1
|
Liu XF, Song B, Sun CB, Zhu Q, Yue JH, Liang YJ, He J, Zeng XL, Qin YC, Chen QY, Mai HQ, Zhang X, Li J. Tumor-infiltrated double-negative regulatory T cells predict outcome of T cell-based immunotherapy in nasopharyngeal carcinoma. Cell Rep Med 2025; 6:102096. [PMID: 40315843 DOI: 10.1016/j.xcrm.2025.102096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/24/2025] [Accepted: 04/04/2025] [Indexed: 05/04/2025]
Abstract
Adoptive cell therapy (ACT) using tumor-infiltrating lymphocytes (TILs) has demonstrated clinical success in solid tumors. We analyze 47 TIL infusion products and 62 pretreatment tumor microenvironments (TMEs) from a randomized phase 2 clinical study of concurrent chemoradiotherapy plus TIL-ACT (NCT02421640). Using single-cell and bulk RNA sequencing along with flow cytometry, we identify 14 CD3+ T cell clusters within 26 TIL infusion products: 11 CD3+CD8+ TILs, 2 CD3+CD4+ TILs, and 1 CD3+CD8-CD4- double-negative (DN) TIL. (DN) TILs, significantly associated with poor TIL-ACT outcomes, exhibit an activated regulatory T cell-like phenotype and include two CD56+ and four CD56- subsets. Among them, CD56-KZF2+ (DN) TILs are predominantly suppressive. (DN) TILs inhibit CD8+ TIL expansion via Fas-FasL, transforming growth factor β (TGF-β), and interleukin (IL)-10 signaling. Distinct CD8+ T subsets differentially impact on TIL-ACT outcomes, while 9 baseline TME gene signatures and 14 intracellular T cell genes hold prognostic value. Our findings identify predictive TIL subsets and biomarkers for TIL-ACT outcomes.
Collapse
Affiliation(s)
- Xiu-Feng Liu
- Department of Biotherapy, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Bin Song
- BGI, Shenzhen 518083, P.R. China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Chang-Bin Sun
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, P.R. China
| | - Qian Zhu
- Department of Biotherapy, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | | | - Yu-Jing Liang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Jia He
- Department of Biotherapy, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Xi-Liang Zeng
- Department of Biotherapy, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | | | - Qiu-Yan Chen
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China.
| | - Hai-Qiang Mai
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China.
| | - Xi Zhang
- BGI, Shenzhen 518083, P.R. China.
| | - Jiang Li
- Department of Biotherapy, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China.
| |
Collapse
|
2
|
He Y, Liu H, Ren M, Sun G, Ma Y, Cai M, Wang R, Wang L, Zhang T, Zhang Y. Brain injury, endocrine disruption, and immune dysregulation in HIV-positive men who have sex with men with late HIV diagnosis. Front Immunol 2025; 16:1436589. [PMID: 40176812 PMCID: PMC11961418 DOI: 10.3389/fimmu.2025.1436589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 02/28/2025] [Indexed: 04/04/2025] Open
Abstract
Background In the realm of public health, late human immunodeficiency virus (HIV) diagnosis remains prevalent and is associated with neuropsychiatric adverse events. However, there is limited documentation regarding the impact of late HIV diagnosis (LD) on brain integrity, neurotrophic factors, endocrine function, and immunity in HIV-positive men who have sex with men (MSM). Methods Participants (38 LD and 34 non-LD of MSM) underwent comprehensive infectious disease and psychiatric assessments, multimodal magnetic resonance imaging (MRI) scans, neurotrophic factors, endocrine, and immunological evaluations. Immune cell levels, along with peripheral plasma concentrations of neurotrophic factors and hormones, were measured using enzyme-linked immunosorbent assays and flow cytometry, respectively. T1-weighted images along with resting-state functional MRI were applied to assess brain function and structure while also examining correlations between imaging alterations and clinical as well as peripheral blood variables. The data for this study originated from a subset of the cohort in HIV-associated neuropsychiatric disorders research. Results Compared to participants in the non-LD group, those in the LD group showed a lower total gray matter volume (GMV), with reduced GMV primarily observed in the left supramarginal gyrus. Participants in the LD group exhibited differences in brain function with certain regions and decreased functional connectivity between these altered regions and connected structures. A two-way factorial analysis of variance examining the main effects and interactions between groups and neuropsychiatric disorders revealed significant main effects of LD on specific brain regions. Furthermore, we found that individuals in the LD group had higher levels of cortisol, a lower frequency of central memory T cells, and elevated expression levels of perforin in double-negative T cells. These imaging findings were significantly correlated with endocrine, immune, and clinical variables. Conclusion This study suggests that LD may contribute to brain injury, endocrine disruption, and immune dysregulation in HIV-positive MSM. Consequently, there is an urgent need to develop public health strategies targeting late diagnosis, with a focus on strengthening screening and early detection for high-risk populations, as well as monitoring brain injury, endocrine, and immune functions in individuals with LD, and formulating precise, individualized intervention strategies to reduce the long-term impact of LD on the health of HIV-positive MSM.
Collapse
Affiliation(s)
- Yihui He
- Postgraduate Union Training Base of Jinzhou Medical University, PLA Rocket Force Characteristic Medical Center, Beijing, China
- Department of Neurology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Hao Liu
- Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Sexually Transmitted Disease Control, Beijing, China
| | - Meixin Ren
- Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Sexually Transmitted Disease Control, Beijing, China
| | - Gaungqiang Sun
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yundong Ma
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Miaotian Cai
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Rui Wang
- Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Sexually Transmitted Disease Control, Beijing, China
| | - Lei Wang
- Department of Neurology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Tong Zhang
- Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Sexually Transmitted Disease Control, Beijing, China
| | - Yang Zhang
- Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Sexually Transmitted Disease Control, Beijing, China
| |
Collapse
|
3
|
Fajardo-Despaigne JE, Lombard-Vadnais F, Pelletier AN, Olazabal A, Boutin L, Pasquin S, Janelle V, Legault L, Delisle JS, Hillhouse EE, Coderre L, Lesage S. Characterization and effective expansion of CD4 -CD8 - TCRαβ + T cells from individuals living with type 1 diabetes. Mol Ther Methods Clin Dev 2025; 33:101400. [PMID: 39877593 PMCID: PMC11772147 DOI: 10.1016/j.omtm.2024.101400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 12/13/2024] [Indexed: 01/31/2025]
Abstract
CD4-CD8- TCRαβ+ (double-negative [DN]) T cells represent a rare T cell population that promotes immunological tolerance through various cytotoxic mechanisms. In mice, autologous transfer of DN T cells has shown protective effects against autoimmune diabetes and graft-versus-host disease. Here, we characterized human DN T cells from people living with type 1 diabetes (PWT1D) and healthy controls. We found that while DN T cells and CD8+ T cells share many similarities, DN T cells are a unique T cell population, both at the transcriptomic and protein levels. We also show that by using various cytokine combinations, human DN T cells can be expanded in vitro up to 1,000-fold (mean >250-fold) and remain functional post-expansion. In addition, we report that DN T cells from PWT1D display a phenotype comparable to that of healthy controls, efficiently expand, and are highly functional. As DN T cells are immunoregulatory and can prevent T1D in various mouse models, these observations suggest that autologous DN T cells may be amenable to therapy for the prevention or treatment of T1D.
Collapse
Affiliation(s)
| | - Félix Lombard-Vadnais
- Immunologie-Oncologie, Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | | | - Aïnhoa Olazabal
- Immunologie-Oncologie, Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Lucie Boutin
- Département de Recherche Clinique, CIUSSS de l’Est-de-l’Île-de-Montréal, Montréal, QC, Canada
| | - Sarah Pasquin
- Immunologie-Oncologie, Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Valérie Janelle
- Immunologie-Oncologie, Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Laurent Legault
- Département de Recherche Clinique, CIUSSS de l’Est-de-l’Île-de-Montréal, Montréal, QC, Canada
- Department of Pediatrics, Montreal Children’s Hospital, Montreal, QC, Canada
| | - Jean-Sébastien Delisle
- Immunologie-Oncologie, Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Erin E. Hillhouse
- Immunologie-Oncologie, Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Lise Coderre
- Immunologie-Oncologie, Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Sylvie Lesage
- Immunologie-Oncologie, Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
4
|
Jaume JC. Thyroid Cancer-The Tumor Immune Microenvironment (TIME) over Time and Space. Cancers (Basel) 2025; 17:794. [PMID: 40075642 PMCID: PMC11899416 DOI: 10.3390/cancers17050794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
In thyroid cancer, the tumor immune microenvironment (TIME) plays a crucial role in cancer development, progression and response to treatment. Like many other cancers, thyroid cancer creates a complex network of interactions with immune cells directly (cell-to-cell) and via humoral mediators (i.e., cytokines). This dynamic microenvironment undergoes constant modification, which can lead to changes in the immunophenotype that might explain cancer progression, dedifferentiation and resistance to treatment. According to the cancer immunoediting hypothesis, cancerous tumors can shape their immune microenvironment to create an immunosuppressive milieu that allows them to evade classic immune surveillance. One mechanism by which this occurs is through the reprogramming of immune cells, often shifting their phenotypes from cytotoxic to regulatory. Recent research has shed light on cellular components and molecular interactions within the thyroid cancer TIME. Immune cells such as Tumor-Associated Lymphocytes (TALs), myeloid-derived suppressor cells (MDSCs), Tumor-Associated Macrophages (TAMs) and Double-Negative (DN) T cells seem to play key roles in shaping the immune response to thyroid cancer. Additionally, cytokines, chemokines and other signaling molecules contribute to the communication and regulation of immune cells within that microenvironment. By studying these interactions, researchers aim to uncover not just potential therapeutic targets but also biomarkers of thyroid cancer that could provide clues on severity and progression. Based on that knowledge, strategies such as the use of immune checkpoint inhibitors, antigen-specific targeted immunotherapies, and immunomodulatory agents are being explored to enhance the anti-tumor immune response and overcome cancer immunosuppressive mechanisms. In this review, we analyze the available literature and provide our own experience to unravel the complexity of the thyroid immune microenvironment. Continued research in this area holds promise for improving outcomes through the identification of immune markers of severity/progression of thyroid cancer and the development of innovative immunotherapeutic approaches.
Collapse
Affiliation(s)
- Juan Carlos Jaume
- Department of Medicine, Edward Hines Jr. VA Hospital Hines, Hines, IL 60141, USA; or
- Department of Medicine, Loyola University Chicago, Chicago, IL 60660, USA
| |
Collapse
|
5
|
Zhang Y, He Y, Fang Y, Cai M, Sun G, Wang R, Zhen J, Zhang Y, Li Z, Ma Y, Zhang T. Brain function abnormalities and inflammation in HIV-positive men who have sex with men with depressive disorders. Front Psychiatry 2025; 15:1438085. [PMID: 39902245 PMCID: PMC11788281 DOI: 10.3389/fpsyt.2024.1438085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 12/27/2024] [Indexed: 02/05/2025] Open
Abstract
Background Depressive disorders are highly prevalent among people with HIV (PWH) and are related to aberrant inflammation and immune responses. However, there is currently a lack of investigation into the neurological, inflammatory, endocrine, and immune aspects of HIV-associated depressive disorders (HADD). Methods The study involved 33 HIV-positive men who have sex with men with depressive disorders (HADD group) and 47 without neuropsychiatric disorders (HIV control group). Participants underwent resting-state functional magnetic resonance imaging (rs-fMRI) scans and assessments of peripheral blood. Peripheral blood cytokines, plasma concentrations of hormone and neurotrophic factors, and immune cell levels were determined using liquid chip, enzyme-linked immunosorbent assay, and flow cytometry, respectively. The correlation of imaging alterations with clinical variables and peripheral blood indicators was assessed. Results Compared to the HIV control group, the HADD group exhibited a higher fractional amplitude of low-frequency fluctuations in the left superior parietal gyrus, lower regional homogeneity in the left precentral gyrus, and reduced voxel-wise functional connectivity for the seed region in the right precentral gyrus with clusters in the right cuneus, etc. Furthermore, the HADD group had higher levels of interferon-gamma, a higher frequency of non-classical monocytes, and higher expression levels of perforin and CD38 on specific cells. These imaging results were significantly correlated with peripheral blood indicators and clinical variables. Conclusion This rs-fMRI study provides considerable evidence for abnormal intrinsic brain activity in people with HADD. Furthermore, our data also indicate the detrimental effects of depression-related inflammation on PWH. Therefore, it is imperative to increase attention to HADD and implement effective preventive interventions accordingly.
Collapse
Affiliation(s)
- Yang Zhang
- Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Sexually Transmitted Disease Control, Beijing, China
| | - Yihui He
- Postgraduate Union Training Base of Jinzhou Medical University, PLA Rocket Force Characteristic Medical Center, Beijing, China
- Department of Neurology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Yuan Fang
- Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Sexually Transmitted Disease Control, Beijing, China
| | - Miaotian Cai
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Guangqiang Sun
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Rui Wang
- Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Sexually Transmitted Disease Control, Beijing, China
| | - Jiaxin Zhen
- Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Sexually Transmitted Disease Control, Beijing, China
| | - Yulin Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Zhen Li
- Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of HIV/AIDS Research, Beijing, China
| | - Yundong Ma
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Tong Zhang
- Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Sexually Transmitted Disease Control, Beijing, China
| |
Collapse
|
6
|
Wang D, Wang L, Liu S, Tong J, Zhu H, Xu M, Li X, Xiang Z, Sun Q, Wang H, Wang Y, Wang S, Yang L. A preclinical study of allogeneic CD19 chimeric antigen receptor double-negative T cells as an off-the-shelf immunotherapy drug against B-cell malignancies. Clin Transl Immunology 2024; 13:e70022. [PMID: 39720695 PMCID: PMC11667769 DOI: 10.1002/cti2.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/16/2024] [Accepted: 11/30/2024] [Indexed: 12/26/2024] Open
Abstract
Objectives To evaluate the manufacturability, efficacy and safety of allogeneic CD19 chimeric antigen receptor double-negative T cells (CD19-CAR-DNTs) as an off-the-shelf therapeutic cell product. Methods A membrane proteome array was used to assess the off-target binding of CD19-CAR. DNTs derived from healthy donors were transduced with lentiviral vectors encoding the CD19-CAR. The manufacture of the CD19-CAR-DNTs was under GMP conditions, and their surface molecule expression patterns were characterised using flow cytometry. We investigated the off-the-shelf potential of CD19-CAR-DNTs by evaluating the cryopreserved CD19-CAR-DNTs in terms of cell viability as well as their cytotoxicity against various CD19+ target cell lines and primary patient blasts in vitro. We evaluated the persistence and safety of the cryopreserved CD19-CAR-DNTs in xenograft models in vivo. Results GMP-grade CD19-CAR-DNTs were manufactured and cryopreserved for use in advance. The cryopreserved CD19-CAR-DNTs maintain their viability and antitumor activity against various CD19+ target cell lines and primary patient blasts. These cells significantly prolonged the survival in Raji-Luc-xenografted NOG mice. Multiple infusions of the cells can further augment their efficacy. Remarkably, following a single infusion in mice, CD19-CAR-DNTs rapidly got distributed among well-perfused organs initially, and progressively spread to most tissues, peaking at Day 43. In toxicity studies, CD19-CAR-DNTs significantly reduced tumor burden and ameliorated tissue damage in tumor-bearing NOG mice. Critically, no immunotoxicity or graft versus host disease was observed in non-tumor-bearing NOG mice. Conclusions The allogeneic CD19-CAR-DNTs fulfil the requirements of an off-the-shelf therapeutic cell product, offering a promising new approach to the treatment of haematological malignancies.
