms regulating tendon cell differentiation and tendon tissue regeneration. The ScxFlag mice provide a valuable new tool for unraveling the molecular mechanisms involving Scx in the protein interaction and gene-regulatory networks underlying many developmental and disease processes.
Collapse
Affiliation(s)
- Han Liu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Jingyue Xu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Yu Lan
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Hee-Woong Lim
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Rulang Jiang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
15
|
Matsushima N, Miyashita H, Kretsinger RH. Sequence features, structure, ligand interaction, and diseases in small leucine rich repeat proteoglycans. J Cell Commun Signal 2021; 15:519-531. [PMID: 33860400 DOI: 10.1007/s12079-021-00616-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 03/25/2021] [Indexed: 12/26/2022] Open
Abstract
Small leucine rich repeat proteoglycans (SLRPs) are a group of active components of the extracellular matrix in all tissues. SLRPs bind to collagens and regulate collagen fibril growth and fibril organization. SLRPs also interact with various cytokines and extracellular compounds, which lead to various biological functions such cell adhesion and signaling, proliferation, and differentiation. Mutations in SLRP genes are associated with human diseases. Now crystal structures of five SLRPs are available. We describe some features of amino acid sequence and structures of SLRPs. We also review ligand interactions and then discuss the interaction surfaces. Furthermore, we map mutations associated with human diseases and discuss possible effects on structures by the mutations.
Collapse
Affiliation(s)
- Norio Matsushima
- Division of Bioinformatics, Institute of Tandem Repeats, Noboribetsu, 059-0464, Japan.
- Center for Medical Education, Sapporo Medical University, Sapporo, 060-8556, Japan.
| | - Hiroki Miyashita
- Division of Bioinformatics, Institute of Tandem Repeats, Noboribetsu, 059-0464, Japan
- Hokubu Rinsho Co., Ltd, Sapporo, 060⎼0061, Japan
| | - Robert H Kretsinger
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| |
Collapse
|
16
|
Espana EM, Birk DE. Composition, structure and function of the corneal stroma. Exp Eye Res 2020; 198:108137. [PMID: 32663498 PMCID: PMC7508887 DOI: 10.1016/j.exer.2020.108137] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022]
Abstract
No other tissue in the body depends more on the composition and organization of the extracellular matrix (ECM) for normal structure and function than the corneal stroma. The precise arrangement and orientation of collagen fibrils, lamellae and keratocytes that occurs during development and is needed in adults to maintain stromal function is dependent on the regulated interaction of multiple ECM components that contribute to attain the unique properties of the cornea: transparency, shape, mechanical strength, and avascularity. This review summarizes the contribution of different ECM components, their structure, regulation and function in modulating the properties of the corneal stroma. Fibril forming collagens (I, III, V), fibril associated collagens with interrupted triple helices (XII and XIV), network forming collagens (IV, VI and VIII) as well as small leucine-rich proteoglycans (SLRP) expressed in the stroma: decorin, biglycan, lumican, keratocan, and fibromodulin are some of the ECM components reviewed in this manuscript. There are spatial and temporal differences in the expression of these ECM components, as well as interactions among them that contribute to stromal function. Unique regions within the stroma like Bowman's layer and Descemet's layer are discussed. To define the complexity of corneal stroma composition and structure as well as the relationship to function is a daunting task. Our knowledge is expanding, and we expect that this review provides a comprehensive overview of current knowledge, definition of gaps and suggests future research directions.
Collapse
Affiliation(s)
- Edgar M Espana
- Department of Molecular Pharmacology and Physiology, USA; Cornea, External Disease and Refractive Surgery, Department of Ophthalmology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - David E Birk
- Department of Molecular Pharmacology and Physiology, USA.
| |
Collapse
|
17
|
Ramappa M, Achanta DSR, Mohamed A, Chaurasia S. Corneal endothelial alterations in Recessive Cornea Plana: a report of 4 patients and review of literature. Ophthalmic Genet 2020; 41:659-662. [PMID: 32811257 DOI: 10.1080/13816810.2020.1804944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Muralidhar Ramappa
- Cornea and Anterior Segment Services, L V Prasad Eye Institute , Hyderabad, India.,Centre for Rare Eye Diseases and Ocular Genetics, L V Prasad Eye Institute , Hyderabad, India
| | - Divya Sree Ramya Achanta
- Cornea and Anterior Segment Services, L V Prasad Eye Institute , Hyderabad, India.,Centre for Rare Eye Diseases and Ocular Genetics, L V Prasad Eye Institute , Hyderabad, India
| | - Ashik Mohamed
- Centre for Rare Eye Diseases and Ocular Genetics, L V Prasad Eye Institute , Hyderabad, India.,Ophthalmic Biophysics, L V Prasad Eye Institute , Hyderabad, India
| | - Sunita Chaurasia
- Cornea and Anterior Segment Services, L V Prasad Eye Institute , Hyderabad, India.,Centre for Rare Eye Diseases and Ocular Genetics, L V Prasad Eye Institute , Hyderabad, India
| |
Collapse
|
18
|
Puri S, Coulson-Thomas YM, Gesteira TF, Coulson-Thomas VJ. Distribution and Function of Glycosaminoglycans and Proteoglycans in the Development, Homeostasis and Pathology of the Ocular Surface. Front Cell Dev Biol 2020; 8:731. [PMID: 32903857 PMCID: PMC7438910 DOI: 10.3389/fcell.2020.00731] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/15/2020] [Indexed: 12/20/2022] Open
Abstract
The ocular surface, which forms the interface between the eye and the external environment, includes the cornea, corneoscleral limbus, the conjunctiva and the accessory glands that produce the tear film. Glycosaminoglycans (GAGs) and proteoglycans (PGs) have been shown to play important roles in the development, hemostasis and pathology of the ocular surface. Herein we review the current literature related to the distribution and function of GAGs and PGs within the ocular surface, with focus on the cornea. The unique organization of ECM components within the cornea is essential for the maintenance of corneal transparency and function. Many studies have described the importance of GAGs within the epithelial and stromal compartment, while very few studies have analyzed the ECM of the endothelial layer. Importantly, GAGs have been shown to be essential for maintaining corneal homeostasis, epithelial cell differentiation and wound healing, and, more recently, a role has been suggested for the ECM in regulating limbal stem cells, corneal innervation, corneal inflammation, corneal angiogenesis and lymphangiogenesis. Reports have also associated genetic defects of the ECM to corneal pathologies. Thus, we also highlight the role of different GAGs and PGs in ocular surface homeostasis, as well as in pathology.
Collapse
Affiliation(s)
- Sudan Puri
- College of Optometry, University of Houston, Houston, TX, United States
| | - Yvette M Coulson-Thomas
- Molecular Biology Section, Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Tarsis F Gesteira
- College of Optometry, University of Houston, Houston, TX, United States.,Optimvia, LLC, Batavia, OH, United States
| | | |
Collapse
|
19
|
Alkanaan A, Barsotti R, Kirat O, Khan A, Almubrad T, Akhtar S. Collagen fibrils and proteoglycans of peripheral and central stroma of the keratoconus cornea - Ultrastructure and 3D transmission electron tomography. Sci Rep 2019; 9:19963. [PMID: 31882786 PMCID: PMC6934547 DOI: 10.1038/s41598-019-56529-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/05/2019] [Indexed: 02/04/2023] Open
Abstract
Keratoconus (KC) is a progressive corneal disorder in which vision gradually deteriorates as a result of continuous conical protrusion and the consequent altered corneal curvature. While the majority of the literature focus on assessing the center of this diseased cornea, there is growing evidence of peripheral involvement in the disease process. Thus, we investigated the organization of collagen fibrils (CFs) and proteoglycans (PGs) in the periphery and center of KC corneal stroma. Three-dimensional transmission electron tomography on four KC corneas showed the degeneration of microfibrils within the CFs and disturbance in the attachment of the PGs. Within the KC corneas, the mean CF diameter of the central-anterior stroma was significantly (p ˂ 0.001) larger than the peripheral-anterior stroma. The interfibrillar distance of CF was significantly (p ˂ 0.001) smaller in the central stroma than in the peripheral stroma. PGs area and the density in the central KC stroma were larger than those in the peripheral stroma. Results of the current study revealed that in the pre- Descemet's membrane stroma of the periphery, the degenerated CFs and PGs constitute biomechanically weak lamellae which are prone to disorganization and this suggests that the peripheral stroma plays an important role in the pathogenicity of the KC cornea.
