1
|
Liu S, Cheng C, Zhu L, Zhao T, Wang Z, Yi X, Yan F, Wang X, Li C, Cui T, Yang B. Liver organoids: updates on generation strategies and biomedical applications. Stem Cell Res Ther 2024; 15:244. [PMID: 39113154 PMCID: PMC11304926 DOI: 10.1186/s13287-024-03865-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024] Open
Abstract
The liver is the most important metabolic organ in the body. While mouse models and cell lines have further deepened our understanding of liver biology and related diseases, they are flawed in replicating key aspects of human liver tissue, particularly its complex structure and metabolic functions. The organoid model represents a major breakthrough in cell biology that revolutionized biomedical research. Organoids are in vitro three-dimensional (3D) physiological structures that recapitulate the morphological and functional characteristics of tissues in vivo, and have significant advantages over traditional cell culture methods. In this review, we discuss the generation strategies and current advances in the field focusing on their application in regenerative medicine, drug discovery and modeling diseases.
Collapse
Affiliation(s)
- Sen Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, 300301, China
| | | | - Liuyang Zhu
- First Central Clinical College of Tianjin Medical University, Tianjin, 300192, China
| | - Tianyu Zhao
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, 300301, China
| | - Ze Wang
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, 300301, China
- Research Unit for Drug Metabolism, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiulin Yi
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, 300301, China
- Research Unit for Drug Metabolism, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Fengying Yan
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, 300301, China
- Research Unit for Drug Metabolism, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiaoliang Wang
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, 300301, China
| | - Chunli Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Tao Cui
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, 300301, China.
- Research Unit for Drug Metabolism, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Baofeng Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China.
- School of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
2
|
Mishra I, Gupta K, Mishra R, Chaudhary K, Sharma V. An Exploration of Organoid Technology: Present Advancements, Applications, and Obstacles. Curr Pharm Biotechnol 2024; 25:1000-1020. [PMID: 37807405 DOI: 10.2174/0113892010273024230925075231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/19/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Organoids are in vitro models that exhibit a three-dimensional structure and effectively replicate the structural and physiological features of human organs. The capacity to research complex biological processes and disorders in a controlled setting is laid out by these miniature organ-like structures. OBJECTIVES This work examines the potential applications of organoid technology, as well as the challenges and future directions associated with its implementation. It aims to emphasize the pivotal role of organoids in disease modeling, drug discovery, developmental biology, precision medicine, and fundamental research. METHODS The manuscript was put together by conducting a comprehensive literature review, which involved an in-depth evaluation of globally renowned scientific research databases. RESULTS The field of organoids has generated significant attention due to its potential applications in tissue development and disease modelling, as well as its implications for personalised medicine, drug screening, and cell-based therapies. The utilisation of organoids has proven to be effective in the examination of various conditions, encompassing genetic disorders, cancer, neurodevelopmental disorders, and infectious diseases. CONCLUSION The exploration of the wider uses of organoids is still in its early phases. Research shall be conducted to integrate 3D organoid systems as alternatives for current models, potentially improving both fundamental and clinical studies in the future.
Collapse
Affiliation(s)
- Isha Mishra
- Department of Pharmacy, Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, 201310, India
| | - Komal Gupta
- Department of Pharmacy, Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, 201310, India
| | - Raghav Mishra
- Department of Pharmacy, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Kajal Chaudhary
- Department of Pharmacy, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Vikram Sharma
- Department of Pharmacy, Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, 201310, India
| |
Collapse
|
3
|
Etschmaier V, Üçal M, Lohberger B, Absenger-Novak M, Kolb D, Weinberg A, Schäfer U. Disruption of Endochondral Ossification and Extracellular Matrix Maturation in an Ex Vivo Rat Femur Organotypic Slice Model Due to Growth Plate Injury. Cells 2023; 12:1687. [PMID: 37443722 PMCID: PMC10341345 DOI: 10.3390/cells12131687] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Postnatal bone fractures of the growth plate (GP) are often associated with regenerative complications such as growth impairment. In order to understand the underlying processes of trauma-associated growth impairment within postnatal bone, an ex vivo rat femur slice model was developed. To achieve this, a 2 mm horizontal cut was made through the GP of rat femur prior to the organotypic culture being cultivated for 15 days in vitro. Histological analysis showed disrupted endochondral ossification, including disordered architecture, increased chondrocyte metabolic activity, and a loss of hypertrophic zone throughout the distal femur. Furthermore, altered expression patterns of Col2α1, Acan, and ColX, and increased chondrocyte metabolic activity in the TZ and MZ at day 7 and day 15 postinjury were observed. STEM revealed the presence of stem cells, fibroblasts, and chondrocytes within the injury site at day 7. In summary, the findings of this study suggest that the ex vivo organotypic GP injury model could be a valuable tool for investigating the underlying mechanisms of GP regeneration post-trauma, as well as other tissue engineering and disease studies.
Collapse
Affiliation(s)
- Vanessa Etschmaier
- Research Unit for Experimental Neurotraumatology, Medical University of Graz, 8036 Graz, Austria; (V.E.); (M.Ü.)
- Department of Orthopaedics and Trauma, Medical University Graz, 8036 Graz, Austria; (B.L.); (A.W.)
| | - Muammer Üçal
- Research Unit for Experimental Neurotraumatology, Medical University of Graz, 8036 Graz, Austria; (V.E.); (M.Ü.)
- Bio-Tech-Med Graz, 8010 Graz, Austria
| | - Birgit Lohberger
- Department of Orthopaedics and Trauma, Medical University Graz, 8036 Graz, Austria; (B.L.); (A.W.)
| | - Markus Absenger-Novak
- Center for Medical Research, Core Facility Imaging, Medical University of Graz, 8036 Graz, Austria;
| | - Dagmar Kolb
- Center for Medical Research, Core Facility Ultrastructure Analysis, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria;
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Annelie Weinberg
- Department of Orthopaedics and Trauma, Medical University Graz, 8036 Graz, Austria; (B.L.); (A.W.)
| | - Ute Schäfer
- Research Unit for Experimental Neurotraumatology, Medical University of Graz, 8036 Graz, Austria; (V.E.); (M.Ü.)
| |
Collapse
|
4
|
Huang J, Zhang L, Lu A, Liang C. Organoids as Innovative Models for Bone and Joint Diseases. Cells 2023; 12:1590. [PMID: 37371060 DOI: 10.3390/cells12121590] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/08/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Bone is one of the key components of the musculoskeletal system. Bone and joint disease are the fourth most widespread disease, in addition to cardiovascular disease, cancer, and diabetes, which seriously affect people's quality of life. Bone organoids seem to be a great model by which to promote the research method, which further could improve the treatment of bone and joint disease in the future. Here, we introduce the various bone and joint diseases and their biology, and the conditions of organoid culture, comparing the in vitro models among 2D, 3D, and organoids. We summarize the differing potential methods for culturing bone-related organoids from pluripotent stem cells, adult stem cells, or progenitor cells, and discuss the current and promising bone disease organoids for drug screening and precision medicine. Lastly, we discuss the challenges and difficulties encountered in the application of bone organoids and look to the future in order to present potential methods via which bone organoids might advance organoid construction and application.
Collapse
Affiliation(s)
- Jie Huang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Aiping Lu
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai 200052, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou 510120, China
| | - Chao Liang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| |
Collapse
|
5
|
Yen BL, Hsieh CC, Hsu PJ, Chang CC, Wang LT, Yen ML. Three-Dimensional Spheroid Culture of Human Mesenchymal Stem Cells: Offering Therapeutic Advantages and In Vitro Glimpses of the In Vivo State. Stem Cells Transl Med 2023; 12:235-244. [PMID: 37184894 PMCID: PMC10184701 DOI: 10.1093/stcltm/szad011] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 02/06/2023] [Indexed: 05/16/2023] Open
Abstract
As invaluable as the standard 2-dimensional (2D) monolayer in vitro cell culture system has been, there is increasing evidence that 3-dimensional (3D) non-adherent conditions are more relevant to the in vivo condition. While one of the criteria for human mesenchymal stem cells (MSCs) has been in vitro plastic adherence, such 2D culture conditions are not representative of in vivo cell-cell and cell-extracellular matrix (ECM) interactions, which may be especially important for this progenitor/stem cell of skeletal and connective tissues. The 3D spheroid, a multicellular aggregate formed under non-adherent 3D in vitro conditions, may be particularly suited as an in vitro method to better understand MSC physiological processes, since expression of ECM and other adhesion proteins are upregulated in such a cell culture system. First used in embryonic stem cell in vitro culture to recapitulate in vivo developmental processes, 3D spheroid culture has grown in popularity as an in vitro method to mimic the 3-dimensionality of the native niche for MSCs within tissues/organs. In this review, we discuss the relevance of the 3D spheroid culture for understanding MSC biology, summarize the biological outcomes reported in the literature based on such this culture condition, as well as contemplate limitations and future considerations in this rapidly evolving and exciting area.
Collapse
Affiliation(s)
- B Linju Yen
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan
| | - Chen-Chan Hsieh
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Pei-Ju Hsu
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan
| | - Chia-Chi Chang
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center (NDMC), Taipei, Taiwan
| | - Li-Tzu Wang
- Department of Obstetrics and Gynecology, National Taiwan University (NTU) Hospital & College of Medicine, NTU, Taipei, Taiwan
| | - Men-Luh Yen
- Department of Obstetrics and Gynecology, National Taiwan University (NTU) Hospital & College of Medicine, NTU, Taipei, Taiwan
| |
Collapse
|
6
|
Gurucharan I, Saravana Karthikeyan B, Mahalaxmi S, Baskar K, Rajkumar G, Dhivya V, Kishen A, Sankaranarayanan S, Gurucharan N. Characterization of nano-hydroxyapatite incorporated carboxymethyl chitosan composite on human dental pulp stem cells. Int Endod J 2023; 56:486-501. [PMID: 36565040 DOI: 10.1111/iej.13885] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/25/2022]
Abstract
AIM To compare the odontogenic differentiation potential of a composite scaffold (CSHA) comprising of nano-hydroxyapatite (nHAp) and carboxymethyl chitosan (CMC) with Biodentine on human dental pulp stem cells (hDPSCs). METHODOLOGY A CSHA scaffold was prepared through an ultrasonication route by adding nHAp and CMC (1:5 w/w) in water medium followed by freeze-drying. Physicochemical characterization was achieved using scanning electron microscopy with energy-dispersive X-ray spectroscopy, X-ray diffraction and Fourier transform infrared spectroscopy. In-vitro bioactivity and pH assessments were done by soaking in simulated body fluid (SBF) for 28 days. The angiogenic and odontogenic differentiation abilities were assessed by expression of vascular endothelial growth factor (VEGF) and Dentine sialophosphoprotein (DSPP) markers on cultured hDPSCs by flow cytometry and RT-qPCR at 7, 14 and 21 days. Cell viability/proliferation and biomineralization abilities of CSHA were compared with Biodentine by MTT assay, alkaline phosphatase (ALP) activity, Alizarin Red Staining (ARS) and osteopontin (OPN) expression on hDPSCs following 7 and 14 days. Data were statistically analysed with Kruskal Wallis and Friedman tests as well as one way anova followed by appropriate post hoc tests (p < .05). RESULTS Characterization experiments revealed a porous microstructure of CSHA with pore diameter ranging between 60 and 200 μm and 1.67 Ca/P molar ratio along with the characteristic functional groups of both HAp and CMC. CSHA displayed bioactivity in SBF by forming apatite-like crystals and maintained a consistent pH value of 7.70 during 28 days' in vitro studies. CSHA significantly upregulated VEGF and DSPP levels on hDPSCs on day 21 compared with day 7 (p < .05). Further, CSHA supported cell viability/proliferation over 14 days like Biodentine with no statistical differences (p > .05). However, CSHA exhibited increased ALP and ARS activity with an intense OPN staining compared with Biodentine after 14 days (p < .05). CONCLUSION The results highlighted the odontogenic differentiation and biomineralization abilities of CSHA on hDPSCs with significant VEGF and DSPP gene upregulations. Further, CSHA exhibited enhanced mineralization activity than Biodentine, as evidenced by increased ALP, ARS and OPN activity on day 14. The nHAp-CMC scaffold has the potential to act as an effective pulp capping agent; however, this needs to be further validated through in-vivo animal studies.
Collapse
Affiliation(s)
- Ishwarya Gurucharan
- Department of Conservative Dentistry and Endodontics, SRM Dental College, Ramapuram, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Balasubramanian Saravana Karthikeyan
- Department of Conservative Dentistry and Endodontics, SRM Dental College, Ramapuram, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Sekar Mahalaxmi
- Department of Conservative Dentistry and Endodontics, SRM Dental College, Ramapuram, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Kaviya Baskar
- Department of Conservative Dentistry and Endodontics, SRM Dental College, Ramapuram, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Gurusamy Rajkumar
- Department of Physics, Easwari Engineering College, Chennai, Tamil Nadu, India
| | - Vijayakumar Dhivya
- Department of Physics, Easwari Engineering College, Chennai, Tamil Nadu, India
| | - Anil Kishen
- Professor & Dr. Lloyd and Mrs. Kay Chapman Chair in Clinical Sciences, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
7
|
Physiological Mineralization during In Vitro Osteogenesis in a Biomimetic Spheroid Culture Model. Cells 2022; 11:cells11172702. [PMID: 36078105 PMCID: PMC9454617 DOI: 10.3390/cells11172702] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Bone health-targeting drug development strategies still largely rely on inferior 2D in vitro screenings. We aimed at developing a scaffold-free progenitor cell-based 3D biomineralization model for more physiological high-throughput screenings. MC3T3-E1 pre-osteoblasts were cultured in α-MEM with 10% FCS, at 37 °C and 5% CO2 for up to 28 days, in non-adherent V-shaped plates to form uniformly sized 3D spheroids. Osteogenic differentiation was induced by 10 mM β-glycerophosphate and 50 µg/mL ascorbic acid. Mineralization stages were assessed through studying expression of marker genes, alkaline phosphatase activity, and calcium deposition by histochemistry. Mineralization quality was evaluated by Fourier transformed infrared (FTIR) and scanning electron microscopic (SEM) analyses and quantified by micro-CT analyses. Expression profiles of selected early- and late-stage osteoblast differentiation markers indicated a well-developed 3D biomineralization process with strongly upregulated Col1a1, Bglap and Alpl mRNA levels and type I collagen- and osteocalcin-positive immunohistochemistry (IHC). A dynamic biomineralization process with increasing mineral densities was observed during the second half of the culture period. SEM–Energy-Dispersive X-ray analyses (EDX) and FTIR ultimately confirmed a native bone-like hydroxyapatite mineral deposition ex vivo. We thus established a robust and versatile biomimetic, and high-throughput compatible, cost-efficient spheroid culture model with a native bone-like mineralization for improved pharmacological ex vivo screenings.
