1
|
Gao J, Zhang Y, Yu L, Li Y, Liao S, Wang J, Guan L. Identification of Enolase 1 as a Potential Target for Magnaporthe oryzae: Integrated Proteomic and Molecular Dynamics Simulation. J Chem Inf Model 2023; 63:619-632. [PMID: 36580498 DOI: 10.1021/acs.jcim.2c01265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Rice blast is an essential factor affecting rice yield and quality, which is caused by Magnaporthe oryzae (M. oryzae). Isobavachalcone (IBC) is a botanical fungicide derived from the seed extract of the Leguminosae plant Psoralea corylifolia L. and has shown an excellent rice blast control effect in field applications. To explore the potential targets of rice blast control, the analysis of the differentially expressed proteins (DEPs) between the liquid culture medium of mycelium treated by 10 mg/L of IBC for 2 h and the control group indicated that Enolase 1 (ENO1) was the most significantly down-regulated DEP with a fold change value of 0.305. In vitro experiments showed that after treating liquid culture mycelium with 10 mg/L of IBC for 0.5, 1, 2, 4, and 8 h, the enzymatic activity of ENO1 in the IBC experimental groups was 0.97, 0.75, 0.52, 0.44, and 0.39 times as much as in the control groups, respectively. To further explore the molecular interaction and binding mode between IBC and ENO1, the three-dimensional structure of ENO1 was established based on homology modeling. Molecular docking and molecular dynamics simulation showed that IBC had a pi-pi stacking effect with the residue TYR_365, a hydrogen bond interaction with the residue ARG_393, and hydrophobic interactions with non-polar residues ALA_361, LYS_362, and VAL_371 of ENO1. These findings indicated that ENO1 is a potential target of M. oryzae, which would pave the way for screening novel effective fungicides targeting ENO1.
Collapse
Affiliation(s)
- Jie Gao
- Department of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang110142, China
| | - Yaoliang Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Lin Yu
- Applied Biology Laboratory, Shenyang University of Chemical Technology, Shenyang110142, China
| | - Yuejuan Li
- Department of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang110142, China
| | - Shumin Liao
- Department of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang110142, China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Lijie Guan
- Department of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang110142, China
| |
Collapse
|
2
|
Wijnants S, Vreys J, Van Dijck P. Interesting antifungal drug targets in the central metabolism of Candida albicans. Trends Pharmacol Sci 2021; 43:69-79. [PMID: 34756759 DOI: 10.1016/j.tips.2021.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 01/04/2023]
Abstract
To treat infections caused by Candida albicans, azoles, polyenes, and echinocandins are used. However, resistance occurs against all three, so there is an urgent need for new antifungal drugs with a novel mode of action. Recently, it became clear that central metabolism plays an important role in the virulence of C. albicans. Glycolysis is, for example, upregulated during virulence conditions, whereas the glyoxylate cycle is important upon phagocytosis by host immune cells. These findings indicate that C. albicans adapts its metabolism to the environment for maximal virulence. In this review, we provide an overview of the potency of different central metabolic pathways and their key enzymes as potential antifungal drug targets.
Collapse
Affiliation(s)
- Stefanie Wijnants
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Leuven, Belgium; VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Jolien Vreys
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Leuven, Belgium; VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Leuven, Belgium; VIB-KU Leuven Center for Microbiology, Leuven, Belgium.
| |
Collapse
|
3
|
Nguyen S, Truong JQ, Bruning JB. Targeting Unconventional Pathways in Pursuit of Novel Antifungals. Front Mol Biosci 2021; 7:621366. [PMID: 33511160 PMCID: PMC7835888 DOI: 10.3389/fmolb.2020.621366] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/11/2020] [Indexed: 01/31/2023] Open
Abstract
The impact of invasive fungal infections on human health is a serious, but largely overlooked, public health issue. Commonly affecting the immunocompromised community, fungal infections are predominantly caused by species of Candida, Cryptococcus, and Aspergillus. Treatments are reliant on the aggressive use of pre-existing antifungal drug classes that target the fungal cell wall and membrane. Despite their frequent use, these drugs are subject to unfavorable drug-drug interactions, can cause undesirable side-effects and have compromised efficacy due to the emergence of antifungal resistance. Hence, there is a clear need to develop novel classes of antifungal drugs. A promising approach involves exploiting the metabolic needs of fungi by targeted interruption of essential metabolic pathways. This review highlights potential antifungal targets including enolase, a component of the enolase-plasminogen complex, and enzymes from the mannitol biosynthesis and purine nucleotide biosynthesis pathways. There has been increased interest in the enzymes that comprise these particular pathways and further investigation into their merits as antifungal targets and roles in fungal survival and virulence are warranted. Disruption of these vital processes by targeting unconventional pathways with small molecules or antibodies may serve as a promising approach to discovering novel classes of antifungals.
Collapse
Affiliation(s)
- Stephanie Nguyen
- Institute of Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Jia Q Truong
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - John B Bruning
- Institute of Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
4
|
Malavia D, Gow NAR, Usher J. Advances in Molecular Tools and In Vivo Models for the Study of Human Fungal Pathogenesis. Microorganisms 2020; 8:E803. [PMID: 32466582 PMCID: PMC7356103 DOI: 10.3390/microorganisms8060803] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/08/2020] [Accepted: 05/16/2020] [Indexed: 12/14/2022] Open
Abstract
Pathogenic fungi represent an increasing infectious disease threat to humans, especially with an increasing challenge of antifungal drug resistance. Over the decades, numerous tools have been developed to expedite the study of pathogenicity, initiation of disease, drug resistance and host-pathogen interactions. In this review, we highlight advances that have been made in the use of molecular tools using CRISPR technologies, RNA interference and transposon targeted mutagenesis. We also discuss the use of animal models in modelling disease of human fungal pathogens, focusing on zebrafish, the silkworm, Galleria mellonella and the murine model.
Collapse
Affiliation(s)
| | | | - Jane Usher
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK; (D.M.); (N.A.R.G.)
| |
Collapse
|
5
|
Abstract
Candida albicans has remained the main etiological agent of candidiasis, challenges clinicians with high mortality and morbidity. The emergence of resistance to antifungal drugs, toxicity and lower efficacy have all contributed to an urgent need to develop alternative drugs aiming at novel targets in C. albicans. Targeting the production of virulence factors, which are essential processes for infectious agents, represents an attractive substitute for the development of newer anti-infectives. The present review highlights the recent developments made in the understanding of the pathogenicity of C. albicans. Production of hydrolytic enzymes, morphogenesis and biofilm formation, along with their molecular and metabolic regulation in Candida are discussed with regard to the development of novel antipathogenic drugs against candidiasis. Over the last decade, candidiasis has remained a major problematic disease worldwide. In spite of the existence of many antifungal drugs, the treatment of such diseases has still remained unsuccessful due to drug inefficacy. Therefore, there is a need to discover antifungals with different modes of action, such as antipathogenic drugs against Candida albicans. Here, we describe how various types of virulence factors such as proteinase, phospholipase, hemolysin, adhesion, morphogenesis and biofilm formation, could be targeted to develop novel therapeutics. We can inhibit production of these virulence factors by controlling their molecular/metabolic regulation.
Collapse
|
6
|
Nicola AM, Albuquerque P, Paes HC, Fernandes L, Costa FF, Kioshima ES, Abadio AKR, Bocca AL, Felipe MS. Antifungal drugs: New insights in research & development. Pharmacol Ther 2018; 195:21-38. [PMID: 30347212 DOI: 10.1016/j.pharmthera.2018.10.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The need for better antifungal therapy is commonly accepted in view of the high mortality rates associated with systemic infections, the low number of available antifungal classes, their associated toxicity and the increasing number of infections caused by strains with natural or acquired resistance. The urgency to expand the range of therapeutic options for the treatment of fungal infections has led researchers in recent decades to seek alternative antifungal targets when compared to the conventional ones currently used. Although new potential targets are reported, translating the discoveries from bench to bedside is a long process and most of these drugs fail to reach the patients. In this review, we discuss the development of antifungal drugs focusing on the approach of drug repurposing and the search for novel drugs for classical targets, the most recently described gene targets for drug development, the possibilities of immunotherapy using antibodies, cytokines, therapeutic vaccines and antimicrobial peptides.