Collapse
Affiliation(s)
- Aljoharah Alkanaan
- Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Robert Barsotti
- Department of Biomedical Sciences, Philadelphia college of Osteopathic Medicine, Philadelphia, PA, USA
| | - Omar Kirat
- Department of Ophthalmology, King Khalid Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Adnan Khan
- Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Turki Almubrad
- Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Saeed Akhtar
- Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
20
|
Matsushima N, Takatsuka S, Miyashita H, Kretsinger RH. Leucine Rich Repeat Proteins: Sequences, Mutations, Structures and Diseases. Protein Pept Lett 2019; 26:108-131. [PMID: 30526451 DOI: 10.2174/0929866526666181208170027] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 12/18/2022]
Abstract
Mutations in the genes encoding Leucine Rich Repeat (LRR) containing proteins are associated with over sixty human diseases; these include high myopia, mitochondrial encephalomyopathy, and Crohn's disease. These mutations occur frequently within the LRR domains and within the regions that shield the hydrophobic core of the LRR domain. The amino acid sequences of fifty-five LRR proteins have been published. They include Nod-Like Receptors (NLRs) such as NLRP1, NLRP3, NLRP14, and Nod-2, Small Leucine Rich Repeat Proteoglycans (SLRPs) such as keratocan, lumican, fibromodulin, PRELP, biglycan, and nyctalopin, and F-box/LRR-repeat proteins such as FBXL2, FBXL4, and FBXL12. For example, 363 missense mutations have been identified. Replacement of arginine, proline, or cysteine by another amino acid, or the reverse, is frequently observed. The diverse effects of the mutations are discussed based on the known structures of LRR proteins. These mutations influence protein folding, aggregation, oligomerization, stability, protein-ligand interactions, disulfide bond formation, and glycosylation. Most of the mutations cause loss of function and a few, gain of function.
Collapse
Affiliation(s)
- Norio Matsushima
- Center for Medical Education, Sapporo Medical University, Sapporo 060-8556, Japan.,Institute of Tandem Repeats, Noboribetsu 059-0464, Japan
| | - Shintaro Takatsuka
- Center for Medical Education, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Hiroki Miyashita
- Institute of Tandem Repeats, Noboribetsu 059-0464, Japan.,Hokubu Rinsho Co., Ltd, Sapporo 060-0061, Japan
| | - Robert H Kretsinger
- Department of Biology, University of Virginia, Charlottesville, VA 22904, United States
| |
Collapse
|
21
|
Huang C, Long X, Peng C, Lin P, Tan H, Lv W, Wu L. Novel variants in the KERA gene cause autosomal recessive cornea plana in a Chinese family: A case report. Mol Med Rep 2019; 19:4711-4718. [PMID: 31059048 PMCID: PMC6522816 DOI: 10.3892/mmr.2019.10153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 04/01/2019] [Indexed: 11/06/2022] Open
Abstract
Autosomal recessive cornea plana is a very rare hereditary ocular disease, characterized by a flattened corneal curvature, marked hyperopia due to low refractive power and frequently consequent accommodative esotropia. Other features include various cornea anterior segment abnormalities, without systemic problems. The purpose of the present study was to investigate the clinical and molecular alterations in a Chinese family with cornea plana. Full ophthalmic examinations of the patients were performed, including slit-lamp examination, fundus examination and ocular ultrasound. Whole-exome sequencing data were screened for pathological variants in the proband, which were confirmed by Sanger sequencing. One novel missense mutation, c.242A>G (p.N81S) and another novel 7 base-pair deletion mutation, c.772-779del (p.G258Cfs*30), were detected in the keratocan (KERA) gene; two affected siblings inherited these variations in a compound heterozygous state, which were derived from the clinically unaffected heterozygous father (c.772_779del) and mother (c.242A>G), respectively. Neither mutation was observed in unrelated healthy controls (n=200). Multiple computer software predictions supported the pathogenicity of the two variants. Furthermore, protein modeling prediction was performed to better understand the molecular basis of cornea plana, particularly the importance of the leucine-rich repeat domain. This study presents the 14th pathogenic KERA mutations identified worldwide and the first in East Asia so far, to the best of our knowledge. These findings guided prenatal diagnosis for the family in question and expand on the variant spectrum of KERA, therefore facilitating genetic counseling.
Collapse
Affiliation(s)
- Chengzi Huang
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, P.R. China
| | - Xigui Long
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, P.R. China
| | - Can Peng
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, P.R. China
| | - Pengsiyuan Lin
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, P.R. China
| | - Hu Tan
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, P.R. China
| | - Weigang Lv
- Department of Medical Genetics, Hunan Jiahui Genetics Hospital, Changsha, Hunan 410078, P.R. China
| | - Lingqian Wu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, P.R. China
| |
Collapse
|
22
|
Melrose J. Functional Consequences of Keratan Sulfate Sulfation in Electrosensory Tissues and in Neuronal Regulation. ACTA ACUST UNITED AC 2019; 3:e1800327. [PMID: 32627425 DOI: 10.1002/adbi.201800327] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/16/2019] [Indexed: 12/20/2022]
Abstract
Keratan sulfate (KS) is a functional electrosensory and neuro-instructive molecule. Recent studies have identified novel low sulfation KS in auditory and sensory tissues such as the tectorial membrane of the organ of Corti and the Ampullae of Lorenzini in elasmobranch fish. These are extremely sensitive proton gradient detection systems that send signals to neural interfaces to facilitate audition and electrolocation. High and low sulfation KS have differential functional roles in song learning in the immature male zebra song-finch with high charge density KS in song nuclei promoting brain development and cognitive learning. The conductive properties of KS are relevant to the excitable neural phenotype. High sulfation KS interacts with a large number of guidance and neuroregulatory proteins. The KS proteoglycan microtubule associated protein-1B (MAP1B) stabilizes actin and tubulin cytoskeletal development during neuritogenesis. A second 12 span transmembrane synaptic vesicle associated KS proteoglycan (SV2) provides a smart gel storage matrix for the storage of neurotransmitters. MAP1B and SV2 have prominent roles to play in neuroregulation. Aggrecan and phosphacan have roles in perineuronal net formation and in neuroregulation. A greater understanding of the biology of KS may be insightful as to how neural repair might be improved.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Royal North Shore Hospital and University of Sydney, St. Leonards, NSW, 2065, Australia.,Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.,Sydney Medical School, Northern, Sydney University, Royal North Shore Hospital, St. Leonards, NSW, 2065, Australia.,Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St. Leonards, NSW, 2065, Australia
| |
Collapse
|
23
|
Altwasser R, Paz A, Korol A, Manov I, Avivi A, Shams I. The transcriptome landscape of the carcinogenic treatment response in the blind mole rat: insights into cancer resistance mechanisms. BMC Genomics 2019; 20:17. [PMID: 30621584 PMCID: PMC6323709 DOI: 10.1186/s12864-018-5417-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/26/2018] [Indexed: 01/02/2023] Open
Abstract
Background Spalax, the blind mole rat, developed an extraordinary cancer resistance during 40 million years of evolution in a subterranean, hypoxic, thus DNA damaging, habitat. In 50 years of Spalax research, no spontaneous cancer development has been observed. The mechanisms underlying this resistance are still not clarified. We investigated the genetic difference between Spalax and mice that might enable the Spalax relative resistance to cancer development. We compared Spalax and mice responses to a treatment with the carcinogen 3-Methylcholantrene, as a model to assess Spalax’ cancer-resistance. Results We compared RNA-Seq data of untreated Spalax to Spalax with a tumor and identified a high number of differentially expressed genes. We filtered these genes by their expression in tolerant Spalax that resisted the 3MCA, and in mice, and found 25 genes with a consistent expression pattern in the samples susceptible to cancer among species. Contrasting the expressed genes in Spalax with benign granulomas to those in Spalax with malignant fibrosarcomas elucidated significant differences in several pathways, mainly related to the extracellular matrix and the immune system. We found a central cluster of ECM genes that differ greatly between conditions. Further analysis of these genes revealed potential microRNA targets. We also found higher levels of gene expression of some DNA repair pathways in Spalax than in other murines, like the majority of Fanconi Anemia pathway. Conclusion The comparison of the treated with the untreated tissue revealed a regulatory complex that might give an answer how Spalax is able to restrict the tumor growth. By remodeling the extracellular matrix, the possible growth is limited, and the proliferation of cancer cells was potentially prevented. We hypothesize that this regulatory cluster plays a major role in the cancer resistance of Spalax. Furthermore, we identified 25 additional candidate genes that showed a distinct expression pattern in untreated or tolerant Spalax compared to animals that developed a developed either a benign or malignant tumor. While further study is necessary, we believe that these genes may serve as candidate markers in cancer detection. Electronic supplementary material The online version of this article (10.1186/s12864-018-5417-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Arnon Paz
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Abraham Korol
- Institute of Evolution, University of Haifa, Haifa, Israel.,Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - Irena Manov
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Aaron Avivi
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Imad Shams
- Institute of Evolution, University of Haifa, Haifa, Israel. .,Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel.