Collapse
|
8
|
Kim DE, Lee YB, Shim HE, Song JJ, Han JS, Moon KS, Huh KM, Kang SW. Application of Hexanoyl Glycol Chitosan as a Non-cell Adhesive Polymer in Three-Dimensional Cell Culture. ACS OMEGA 2022; 7:18471-18480. [PMID: 35694497 PMCID: PMC9178711 DOI: 10.1021/acsomega.2c00890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Cell culture technology has evolved into three-dimensional (3D) artificial tissue models for better reproduction of human native tissues. However, there are some unresolved limitations that arise due to the adhesive properties of cells. In this study, we developed a hexanoyl glycol chitosan (HGC) as a non-cell adhesive polymer for scaffold-based and -free 3D culture. The uniform cell distribution in a porous scaffold was well maintained during the long culutre period on the HGC-coated substrate by preventing ectopic adhesion and migration of cells on the substrate. In addition, when culturing many spheroids in one dish, supplementation of the culture medium with HGC prevented the aggregation of spheroids and maintained the shape and size of spheroids for a long culture duration. Collectively, the use of HGC in 3D culture systems is expected to contribute greatly to creating excellent regenerative therapeutics and screening models of bioproducts.
Collapse
Affiliation(s)
- Da-Eun Kim
- Research
Group for Biomimetic Advanced Technology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
- Department
of Polymer Science and Engineering, Chungnam
National University, Daejeon 34134, Republic of Korea
| | - Yu Bin Lee
- Department
of Advanced Toxicology Research, Korea Institute
of Toxicology, Daejeon 34114, Republic of Korea
| | - Hye-Eun Shim
- Research
Group for Biomimetic Advanced Technology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
- Department
of Polymer Science and Engineering, Chungnam
National University, Daejeon 34134, Republic of Korea
| | - Jin Jung Song
- Research
Group for Biomimetic Advanced Technology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
- Department
of Polymer Science and Engineering, Chungnam
National University, Daejeon 34134, Republic of Korea
| | - Ji-Seok Han
- Department
of Toxicological Evaluation and Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Kyoung-Sik Moon
- Department
of Advanced Toxicology Research, Korea Institute
of Toxicology, Daejeon 34114, Republic of Korea
| | - Kang Moo Huh
- Department
of Polymer Science and Engineering, Chungnam
National University, Daejeon 34134, Republic of Korea
| | - Sun-Woong Kang
- Research
Group for Biomimetic Advanced Technology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
- Human
and Environmental Toxicology Program, University
of Science and Technology, Daejeon 34114, Republic of Korea
| |
Collapse
|
9
|
Shiihara M, Furukawa T. Application of Patient-Derived Cancer Organoids to Personalized Medicine. J Pers Med 2022; 12:jpm12050789. [PMID: 35629212 PMCID: PMC9146789 DOI: 10.3390/jpm12050789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 01/27/2023] Open
Abstract
Cell models are indispensable for the research and development of cancer therapies. Cancer medications have evolved with the establishment of various cell models. Patient-derived cell lines are very useful for identifying characteristic phenotypes and susceptibilities to anticancer drugs as well as molecularly targeted therapies for tumors. However, conventional 2-dimensional (2D) cell cultures have several drawbacks in terms of engraftment rate and phenotypic changes during culture. The organoid is a recently developed in vitro model with cultured cells that form a three-dimensional structure in the extracellular matrix. Organoids have the capacity to self-renew and can organize themselves to resemble the original organ or tumor in terms of both structure and function. Patient-derived cancer organoids are more suitable for the investigation of cancer biology and clinical medicine than conventional 2D cell lines or patient-derived xenografts. With recent advances in genetic analysis technology, the genetic information of various tumors has been clarified, and personalized medicine based on genetic information has become clinically available. Here, we have reviewed the recent advances in the development and application of patient-derived cancer organoids in cancer biology studies and personalized medicine. We have focused on the potential of organoids as a platform for the identification and development of novel targeted medicines for pancreatobiliary cancer, which is the most intractable cancer.
Collapse
Affiliation(s)
| | - Toru Furukawa
- Correspondence: ; Tel.: +81-22-717-8149; Fax: +81-22-717-8053
| |
Collapse
|
10
|
de Boer A, van der Harst J, Fehr M, Geurts L, Knipping K, Kramer N, Krul L, Tabernero Urbieta M, van de Water B, Venema K, Schütte K, Triantis V. Animal-free strategies in food safety & nutrition: What are we waiting for? Part II: Nutrition research. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Yao L, Zao XL, Pan XF, Zhang HG, Wang FJ, Qiao PF. Application of tumoroids derived from advanced colorectal cancer patients to predict individual response to chemotherapy. J Chemother 2022; 35:104-116. [PMID: 35285783 DOI: 10.1080/1120009x.2022.2045827] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Therapeutic approaches of advanced colorectal cancer are more complex, here we present a living biobank of patient-derived tumoroids from advanced colorectal cancer patients and show examples of how these tumoroids can be used to to simulate cancer behavior ex vivo and provide more evidence for tumoroids could be utilized as a predictive platform during chemotherapy treatment to identify the chemotherapy response. Morphological, histological and genomic characterization analysis of colorectal cancer tumoroids was conducted. Further, we treated colorectal cancer tumoroids with different drugs to detect cellular activities to evaluate drug sensitivity using CellTiter-Glo 3 D cell viability assay. Then the drug sensitivity of tumoroids was compared with clinical outcomes. Our results implied that tumoroids recapitulated the histological features of the original tumours and genotypic profiling of tumoroids showed a high-level of similarity to the matched primary tumours. Dose-response curves, area under the curve and tumour inhibitory rate of each therapeutic profiling calculations in tumoroids demonstrated a great diversity and we gained 88.24% match ratio between the sensitivity data of tumoroids with their paired patients' clinical outcomes. tumour inhibitory rate of each treatment parameters in tumoroids performed positive correlation with progression-free survival while area under the curve of each treatment parameters performed negative correlation with progression-free survival of the corresponding patients. In summary, We presented a living biobank of tumoroids from advanced colorectal cancer patients and show tumoroids got great potential for predicting clinical responses to chemotherapy treatment of advanced colorectal cancer.
Collapse
Affiliation(s)
- Lei Yao
- Department of General Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiao-Long Zao
- Department of General Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiao-Fei Pan
- Department of General Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hao-Gang Zhang
- Department of General Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fu-Jing Wang
- Department of General Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peng-Fei Qiao
- Department of General Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
12
|
Shanbhag S, Kampleitner C, Mohamed-Ahmed S, Yassin MA, Dongre H, Costea DE, Tangl S, Hassan MN, Stavropoulos A, Bolstad AI, Suliman S, Mustafa K. Ectopic Bone Tissue Engineering in Mice Using Human Gingiva or Bone Marrow-Derived Stromal/Progenitor Cells in Scaffold-Hydrogel Constructs. Front Bioeng Biotechnol 2021; 9:783468. [PMID: 34917602 PMCID: PMC8670384 DOI: 10.3389/fbioe.2021.783468] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/16/2021] [Indexed: 01/22/2023] Open
Abstract
Three-dimensional (3D) spheroid culture can promote the osteogenic differentiation and bone regeneration capacity of mesenchymal stromal cells (MSC). Gingiva-derived progenitor cells (GPC) represent a less invasive alternative to bone marrow MSC (BMSC) for clinical applications. The aim of this study was to test the in vivo bone forming potential of human GPC and BMSC cultured as 3D spheroids or dissociated cells (2D). 2D and 3D cells encapsulated in constructs of human platelet lysate hydrogels (HPLG) and 3D-printed poly (L-lactide-co-trimethylene carbonate) scaffolds (HPLG-PLATMC) were implanted subcutaneously in nude mice; cell-free HPLG-PLATMC constructs served as a control. Mineralization was assessed using micro-computed tomography (µCT), histology, scanning electron microscopy (SEM) and in situ hybridization (ISH). After 4–8 weeks, µCT revealed greater mineralization in 3D-BMSC vs. 2D-BMSC and 3D-GPC (p < 0.05), and a similar trend in 2D-GPC vs. 2D-BMSC (p > 0.05). After 8 weeks, greater mineralization was observed in cell-free constructs vs. all 2D- and 3D-cell groups (p < 0.05). Histology and SEM revealed an irregular but similar mineralization pattern in all groups. ISH revealed similar numbers of 2D and 3D BMSC/GPC within and/or surrounding the mineralized areas. In summary, spheroid culture promoted ectopic mineralization in constructs of BMSC, while constructs of dissociated GPC and BMSC performed similarly. The combination of HPLG and PLATMC represents a promising scaffold for bone tissue engineering applications.
Collapse
Affiliation(s)
- Siddharth Shanbhag
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
- *Correspondence: Siddharth Shanbhag, ; Kamal Mustafa,
| | - Carina Kampleitner
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation With AUVA, Vienna, Austria
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Samih Mohamed-Ahmed
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Mohammed Ahmad Yassin
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Harsh Dongre
- Gade Laboratory for Pathology, Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Daniela Elena Costea
- Gade Laboratory for Pathology, Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Stefan Tangl
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Mohamad Nageeb Hassan
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Andreas Stavropoulos
- Department of Periodontology, Faculty of Odontology, Malmö University, Malmö, Sweden
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Anne Isine Bolstad
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Salwa Suliman
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Kamal Mustafa
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
- *Correspondence: Siddharth Shanbhag, ; Kamal Mustafa,
| |
Collapse
|
13
|
Shanbhag S, Suliman S, Mohamed-Ahmed S, Kampleitner C, Hassan MN, Heimel P, Dobsak T, Tangl S, Bolstad AI, Mustafa K. Bone regeneration in rat calvarial defects using dissociated or spheroid mesenchymal stromal cells in scaffold-hydrogel constructs. Stem Cell Res Ther 2021; 12:575. [PMID: 34776000 PMCID: PMC8591809 DOI: 10.1186/s13287-021-02642-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/22/2021] [Indexed: 12/20/2022] Open
Abstract
Background Three-dimensional (3D) spheroid culture can promote the osteogenic differentiation of bone marrow mesenchymal stromal cells (BMSC). 3D printing offers the possibility to produce customized scaffolds for complex bone defects. The aim of this study was to compare the potential of human BMSC cultured as 2D monolayers or 3D spheroids encapsulated in constructs of 3D-printed poly-L-lactide-co-trimethylene carbonate scaffolds and modified human platelet lysate hydrogels (PLATMC-HPLG) for bone regeneration. Methods PLATMC-HPLG constructs with 2D or 3D BMSC were assessed for osteogenic differentiation based on gene expression and in vitro mineralization. Subsequently, PLATMC-HPLG constructs with 2D or 3D BMSC were implanted in rat calvarial defects for 12 weeks; cell-free constructs served as controls. Bone regeneration was assessed via in vivo computed tomography (CT), ex vivo micro-CT and histology. Results Osteogenic gene expression was significantly enhanced in 3D versus 2D BMSC prior to, but not after, encapsulation in PLATMC-HPLG constructs. A trend for greater in vitro mineralization was observed in constructs with 3D versus 2D BMSC (p > 0.05). In vivo CT revealed comparable bone formation after 4, 8 and 12 weeks in all groups. After 12 weeks, micro-CT revealed substantial regeneration in 2D BMSC (62.47 ± 19.46%), 3D BMSC (51.01 ± 24.43%) and cell-free PLATMC-HPLG constructs (43.20 ± 30.09%) (p > 0.05). A similar trend was observed in the histological analysis. Conclusion Despite a trend for superior in vitro mineralization, constructs with 3D and 2D BMSC performed similarly in vivo. Regardless of monolayer or spheroid cell culture, PLATMC-HPLG constructs represent promising scaffolds for bone tissue engineering applications. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02642-w.
Collapse
Affiliation(s)
- Siddharth Shanbhag
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Årstadveien 19, 5009, Bergen, Norway. .,Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway.
| | - Salwa Suliman
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Årstadveien 19, 5009, Bergen, Norway
| | - Samih Mohamed-Ahmed
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Årstadveien 19, 5009, Bergen, Norway
| | - Carina Kampleitner
- Core Facility Hard Tissue and Biomaterial Research/Karl Donath Laboratory, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Traumatology, The research center in cooperation with AUVA, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Mohamed Nageeb Hassan
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Årstadveien 19, 5009, Bergen, Norway
| | - Patrick Heimel
- Core Facility Hard Tissue and Biomaterial Research/Karl Donath Laboratory, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Traumatology, The research center in cooperation with AUVA, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Toni Dobsak
- Core Facility Hard Tissue and Biomaterial Research/Karl Donath Laboratory, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Stefan Tangl
- Core Facility Hard Tissue and Biomaterial Research/Karl Donath Laboratory, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Anne Isine Bolstad
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Årstadveien 19, 5009, Bergen, Norway
| | - Kamal Mustafa
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Årstadveien 19, 5009, Bergen, Norway.
| |
Collapse
|
14
|
Singh YP, Moses JC, Bhardwaj N, Mandal BB. Overcoming the Dependence on Animal Models for Osteoarthritis Therapeutics - The Promises and Prospects of In Vitro Models. Adv Healthc Mater 2021; 10:e2100961. [PMID: 34302436 DOI: 10.1002/adhm.202100961] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/10/2021] [Indexed: 12/19/2022]
Abstract
Osteoarthritis (OA) is a musculoskeletal disease characterized by progressive degeneration of osteochondral tissues. Current treatment is restricted to the reduction of pain and loss of function of the joint. To better comprehend the OA pathophysiological conditions, several models are employed, however; there is no consensus on a suitable model. In this review, different in vitro models being developed for possible therapeutic intervention of OA are outlined. Herein, various in vitro OA models starting from 2D model, co-culture model, 3D models, dynamic culture model to advanced technologies-based models such as 3D bioprinting, bioassembly, organoids, and organ-on-chip-based models are discussed with their advantages and disadvantages. Besides, different growth factors, cytokines, and chemicals being utilized for induction of OA condition are reviewed in detail. Furthermore, there is focus on scrutinizing different molecular and possible therapeutic targets for better understanding the mechanisms and OA therapeutics. Finally, the underlying challenges associated with in vitro models are discussed followed by future prospective. Taken together, a comprehensive overview of in vitro OA models, factors to induce OA-like conditions, and intricate molecular targets with the potential to develop personalized osteoarthritis therapeutics in the future with clinical translation is provided.