Collapse
Affiliation(s)
| | - Patrícia Albuquerque
- Faculty of Ceilândia, University of Brasília, Brazil; Graduate Programme in Microbial Biology, University of Brasília, Brazil
| | - Hugo Costa Paes
- Division of Clinical Medicine, University of Brasília Medical School, Brazil
| | - Larissa Fernandes
- Faculty of Ceilândia, University of Brasília, Brazil; Graduate Programme in Microbial Biology, University of Brasília, Brazil
| | - Fabricio F Costa
- Graduate Programme in Genomic Science and Biotechnology, Catholic University of Brasília, Brazil; MATTER, Chicago, IL, USA; Cancer Biology and Epigenomics Program, Ann & Robert Lurie Children's Hospital of Chicago Research Center, Northwestern University's Feinberg School of Medicine, Chicago, Illinois, USA
| | - Erika Seki Kioshima
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Paraná, Brazil
| | - Ana Karina Rodrigues Abadio
- School for Applied Social and Agricultural Sciences, State University of Mato Grosso, Nova Mutum Campus, Mato Grosso, Brazil
| | | | - Maria Sueli Felipe
- Graduate Programme in Genomic Science and Biotechnology, Catholic University of Brasília, Brazil; Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brazil.
| |
Collapse
|
7
|
Poyedinok NL, Blume YB. Advances, Problems, and Prospects of Genetic Transformation of Fungi. CYTOL GENET+ 2018. [DOI: 10.3103/s009545271802007x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Zhao C, Shu X, Sun B. Construction of a Gene Knockdown System Based on Catalytically Inactive ("Dead") Cas9 (dCas9) in Staphylococcus aureus. Appl Environ Microbiol 2017; 83:e00291-17. [PMID: 28411216 PMCID: PMC5452804 DOI: 10.1128/aem.00291-17] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/06/2017] [Indexed: 12/30/2022] Open
Abstract
There has been an absence of an efficient method of gene knockdown in the important human pathogen Staphylococcus aureus like RNA interference in eukaryotes. The previously developed antisense RNA technology is mainly applied for forward genetic screening but is rather limited in specific gene knockdown because of the lack of rational antisense RNA design strategies. Here we report an efficient and specific system for gene knockdown in S. aureus based on the type II clustered regularly interspaced short palindromic repeat (CRISPR) system from Streptococcus pyogenes We can achieve gene silencing with the coexpression of dCas9, an RNA-guided DNA binding protein, and a small guide RNA complementary to the target gene. With this system, we have successfully silenced diverse sets of genes varying in size and expression level in different S. aureus strains. This system exhibited high-efficiency knockdown of both essential and nonessential genes, and its effect is inducible and reversible. In addition, the system can repress the expression of multiple genes simultaneously and silence an entire operon or part of it. This RNA-guided DNA targeting system thus provides a simple, rapid, and affordable method for selective gene knockdown in S. aureus IMPORTANCE Staphylococcus aureus is an important human and animal pathogen that can cause a diversity of infectious diseases. Molecular genetic study of S. aureus has provided an avenue for the understanding of its virulence, pathogenesis, and drug resistance, leading to the discovery of new therapies for the treatment of staphylococcal infections. However, methodologies developed for genetic manipulation of S. aureus usually involve either low efficiency or laborious procedures. Here we report an RNA-guided system for gene knockdown in S. aureus and show its high efficiency and simplicity for selective gene silencing in different strains of S. aureus This simple, rapid, and affordable system may serve as a promising tool for functional gene study in S. aureus, especially for the study of essential genes, thus facilitating the understanding of this pathogen and its interaction with its hosts.
Collapse
Affiliation(s)
- Changlong Zhao
- CAS Key Laboratory of Innate Immunity and Chronic Disease and School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Xueqin Shu
- CAS Key Laboratory of Innate Immunity and Chronic Disease and School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Baolin Sun
- CAS Key Laboratory of Innate Immunity and Chronic Disease and School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
- Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui, China
| |
Collapse
|
9
|
Ji H, Wang J, Guo J, Li Y, Lian S, Guo W, Yang H, Kong F, Zhen L, Guo L, Liu Y. Progress in the biological function of alpha-enolase. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2016; 2:12-17. [PMID: 29767008 PMCID: PMC5941012 DOI: 10.1016/j.aninu.2016.02.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/03/2016] [Indexed: 11/25/2022]
Abstract
Alpha-enolase (ENO1), also known as 2-phospho-D-glycerate hydrolase, is a metalloenzyme that catalyzes the conversion of 2-phosphoglyceric acid to phosphoenolpyruvic acid in the glycolytic pathway. It is a multifunctional glycolytic enzyme involved in cellular stress, bacterial and fungal infections, autoantigen activities, the occurrence and metastasis of cancer, parasitic infections, and the growth, development and reproduction of organisms. This article mainly reviews the basic characteristics and biological functions of ENO1.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Huanmin Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | | | | | | | | |
Collapse
|
10
|
Regulatory RNA-assisted genome engineering in microorganisms. Curr Opin Biotechnol 2015; 36:85-90. [DOI: 10.1016/j.copbio.2015.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/18/2015] [Accepted: 08/09/2015] [Indexed: 01/05/2023]
|
11
|
Rozenfeld JHK, Duarte EL, Barbosa LRS, Lamy MT. The effect of an oligonucleotide on the structure of cationic DODAB vesicles. Phys Chem Chem Phys 2015; 17:7498-506. [PMID: 25706300 DOI: 10.1039/c4cp05652c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of a small single-stranded oligonucleotide (ODN) on the structure of cationic DODAB vesicles was investigated by means of differential scanning calorimetry (DSC), small angle X-ray scattering (SAXS) and electron spin resonance (ESR) spectroscopy. ODN adsorption induced coalescence of vesicles and formation of multilamellar structures with close contact between lamellae. It also increased the phase transition temperature by 10 °C but decreased transition cooperativity. The ODN rigidified and stabilized the gel phase. In the fluid phase, a simultaneous decrease of ordering close to the bilayer surface and increase in bilayer core rigidity was observed in the presence of the ODN. These effects may be due not only to electrostatic shielding of DODAB head groups but also to superficial dehydration of the bilayers. The data suggest that oligonucleotides may induce the formation of a multilamellar poorly hydrated coagel-like phase below phase transition. These effects should be taken into account when planning ODN delivery employing cationic bilayer carriers.
Collapse
|
12
|
Chemogenomic profiling of Plasmodium falciparum as a tool to aid antimalarial drug discovery. Sci Rep 2015; 5:15930. [PMID: 26541648 PMCID: PMC4635350 DOI: 10.1038/srep15930] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 10/01/2015] [Indexed: 11/17/2022] Open
Abstract
The spread of Plasmodium falciparum multidrug resistance highlights the urgency to discover new targets and chemical scaffolds. Unfortunately, lack of experimentally validated functional information about most P. falciparum genes remains a strategic hurdle. Chemogenomic profiling is an established tool for classification of drugs with similar mechanisms of action by comparing drug fitness profiles in a collection of mutants. Inferences of drug mechanisms of action and targets can be obtained by associations between shifts in drug fitness and specific genetic changes in the mutants. In this screen, P. falciparum, piggyBac single insertion mutants were profiled for altered responses to antimalarial drugs and metabolic inhibitors to create chemogenomic profiles. Drugs targeting the same pathway shared similar response profiles and multiple pairwise correlations of the chemogenomic profiles revealed novel insights into drugs’ mechanisms of action. A mutant of the artemisinin resistance candidate gene - “K13-propeller” gene (PF3D7_1343700) exhibited increased susceptibility to artemisinin drugs and identified a cluster of 7 mutants based on similar enhanced responses to the drugs tested. Our approach of chemogenomic profiling reveals artemisinin functional activity, linked by the unexpected drug-gene relationships of these mutants, to signal transduction and cell cycle regulation pathways.
Collapse
|
13
|
Sheng J, Huang L, Zhu X, Cai J, Xu Z. Reconstitution of the peptidoglycan cytoplasmic precursor biosynthetic pathway in cell-free system and rapid screening of antisense oligonucleotides for Mur enzymes. Appl Microbiol Biotechnol 2014; 98:1785-94. [PMID: 24389752 DOI: 10.1007/s00253-013-5467-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 12/09/2013] [Accepted: 12/10/2013] [Indexed: 10/25/2022]
Abstract
Bacterial peptidoglycan is the cell wall component responsible for various biological activities. Its cytoplasmic precursor UDP-N-acetylmuramyl pentapeptide is biosynthesized by the first six enzymes of peptidoglycan synthetic pathways (Mur enzymes), which are all proved to be important targets for antibiotic screening. In our present work, the genes encoding Mur enzymes from Escherichia coli were co-expressed in the cell-free protein synthesis (CFPS) system, and the activities of Mur enzymes derived from CFPS system were validated by the synthesis of the final product UDP-N-acetylmuramyl pentapeptide. Then this in vitro reconstituted Mur biosynthetic pathway was used to screen a panel of specific antisense oligonucleotides for MurA and MurB. The selected oligonucleotides were proved to eliminate the expression of Mur enzymes, and thus inhibit the Mur biosynthetic pathway. The present work not only developed a rapid method to reconstruct and regulate a biosynthetic pathway in vitro, but also may provide insight into the development of novel antibiotics targeting on peptidoglycan biosynthetic pathway.