| |
Collapse
|
24
|
Small leucine-rich proteoglycans and matrix metalloproteinase-14: Key partners? Matrix Biol 2019; 75-76:271-285. [DOI: 10.1016/j.matbio.2017.12.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 11/19/2022]
|
25
|
Lenk J, Porrmann J, Smitka M, Eger I, Schröck E, Hackmann K, Herber R, Raiskup F, Tzschach A. Posterior amorphous corneal dystrophy in a patient with 12q21.33 deletion. Ophthalmic Genet 2018; 39:645-647. [DOI: 10.1080/13816810.2018.1502792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Janine Lenk
- Department of Ophthalmology, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Joseph Porrmann
- Institut für Klinische Genetik, Technische Universität Dresden, Dresden, Germany
| | - Martin Smitka
- Children’s hospital, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Ines Eger
- Children’s hospital, Städtisches Klinikum Görlitz, Görlitz, Germany
| | - Evelin Schröck
- Institut für Klinische Genetik, Technische Universität Dresden, Dresden, Germany
| | - Karl Hackmann
- Institut für Klinische Genetik, Technische Universität Dresden, Dresden, Germany
| | - Robert Herber
- Department of Ophthalmology, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Frederik Raiskup
- Department of Ophthalmology, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Andreas Tzschach
- Institut für Klinische Genetik, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
26
|
Iglesias AI, Mishra A, Vitart V, Bykhovskaya Y, Höhn R, Springelkamp H, Cuellar-Partida G, Gharahkhani P, Bailey JNC, Willoughby CE, Li X, Yazar S, Nag A, Khawaja AP, Polašek O, Siscovick D, Mitchell P, Tham YC, Haines JL, Kearns LS, Hayward C, Shi Y, van Leeuwen EM, Taylor KD, Bonnemaijer P, Rotter JI, Martin NG, Zeller T, Mills RA, Souzeau E, Staffieri SE, Jonas JB, Schmidtmann I, Boutin T, Kang JH, Lucas SEM, Wong TY, Beutel ME, Wilson JF, Uitterlinden AG, Vithana EN, Foster PJ, Hysi PG, Hewitt AW, Khor CC, Pasquale LR, Montgomery GW, Klaver CCW, Aung T, Pfeiffer N, Mackey DA, Hammond CJ, Cheng CY, Craig JE, Rabinowitz YS, Wiggs JL, Burdon KP, van Duijn CM, MacGregor S. Cross-ancestry genome-wide association analysis of corneal thickness strengthens link between complex and Mendelian eye diseases. Nat Commun 2018; 9:1864. [PMID: 29760442 PMCID: PMC5951816 DOI: 10.1038/s41467-018-03646-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 03/02/2018] [Indexed: 12/17/2022] Open
Abstract
Central corneal thickness (CCT) is a highly heritable trait associated with complex eye diseases such as keratoconus and glaucoma. We perform a genome-wide association meta-analysis of CCT and identify 19 novel regions. In addition to adding support for known connective tissue-related pathways, pathway analyses uncover previously unreported gene sets. Remarkably, >20% of the CCT-loci are near or within Mendelian disorder genes. These included FBN1, ADAMTS2 and TGFB2 which associate with connective tissue disorders (Marfan, Ehlers-Danlos and Loeys-Dietz syndromes), and the LUM-DCN-KERA gene complex involved in myopia, corneal dystrophies and cornea plana. Using index CCT-increasing variants, we find a significant inverse correlation in effect sizes between CCT and keratoconus (r = -0.62, P = 5.30 × 10-5) but not between CCT and primary open-angle glaucoma (r = -0.17, P = 0.2). Our findings provide evidence for shared genetic influences between CCT and keratoconus, and implicate candidate genes acting in collagen and extracellular matrix regulation.
Collapse
MESH Headings
- ADAMTS Proteins/genetics
- ADAMTS Proteins/metabolism
- Asian People
- Cornea/abnormalities
- Cornea/metabolism
- Cornea/pathology
- Corneal Diseases/ethnology
- Corneal Diseases/genetics
- Corneal Diseases/metabolism
- Corneal Diseases/pathology
- Corneal Dystrophies, Hereditary/ethnology
- Corneal Dystrophies, Hereditary/genetics
- Corneal Dystrophies, Hereditary/metabolism
- Corneal Dystrophies, Hereditary/pathology
- Decorin/genetics
- Decorin/metabolism
- Ehlers-Danlos Syndrome/ethnology
- Ehlers-Danlos Syndrome/genetics
- Ehlers-Danlos Syndrome/metabolism
- Ehlers-Danlos Syndrome/pathology
- Eye Diseases, Hereditary/ethnology
- Eye Diseases, Hereditary/genetics
- Eye Diseases, Hereditary/metabolism
- Eye Diseases, Hereditary/pathology
- Fibrillin-1/genetics
- Fibrillin-1/metabolism
- Gene Expression
- Genome, Human
- Genome-Wide Association Study
- Glaucoma, Open-Angle/ethnology
- Glaucoma, Open-Angle/genetics
- Glaucoma, Open-Angle/metabolism
- Glaucoma, Open-Angle/pathology
- Humans
- Keratoconus/ethnology
- Keratoconus/genetics
- Keratoconus/metabolism
- Keratoconus/pathology
- Loeys-Dietz Syndrome/ethnology
- Loeys-Dietz Syndrome/genetics
- Loeys-Dietz Syndrome/metabolism
- Loeys-Dietz Syndrome/pathology
- Lumican/genetics
- Lumican/metabolism
- Marfan Syndrome/ethnology
- Marfan Syndrome/genetics
- Marfan Syndrome/metabolism
- Marfan Syndrome/pathology
- Mendelian Randomization Analysis
- Myopia/ethnology
- Myopia/genetics
- Myopia/metabolism
- Myopia/pathology
- Polymorphism, Single Nucleotide
- Proteoglycans/genetics
- Proteoglycans/metabolism
- Quantitative Trait Loci
- Quantitative Trait, Heritable
- Transforming Growth Factor beta2/genetics
- Transforming Growth Factor beta2/metabolism
- White People
Collapse
Affiliation(s)
- Adriana I Iglesias
- Department of Ophthalmology, Erasmus Medical Center, 3000 CA, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, 3000 CA, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Aniket Mishra
- University of Bordeaux, Bordeaux Population Health Research Center, INSERM UMR 1219, F-33000, Bordeaux, France
| | - Veronique Vitart
- Institute of Genetics and Molecular Medicine, Medical Research Council Human Genetics Unit, University of Edinburgh, EH42XU, Edinburgh, UK
| | - Yelena Bykhovskaya
- Regenerative Medicine Institute and Department of Surgery, Cedars-Sinai Medical Center, CA 90048, Los Angeles, CA, USA
- Cornea Genetic Eye Institute, CA 90048, Los Angeles, CA, USA
| | - René Höhn
- Department of Ophthalmology, University Medical Center Mainz, 55131, Mainz, Germany
- Department of Ophthalmology, Inselspital, University Hospital Bern, University of Bern, Bern, CH-3010, Switzerland
| | - Henriët Springelkamp
- Department of Ophthalmology, Erasmus Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Gabriel Cuellar-Partida
- Statistical Genetics, QIMR Berghofer Medical Research Institute, QLD 4029, Brisbane, Australia
| | - Puya Gharahkhani
- Statistical Genetics, QIMR Berghofer Medical Research Institute, QLD 4029, Brisbane, Australia
| | - Jessica N Cooke Bailey
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, OH 44106, Cleveland, OH, USA
- Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Colin E Willoughby
- Biomedical Sciences Research Institute, Ulster University, BT52 1SA, Belfast, Northern Ireland, UK
- Royal Victoria Hospital, Belfast Health and Social Care Trust, BT12 6BA, Belfast, Northern Ireland, UK
| | - Xiaohui Li
- Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90509, CA, USA
- Division of Genomic Outcomes, Departments of Pediatrics and Medicine, Harbor-UCLA Medical Center, Torrance, CA 90502, CA, USA
| | - Seyhan Yazar
- Institute of Genetics and Molecular Medicine, Medical Research Council Human Genetics Unit, University of Edinburgh, EH42XU, Edinburgh, UK
- Centre for Ophthalmology and Visual Science, University of Western Australia, Lions Eye Institute, WA 6009, Perth, WA, Australia
| | - Abhishek Nag
- Department of Twin Research and Genetic Epidemiology, King's College London, WC2R 2LS, London, UK
| | - Anthony P Khawaja
- Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge School of Clinical Medicine, CB2 0SR, Cambridge, UK
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, EC1V 9EL, London, UK
| | - Ozren Polašek
- Faculty of Medicine, University of Split, HR-21000, Split, Croatia
| | - David Siscovick
- Departments of Medicine and Epidemiology and Cardiovascular Health Research Unit, University of Washington, WA 98101, Washington, USA
- The New York Academy of Medicine, NY 10029, New York, NY, USA