Collapse
Affiliation(s)
- Yogendra Pratap Singh
- Department of Biosciences and Bioengineering Indian Institute of Technology Guwahati Guwahati Assam 781039 India
| | - Joseph Christakiran Moses
- Department of Biosciences and Bioengineering Indian Institute of Technology Guwahati Guwahati Assam 781039 India
| | - Nandana Bhardwaj
- Department of Science and Mathematics Indian Institute of Information Technology Guwahati Bongora Guwahati Assam 781015 India
| | - Biman B. Mandal
- Department of Biosciences and Bioengineering Indian Institute of Technology Guwahati Guwahati Assam 781039 India
- Centre for Nanotechnology Indian Institute of Technology Guwahati Guwahati Assam 781039 India
- School of Health Sciences and Technology Indian Institute of Technology Guwahati Guwahati Assam 781039 India
| |
Collapse
|
15
|
Shanbhag S, Rashad A, Nymark EH, Suliman S, de Lange Davies C, Stavropoulos A, Bolstad AI, Mustafa K. Spheroid Coculture of Human Gingiva-Derived Progenitor Cells With Endothelial Cells in Modified Platelet Lysate Hydrogels. Front Bioeng Biotechnol 2021; 9:739225. [PMID: 34513817 PMCID: PMC8427051 DOI: 10.3389/fbioe.2021.739225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/12/2021] [Indexed: 01/12/2023] Open
Abstract
Cell coculture strategies can promote angiogenesis within tissue engineering constructs. This study aimed to test the angiogenic potential of human umbilical vein endothelial cells (HUVEC) cocultured with gingiva-derived progenitor cells (GPC) as spheroids in a xeno-free environment. Human platelet lysate (HPL) was used as a cell culture supplement and as a hydrogel matrix (HPLG) for spheroid encapsulation. HUVEC and HUVEC + GPC (1:1 or 5:1) spheroids were encapsulated in various HPLG formulations. Angiogenesis was assessed via in vitro sprouting and in vivo chick chorioallantoic membrane (CAM) assays. HUVEC revealed characteristic in vitro sprouting in HPL/HPLG and this was significantly enhanced in cocultures with GPC (p < 0.05). A trend for greater sprouting was observed in 5:1 vs 1:1 HUVEC + GPC spheroids and in certain HPLG formulations (p > 0.05). Both HUVEC and HUVEC + GPC spheroids in HPLG revealed abundant and comparable neoangiogenesis in the CAM assay (p > 0.05). Spheroid coculture of HUVEC + GPC in HPLG represents a promising strategy to promote angiogenesis.
Collapse
Affiliation(s)
- Siddharth Shanbhag
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway.,Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
| | - Ahmad Rashad
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Ellen Helgeland Nymark
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Salwa Suliman
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | | | - Andreas Stavropoulos
- Department of Periodontology, Faculty of Odontology, Malmö University, Malmö, Sweden.,Division of Regenerative Medicine and Periodontology, University Clinics of Dental Medicine, University of Geneva, Geneva, Switzerland
| | - Anne Isine Bolstad
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Kamal Mustafa
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
16
|
Azar J, Bahmad HF, Daher D, Moubarak MM, Hadadeh O, Monzer A, Al Bitar S, Jamal M, Al-Sayegh M, Abou-Kheir W. The Use of Stem Cell-Derived Organoids in Disease Modeling: An Update. Int J Mol Sci 2021; 22:7667. [PMID: 34299287 PMCID: PMC8303386 DOI: 10.3390/ijms22147667] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
Organoids represent one of the most important advancements in the field of stem cells during the past decade. They are three-dimensional in vitro culturing models that originate from self-organizing stem cells and can mimic the in vivo structural and functional specificities of body organs. Organoids have been established from multiple adult tissues as well as pluripotent stem cells and have recently become a powerful tool for studying development and diseases in vitro, drug screening, and host-microbe interaction. The use of stem cells-that have self-renewal capacity to proliferate and differentiate into specialized cell types-for organoids culturing represents a major advancement in biomedical research. Indeed, this new technology has a great potential to be used in a multitude of fields, including cancer research, hereditary and infectious diseases. Nevertheless, organoid culturing is still rife with many challenges, not limited to being costly and time consuming, having variable rates of efficiency in generation and maintenance, genetic stability, and clinical applications. In this review, we aim to provide a synopsis of pluripotent stem cell-derived organoids and their use for disease modeling and other clinical applications.
Collapse
Affiliation(s)
- Joseph Azar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2260, Lebanon; (J.A.); (H.F.B.); (D.D.); (M.M.M.); (O.H.); (A.M.); (S.A.B.)
| | - Hisham F. Bahmad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2260, Lebanon; (J.A.); (H.F.B.); (D.D.); (M.M.M.); (O.H.); (A.M.); (S.A.B.)
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
| | - Darine Daher
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2260, Lebanon; (J.A.); (H.F.B.); (D.D.); (M.M.M.); (O.H.); (A.M.); (S.A.B.)
| | - Maya M. Moubarak
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2260, Lebanon; (J.A.); (H.F.B.); (D.D.); (M.M.M.); (O.H.); (A.M.); (S.A.B.)
| | - Ola Hadadeh
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2260, Lebanon; (J.A.); (H.F.B.); (D.D.); (M.M.M.); (O.H.); (A.M.); (S.A.B.)
| | - Alissar Monzer
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2260, Lebanon; (J.A.); (H.F.B.); (D.D.); (M.M.M.); (O.H.); (A.M.); (S.A.B.)
| | - Samar Al Bitar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2260, Lebanon; (J.A.); (H.F.B.); (D.D.); (M.M.M.); (O.H.); (A.M.); (S.A.B.)
| | - Mohamed Jamal
- Hamdan Bin Mohammed College of Dental Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 66566, United Arab Emirates
| | - Mohamed Al-Sayegh
- Biology Division, New York University Abu Dhabi, Abu Dhabi 2460, United Arab Emirates
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2260, Lebanon; (J.A.); (H.F.B.); (D.D.); (M.M.M.); (O.H.); (A.M.); (S.A.B.)
| |
Collapse
|
17
|
Xiong W, Cheng L, Zhong Z, Hou X, Zhu M, Zhou X, Zhu S, Chen J. A comparison of the effects of fire needle and routine acupuncture for myofascitis: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e25473. [PMID: 34114979 PMCID: PMC8202649 DOI: 10.1097/md.0000000000025473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Myofascitis is a common disease in clinic. The main cause of the disease is aseptic inflammation of local muscles and connective tissues such as myofascial, which can be manifested as paralysis, distension, and other discomfort, local muscle stiffness, spasm or palpable strain-like nodules. Chinese medicine ascribes it to "bi disease" and "Arthralgia disease," while Western medicine believes that the disease is mainly due to local muscle and fascia edema and exudation caused by trauma or long-term strain, forcing nerves to jam and producing pain and other abnormal feelings. Although the disease is not life-threatening, the pain and distension caused by local inflammatory stimuli can affect the patient's daily life and sleep quality. The purpose of this systematic review is to evaluate the efficacy of fire needle vs routine acupuncture in the treatment of myofascitis. METHODS Randomized controlled trials (RCTS) of fire needle vs routine acupuncture for myofascial inflammation will be comprehensively searched from inception to September 2020 on PubMed, Embase, Cochrane Library, China Biomedical Literature (CBM), China National Knowledge Infrastructure (CNKI), Chongqing VIP (CQVIP), and Wanfang. Additionally, RCT registered sites, including http://www.ClinicalTrials.gov and http://www.chictr.org.cn, also will be the search. Visual analogue scale (VAS) was used to score the pain before and after treatment. The primary outcome will be to compare the difference in pain scores between the 2 interventions. Two independent authors filtered the literature in the above database, extracted the data, and cross-checked it. RESULTS This study will offer a reasonable comprehensive evidence for the treatment of myofascitis with fire needle. CONCLUSION The conclusion of this study will provide evidence to judge the effectiveness of fire needle on myofascitis. REGISTRATION NUMBER INPLASY202080034.
Collapse
Affiliation(s)
- Wei Xiong
- Nanchang Hongdu Hospital of Traditional Chinese Medicine
| | - Ling Cheng
- Nanchang Hongdu Hospital of Traditional Chinese Medicine
| | - Zhiying Zhong
- Jiangxi University of Traditional Chinese Medicine, Nanchang, PR China
| | - Xinju Hou
- Nanchang Hongdu Hospital of Traditional Chinese Medicine
| | - Manhua Zhu
- Nanchang Hongdu Hospital of Traditional Chinese Medicine
| | - Xingchen Zhou
- Jiangxi University of Traditional Chinese Medicine, Nanchang, PR China
| | - Siyuan Zhu
- Jiangxi University of Traditional Chinese Medicine, Nanchang, PR China
| | - Jun Chen
- Jiangxi University of Traditional Chinese Medicine, Nanchang, PR China
| |
Collapse
|
18
|
Iordachescu A, Hughes EAB, Joseph S, Hill EJ, Grover LM, Metcalfe AD. Trabecular bone organoids: a micron-scale 'humanised' prototype designed to study the effects of microgravity and degeneration. NPJ Microgravity 2021; 7:17. [PMID: 34021163 PMCID: PMC8140135 DOI: 10.1038/s41526-021-00146-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/25/2021] [Indexed: 11/20/2022] Open
Abstract
Bone is a highly responsive organ, which continuously adapts to the environment it is subjected to in order to withstand metabolic demands. These events are difficult to study in this particular tissue in vivo, due to its rigid, mineralised structure and inaccessibility of the cellular component located within. This manuscript presents the development of a micron-scale bone organoid prototype, a concept that can allow the study of bone processes at the cell-tissue interface. The model is constructed with a combination of primary female osteoblastic and osteoclastic cells, seeded onto femoral head micro-trabeculae, where they recapitulate relevant phenotypes and functions. Subsequently, constructs are inserted into a simulated microgravity bioreactor (NASA-Synthecon) to model a pathological state of reduced mechanical stimulation. In these constructs, we detected osteoclastic bone resorption sites, which were different in morphology in the simulated microgravity group compared to static controls. Once encapsulated in human fibrin and exposed to analogue microgravity for 5 days, masses of bone can be observed being lost from the initial structure, allowing to simulate the bone loss process further. Constructs can function as multicellular, organotypic units. Large osteocytic projections and tubular structures develop from the initial construct into the matrix at the millimetre scale. Micron-level fragments from the initial bone structure are detected travelling along these tubules and carried to sites distant from the native structure, where new matrix formation is initiated. We believe this model allows the study of fine-level physiological processes, which can shed light into pathological bone loss and imbalances in bone remodelling.
Collapse
Affiliation(s)
- Alexandra Iordachescu
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, UK.
- Healthcare Technologies Institute, University of Birmingham, Edgbaston, Birmingham, UK.
| | - Erik A B Hughes
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, UK
- Healthcare Technologies Institute, University of Birmingham, Edgbaston, Birmingham, UK
| | - Stephan Joseph
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, UK
- The Binding Site, Edgbaston, Birmingham, UK
| | - Eric J Hill
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Liam M Grover
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, UK
- Healthcare Technologies Institute, University of Birmingham, Edgbaston, Birmingham, UK
| | - Anthony D Metcalfe
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, UK
- Healthcare Technologies Institute, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
19
|
Sayin E, Baran ET, Elsheikh A, Mudera V, Cheema U, Hasirci V. Evaluating Oxygen Tensions Related to Bone Marrow and Matrix for MSC Differentiation in 2D and 3D Biomimetic Lamellar Scaffolds. Int J Mol Sci 2021; 22:4010. [PMID: 33924614 PMCID: PMC8068918 DOI: 10.3390/ijms22084010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023] Open
Abstract
The physiological O2 microenvironment of mesenchymal stem cells (MSCs) and osteoblasts and the dimensionality of a substrate are known to be important in regulating cell phenotype and function. By providing the physiologically normoxic environments of bone marrow (5%) and matrix (12%), we assessed their potential to maintain stemness, induce osteogenic differentiation, and enhance the material properties in the micropatterned collagen/silk fibroin scaffolds that were produced in 2D or 3D. Expression of osterix (OSX) and vascular endothelial growth factor A (VEGFA) was significantly enhanced in the 3D scaffold in all oxygen environments. At 21% O2, OSX and VEGFA expressions in the 3D scaffold were respectively 13,200 and 270 times higher than those of the 2D scaffold. Markers for assessing stemness were significantly more pronounced on tissue culture polystyrene and 2D scaffold incubated at 5% O2. At 21% O2, we measured significant increases in ultimate tensile strength (p < 0.0001) and Young's modulus (p = 0.003) of the 3D scaffold compared to the 2D scaffold, whilst 5% O2 hindered the positive effect of cell seeding on tensile strength. In conclusion, we demonstrated that the 3D culture of MSCs in collagen/silk fibroin scaffolds provided biomimetic cues for bone progenitor cells toward differentiation and enhanced the tensile mechanical properties.