Collapse
Affiliation(s)
- Jiayuan Sheng
- Department of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang, 310027, China
| | | | | | | | | |
Collapse
|
14
|
Rozenfeld JHK, Duarte EL, Oliveira TR, Lonez C, Ruysschaert JM, Lamy MT. Oligonucleotide adsorption affects phase transition but not interdigitation of diC14-amidine bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:11102-11108. [PMID: 23926901 DOI: 10.1021/la4016004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In this work, we investigate the effect of a small single-stranded oligonucleotide (ODN) on the colloid stability and structure of cationic diC14-amidine liposomes. Dynamic light scattering (DLS) shows that small, stable, anionic assemblies are formed in presence of excess ODN negative charge. This charge overcompensation condition was further characterized. A less cooperative bilayer phase transition is observed by differential scanning calorimetry (DSC). Electron spin resonance (ESR) spectra of probes at different bilayer depths show that ODN electrostatic adsorption increases the rigidity of both interdigitated gel and lamellar fluid phases. The increase in gel phase rigidity could be explained by the transformation of an adjacent to an interpenetrated interdigitation. Interdigitated fusogenic bilayers may find interesting applications in delivery of therapeutic oligonucleotides.
Collapse
|
15
|
Candida albicans ENO1 null mutants exhibit altered drug susceptibility, hyphal formation, and virulence. J Microbiol 2013; 51:345-51. [PMID: 23812815 DOI: 10.1007/s12275-013-2577-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 02/16/2013] [Indexed: 10/26/2022]
Abstract
We previously showed that the expression of ENO1 (enolase) in the fungal pathogen Candida albicans is critical for cell growth. In this study, we investigate the contribution of the ENO1 gene to virulence. We conducted our functional study of ENO1 in C. albicans by constructing an eno1/eno1 null mutant strain in which both ENO1 alleles in the genome were knockouted with the SAT1 flipper cassette that contains the nourseothricin-resistance marker. Although the null mutant failed to grow on synthetic media containing glucose, it was capable of growth on media containing yeast extract, peptone, and non-fermentable carbon sources. The null mutant was more susceptible to certain antifungal drugs. It also exhibited defective hyphal formation, and was avirulent in BALB/c mice.
Collapse
|
16
|
Kim HJ, Turner TL, Jin YS. Combinatorial genetic perturbation to refine metabolic circuits for producing biofuels and biochemicals. Biotechnol Adv 2013; 31:976-85. [PMID: 23562845 DOI: 10.1016/j.biotechadv.2013.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 03/18/2013] [Accepted: 03/28/2013] [Indexed: 12/25/2022]
Abstract
Recent advances in metabolic engineering have enabled microbial factories to compete with conventional processes for producing fuels and chemicals. Both rational and combinatorial approaches coupled with synthetic and systematic tools play central roles in metabolic engineering to create and improve a selected microbial phenotype. Compared to knowledge-based rational approaches, combinatorial approaches exploiting biological diversity and high-throughput screening have been demonstrated as more effective tools for improving various phenotypes of interest. In particular, identification of unprecedented targets to rewire metabolic circuits for maximizing yield and productivity of a target chemical has been made possible. This review highlights general principles and the features of the combinatorial approaches using various libraries to implement desired phenotypes for strain improvement. In addition, recent applications that harnessed the combinatorial approaches to produce biofuels and biochemicals will be discussed.
Collapse
Affiliation(s)
- Hyo Jin Kim
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 1206 West Gregory Dr., Urbana, IL 61801, USA
| | | | | |
Collapse
|
17
|
Nagao JI, Cho T, Uno J, Ueno K, Imayoshi R, Nakayama H, Chibana H, Kaminishi H. Candida albicans Msi3p, a homolog of the Saccharomyces cerevisiae Sse1p of the Hsp70 family, is involved in cell growth and fluconazole tolerance. FEMS Yeast Res 2012; 12:728-37. [PMID: 22713118 DOI: 10.1111/j.1567-1364.2012.00822.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/25/2012] [Accepted: 06/14/2012] [Indexed: 11/28/2022] Open
Abstract
We investigated the cellular function of Msi3p, belonging to the heat shock protein 70 family, in Candida albicans. The mutant strain tetMSI3 was generated, in which MSI3 was controlled by a tetracycline-repressive promoter, because there is evidence to suggest that MSI3 is an essential gene. We controlled the MSI3 expression level by doxycycline (DOX) and compared its phenotype with that of a control strain with the tetracycline-repressive promoter and a wild-type copy MSI3. The results indicated that MSI3 was essential for cell growth. In addition, all the tetMSI3-infected mice survived after DOX administration. Drug susceptibility tests indicated that repression of MSI3 expression resulted in hypersensitivity to fluconazole and conferred fungicidal activity to fluconazole. The expression levels of MSI3 and calcineurin-dependent genes were upregulated in response to fluconazole in the control strain. In tetMSI3, the upregulation of MSI3 was lost, and the expression level of the calcineurin-dependent genes was no longer elevated in response to fluconazole and was not affected by DOX, indicating that the upregulation of MSI3 expression was required for the induction of the calcineurin-dependent gene expression. These data suggest that Msi3p confers fluconazole tolerance by partially influencing the calcineurin signaling pathway and also other tolerance mechanisms.
Collapse
Affiliation(s)
- Jun-ichi Nagao
- Division of Biomedical Sciences, Department of Functional Bioscience, Section of Infection Biology, Fukuoka Dental College, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Childs-Disney JL, Hoskins J, Rzuczek SG, Thornton CA, Disney MD. Rationally designed small molecules targeting the RNA that causes myotonic dystrophy type 1 are potently bioactive. ACS Chem Biol 2012; 7:856-62. [PMID: 22332923 DOI: 10.1021/cb200408a] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
RNA is an important drug target, but it is difficult to design or discover small molecules that modulate RNA function. In the present study, we report that rationally designed, modularly assembled small molecules that bind the RNA that causes myotonic dystrophy type 1 (DM1) are potently bioactive in cell culture models. DM1 is caused when an expansion of r(CUG) repeats, or r(CUG)(exp), is present in the 3' untranslated region (UTR) of the dystrophia myotonica protein kinase (DMPK) mRNA. r(CUG)(exp) folds into a hairpin with regularly repeating 5'CUG/3'GUC motifs and sequesters muscleblind-like 1 protein (MBNL1). A variety of defects are associated with DM1, including (i) formation of nuclear foci, (ii) decreased translation of DMPK mRNA due to its nuclear retention, and (iii) pre-mRNA splicing defects due to inactivation of MBNL1, which controls the alternative splicing of various pre-mRNAs. Previously, modularly assembled ligands targeting r(CUG)(exp) were designed using information in an RNA motif-ligand database. These studies showed that a bis-benzimidazole (H) binds the 5'CUG/3'GUC motif in r(CUG)(exp.) Therefore, we designed multivalent ligands to bind simultaneously multiple copies of this motif in r(CUG)(exp). Herein, we report that the designed compounds improve DM1-associated defects including improvement of translational and pre-mRNA splicing defects and the disruption of nuclear foci. These studies may establish a foundation to exploit other RNA targets in genomic sequence.
Collapse
Affiliation(s)
- Jessica L. Childs-Disney
- The Kellogg
School of Science
and Engineering, Department of Chemistry, The Scripps Research Institute, Scripps Florida, 130 Scripps Way #3A1, Jupiter, Florida
33458, United States
| | - Jason Hoskins
- Department
of Neurology, University of Rochester,
Rochester, New York 14642,
United States
| | - Suzanne G. Rzuczek
- The Kellogg
School of Science
and Engineering, Department of Chemistry, The Scripps Research Institute, Scripps Florida, 130 Scripps Way #3A1, Jupiter, Florida
33458, United States
| | - Charles A. Thornton
- Department
of Neurology, University of Rochester,
Rochester, New York 14642,
United States
| | - Matthew D. Disney
- The Kellogg
School of Science
and Engineering, Department of Chemistry, The Scripps Research Institute, Scripps Florida, 130 Scripps Way #3A1, Jupiter, Florida
33458, United States
| |
Collapse
|
19
|
Moazeni M, Khoramizadeh MR, Kordbacheh P, Sepehrizadeh Z, Zeraati H, Noorbakhsh F, Teimoori-Toolabi L, Rezaie S. RNA-Mediated Gene Silencing in Candida albicans: Inhibition of Hyphae Formation by Use of RNAi Technology. Mycopathologia 2012; 174:177-85. [DOI: 10.1007/s11046-012-9539-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 03/19/2012] [Indexed: 11/29/2022]
|
20
|
Roemer T, Xu D, Singh SB, Parish CA, Harris G, Wang H, Davies JE, Bills GF. Confronting the challenges of natural product-based antifungal discovery. ACTA ACUST UNITED AC 2011; 18:148-64. [PMID: 21338914 DOI: 10.1016/j.chembiol.2011.01.009] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Revised: 12/28/2010] [Accepted: 01/03/2011] [Indexed: 12/21/2022]
Abstract
Starting with the discovery of penicillin, the pharmaceutical industry has relied extensively on natural products (NPs) as an unparalleled source of bioactive small molecules suitable for antibiotic development. However, the discovery of structurally novel and chemically tractable NPs with suitable pharmacological properties as antibiotic leads has waned in recent decades. Today, the repetitive "rediscovery" of previously known NP classes with limited antibiotic lead potential dominates most industrial efforts. This limited productivity, exacerbated by the significant financial and resource requirements of such activities, has led to a broad de-emphasis of NP research by most pharmaceutical companies, including most recently Merck. Here we review our strategies--both technological and philosophical--in addressing current antifungal discovery bottlenecks in target identification and validation and how such efforts may improve NP-based antimicrobial discoveries when aligned with NP screening and dereplication.