Collapse
Affiliation(s)
- Dan Wang
- Wyze Biotech Co. LtdZhongshanGuangdongChina
| | | | - Shuai Liu
- Wyze Biotech Co. LtdZhongshanGuangdongChina
| | | | | | - Man Xu
- Wyze Biotech Co. LtdZhongshanGuangdongChina
| | - Xiancai Li
- Wyze Biotech Co. LtdZhongshanGuangdongChina
| | | | | | | | - Yuli Wang
- The Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia MedicaChinese Academy of Sciences (CDSER/SIMM)ShanghaiChina
| | - Shuyang Wang
- The Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia MedicaChinese Academy of Sciences (CDSER/SIMM)ShanghaiChina
| | | |
Collapse
|
7
|
Ai N, Zhang Y, Yang J, Zhang Y, Zhao X, Feng H. Genetically predicted blood metabolites mediate the association between circulating immune cells and severe COVID-19: A Mendelian randomization study. Medicine (Baltimore) 2024; 103:e40509. [PMID: 39560514 PMCID: PMC11575977 DOI: 10.1097/md.0000000000040509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/24/2024] [Indexed: 11/20/2024] Open
Abstract
Investigating the causal relationship between circulating immune cells, blood metabolites, and severe COVID-19 and revealing the role of blood metabolite-mediated circulating immune cells in disease onset and progression. Genetic variation data of 731 circulating immune cells, 1400 blood metabolites, and severe COVID-19 from genome-wide association study open-access database (https://gwas.mrcieu.ac.uk) were used as instrumental variables for bidirectional and two-step Mendelian randomization analysis. The study identified 11 circulating immune cells with unidirectional causality to severe COVID-19. Two-step Mendelian randomization analysis showed 10 blood metabolites were causally associated with severe COVID-19, and blood Myristate and Citrulline to phosphate ratio mediated the association of circulating effector memory double negative % DN and CD8dim natural killer T cell % T cells, respectively, with severe COVID-19 (Myristate mediated effect ratio was 10.20%, P = .011; Citrulline to phosphate ratio mediated effect ratio was -9.21%, P = .017). This study provides genetic evidence assessing the causal relationship between circulating immune cells, blood metabolites, and severe COVID-19, elucidates the role of blood metabolite-mediated circulating immune cells in severe COVID-19 development, and offers new insights into severe COVID-19 etiology and related preventive and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ning Ai
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yan Zhang
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Yang
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Zhang
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xuejing Zhao
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huifen Feng
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
8
|
Chen X, Gao Y, Zhang Y. Allogeneic CAR-T cells for cancer immunotherapy. Immunotherapy 2024; 16:1079-1090. [PMID: 39378059 PMCID: PMC11492692 DOI: 10.1080/1750743x.2024.2408048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
Autologous chimeric antigen receptor (CAR)-modified T (CAR-T) cell therapy has displayed high efficacy in the treatment of hematological malignancies. Up to now, 11 autologous CAR-T cell products have been approved for the management of malignancies globally. However, the application of autologous CAR-T cell therapy has many individual limitations, long time-consuming, highly cost, and the risk of manufacturing failure. Indeed, some patients would not benefit from autologous CAR-T cell products because of rapid disease progression. Allogeneic CAR-T cells especially universal CAR-T (U-CAR-T) cell therapy are superior to these challenges of autologous CAR-T cells. In this review, we describe basic study and clinical trials of U-CAR-T cell therapeutic methods for malignancies. In addition, we summarize the problems encountered and potential solutions.
Collapse
Affiliation(s)
- Xinfeng Chen
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yaoxin Gao
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, Henan, 450052, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450052, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450052, China
| |
Collapse
|
9
|
Yu J, Yang Y, Gu Z, Shi M, La Cava A, Liu A. CAR immunotherapy in autoimmune diseases: promises and challenges. Front Immunol 2024; 15:1461102. [PMID: 39411714 PMCID: PMC11473342 DOI: 10.3389/fimmu.2024.1461102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024] Open
Abstract
In recent years, the use of chimeric antigen receptor (CAR)-T cells has emerged as a promising immunotherapy in multiple diseases. CAR-T cells are T cells genetically modified to express a surface receptor, known as CAR, for the targeting of cognate antigens on specific cells. The effectiveness of CAR-T cell therapy in hematologic malignancies including leukemia, myeloma, and non-Hodgkin's lymphoma has led to consider its use as a potential avenue of treatment for autoimmune diseases. However, broadening the use of CAR-T cell therapy to a large spectrum of autoimmune conditions is challenging particularly because of the possible development of side effects including cytokine release syndrome and neurotoxicity. The design of CAR therapy that include additional immune cells such as double-negative T cells, γδ T cells, T regulatory cells and natural killer cells has shown promising results in preclinical studies and clinical trials in oncology, suggesting a similar potential utility in the treatment of autoimmune diseases. This review examines the mechanisms, efficacy, and safety of CAR approaches with a focus on their use in autoimmune diseases including systemic lupus erythematosus, Sjögren's syndrome, systemic sclerosis, multiple sclerosis, myasthenia gravis, lupus nephritis and other autoimmune diseases. Advantages and disadvantages as compared to CAR-T cell therapy will also be discussed.
Collapse
Affiliation(s)
- Jingjing Yu
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yiming Yang
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhanjing Gu
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Min Shi
- Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Laboratory Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Antonio La Cava
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, United States
- Department of Medicina Molecolare e Biotecnologie Mediche, Federico II University, Naples, Italy
| | - Aijing Liu
- Hebei Key Laboratory of Laboratory Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Rheumatology and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei, China
| |
Collapse
|
10
|
Tang C, Zhang Y. Potential alternatives to αβ-T cells to prevent graft-versus-host disease (GvHD) in allogeneic chimeric antigen receptor (CAR)-based cancer immunotherapy: A comprehensive review. Pathol Res Pract 2024; 262:155518. [PMID: 39146830 DOI: 10.1016/j.prp.2024.155518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/28/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
Currently, CAR-T cell therapy relies on an individualized manufacturing process in which patient's own T cells are infused back into patients after being engineered and expanded ex vivo. Despite the astonishing outcomes of autologous CAR-T cell therapy, this approach is endowed with several limitations and drawbacks, such as high cost and time-consuming manufacturing process. Switching the armature of CAR-T cell therapy from autologous settings to allogeneic can overcome several bottlenecks of the current approach. Nevertheless, the use of allogeneic CAR-T cells is limited by the risk of life-threatening GvHD. Thus, in recent years, developing a method to move CAR-T cell therapy to allogeneic settings without the risk of GvHD has become a hot research topic in this field. Since the alloreactivity of αβ T-cell receptor (TCR) accounts for developing GvHD, several efforts have been made to disrupt endogenous TCR of allogeneic CAR-T cells using gene editing tools to prevent GvHD. Nonetheless, the off-target activity of gene editing tools and their associated genotoxicities, as well as the negative consequences of endogenous TCR disruption, are the main concerns of using this approach. As an alternative, CAR αβ-T cells can be replaced with other types of CAR-engineered cells that are capable of recognizing and killing malignant cells through CAR while avoiding the induction of GvHD. These alternatives include T cell subsets with restricted TCR repertoire (γδ-T, iNKT, virus-specific T, double negative T cells, and MAIT cells), killer cells (NK and CIK cells), non-lymphocytic cells (neutrophils and macrophages), stem/progenitor cells, and cell-free extracellular vesicles. In this review, we discuss how these alternatives can move CAR-based immunotherapy to allogeneic settings to overcome the bottlenecks of autologous manner without the risk of GvHD. We comprehensively discuss the pros and cons of these alternatives over the traditional CAR αβ-T cells in light of their preclinical studies and clinical trials.
Collapse
MESH Headings
- Humans
- Graft vs Host Disease/immunology
- Graft vs Host Disease/prevention & control
- Graft vs Host Disease/therapy
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Immunotherapy, Adoptive/methods
- Neoplasms/therapy
- Neoplasms/immunology
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- T-Lymphocytes/immunology
- Animals
- Gene Editing/methods
- Transplantation, Homologous/methods
Collapse
Affiliation(s)
- Chaozhi Tang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China; Department of Neurology, Xinxiang First Peoples Hospital, Xinxiang 453100, China
| | - Yuling Zhang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
11
|
Karwig L, Moore PF, Alber G, Eschke M. Distinct characteristics of unique immunoregulatory canine non-conventional TCRαβ pos CD4 negCD8α neg double-negative T cell subpopulations. Front Immunol 2024; 15:1439213. [PMID: 39185407 PMCID: PMC11341405 DOI: 10.3389/fimmu.2024.1439213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/12/2024] [Indexed: 08/27/2024] Open
Abstract
Conventional CD4pos regulatory T (Treg) cells characterized by expression of the key transcription factor forkhead box P3 (FoxP3) are crucial to control immune responses, thereby maintaining homeostasis and self-tolerance. Within the substantial population of non-conventional T cell receptor (TCR)αβpos CD4negCD8αneg double-negative (dn) T cells of dogs, a novel FoxP3pos Treg-like subset was described that, similar to conventional CD4pos Treg cells, is characterized by high expression of CD25. Noteworthy, human and murine TCRαβpos regulatory dn T cells lack FoxP3. Immunosuppressive capacity of canine dn T cells was hypothesized based on expression of inhibitory molecules (interleukin (IL)-10, cytotoxic T-lymphocyte associated protein 4, CTLA4). Here, to verify their regulatory function, the dnCD25pos (enriched for FoxP3pos Treg-like cells) and the dnCD25neg fraction, were isolated by fluorescence-activated cell sorting from peripheral blood mononuclear cells (PBMC) of Beagle dogs and analyzed in an in vitro suppression assay in comparison to conventional CD4posCD25pos Treg cells (positive control) and CD4posCD25neg T cells (negative control). Canine dnCD25pos T cells suppressed the Concanavalin A-driven proliferation of responder PBMC to a similar extent as conventional CD4posCD25pos Treg cells. Albeit to a lesser extent than FoxP3-enriched dn and CD4posCD25pos populations, even dnCD25neg T cells reduced the proliferation of responder cells. This is remarkable, as dnCD25neg T cells have a FoxP3neg phenotype comparable to non-suppressive CD4posCD25neg T cells. Both, CD25pos and CD25neg dn T cells, can mediate suppression independent of cell-cell contact and do not require additional signals from CD4posCD25neg T cells to secrete inhibitory factors in contrast to CD4posCD25pos T cells. Neutralization of IL-10 completely abrogated the suppression by dnCD25pos and CD4posCD25pos Treg cells in a Transwell™ system, while it only partially reduced suppression by dnCD25neg T cells. Taken together, unique canine non-conventional dnCD25pos FoxP3pos Treg-like cells are potent suppressor cells in vitro. Moreover, inhibition of proliferation of responder T cells by the dnCD25neg fraction indicates suppressive function of a subset of dn T cells even in the absence of FoxP3. The identification of unique immunoregulatory non-conventional dn T cell subpopulations of the dog in vitro is of high relevance, given the immunotherapeutic potential of manipulating regulatory T cell responses in vivo.
Collapse
Affiliation(s)
- Laura Karwig
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Peter F. Moore
- Department of Veterinary Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Gottfried Alber
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Maria Eschke
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| |
Collapse
|
12
|
Dubois A, Jin X, Hooft C, Canovai E, Boelhouwer C, Vanuytsel T, Vanaudenaerde B, Pirenne J, Ceulemans LJ. New insights in immunomodulation for intestinal transplantation. Hum Immunol 2024; 85:110827. [PMID: 38805779 DOI: 10.1016/j.humimm.2024.110827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/08/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
Tolerance is the Holy Grail of solid organ transplantation (SOT) and remains its primary challenge since its inception. In this topic, the seminal contributions of Thomas Starzl at Pittsburgh University outlined foundational principles of graft acceptance and tolerance, with chimerism emerging as a pivotal factor. Immunologically, intestinal transplantation (ITx) poses a unique hurdle due to the inherent characteristics and functions of the small bowel, resulting in increased immunogenicity. This necessitates heavy immunosuppression (IS) while IS drugs side effects cause significant morbidity. In addition, current IS therapies fall short of inducing clinical tolerance and their discontinuation has been proven unattainable in most cases. This underscores the unfulfilled need for immunological modulation to safely reduce IS-related burdens. To address this challenge, the Leuven Immunomodulatory Protocol (LIP), introduced in 2000, incorporates various pro-tolerogenic interventions in both the donor to the recipient, with the aim of facilitating graft acceptance and improving outcome. This review seeks to provide an overview of the current understanding of tolerance in ITx and outline recent advances in this domain.
Collapse
Affiliation(s)
- Antoine Dubois
- Unit of Abdominal Transplantation, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Leuven Intestinal Failure and Transplantation (LIFT), University Hospitals Leuven, Leuven, Belgium; Abdominal Transplant Surgery, Department of Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Xin Jin
- Unit of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium; Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Charlotte Hooft
- Unit of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Emilio Canovai
- Leuven Intestinal Failure and Transplantation (LIFT), University Hospitals Leuven, Leuven, Belgium; Oxford Transplant Centre, Churchill Hospital, Oxford, United Kingdom
| | - Caroline Boelhouwer
- Leuven Intestinal Failure and Transplantation (LIFT), University Hospitals Leuven, Leuven, Belgium
| | - Tim Vanuytsel
- Leuven Intestinal Failure and Transplantation (LIFT), University Hospitals Leuven, Leuven, Belgium; Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing (ChroMetA), KU Leuven, Leuven, Belgium; Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Bart Vanaudenaerde
- Unit of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Jacques Pirenne
- Unit of Abdominal Transplantation, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Leuven Intestinal Failure and Transplantation (LIFT), University Hospitals Leuven, Leuven, Belgium; Abdominal Transplant Surgery, Department of Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Laurens J Ceulemans
- Leuven Intestinal Failure and Transplantation (LIFT), University Hospitals Leuven, Leuven, Belgium; Unit of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium; Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
13
|
Chen X, Hu G, Ning D, Wang D. Exploring gut microbiota's role in rheumatic valve disease: insights from a Mendelian randomization study and mediation analysis. Front Immunol 2024; 15:1362753. [PMID: 38895120 PMCID: PMC11183100 DOI: 10.3389/fimmu.2024.1362753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Background Investigating the relationship between gut microbiota and Rheumatic Valve Disease (RVD) is crucial for understanding the disease's etiology and developing effective interventions. Our study adopts a novel approach to examine the potential causal connections between these factors. Methods Utilizing a two-sample Mendelian Randomization (MR) framework, we incorporated a multi-variable MR (MVMR) strategy to assess the mediatory mechanisms involved. This approach involved analyzing data from the MiBioGen consortium for gut microbiota and the FinnGen for RVD, among other sources. Instrumental variables (IVs) were carefully selected based on rigorous MR principles, and statistical analysis was conducted using bidirectional two-sample MR, such as inverse variance-weighted (IVW), weighted median, MR-Egger regression and MR Steiger Test methods. The MR-PRESSO strategy was employed for outlier detection, and MVMR was used to untangle the complex relationships between multiple microbiota and RVD. Results Our analysis highlighted several gut microbiota classes and families with potential protective effects against RVD, including Lentisphaerae, Alphaproteobacteria, and Streptococcaceae. In contrast, certain genera, such as Eubacterium eligens and Odoribacter, were identified as potential risk factors. The MVMR analysis revealed significant mediation effects of various immune cell traits and biomarkers, such as CD4-CD8- T cells, CD3 on Terminally Differentiated CD8+ T cell and Pentraxin-related protein PTX, elucidating the complex pathways linking gut microbiota to RVD. Conclusion This study underscores the intricate and potentially causal relationship between gut microbiota and RVD, mediated through a range of immune and hormonal factors. The use of MVMR in our methodological approach provides a more comprehensive understanding of these interactions, highlighting the gut microbiota's potential as therapeutic targets in RVD management. Our findings pave the way for further research to explore these complex relationships and develop targeted interventions for RVD.