Collapse
Affiliation(s)
- Esen Sayin
- Department of Biotechnology, Middle East Technical University, 06800 Ankara, Turkey;
| | - Erkan Türker Baran
- Department of Tissue Engineering, University of Health Sciences, 34668 Istanbul, Turkey;
| | - Ahmed Elsheikh
- School of Engineering, The University of Liverpool, Liverpool L69 3GH, UK;
| | - Vivek Mudera
- UCL Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, 43-45 Foley Street, Fitzrovia, London W1W 7TY, UK; (V.M.); (U.C.)
| | - Umber Cheema
- UCL Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, 43-45 Foley Street, Fitzrovia, London W1W 7TY, UK; (V.M.); (U.C.)
| | - Vasif Hasirci
- Department of Biotechnology, Middle East Technical University, 06800 Ankara, Turkey;
- Department of Medical Engineering, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey
| |
Collapse
|
20
|
Junyent S, Reeves J, Gentleman E, Habib SJ. Pluripotency state regulates cytoneme selectivity and self-organization of embryonic stem cells. J Cell Biol 2021; 220:e202005095. [PMID: 33606876 PMCID: PMC7903188 DOI: 10.1083/jcb.202005095] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 12/09/2020] [Accepted: 01/22/2021] [Indexed: 12/21/2022] Open
Abstract
To coordinate cell fate with changes in spatial organization, stem cells (SCs) require specific and adaptable systems of signal exchange and cell-to-cell communication. Pluripotent embryonic stem cells (ESCs) use cytonemes to pair with trophoblast stem cells (TSCs) and form synthetic embryonic structures in a Wnt-dependent manner. How these interactions vary with pluripotency states remains elusive. Here we show that ESC transition to an early primed ESC (pESC) state reduces their pairing with TSCs and impairs synthetic embryogenesis. pESCs can activate the Wnt/β-catenin pathway in response to soluble Wnt ligands, but their cytonemes form unspecific and unstable interactions with localized Wnt sources. This is due to an impaired crosstalk between Wnt and glutamate receptor activity and reduced generation of Ca2+ transients on the cytonemes upon Wnt source contact. Induced iGluR activation can partially restore cytoneme function in pESCs, while transient overexpression of E-cadherin improves pESC-TSC pairing. Our results illustrate how changes in pluripotency state alter the mechanisms SCs use to self-organize.
Collapse
Affiliation(s)
- Sergi Junyent
- Centre for Stem Cells and Regenerative Medicine, King’s College London, London, UK
| | - Joshua Reeves
- Centre for Stem Cells and Regenerative Medicine, King’s College London, London, UK
| | - Eileen Gentleman
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, UK
| | - Shukry J. Habib
- Centre for Stem Cells and Regenerative Medicine, King’s College London, London, UK
| |
Collapse
|
21
|
Shariati L, Esmaeili Y, Javanmard SH, Bidram E, Amini A. Organoid Technology: Current Standing and Future Perspectives. STEM CELLS (DAYTON, OHIO) 2021; 39:1625-1649. [PMID: 33786925 DOI: 10.1002/stem.3379] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/01/2021] [Indexed: 11/12/2022]
Abstract
Organoids are powerful systems to facilitate the study of individuals' disorders and personalized treatments. Likewise, emerging this technology has improved the chance of translatability of drugs for pre-clinical therapies and mimicking the complexity of organs, while it proposes numerous approaches for human disease modeling, tissue engineering, drug development, diagnosis, and regenerative medicine. In this review, we outline the past/present organoid technology and summarize its faithful applications, then, we discuss the challenges and limitations encountered by 3D organoids. In the end, we offer the human organoids as basic mechanistic infrastructure for "human modelling" systems to prescribe personalized medicines. © AlphaMed Press 2021 SIGNIFICANCE STATEMENT: This concise review concerns about organoids, available methods for in vitro organoid formation and different types of human organoid models. We, then, summarize biological approaches to improve 3D organoids complexity and therapeutic potentials of organoids. Despite the existing incomprehensive review articles in literature that examine partial aspects of the organoid technology, the present review article comprehensively and critically presents this technology from different aspects. It effectively provides a systematic overview on the past and current applications of organoids and discusses the future perspectives and suggestions to improve this technology and its applications.
Collapse
Affiliation(s)
- Laleh Shariati
- Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yasaman Esmaeili
- Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Bidram
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbas Amini
- Department of Mechanical Engineering, Australian College of Kuwait, Mishref, Safat, Kuwait.,Centre for Infrastructure Engineering, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
22
|
Liebig BE, Kisiday JD, Bahney CS, Ehrhart NP, Goodrich LR. The platelet-rich plasma and mesenchymal stem cell milieu: A review of therapeutic effects on bone healing. J Orthop Res 2020; 38:2539-2550. [PMID: 32589800 PMCID: PMC8354210 DOI: 10.1002/jor.24786] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 06/15/2020] [Accepted: 06/24/2020] [Indexed: 02/04/2023]
Abstract
Platelet-rich plasma is autologous plasma that contains concentrated platelets compared to whole blood. It is relatively inexpensive to produce, can be easily isolated from whole blood, and can be administered while the patient is in the operating room. Further, because platelet-rich plasma is an autologous therapy, there is minimal risk for adverse reactions to the patient. Platelet-rich plasma has been used to promote bone regeneration due to its abundance of concentrated growth factors that are essential to wound healing. In this review, we summarize the methods for producing platelet-rich plasma and the history of its use in bone regeneration. We also summarize the growth factor profiles derived from platelet-rich plasma, with emphasis on those factors that play a direct role in promoting bone repair within the local fracture environment. In addition, we discuss the potential advantages of combining platelet-rich plasma with mesenchymal stem cells, a multipotent cell type often obtained from bone marrow or fat, to improve craniofacial and long bone regeneration. We detail what is currently known about how platelet-rich plasma influences mesenchymal stem cells in vitro, and then highlight the clinical outcomes of administering platelet-rich plasma and mesenchymal stem cells as a combination therapy to promote bone regeneration in vivo.
Collapse
Affiliation(s)
- Bethany E. Liebig
- Department of Clinical Sciences, Orthopaedic Research Center, Translational Medicine Institute, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado
| | - John D. Kisiday
- Department of Clinical Sciences, Orthopaedic Research Center, Translational Medicine Institute, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado
| | - Chelsea S. Bahney
- Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, Colorado
| | - Nicole P. Ehrhart
- Department of Clinical Sciences, Flint Animal Cancer Center, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado
| | - Laurie R. Goodrich
- Department of Clinical Sciences, Orthopaedic Research Center, Translational Medicine Institute, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
23
|
Modified parylene-N films as chemical microenvironments for differentiation and spheroid formation of osteoblast cells. Sci Rep 2020; 10:15219. [PMID: 32938961 PMCID: PMC7495472 DOI: 10.1038/s41598-020-71322-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/07/2020] [Indexed: 11/30/2022] Open
Abstract
In this work, the influence of parylene N film on the spheroid formation of osteoblast-like cells (MG-63) was determined and compared with that of high-hydrophilicity microenvironments, such as hydrophilic culture matrix and ultraviolet-treated parylene N film. To elucidate the change in cell properties due to the microenvironment of parylene N film, global gene expression profiles of MG-63 cells on parylene N film were analyzed. We confirmed the upregulated expression of osteoblast differentiation- and proliferation-related genes, such as Runx2, ALPL, and BGLAP and MKi67 and PCNA, respectively, using the real-time polymerase chain reaction. In addition, the differentiation and proliferation of osteoblast cells cultured on parylene N film were validated using immunostaining. Finally, the formation of spheroids and regulation of differentiation in human mesenchymal stem cells (MSCs) on parylene N film was demonstrated. The results of this study confirm that the microenvironment with the controlled hydrophobic property of parylene N film could effectively trigger the bone differentiation and maintains the proliferation of MSCs, similar to MG-63 cells without any scaffold structures or physical treatments.
Collapse
|
24
|
Shanbhag S, Suliman S, Bolstad AI, Stavropoulos A, Mustafa K. Xeno-Free Spheroids of Human Gingiva-Derived Progenitor Cells for Bone Tissue Engineering. Front Bioeng Biotechnol 2020; 8:968. [PMID: 32974308 PMCID: PMC7466771 DOI: 10.3389/fbioe.2020.00968] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022] Open
Abstract
Gingiva has been identified as a minimally invasive source of multipotent progenitor cells (GPCs) for use in bone tissue engineering (BTE). To facilitate clinical translation, it is important to characterize GPCs in xeno-free cultures. Recent evidence indicates several advantages of three-dimensional (3D) spheroid cultures of mesenchymal stromal cells (MSCs) over conventional 2D monolayers. The present study aimed to characterize human GPCs in xeno-free 2D cultures, and to test their osteogenic potential in 3D cultures, in comparison to bone marrow MSCs (BMSCs). Primary GPCs and BMSCs were expanded in human platelet lysate (HPL) or fetal bovine serum (FBS) and characterized based on in vitro proliferation, immunophenotype and multi-lineage differentiation. Next, 3D spheroids of GPCs and BMSCs were formed via self-assembly and cultured in HPL. Expression of stemness- (SOX2, OCT4, NANOG) and osteogenesis-related markers (BMP2, RUNX2, OPN, OCN) was assessed at gene and protein levels in 3D and 2D cultures. The cytokine profile of 3D and 2D GPCs and BMSCs was assessed via a multiplex immunoassay. Monolayer GPCs in both HPL and FBS demonstrated a characteristic MSC-like immunophenotype and multi-lineage differentiation; osteogenic differentiation of GPCs was enhanced in HPL vs. FBS. CD271+ GPCs in HPL spontaneously acquired a neuronal phenotype and strongly expressed neuronal/glial markers. 3D spheroids of GPCs and BMSCs with high cell viability were formed in HPL media. Expression of stemness- and osteogenesis-related genes was significantly upregulated in 3D vs. 2D GPCs/BMSCs; the latter was independent of osteogenic induction. Synthesis of SOX2, BMP2 and OCN was confirmed via immunostaining, and in vitro mineralization via Alizarin red staining. Finally, secretion of several growth factors and chemokines was enhanced in GPC/BMSC spheroids, while that of pro-inflammatory cytokines was reduced, compared to monolayers. In summary, monolayer GPCs expanded in HPL demonstrate enhanced osteogenic differentiation potential, comparable to that of BMSCs. Xeno-free spheroid culture further enhances stemness- and osteogenesis-related gene expression, and cytokine secretion in GPCs, comparable to that of BMSCs.
Collapse
Affiliation(s)
- Siddharth Shanbhag
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Salwa Suliman
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Anne Isine Bolstad
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Andreas Stavropoulos
- Department of Periodontology, Faculty of Odontology, Malmö University, Malmö, Sweden.,Division of Regenerative Medicine and Periodontology, University Clinics of Dental Medicine, University of Geneva, Geneva, Switzerland
| | - Kamal Mustafa
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
25
|
Zanoni M, Cortesi M, Zamagni A, Arienti C, Pignatta S, Tesei A. Modeling neoplastic disease with spheroids and organoids. J Hematol Oncol 2020; 13:97. [PMID: 32677979 PMCID: PMC7364537 DOI: 10.1186/s13045-020-00931-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
Cancer is a complex disease in which both genetic defects and microenvironmental components contribute to the development, progression, and metastasization of disease, representing major hurdles in the identification of more effective and safer treatment regimens for patients. Three-dimensional (3D) models are changing the paradigm of preclinical cancer research as they more closely resemble the complex tissue environment and architecture found in clinical tumors than in bidimensional (2D) cell cultures. Among 3D models, spheroids and organoids represent the most versatile and promising models in that they are capable of recapitulating the heterogeneity and pathophysiology of human cancers and of filling the gap between conventional 2D in vitro testing and animal models. Such 3D systems represent a powerful tool for studying cancer biology, enabling us to model the dynamic evolution of neoplastic disease from the early stages to metastatic dissemination and the interactions with the microenvironment. Spheroids and organoids have recently been used in the field of drug discovery and personalized medicine. The combined use of 3D models could potentially improve the robustness and reliability of preclinical research data, reducing the need for animal testing and favoring their transition to clinical practice. In this review, we summarize the recent advances in the use of these 3D systems for cancer modeling, focusing on their innovative translational applications, looking at future challenges, and comparing them with most widely used animal models.
Collapse
Affiliation(s)
- Michele Zanoni
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy.
| | - Michela Cortesi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Alice Zamagni
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Chiara Arienti
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Sara Pignatta
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Anna Tesei
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy.
| |
Collapse
|
26
|
D'Costa K, Kosic M, Lam A, Moradipour A, Zhao Y, Radisic M. Biomaterials and Culture Systems for Development of Organoid and Organ-on-a-Chip Models. Ann Biomed Eng 2020; 48:2002-2027. [PMID: 32285341 PMCID: PMC7334104 DOI: 10.1007/s10439-020-02498-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/24/2020] [Indexed: 02/06/2023]
Abstract
The development of novel 3D tissue culture systems has enabled the in vitro study of in vivo processes, thereby overcoming many of the limitations of previous 2D tissue culture systems. Advances in biomaterials, including the discovery of novel synthetic polymers has allowed for the generation of physiologically relevant in vitro 3D culture models. A large number of 3D culture systems, aided by novel organ-on-a-chip and bioreactor technologies have been developed to improve reproducibility and scalability of in vitro organ models. The discovery of induced pluripotent stem cells (iPSCs) and the increasing number of protocols to generate iPSC-derived cell types has allowed for the generation of novel 3D models with minimal ethical limitations. The production of iPSC-derived 3D cultures has revolutionized the field of developmental biology and in particular, the study of fetal brain development. Furthermore, physiologically relevant 3D cultures generated from PSCs or adult stem cells (ASCs) have greatly advanced in vitro disease modelling and drug discovery. This review focuses on advances in 3D culture systems over the past years to model fetal development, disease pathology and support drug discovery in vitro, with a specific focus on the enabling role of biomaterials.