Collapse
Affiliation(s)
- Terry Roemer
- Department of Infectious Disease, Merck Frosst Canada Ltd., Montreal, QC, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Interaction of cationic bilayer fragments with a model oligonucleotide. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:649-55. [DOI: 10.1016/j.bbamem.2010.11.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 11/26/2010] [Accepted: 11/30/2010] [Indexed: 11/15/2022]
|
22
|
Pathway analysis of Candida albicans survival and virulence determinants in a murine infection model. Proc Natl Acad Sci U S A 2010; 107:22044-9. [PMID: 21135205 DOI: 10.1073/pnas.1009845107] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
One potentially rich source of possible targets for antifungal therapy are those Candida albicans genes deemed essential for growth under the standard culture (i.e., in vitro) conditions; however, these genes are largely unexplored as drug targets because essential genes are not experimentally amenable to conventional gene deletion and virulence studies. Using tetracycline-regulatable promoter-based conditional mutants, we investigated a murine model of candidiasis in which repressing essential genes in the host was achieved. By adding doxycycline to the drinking water starting 3 days prior to (dox - 3D) or 2 days post (dox + 2D) infection, the phenotypic consequences of temporal gene inactivation were assessed by monitoring animal survival and fungal burden in prophylaxis and acute infection settings. Of 177 selected conditional shut-off strains tested, the virulence of 102 was blocked under both repressing conditions, suggesting that the corresponding genes are essential for growth and survival in a murine host across early and established infection periods. Among these genes were those previously identified as antifungal drug targets (i.e., FKS1, ERG1, and ERG11), verifying that this methodology can be used to validate potential new targets. We also identify genes either conditionally essential or dispensable for in vitro growth but required for survival and virulence, including those in late stage ergosterol synthesis, or early steps in fatty acid or riboflavin biosynthesis. This study evaluates the role of essential genes with respect to pathogen virulence in a large-scale, systems biology context, and provides a general method for gene target validation and for uncovering unexpected antimicrobial targets.
Collapse
|
23
|
Salame TM, Ziv C, Hadar Y, Yarden O. RNAi as a potential tool for biotechnological applications in fungi. Appl Microbiol Biotechnol 2010; 89:501-12. [DOI: 10.1007/s00253-010-2928-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 09/29/2010] [Accepted: 09/29/2010] [Indexed: 12/28/2022]
|
24
|
He ZM, Chen J, Li HZ, Luo DQ, Yang W. Mutants of Candida albicans hypersensitive to calcofluor white display susceptibility to antifungal drugs. Folia Microbiol (Praha) 2010; 55:159-66. [PMID: 20490759 DOI: 10.1007/s12223-010-0024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 08/24/2009] [Indexed: 11/24/2022]
Abstract
An increased infection incidence of Candida albicans (most common human fungal pathogen) contributes to the need of further functional genetic studies and development of new antifungal drugs. We developed a method to create mutants of C. albicans using an antisense cDNA library to interfere with gene expression, followed by screening for hypersensitivity to Calcofluor White (CFW) and the antifungal drugs caspofungin and itraconazole. Mutants with these properties have with a high probability defects in cell-wall integrity. Fifty out of 200 transformant colonies analyzed (25%) showed hypersensitivity to CFW compared with the parental strain C. albicans CAI-4. Most of those CFW-hypersensitive mutants further displayed the susceptibility to antifungal drugs itraconazole and caspofungin using microbroth dilution method M27-A and an agar-diffusion test. The mutants obtained through this procedure could provide a potential model for screening antifungal pro-drugs which show weak action when standard C. albicans strain is used and may also aid in further identifying genes involved in cell integrity. In addition, we describe the effect of varying several parameters in electroporation transformation, including treatment with lithium acetate, upon the efficiency of transformation in C. albicans.
Collapse
Affiliation(s)
- Zhu-Mei He
- Key Laboratory of Gene Engineering of the Ministry of Education/Guangdong Provincial Research Center for Severe Infectious Disease Prevention and Control Technology, Sun Yat-Sen University, Guangzhou, 510275, P.R. China.
| | | | | | | | | |
Collapse
|
25
|
Mircus G, Hagag S, Levdansky E, Sharon H, Shadkchan Y, Shalit I, Osherov N. Identification of novel cell wall destabilizing antifungal compounds using a conditional Aspergillus nidulans protein kinase C mutant. J Antimicrob Chemother 2009; 64:755-63. [PMID: 19648579 DOI: 10.1093/jac/dkp270] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Despite the need for novel drugs to combat fungal infections, antifungal drug discovery is currently limited by both the availability of suitable drug targets and assays to screen corresponding targets. The aim of this study was to screen a library of small chemical compounds to identify cell wall inhibitors using a conditional protein kinase C (PKC)-expressing strain of Aspergillus nidulans. This mutant is specifically susceptible to cell wall damaging compounds under PKC-repressive growth conditions. METHODS The inhibitory effect of a library of small chemical compounds was examined in vitro using the conditional A. nidulans PKC strain and a panel of pathogenic fungal isolates. Microscopy was used to assess alterations to fungal ultrastructure following treatment. RESULTS Three 'hit' compounds affecting cell wall integrity were identified from a screen of 5000 small chemical compounds. The most potent compound, CW-11, was further characterized and shown to specifically affect cell wall integrity. In clinical isolates of Aspergillus fumigatus, CW-11 induces morphological changes characteristic of damage to the cell wall, including wall thickening and rupturing. Analysis of the susceptibility of A. fumigatus and A. nidulans cell wall and signalling pathway mutants to CW-11 suggests that its mode of action differs from that of the antifungals caspofungin and voriconazole. CONCLUSIONS This work demonstrates the feasibility of using a conditional Aspergillus mutant to conduct a small-molecule library screen to identify novel 'hit' compounds affecting cell wall integrity.
Collapse
Affiliation(s)
- Gabriel Mircus
- Department of Human Microbiology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | | | | | | | | |
Collapse
|
26
|
Thykaer J, Andersen MR, Baker SE. Essential pathway identification: from in silico analysis to potential antifungal targets in Aspergillus fumigatus. Med Mycol 2009; 47 Suppl 1:S80-7. [PMID: 19253142 DOI: 10.1080/13693780802455305] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Computational metabolic flux modeling has been a great aid for both understanding and manipulating microbial metabolism. A previously developed metabolic flux model for Aspergillus niger, an economically important biotechnology fungus known for protein and organic acid production, is comprised of 1190 biochemically unique reactions that are associated with 871 open reading frames. Through a systematic in silico deletion of single metabolic reactions using this model, several essential metabolic pathways were identified for A. niger. A total of 138 reactions were identified as being essential biochemical reactions during growth on a minimal glucose medium. The majority of the reactions grouped into essential biochemical pathways covering cell wall biosynthesis, amino acid biosynthesis, energy metabolism and purine and pyrimidine metabolism. Based on the A. niger open reading frames associated with the reactions, we identified orthologous candidate essential genes in Aspergillus fumigatus. Our predictions are validated in part by the modes of action for some antifungal drugs and by molecular genetic studies of essential genes in A. fumigatus and other fungi. The use of metabolic models to predict essential reactions and pathways in Aspergillus spp. has promise to inform reverse genetic studies of gene essentiality and identify potential targets for antifungal development.