| | - Paul Mitchell
- Centre for Vision Research, Department of Ophthalmology and Westmead Institute for Medical Research, University of Sydney, NSW 2145, Sydney, NSW, Australia
| | - Yih Chung Tham
- Singapore Eye Research Institute, Singapore National Eye Centre, 168751, Singapore, Singapore
| | - Jonathan L Haines
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, OH 44106, Cleveland, OH, USA
- Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Lisa S Kearns
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, VIC 3002, East Melbourne, Australia
| | - Caroline Hayward
- Institute of Genetics and Molecular Medicine, Medical Research Council Human Genetics Unit, University of Edinburgh, EH42XU, Edinburgh, UK
| | - Yuan Shi
- Singapore Eye Research Institute, Singapore National Eye Centre, 168751, Singapore, Singapore
| | | | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90509, CA, USA
- Division of Genomic Outcomes, Departments of Pediatrics and Medicine, Harbor-UCLA Medical Center, Torrance, CA 90502, CA, USA
| | - Pieter Bonnemaijer
- Department of Ophthalmology, Erasmus Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90509, CA, USA
- Division of Genomic Outcomes, Departments of Pediatrics and Medicine, Harbor-UCLA Medical Center, Torrance, CA 90502, CA, USA
| | - Nicholas G Martin
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, QLD 4029, Brisbane, Australia
| | - Tanja Zeller
- Department of General and Interventional Cardiology, University Heart Center Hamburg, 20251, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246, Hamburg, Germany
| | - Richard A Mills
- Department of Ophthalmology, Flinders University, SA 5042, Adelaide, Australia
| | - Emmanuelle Souzeau
- Department of Ophthalmology, Flinders University, SA 5042, Adelaide, Australia
| | - Sandra E Staffieri
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, VIC 3002, East Melbourne, Australia
| | - Jost B Jonas
- Department of Ophthalmology, Medical Faculty Mannheim of the Ruprecht-Karls-University of Heidelberg, 68167, Mannheim, Germany
| | - Irene Schmidtmann
- Institute for Medical Biostatistics, Epidemiology and Informatics, University Medical Center Mainz, 55131, Mainz, Germany
| | - Thibaud Boutin
- Institute of Genetics and Molecular Medicine, Medical Research Council Human Genetics Unit, University of Edinburgh, EH42XU, Edinburgh, UK
| | - Jae H Kang
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA 02115, MA, USA
| | - Sionne E M Lucas
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7005, TAS, Australia
| | - Tien Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, 168751, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, 169857, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117549, Singapore
| | - Manfred E Beutel
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center Mainz, Mainz, 55131, Germany
| | - James F Wilson
- Institute of Genetics and Molecular Medicine, Medical Research Council Human Genetics Unit, University of Edinburgh, EH42XU, Edinburgh, UK
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, EH16 4UX, Edinburgh, UK
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus Medical Center, 3000 CA, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, 3000 CA, Rotterdam, The Netherlands
- Netherlands Consortium for Healthy Ageing, Netherlands Genomics Initiative, 2593 HW, The Hague, The Netherlands
| | - Eranga N Vithana
- Singapore Eye Research Institute, Singapore National Eye Centre, 168751, Singapore, Singapore
| | - Paul J Foster
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, EC1V 9EL, London, UK
| | - Pirro G Hysi
- Department of Twin Research and Genetic Epidemiology, King's College London, WC2R 2LS, London, UK
| | - Alex W Hewitt
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, VIC 3002, East Melbourne, Australia
- School of Medicine, Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7005, TAS, Australia
| | - Chiea Chuen Khor
- Genome Institute of Singapore, 60 Biopolis Street, Singapore, 138672, Singapore
| | - Louis R Pasquale
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA 02115, MA, USA
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear Infirmary, Boston, MA 02114, MA, USA
| | - Grant W Montgomery
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, QLD 4029, Brisbane, Australia
- Institute for Molecular Bioscience, University of Queensland, QLD 4067, Brisbane, Australia
| | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus Medical Center, 3000 CA, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, 3000 CA, Rotterdam, The Netherlands
- Department of Ophthalmology, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Tin Aung
- Singapore Eye Research Institute, Singapore National Eye Centre, 168751, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, 169857, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117549, Singapore
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center Mainz, 55131, Mainz, Germany
| | - David A Mackey
- Centre for Ophthalmology and Visual Science, University of Western Australia, Lions Eye Institute, WA 6009, Perth, WA, Australia
| | - Christopher J Hammond
- Department of Twin Research and Genetic Epidemiology, King's College London, WC2R 2LS, London, UK
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, 168751, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, 169857, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117549, Singapore
| | - Jamie E Craig
- Department of Ophthalmology, Flinders University, SA 5042, Adelaide, Australia
| | - Yaron S Rabinowitz
- Regenerative Medicine Institute and Department of Surgery, Cedars-Sinai Medical Center, CA 90048, Los Angeles, CA, USA
- Cornea Genetic Eye Institute, CA 90048, Los Angeles, CA, USA
| | - Janey L Wiggs
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear Infirmary, Boston, MA 02114, MA, USA
| | - Kathryn P Burdon
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7005, TAS, Australia
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Stuart MacGregor
- Statistical Genetics, QIMR Berghofer Medical Research Institute, QLD 4029, Brisbane, Australia.
| |
Collapse
|
27
|
Dudakova L, Vercruyssen JHJ, Balikova I, Postolache L, Leroy BP, Skalicka P, Liskova P. Analysis of KERA in four families with cornea plana identifies two novel mutations. Acta Ophthalmol 2018; 96:e87-e91. [PMID: 28677912 DOI: 10.1111/aos.13484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/18/2017] [Indexed: 12/26/2022]
Abstract
PURPOSE To identify the molecular genetic cause in four families of various ethnic backgrounds with cornea plana. METHODS Detailed ophthalmological examination and direct sequencing of the KERA coding region in five patients of Czech and Turkish origin and their available family members. RESULTS Compound heterozygosity for a novel missense mutation c.209C>T; p.(Pro70Leu) and a novel splice site mutation c.887-1G>A in KERA were detected in two affected siblings of Czech origin. In silico analysis supported the pathogenicity of both variants. The second proband of Czech origin harboured c.835C>T; p.(Arg279*) in a homozygous state. Homozygous mutations c.740A>G; p.(Asn247Ser) and c.674C>T; p.(Ile225Thr) were identified in the Turkish probands, both born out of consanguineous marriages. Observed ocular phenotypes were typical of cornea plana with the exception of one Czech patient who also had marked thinning and protrusion in the superior part of the left cornea (mean keratometry 47.2 D). No corneal endothelial cell pathology was found by specular microscopy in seven eyes, in three eyes visualization of the posterior corneal surface was unsuccessful. CONCLUSION KERA mutation c.740A>G has been identified to date in three different populations, which makes it the most frequently occurring mutation in patients with cornea plana. Marked corneal thinning and ectasia are a very rare finding in this disorder and longitudinal follow-up needs to be performed to determine its potential progressive nature.