Collapse
Affiliation(s)
- Katya D'Costa
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Milena Kosic
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Angus Lam
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Azeen Moradipour
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Yimu Zhao
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Milica Radisic
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada.
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada.
- Toronto General Research Institute, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
27
|
Zhang G, Lin Y, Zhou Q, Gao L, Zhang L, Yu Y, Shen Y, Huang Y. Silver acupuncture for myofascitis: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e20519. [PMID: 32502001 PMCID: PMC7306356 DOI: 10.1097/md.0000000000020519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND This systematic review aims to evaluate the effectiveness and safety of silver acupuncture in treatment of myofascitis. METHODS Electronic databases of all silver acupuncture for myofascitis will be searched at PubMed, Cochrane Library, Springer, Embase, China National Knowledge Infrastructure, Wanfang, and Chinese Biological Medical disc from inception to March 31, 2020, with language restricted in Chinese and English. The primary outcome is visual analog scale, a short pain scale with sensitivity and comparability. Secondary outcomes included Clinical Assessment Scale for Cervical Spondylosis, Japanese Orthopaedic Association Scores, Oswestry dysfunction index, American Orthopaedic Foot and Ankle Society-Ankle Hindfoot scale, Foot and Ankle Ability Measure, The Cumberland ankle instability tool, Pittsburgh sleep quality index, self-rating anxiety scale, self-depression rating scale, and follow-up relapse rate. The systematic review and searches for randomized controlled trials of this therapy for myofascitis. The Cochrane RevMan V5.3 bias assessment tool is implemented to assess bias risk, data integration risk, meta-analysis risk, and subgroup analysis risk (if conditions are met). Mean difference, standard mean deviation, and binary data will be used to represent continuous results. RESULTS This study will provide a comprehensive review and evaluation of the available evidence for the treatment of myofascitis with this therapy. CONCLUSION This study will provide new evidence to evaluate the effectiveness and side effects of silver acupuncture for myofascitis. Due to the data are not personalized, no formal ethical approval is required. ETHICS AND DISSEMINATION There is no requirement of ethical approval and it will be in print or disseminated by electronic copies. PROSPERO REGISTRATION NUMBER CRD42020151476.
Collapse
Affiliation(s)
- Guilong Zhang
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine
| | - Yanming Lin
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine
| | - Qun Zhou
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan
| | - Liang Gao
- Boai Hospital Affiliated to China Rehabilitation Research Center, Beijing
| | - Leixiao Zhang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine
| | - Yang Yu
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine
| | - Yuquan Shen
- The First People's Hospital of Long quanyi District, Chengdu, Sichuan, China
| | - Yong Huang
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine
| |
Collapse
|
28
|
Size-Optimized Microspace Culture Facilitates Differentiation of Mouse Induced Pluripotent Stem Cells into Osteoid-Rich Bone Constructs. Stem Cells Int 2020; 2020:7082679. [PMID: 32508932 PMCID: PMC7244985 DOI: 10.1155/2020/7082679] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/29/2020] [Accepted: 02/15/2020] [Indexed: 01/15/2023] Open
Abstract
Microspace culture is promising for self-organization of induced pluripotent stem cells (iPSCs). However, the optimal size of microspaces for osteogenic differentiation is unclear. We hypothesized that a specific microspace size could facilitate self-organizing iPSC differentiation to form bone-like tissue in vitro. The objectives of this study were to investigate such effects of microspace size and to evaluate bone regeneration upon transplantation of the resulting osteogenic constructs. Dissociated mouse gingival fibroblast-derived iPSCs were plated in ultra-low-attachment microspace culture wells containing hundreds of U-bottom-shaped microwell spots per well to form cell aggregates in growth medium. The microwells had different aperture diameters/depths (400/560 μm (Elp400), 500/700 μm (Elp500), and 900/700 μm (Elp900)) (Kuraray; Elplasia). After 5 days of aggregation, cells were maintained in osteogenic induction medium for 35 days. Only cells in the Elp500 condition tightly aggregated and maintained high viability during osteogenic induction. After 10 days of induction, Elp500 cell constructs showed significantly higher gene expression of Runx2, Osterix, Collagen 1a1, Osteocalcin, Bone sialoprotein, and Osteopontin compared to constructs in Elp400 and Elp900. In methylene blue-counterstained von Kossa staining and Movat's pentachrome staining, only Elp500 constructs showed robust osteoid formation on day 35, with high expression of type I collagen (a major osteoid component) and osteocalcin proteins. Cell constructs were transplanted into rat calvarial bone defects, and micro-CT analysis after 3 weeks showed better bone repair with significantly higher bone mineral density in the Elp500 group compared to the Elp900 group. These results suggest that microspace size affects self-organized osteogenic differentiation of iPSCs. Elp500 microspace culture specifically induces mouse iPSCs into osteoid-rich bone-like tissue possessing high bone regeneration capacity.
Collapse
|
29
|
Pan T, Martinez M, Hubka KM, Song JH, Lin SC, Yu G, Lee YC, Gallick GE, Tu SM, Harrington DA, Farach-Carson MC, Lin SH, Satcher RL. Cabozantinib Reverses Renal Cell Carcinoma-mediated Osteoblast Inhibition in Three-dimensional Coculture In Vitro and Reduces Bone Osteolysis In Vivo. Mol Cancer Ther 2020; 19:1266-1278. [PMID: 32220969 DOI: 10.1158/1535-7163.mct-19-0174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/16/2019] [Accepted: 03/11/2020] [Indexed: 01/10/2023]
Abstract
Renal cell carcinoma bone metastases (RCCBM) are typically osteolytic. We previously showed that BIGH3 (beta Ig-h3/TGFBI), secreted by 786-O renal cell carcinoma, plays a role in osteolytic bone lesion in RCCBM through inhibition of osteoblast (OSB) differentiation. To study this interaction, we employed three-dimensional (3D) hydrogels to coculture bone-derived 786-O (Bo-786) renal cell carcinoma cells with MC3T3-E1 pre-OSBs. Culturing pre-OSBs in the 3D hydrogels preserved their ability to differentiate into mature OSB; however, this process was decreased when pre-OSBs were cocultured with Bo-786 cells. Knockdown of BIGH3 in Bo-786 cells recovered OSB differentiation. Furthermore, treatment with bone morphogenetic protein 4, which stimulates OSB differentiation, or cabozantinib (CBZ), which inhibits VEGFR1 and MET tyrosine kinase activities, also increased OSB differentiation in the coculture. CBZ also inhibited pre-osteoclast RAW264.7 cell differentiation. Using RCCBM mouse models, we showed that CBZ inhibited Bo-786 tumor growth in bone. CBZ treatment also increased bone volume and OSB number, and decreased osteoclast number and blood vessel density. When tested in SN12PM6 renal cell carcinoma cells that have been transduced to overexpress BIGH3, CBZ also inhibited SN12PM6 tumor growth in bone. These observations suggest that enhancing OSB differentiation could be one of the therapeutic strategies for treating RCCBM that exhibit OSB inhibition characteristics, and that this 3D coculture system is an effective tool for screening osteoanabolic agents for further in vivo studies.
Collapse
Affiliation(s)
- Tianhong Pan
- Department of Orthopedic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mariane Martinez
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, Texas.,Department of BioSciences, Rice University, Houston, Texas
| | - Kelsea M Hubka
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, Texas.,Department of Bioengineering, Rice University, Houston, Texas
| | - Jian H Song
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Song-Chang Lin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Guoyu Yu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yu-Chen Lee
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gary E Gallick
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shi-Ming Tu
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daniel A Harrington
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, Texas.,Department of BioSciences, Rice University, Houston, Texas
| | - Mary C Farach-Carson
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, Texas.,Department of BioSciences, Rice University, Houston, Texas.,Department of Bioengineering, Rice University, Houston, Texas
| | - Sue-Hwa Lin
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert L Satcher
- Department of Orthopedic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
30
|
Growth factor regulatory system: a new system for not truly recognized organisms. SCIENCE CHINA-LIFE SCIENCES 2020; 63:443-446. [PMID: 31942686 DOI: 10.1007/s11427-019-1590-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 11/26/2019] [Indexed: 12/23/2022]
|
31
|
Prior N, Inacio P, Huch M. Liver organoids: from basic research to therapeutic applications. Gut 2019; 68:2228-2237. [PMID: 31300517 PMCID: PMC6872443 DOI: 10.1136/gutjnl-2019-319256] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 06/27/2019] [Accepted: 06/30/2019] [Indexed: 02/02/2023]
Abstract
Organoid cultures have emerged as an alternative in vitro system to recapitulate tissues in a dish. While mouse models and cell lines have furthered our understanding of liver biology and associated diseases, they suffer in replicating key aspects of human liver tissue, in particular its complex architecture and metabolic functions. Liver organoids have now been established for multiple species from induced pluripotent stem cells, embryonic stem cells, hepatoblasts and adult tissue-derived cells. These represent a promising addition to our toolbox to gain a deeper understanding of this complex organ. In this perspective we will review the advances in the liver organoid field, its limitations and potential for biomedical applications.
Collapse
Affiliation(s)
- Nicole Prior
- Wellcome Trust-Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Patricia Inacio
- Wellcome Trust-Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Meritxell Huch
- Wellcome Trust-Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
32
|
Kihara T, Umezu C, Sawada K, Furutani Y. Osteogenic cells form mineralized particles, a few μm in size, in a 3D collagen gel culture. PeerJ 2019; 7:e7889. [PMID: 31660270 PMCID: PMC6815190 DOI: 10.7717/peerj.7889] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/13/2019] [Indexed: 02/03/2023] Open
Abstract
Osteogenic cells form mineralized matrices in vitro, as well as in vivo. The formation and shape of the mineralized matrices are highly regulated by the cells. In vitro formation of mineralized matrices by osteogenic cells can be a model for in vivo osteogenesis. In this study, using a three-dimensional (3D) collagen gel culture system, we developed a new in vitro model for the formation of mineralized particles, a few µm in size, by the osteogenic cells. Human osteosarcoma (HOS) cells formed spherical mineralized matrices (about 12 µm) at approximately 7 days when cultured with β-glycerophosphate (β-GP)-containing culture media on 2D tissue culture plates. Alternately, when they were cultured in a 3D collagen gel containing β-GP, they formed mineralized particles with about 1.7 µm in the gel at approximately 3 days. Calcium precipitation in the gel was evaluated by measuring the gel turbidity. This type of mineralization of HOS cells, which formed mineralized particles inside the gel, was also observed in a peptide-based hydrogel culture. The mineralized particles were completely diminished by inhibiting the activity of Pit-1, phosphate cotransporter, of the HOS cells. When mouse osteoblast-like MC3T3-E1 cells, which form large and flat mineralized matrices in 2D osteogenic conditions at approximately 3 weeks of culture, were cultured in a 3D collagen gel, they also formed mineralized particles in the gel, similar to those in HOS cells, at approximately 18 days. Thus, osteogenic cells cultured in the 3D collagen gel form mineralized particles over a shorter period, and the mineralization could be easily determined by gel turbidity. This 3D gel culture system of osteogenic cells acts as a useful model for cells forming particle-type mineralized matrices, and we assume that the mineralized particles in the 3D hydrogel are calcospherulites, which are derived from matrix vesicles secreted by osteogenic cells.
Collapse
Affiliation(s)
- Takanori Kihara
- Department of Life and Environment Engineering, Faculty of Environmental Engineering, The University of Kitakyushu, Kitakyushu, Fukuoka, Japan
| | - Chiya Umezu
- Department of Life and Environment Engineering, Faculty of Environmental Engineering, The University of Kitakyushu, Kitakyushu, Fukuoka, Japan
| | - Karin Sawada
- Department of Life and Environment Engineering, Faculty of Environmental Engineering, The University of Kitakyushu, Kitakyushu, Fukuoka, Japan
| | - Yukari Furutani
- Department of Life and Environment Engineering, Faculty of Environmental Engineering, The University of Kitakyushu, Kitakyushu, Fukuoka, Japan
| |
Collapse
|
33
|
Abstract
The past decade has seen an explosion in the field of in vitro disease modelling, in particular the development of organoids. These self-organizing tissues derived from stem cells provide a unique system to examine mechanisms ranging from organ development to homeostasis and disease. Because organoids develop according to intrinsic developmental programmes, the resultant tissue morphology recapitulates organ architecture with remarkable fidelity. Furthermore, the fact that these tissues can be derived from human progenitors allows for the study of uniquely human processes and disorders. This article and accompanying poster highlight the currently available methods, particularly those aimed at modelling human biology, and provide an overview of their capabilities and limitations. We also speculate on possible future technological advances that have the potential for great strides in both disease modelling and future regenerative strategies. Summary: Human organoids are important tools for modelling disease. This At a Glance article summarises the current organoid models of several human diseases, and discusses future prospects for these technologies.