Collapse
Affiliation(s)
- Jette Thykaer
- Center for Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark, Kgs Lyngby, Denmark
| | | | | |
Collapse
|
27
|
|
28
|
Santos CNS, Stephanopoulos G. Combinatorial engineering of microbes for optimizing cellular phenotype. Curr Opin Chem Biol 2008; 12:168-76. [PMID: 18275860 DOI: 10.1016/j.cbpa.2008.01.017] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 01/14/2008] [Accepted: 01/15/2008] [Indexed: 11/30/2022]
Abstract
Although random mutagenesis and screening and evolutionary engineering have long been the gold standards for strain improvement in industry, the development of more sophisticated recombinant DNA tools has led to the introduction of alternate methods for engineering strain diversity. Here, we summarize several combinatorial cell optimization methods developed in recent years, many of which are more amenable to phenotypic transfer and more efficient in probing greater dimensions of the available phenotypic space. They include tools that enable the fine-tuning of pathway expression (synthetic promoter libraries, tunable intergenic regions (TIGRs)), methods for generating randomized knockout and overexpression libraries, and more global techniques (artificial transcription factor engineering, global transcription machinery engineering, ribosome engineering, and genome shuffling) for eliciting complex, multigenic cellular properties.
Collapse
Affiliation(s)
- Christine Nicole S Santos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Room 56-469, Cambridge, MA 02139, United States
| | | |
Collapse
|
29
|
Mechanism-of-action determination of GMP synthase inhibitors and target validation in Candida albicans and Aspergillus fumigatus. ACTA ACUST UNITED AC 2008; 14:1163-75. [PMID: 17961828 DOI: 10.1016/j.chembiol.2007.09.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 09/17/2007] [Accepted: 09/25/2007] [Indexed: 11/20/2022]
Abstract
Mechanism-of-action (MOA) studies of bioactive compounds are fundamental to drug discovery. However, in vitro studies alone may not recapitulate a compound's MOA in whole cells. Here, we apply a chemogenomics approach in Candida albicans to evaluate compounds affecting purine metabolism. They include the IMP dehydrogenase inhibitors mycophenolic acid and mizoribine and the previously reported GMP synthase inhibitors acivicin and 6-diazo-5-oxo-L-norleucine (DON). We report important aspects of their whole-cell activity, including their primary target, off-target activity, and drug metabolism. Further, we describe ECC1385, an inhibitor of GMP synthase, and provide biochemical and genetic evidence supporting its MOA to be distinct from acivicin or DON. Importantly, GMP synthase activity is conditionally essential in C. albicans and Aspergillus fumigatus and is required for virulence of both pathogens, thus constituting an unexpected antifungal target.
Collapse
|
30
|
Ho ECH, Cahill MJ, Saville BJ. Gene discovery and transcript analyses in the corn smut pathogen Ustilago maydis: expressed sequence tag and genome sequence comparison. BMC Genomics 2007; 8:334. [PMID: 17892571 PMCID: PMC2219887 DOI: 10.1186/1471-2164-8-334] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Accepted: 09/24/2007] [Indexed: 12/05/2022] Open
Abstract
Background Ustilago maydis is the basidiomycete fungus responsible for common smut of corn and is a model organism for the study of fungal phytopathogenesis. To aid in the annotation of the genome sequence of this organism, several expressed sequence tag (EST) libraries were generated from a variety of U. maydis cell types. In addition to utility in the context of gene identification and structure annotation, the ESTs were analyzed to identify differentially abundant transcripts and to detect evidence of alternative splicing and anti-sense transcription. Results Four cDNA libraries were constructed using RNA isolated from U. maydis diploid teliospores (U. maydis strains 518 × 521) and haploid cells of strain 521 grown under nutrient rich, carbon starved, and nitrogen starved conditions. Using the genome sequence as a scaffold, the 15,901 ESTs were assembled into 6,101 contiguous expressed sequences (contigs); among these, 5,482 corresponded to predicted genes in the MUMDB (MIPS Ustilago maydis database), while 619 aligned to regions of the genome not yet designated as genes in MUMDB. A comparison of EST abundance identified numerous genes that may be regulated in a cell type or starvation-specific manner. The transcriptional response to nitrogen starvation was assessed using RT-qPCR. The results of this suggest that there may be cross-talk between the nitrogen and carbon signalling pathways in U. maydis. Bioinformatic analysis identified numerous examples of alternative splicing and anti-sense transcription. While intron retention was the predominant form of alternative splicing in U. maydis, other varieties were also evident (e.g. exon skipping). Selected instances of both alternative splicing and anti-sense transcription were independently confirmed using RT-PCR. Conclusion Through this work: 1) substantial sequence information has been provided for U. maydis genome annotation; 2) new genes were identified through the discovery of 619 contigs that had previously escaped annotation; 3) evidence is provided that suggests the regulation of nitrogen metabolism in U. maydis differs from that of other model fungi, and 4) Alternative splicing and anti-sense transcription were identified in U. maydis and, amid similar observations in other basidiomycetes, this suggests these phenomena may be widespread in this group of fungi. These advances emphasize the importance of EST analysis in genome annotation.
Collapse
Affiliation(s)
- Eric CH Ho
- Department of Medical Biophysics, University of Toronto; Program in Genetics and Genomic Biology, The Hospital for Sick Children Research Institute, TMDT Building 14th Floor East Tower, 101 College Street, Toronto, ON, M5G 1L7, Canada
| | - Matt J Cahill
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Barry J Saville
- Forensic Science Program, Trent University, DNA Building, 1540 East Bank Drive, Peterborough, ON, K9J 7B8, Canada
| |
Collapse
|
31
|
Heneghan MN, Costa AMSB, Challen MP, Mills PR, Bailey A, Foster GD. A comparison of methods for successful triggering of gene silencing in Coprinus cinereus. Mol Biotechnol 2007; 35:283-96. [PMID: 17652792 DOI: 10.1007/bf02686014] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 10/22/2022]
Abstract
Post-transcriptional gene-silencing methods (PTGS), including RNAi, are becoming increasingly pervasive in functional genomics. To advance analysis of the recently sequenced Coprinus cinereus genome, a high throughput gene silencing method is essential. We have exploited the GFP reporter gene to evaluate and quantify efficacy of three different silencing strategies. Modular constructs that encompassed antisense, untranslatable sense, and RNAi-mediating hairpin sequences, were transformed into a GFP-expressing host strain. Transformants exhibiting strong downregulation and partial suppression of GFP were recovered with all three constructs. Analyses of protein and transcriptional nucleic acids revealed that the antisense and hairpin sequences yielded similar levels of GFP suppression, and were both more efficient than untranslatable sense sequences. Our antisense vectors will expedite functional characterisation of C. cinereus and the modular nature of the constructs should permit exploitation of directional cDNA libraries for high throughput screening.
Collapse
Affiliation(s)
- Mary N Heneghan
- School of Biological Sciences, University of Bristol, Bristol BS8 1UG, UK
| | | | | | | | | | | |
Collapse
|
32
|
Hu W, Sillaots S, Lemieux S, Davison J, Kauffman S, Breton A, Linteau A, Xin C, Bowman J, Becker J, Jiang B, Roemer T. Essential gene identification and drug target prioritization in Aspergillus fumigatus. PLoS Pathog 2007; 3:e24. [PMID: 17352532 PMCID: PMC1817658 DOI: 10.1371/journal.ppat.0030024] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Accepted: 01/08/2007] [Indexed: 01/16/2023] Open
Abstract
Aspergillus fumigatus is the most prevalent airborne filamentous fungal pathogen in humans, causing severe and often fatal invasive infections in immunocompromised patients. Currently available antifungal drugs to treat invasive aspergillosis have limited modes of action, and few are safe and effective. To identify and prioritize antifungal drug targets, we have developed a conditional promoter replacement (CPR) strategy using the nitrogen-regulated A. fumigatus NiiA promoter (pNiiA). The gene essentiality for 35 A. fumigatus genes was directly demonstrated by this pNiiA-CPR strategy from a set of 54 genes representing broad biological functions whose orthologs are confirmed to be essential for growth in Candida albicans and Saccharomyces cerevisiae. Extending this approach, we show that the ERG11 gene family (ERG11A and ERG11B) is essential in A. fumigatus despite neither member being essential individually. In addition, we demonstrate the pNiiA-CPR strategy is suitable for in vivo phenotypic analyses, as a number of conditional mutants, including an ERG11 double mutant (erg11BΔ, pNiiA-ERG11A), failed to establish a terminal infection in an immunocompromised mouse model of systemic aspergillosis. Collectively, the pNiiA-CPR strategy enables a rapid and reliable means to directly identify, phenotypically characterize, and facilitate target-based whole cell assays to screen A. fumigatus essential genes for cognate antifungal inhibitors. Aspergillus fumigatus is an opportunistic filamentous fungal pathogen of emerging clinical significance. Although virulence factors are seen as potential drug targets, neither genetic analyses nor genomic comparisons have identified genuine virulence factors in A. fumigatus. Essential genes required for fungal growth and viability also serve as potential drug targets, yet few have been described in this pathogen. To begin to catalog essential genes in A. fumigatus, we devised a genetic strategy for creating conditional mutants by promoter replacement of target genes using a nitrogen-regulated promoter. Applying this genetic approach to A. fumigatus genes orthologous to known essential genes of the nonpathogenic yeast, Saccharomyces cerevisiae and Candida albicans, we demonstrate a robust enrichment for identifying essential genes conserved within this pathogen. We show that A. fumigatus conditional mutants can be evaluated according to their terminal phenotypes (e.g., conidial germination, growth, morphology, and cidal versus static consequences) and pathogenesis in a murine model of systemic aspergillosis to prioritize essential genes as novel drug targets suitable for developing broad-spectrum antifungal agents.