Collapse
Affiliation(s)
- Xiwei Chen
- The Hospital Affiliated to Medical School of Yangzhou University (Taizhou People's Hospital), Taizhou, Jiangsu, China
| | - Guangwen Hu
- The Hospital Affiliated to Medical School of Yangzhou University (Taizhou People's Hospital), Taizhou, Jiangsu, China
| | - Dong Ning
- Department of Physiology, Human Biology Building, School of Medicine, National University of Ireland (NUI), Galway, Ireland
| | - Daxin Wang
- The Hospital Affiliated to Medical School of Yangzhou University (Taizhou People's Hospital), Taizhou, Jiangsu, China
| |
Collapse
|
14
|
Protschka M, Di Placido D, Moore PF, Büttner M, Alber G, Eschke M. Canine peripheral non-conventional TCRαβ + CD4 -CD8α - double-negative T cells show T helper 2-like and regulatory properties. Front Immunol 2024; 15:1400550. [PMID: 38835756 PMCID: PMC11148280 DOI: 10.3389/fimmu.2024.1400550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/29/2024] [Indexed: 06/06/2024] Open
Abstract
The dog is an important companion animal and also serves as model species for human diseases. Given the central role of T cells in immune responses, a basic understanding of canine conventional T cell receptor (TCR)αβ+ T cells, comprising CD4+ single-positive (sp) T helper (Th) and CD8α+ sp cytotoxic T cell subsets, is available. However, characterization of canine non-conventional TCRαβ+ CD4+CD8α+ double-positive (dp) and TCRαβ+ CD4-CD8α- double-negative (dn) T cells is limited. In this study, we performed a comprehensive analysis of canine dp and dn T cells in comparison with their conventional counterparts. TCRαβ+ T cells from peripheral blood of healthy dogs were sorted according to their CD4/CD8α phenotype into four populations (i.e. CD4+ sp, CD8α+ sp, dp, and dn) and selected surface markers, transcription factors and effector molecules were analyzed ex vivo and after in vitro stimulation by RT-qPCR. Novel characteristics of canine dp T cells were identified, expanding the previously characterized Th1-like phenotype to Th17-like and Th2-like properties. Overall, mRNA expression of various Th cell-associated cytokines (i.e. IFNG, IL17A, IL4, IL13) in dp T cells upon stimulation highlights their versatile immunological potential. Furthermore, we demonstrated that the CD4-CD8α- dn phenotype is stable during in vitro stimulation. Strikingly, dn T cells were found to express highest mRNA levels of type 2 effector cytokines (IL4, IL5, and IL13) upon stimulation. Their strong ability to produce IL-4 was confirmed at the protein level. Upon stimulation, the percentage of IL-4-producing cells was even higher in the non-conventional dn than in the conventional CD4+ sp population. Constitutive transcription of IL1RL1 (encoding IL-33Rα) further supports Th2-like properties within the dn T cell population. These data point to a role of dn T cells in type 2 immunity. In addition, the high potential of dn T cells to transcribe the gene encoding the co-inhibitory receptor CTLA-4 and to produce the inhibitory cytokine IL-10 indicates putative immunosuppressive capacity of this population. In summary, this study reveals important novel aspects of canine non-conventional T cells providing the basis for further studies on their effector and/or regulatory functions to elucidate their role in health and disease.
Collapse
MESH Headings
- Animals
- Dogs
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Th2 Cells/immunology
- CD8 Antigens/metabolism
- CD8 Antigens/immunology
- Cytokines/metabolism
- CD4 Antigens/metabolism
- CD4 Antigens/immunology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Immunophenotyping
- Male
Collapse
Affiliation(s)
- Martina Protschka
- Institute of Immunology, Center for Biotechnology and Biomedicine, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Daniela Di Placido
- Institute of Immunology, Center for Biotechnology and Biomedicine, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Peter F. Moore
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Mathias Büttner
- Institute of Immunology, Center for Biotechnology and Biomedicine, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Gottfried Alber
- Institute of Immunology, Center for Biotechnology and Biomedicine, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Maria Eschke
- Institute of Immunology, Center for Biotechnology and Biomedicine, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| |
Collapse
|
15
|
Minina EP, Dianov DV, Sheetikov SA, Bogolyubova AV. CAR Cells beyond Classical CAR T Cells: Functional Properties and Prospects of Application. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:765-783. [PMID: 38880641 DOI: 10.1134/s0006297924050018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/23/2023] [Accepted: 12/02/2023] [Indexed: 06/18/2024]
Abstract
Chimeric antigen receptors (CARs) are genetically engineered receptors that recognize antigens and activate signaling cascades in a cell. Signal recognition and transmission are mediated by the CAR domains derived from different proteins. T cells carrying CARs against tumor-associated antigens have been used in the development of the CAR T cell therapy, a new approach to fighting malignant neoplasms. Despite its high efficacy in the treatment of oncohematological diseases, CAR T cell therapy has a number of disadvantages that could be avoided by using other types of leukocytes as effector cells. CARs can be expressed in a wide range of cells of adaptive and innate immunity with the emergence or improvement of cytotoxic properties. This review discusses the features of CAR function in different types of immune cells, with a particular focus on the results of preclinical and clinical efficacy studies and the safety of potential CAR cell products.
Collapse
Affiliation(s)
- Elizaveta P Minina
- National Medical Research Centre for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Dmitry V Dianov
- National Medical Research Centre for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Saveliy A Sheetikov
- National Medical Research Centre for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Apollinariya V Bogolyubova
- National Medical Research Centre for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia.
| |
Collapse
|
16
|
Liu H, Liu H, Zhou L, Wen S, Liu T, Ju L, Liu Y. THE RELATIONSHIP BETWEEN CIRCULATING IMMUNE CELL PHENOTYPES AND SEPSIS: A MENDELIAN RANDOMIZATION STUDY. Shock 2024; 61:577-584. [PMID: 38517244 DOI: 10.1097/shk.0000000000002334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
ABSTRACT Objective: The role of immune cells in sepsis remains unclear, and there is some controversy. Here, we aim to systematically assess whether distinct immune cell phenotypes impact the susceptibility to sepsis. Methods: In this study, we harnessed publicly available summary-level data from genome-wide association studies (GWASs). The selection of genetic variations strongly associated with 731 phenotypes of circulating immune cells served as instrumental variables (IVs). Using a two-sample Mendelian randomization (MR) analysis, we investigated the relationships between different immunophenotypes and the occurrence of sepsis, as well as the 28-day mortality. The MR study utilized the inverse variance weighting (IVW) method as the main analytical approach. In addition, we incorporated four other MR methods for supplementary causal inference, including weighted median (WME), MR-Egger regression, simple mode, and weighted mode. Furthermore, the robustness of the results was affirmed through multiple sensitivity analyses. Results: The results of the IVW method indicated that a total of 36 immunophenotypes are associated with the risk of sepsis. We also identified 34 immunophenotypes with a causal association with the 28-day mortality. Interestingly, before multiple testing corrections, 11 immunophenotypes were determined to have consistent causal relationships with both the occurrence of sepsis and the 28-day mortality. Notably, after false discovery rate (FDR) correction, four immunophenotypes were found to be significantly correlated with susceptibility to sepsis: CD45RA- CD4+ %CD4+ (odds ratio [OR], 1.355; 95% confidence interval [CI], 1.139~1.611; P < 0.001, PFDR = 0.192), HLA DR on HLA DR+ NK (OR, 0.818; 95% CI, 0.726~0.922; P = 0.001, PFDR = 0.192), IgD+ CD24+ %B cell (OR, 0.626; 95% CI, 0.473~0.828; P = 0.001, PFDR = 0.192), and TD DN (CD4- CD8-) AC (OR, 0.655; 95% CI, 0.510~0.840; P < 0.001, PFDR = 0.192). Following FDR correction, only one immunophenotype was confirmed to be negatively correlated with the 28-day mortality: CD39 on CD39+ CD8br (OR, 0.820; 95% CI, 0.737~0.912; P < 0.001, PFDR = 0.184). Conclusion: This study, for the first time, has uncovered indicative evidence of a causal relationship between circulating immune cell phenotypes and varying degrees of sepsis through genetic means. These findings underscore the significance of immune cells in the pathogenesis of sepsis.
Collapse
Affiliation(s)
- Hongmei Liu
- Department of Critical Care Medicine, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Hai Liu
- Kunming Medical University, Kunming, Yunnan, China
| | - Li Zhou
- Department of Critical Care Medicine, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Shu Wen
- Department of Intensive Care Unit, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Tiankuang Liu
- Department of Critical Care Medicine, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Linqin Ju
- Department of Critical Care Medicine, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Yiwen Liu
- Department of Critical Care Medicine, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
17
|
Xiao X, Liu H, Qiu X, Chen P, Li X, Wang D, Song G, Cheng Y, Yang L, Qian W. CD19-CAR-DNT cells (RJMty19) in patients with relapsed or refractory large B-cell lymphoma: a phase 1, first-in-human study. EClinicalMedicine 2024; 70:102516. [PMID: 38444429 PMCID: PMC10912040 DOI: 10.1016/j.eclinm.2024.102516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/04/2024] [Accepted: 02/16/2024] [Indexed: 03/07/2024] Open
Abstract
Background Current approved chimeric antigen receptor (CAR) T-cell products are autologous cell therapies that are costly and poorly accessible to patients. We aimed to evaluate the safety and antitumor activity of a novel off-the-shelf anti-CD19 CAR-engineered allogeneic double-negative T cells (RJMty19) in patients with relapsed/refractory large B-cell lymphoma. We report the results from a first-in-human, open-label, single-dose, phase 1 study of allogeneic CD19-specific CAR double-negative T (CAR-DNT) cells. Methods Eligibility criteria included the presence of measurable lesions, at least 2 lines of prior immunochemotherapy, and an ECOG score of 0-1. We evaluated four dose levels (DL) of RJMty19 in a 3 + 3 dose-escalation scheme: 1 × 106, 3 × 106, 9 × 106 and 2 × 107 CAR-DNT cells per kilogram of body weight. All patients received lymphodepleting chemotherapy with fludarabine and cyclophosphamide. The primary endpoints were dose-limiting toxicities (DLTs), incidence of adverse events (AEs), and clinically significant laboratory abnormalities. Secondary endpoints included evaluation of standard cellular pharmacokinetic parameters, immunogenicity, objective response rates (ORR), and disease control rate (DCR) per Lugano 2014 criteria. Findings A total of 12 patients were enrolled between 22 July 2022 and 27 July 2023. Among these patients, 66% were classified as stage IV, 75% had an IPI score of 3 or higher, representing an intermediate risk or worse. The maximum tolerated dose was not reached because no DLT was observed. Four patient experienced grade 1 or 2 cytokine release syndrome and dizziness. The most common AEs were hematologic toxicities, including neutropenia (N = 12, 100%), leukopenia (N = 12, 100%), lymphopenia (N = 10, 83%), thrombocytopenia (N = 6, 50%), febrile neutropenia (N = 3, 25%), and anemia (N = 3, 25%). Seven subjects died till the cut-off date, five of them died of disease progression and two of them died of COVID 19. In all patients (N = 12), the ORR was 25% and CRR was 8.3%. DL1 and DL2 patients benefited less from the therapy (ORR: 17%, N = 1; DCR: 33%, N = 2). However, all DL3 patients achieved disease control (N = 3, 100%), and all DL4 patients achieved objective response (N = 3, 100%). Interpretation Our results demonstrate that CD19-CAR-DNT cells appear to be well tolerated with promising antitumor activity in LBCL patients. Further study of this product with a larger sample size is warranted. This phase 1 study is registered on clinicaltrials.gov (NCT05453669). Funding Wyze Biotech. Co., Ltd.
Collapse
Affiliation(s)
- Xibin Xiao
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hui Liu
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xi Qiu
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Panpan Chen
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xian Li
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dan Wang
- Wyze Biotech Co., Ltd, Zhongshan, Guangdong, China
| | | | - Yu Cheng
- Wyze Biotech Co., Ltd, Zhongshan, Guangdong, China
| | - Liming Yang
- Wyze Biotech Co., Ltd, Zhongshan, Guangdong, China
| | - Wenbin Qian
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
18
|
Li J, Gong Y, Wang Y, Huang H, Du H, Cheng L, Ma C, Cai Y, Han H, Tao J, Li G, Cheng P. Classification of regulatory T cells and their role in myocardial ischemia-reperfusion injury. J Mol Cell Cardiol 2024; 186:94-106. [PMID: 38000204 DOI: 10.1016/j.yjmcc.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is closely related to the final infarct size in acute myocardial infarction (AMI). Therefore, reducing MIRI can effectively improve the prognosis of AMI patients. At the same time, the healing process after AMI is closely related to the local inflammatory microenvironment. Regulatory T cells (Tregs) can regulate various physiological and pathological immune inflammatory responses and play an important role in regulating the immune inflammatory response after AMI. However, different subtypes of Tregs have different effects on MIRI, and the same subtype of Tregs may also have different effects at different stages of MIRI. This article systematically reviews the classification and function of Tregs, as well as the role of various subtypes of Tregs in MIRI. A comprehensive understanding of the role of each subtype of Tregs can help design effective methods to control immune reactions, reduce MIRI, and provide new potential therapeutic options for AMI.