Collapse
Affiliation(s)
- Madeline A Lancaster
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Meritxell Huch
- The Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK .,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EL, UK.,Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| |
Collapse
|
34
|
Aguilar IN, Olivos DJ, Brinker A, Alvarez MB, Smith LJ, Chu TMG, Kacena MA, Wagner DR. Scaffold-free bioprinting of mesenchymal stem cells using the Regenova printer: Spheroid characterization and osteogenic differentiation. ACTA ACUST UNITED AC 2019; 15. [PMID: 31457109 DOI: 10.1016/j.bprint.2019.e00050] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Limitations in scaffold material properties, such as sub-optimal degradation time, highlight the need for alternative approaches to engineer de novo tissues. One emerging solution for fabricating tissue constructs is scaffold-free tissue engineering. To facilitate this approach, three-dimensional (3D) bioprinting technology (Regenova Bio 3D Printer) has been developed to construct complex geometric shapes from discrete cellular spheroids without exogenous scaffolds. Optimizing spheroid fabrication and characterizing cellular behavior in the spheroid environment are important first steps prior to printing larger constructs. Here, we characterized spheroids of immortalized mouse bone marrow stromal cells (BMSCs) that were differentiated to the osteogenic lineage. Immortalized BMSCs were seeded in low attachment 96-well plates in various numbers to generate self-aggregated spheroids either under the force of gravity or centrifugation. Cells were cultured in control or osteogenic media for up to 28 days. Spheroid diameter, roundness and smoothness were measured. Cell viability, DNA content and alkaline phosphatase activity were assessed at multiple time points. Additionally, expression of osteogenic markers was determined using real time qPCR. Spheroids formed under gravity with 20 K, 30 K and 40 K cells had average diameters of 498.5 ± 8.3 μm, 580.0 ± 32.9 μm and 639.2 ± 54.0 μm, respectively, while those formed under 300G centrifugation with the same numbers of cells had average diameters of 362.3 ± 3.5 μm, 433.1 ± 6.4 μm and 491.2 ± 8.0 μm. Spheroids formed via centrifugation were superior to those formed by gravity, as evidenced by better roundness and smoothness and double the retention of DNA (cellular) content. Cells in spheroids exhibited a robust osteogenic response to the differentiation medium, including higher mRNA expression of alkaline phosphatase, collagen type I, and osteocalcin than those cultured in control medium, as well as greater alkaline phosphatase activity. The optimal spheroid fabrication technique from this study was to aggregate 40K cells under 150-300G centrifugation. In future investigations, these spheroids will be 3D printed into larger tissue constructs.
Collapse
Affiliation(s)
- Izath Nizeet Aguilar
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - David J Olivos
- Department of Biochemistry and Molecular Biology, Indiana University of School of Medicine, Indianapolis, IN, USA
| | - Alexander Brinker
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Marta B Alvarez
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Lester J Smith
- Department of Radiology and Imaging Sciences, Indiana University of School of Medicine, Indianapolis, IN, USA.,3D Bioprinting Core, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tien-Min Gabriel Chu
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47908, USA.,Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Diane R Wagner
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Mechanical and Energy Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| |
Collapse
|
35
|
do Nascimento Santos CA, Borojevic R, Nasciutti LE, Maedatakiya CM. Characterization of Gastrospheres Using 3D Coculture System. Methods Mol Biol 2019; 1842:105-121. [PMID: 30196405 DOI: 10.1007/978-1-4939-8697-2_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
To understand the molecular mechanisms involved in gastric disorders and regeneration, we need an in vitro tridimensional (3D) culture model, which can mimic the in vivo gastric microenvironment. A 3D coculture system named gastrosphere is proposed herein, composed of primary human gastric epithelial and stromal cells. The primary cultures were obtained from endoscopic gastric biopsies, and after mechanical and enzymatic dispersion, epithelial (HGE3) and stromal (HGS12) cells were expanded. After extensive immunocytochemical characterization, cells were seeded onto 96-well round bottom plates previously covered with 1% agarose. Cells were cultured in KM-F12 culture medium with 10% fetal bovine serum (FBS), antibiotics, and antimycotics, in humidified air at 37 °C and atmosphere containing 5% CO2 for 72 h or until spheres formation. Then gastrospheres were carefully transferred to a rotary cell culture system (RCCS-4), and maintained for 07, 14, 21, and 28 days. Gastrospheres were morphologically characterized by immunocytochemistry [cytokeratins (CK), vimentin, α-smooth muscle actin (α-SMA), laminin (LN), fibronectin (FN), and type IV collagen (CIV), proliferating cell nuclear antigen (PCNA)], and electron microscopy. In gastrospheres, the cytokeratin-positive epithelial cells were found in the outer layer, while vimentin-positive stromal cells were localized in the center of the gastrospheres. PCNA+ cells were mainly seen at the peripheral and in the intermediary region while nestin+ cells were also depicted in the latter zone. Scanning electron microscopy revealed groups of cohesive gastric cells at the periphery, while transmission electron microscopy demonstrated some differentiated mucous-like or zymogenic-like cells in the periphery and stromal structures located at the center of the 3D structures. Extracellular matrix was deposed between cells. Our data suggest that in vitro gastrospheres recapitulate the in vivo gastric microenvironment.
Collapse
Affiliation(s)
| | - Radovan Borojevic
- Centro de Medicina Regenerativa, Faculdade de Medicina de Petrópolis - FASE, Rio de Janeiro, Brazil
| | - Luiz Eurico Nasciutti
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| | - Christina M Maedatakiya
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
36
|
Kumar Meena L, Rather H, Kedaria D, Vasita R. Polymeric microgels for bone tissue engineering applications – a review. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1570512] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lalit Kumar Meena
- Biomaterials & Biomimetics laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Hilal Rather
- Biomaterials & Biomimetics laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Dhaval Kedaria
- Biomaterials & Biomimetics laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Rajesh Vasita
- Biomaterials & Biomimetics laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| |
Collapse
|
37
|
Choudhary S, Ramasundaram P, Dziopa E, Mannion C, Kissin Y, Tricoli L, Albanese C, Lee W, Zilberberg J. Human ex vivo 3D bone model recapitulates osteocyte response to metastatic prostate cancer. Sci Rep 2018; 8:17975. [PMID: 30568232 PMCID: PMC6299475 DOI: 10.1038/s41598-018-36424-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 11/20/2018] [Indexed: 12/21/2022] Open
Abstract
Prostate cancer (PCa) is the second leading cause of cancer deaths among American men. Unfortunately, there is no cure once the tumor is established within the bone niche. Although osteocytes are master regulators of bone homeostasis and remodeling, their role in supporting PCa metastases remains poorly defined. This is largely due to a lack of suitable ex vivo models capable of recapitulating the physiological behavior of primary osteocytes. To address this need, we integrated an engineered bone tissue model formed by 3D-networked primary human osteocytes, with conditionally reprogrammed (CR) primary human PCa cells. CR PCa cells induced a significant increase in the expression of fibroblast growth factor 23 (FGF23) by osteocytes. The expression of the Wnt inhibitors sclerostin and dickkopf-1 (Dkk-1), exhibited contrasting trends, where sclerostin decreased while Dkk-1 increased. Furthermore, alkaline phosphatase (ALP) was induced with a concomitant increase in mineralization, consistent with the predominantly osteoblastic PCa-bone metastasis niche seen in patients. Lastly, we confirmed that traditional 2D culture failed to reproduce these key responses, making the use of our ex vivo engineered human 3D bone tissue an ideal platform for modeling PCa-bone interactions.
Collapse
Affiliation(s)
- Saba Choudhary
- Department of Biomedical Engineering, Chemistry and Biological Sciences, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Poornema Ramasundaram
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA
| | - Eugenia Dziopa
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA
| | - Ciaran Mannion
- Department of Pathology, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Yair Kissin
- Insall Scott Kelly Institute for Orthopedics and Sports Medicine, New York, NY, USA.,Hackensack University Medical Center, Hackensack, NJ, USA.,Lenox Hill Hospital, New York, NY, USA
| | - Lucas Tricoli
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Christopher Albanese
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Woo Lee
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Jenny Zilberberg
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA.
| |
Collapse
|
38
|
Fan J, An X, Yang Y, Xu H, Fan L, Deng L, Li T, Weng X, Zhang J, Chunhua Zhao R. MiR-1292 Targets FZD4 to Regulate Senescence and Osteogenic Differentiation of Stem Cells in TE/SJ/Mesenchymal Tissue System via the Wnt/β-catenin Pathway. Aging Dis 2018; 9:1103-1121. [PMID: 30574422 PMCID: PMC6284756 DOI: 10.14336/ad.2018.1110] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/10/2018] [Indexed: 12/12/2022] Open
Abstract
With the expansion of the elderly population, age-related osteoporosis and the resulting bone loss have become a significant health and socioeconomic issue. In Triple Energizer (TE)/San Jiao (SJ)/mesenchymal tissue system, mesenchymal stem cell (MSC) senescence, and impaired osteogenesis are thought to contribute to age-related diseases such as osteoporosis. Therefore, comprehending the molecular mechanisms underlying MSC senescence and osteogenesis is essential to improve the treatment of bone metabolic diseases. With the increasing role of miRNAs in MSC aging and osteogenic differentiation, we need to understand further how miRNAs participate in relevant mechanisms. In this study, we observed that the expression of miR-1292 was augmented during cellular senescence and lessened with osteogenesis in human adipose-derived mesenchymal stem cells (hADSCs). miR-1292 expression was positively correlated with senescence markers and negatively associated with bone formation markers in clinical bone samples. Overexpression of miR-1292 notably accelerated hADSC senescence and restrained osteogenesis, whereas its knockdown decreased senescence and enhanced osteogenic differentiation. Furthermore, miR-1292 upregulation inhibited ectopic bone formation in vivo. Mechanistically, FZD4 was identified as a potential target of miR-1292. Downregulation of FZD4 phenocopied the effect of miR-1292 overexpression on hADSC senescence and osteogenic differentiation. Moreover, the impact of miR-1292 suppression on senescence and osteogenesis were reversed by the FZD4 knockdown. Pathway analysis revealed that miR-1292 regulates hADSC senescence and osteogenesis through the Wnt/β-catenin signaling pathway. Thus, TE/SJ/mesenchymal tissue system is the largest organ composed of various functional cells derived from mesoderm, responsible for maintaining homeostasis and regulating cell senescence. miR-1292 might serve as a novel therapeutic target for the prevention and treatment of osteoporosis or other diseases related to bone metabolism and aging.
Collapse
Affiliation(s)
- Junfen Fan
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, China.
| | - Xingyan An
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, China.
| | - Yanlei Yang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, China.
| | - Haoying Xu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, China.
| | - Linyuan Fan
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, China.
| | - Luchan Deng
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, China.
| | - Tao Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China.
| | - Xisheng Weng
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China.
| | - Jianmin Zhang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences and School of Basic Medicine Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, China.
| |
Collapse
|
39
|
Development of a 3D Collagen Model for the In Vitro Evaluation of Magnetic-assisted Osteogenesis. Sci Rep 2018; 8:16270. [PMID: 30389949 PMCID: PMC6214996 DOI: 10.1038/s41598-018-33455-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 09/27/2018] [Indexed: 12/19/2022] Open
Abstract
Magnetic stimulation has been applied to bone regeneration, however, the cellular and molecular mechanisms of repair still require a better understanding. A three-dimensional (3D) collagen model was developed using plastic compression, which produces dense, cellular, mechanically strong native collagen structures. Osteoblast cells (MG-63) and magnetic iron oxide nanoparticles (IONPs) were incorporated into collagen gels to produce a range of cell-laden models. A magnetic bio-reactor to support cell growth under static magnetic fields (SMFs) was designed and fabricated by 3D printing. The influences of SMFs on cell proliferation, differentiation, extracellular matrix production, mineralisation and gene expression were evaluated. Polymerase chain reaction (PCR) further determined the effects of SMFs on the expression of runt-related transcription factor 2 (Runx2), osteonectin (ON), and bone morphogenic proteins 2 and 4 (BMP-2 and BMP-4). Results demonstrate that SMFs, IONPs and the collagen matrix can stimulate the proliferation, alkaline phosphatase production and mineralisation of MG-63 cells, by influencing matrix/cell interactions and encouraging the expression of Runx2, ON, BMP-2 and BMP-4. Therefore, the collagen model developed here not only offers a novel 3D bone model to better understand the effect of magnetic stimulation on osteogenesis, but also paves the way for further applications in tissue engineering and regenerative medicine.
Collapse
|
40
|
Abstract
Cell-culture methods that simplify the inherent complexities of the kidney have not sufficiently reproduced its true characteristics. Although reports indicate that organoid methodology surpasses traditional cell culture in terms of reproducing the nature of organs, the study of human kidney organoids have been confined to pluripotent stem cells. Furthermore, it has not yet progressed beyond the developmental state of embryonic kidney even after complicate additional differentiation processes. We here describe the kidney organotypic culture method that uses adult whole kidney tissues but mainly differentiates into tubular cells. This model was validated based on the retention of key kidney organotypic-specific features: 1) expression of Tamm-Horsfall protein; 2) dome-like organoid configurations, implying directed transport of solutes and water influx; and 3) organoid expression of neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1) in response to nephrotoxic injury (i.e., gentamicin and cisplatin exposure). This 3D-structured organoid prototype of the human renal tubule may have applications in developing patient-specific treatments for kidney diseases.
Collapse
|
41
|
Du J, Xie P, Lin S, Wu Y, Zeng D, Li Y, Jiang X. Time-Phase Sequential Utilization of Adipose-Derived Mesenchymal Stem Cells on Mesoporous Bioactive Glass for Restoration of Critical Size Bone Defects. ACS APPLIED MATERIALS & INTERFACES 2018; 10:28340-28350. [PMID: 30080385 DOI: 10.1021/acsami.8b08563] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The effective transportation of oxygen, nutrients, and metabolic wastes through new blood vessel networks is key to the survival of engineered constructs in large bone defects. Adipose-derived mesenchymal stem cells (ADSCs), which are regarded as excellent candidates for both bone and blood vessel engineering, are the preferred option for the restoration of massive bone defects. Therefore, we propose to induce ADSCs into osteogenic and endothelial cells differently. A modified hierarchical mesoporous bioactive glass (MBG) scaffold with an enhanced compressive strength was constructed and prevascularized by seeding with endothelial-induced ADSCs (EI-ADSCs). The prevascularized scaffolds were combined with osteogenically induced ADSCs (OI-ADSCs) to repair critical-size bone defects. To validate the angiogenesis of the prevascularized MBG scaffolds in vivo, green fluorescent protein (GFP) was used to label EI-ADSCs. The labeled EI-ADSCs were demonstrated to survive and participate in vascularization at day 7 after subcutaneous implantation in nude mice by double immunofluorescence staining of CD31 and GFP. Regarding the restoration of critical size bone defects, early angiogenesis of rat femur plug defects was evaluated by perfusion of Microfil after 3 weeks. Compared to nonvascularized MBG carrying OI-ADSCs (MBG/OI-ADSCs) and non-cell-seeded MBG scaffolds, the prevascularized MBG carrying OI-ADSCs (Pv-MBG/OI-ADSCs) showed enhanced angiogenesis on the surface and interior. Through dynamic bone formation analysis with sequential fluorescent labeling and Van Gieson's picro-fuchsin staining, we found that the Pv-MBG/OI-ADSCs exhibited the highest mineral deposition rate after surgery, which may be contributed by rapid vascular anastomosis facilitating increased survival of the seeded OI-ADSCs and by the recruitment function for bone mesenchymal stem cells. Therefore, the strategy of time-phase sequential utilization of ADSCs on MBG scaffolds is a practical design for the repair of massive bone defects.