Collapse
MESH Headings
- Animals
- Antifungal Agents/therapeutic use
- Aspergillosis/microbiology
- Aspergillus fumigatus/genetics
- Aspergillus fumigatus/growth & development
- Aspergillus fumigatus/pathogenicity
- Cytochrome P-450 Enzyme System/genetics
- Cytochrome P-450 Enzyme System/metabolism
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- DNA, Fungal/isolation & purification
- Disease Models, Animal
- Drug Delivery Systems
- Gene Expression Regulation, Fungal
- Genes, Essential
- Genes, Fungal
- Male
- Mice
- Mice, Nude
- Molecular Sequence Data
- Nitrate Reductases/genetics
- Oxidoreductases/genetics
- Oxidoreductases/metabolism
- Phenotype
- Promoter Regions, Genetic
- RNA, Messenger/analysis
- Recombination, Genetic
- Sterol 14-Demethylase
- Transcription, Genetic
- Virulence/genetics
- Virulence/physiology
Collapse
Affiliation(s)
- Wenqi Hu
- Merck Frosst Center of Fungal Genetics, Montreal, Quebec, Canada
| | - Susan Sillaots
- Merck Frosst Center of Fungal Genetics, Montreal, Quebec, Canada
| | | | - John Davison
- Merck Frosst Center of Fungal Genetics, Montreal, Quebec, Canada
| | - Sarah Kauffman
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Anouk Breton
- Merck Frosst Center of Fungal Genetics, Montreal, Quebec, Canada
| | - Annie Linteau
- Merck Frosst Center of Fungal Genetics, Montreal, Quebec, Canada
| | - Chunlin Xin
- Merck Frosst Center of Fungal Genetics, Montreal, Quebec, Canada
| | - Joel Bowman
- Infectious Diseases, Merck Research Laboratories, Rahway, New Jersey, United States of America
| | - Jeff Becker
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Bo Jiang
- Merck Frosst Center of Fungal Genetics, Montreal, Quebec, Canada
| | - Terry Roemer
- Merck Frosst Center of Fungal Genetics, Montreal, Quebec, Canada
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
33
|
Miyakawa Y, Chibana H, Uno J, Mikami Y, Nakayama H. [Essential genes as potential targets of antifungal agents in pathogenic yeast Candida]. ACTA ACUST UNITED AC 2007; 47:269-74. [PMID: 17086158 DOI: 10.3314/jjmm.47.269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
An important point in the development of an antimicrobial agent is whether its target molecules are essential for growth of the microorganism. From this viewpoint, we focused attention on essential genes as potential targets of antifungal agents in the pathogenic yeast Candida. Here we introduce recent attempts for screening, identification, and characterization of essential genes from a haploid yeast Candida glabrata, using temperature-sensitive mutants. Our experimental results suggesting the essentiality of C. albicans PHO85, the homologue of which is known as a negative regulator of the PHO system and as a non-essential gene in Saccharomyces cerevisiae are also described.
Collapse
Affiliation(s)
- Yozo Miyakawa
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Japan
| | | | | | | | | |
Collapse
|
34
|
Shao Y, Wu Y, Chan CY, McDonough K, Ding Y. Rational design and rapid screening of antisense oligonucleotides for prokaryotic gene modulation. Nucleic Acids Res 2006; 34:5660-9. [PMID: 17038332 PMCID: PMC1636493 DOI: 10.1093/nar/gkl715] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Antisense oligodeoxynucleotides (oligos) are widely used for functional studies of both prokaryotic and eukaryotic genes. However, the identification of effective target sites is a major issue in antisense applications. Here, we study a number of thermodynamic and structural parameters that may affect the potency of antisense inhibition. We develop a cell-free assay for rapid oligo screening. This assay is used for measuring the expression of Escherichia coli lacZ, the antisense target for experimental testing and validation. Based on a training set of 18 oligos, we found that structural accessibility predicted by local folding of the target mRNA is the most important predictor for antisense activity. This finding was further confirmed by a direct validation study. In this study, a set of 10 oligos was designed to target accessible sites, and another set of 10 oligos was selected to target inaccessible sites. Seven of the 10 oligos for accessible sites were found to be effective (>50% inhibition), but none of the oligos for inaccessible sites was effective. The difference in the antisense activity between the two sets of oligos was statistically significant. We also found that the predictability of antisense activity by target accessibility was greatly improved for oligos targeted to the regions upstream of the end of the active domain for β-galactosidase, the protein encoded by lacZ. The combination of the structure-based antisense design and extension of the lacZ assay to include gene fusions will be applicable to high-throughput gene functional screening, and to the identification of new drug targets in pathogenic microbes. Design tools are available through the Sfold Web server at .
Collapse
Affiliation(s)
| | | | | | | | - Ye Ding
- To whom correspondence should be addressed. Tel: +518 486 1719; Fax: +518 402 4623;
| |
Collapse
|
35
|
Seringhaus M, Paccanaro A, Borneman A, Snyder M, Gerstein M. Predicting essential genes in fungal genomes. Genome Res 2006; 16:1126-35. [PMID: 16899653 PMCID: PMC1557763 DOI: 10.1101/gr.5144106] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Essential genes are required for an organism's viability, and the ability to identify these genes in pathogens is crucial to directed drug development. Predicting essential genes through computational methods is appealing because it circumvents expensive and difficult experimental screens. Most such prediction is based on homology mapping to experimentally verified essential genes in model organisms. We present here a different approach, one that relies exclusively on sequence features of a gene to estimate essentiality and offers a promising way to identify essential genes in unstudied or uncultured organisms. We identified 14 characteristic sequence features potentially associated with essentiality, such as localization signals, codon adaptation, GC content, and overall hydrophobicity. Using the well-characterized baker's yeast Saccharomyces cerevisiae, we employed a simple Bayesian framework to measure the correlation of each of these features with essentiality. We then employed the 14 features to learn the parameters of a machine learning classifier capable of predicting essential genes. We trained our classifier on known essential genes in S. cerevisiae and applied it to the closely related and relatively unstudied yeast Saccharomyces mikatae. We assessed predictive success in two ways: First, we compared all of our predictions with those generated by homology mapping between these two species. Second, we verified a subset of our predictions with eight in vivo knockouts in S. mikatae, and we present here the first experimentally confirmed essential genes in this species.
Collapse
Affiliation(s)
- Michael Seringhaus
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Alberto Paccanaro
- Department of Computer Science, Royal Holloway University of London, Egham, TW20 0EX, United Kingdom
- Corresponding author.E-mail ; fax (360) 838-7861
| | - Anthony Borneman
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | - Michael Snyder
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | - Mark Gerstein
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
- Department of Computer Science, Yale University, New Haven, Connecticut 06520, USA
- Corresponding author.E-mail ; fax (360) 838-7861
| |
Collapse
|
36
|
Liu M, Healy MD, Dougherty BA, Esposito KM, Maurice TC, Mazzucco CE, Bruccoleri RE, Davison DB, Frosco M, Barrett JF, Wang YK. Conserved fungal genes as potential targets for broad-spectrum antifungal drug discovery. EUKARYOTIC CELL 2006; 5:638-49. [PMID: 16607011 PMCID: PMC1459659 DOI: 10.1128/ec.5.4.638-649.2006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Accepted: 01/26/2006] [Indexed: 11/20/2022]
Abstract
The discovery of novel classes of antifungal drugs depends to a certain extent on the identification of new, unexplored targets that are essential for growth of fungal pathogens. Likewise, the broad-spectrum capacity of future antifungals requires the target gene(s) to be conserved among key fungal pathogens. Using a genome comparison (or concordance) tool, we identified 240 conserved genes as candidates for potential antifungal targets in 10 fungal genomes. To facilitate the identification of essential genes in Candida albicans, we developed a repressible C. albicans MET3 (CaMET3) promoter system capable of evaluating gene essentiality on a genome-wide scale. The CaMET3 promoter was found to be highly amenable to controlled gene expression, a prerequisite for use in target-based whole-cell screening. When the expression of the known antifungal target C. albicans ERG1 was reduced via down-regulation of the CaMET3 promoter, the CaERG1 conditional mutant strain became hypersensitive, specifically to its inhibitor, terbinafine. Furthermore, parallel screening against a small compound library using the CaERG1 conditional mutant under normal and repressed conditions uncovered several hypersensitive compound hits. This work therefore demonstrates a streamlined process for proceeding from selection and validation of candidate antifungal targets to screening for specific inhibitors.