Collapse
Affiliation(s)
- Junlin Li
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Department of Cardiology, The Second People's Hospital of Neijiang, Neijiang 641100, China
| | - Yajun Gong
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yiren Wang
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Huihui Huang
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Huan Du
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Lianying Cheng
- Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Cui Ma
- Department of Mathematics, Army Medical University, Chongqing 400038, China
| | - Yongxiang Cai
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Hukui Han
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Jianhong Tao
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Gang Li
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Panke Cheng
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Chengdu 610072, China.
| |
Collapse
|
19
|
Wang S, Li H, Chen T, Zhou H, Zhang W, Lin N, Yu X, Lou Y, Li B, Yinwang E, Wang Z, Wang K, Xue Y, Qu H, Lin P, Sun H, Teng W, Mou H, Chai X, Cai Z, Ye Z. Human γδ T cells induce CD8 + T cell antitumor responses via antigen-presenting effect through HSP90-MyD88-mediated activation of JNK. Cancer Immunol Immunother 2023; 72:1803-1821. [PMID: 36680568 PMCID: PMC10198898 DOI: 10.1007/s00262-023-03375-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023]
Abstract
Human Vγ9Vδ2 T cells have attracted considerable attention as novel alternative antigen-presenting cells (APCs) with the potential to replace dendritic cells in antitumor immunotherapy owing to their high proliferative capacity and low cost. However, the utility of γδ T cells as APCs to induce CD8+ T cell-mediated antitumor immune response, as well as the mechanism by which they perform APC functions, remains unexplored. In this study, we found that activated Vγ9Vδ2 T cells were capable of inducing robust CD8+ T cell responses in osteosarcoma cells. Activated γδ T cells also effectively suppressed osteosarcoma growth by priming CD8+ T cells in xenograft animal models. Mechanistically, we further revealed that activated γδ T cells exhibited increased HSP90 production, which fed back to upregulate MyD88, followed by JNK activation and a subsequent improvement in CCL5 secretion, leading to enhanced CD8+ T cell cross-priming. Thus, our study suggests that Vγ9Vδ2 T cells represent a promising alternative APC for the development of γδ T cell-based tumor immunotherapy.
Collapse
Affiliation(s)
- Shengdong Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Hengyuan Li
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Tao Chen
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Hao Zhou
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Wenkan Zhang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Nong Lin
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaohua Yu
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Yu Lou
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Binghao Li
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Eloy Yinwang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Zenan Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Keyi Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Yucheng Xue
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Hao Qu
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Peng Lin
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Hangxiang Sun
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Wangsiyuan Teng
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Haochen Mou
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Xupeng Chai
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Zhijian Cai
- Institute of Immunology and Department of Orthopaedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China.
| | - Zhaoming Ye
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China.
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, People's Republic of China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
20
|
Lei T, Wu G, Xu Y, Zhuang W, Lu J, Han S, Zhuang Y, Dong X, Yang H. Peripheral immune cell profiling of double-hit lymphoma by mass cytometry. BMC Cancer 2023; 23:184. [PMID: 36823603 PMCID: PMC9948356 DOI: 10.1186/s12885-023-10657-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Double-hit or Triple-hit lymphoma (DHL/THL) is a subset of high-grade B cell lymphoma harboring rearrangements of MYC and BCL2 and/or BCL6, and usually associate with aggressive profile, while current therapies tend to provide poor clinical outcomes and eventually relapsed. Further explorations of DHL at cellular and molecular levels are in demand to offer guidance for clinical activity. METHODS We collected the peripheral blood of DHL patients and diffused large B cell lymphoma (DLBCL) patients from single institute and converted them into PBMC samples. Mass cytometry was then performed to characterize these samples by 42 antibody markers with samples of healthy people as control. We divided the immune cell subtypes based on the expression profile of surface antigens, and the proportion of each cell subtype was also analyzed. By comparing the data of the DLBCL group and the healthy group, we figured out the distinguished immune cell subtypes of DHL patients according to their abundance and marker expression level. We further analyzed the heterogeneity of DHL samples by pairwise comparison based on clinical characteristics. RESULTS We found double-positive T cells (DPT) cells were in a significantly high percentage in DHL patients, whereas the ratio of double-negative T cells (DNT) was largely reduced in patients. Besides, CD38 was uniquely expressed at a high level on some naïve B cells of DHL patients, which could be a marker for the diagnosis of DHL (distinguishing from DLBCL), or even be a drug target for the treatment of DHL. In addition, we illustrated the heterogeneity of DHL patients in terms of immune cell landscape, and highlighted TP53 as a major factor that contributes to the heterogeneity of the T cells profile. CONCLUSION Our study demonstrated the distinct peripheral immune cell profile of DHL patients by contrast to DLBCL patients and healthy people, as well as the heterogeneity within the DHL group, which could provide valuable guidance for the diagnosis and treatment of DHL.
Collapse
Affiliation(s)
- Tao Lei
- grid.410726.60000 0004 1797 8419Department of Lymphoma, Institute of Basic Medicine and Cancer (IBMC), The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of Sciences, Hangzhou, P. R. China
| | - Gongqiang Wu
- grid.268099.c0000 0001 0348 3990Department of Hematology, Dongyang People’s Hospital, Dongyang Hospital Affiliated to Wenzhou Medical University, Dongyang, Zhejiang P. R. China
| | - Yongjin Xu
- grid.410726.60000 0004 1797 8419Department of Lymphoma, Institute of Basic Medicine and Cancer (IBMC), The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of Sciences, Hangzhou, P. R. China
| | - Weihao Zhuang
- grid.13402.340000 0004 1759 700XHangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P. R. China
| | - Jialiang Lu
- grid.13402.340000 0004 1759 700XHangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P. R. China
| | - Shuiyun Han
- grid.410726.60000 0004 1797 8419Department of Lymphoma, Institute of Basic Medicine and Cancer (IBMC), The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of Sciences, Hangzhou, P. R. China
| | - Yuxin Zhuang
- grid.13402.340000 0004 1759 700XHangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P. R. China
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P. R. China. .,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, P. R. China. .,Cancer Center, Zhejiang University, Hangzhou, P. R. China.
| | - Haiyan Yang
- Department of Lymphoma, Institute of Basic Medicine and Cancer (IBMC), The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of Sciences, Hangzhou, P. R. China.
| |
Collapse
|
21
|
Snelgrove SL, Susanto O, Yeung L, Hall P, Norman MU, Corbett AJ, Kitching AR, Hickey MJ. T-cell receptor αβ + double-negative T cells in the kidney are predominantly extravascular and increase in abundance in response to ischemia-reperfusion injury. Immunol Cell Biol 2023; 101:49-64. [PMID: 36222375 PMCID: PMC10953373 DOI: 10.1111/imcb.12595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 01/03/2023]
Abstract
T-cell receptor+ CD4- CD8- double-negative (DN) T cells are a population of T cells present in low abundance in blood and lymphoid organs, but enriched in various organs including the kidney. Despite burgeoning interest in these cells, studies examining their abundance in the kidney have reported conflicting results. Here we developed a flow cytometry strategy to clearly segregate DN T cells from other immune cells in the mouse kidney and used it to characterize their phenotype and response in renal ischemia-reperfusion injury (IRI). These experiments revealed that in the healthy kidney, most DN T cells are located within the renal parenchyma and exhibit an effector memory phenotype. In response to IRI, the number of renal DN T cells is unaltered after 24 h, but significantly increased by 72 h. This increase is not related to alterations in proliferation or apoptosis. By contrast, adoptive transfer studies indicate that circulating DN T cells undergo preferential recruitment to the postischemic kidney. Furthermore, DN T cells show the capacity to upregulate CD8, both in vivo following adoptive transfer and in response to ex vivo activation. Together, these findings provide novel insights regarding the phenotype of DN T cells in the kidney, including their predominant extravascular location, and show that increases in their abundance in the kidney following IRI occur in part as a result of increased recruitment from the circulation. Furthermore, the observation that DN T cells can upregulate CD8 in vivo has important implications for detection and characterization of DN T cells in future studies.
Collapse
Affiliation(s)
- Sarah L Snelgrove
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVICAustralia
| | - Olivia Susanto
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVICAustralia
| | - Louisa Yeung
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVICAustralia
| | - Pamela Hall
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVICAustralia
| | - M Ursula Norman
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVICAustralia
| | - Alexandra J Corbett
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and ImmunityThe University of MelbourneMelbourneVICAustralia
| | - A Richard Kitching
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVICAustralia
- Departments of Nephrology and Paediatric NephrologyMonash Medical CentreClaytonVICAustralia
| | - Michael J Hickey
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVICAustralia
| |
Collapse
|
22
|
Marrero YT, Suárez VM, Abraham CMM, Hernández IC, Ramos EH, Domínguez GD, Pérez YD, Zamora MCR, Pita AMS, Guerra LFH. Peripheral double negative T: A look at senescent Cubans. Exp Gerontol 2023; 171:112006. [PMID: 36334893 DOI: 10.1016/j.exger.2022.112006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Age-related changes in the immune system are called immunosenescence. Within the T lymphocytes is the subpopulation of double negative (DNT) peripheral lymphocytes that are immunomodulators of the immune response, based on their ability to suppress the functions of simple positive T cells and their cytotoxicity for tumor cells and those infected by viruses. OBJECTIVE To determine the frequency of peripheral DNT lymphocytes in older Cuban adults. METHODS A cross-sectional study was carried out in 30 older adults, residents in Cuba. DNT lymphocytes in peripheral blood were quantified by flow cytometry. A Beckman Coulter Gallios flow cytometer was used for data reading and analysis. Percentage values mean and standard deviation were used. The Chi-square was used to relate the percentage values of DNT and comorbidities. It was considered statistically significant if p ≤ 0.05. RESULTS There was a predominance of women who represented 70 %. No older adult with low values of DNT lymphocytes was reported. Women with high percentage and absolute values of DNT lymphocytes prevailed in relation to men. In the group ≥80 years, high values in % and absolute values of DNT lymphocytes predominated. The high percentage values of DNT cells were mainly related to cardiovascular disease, and predominated in the elderly of ≥80 years old; who presented respiratory and skin infections, fundamentally. The percentage normal value in the group < 80 years was significant (p = 0.0198). The Chi-square value was 0,5995. CONCLUSIONS Most older adults who exhibited high percentage and absolute values of DNT lymphocytes, or a tendency to them, had some associated comorbidity, an idea that suggests that DNT cells participate in immune surveillance, defense and homeostasis based on their double identity, that is, its pathogenic or immunosuppressive phenotype according to the specific immunological microenvironment.
Collapse
Affiliation(s)
- Yenisey Triana Marrero
- Department of Immunology, "José Manuel Ballester Santovenia" Institute of Hematology and Immunology, Calle 19 e/8 y 10, PO Box 8070, Vedado, CP 10800 Havana, Cuba.
| | - Vianed Marsán Suárez
- Department of Immunology, "José Manuel Ballester Santovenia" Institute of Hematology and Immunology, Calle 19 e/8 y 10, PO Box 8070, Vedado, CP 10800 Havana, Cuba.
| | - Consuelo Milagros Macías Abraham
- Department of Immunology, "José Manuel Ballester Santovenia" Institute of Hematology and Immunology, Calle 19 e/8 y 10, PO Box 8070, Vedado, CP 10800 Havana, Cuba.
| | - Imilla Casado Hernández
- Department of Immunology, "José Manuel Ballester Santovenia" Institute of Hematology and Immunology, Calle 19 e/8 y 10, PO Box 8070, Vedado, CP 10800 Havana, Cuba.
| | - Elizabeth Hernández Ramos
- Department of Immunology, "José Manuel Ballester Santovenia" Institute of Hematology and Immunology, Calle 19 e/8 y 10, PO Box 8070, Vedado, CP 10800 Havana, Cuba.
| | - Gabriela Díaz Domínguez
- Department of Immunology, "José Manuel Ballester Santovenia" Institute of Hematology and Immunology, Calle 19 e/8 y 10, PO Box 8070, Vedado, CP 10800 Havana, Cuba.
| | - Yaneisy Duarte Pérez
- Department of Immunology, "José Manuel Ballester Santovenia" Institute of Hematology and Immunology, Calle 19 e/8 y 10, PO Box 8070, Vedado, CP 10800 Havana, Cuba.
| | | | - Ana María Simón Pita
- Department of Immunology, "José Manuel Ballester Santovenia" Institute of Hematology and Immunology, Calle 19 e/8 y 10, PO Box 8070, Vedado, CP 10800 Havana, Cuba.
| | | |
Collapse
|
23
|
Sanders JM, Jeyamogan S, Mathew JM, Leventhal JR. Foxp3+ regulatory T cell therapy for tolerance in autoimmunity and solid organ transplantation. Front Immunol 2022; 13:1055466. [PMID: 36466912 PMCID: PMC9714335 DOI: 10.3389/fimmu.2022.1055466] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/02/2022] [Indexed: 08/03/2023] Open
Abstract
Regulatory T cells (Tregs) are critical for tolerance in humans. The exact mechanisms by which the loss of peripheral tolerance leads to the development of autoimmunity and the specific role Tregs play in allograft tolerance are not fully understood; however, this population of T cells presents a unique opportunity in the development of targeted therapeutics. In this review, we discuss the potential roles of Foxp3+ Tregs in the development of tolerance in transplantation and autoimmunity, and the available data regarding their use as a treatment modality.
Collapse
Affiliation(s)
- Jes M. Sanders
- Department of Surgery, Comprehensive Transplant Center Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Shareni Jeyamogan
- Department of Surgery, Comprehensive Transplant Center Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - James M. Mathew
- Department of Surgery, Comprehensive Transplant Center Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Simpson Querrey Institute for BioNanotechnology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Joseph R. Leventhal
- Department of Surgery, Comprehensive Transplant Center Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Simpson Querrey Institute for BioNanotechnology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
24
|
Huang EE, Zhang N, Ganio EA, Shen H, Li X, Ueno M, Utsunomiya T, Maruyama M, Gao Q, Su N, Yao Z, Yang F, Gaudillière B, Goodman SB. Differential dynamics of bone graft transplantation and mesenchymal stem cell therapy during bone defect healing in a murine critical size defect. J Orthop Translat 2022; 36:64-74. [PMID: 35979174 PMCID: PMC9357712 DOI: 10.1016/j.jot.2022.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/22/2022] [Accepted: 05/27/2022] [Indexed: 10/24/2022] Open
Abstract
Background A critical size bone defect is a clinical scenario in which bone is lost or excised due to trauma, infection, tumor, or other causes, and cannot completely heal spontaneously. The most common treatment for this condition is autologous bone grafting to the defect site. However, autologous bone graft is often insufficient in quantity or quality for transplantation to these large defects. Recently, tissue engineering methods using mesenchymal stem cells (MSCs) have been proposed as an alternative treatment. However, the underlying biological principles and optimal techniques for tissue regeneration of bone using stem cell therapy have not been completely elucidated. Methods In this study, we compare the early cellular dynamics of healing between bone graft transplantation and MSC therapy in a murine chronic femoral critical-size bone defect. We employ high-dimensional mass cytometry to provide a comprehensive view of the differences in cell composition, stem cell functionality, and immunomodulatory activity between these two treatment methods one week after transplantation. Results We reveal distinct cell compositions among tissues from bone defect sites compared with original bone graft, show active recruitment of MSCs to the bone defect sites, and demonstrate the phenotypic diversity of macrophages and T cells in each group that may affect the clinical outcome. Conclusion Our results provide critical data and future directions on the use of MSCs for treating critical size defects to regenerate bone.Translational Potential of this article: This study showed systematic comparisons of the cellular and immunomodulatory profiles among different interventions to improve the healing of the critical-size bone defect. The results provided potential strategies for designing robust therapeutic interventions for the unmet clinical need of treating critical-size bone defects.