Collapse
Affiliation(s)
- Lubica Dudakova
- Institute of Inherited Metabolic Disorders; First Faculty of Medicine; Charles University and General University Hospital in Prague; Praha Czech Republic
| | | | - Irina Balikova
- Department of Ophthalmology; Ghent University Hospital; Ghent Belgium
- Department of Ophthalmology; Queen Fabiola Children's University Hospital; Brussels Belgium
| | - Lavina Postolache
- Department of Ophthalmology; Queen Fabiola Children's University Hospital; Brussels Belgium
| | - Bart P. Leroy
- Department of Ophthalmology; Ghent University Hospital; Ghent Belgium
- Center for Medical Genetics; Ghent University Hospital and Ghent University; Ghent Belgium
- Division of Ophthalmology and Center for Cellular and Molecular Therapeutics; The Children's Hospital of Philadelphia; Philadelphia PA USA
| | - Pavlina Skalicka
- Institute of Inherited Metabolic Disorders; First Faculty of Medicine; Charles University and General University Hospital in Prague; Praha Czech Republic
- Department of Ophthalmology; First Faculty of Medicine; Charles University and General University Hospital in Prague; Prague Czech Republic
| | - Petra Liskova
- Institute of Inherited Metabolic Disorders; First Faculty of Medicine; Charles University and General University Hospital in Prague; Praha Czech Republic
- Department of Ophthalmology; First Faculty of Medicine; Charles University and General University Hospital in Prague; Prague Czech Republic
| |
Collapse
|
28
|
Maccarana M, Svensson RB, Knutsson A, Giannopoulos A, Pelkonen M, Weis M, Eyre D, Warman M, Kalamajski S. Asporin-deficient mice have tougher skin and altered skin glycosaminoglycan content and structure. PLoS One 2017; 12:e0184028. [PMID: 28859141 PMCID: PMC5578652 DOI: 10.1371/journal.pone.0184028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 08/16/2017] [Indexed: 11/24/2022] Open
Abstract
The main structural component of connective tissues is fibrillar, cross-linked collagen whose fibrillogenesis can be modulated by Small Leucine-Rich Proteins/Proteoglycans (SLRPs). Not all SLRPs’ effects on collagen and extracellular matrix in vivo have been elucidated; one of the less investigated SLRPs is asporin. Here we describe the successful generation of an Aspn-/- mouse model and the investigation of the Aspn-/- skin phenotype. Functionally, Aspn-/- mice had an increased skin mechanical toughness, although there were no structural changes present on histology or immunohistochemistry. Electron microscopy analyses showed 7% thinner collagen fibrils in Aspn-/- mice (not statistically significant). Several matrix genes were upregulated, including collagens (Col1a1, Col1a2, Col3a1), matrix metalloproteinases (Mmp2, Mmp3) and lysyl oxidases (Lox, Loxl2), while lysyl hydroxylase (Plod2) was downregulated. Intriguingly no differences were observed in collagen protein content or in collagen cross-linking-related lysine oxidation or hydroxylation. The glycosaminoglycan content and structure in Aspn-/- skin was profoundly altered: chondroitin/dermatan sulfate was more than doubled and had an altered composition, while heparan sulfate was halved and had a decreased sulfation. Also, decorin and biglycan were doubled in Aspn-/- skin. Overall, asporin deficiency changes skin glycosaminoglycan composition, and decorin and biglycan content, which may explain the changes in skin mechanical properties.
Collapse
Affiliation(s)
- Marco Maccarana
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - René B. Svensson
- Institute of Sports Medicine, Bispebjerg Hospital, and Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Anki Knutsson
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Antonis Giannopoulos
- Institute of Sports Medicine, Bispebjerg Hospital, and Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Mea Pelkonen
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - MaryAnn Weis
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington, United States of America
| | - David Eyre
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington, United States of America
| | - Matthew Warman
- Children’s Hospital Boston, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sebastian Kalamajski
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
29
|
Affiliation(s)
- Arif O Khan
- a Eye Institute , Cleveland Clinic Abu Dhabi , Abu Dhabi , United Arab Emirates
| |
Collapse
|
30
|
Jaja Z, Lezrek O, Laghmari M, Daoudi R. Cornea plana : à propos d’un cas et revue de la littérature. J Fr Ophtalmol 2017; 40:e45-e47. [DOI: 10.1016/j.jfo.2015.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 10/08/2015] [Accepted: 10/31/2015] [Indexed: 10/20/2022]
|
31
|
Richardson R, Tracey-White D, Webster A, Moosajee M. The zebrafish eye-a paradigm for investigating human ocular genetics. Eye (Lond) 2016; 31:68-86. [PMID: 27612182 DOI: 10.1038/eye.2016.198] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/17/2016] [Indexed: 01/13/2023] Open
Abstract
Although human epidemiological and genetic studies are essential to elucidate the aetiology of normal and aberrant ocular development, animal models have provided us with an understanding of the pathogenesis of multiple developmental ocular malformations. Zebrafish eye development displays in depth molecular complexity and stringent spatiotemporal regulation that incorporates developmental contributions of the surface ectoderm, neuroectoderm and head mesenchyme, similar to that seen in humans. For this reason, and due to its genetic tractability, external fertilisation, and early optical clarity, the zebrafish has become an invaluable vertebrate system to investigate human ocular development and disease. Recently, zebrafish have been at the leading edge of preclinical therapy development, with their amenability to genetic manipulation facilitating the generation of robust ocular disease models required for large-scale genetic and drug screening programmes. This review presents an overview of human and zebrafish ocular development, genetic methodologies employed for zebrafish mutagenesis, relevant models of ocular disease, and finally therapeutic approaches, which may have translational leads in the future.
Collapse
Affiliation(s)
- R Richardson
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| | - D Tracey-White
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| | - A Webster
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK.,NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - M Moosajee
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK.,NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
32
|
Frikeche J, Maiti G, Chakravarti S. Small leucine-rich repeat proteoglycans in corneal inflammation and wound healing. Exp Eye Res 2016; 151:142-9. [PMID: 27569372 DOI: 10.1016/j.exer.2016.08.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 10/21/2022]
Abstract
The small leucine rich repeat proteoglycans are major components of the cornea. Lumican, keratocan, decorin, biglycan and osteoglycin are present throughout the adult corneal stroma, and fibromodulin in the peripheral limbal area. In the cornea literature these proteoglycan have been reviewed as structural, collagen fibril-regulating proteins of the cornea. However, these proteoglycans are members of the leucine-rich-repeat superfamily, and share structural similarities with pathogen recognition toll-like receptors. Emerging studies are showing that these have a range of interactions with cell surface receptors, chemokines, growth factors and pathogen associated molecular patterns and are able to regulate host immune response, inflammation and wound healing. This review discusses what is known about their innate immune-related role directly in the cornea, and studies outside the field that find interesting links with innate immune and wound healing responses that are likely to be relevant to the ocular surface. In addition, the review discusses phenotypes of mice with targeted deletion of proteoglycan genes and genetic variants associated with human pathologies.