Collapse
Affiliation(s)
- Mengping Liu
- Bristol-Myers Squibb Company Pharmaceutical Research Institute, 5 Research Parkway, Wallingford, CT 06492, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Heat-shock proteins (hsps) have been identified as molecular chaperones conserved between microbes and man and grouped by their molecular mass and high degree of amino acid homology. This article reviews the major hsps of Saccharomyces cerevisiae, their interactions with trehalose, the effect of fermentation and the role of the heat-shock factor. Information derived from this model, as well as from Neurospora crassa and Achlya ambisexualis, helps in understanding the importance of hsps in the pathogenic fungi, Candida albicans, Cryptococcus neoformans, Aspergillus spp., Histoplasma capsulatum, Paracoccidioides brasiliensis, Trichophyton rubrum, Phycomyces blakesleeanus, Fusarium oxysporum, Coccidioides immitis and Pneumocystis jiroveci. This has been matched with proteomic and genomic information examining hsp expression in response to noxious stimuli. Fungal hsp90 has been identified as a target for immunotherapy by a genetically recombinant antibody. The concept of combining this antibody fragment with an antifungal drug for treating life-threatening fungal infection and the potential interactions with human and microbial hsp90 and nitric oxide is discussed.
Collapse
Affiliation(s)
- James P Burnie
- Department of Medical Microbiology, Clinical Sciences Building, University of Manchester, Manchester Royal Infirmary, Manchester, UK.
| | | | | | | |
Collapse
|
38
|
Yang YL, Chen HF, Kuo TJ, Lin CY. Mutations on CaENO1 in Candida albicans inhibit cell growth in the presence of glucose. J Biomed Sci 2006; 13:313-21. [PMID: 16453178 DOI: 10.1007/s11373-005-9054-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2005] [Accepted: 12/19/2005] [Indexed: 10/25/2022] Open
Abstract
Enolase (2-phospho-D-glycerate hydrolase) is an enzymatic component of the glycolytic pathway and is conserved through evolution. The TR-CaENO1/Caeno1 stain, of which the expression of CaENO1 is under control of the tetracycline-regulatable (TR) expression system, is utilized for elucidating the functions of CaENO1 in Candida albicans. As expected, there was no detectable CaENO1 mRNA when the TR-CaENO1/Caeno1 cells grew on media containing doxycycline repressing the expression of TR-CaENO1.The TR-CaENO1/Caeno1 cells were arrested in media containing doxycycline in the presence of glucose but not in non-fermentable carbon sources, such as glycerol. Furthermore, the TR-CaENO1/Caeno1 cells were also arrested in media containing 4% serum. In this study, we have showed that CaENO1 is required for the cell growth of C. albicans in the presence of glucose. Our findings may help us to design new and more effective antifungal agents for preventing and treating bloodstream fungal infections by blocking the function(s) of enolases.
Collapse
Affiliation(s)
- Yun-Liang Yang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan, Republic of China. yyang@ mail.nctu.edu.tw
| | | | | | | |
Collapse
|
39
|
Abstract
Comparative analyses of fungal genomes and molecular research on genes associated with fungal viability and virulence has led to the identification of many putative targets for novel antifungal agents. So far the rational approach to antifungal discovery, in which compounds are optimized against an individual target then progressed to efficacy against intact fungi and ultimately to infected humans has delivered no new agents. However, the approach continues to hold promise for the future. This review critically assesses the molecular target-based approach to antifungal discovery, outlines problems and pitfalls inherent in the genomics and target discovery strategies and describes the status of heavily investigated examples of target-based research.
Collapse
Affiliation(s)
- Frank C Odds
- Aberdeen Fungal Group, Institute of Medical Sciences, Department of Molecular and Cell Biology, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK.
| |
Collapse
|
40
|
Galagan JE, Henn MR, Ma LJ, Cuomo CA, Birren B. Genomics of the fungal kingdom: Insights into eukaryotic biology. Genome Res 2005; 15:1620-31. [PMID: 16339359 DOI: 10.1101/gr.3767105] [Citation(s) in RCA: 233] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The last decade has witnessed a revolution in the genomics of the fungal kingdom. Since the sequencing of the first fungus in 1996, the number of available fungal genome sequences has increased by an order of magnitude. Over 40 complete fungal genomes have been publicly released with an equal number currently being sequenced--representing the widest sampling of genomes from any eukaryotic kingdom. Moreover, many of these sequenced species form clusters of related organisms designed to enable comparative studies. These data provide an unparalleled opportunity to study the biology and evolution of this medically, industrially, and environmentally important kingdom. In addition, fungi also serve as model organisms for all eukaryotes. The available fungal genomic resource, coupled with the experimental tractability of the fungi, is accelerating research into the fundamental aspects of eukaryotic biology. We provide here an overview of available fungal genomes and highlight some of the biological insights that have been derived through their analysis. We also discuss insights into the fundamental cellular biology shared between fungi and other eukaryotic organisms.
Collapse
Affiliation(s)
- James E Galagan
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02141, USA.
| | | | | | | | | |
Collapse
|
41
|
Wang B, Kuramitsu HK. Inducible antisense RNA expression in the characterization of gene functions in Streptococcus mutans. Infect Immun 2005; 73:3568-76. [PMID: 15908386 PMCID: PMC1111864 DOI: 10.1128/iai.73.6.3568-3576.2005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Revised: 01/06/2005] [Accepted: 02/15/2005] [Indexed: 01/30/2023] Open
Abstract
In order to examine gene function in Streptococcus mutans, we have recently initiated an antisense RNA strategy. Toward this end, we have now constructed and evaluated three Escherichia coli-S. mutans shuttle expression vectors with the fruA and scrB promoters from S. mutans, as well as the tetR-controlled tetO promoter from Staphylococcus aureus. Among these, the tetO/tetR system proved to be the most tightly controlled promoter. By using this shuttle plasmid system, modulation of gene function by inducible antisense RNA expression was demonstrated for comC antisense fragments of different sizes as well as for distinct gtfB antisense fragments. It was demonstrated that the size, but not the relative position, of an antisense DNA fragment is important in mediating the antisense phenomenon. Furthermore, by constructing and screening random DNA libraries with the tet expression shuttle system, 78 growth-retarded transformants harboring antisense DNA fragments were also identified. Almost all of them corresponded to homologous essential genes in other bacteria. In addition, a novel essential gene, the coaE gene, encoding dephospho-coenzyme A kinase, which is involved in the final step of coenzyme A catabolism in S. mutans, was identified and characterized. These results suggest that the antisense RNA strategy can be useful for identifying novel essential genes in S. mutans bacteria as well as further characterizing the physiology (including potential virulence factors) of these organisms.
Collapse
Affiliation(s)
- Bing Wang
- Department of Oral Biology, State University of New York at Buffalo, 3435 Main Street, Buffalo, NY 14214, USA
| | | |
Collapse
|
42
|
Dryselius R, Nekhotiaeva N, Good L. Antimicrobial synergy between mRNA- and protein-level inhibitors. J Antimicrob Chemother 2005; 56:97-103. [PMID: 15914490 DOI: 10.1093/jac/dki173] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The few available distinct classes of antimicrobials limits the scope for single and combination drug treatment of resistant infections. OBJECTIVE To evaluate antimicrobial effectiveness from combinations of protein-specific drugs and mRNA-specific antisense inhibitors. METHODS Interactions between conventional antimicrobial drugs and mRNA-specific translation inhibiting antisense peptide nucleic acids were assessed in Escherichia coli and Staphylococcus aureus cultures using pairwise combinations in a chequerboard arrangement. Fractional inhibitory concentration indices (FICIs) were calculated and grouped according to the functional relationship between the inhibitor targets. Antisense specificity controls included different antisense sequences targeting the same mRNA, as well as biochemical quantification of active protein expressed from the essential fabI gene and from the lacZ reporter gene after single and combined inhibitor treatment. RESULTS FICIs were higher for inhibitor combinations with unrelated targets than for combinations with functionally related targets. Inhibitor combinations with shared genetic targets displayed the lowest FICIs, with several qualifying for the conservative definition of antimicrobial synergy (FICI < or = 0.5). Furthermore, low FICIs arise as the hyperbolic dose-response curves for each separate inhibitor are maintained in combination. CONCLUSION Interactions between mRNA- and protein-level inhibitors with the same genetic target can be synergistic and may provide a strategy to improve antimicrobial efficacy, facilitate drug mechanism of action studies and aid the search for new antimicrobials.