Collapse
Affiliation(s)
- Elijah Ejun Huang
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Ning Zhang
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Edward A. Ganio
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Huaishuang Shen
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Xueping Li
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Masaya Ueno
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Takeshi Utsunomiya
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Masahiro Maruyama
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Qi Gao
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Ni Su
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Zhenyu Yao
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Fan Yang
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Brice Gaudillière
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Stuart B. Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
25
|
Bafor EE, Valencia JC, Young HA. Double Negative T Regulatory Cells: An Emerging Paradigm Shift in Reproductive Immune Tolerance? Front Immunol 2022; 13:886645. [PMID: 35844500 PMCID: PMC9283768 DOI: 10.3389/fimmu.2022.886645] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Immune regulation of female reproductive function plays a crucial role in fertility, as alterations in the relationship between immune and reproductive processes result in autoimmune subfertility or infertility. The breakdown of immune tolerance leads to ovulation dysfunction, implantation failure, and pregnancy loss. In this regard, immune cells with regulatory activities are essential to restore self-tolerance. Apart from regulatory T cells, double negative T regulatory cells (DNTregs) characterized by TCRαβ+/γδ+CD3+CD4–CD8– (and negative for natural killer cell markers) are emerging as effector cells capable of mediating immune tolerance in the female reproductive system. DNTregs are present in the female reproductive tract of humans and murine models. However, their full potential as immune regulators is evolving, and studies so far indicate that DNTregs exhibit features that can also maintain tolerance in the female reproductive microenvironment. This review describes recent progress on the presence, role and mechanisms of DNTregs in the female reproductive system immune regulation and tolerance. In addition, we address how DNTregs can potentially provide a paradigm shift from the known roles of conventional regulatory T cells and immune tolerance by maintaining and restoring balance in the reproductive microenvironment of female fertility.
Collapse
Affiliation(s)
- Enitome E Bafor
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Julio C Valencia
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Howard A Young
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| |
Collapse
|
26
|
Lei H, Tian M, Zhang X, Liu X, Wang B, Wu R, Lv Y. Expansion of Double-Negative T Cells in Patients before Liver Transplantation Correlates with Post-Transplant Infections. J Clin Med 2022; 11:3502. [PMID: 35743569 PMCID: PMC9225480 DOI: 10.3390/jcm11123502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 02/04/2023] Open
Abstract
Liver transplantation (LTx) is currently the only effective therapy for patients with end-stage liver diseases, but post-transplant infection is a key issue for morbidity and mortality. In this study, we found that pre-transplant patients with an expansion of double-negative T (DNT) cells (CD3+CD4-CD8- T cells) had an increased incidence of infections within the first 6 months after LTx. These DNT cells also negatively correlated with their CD4/CD8 ratio. Compared to patients who had no infections after LTx, these DNT cells expressed more CD25, especially in the memory compartment. The receiver operating characteristic (ROC) analysis showed that the threshold area under the ROC curve of DNT cells which could be used to distinguish LTx patients with post-transplant infections from patients without infections after LTx was 0.8353 (95% CI: 0.6591-1.000). The cut-off for the pre-LTx DNT cell level was 11.35%. Although patients with post-transplant infections had decreased levels of CD4/CD8 T cells, CD8+ T cells in these patients were more exhausted, with higher PD-1 expression and lower IFNγ secretion. The increased levels of DNT cells in patients with post-transplant infections were still observed 2 weeks after LTx, with higher proportions of memory DNT cells. In conclusion, increased levels of DNT cells in pre-LTx patients may be valuable for the prognosis of post-transplant infections, especially within the first 6 months after LTx.
Collapse
Affiliation(s)
- Hong Lei
- Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Shaanxi Institute for Pediatric Diseases, The Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an 710003, China;
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China;
| | - Min Tian
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (M.T.); (X.Z.); (X.L.); (B.W.)
| | - Xiaogang Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (M.T.); (X.Z.); (X.L.); (B.W.)
| | - Xuemin Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (M.T.); (X.Z.); (X.L.); (B.W.)
| | - Bo Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (M.T.); (X.Z.); (X.L.); (B.W.)
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China;
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China;
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (M.T.); (X.Z.); (X.L.); (B.W.)
| |
Collapse
|
27
|
Vasic D, Lee JB, Leung Y, Khatri I, Na Y, Abate-Daga D, Zhang L. Allogeneic double-negative CAR-T cells inhibit tumor growth without off-tumor toxicities. Sci Immunol 2022; 7:eabl3642. [PMID: 35452255 DOI: 10.1126/sciimmunol.abl3642] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The development of autologous chimeric antigen receptor T (CAR-T) cell therapies has revolutionized cancer treatment. Nevertheless, the delivery of CAR-T cell therapy faces challenges, including high costs, lengthy production times, and manufacturing failures. To overcome this, attempts have been made to develop allogeneic CAR-T cells using donor-derived conventional CD4+ or CD8+ T cells (Tconvs), but severe graft-versus-host disease (GvHD) and host immune rejection have made this challenging. CD3+CD4-CD8- double-negative T cells (DNTs) are a rare subset of mature T cells shown to fulfill the requirements of an off-the-shelf cellular therapy, including scalability, cryopreservability, donor-independent anticancer function, resistance to rejection, and no observed off-tumor toxicity including GvHD. To overcome the challenges faced with CAR-Tconvs, we evaluated the feasibility, safety, and efficacy of using healthy donor-derived allogeneic DNTs as a CAR-T cell therapy platform. We successfully transduced DNTs with a second-generation anti-CD19-CAR (CAR19) without hampering their endogenous characteristics or off-the-shelf properties. CAR19-DNTs induced antigen-specific cytotoxicity against B cell acute lymphoblastic leukemia (B-ALL). In addition, CAR19-DNTs showed effective infiltration and tumor control against lung cancer genetically modified to express CD19 in xenograft models. CAR19-DNT efficacy was comparable with that of CAR19-Tconvs. However, unlike CAR19-Tconvs, CAR19-DNTs did not cause alloreactivity or xenogeneic GvHD-related mortality in xenograft models. These studies demonstrate the potential of using allogeneic DNTs as a platform for CAR technology to provide a safe, effective, and patient-accessible CAR-T cell treatment option.
Collapse
Affiliation(s)
- Daniel Vasic
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Jong Bok Lee
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Yuki Leung
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Ismat Khatri
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Yoosu Na
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Daniel Abate-Daga
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Li Zhang
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Wu Z, Zheng Y, Sheng J, Han Y, Yang Y, Pan H, Yao J. CD3 +CD4 -CD8 - (Double-Negative) T Cells in Inflammation, Immune Disorders and Cancer. Front Immunol 2022; 13:816005. [PMID: 35222392 PMCID: PMC8866817 DOI: 10.3389/fimmu.2022.816005] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/21/2022] [Indexed: 12/28/2022] Open
Abstract
The crucial role of CD4+ and CD8+ T cells in shaping and controlling immune responses during immune disease and cancer development has been well established and used to achieve marked clinical benefits. CD3+CD4-CD8- double-negative (DN) T cells, although constituting a rare subset of peripheral T cells, are gaining interest for their roles in inflammation, immune disease and cancer. Herein, we comprehensively review the origin, distribution and functions of this unique T cell subgroup. First, we focused on characterizing multifunctional DN T cells in various immune responses. DN regulatory T cells have the capacity to prevent graft-versus-host disease and have therapeutic value for autoimmune disease. T helper-like DN T cells protect against or promote inflammation and virus infection depending on the specific settings and promote certain autoimmune disease. Notably, we clarified the role of DN tumor-infiltrating lymphocytes and outlined the potential for malignant proliferation of DN T cells. Finally, we reviewed the recent advances in the applications of DN T cell-based therapy for cancer. In conclusion, a better understanding of the heterogeneity and functions of DN T cells may help to develop DN T cells as a potential therapeutic tool for inflammation, immune disorders and cancer.
Collapse
Affiliation(s)
- Zhiheng Wu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yu Zheng
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jin Sheng
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yicheng Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yanyan Yang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Junlin Yao
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
29
|
Velikkakam T, Gollob KJ, Dutra WO. Double-negative T cells: Setting the stage for disease control or progression. Immunology 2022; 165:371-385. [PMID: 34939192 PMCID: PMC10626195 DOI: 10.1111/imm.13441] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 12/15/2021] [Indexed: 11/30/2022] Open
Abstract
Double-negative (DN) T cells are present at relatively low frequencies in human peripheral blood, and are characterized as expressing the alpha-beta or gamma-delta T-cell receptor (TCR), but not the CD4 nor the CD8 co-receptors. Despite their low frequencies, these cells are potent producers of cytokines and, thus, are key orchestrators of immune responses. DN T cells were initially associated with induction of peripheral immunological tolerance and immunomodulatory activities related to disease prevention. However, other studies demonstrated that these cells can also display effector functions associated with pathology development. This apparent contradiction highlighted the heterogeneity of the DN T-cell population. Here, we review phenotypic and functional characteristics of DN T cells, emphasizing their role in human diseases. The need for developing biomarkers to facilitate the translation of studies from animal models to humans will also be discussed. Finally, we will examine DN T cells as promising therapeutic targets to prevent or inhibit human disease development.
Collapse
Affiliation(s)
- Teresiama Velikkakam
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Pós-graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Kenneth J. Gollob
- Hospital Israelita Albert Einsten, São Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais – INCT-DT, Belo Horizonte, Brazil
| | - Walderez Ornelas Dutra
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Pós-graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais – INCT-DT, Belo Horizonte, Brazil
| |
Collapse
|
30
|
Chen X, Wang D, Zhu X. Application of double-negative T cells in haematological malignancies: recent progress and future directions. Biomark Res 2022; 10:11. [PMID: 35287737 PMCID: PMC8919567 DOI: 10.1186/s40364-022-00360-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/26/2022] [Indexed: 12/16/2022] Open
Abstract
Haematologic malignancies account for a large proportion of cancers worldwide. The high occurrence and mortality of haematologic malignancies create a heavy social burden. Allogeneic haematopoietic stem cell transplantation is widely used in the treatment of haematologic malignancies. However, graft-versus-host disease and relapse after allogeneic haematopoietic stem cell transplantation are inevitable. An emerging treatment method, adoptive cellular therapy, has been effectively used in the treatment of haematologic malignancies. T cells, natural killer (NK) cells and tumour-infiltrating lymphocytes (TILs) all have great potential in therapeutic applications, and chimeric antigen receptor T (CAR-T) cell therapy especially has potential, but cytokine release syndrome and off-target effects are common. Efficient anticancer measures are urgently needed. In recent years, double-negative T cells (CD3+CD4-CD8-) have been found to have great potential in preventing allograft/xenograft rejection and inhibiting graft-versus-host disease. They also have substantial ability to kill various cell lines derived from haematologic malignancies in an MHC-unrestricted manner. In addition, healthy donor expanded double-negative T cells retain their antitumour abilities and ability to inhibit graft-versus-host disease after cryopreservation under good manufacturing practice (GMP) conditions, indicating that double-negative T cells may be able to be used as an off-the-shelf product. In this review, we shed light on the potential therapeutic ability of double-negative T cells in treating haematologic malignancies. We hope to exploit these cells as a novel therapy for haematologic malignancies.
Collapse
Affiliation(s)
- Xingchi Chen
- Department of hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.,Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.,Anhui Provincial Key Laboratory of Blood Research and Applications, Hefei, 230001, Anhui, China
| | - Dongyao Wang
- Department of hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.,Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.,Anhui Provincial Key Laboratory of Blood Research and Applications, Hefei, 230001, Anhui, China
| | - Xiaoyu Zhu
- Department of hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China. .,Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China. .,Anhui Provincial Key Laboratory of Blood Research and Applications, Hefei, 230001, Anhui, China.
| |
Collapse
|
31
|
Li C, Du X, Shen Z, Wei Y, Wang Y, Han X, Jin H, Zhang C, Li M, Zhang Z, Wang S, Zhang D, Sun G. The Critical and Diverse Roles of CD4 -CD8 - Double Negative T Cells in Nonalcoholic Fatty Liver Disease. Cell Mol Gastroenterol Hepatol 2022; 13:1805-1827. [PMID: 35247631 PMCID: PMC9059101 DOI: 10.1016/j.jcmgh.2022.02.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Hepatic inflammation is a hallmark of nonalcoholic fatty liver disease (NAFLD). Double negative T (DNT) cells are a unique subset of T lymphocytes that do not express CD4, CD8, or natural killer cell markers, and studies have suggested that DNT cells play critical and diverse roles in the immune system. However, the role of intrahepatic DNT cells in NAFLD is largely unknown. METHODS The proportions and RNA transcription profiling of intrahepatic DNT cells were compared between C57BL/6 mice fed with control diet or methionine-choline-deficient diet for 5 weeks. The functions of DNT cells were tested in vitro and in vivo. RESULTS The proportion of intrahepatic DNT cells was significantly increased in mice with diet-induced NAFLD. In NAFLD mice, the proportion of intrahepatic TCRγδ+ DNT cells was increased along with elevated interleukin (IL) 17A; in contrast, the percentage of TCRαβ+ DNT cells was decreased, accompanied by reduced granzyme B (GZMB). TCRγδ+ DNT cell depletion resulted in lowered liver IL17A levels and significantly alleviated NAFLD. Adoptive transfer of intrahepatic TCRαβ+ DNT cells from control mice increased intrahepatic CD4 and CD8 T cell apoptosis and inhibited NAFLD progression. Furthermore, we revealed that adrenic acid and arachidonic acid, harmful fatty acids that were enriched in the liver of the mice with NAFLD, could induce apoptosis of TCRαβ+ DNT cells and inhibit their immunosuppressive function and nuclear factor kappa B (NF-κB) or AKT signaling pathway activity. However, arachidonic acid facilitated IL17A secretion by TCRγδ+ DNT cells, and the NF-κB signaling pathway was involved. Finally, we also confirmed the variation of intrahepatic TCRαβ+ DNT cells and TCRγδ+ DNT cells in humans. CONCLUSIONS During NAFLD progression, TCRγδ+ DNT cells enhance IL17A secretion and aggravate liver inflammation, whereas TCRαβ+ DNT cells decrease GZMB production and lead to weakened immunoregulatory function. Shifting of balance from TCRγδ+ DNT cell response to one that favors TCRαβ+ DNT regulation would be beneficial for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Changying Li
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing,Beijing Clinical Research Institute, Beijing,National Clinical Research Center for Digestive Diseases, Beijing
| | - Xiaonan Du
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing,Beijing Clinical Research Institute, Beijing,National Clinical Research Center for Digestive Diseases, Beijing
| | - Zongshan Shen
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing,Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing, China
| | - Yunxiong Wei
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing,Beijing Clinical Research Institute, Beijing,National Clinical Research Center for Digestive Diseases, Beijing
| | - Yaning Wang
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing,Beijing Clinical Research Institute, Beijing,National Clinical Research Center for Digestive Diseases, Beijing
| | - Xiaotong Han
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing,Beijing Clinical Research Institute, Beijing,National Clinical Research Center for Digestive Diseases, Beijing
| | - Hua Jin
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing,Beijing Clinical Research Institute, Beijing,National Clinical Research Center for Digestive Diseases, Beijing
| | - Chunpan Zhang
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing,Beijing Clinical Research Institute, Beijing,National Clinical Research Center for Digestive Diseases, Beijing
| | - Mengyi Li
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing,National Clinical Research Center for Digestive Diseases, Beijing
| | - Zhongtao Zhang
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing,National Clinical Research Center for Digestive Diseases, Beijing
| | - Songlin Wang
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing,Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing, China
| | - Dong Zhang
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing,Beijing Clinical Research Institute, Beijing,National Clinical Research Center for Digestive Diseases, Beijing,Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing, China,Dong Zhang, PhD, Capital Medical University Affiliated Beijing Friendship Hospital, Yongan Street 95#, Xicheng District, Beijing 100050, China.