Collapse
Affiliation(s)
- Jiahui Du
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology , Shanghai Jiao Tong University School of Medicine , 639 Zhizaoju Road , Shanghai 200011 , China
- National Clinical Research Center for Oral Diseases , 639 Zhizaoju Road , Shanghai 200011 , China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology , 639 Zhizaoju Road , Shanghai 200011 , China
| | - Peng Xie
- The State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Center for Biomedical Materials of Ministry of Education , East China University of Science and Technology , Shanghai 200237 , China
| | - Shuxian Lin
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology , Shanghai Jiao Tong University School of Medicine , 639 Zhizaoju Road , Shanghai 200011 , China
- National Clinical Research Center for Oral Diseases , 639 Zhizaoju Road , Shanghai 200011 , China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology , 639 Zhizaoju Road , Shanghai 200011 , China
| | - Yuqiong Wu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology , Shanghai Jiao Tong University School of Medicine , 639 Zhizaoju Road , Shanghai 200011 , China
- National Clinical Research Center for Oral Diseases , 639 Zhizaoju Road , Shanghai 200011 , China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology , 639 Zhizaoju Road , Shanghai 200011 , China
| | - Deliang Zeng
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology , Shanghai Jiao Tong University School of Medicine , 639 Zhizaoju Road , Shanghai 200011 , China
- National Clinical Research Center for Oral Diseases , 639 Zhizaoju Road , Shanghai 200011 , China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology , 639 Zhizaoju Road , Shanghai 200011 , China
| | - Yulin Li
- The State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Center for Biomedical Materials of Ministry of Education , East China University of Science and Technology , Shanghai 200237 , China
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology , Shanghai Jiao Tong University School of Medicine , 639 Zhizaoju Road , Shanghai 200011 , China
- National Clinical Research Center for Oral Diseases , 639 Zhizaoju Road , Shanghai 200011 , China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology , 639 Zhizaoju Road , Shanghai 200011 , China
| |
Collapse
|
42
|
Shalumon KT, Kuo CY, Wong CB, Chien YM, Chen HA, Chen JP. Gelatin/Nanohyroxyapatite Cryogel Embedded Poly(lactic- co-glycolic Acid)/Nanohydroxyapatite Microsphere Hybrid Scaffolds for Simultaneous Bone Regeneration and Load-Bearing. Polymers (Basel) 2018; 10:E620. [PMID: 30966654 PMCID: PMC6403993 DOI: 10.3390/polym10060620] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/01/2018] [Accepted: 06/02/2018] [Indexed: 11/18/2022] Open
Abstract
It is desirable to combine load-bearing and bone regeneration capabilities in a single bone tissue engineering scaffold. For this purpose, we developed a high strength hybrid scaffold using a sintered poly(lactic-co-glycolic acid) (PLGA)/nanohydroxyapatite (nHAP) microsphere cavity fitted with gelatin/nHAP cryogel disks in the center. Osteo-conductive/osteo-inductive nHAP was incorporated in 250⁻500 μm PLGA microspheres at 40% (w/w) as the base matrix for the high strength cavity-shaped microsphere scaffold, while 20% (w/w) nHAP was incorporated into gelatin cryogels as an embedded core for bone regeneration purposes. The physico-chemical properties of the microsphere, cryogel, and hybrid scaffolds were characterized in detail. The ultimate stress and Young's modulus of the hybrid scaffold showed 25- and 21-fold increases from the cryogel scaffold. In vitro studies using rabbit bone marrow-derived stem cells (rBMSCs) in cryogel and hybrid scaffolds through DNA content, alkaline phosphatase activity, and mineral deposition by SEM/EDS, showed the prominence of both scaffolds in cell proliferation and osteogenic differentiation of rBMSCs in a normal medium. Calcium contents analysis, immunofluorescent staining of collagen I (COL I), and osteocalcin (OCN) and relative mRNA expression of COL I, OCN and osteopontin (OPN) confirmed in vitro differentiation of rBMSCs in the hybrid scaffold toward the bone lineage. From compression testing, the cell/hybrid scaffold construct showed a 1.93 times increase of Young's modulus from day 14 to day 28, due to mineral deposition. The relative mRNA expression of osteogenic marker genes COL I, OCN, and OPN showed 5.5, 18.7, and 7.2 folds increase from day 14 to day 28, respectively, confirming bone regeneration. From animal studies, the rBMSCs-seeded hybrid constructs could repair mid-diaphyseal tibia defects in rabbits, as evaluated by micro-computed tomography (μ-CT) and histological analyses. The hybrid scaffold will be useful for bone regeneration in load-bearing areas.
Collapse
Affiliation(s)
- K T Shalumon
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan.
| | - Chang-Yi Kuo
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan.
| | - Chak-Bor Wong
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Keelung 20401, Taiwan.
| | - Yen-Miao Chien
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan.
| | - Huai-An Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan.
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan.
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Kwei-San, Taoyuan 33305, Taiwan.
- Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kwei-San, Taoyuan 33302, Taiwan.
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan.
| |
Collapse
|
43
|
Ahn H, Patel RR, Hoyt AJ, Lin ASP, Torstrick FB, Guldberg RE, Frick CP, Carpenter RD, Yakacki CM, Willett NJ. Biological evaluation and finite-element modeling of porous poly(para-phenylene) for orthopaedic implants. Acta Biomater 2018; 72:352-361. [PMID: 29563069 DOI: 10.1016/j.actbio.2018.03.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/08/2018] [Accepted: 03/13/2018] [Indexed: 12/22/2022]
Abstract
Poly(para-phenylene) (PPP) is a novel aromatic polymer with higher strength and stiffness than polyetheretherketone (PEEK), the gold standard material for polymeric load-bearing orthopaedic implants. The amorphous structure of PPP makes it relatively straightforward to manufacture different architectures, while maintaining mechanical properties. PPP is promising as a potential orthopaedic material; however, the biocompatibility and osseointegration have not been well investigated. The objective of this study was to evaluate biological and mechanical behavior of PPP, with or without porosity, in comparison to PEEK. We examined four specific constructs: 1) solid PPP, 2) solid PEEK, 3) porous PPP and 4) porous PEEK. Pre-osteoblasts (MC3T3) exhibited similar cell proliferation among the materials. Osteogenic potential was significantly increased in the porous PPP scaffold as assessed by ALP activity and calcium mineralization. In vivo osseointegration was assessed by implanting the cylindrical materials into a defect in the metaphysis region of rat tibiae. Significantly more mineral ingrowth was observed in both porous scaffolds compared to the solid scaffolds, and porous PPP had a further increase compared to porous PEEK. Additionally, porous PPP implants showed bone formation throughout the porous structure when observed via histology. A computational simulation of mechanical push-out strength showed approximately 50% higher interfacial strength in the porous PPP implants compared to the porous PEEK implants and similar stress dissipation. These data demonstrate the potential utility of PPP for orthopaedic applications and show improved osseointegration when compared to the currently available polymeric material. STATEMENT OF SIGNIFICANCE PEEK has been widely used in orthopaedic surgery; however, the ability to utilize PEEK for advanced fabrication methods, such as 3D printing and tailored porosity, remain challenging. We present a promising new orthopaedic biomaterial, Poly(para-phenylene) (PPP), which is a novel class of aromatic polymers with higher strength and stiffness than polyetheretherketone (PEEK). PPP has exceptional mechanical strength and stiffness due to its repeating aromatic rings that provide strong anti-rotational biaryl bonds. Furthermore, PPP has an amorphous structure making it relatively easier to manufacture (via molding or solvent-casting techniques) into different geometries with and without porosity. This ability to manufacture different architectures and use different processes while maintaining mechanical properties makes PPP a very promising potential orthopaedic biomaterial which may allow for closer matching of mechanical properties between the host bone tissue while also allowing for enhanced osseointegration. In this manuscript, we look at the potential of porous and solid PPP in comparison to PEEK. We measured the mechanical properties of PPP and PEEK scaffolds, tested these scaffolds in vitro for osteocompatibility with MC3T3 cells, and then tested the osseointegration and subsequent functional integration in vivo in a metaphyseal drill hole model in rat tibia. We found that PPP permits cell adhesion, growth, and mineralization in vitro. In vivo it was found that porous PPP significantly enhanced mineralization into the construct and increased the mechanical strength required to push out the scaffold in comparison to PEEK. This is the first study to investigate the performance of PPP as an orthopaedic biomaterial in vivo. PPP is an attractive material for orthopaedic implants due to the ease of manufacturing and superior mechanical strength.
Collapse
Affiliation(s)
- Hyunhee Ahn
- Department of Orthopaedics, Emory University, Atlanta, GA, USA; The Atlanta Veterans Affairs Medical Center Atlanta, Decatur, GA, USA
| | - Ravi R Patel
- Department of Mechanical Engineering, University of Colorado, Denver, CO, USA
| | - Anthony J Hoyt
- Department of Mechanical Engineering, University of Wyoming, Laramie, WY, USA
| | - Angela S P Lin
- George W. Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - F Brennan Torstrick
- George W. Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Robert E Guldberg
- George W. Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Carl P Frick
- Department of Mechanical Engineering, University of Wyoming, Laramie, WY, USA
| | - R Dana Carpenter
- Department of Mechanical Engineering, University of Colorado, Denver, CO, USA
| | | | - Nick J Willett
- Department of Orthopaedics, Emory University, Atlanta, GA, USA; The Atlanta Veterans Affairs Medical Center Atlanta, Decatur, GA, USA.
| |
Collapse
|
44
|
Baptista LS, Kronemberger GS, Côrtes I, Charelli LE, Matsui RAM, Palhares TN, Sohier J, Rossi AM, Granjeiro JM. Adult Stem Cells Spheroids to Optimize Cell Colonization in Scaffolds for Cartilage and Bone Tissue Engineering. Int J Mol Sci 2018; 19:E1285. [PMID: 29693604 PMCID: PMC5983745 DOI: 10.3390/ijms19051285] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 02/07/2023] Open
Abstract
Top-down tissue engineering aims to produce functional tissues using biomaterials as scaffolds, thus providing cues for cell proliferation and differentiation. Conversely, the bottom-up approach aims to precondition cells to form modular tissues units (building-blocks) represented by spheroids. In spheroid culture, adult stem cells are responsible for their extracellular matrix synthesis, re-creating structures at the tissue level. Spheroids from adult stem cells can be considered as organoids, since stem cells recapitulate differentiation pathways and also represent a promising approach for identifying new molecular targets (biomarkers) for diagnosis and therapy. Currently, spheroids can be used for scaffold-free (developmental engineering) or scaffold-based approaches. The scaffold promotes better spatial organization of individual spheroids and provides a defined geometry for their 3D assembly in larger and complex tissues. Furthermore, spheroids exhibit potent angiogenic and vasculogenic capacity and serve as efficient vascularization units in porous scaffolds for bone tissue engineering. An automated combinatorial approach that integrates spheroids into scaffolds is starting to be investigated for macro-scale tissue biofabrication.
Collapse
Affiliation(s)
- Leandra Santos Baptista
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro (UFRJ) Xerém, 25245-390 Duque de Caxias, Rio de Janeiro, Brazil.
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), 25250-020 Duque de Caxias, Rio de Janeiro, Brazil.
- Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), 25250-020 Duque de Caxias, Rio de Janeiro, Brazil.
- Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Campus I, 25071-202 Duque de Caxias, Rio de Janeiro, Brazil.
| | - Gabriela Soares Kronemberger
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro (UFRJ) Xerém, 25245-390 Duque de Caxias, Rio de Janeiro, Brazil.
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), 25250-020 Duque de Caxias, Rio de Janeiro, Brazil.
- Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Campus I, 25071-202 Duque de Caxias, Rio de Janeiro, Brazil.
| | - Isis Côrtes
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro (UFRJ) Xerém, 25245-390 Duque de Caxias, Rio de Janeiro, Brazil.
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), 25250-020 Duque de Caxias, Rio de Janeiro, Brazil.
- Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), 25250-020 Duque de Caxias, Rio de Janeiro, Brazil.
| | - Letícia Emiliano Charelli
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro (UFRJ) Xerém, 25245-390 Duque de Caxias, Rio de Janeiro, Brazil.
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), 25250-020 Duque de Caxias, Rio de Janeiro, Brazil.
- Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), 25250-020 Duque de Caxias, Rio de Janeiro, Brazil.
| | - Renata Akemi Morais Matsui
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro (UFRJ) Xerém, 25245-390 Duque de Caxias, Rio de Janeiro, Brazil.
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), 25250-020 Duque de Caxias, Rio de Janeiro, Brazil.
- Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), 25250-020 Duque de Caxias, Rio de Janeiro, Brazil.
| | - Thiago Nunes Palhares
- Brazilian Center for Physics Research, Xavier Sigaud 150, 22290-180 Urca, Rio de Janeiro, Brazil.
| | - Jerome Sohier
- Laboratory of tissue biology and therapeutic engineering-UMR 5305, CNRS, 69007 Lyon, France.
| | - Alexandre Malta Rossi
- Brazilian Center for Physics Research, Xavier Sigaud 150, 22290-180 Urca, Rio de Janeiro, Brazil.
| | - José Mauro Granjeiro
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), 25250-020 Duque de Caxias, Rio de Janeiro, Brazil.
- Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), 25250-020 Duque de Caxias, Rio de Janeiro, Brazil.
- Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Campus I, 25071-202 Duque de Caxias, Rio de Janeiro, Brazil.