Collapse
Affiliation(s)
- Jihane Frikeche
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, USA
| | - George Maiti
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, USA
| | - Shukti Chakravarti
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, USA; Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, USA; Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, USA.
| |
Collapse
|
33
|
Dupuis LE, Doucette L, Rice AK, Lancaster AE, Berger MG, Chakravarti S, Kern CB. Development of myotendinous-like junctions that anchor cardiac valves requires fibromodulin and lumican. Dev Dyn 2016; 245:1029-42. [PMID: 27503167 DOI: 10.1002/dvdy.24435] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/28/2016] [Accepted: 07/24/2016] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND There are many patients that exhibit connective tissue related cardiac malformations but do not have mutations in collagen genes. The Small Leucine Rich Proteoglycans (SLRP) fibromodulin (FMOD) and lumican (LUM) bind collagen and regulate fibril assembly in other biological contexts. RESULTS FMOD deficient mice and double deficient FMOD; LUM mice exhibited anomalies in regions where cardiac valve tissue interdigitates with adjacent muscle for support. Ectopic connective and/or myocardial tissue(s) was associated with the more severe cardiac valve anomalies in FMOD; LUM deficient mice. At postnatal day 0 (P0) there was an increase in the mesenchymal cell number in the regions where valve cusps anchor in FMOD; LUM deficient mice compared to WT. The cardiac valve anomalies correlated with the highest levels of FMOD expression in the heart and also where myotendinous junctions (MTJ) components biglycan, collagen type I alpha 1, and collagen type VI, are also localized. CONCLUSIONS The postnatal assembly of the collagen-rich ECM in regions where cardiac valves anchor, that we have designated 'myotendinous-like junctions' (MTLJ) requires the SLRPs FMOD and LUM. Moreover, FMOD and LUM may facilitate mesenchymal cell differentiation in late stages of cardiac valve development. Developmental Dynamics 245:1029-1042, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Loren E Dupuis
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Lorna Doucette
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| | - A Kittrell Rice
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Ashton E Lancaster
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Matthew G Berger
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Shukti Chakravarti
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christine B Kern
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
34
|
A Novel KERA Mutation in a Case of Autosomal Recessive Cornea Plana With Primary Angle-Closure Glaucoma. J Glaucoma 2016; 25:e106-9. [PMID: 25967529 DOI: 10.1097/ijg.0000000000000258] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Keratocan is a cornea-specific keratan sulfate proteoglycan found predominantly in the adult vertebrate eye. In human beings, mutations in keratocan (KERA) are associated with autosomal recessive cornea plana (CNA2), which is characterized by a flattened forward convex curvature of the cornea. Here, we report a novel mutation in a case of autosomal recessive bilateral cornea plana presenting with primary angle-closure glaucoma in a 41-year-old woman from Eastern India. METHODS The KERA gene of the patient and her sons was directly sequenced. RESULTS Mutational analysis of the KERA revealed 2 novel mutations. The first mutation was a 3 base-pair deletion (c.371_373delTCT), leading to the loss of a highly conserved amino acid (p.Phe125del). The second mutation was a base substitution resulting in a silent mutation (c.69G>A). One of her 2 sons carried the homozygous substitution (c.69G>A), whereas the other son was heterozygous (c.69G>R). CONCLUSIONS The mutation that we report here leads to the deletion of a conserved amino acid (p.Phe125del) from the third LRR motif of the keratocan protein, which might lead to an abnormal tertiary structure of the protein, thereby leading to the disease.
Collapse
|
35
|
Odent S, Casteels I, Cassiman C, Dieltiëns M, Hua MT, Devriendt K. Posterior amorphous corneal dystrophy caused by a de novo deletion. Ophthalmic Genet 2016; 38:167-170. [PMID: 27096414 DOI: 10.3109/13816810.2016.1164194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We present a newborn diagnosed with posterior amorphous corneal dystrophy (PACD). PACD is a rare disorder with partial or complete posterior lamellar corneal opacification. Genetic screening showed a deletion of chromosome 12q21.33-q22 containing the identified four small leucine-rich proteoglycans (SLRP's) associated with this particular dystrophy. Neither parents were carrier of the deletion. To our knowledge, this is the first report of a de novo mutation causing PACD.
Collapse
Affiliation(s)
- S Odent
- a Department of Ophthalmology , KU Leuven - University of Leuven , Leuven , Belgium
| | - I Casteels
- a Department of Ophthalmology , KU Leuven - University of Leuven , Leuven , Belgium
| | - C Cassiman
- a Department of Ophthalmology , KU Leuven - University of Leuven , Leuven , Belgium
| | - M Dieltiëns
- a Department of Ophthalmology , KU Leuven - University of Leuven , Leuven , Belgium
| | - M-T Hua
- a Department of Ophthalmology , KU Leuven - University of Leuven , Leuven , Belgium
| | - K Devriendt
- b Department of Genetics , KU Leuven - University of Leuven , Leuven , Belgium
| |
Collapse
|
36
|
Affiliation(s)
- Amani AlBakri
- Division of Pediatric Ophthalmology, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Arif O. Khan
- Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
37
|
Massoudi D, Malecaze F, Galiacy SD. Collagens and proteoglycans of the cornea: importance in transparency and visual disorders. Cell Tissue Res 2015. [PMID: 26205093 DOI: 10.1007/s00441-015-2233-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The cornea represents the external part of the eye and consists of an epithelium, a stroma and an endothelium. Due to its curvature and transparency this structure makes up approximately 70% of the total refractive power of the eye. This function is partly made possible by the particular organization of the collagen extracellular matrix contained in the corneal stroma that allows a constant refractive power. The maintenance of such an organization involves other molecules such as type V collagen, FACITs (fibril-associated collagens with interrupted triple helices) and SLRPs (small leucine-rich proteoglycans). These components play crucial roles in the preservation of the correct organization and function of the cornea since their absence or modification leads to abnormalities such as corneal opacities. Thus, the aim of this review is to describe the different corneal collagens and proteoglycans by highlighting their importance in corneal transparency as well as their implication in corneal visual disorders.
Collapse
Affiliation(s)
| | - Francois Malecaze
- EA4555, Université Toulouse III Paul Sabatier, Toulouse, France
- CHU Toulouse, Hôpital Purpan, Service d'Ophtalmologie, Toulouse, France
| | - Stephane D Galiacy
- EA4555, Université Toulouse III Paul Sabatier, Toulouse, France.
- CHU Toulouse, Hôpital Purpan, Service d'Ophtalmologie, Toulouse, France.
| |
Collapse
|
38
|
Roos L, Bertelsen B, Harris P, Bygum A, Jensen H, Grønskov K, Tümer Z. Case report: a novel KERA mutation associated with cornea plana and its predicted effect on protein function. BMC MEDICAL GENETICS 2015; 16:40. [PMID: 26099342 PMCID: PMC4630934 DOI: 10.1186/s12881-015-0179-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 05/15/2015] [Indexed: 12/03/2022]
Abstract
Background Cornea plana (CNA) is a hereditary congenital abnormality of the cornea characterized by reduced corneal curvature, extreme hypermetropia, corneal clouding and hazy corneal limbus. The recessive form, CNA2, is associated with homozygous or compound heterozygous mutations of the keratocan gene (KERA) on chromosome 12q22. To date, only nine different disease-associated KERA mutations, including four missense mutations, have been described. Case presentation In this report, we present clinical data from a Turkish family with autosomal recessive cornea plana. In some of the affected individuals, hypotrichosis was found. KERA was screened for mutations using Sanger sequencing. We detected a novel KERA variant, p.(Ile225Thr), that segregates with the disease in the homozygous form. The three-dimensional structure of keratocan protein was modelled, and we showed that this missense variation is predicted to destabilize the structure of keratocan, leading to the classical ocular phenotype in the affected individuals. All the four known missense mutations, including the variation found in this family, affect the conserved residues of the leucine rich repeat domain of keratocan. These mutations are predicted to result in destabilization of the protein. Conclusion We present the 10th pathogenic KERA mutation identified so far. Protein modelling is a useful tool in predicting the effect of missense mutations. This case underline the importance of the leucin rich repeat domain for the protein function, and this knowledge will ease the interpretation of future findings of mutations in these areas in other families with cornea plana. Electronic supplementary material The online version of this article (doi:10.1186/s12881-015-0179-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laura Roos
- Applied Human Molecular Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Gl. Landevej 7, Glostrup, 2600, Denmark.
| | - Birgitte Bertelsen
- Applied Human Molecular Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Gl. Landevej 7, Glostrup, 2600, Denmark.
| | - Pernille Harris
- Department of Chemistry, Technical University of Denmark, Kemitorvet Build. 207, DK-2800, Kgs. Lyngby, Denmark.
| | - Anette Bygum
- Department of Dermatology, Odense University Hospital, Odense, Denmark.