| | - Guangyong Sun
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing,Beijing Clinical Research Institute, Beijing,National Clinical Research Center for Digestive Diseases, Beijing,Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing, China,Correspondence Address correspondence to: Guangyong Sun, PhD, Capital Medical University Affiliated Beijing Friendship Hospital, Yongan Street 95#, Xicheng District, Beijing 100050, China. fax: (8610)63139421.
| |
Collapse
|
32
|
Dubouchet L, Todorov H, Seurinck R, Vallet N, Van Gassen S, Corneau A, Blanc C, Zouali H, Boland A, Deleuze JF, Ingram B, de Latour RP, Saeys Y, Socié G, Michonneau D. Operational tolerance after hematopoietic stem cell transplantation is characterized by distinct transcriptional, phenotypic, and metabolic signatures. Sci Transl Med 2022; 14:eabg3083. [PMID: 35196024 DOI: 10.1126/scitranslmed.abg3083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The mechanisms underlying operational tolerance after hematopoietic stem cell transplantation in humans are poorly understood. We studied two independent cohorts of patients who underwent allogeneic hematopoietic stem cell transplantation from human leukocyte antigen-identical siblings. Primary tolerance was associated with long-lasting reshaping of the recipients' immune system compared to their healthy donors with an increased proportion of regulatory T cell subsets and decreased T cell activation, proliferation, and migration. Transcriptomics profiles also identified a role for nicotinamide adenine dinucleotide biosynthesis in the regulation of immune cell functions. We then compared individuals with operational tolerance and nontolerant recipients at the phenotypic, transcriptomic, and metabolomic level. We observed alterations centered on CD38+-activated T and B cells in nontolerant patients. In tolerant patients, cell subsets with regulatory functions were prominent. RNA sequencing analyses highlighted modifications in the tolerant patients' transcriptomic profiles, particularly with overexpression of the ectoenzyme NT5E (encoding CD73), which could counterbalance CD38 enzymatic functions by producing adenosine. Further, metabolomic analyses suggested a central role of androgens in establishing operational tolerance. These data were confirmed using an integrative approach to evaluating the immune landscape associated with operational tolerance. Thus, balance between a CD38-activated immune state and CD73-related production of adenosine may be a key regulator of operational tolerance.
Collapse
Affiliation(s)
| | - Helena Todorov
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, 9052 Ghent, Belgium.,Department of Applied Mathematics, Computer Science and Statistics, Ghent University, 9052 Ghent, Belgium
| | - Ruth Seurinck
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, 9052 Ghent, Belgium.,Department of Applied Mathematics, Computer Science and Statistics, Ghent University, 9052 Ghent, Belgium
| | | | - Sofie Van Gassen
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, 9052 Ghent, Belgium.,Department of Applied Mathematics, Computer Science and Statistics, Ghent University, 9052 Ghent, Belgium
| | - Aurélien Corneau
- Plateforme de Cytométrie de la Pitié-Salpétrière (CyPS), UMS037-PASS, Sorbonne Université-Faculté de Médecine, F-75013 Paris, France
| | - Catherine Blanc
- Plateforme de Cytométrie de la Pitié-Salpétrière (CyPS), UMS037-PASS, Sorbonne Université-Faculté de Médecine, F-75013 Paris, France
| | - Habib Zouali
- Centre d'étude du polymorphisme humain, 75010 Paris, France
| | - Anne Boland
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, 91057 Evry, France
| | - Jean-François Deleuze
- Centre d'étude du polymorphisme humain, 75010 Paris, France.,Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, 91057 Evry, France
| | | | - Regis Peffault de Latour
- Hematology Transplantation, Saint Louis Hospital, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | - Yvan Saeys
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, 9052 Ghent, Belgium.,Department of Applied Mathematics, Computer Science and Statistics, Ghent University, 9052 Ghent, Belgium
| | - Gérard Socié
- Université de Paris, INSERM U976, F-75010 Paris, France.,Hematology Transplantation, Saint Louis Hospital, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | - David Michonneau
- Université de Paris, INSERM U976, F-75010 Paris, France.,Hematology Transplantation, Saint Louis Hospital, 1 Avenue Claude Vellefaux, 75010 Paris, France
| |
Collapse
|
33
|
Ghasemzadeh M, Ghasemzadeh A, Hosseini E. Exhausted NK cells and cytokine storms in COVID-19: Whether NK cell therapy could be a therapeutic choice. Hum Immunol 2022; 83:86-98. [PMID: 34583856 PMCID: PMC8423992 DOI: 10.1016/j.humimm.2021.09.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/17/2021] [Accepted: 09/04/2021] [Indexed: 02/08/2023]
Abstract
The global outbreak of coronavirus-2019 (COVID-19) still claims more lives daily around the world due to the lack of a definitive treatment and the rapid tendency of virus to mutate, which even jeopardizes vaccination efficacy. At the forefront battle against SARS-CoV-2, an effective innate response to the infection has a pivotal role in the initial control and treatment of disease. However, SARS-CoV-2 subtly interrupts the equations of immune responses, disrupting the cytolytic antiviral effects of NK cells, while seriously activating infected macrophages and other immune cells to induce an unleashed "cytokine storm", a dangerous and uncontrollable inflammatory response causing life-threatening symptoms in patients. Notably, the NK cell exhaustion with ineffective cytolytic function against the sources of exaggerated cytokine release, acts as an Achilles' heel which exacerbates the severity of COVID-19. Given this, approaches that improve NK cell cytotoxicity may benefit treatment protocols. As a suggestion, adoptive transfer of NK or CAR-NK cells with proper cytotolytic potentials and the lowest capacity of cytokine-release (for example CD56dim NK cells brightly express activating receptors), to severe COVID-19 patients may provide an effective cure especially in cases suffering from cytokine storms. More intriguingly, the ongoing evidence for persistent clonal expansion of NK memory cells characterized by an activating phenotype in response to viral infections, can benefit the future studies on vaccine development and adoptive NK cell therapy in COVID-19. Whether vaccinated volunteers or recovered patients can also be considered as suitable candidates for cell donation could be the subject of future research.
Collapse
Affiliation(s)
- Mehran Ghasemzadeh
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | | | - Ehteramolsadat Hosseini
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran; Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia; Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
34
|
Xu S, Ge X, Wang L, Tao Y, Tang D, Deng X, Yang F, Zhang Q, Qi X, Gong L, Yang L. Profiling pharmacokinetics of double-negative T cells and cytokines via a single intravenous administration in NSG mice. Biopharm Drug Dispos 2021; 42:338-347. [PMID: 34138477 DOI: 10.1002/bdd.2295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/06/2021] [Accepted: 05/28/2021] [Indexed: 11/12/2022]
Abstract
This study was intended to delineate the profile of double-negative T cells (DNTs) in NOD.Cg-Prkdcscid Il2rgtm1wj /SzJ mice and cytokines released from DNTs in vivo and in vitro. Total 4 × 107 cells of RC1012 injection per mice were intravenously infused. IFN-γ, TNF-α, IL-1β, IL-2, IL-4, IL-6, IL-10 were measured in vivo and in vitro. A quantitative polymerase chain reaction (PCR) was employed to determine the gene copies of Notch2-NLA per DNT cell from collected organs. Cytokines were significantly increased in vitro (4 h) and in vivo (3 h). DNT cells were distributed into the lung, liver, heart, and kidney earlier, and redistributed to lymphocyte homing spleen and bone marrow, which seemed to frame a two-compartment pharmacokinetics (PK) model but more data are needed to confirm this, and the clearance of DNT cells fell into first-order kinetics.
Collapse
Affiliation(s)
- Shangzhi Xu
- The Center of Research & Development, Ruichuang Biotechnology Company, Shaoxing City, Zhejiang Province, China
| | - Xinyu Ge
- The Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CDSER/SIMM), Shanghai City, China
| | - Liuyang Wang
- The Center of Research & Development, Ruichuang Biotechnology Company, Shaoxing City, Zhejiang Province, China
| | - Yimin Tao
- The Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CDSER/SIMM), Shanghai City, China
| | - Dongmei Tang
- The Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CDSER/SIMM), Shanghai City, China
| | - Xiaojie Deng
- The Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CDSER/SIMM), Shanghai City, China
| | - Fei Yang
- The Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CDSER/SIMM), Shanghai City, China
| | - Qian Zhang
- The Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CDSER/SIMM), Shanghai City, China
| | - Xinming Qi
- The Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CDSER/SIMM), Shanghai City, China
| | - Likun Gong
- The Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CDSER/SIMM), Shanghai City, China
| | - Liming Yang
- The Center of Research & Development, Ruichuang Biotechnology Company, Shaoxing City, Zhejiang Province, China
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Systemic lupus erythematosus (SLE) is a serious autoimmune disease with a wide range of organ involvement. In addition to aberrant B-cell responses leading to autoantibody production, T-cell abnormalities are important in the induction of autoimmunity and the ensuing downstream organ damage. In this article, we present an update on how subsets of CD8+ T cells contribute to SLE pathogenesis. RECENT FINDINGS Reduced cytolytic function of CD8+ T cells not only promotes systemic autoimmunity but also accounts for the increased risk of infections. Additional information suggests that effector functions of tissue CD8+ T cells contribute to organ damage. The phenotypic changes in tissue CD8+ T cells likely arise from exposure to tissue microenvironment and crosstalk with tissue resident cells. Research on pathogenic IL-17-producing double negative T cells also suggests their origin from autoreactive CD8+ T cells, which also contribute to the induction and maintenance of systemic autoimmunity. SUMMARY Reduced CD8+ T-cell effector function illustrates their role in peripheral tolerance in the control of autoimmunity and to the increased risk of infections. Inflammatory cytokine producing double negative T cells and functional defects of regulatory CD8+ T cell both contribute to SLE pathogenesis. Further in depth research on these phenotypic changes are warranted for the development of new therapeutics for people with SLE.
Collapse
|
36
|
Hu SH, Zhang LH, Gao J, Guo JH, Xun XD, Xiang X, Cheng Q, Li Z, Zhu JY. NKG2D Enhances Double-Negative T Cell Regulation of B Cells. Front Immunol 2021; 12:650788. [PMID: 34220808 PMCID: PMC8242353 DOI: 10.3389/fimmu.2021.650788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/02/2021] [Indexed: 01/27/2023] Open
Abstract
Numerous studies reported a small subpopulation of TCRαβ+CD4-CD8- (double-negative) T cells that exert regulatory functions in the peripheral lymphocyte population. However, the origin of these double-negative T (DNT) cells is controversial. Some researchers reported that DNT cells originated from the thymus, and others argued that these cells are derived from peripheral immune induction. We report a possible mechanism for the induction of nonregulatory CD4+ T cells to become regulatory double-negative T (iDNT) cells in vitro. We found that immature bone marrow dendritic cells (CD86+MHC-II- DCs), rather than mature DCs (CD86+MHC-II+), induced high levels of iDNT cells. The addition of an anti-MHC-II antibody to the CD86+MHC-II+ DC group significantly increased induction. These iDNT cells promoted B cell apoptosis and inhibited B cell proliferation and plasma cell formation. A subgroup of iDNT cells expressed NKG2D. Compared to NKG2D- iDNT cells, NKG2D+ iDNT cells released more granzyme B to enhance B cell regulation. This enhancement may function via NKG2D ligands expressed on B cells following lipopolysaccharide stimulation. These results demonstrate that MHC-II impedes induction, and iDNT cells may be MHC independent. NKG2D expression on iDNT cells enhanced the regulatory function of these cells. Our findings elucidate one possible mechanism of the induction of peripheral immune tolerance and provide a potential treatment for chronic allograft rejection in the future.
Collapse
Affiliation(s)
- Shi-Hua Hu
- Department of Hepatobiliary Surgery, Peking University Organ Transplantation Institute, Peking University People's Hospital, Beijing, China
| | - Long-Hui Zhang
- Department of Hepatobiliary Surgery, Peking University Organ Transplantation Institute, Peking University People's Hospital, Beijing, China
| | - Jie Gao
- Department of Hepatobiliary Surgery, Peking University Organ Transplantation Institute, Peking University People's Hospital, Beijing, China
| | - Jing-Heng Guo
- Department of Hepatobiliary Surgery, Peking University Organ Transplantation Institute, Peking University People's Hospital, Beijing, China
| | - Xiao-Dong Xun
- Department of Hepatobiliary Surgery, Peking University Organ Transplantation Institute, Peking University People's Hospital, Beijing, China
| | - Xiao Xiang
- Department of Hepatobiliary Surgery, Peking University Organ Transplantation Institute, Peking University People's Hospital, Beijing, China
| | - Qian Cheng
- Department of Hepatobiliary Surgery, Peking University Organ Transplantation Institute, Peking University People's Hospital, Beijing, China
- Peking University Centre of Liver Cancer Diagnosis and Treatment, Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Peking University People's Hospital, Beijing, China
| | - Zhao Li
- Department of Hepatobiliary Surgery, Peking University Organ Transplantation Institute, Peking University People's Hospital, Beijing, China
- Peking University Centre of Liver Cancer Diagnosis and Treatment, Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Peking University People's Hospital, Beijing, China
| | - Ji-Ye Zhu
- Department of Hepatobiliary Surgery, Peking University Organ Transplantation Institute, Peking University People's Hospital, Beijing, China
- Peking University Centre of Liver Cancer Diagnosis and Treatment, Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Peking University People's Hospital, Beijing, China
| |
Collapse
|
37
|
Yang L, Zhu Y, Tian D, Wang S, Guo J, Sun G, Jin H, Zhang C, Shi W, Gershwin ME, Zhang Z, Zhao Y, Zhang D. Transcriptome landscape of double negative T cells by single-cell RNA sequencing. J Autoimmun 2021; 121:102653. [PMID: 34022742 DOI: 10.1016/j.jaut.2021.102653] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 01/23/2023]
Abstract
CD4 and CD8 coreceptor double negative TCRαβ+ T (DNT) cells are increasingly being recognized for their critical and diverse roles in the immune system. However, their molecular and functional signatures remain poorly understood and controversial. Moreover, the majority of studies are descriptive because of the relative low frequency of cells and non-standardized definition of this lineage. In this study, we performed single-cell RNA sequencing on 28,835 single immune cells isolated from mixed splenocytes of male C57BL/6 mice using strict fluorescence-activated cell sorting. The data was replicated in a subsequent study. Our analysis revealed five transcriptionally distinct naïve DNT cell clusters, which expressed unique sets of genes and primarily performed T helper, cytotoxic and innate immune functions. Anti-CD3/CD28 activation enhanced their T helper and cytotoxic functions. Moreover, in comparison with CD4+, CD8+ T cells and NK cells, Ikzf2 was highly expressed by both naïve and activated cytotoxic DNT cells. In conclusion, we provide a map of the heterogeneity in naïve and active DNT cells, addresses the controversy about DNT cells, and provides potential transcription signatures of DNT cells. The landscape approach herein will eventually become more feasible through newer high throughput methods and will enable clustering data to be fed into a systems analysis approach. Thus the approach should become the "backdrop" of similar studies in the myriad murine models of autoimmunity, potentially highlighting the importance of DNT cells and other minor lineage of cells in immune homeostasis. The clear characterization of functional DNT subsets into helper DNT, cytotoxic DNT and innate DNT will help to better understand the intrinsic roles of different functional DNT subsets in the development and progression of autoimmune diseases and transplant rejection, and thereby may facilitate diagnosis and therapy.