- Laboratory of Clinical Research in Odontology, Fluminense Federal University (UFF), 24020-140 Niterói, Brazil.
| |
Collapse
|
45
|
Kang YG, Wei J, Shin JW, Wu YR, Su J, Park YS, Shin JW. Enhanced biocompatibility and osteogenic potential of mesoporous magnesium silicate/polycaprolactone/wheat protein composite scaffolds. Int J Nanomedicine 2018; 13:1107-1117. [PMID: 29520139 PMCID: PMC5833793 DOI: 10.2147/ijn.s157921] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Successful bone tissue engineering using scaffolds is primarily dependent on the properties of the scaffold, including biocompatibility, highly interconnected porosity, and mechanical integrity. METHODS In this study, we propose new composite scaffolds consisting of mesoporous magnesium silicate (m_MS), polycaprolactone (PCL), and wheat protein (WP) manufactured by a rapid prototyping technique to provide a micro/macro porous structure. Experimental groups were set based on the component ratio: (1) WP0% (m_MS:PCL:WP =30:70:0 weight per weight; w/w); (2) WP15% (m_MS:PCL:WP =30:55:15 w/w); (3) WP30% (m_MS:PCL:WP =30:40:30 w/w). RESULTS Evaluation of the properties of fabricated scaffolds indicated that increasing the amount of WP improved the surface hydrophilicity and biodegradability of m_MS/PCL/WP composites, while reducing the mechanical strength. Moreover, experiments were performed to confirm the biocompatibility and osteogenic differentiation of human mesenchymal stem cells (MSCs) according to the component ratio of the scaffold. The results confirmed that the content of WP affects proliferation and osteogenic differentiation of MSCs. Based on the last day of the experiment, ie, the 14th day, the proliferation based on the amount of DNA was the best in the WP30% group, but all of the markers measured by PCR were the most expressed in the WP15% group. CONCLUSION These results suggest that the m_MS/PCL/WP composite is a promising candidate for use as a scaffold in cell-based bone regeneration.
Collapse
Affiliation(s)
- Yun Gyeong Kang
- School of Biomedical Engineering, Inje University, Gimhae, Republic of Korea
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, China
| | - Ji Won Shin
- School of Biomedical Engineering, Inje University, Gimhae, Republic of Korea
| | - Yan Ru Wu
- Department of Health Science and Technology, Inje University, Gimhae, Republic of Korea
| | - Jiacan Su
- Department of Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Young Shik Park
- School of Biological Science, Inje University, Gimhae, Republic of Korea
| | - Jung-Woog Shin
- School of Biomedical Engineering, Inje University, Gimhae, Republic of Korea
- Department of Health Science and Technology, Inje University, Gimhae, Republic of Korea
- Cardiovascular and Metabolic Disease Center/Institute of Aged Life Redesign/UHARC, Inje University, Gimhae, Republic of Korea
| |
Collapse
|
46
|
Puwanun S, Delaine‐Smith RM, Colley HE, Yates JM, MacNeil S, Reilly GC. A simple rocker-induced mechanical stimulus upregulates mineralization by human osteoprogenitor cells in fibrous scaffolds. J Tissue Eng Regen Med 2018; 12:370-381. [PMID: 28486747 PMCID: PMC5836908 DOI: 10.1002/term.2462] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 02/28/2017] [Accepted: 05/04/2017] [Indexed: 01/01/2023]
Abstract
Biodegradable electrospun polycaprolactone scaffolds can be used to support bone-forming cells and could fill a thin bony defect, such as in cleft palate. Oscillatory fluid flow has been shown to stimulate bone production in human progenitor cells in monolayer culture. The aim of this study was to examine whether bone matrix production by primary human mesenchymal stem cells from bone marrow or jaw periosteal tissue could be stimulated using oscillatory fluid flow supplied by a standard see-saw rocker. This was investigated for cells in two-dimensional culture and within electrospun polycaprolactone scaffolds. From day 4 of culture onwards, samples were rocked at 45 cycles/min for 1 h/day, 5 days/week (rocking group). Cell viability, calcium deposition, collagen production, alkaline phosphatase activity and vascular endothelial growth factor secretion were evaluated to assess the ability of the cells to undergo bone differentiation and induce vascularisation. Both cell types produced more mineralized tissue when subjected to rocking and supplemented with dexamethasone. Mesenchymal progenitors and primary human mesenchymal stem cells from bone marrow in three-dimensional scaffolds upregulated mineral deposition after rocking culture as assessed by micro-computed tomography and alizarin red staining. Interestingly, vascular endothelial growth factor secretion, which has previously been shown to be mechanically sensitive, was not altered by rocking in this system and was inhibited by dexamethasone. Rocker culture may be a cost effective, simple pretreatment for bone tissue engineering for small defects such as cleft palate.
Collapse
Affiliation(s)
- Sasima Puwanun
- Faculty of DentistryNaresuan UniversityThailand
- Department of Materials Science and EngineeringUniversity of SheffieldUK
| | | | | | - Julian M. Yates
- Oral and Maxillofacial Surgery and Implantology, School of DentistryUniversity of ManchesterUK
| | - Sheila MacNeil
- Department of Materials Science and EngineeringUniversity of SheffieldUK
| | - Gwendolen C. Reilly
- Department of Materials Science and EngineeringUniversity of SheffieldUK
- INSIGNEO Institute for in silico MedicineUniversity of SheffieldUK
| |
Collapse
|
47
|
Seo J, Shin JY, Leijten J, Jeon O, Camci-Unal G, Dikina AD, Brinegar K, Ghaemmaghami AM, Alsberg E, Khademhosseini A. High-throughput approaches for screening and analysis of cell behaviors. Biomaterials 2018; 153:85-101. [PMID: 29079207 PMCID: PMC5702937 DOI: 10.1016/j.biomaterials.2017.06.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 06/17/2017] [Accepted: 06/19/2017] [Indexed: 02/06/2023]
Abstract
The rapid development of new biomaterials and techniques to modify them challenge our capability to characterize them using conventional methods. In response, numerous high-throughput (HT) strategies are being developed to analyze biomaterials and their interactions with cells using combinatorial approaches. Moreover, these systematic analyses have the power to uncover effects of delivered soluble bioactive molecules on cell responses. In this review, we describe the recent developments in HT approaches that help identify cellular microenvironments affecting cell behaviors and highlight HT screening of biochemical libraries for gene delivery, drug discovery, and toxicological studies. We also discuss HT techniques for the analyses of cell secreted biomolecules and provide perspectives on the future utility of HT approaches in biomedical engineering.
Collapse
Affiliation(s)
- Jungmok Seo
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA; Center for Biomaterials, Korea Institute of Science and Technology, 14 Hwarang-ro, Seongbuk-gu, Seoul, 02792, South Korea
| | - Jung-Youn Shin
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jeroen Leijten
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA; Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Oju Jeon
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Gulden Camci-Unal
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA; Department of Chemical Engineering, University of Massachusetts Lowell, 1 University Ave, Lowell, MA, 01854-2827, USA
| | - Anna D Dikina
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Katelyn Brinegar
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Amir M Ghaemmaghami
- Division of Immunology, School of Life Sciences, Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Eben Alsberg
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA; Department of Orthopaedic Surgery, Case Western Reserve University, Cleveland, OH, 44106, USA; National Center for Regenerative Medicine, Division of General Medical Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA; Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul, 143-701, Republic of Korea; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA; Department of Physics, King Abdulaziz University, Jeddah, 21569, Saudi Arabia.
| |
Collapse
|
48
|
Lopes F, Oliveira J, Milani J, Oliveira L, Machado J, Trava-Airoldi V, Lobo A, Marciano F. Biomineralized diamond-like carbon films with incorporated titanium dioxide nanoparticles improved bioactivity properties and reduced biofilm formation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 81:373-379. [DOI: 10.1016/j.msec.2017.07.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/07/2017] [Accepted: 07/27/2017] [Indexed: 01/11/2023]
|
49
|
Choudhary S, Sun Q, Mannion C, Kissin Y, Zilberberg J, Lee WY. Hypoxic Three-Dimensional Cellular Network Construction Replicates Ex Vivo the Phenotype of Primary Human Osteocytes. Tissue Eng Part A 2017; 24:458-468. [PMID: 28594289 DOI: 10.1089/ten.tea.2017.0103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Osteocytes are deeply embedded in the mineralized matrix of bone and are nonproliferative, making them a challenge to isolate and maintain using traditional in vitro culture methods without sacrificing their inimitable phenotype. We studied the synergistic effects of two microenvironmental factors that are vital in retaining, ex vivo, the phenotype of primary human osteocytes: hypoxia and three-dimensional (3D) cellular network. To recapitulate the lacunocanalicular structure of bone tissue, we assembled and cultured primary human osteocytic cells with biphasic calcium phosphate microbeads in a microfluidic perfusion culture device. The 3D cellular network was constructed by the following: (1) the inhibited proliferation of cells entrapped by microbeads, biomimetically resembling lacunae, and (2) the connection of neighboring cells by dendrites through the mineralized, canaliculi-like interstitial spaces between the microbeads. We found that hypoxia synergistically and remarkably upregulated the mature osteocytic gene expressions of the 3D-networked cells, SOST (encoding sclerostin) and FGF23 (encoding fibroblast growth factor 23), by several orders of magnitude in comparison to those observed from two-dimensional and normoxic culture controls. Intriguingly, hypoxia facilitated the self-assembly of a nonproliferating, osteoblastic monolayer on the surface of the 3D-networked cells, replicating the osteoblastic endosteal cell layer found at the interface between native bone and bone marrow tissues. Our ability to replicate, with hypoxia, the strong expressions of these mature osteocytic markers, SOST and FGF23, is important since these (1) could not be significantly produced in vitro and (2) are new important targets for treating bone diseases. Our findings are therefore expected to facilitate ex vivo studies of human bone diseases using primary human bone cells and enable high-throughput evaluation of potential bone-targeting therapies with clinical relevance.
Collapse
Affiliation(s)
- Saba Choudhary
- 1 Department of Biomedical Engineering, Chemistry and Biological Sciences, Stevens Institute of Technology , Hoboken, New Jersey
| | - Qiaoling Sun
- 2 Department of Chemical Engineering and Materials Science, Stevens Institute of Technology , Hoboken, New Jersey
| | - Ciaran Mannion
- 3 Department of Pathology, Hackensack University Medical Center , Hackensack, New Jersey
| | - Yair Kissin
- 4 Insall Scott Kelly Institute for Orthopaedics and Sports Medicine , New York, New York.,5 Hackensack University Medical Center , Hackensack, New Jersey.,6 Lenox Hill Hospital , New York, New York
| | - Jenny Zilberberg
- 7 John Theurer Cancer Center, Hackensack University Medical Center , Hackensack, New Jersey
| | - Woo Y Lee
- 2 Department of Chemical Engineering and Materials Science, Stevens Institute of Technology , Hoboken, New Jersey
| |
Collapse
|
50
|
Keller L, Regiel-Futyra A, Gimeno M, Eap S, Mendoza G, Andreu V, Wagner Q, Kyzioł A, Sebastian V, Stochel G, Arruebo M, Benkirane-Jessel N. Chitosan-based nanocomposites for the repair of bone defects. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017. [PMID: 28647591 DOI: 10.1016/j.nano.2017.06.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Chitosan scaffolds of different deacetylation degrees, average molecular weights and concentrations reinforced with silica nanoparticles were prepared for bone tissue regeneration. The resulting nanocomposites showed similar pore sizes (<300 μm) regardless the deacetylation degree and concentration used in their formulation. Their mechanical compression resistance was increased by a 30% with the addition of silica nanoparticles as nanofillers. The biocompatibility of the three-dimensional chitosan scaffolds was confirmed by the Alamar Blue assay in human primary osteoblasts as well as the formation of cell spheroids indicative of their great potential for bone regeneration. In vivo implantation of the scaffolds in a mice calvaria defect model provided substantial evidences of the suitability of these nanocomposites for bone tissue engineering showing a mature and dense collagenous tissue with small foci of mineralization, vascularized areas and the infiltration of osteoblasts and osteoclasts. Nevertheless, mature bone tissue formation was not observed after eight weeks of implantation.
Collapse
Affiliation(s)
- L Keller
- INSERM, Unité Mixte de Recherche UMR 1109, Team "Osteoarticular and Dental Regenerative NanoMedicine," Fédération de Médecine Translationnelle de Strasbourg, Faculté de Chirurgie Dentaire, UDS, Strasbourg, France
| | - A Regiel-Futyra
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - M Gimeno
- Faculty of Veterinary, Department of Animal Pathology, University of Zaragoza, Spain
| | - S Eap
- INSERM, Unité Mixte de Recherche UMR 1109, Team "Osteoarticular and Dental Regenerative NanoMedicine," Fédération de Médecine Translationnelle de Strasbourg, Faculté de Chirurgie Dentaire, UDS, Strasbourg, France
| | - G Mendoza
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029, Madrid, Spain; Aragon Health Research Institute (IIS Aragón), 50009, Zaragoza, Spain.
| | - V Andreu
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029, Madrid, Spain; Aragon Health Research Institute (IIS Aragón), 50009, Zaragoza, Spain.
| | - Q Wagner
- INSERM, Unité Mixte de Recherche UMR 1109, Team "Osteoarticular and Dental Regenerative NanoMedicine," Fédération de Médecine Translationnelle de Strasbourg, Faculté de Chirurgie Dentaire, UDS, Strasbourg, France
| | - A Kyzioł
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - V Sebastian
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029, Madrid, Spain; Aragon Health Research Institute (IIS Aragón), 50009, Zaragoza, Spain
| | - G Stochel
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - M Arruebo
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029, Madrid, Spain; Aragon Health Research Institute (IIS Aragón), 50009, Zaragoza, Spain
| | - N Benkirane-Jessel
- INSERM, Unité Mixte de Recherche UMR 1109, Team "Osteoarticular and Dental Regenerative NanoMedicine," Fédération de Médecine Translationnelle de Strasbourg, Faculté de Chirurgie Dentaire, UDS, Strasbourg, France
| |
Collapse
|