| | - Hanne Jensen
- Eye Clinic, Department of Ophthalmology, Copenhagen University Hospital, Glostrup, Denmark.
| | - Karen Grønskov
- Applied Human Molecular Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Gl. Landevej 7, Glostrup, 2600, Denmark.
| | - Zeynep Tümer
- Applied Human Molecular Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Gl. Landevej 7, Glostrup, 2600, Denmark.
| |
Collapse
|
39
|
Gendron SP, Rochette PJ. Modifications in stromal extracellular matrix of aged corneas can be induced by ultraviolet A irradiation. Aging Cell 2015; 14:433-42. [PMID: 25728164 PMCID: PMC4406672 DOI: 10.1111/acel.12324] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2015] [Indexed: 01/05/2023] Open
Abstract
With age, structural and functional changes can be observed in human cornea. Some studies have shown a loss of corneal transparency and an increase in turbidity associated with aging. These changes are caused by modifications in the composition and arrangement of extracellular matrix in the corneal stroma. In human skin, it is well documented that exposure to solar radiation, and mainly to the UVA wavelengths, leads to phenotypes of photoaging characterized by alteration in extracellular matrix of the dermis. Although the cornea is also exposed to solar radiation, the extracellular matrix modifications observed in aging corneas have been mainly attributed to chronological aging and not to solar exposure. To ascertain the real implication of UVA exposure in extracellular matrix changes observed with age in human cornea, we have developed a model of photoaging by chronically exposing corneal stroma keratocytes with a precise UVA irradiation protocol. Using this model, we have analyzed UVA-induced transcriptomic and proteomic changes in corneal stroma. Our results show that cumulative UVA exposure causes changes in extracellular matrix that are found in corneal stromas of aged individuals, suggesting that solar exposure catalyzes corneal aging. Indeed, we observe a downregulation of collagen and proteoglycan gene expression and a reduction in proteoglycan production and secretion in response to cumulative UVA exposure. This study provides the first evidence that chronic ocular exposure to sunlight affects extracellular matrix composition and thus plays a role in corneal changes observed with age.
Collapse
Affiliation(s)
- Sébastien P. Gendron
- Centre de Recherche du CHU de Québec Axe Médecine Régénératrice Hôpital du Saint‐Sacrement Québec QC Canada
- Centre de Recherche en Organogenèse Expérimentale de l'Université Laval/LOEX Québec QC Canada
| | - Patrick J. Rochette
- Centre de Recherche du CHU de Québec Axe Médecine Régénératrice Hôpital du Saint‐Sacrement Québec QC Canada
- Centre de Recherche en Organogenèse Expérimentale de l'Université Laval/LOEX Québec QC Canada
- Département d'Ophtalmologie Faculté de Médecine Université Laval Québec QC Canada
| |
Collapse
|
40
|
Regulation of corneal stroma extracellular matrix assembly. Exp Eye Res 2015; 133:69-80. [PMID: 25819456 DOI: 10.1016/j.exer.2014.08.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 07/30/2014] [Accepted: 08/02/2014] [Indexed: 01/16/2023]
Abstract
The transparent cornea is the major refractive element of the eye. A finely controlled assembly of the stromal extracellular matrix is critical to corneal function, as well as in establishing the appropriate mechanical stability required to maintain corneal shape and curvature. In the stroma, homogeneous, small diameter collagen fibrils, regularly packed with a highly ordered hierarchical organization, are essential for function. This review focuses on corneal stroma assembly and the regulation of collagen fibrillogenesis. Corneal collagen fibrillogenesis involves multiple molecules interacting in sequential steps, as well as interactions between keratocytes and stroma matrix components. The stroma has the highest collagen V:I ratio in the body. Collagen V regulates the nucleation of protofibril assembly, thus controlling the number of fibrils and assembly of smaller diameter fibrils in the stroma. The corneal stroma is also enriched in small leucine-rich proteoglycans (SLRPs) that cooperate in a temporal and spatial manner to regulate linear and lateral collagen fibril growth. In addition, the fibril-associated collagens (FACITs) such as collagen XII and collagen XIV have roles in the regulation of fibril packing and inter-lamellar interactions. A communicating keratocyte network contributes to the overall and long-range regulation of stromal extracellular matrix assembly, by creating micro-domains where the sequential steps in stromal matrix assembly are controlled. Keratocytes control the synthesis of extracellular matrix components, which interact with the keratocytes dynamically to coordinate the regulatory steps into a cohesive process. Mutations or deficiencies in stromal regulatory molecules result in altered interactions and deficiencies in both transparency and refraction, leading to corneal stroma pathobiology such as stromal dystrophies, cornea plana and keratoconus.
Collapse
|
41
|
Rantala E, Majander A. Anterior segment optical coherence tomography in autosomal recessive cornea plana. Acta Ophthalmol 2015; 93:e232-3. [PMID: 25113580 DOI: 10.1111/aos.12533] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Iozzo RV, Schaefer L. Proteoglycan form and function: A comprehensive nomenclature of proteoglycans. Matrix Biol 2015; 42:11-55. [PMID: 25701227 PMCID: PMC4859157 DOI: 10.1016/j.matbio.2015.02.003] [Citation(s) in RCA: 850] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 02/09/2015] [Indexed: 02/07/2023]
Abstract
We provide a comprehensive classification of the proteoglycan gene families and respective protein cores. This updated nomenclature is based on three criteria: Cellular and subcellular location, overall gene/protein homology, and the utilization of specific protein modules within their respective protein cores. These three signatures were utilized to design four major classes of proteoglycans with distinct forms and functions: the intracellular, cell-surface, pericellular and extracellular proteoglycans. The proposed nomenclature encompasses forty-three distinct proteoglycan-encoding genes and many alternatively-spliced variants. The biological functions of these four proteoglycan families are critically assessed in development, cancer and angiogenesis, and in various acquired and genetic diseases where their expression is aberrant.
Collapse
Affiliation(s)
- Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany.
| |
Collapse
|
43
|
Kalamajski S, Liu C, Tillgren V, Rubin K, Oldberg Å, Rai J, Weis M, Eyre DR. Increased C-telopeptide cross-linking of tendon type I collagen in fibromodulin-deficient mice. J Biol Chem 2014; 289:18873-9. [PMID: 24849606 DOI: 10.1074/jbc.m114.572941] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The controlled assembly of collagen monomers into fibrils, with accompanying intermolecular cross-linking by lysyl oxidase-mediated bonds, is vital to the structural and mechanical integrity of connective tissues. This process is influenced by collagen-associated proteins, including small leucine-rich proteins (SLRPs), but the regulatory mechanisms are not well understood. Deficiency in fibromodulin, an SLRP, causes abnormal collagen fibril ultrastructure and decreased mechanical strength in mouse tendons. In this study, fibromodulin deficiency rendered tendon collagen more resistant to nonproteolytic extraction. The collagen had an increased and altered cross-linking pattern at an early stage of fibril formation. Collagen extracts contained a higher proportion of stably cross-linked α1(I) chains as a result of their C-telopeptide lysines being more completely oxidized to aldehydes. The findings suggest that fibromodulin selectively affects the extent and pattern of lysyl oxidase-mediated collagen cross-linking by sterically hindering access of the enzyme to telopeptides, presumably through binding to the collagen. Such activity implies a broader role for SLRP family members in regulating collagen cross-linking placement and quantity.