Collapse
Affiliation(s)
- Lu Yang
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China; National Clinical Research Center for Digestive Diseases, Beijing, 100050, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, 100050, China
| | - Yanbing Zhu
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, 100050, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, China; Beijing Clinical Research Institute, Beijing, 100050, China
| | - Dan Tian
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, 100050, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, China; Beijing Clinical Research Institute, Beijing, 100050, China
| | - Song Wang
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, 100050, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, China; Beijing Clinical Research Institute, Beijing, 100050, China
| | - Jincheng Guo
- Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Guangyong Sun
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, 100050, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, China; Beijing Clinical Research Institute, Beijing, 100050, China
| | - Hua Jin
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, 100050, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, China; Beijing Clinical Research Institute, Beijing, 100050, China
| | - Chunpan Zhang
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, 100050, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, China; Beijing Clinical Research Institute, Beijing, 100050, China
| | - Wen Shi
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, 100050, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, China; Beijing Clinical Research Institute, Beijing, 100050, China
| | - M Eric Gershwin
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California Davis, Davis, CA, USA.
| | - Zhongtao Zhang
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China; National Clinical Research Center for Digestive Diseases, Beijing, 100050, China.
| | - Yi Zhao
- Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Dong Zhang
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China; National Clinical Research Center for Digestive Diseases, Beijing, 100050, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, 100050, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, China; Beijing Clinical Research Institute, Beijing, 100050, China.
| |
Collapse
|
38
|
Dejima H, Hu X, Chen R, Zhang J, Fujimoto J, Parra ER, Haymaker C, Hubert SM, Duose D, Solis LM, Su D, Fukuoka J, Tabata K, Pham HHN, Mcgranahan N, Zhang B, Ye J, Ying L, Little L, Gumbs C, Chow CW, Estecio MR, Godoy MCB, Antonoff MB, Sepesi B, Pass HI, Behrens C, Zhang J, Vaporciyan AA, Heymach JV, Scheet P, Lee JJ, Wu J, Futreal PA, Reuben A, Kadara H, Wistuba II, Zhang J. Immune evolution from preneoplasia to invasive lung adenocarcinomas and underlying molecular features. Nat Commun 2021; 12:2722. [PMID: 33976164 PMCID: PMC8113327 DOI: 10.1038/s41467-021-22890-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 03/31/2021] [Indexed: 12/13/2022] Open
Abstract
The mechanism by which anti-cancer immunity shapes early carcinogenesis of lung adenocarcinoma (ADC) is unknown. In this study, we characterize the immune contexture of invasive lung ADC and its precursors by transcriptomic immune profiling, T cell receptor (TCR) sequencing and multiplex immunofluorescence (mIF). Our results demonstrate that anti-tumor immunity evolved as a continuum from lung preneoplasia, to preinvasive ADC, minimally-invasive ADC and frankly invasive lung ADC with a gradually less effective and more intensively regulated immune response including down-regulation of immune-activation pathways, up-regulation of immunosuppressive pathways, lower infiltration of cytotoxic T cells (CTLs) and anti-tumor helper T cells (Th), higher infiltration of regulatory T cells (Tregs), decreased T cell clonality, and lower frequencies of top T cell clones in later-stages. Driver mutations, chromosomal copy number aberrations (CNAs) and aberrant DNA methylation may collectively impinge host immune responses and facilitate immune evasion, promoting the outgrowth of fit subclones in preneoplasia into dominant clones in invasive ADC.
Collapse
Affiliation(s)
- Hitoshi Dejima
- Department of Translational Molecular Pathology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xin Hu
- Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Runzhe Chen
- Department of Thoracic/Head and Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jiexin Zhang
- Department of Bioinformatics & Computational Biology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Junya Fujimoto
- Department of Translational Molecular Pathology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Edwin R Parra
- Department of Translational Molecular Pathology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cara Haymaker
- Department of Translational Molecular Pathology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shawna M Hubert
- Department of Thoracic/Head and Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dzifa Duose
- Department of Translational Molecular Pathology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luisa M Solis
- Department of Translational Molecular Pathology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dan Su
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, China.,Department of Pathology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Junya Fukuoka
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kazuhiro Tabata
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hoa H N Pham
- Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Nicholas Mcgranahan
- Cancer Research United Kingdom-University College London Lung Cancer Centre of Excellence, London, UK
| | - Baili Zhang
- Department of Translational Molecular Pathology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jie Ye
- Department of Thoracic/Head and Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lisha Ying
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, China.,Zhejiang Cancer Research Institute, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Latasha Little
- Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Curtis Gumbs
- Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chi-Wan Chow
- Department of Translational Molecular Pathology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marcos Roberto Estecio
- Department of Epigenetics and Molecular Carcinogenesis, the University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center of Cancer Epigenetics, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Myrna C B Godoy
- Department of Thoracic Imaging, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mara B Antonoff
- Department of Thoracic and Cardiovascular Surgery, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Boris Sepesi
- Department of Thoracic and Cardiovascular Surgery, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Harvey I Pass
- Department of Cardiothoracic Surgery, New York University Langone Medical Center, New York, NY, USA
| | - Carmen Behrens
- Department of Thoracic/Head and Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ara A Vaporciyan
- Department of Thoracic and Cardiovascular Surgery, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul Scheet
- Department of Epidemiology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J Jack Lee
- Department of Biostatistics, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jia Wu
- Department of Thoracic/Head and Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - P Andrew Futreal
- Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexandre Reuben
- Department of Thoracic/Head and Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Humam Kadara
- Department of Translational Molecular Pathology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Jianjun Zhang
- Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Department of Thoracic/Head and Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
39
|
Nakayama M, Hori A, Toyoura S, Yamaguchi SI. Shaping of T Cell Functions by Trogocytosis. Cells 2021; 10:cells10051155. [PMID: 34068819 PMCID: PMC8151334 DOI: 10.3390/cells10051155] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023] Open
Abstract
Trogocytosis is an active process whereby plasma membrane proteins are transferred from one cell to the other cell in a cell-cell contact-dependent manner. Since the discovery of the intercellular transfer of major histocompatibility complex (MHC) molecules in the 1970s, trogocytosis of MHC molecules between various immune cells has been frequently observed. For instance, antigen-presenting cells (APCs) acquire MHC class I (MHCI) from allografts, tumors, and virally infected cells, and these APCs are subsequently able to prime CD8+ T cells without antigen processing via the preformed antigen-MHCI complexes, in a process called cross-dressing. T cells also acquire MHC molecules from APCs or other target cells via the immunological synapse formed at the cell-cell contact area, and this phenomenon impacts T cell activation. Compared with naïve and effector T cells, T regulatory cells have increased trogocytosis activity in order to remove MHC class II and costimulatory molecules from APCs, resulting in the induction of tolerance. Accumulating evidence suggests that trogocytosis shapes T cell functions in cancer, transplantation, and during microbial infections. In this review, we focus on T cell trogocytosis and the related inflammatory diseases.
Collapse
|
40
|
Lee JB, Vasic D, Kang H, Fang KKL, Zhang L. State-of-Art of Cellular Therapy for Acute Leukemia. Int J Mol Sci 2021; 22:ijms22094590. [PMID: 33925571 PMCID: PMC8123829 DOI: 10.3390/ijms22094590] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 12/13/2022] Open
Abstract
With recent clinical breakthroughs, immunotherapy has become the fourth pillar of cancer treatment. Particularly, immune cell-based therapies have been envisioned as a promising treatment option with curative potential for leukemia patients. Hence, an increasing number of preclinical and clinical studies focus on various approaches of immune cell-based therapy for treatment of acute leukemia (AL). However, the use of different immune cell lineages and subsets against different types of leukemia and patient disease statuses challenge the interpretation of the clinical applicability and outcome of immune cell-based therapies. This review aims to provide an overview on recent approaches using various immune cell-based therapies against acute B-, T-, and myeloid leukemias. Further, the apparent limitations observed and potential approaches to overcome these limitations are discussed.
Collapse
MESH Headings
- Acute Disease
- Cell- and Tissue-Based Therapy
- Humans
- Immunotherapy
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/trends
- Killer Cells, Natural/immunology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/therapy
- Leukemia, T-Cell/metabolism
- Leukemia, T-Cell/therapy
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy
- Receptors, Chimeric Antigen/metabolism
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Jong-Bok Lee
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (J.-B.L.); (D.V.); (H.K.); (K.K.-L.F.)
| | - Daniel Vasic
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (J.-B.L.); (D.V.); (H.K.); (K.K.-L.F.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Hyeonjeong Kang
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (J.-B.L.); (D.V.); (H.K.); (K.K.-L.F.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Karen Kai-Lin Fang
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (J.-B.L.); (D.V.); (H.K.); (K.K.-L.F.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Li Zhang
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (J.-B.L.); (D.V.); (H.K.); (K.K.-L.F.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence:
| |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW TCRαβ+CD4-CD8- double-negative T (DNT) cells, a principal subset of mature T lymphocytes, have been closely linked with autoimmune/inflammatory conditions. However, controversy persists regarding their ontogeny and function. Here, we present an overview on DNT cells in different autoimmune diseases to advance a deeper understanding of the contribution of this population to disease pathogenesis. RECENT FINDINGS DNT cells have been characterized in various chronic inflammatory diseases and they have been proposed to display pathogenic or regulatory function. The tissue location of DNT cells and the effector cytokines they produce bespeak to their active involvement in chronic inflammatory diseases. SUMMARY By producing various cytokines, expanded DNT cells in inflamed tissues contribute to the pathogenesis of a variety of autoimmune inflammatory diseases. However, it is unclear whether this population represents a stable lineage consisting of different subsets similar to CD4+ T helper cell subset. Better understanding of the possible heterogeneity and plasticity of DNT cells is needed to reveal interventional therapeutic opportunities.
Collapse
Affiliation(s)
- Hao Li
- Division of Rheumatology and Clinical Immunology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
42
|
Tumor-Infiltrating Lymphoid Cells in Colorectal Cancer Patients with Varying Disease Stages and Microsatellite Instability-High/Stable Tumors. Vaccines (Basel) 2021; 9:vaccines9010064. [PMID: 33477864 PMCID: PMC7832866 DOI: 10.3390/vaccines9010064] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/10/2021] [Accepted: 01/15/2021] [Indexed: 12/24/2022] Open
Abstract
Immune checkpoint inhibition is an effective anti-cancer therapeutic approach but has shown limited efficacy in treating colorectal cancer (CRC) patients. Importantly, immune constituents of the tumor microenvironment (TME) can influence therapy response and cancer progression. We investigated the expression of immune checkpoints (ICs) on lymphoid populations within the CRC TME and compared with cells from normal colon tissues using samples from 50 patients with varying disease stages. We found that the levels of B cells, T cells, and NK cells were similar, IC-expressing CD4+ and CD4+CD8+ double positive T cells were higher, while CD8+ T cells and CD4−CD8− double negative T cells were significantly lower in CRC tumors. Notably, patients with mismatch-repair deficiency/microsatellite instability-high tumors had higher levels of IC-expressing CD4+ and CD8+ T cells than patients with proficient MMR and microsatellite stable tumors. Lastly, The Cancer Genome Atlas Colon Adenocarcinoma datasets showed associations between low expression of selective genes and poorer progression-free interval. Our findings highlight differential expression of ICs on lymphoid cells in CRC tumors in the era of cancer immunotherapy, which at present is solely approved for anti-PD-1 therapy in patients with dMMR/MSI-H tumors. Further investigations into their functionality have potentials for deciphering resistance mechanisms to IC inhibition.
Collapse
|
43
|
Curci C, Picerno A, Chaoul N, Stasi A, De Palma G, Franzin R, Pontrelli P, Castellano G, Pertosa GB, Macchia L, Di Lorenzo VF, Sabbà C, Gallone A, Gesualdo L, Sallustio F. Adult Renal Stem/Progenitor Cells Can Modulate T Regulatory Cells and Double Negative T Cells. Int J Mol Sci 2020; 22:274. [PMID: 33383950 PMCID: PMC7795073 DOI: 10.3390/ijms22010274] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 01/22/2023] Open
Abstract
Adult Renal Stem/Progenitor Cells (ARPCs) have been recently identified in the human kidney and several studies show their active role in kidney repair processes during acute or chronic injury. However, little is known about their immunomodulatory properties and their capacity to regulate specific T cell subpopulations. We co-cultured ARPCs activated by triggering Toll-Like Receptor 2 (TLR2) with human peripheral blood mononuclear cells for 5 days and 15 days and studied their immunomodulatory capacity on T cell subpopulations. We found that activated-ARPCs were able to decrease T cell proliferation but did not affect CD8+ and CD4+ T cells. Instead, Tregs and CD3+ CD4- CD8- double-negative (DN) T cells decreased after 5 days and increased after 15 days of co-culture. In addition, we found that PAI1, MCP1, GM-CSF, and CXCL1 were significantly expressed by TLR2-activated ARPCs alone and were up-regulated in T cells co-cultured with activated ARPCs. The exogenous cocktail of cytokines was able to reproduce the immunomodulatory effects of the co-culture with activated ARPCs. These data showed that ARPCs can regulate immune response by inducing Tregs and DN T cells cell modulation, which are involved in the balance between immune tolerance and autoimmunity.
Collapse
Affiliation(s)
- Claudia Curci
- Nephrology, Dialysis and Transplantation Unit, DETO, University of Bari “Aldo Moro”, 70124 Bari, Italy; (C.C.); (A.P.); (A.S.); (R.F.); (P.P.); (G.B.P.); (L.G.)