Collapse
Affiliation(s)
| | - Cuiping Liu
- Experimental Medical Science, Lund University, SE-221 84 Lund, Sweden
| | | | - Kristofer Rubin
- Experimental Medical Science, Lund University, SE-221 84 Lund, Sweden, the Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden, and
| | - Åke Oldberg
- Experimental Medical Science, Lund University, SE-221 84 Lund, Sweden
| | - Jyoti Rai
- the Department of Orthopædics and Sports Medicine, University of Washington, Seattle, Washington 98195-6500
| | - MaryAnn Weis
- the Department of Orthopædics and Sports Medicine, University of Washington, Seattle, Washington 98195-6500
| | - David R Eyre
- the Department of Orthopædics and Sports Medicine, University of Washington, Seattle, Washington 98195-6500
| |
Collapse
|
44
|
Posterior amorphous corneal dystrophy is associated with a deletion of small leucine-rich proteoglycans on chromosome 12. PLoS One 2014; 9:e95037. [PMID: 24759697 PMCID: PMC3997350 DOI: 10.1371/journal.pone.0095037] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/21/2014] [Indexed: 01/11/2023] Open
Abstract
Posterior amorphous corneal dystrophy (PACD) is a rare, autosomal dominant disorder affecting the cornea and iris. Next-generation sequencing of the previously identified PACD linkage interval on chromosome 12q21.33 failed to yield a pathogenic mutation. However, array-based copy number analysis and qPCR were used to detect a hemizygous deletion in the PACD linkage interval containing 4 genes encoding small leucine-rich proteoglycans (SLRPs): KERA, LUM, DCN, and EPYC. Two other unrelated families with PACD also demonstrated deletion of these SLRPs, which play important roles in collagen fibrillogenesis and matrix assembly. Given that these genes are essential to the maintenance of corneal clarity and the observation that knockout murine models display corneal phenotypic similarities to PACD, we provide convincing evidence that PACD is associated with haploinsufficiency of these SLRPs.
Collapse
|
45
|
Parapuram SK, Hodge W. The integrin needle in the stromal haystack: emerging role in corneal physiology and pathology. J Cell Commun Signal 2014; 8:113-24. [PMID: 24604397 DOI: 10.1007/s12079-014-0230-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 02/14/2014] [Indexed: 01/22/2023] Open
Abstract
Several studies have established the role of activated corneal keratocytes in the fibrosis of the cornea. However, the role of keratocytes in maintaining the structural integrity of a normal cornea is less appreciated. We focus on the probable functions of integrins in the eye and of the importance of integrin-mediated keratocyte interactions with stromal matrix in the maintenance of corneal integrity. We point out that further understanding of how keratocytes interact with their matrix could establish a novel direction in preventing corneal pathology including loss of structural integrity as in keratoconus or as in fibrosis of the corneal stroma.
Collapse
Affiliation(s)
- Sunil K Parapuram
- Department of Ophthalmology, University of Western Ontario, London, Ontario, N6A 4V2, Canada,
| | | |
Collapse
|
46
|
Interclass small leucine-rich repeat proteoglycan interactions regulate collagen fibrillogenesis and corneal stromal assembly. Matrix Biol 2014; 35:103-11. [PMID: 24447998 DOI: 10.1016/j.matbio.2014.01.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/08/2014] [Accepted: 01/08/2014] [Indexed: 01/22/2023]
Abstract
The corneal stroma is enriched in small leucine-rich proteoglycans (SLRPs), including both class I (decorin and biglycan) and class II (lumican, keratocan and fibromodulin). Transparency is dependent on the assembly and maintenance of a hierarchical stromal organization and SLRPs are critical regulatory molecules. We hypothesize that cooperative interclass SLRP interactions are involved in the regulation of stromal matrix assembly. We test this hypothesis using a compound Bgn(-/0)/Lum(-/-) mouse model and single Lum(-/-) or Bgn(-/0) mouse models and wild type controls. SLRP expression was investigated using immuno-localization and immuno-blots. Structural relationships were defined using ultrastructural and morphometric approaches while transparency was analyzed using in vivo confocal microscopy. The compound Bgn(-/0)/Lum(-/-) corneas demonstrated gross opacity that was not seen in the Bgn(-/0) or wild type corneas and greater than that in the Lum(-/-) mice. The Bgn(-/0)/Lum(-/-) corneas exhibited significantly increased opacity throughout the stroma compared to posterior opacity in the Lum(-/-) and no opacity in Bgn(-/0) or wild type corneas. In the Bgn(-/0)/Lum(-/-) corneas there were abnormal lamellar and fibril structures consistent with the functional deficit in transparency. Lamellar structure was disrupted across the stroma with disorganized fibrils, and altered fibril packing. In addition, fibrils had larger and more heterogeneous diameters with an abnormal structure consistent with abnormal fibril growth. This was not observed in the Bgn(-/0) or wild type corneas and was restricted to the posterior stroma in Lum(-/-) mice. The data demonstrate synergistic interclass regulatory interactions between lumican and biglycan. These interactions are involved in regulating both lamellar structure as well as collagen fibrillogenesis and therefore, corneal transparency.
Collapse
|
47
|
|
48
|
Abstract
PURPOSE OF REVIEW Centered on the Arabian Peninsula, the Middle East encompasses Northern Africa to Western Asia. Primarily Arab and historically tribal, populations from this region often practice customary intrafamilial marriage (consanguinity), intratribal marriage (endogamy), and a preference for many offspring. These social factors increase the frequency of homozygosity, including homozygosity for gene mutation and thus for recessive ocular disease. This review highlights recent studies of ocular genetic disease in the Middle East. RECENT FINDINGS Among modern molecular genomic/genetic strategies, homozygosity mapping as a method to guide candidate gene analysis has been a powerful technique for the Middle East. Studies from the region have enhanced our understanding of ocular genetic conditions that are more common worldwide (such as pediatric glaucoma, pediatric cataract, and retinal dystrophy/dysfunction), rare worldwide (such as cornea plana, brittle cornea syndrome, and posterior microphthalmos), and currently only reported on the Arabian Peninsula (such as microcornea with myopic chorioretinal degeneration and telecanthus, familial retinal arterial macroaneurysms, and spherophakia with short stature). For some patients diagnosed with non-syndromic cataract or retinal dystrophy, genomic/genetic analysis uncovered recessive mutation in a syndrome gene and phenotypic reassessment confirmed the presence of the undiagnosed syndrome in the tested patients. SUMMARY Recent studies from the Middle East, many of which employed homozygosity mapping, have improved phenotype-genotype correlations for common and rare ocular genetic disease. In some instances genetic diagnosis revealed an undiagnosed syndrome. Reports of ocular genetic conditions thus far unique to the region have suggested novel ocular developmental pathways.
Collapse
|
49
|
Dudakova L, Palos M, Hardcastle AJ, Liskova P. Corneal endothelial findings in a Czech patient with compound heterozygous mutations in KERA. Ophthalmic Genet 2013; 35:252-4. [PMID: 23834557 DOI: 10.3109/13816810.2013.811272] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Lubica Dudakova
- Laboratory of the Biology and Pathology of the Eye, Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague
| | | | | | | |
Collapse
|
50
|
Next-generation sequencing analysis of gene regulation in the rat model of retinopathy of prematurity. Doc Ophthalmol 2013; 127:13-31. [PMID: 23775346 DOI: 10.1007/s10633-013-9396-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 06/03/2013] [Indexed: 01/01/2023]
Abstract
PURPOSE The purpose of this study was to identify the genes, biochemical signaling pathways, and biological themes involved in the pathogenesis of retinopathy of prematurity (ROP). METHODS Next-generation sequencing (NGS) was performed on the RNA transcriptome of rats with the Penn et al. (Pediatr Res 36:724-731, 1994) oxygen-induced retinopathy model of ROP at the height of vascular abnormality, postnatal day (P) 19, and normalized to age-matched, room-air-reared littermate controls. Eight custom-developed pathways with potential relevance to known ROP sequelae were evaluated for significant regulation in ROP: The three major Wnt signaling pathways, canonical, planar cell polarity (PCP), and Wnt/Ca(2+); two signaling pathways mediated by the Rho GTPases RhoA and Cdc42, which are, respectively, thought to intersect with canonical and non-canonical Wnt signaling; nitric oxide signaling pathways mediated by two nitric oxide synthase (NOS) enzymes, neuronal (nNOS) and endothelial (eNOS); and the retinoic acid (RA) signaling pathway. Regulation of other biological pathways and themes was detected by gene ontology using the Kyoto Encyclopedia of Genes and Genomes and the NIH's Database for Annotation, Visualization, and Integrated Discovery's GO terms databases. RESULTS Canonical Wnt signaling was found to be regulated, but the non-canonical PCP and Wnt/Ca(2+) pathways were not. Nitric oxide signaling, as measured by the activation of nNOS and eNOS, was also regulated, as was RA signaling. Biological themes related to protein translation (ribosomes), neural signaling, inflammation and immunity, cell cycle, and cell death were (among others) highly regulated in ROP rats. CONCLUSIONS These several genes and pathways identified by NGS might provide novel targets for intervention in ROP.
Collapse
|