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Angela Picerno
- Nephrology, Dialysis and Transplantation Unit, DETO, University of Bari “Aldo Moro”, 70124 Bari, Italy; (C.C.); (A.P.); (A.S.); (R.F.); (P.P.); (G.B.P.); (L.G.)
| | - Nada Chaoul
- Allergology Unit, DETO, University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (L.M.)
| | - Alessandra Stasi
- Nephrology, Dialysis and Transplantation Unit, DETO, University of Bari “Aldo Moro”, 70124 Bari, Italy; (C.C.); (A.P.); (A.S.); (R.F.); (P.P.); (G.B.P.); (L.G.)
| | - Giuseppe De Palma
- Institutional BioBank, Experimental Oncology and Biobank Management Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy;
| | - Rossana Franzin
- Nephrology, Dialysis and Transplantation Unit, DETO, University of Bari “Aldo Moro”, 70124 Bari, Italy; (C.C.); (A.P.); (A.S.); (R.F.); (P.P.); (G.B.P.); (L.G.)
| | - Paola Pontrelli
- Nephrology, Dialysis and Transplantation Unit, DETO, University of Bari “Aldo Moro”, 70124 Bari, Italy; (C.C.); (A.P.); (A.S.); (R.F.); (P.P.); (G.B.P.); (L.G.)
| | - Giuseppe Castellano
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Science, University of Foggia, 71122 Foggia, Italy;
| | - Giovanni B. Pertosa
- Nephrology, Dialysis and Transplantation Unit, DETO, University of Bari “Aldo Moro”, 70124 Bari, Italy; (C.C.); (A.P.); (A.S.); (R.F.); (P.P.); (G.B.P.); (L.G.)
| | - Luigi Macchia
- Allergology Unit, DETO, University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (L.M.)
| | | | - Carlo Sabbà
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Anna Gallone
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, DETO, University of Bari “Aldo Moro”, 70124 Bari, Italy; (C.C.); (A.P.); (A.S.); (R.F.); (P.P.); (G.B.P.); (L.G.)
| | - Fabio Sallustio
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| |
Collapse
|
44
|
Mika T, Ladigan-Badura S, Maghnouj A, Mustafa B, Klein-Scory S, Baraniskin A, Döhring S, Fuchs I, Ehl S, Hahn SA, Schroers R. Altered T-Lymphocyte Biology Following High-Dose Melphalan and Autologous Stem Cell Transplantation With Implications for Adoptive T-Cell Therapy. Front Oncol 2020; 10:568056. [PMID: 33363008 PMCID: PMC7759611 DOI: 10.3389/fonc.2020.568056] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 10/20/2020] [Indexed: 01/18/2023] Open
Abstract
In relapsed and refractory multiple myeloma (MM), adoptive cell therapies (ACT) including CAR-T-cells are under clinical investigation. However, relapse due to T-cell exhaustion or limited persistence is an obstacle. Before ACT are considered in MM, high-dose (HD) melphalan followed by autologous stem-cell transplantation (autoSCT) has been administered in most clinical situations. Yet, the impact of HD chemotherapy on T-cells in MM with respect to ACT is unclear. In this study, T-lymphocytes’ phenotypes, expansion properties, lentiviral transduction efficacy, and gene expression were examined with special respect to patients following HD melphalan. Significant impairment of T-cells’ expansion and transduction rates could be demonstrated. Expansion was diminished due to inherent disadvantages of the predominant T-cell phenotype but restored over time. The quantitative fraction of CD27−/CD28− T-cells before expansion was predictive of T-cell yield. Following autoSCT, the transduction efficacy was reduced by disturbed lentiviral genome integration. Moreover, an unfavorable T-cell phenotype after expansion was demonstrated. In initial analyses of CD107a degranulation impaired T-cell cytotoxicity was detected in one patient following melphalan and autoSCT. The findings of our study have potential implications regarding the time point of leukapheresis for CAR-T-cell manufacturing. Our results point to a preferred interval of more than 3 months until patients should undergo cell separation for CAR-T therapy in the specific situation post-HD melphalan/autoSCT. Monitoring of CD27−/CD28− T-cells, has the potential to influence clinical decision making before apheresis in MM.
Collapse
Affiliation(s)
- Thomas Mika
- Department of Medicine, Hematology and Oncology, Ruhr-University Bochum, Bochum, Germany.,Department of Molecular Gastrointestinal Oncology, Ruhr-University Bochum, Bochum, Germany
| | - Swetlana Ladigan-Badura
- Department of Medicine, Hematology and Oncology, Ruhr-University Bochum, Bochum, Germany.,Department of Molecular Gastrointestinal Oncology, Ruhr-University Bochum, Bochum, Germany
| | - Abdelouahid Maghnouj
- Department of Molecular Gastrointestinal Oncology, Ruhr-University Bochum, Bochum, Germany
| | - Bakr Mustafa
- Department of Molecular Gastrointestinal Oncology, Ruhr-University Bochum, Bochum, Germany
| | - Susanne Klein-Scory
- Department of Medicine, Hematology and Oncology, Ruhr-University Bochum, Bochum, Germany
| | - Alexander Baraniskin
- Department of Medicine, Hematology and Oncology, Ruhr-University Bochum, Bochum, Germany
| | - Sascha Döhring
- Department of Molecular Gastrointestinal Oncology, Ruhr-University Bochum, Bochum, Germany
| | - Ilka Fuchs
- Center for Chronic Immunodeficiency, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Stephan Ehl
- Center for Chronic Immunodeficiency, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Stephan A Hahn
- Department of Molecular Gastrointestinal Oncology, Ruhr-University Bochum, Bochum, Germany
| | - Roland Schroers
- Department of Medicine, Hematology and Oncology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
45
|
Lymphocyte Immunosuppression and Dysfunction Contributing to Persistent Inflammation, Immunosuppression, and Catabolism Syndrome (PICS). Shock 2020; 55:723-741. [PMID: 33021569 DOI: 10.1097/shk.0000000000001675] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ABSTRACT Persistent Inflammation, Immune Suppression, and Catabolism Syndrome (PICS) is a disease state affecting patients who have a prolonged recovery after the acute phase of a large inflammatory insult. Trauma and sepsis are two pathologies after which such an insult evolves. In this review, we will focus on the key clinical determinants of PICS: Immunosuppression and cellular dysfunction. Currently, relevant immunosuppressive functions have been attributed to both innate and adaptive immune cells. However, there are significant gaps in our knowledge, as for trauma and sepsis the immunosuppressive functions of these cells have mostly been described in acute phase of inflammation so far, and their clinical relevance for the development of prolonged immunosuppression is mostly unknown. It is suggested that the initial immune imbalance determines the development of PCIS. Additionally, it remains unclear what distinguishes the onset of immune dysfunction in trauma and sepsis and how this drives immunosuppression in these cells. In this review, we will discuss how regulatory T cells (Tregs), innate lymphoid cells, natural killer T cells (NKT cells), TCR-a CD4- CD8- double-negative T cells (DN T cells), and B cells can contribute to the development of post-traumatic and septic immunosuppression. Altogether, we seek to fill a gap in the understanding of the contribution of lymphocyte immunosuppression and dysfunction to the development of chronic immune disbalance. Further, we will provide an overview of promising diagnostic and therapeutic interventions, whose potential to overcome the detrimental immunosuppression after trauma and sepsis is currently being tested.
Collapse
|
46
|
Voisin A, Saez F, Drevet JR, Guiton R. The epididymal immune balance: a key to preserving male fertility. Asian J Androl 2020; 21:531-539. [PMID: 30924450 PMCID: PMC6859654 DOI: 10.4103/aja.aja_11_19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Up to 15% of male infertility has an immunological origin, either due to repetitive infections or to autoimmune responses mainly affecting the epididymis, prostate, and testis. Clinical observations and epidemiological data clearly contradict the idea that the testis confers immune protection to the whole male genital tract. As a consequence, the epididymis, in which posttesticular spermatozoa mature and are stored, has raised some interest in recent years when it comes to its immune mechanisms. Indeed, sperm cells are produced at puberty, long after the establishment of self-tolerance, and they possess unique surface proteins that cannot be recognized as self. These are potential targets of the immune system, with the risk of inducing autoantibodies and consequently male infertility. Epididymal immunity is based on a finely tuned equilibrium between efficient immune responses to pathogens and strong tolerance to sperm cells. These processes rely on incompletely described molecules and cell types. This review compiles recent studies focusing on the immune cell types populating the epididymis, and proposes hypothetical models of the organization of epididymal immunity with a special emphasis on the immune response, while also discussing important aspects of the epididymal immune regulation such as tolerance and tumour control.
Collapse
Affiliation(s)
- Allison Voisin
- Team Mechanisms of Posttesticular Infertility, GReD Laboratory, CNRS UMR 6293 - INSERM U1103, University of Clermont Auvergne, Clermont-Ferrand 63001, France
| | - Fabrice Saez
- Team Mechanisms of Posttesticular Infertility, GReD Laboratory, CNRS UMR 6293 - INSERM U1103, University of Clermont Auvergne, Clermont-Ferrand 63001, France
| | - Joël R Drevet
- Team Mechanisms of Posttesticular Infertility, GReD Laboratory, CNRS UMR 6293 - INSERM U1103, University of Clermont Auvergne, Clermont-Ferrand 63001, France
| | - Rachel Guiton
- Team Mechanisms of Posttesticular Infertility, GReD Laboratory, CNRS UMR 6293 - INSERM U1103, University of Clermont Auvergne, Clermont-Ferrand 63001, France
| |
Collapse
|
47
|
Cai S, Chandraker A. Cell Therapy in Solid Organ Transplantation. Curr Gene Ther 2020; 19:71-80. [PMID: 31161989 DOI: 10.2174/1566523219666190603103840] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/30/2019] [Accepted: 05/23/2019] [Indexed: 12/28/2022]
Abstract
Transplantation is the only cure for end-stage organ failure. Current immunosuppressive drugs have two major limitations: 1) non antigen specificity, which increases the risk of cancer and infection diseases, and 2) chronic toxicity. Cell therapy appears to be an innovative and promising strategy to minimize the use of immunosuppression in transplantation and to improve long-term graft survival. Preclinical studies have shown efficacy and safety of using various suppressor cells, such as regulatory T cells, regulatory B cells and tolerogenic dendritic cells. Recent clinical trials using cellbased therapies in solid organ transplantation also hold out the promise of improving efficacy. In this review, we will briefly go over the rejection process, current immunosuppressive drugs, and the potential therapeutic use of regulatory cells in transplantation.
Collapse
Affiliation(s)
- Songjie Cai
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, United States
| | - Anil Chandraker
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, United States
| |
Collapse
|
48
|
Delgado Silva J, Almeida JS, Rodrigues-Santos P, Santos Rosa M, Gonçalves L. Activated double-negative T cells (CD3 +CD4 -CD8 -HLA-DR +) define response to renal denervation for resistant hypertension. Clin Immunol 2020; 218:108521. [PMID: 32619647 DOI: 10.1016/j.clim.2020.108521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE To explore the cellular immune response of patients with resistant hypertension treated with renal denervation (RDN). METHODS AND RESULTS Twenty-three patients were included and blood samples were obtained in six timings, pre and post procedure. Response was evaluated at six-months and one year and was observed in 69.6% and 82.6% of patients, respectively. Absolute values of HLA-DR+ double negative (DN) T cells were significantly lower in the group of 'responders' at one year, and interaction between the timings were found in three T cell subsets (T CD4, T CD8 and naïve T CD8 cells), with the 'responders' tending to present with lower absolute values and little inter-timing variation. CONCLUSIONS 'Responders' significantly present with lower absolute values of activated DN T cells and have lower and more stable values of total T CD8+, CD4+, and naïve T CD8+ cells. These cell types may be able to predict response to RDN.
Collapse
Affiliation(s)
- Joana Delgado Silva
- Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal; Department of Cardiology, Coimbra's Hospital and University Centre (CHUC), Coimbra, Portugal.
| | - Jani-Sofia Almeida
- Laboratory of Immunology and Oncology, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Paulo Rodrigues-Santos
- Laboratory of Immunology and Oncology, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Manuel Santos Rosa
- Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Lino Gonçalves
- Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal; Department of Cardiology, Coimbra's Hospital and University Centre (CHUC), Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
49
|
Domingo-Gonzalez R, Zanini F, Che X, Liu M, Jones RC, Swift MA, Quake SR, Cornfield DN, Alvira CM. Diverse homeostatic and immunomodulatory roles of immune cells in the developing mouse lung at single cell resolution. eLife 2020; 9:e56890. [PMID: 32484158 PMCID: PMC7358008 DOI: 10.7554/elife.56890] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/13/2020] [Indexed: 12/20/2022] Open
Abstract
At birth, the lungs rapidly transition from a pathogen-free, hypoxic environment to a pathogen-rich, rhythmically distended air-liquid interface. Although many studies have focused on the adult lung, the perinatal lung remains unexplored. Here, we present an atlas of the murine lung immune compartment during early postnatal development. We show that the late embryonic lung is dominated by specialized proliferative macrophages with a surprising physical interaction with the developing vasculature. These macrophages disappear after birth and are replaced by a dynamic mixture of macrophage subtypes, dendritic cells, granulocytes, and lymphocytes. Detailed characterization of macrophage diversity revealed an orchestration of distinct subpopulations across postnatal development to fill context-specific functions in tissue remodeling, angiogenesis, and immunity. These data both broaden the putative roles for immune cells in the developing lung and provide a framework for understanding how external insults alter immune cell phenotype during a period of rapid lung growth and heightened vulnerability.
Collapse
Affiliation(s)
- Racquel Domingo-Gonzalez
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of MedicineStanfordUnited States
- Center for Excellence in Pulmonary Biology, Stanford University School of MedicineStanfordUnited States
| | - Fabio Zanini
- Department of Bioengineering, Stanford UniversityStanfordUnited States
- Prince of Wales Clinical School, Lowy Cancer Research Centre, University of New South WalesSydneyAustralia
| | - Xibing Che
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of MedicineStanfordUnited States
- Center for Excellence in Pulmonary Biology, Stanford University School of MedicineStanfordUnited States
- Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University School of MedicineStanfordUnited States
| | - Min Liu
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of MedicineStanfordUnited States
- Center for Excellence in Pulmonary Biology, Stanford University School of MedicineStanfordUnited States
| | - Robert C Jones
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Michael A Swift
- Department of Chemical and Systems Biology, Stanford UniversityStanfordUnited States
| | - Stephen R Quake
- Department of Bioengineering, Stanford UniversityStanfordUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
- Department of Applied Physics, Stanford UniversityStanfordUnited States
| | - David N Cornfield
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of MedicineStanfordUnited States
- Center for Excellence in Pulmonary Biology, Stanford University School of MedicineStanfordUnited States
- Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University School of MedicineStanfordUnited States
| | - Cristina M Alvira
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of MedicineStanfordUnited States
- Center for Excellence in Pulmonary Biology, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
50
|
Li Y, Dong K, Fan X, Xie J, Wang M, Fu S, Li Q. DNT Cell-based Immunotherapy: Progress and Applications. J Cancer 2020; 11:3717-3724. [PMID: 32328176 PMCID: PMC7171494 DOI: 10.7150/jca.39717] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/26/2020] [Indexed: 12/14/2022] Open
Abstract
Cancer immunotherapy has firmly established a dominant status in recent years. Adoptive cellular immunotherapy (ACI) is the main branch of immunotherapy. Recently, the immune effector cells of ACI, such as T cells, NK cells, and genetically engineered cells, have been used to achieve significant clinical benefits in the treatment of malignant tumors. However, the clinical applications have limitations, including toxicity, unexpectedly low efficiency, high costs and strict technical requirements. More exploration is needed to optimize ACI for cancer patients. CD3+CD4-CD8- double negative T cells (DNTs) have emerged as functional antitumor effector cells, according to the definition of adoptive immunotherapy. They constitute a kind of T cell subset that mediates nontumor antigen-restricted immunity and has important immune regulatory functions. Preclinical experiments showed that DNTs had a dual effect by killing tumor cells and inhibiting graft-versus-host disease. Notably, DNTs can be acquired from healthy donors and expanded in vitro; thus, allogeneic DNTs may be provided as “off-the-shelf” cellular products that can be readily available for direct clinical application. We review the progress and application of DNTs in immunotherapy. DNTs may provide some novel perspectives on cancer immunotherapy.
Collapse
Affiliation(s)
- Yingrui Li
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030000, China.,Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Kang Dong
- Shanxi Pharmaceutical Group Gene Biotech co. LTD, Taiyuan, 030000, China
| | - Xueke Fan
- Department of Gastroenterology, Jincheng People's Hospital, Jincheng, 048000, China
| | - Jun Xie
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030000, China
| | - Miao Wang
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Songtao Fu
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030000, China
| | - Qin Li
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| |
Collapse
|