Collapse
Affiliation(s)
- Rikard Dryselius
- Center for Genomics and Bioinformatics, Karolinska Institutet, Stockholm, Sweden.
| | | | | |
Collapse
|
43
|
Shi F, Hoekstra D. Effective intracellular delivery of oligonucleotides in order to make sense of antisense. J Control Release 2005; 97:189-209. [PMID: 15196747 DOI: 10.1016/j.jconrel.2004.03.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Accepted: 03/12/2004] [Indexed: 01/28/2023]
Abstract
For more than two decades, antisense oligonucleotides (ODNs) have been used to modulate gene expression for the purpose of applications in cell biology and for development of novel sophisticated medical therapeutics. Conceptually, the antisense approach represents an elegant strategy, involving the targeting to and association of an ODN sequence with a specific mRNA via base-pairing, resulting in an impairment of functional and/or harmful protein expression in normal and diseased cells/tissue, respectively. Apart from ODN stability, its efficiency very much depends on intracellular delivery and release/access to the target side, issues that are still relatively poorly understood. Since free ODNs enter cells relatively poorly, appropriate carriers, often composed of polymers and cationic lipids, have been developed. Such carriers allow efficient delivery of ODNs into cells in vitro, and the mechanisms of delivery, both in terms of biophysical requirements for the carrier and cell biological features of uptake, are gradually becoming apparent. To become effective, ODNs require delivery into the nucleus, which necessitates release of internalized ODNs from endosomal compartments, an event that seems to depend on the nature of the delivery vehicle and distinct structural shape changes. Interestingly, evidence is accumulating which suggests that by modulating the surface properties of the carrier, the kinetics of such changes can be controlled, thus providing possibilities for programmable release of the carrier contents. Here, consideration will also be given to antisense design and chemistry, and the challenge of extra- and intracellular barriers to be overcome in the delivery process.
Collapse
Affiliation(s)
- Fuxin Shi
- Department of Membrane Cell Biology, Faculty of Medical Sciences, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | |
Collapse
|
44
|
Lee YH, Moon IJ, Hur B, Park JH, Han KH, Uhm SY, Kim YJ, Kang KJ, Park JW, Seu YB, Kim YH, Park JG. Gene knockdown by large circular antisense for high-throughput functional genomics. Nat Biotechnol 2005; 23:591-9. [PMID: 15867911 DOI: 10.1038/nbt1089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Accepted: 03/14/2005] [Indexed: 11/08/2022]
Abstract
Single-stranded genomic DNA of recombinant M13 phages was tested as an antisense molecule and examined for its usefulness in high-throughput functional genomics. cDNA fragments of various genes (TNF-alpha, c-myc, c-myb, cdk2 and cdk4) were independently cloned into phagemid vectors. Using the life cycle of M13 bacteriophages, large circular (LC)-molecules, antisense to their respective genes, were prepared from the culture supernatant of bacterial transformants. LC-antisense molecules exhibited enhanced stability, target specificity and no need for target-site searches. High-throughput functional genomics was then attempted with an LC-antisense library, which was generated by using a phagemid vector that incorporated a unidirectional subtracted cDNA library derived from liver cancer tissue. We identified 56 genes involved in the growth of these cells. These results indicate that an antisense sequence as a part of single-stranded LC-genomic DNA of recombinant M13 phages exhibits effective antisense activity, and may have potential for high-throughput functional genomics.
Collapse
Affiliation(s)
- Yun-Han Lee
- WelGENE Inc., 71B 4L, Development Sector 2-3, Sungseo Industrial Park, Dalseogu, Daegu, 704-230, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Nekhotiaeva N, Awasthi SK, Nielsen PE, Good L. Inhibition of Staphylococcus aureus gene expression and growth using antisense peptide nucleic acids. Mol Ther 2005; 10:652-9. [PMID: 15451449 DOI: 10.1016/j.ymthe.2004.07.006] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Accepted: 07/07/2004] [Indexed: 01/21/2023] Open
Abstract
Gene function studies in bacteria lag behind progress in genome sequencing, in part because current reverse genetics technology based on genome disruption does not allow subtle control of gene expression for all genes in a range of species. Essential genes and clustered regions are particularly problematic. Antisense technology offers an attractive alternative for microbial genomics. Unfortunately, bacteria lack RNAi mechanisms and conventional oligonucleotides are not taken up efficiently. However, in Escherichia coli, efficient and gene-specific antisense knock down is possible using antisense peptide nucleic acids (PNAs) attached to carrier peptides (KFFKFFKFFK). Carrier peptides can enter a range of microbial species, and in this study we asked whether peptide-PNAs could mediate antisense effects in Staphylococcus aureus. Using low micromolar concentrations we observed dose- and sequence-dependent inhibition of the reporter gene gfp and endogenous gene phoB. Also, antisense peptide-PNAs targeted to the essential genes fmhB, gyrA, and hmrB were growth inhibitory. Control peptide-PNAs were much less effective, and sequence alterations within the PNA and target mRNA sequences reduced or eliminated inhibition. Further development is needed to raise the antibacterial potential of PNAs, but the present results show that the approach can be used to study gene function and requirement in this important pathogen.
Collapse
Affiliation(s)
- Natalia Nekhotiaeva
- Center for Genomics and Bioinformatics, Karolinska Institutet, Berzelius väg 35, 171 77 Stockholm, Sweden
| | | | | | | |
Collapse
|
46
|
Veneault-Fourrey C, Talbot NJ. Moving Toward a Systems Biology Approach to the Study of Fungal Pathogenesis in the Rice Blast Fungus Magnaporthe grisea. ADVANCES IN APPLIED MICROBIOLOGY 2005; 57:177-215. [PMID: 16002013 DOI: 10.1016/s0065-2164(05)57006-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Claire Veneault-Fourrey
- School of Biological Sciences, Washington Singer Laboratories, University of Exeter, Exeter EX4 4QG, United Kingdom
| | | |
Collapse
|
47
|
Ravichandran LV, Dean NM, Marcusson EG. Use of antisense oligonucleotides in functional genomics and target validation. Oligonucleotides 2004; 14:49-64. [PMID: 15104896 DOI: 10.1089/154545704322988058] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
With the completion of sequencing of the human genome, a great deal of interest has been shifted toward functional genomics-based research for identification of novel drug targets for treatment of various diseases. The major challenge facing the pharmaceutical industry is to identify disease-causing genes and elucidate additional roles for genes of known functions. Gene functionalization and target validation are probably the most important steps involved in identifying novel potential drug targets. This review focuses on recent advances in antisense technology and its use for rapid identification and validation of new drug targets. The significance and applicability of this technology as a beginning of the drug discovery process are underscored by relevant cell culture-based assays and positive correlation in specific animal disease models. Some of the antisense inhibitors used to validate gene targets are themselves being developed as drugs. The current clinical trials based on such leads that were identified in a very short time further substantiate the importance of antisense technology-based functional genomics as an integral part of target validation and drug target identification.
Collapse
|
48
|
Affiliation(s)
- Vincent M Bruno
- Integrated Program in Cellular, Molecular and Biophysical Studies, Columbia University, 701 West 168th Street, Room HHSC908, New York, NY 10032, USA
| | | |
Collapse
|
49
|
Yin D, Fox B, Lonetto ML, Etherton MR, Payne DJ, Holmes DJ, Rosenberg M, Ji Y. Identification of antimicrobial targets using a comprehensive genomic approach. Pharmacogenomics 2004; 5:101-13. [PMID: 14683422 DOI: 10.1517/phgs.5.1.101.25679] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Regulated antisense RNA enables the construction of a defined set of conditional growth-defective/lethal strains. In this study, we expanded the regulated antisense RNA interference technology and developed a high-throughput screening strategy to identify the potential drug targets of novel antimicrobials. To prove this concept, the specific antisense sublibrary of different essential open reading frames were pooled in the presence of an inducer, and treated with or without sublethal levels of mupirocin, triclosan, or gentamicin. Antisense RNA-expressing strains that were sensitized for increased susceptibility to the antibiotics were selectively detected via DNA subtractive hybridization, microarray, and whole-cell analyses. No strain was identified as supersensitive to gentamicin because there was no target-specific antisense strain in this sublibrary. In contrast, strains expressing antisense to isoleucine tRNA synthetase (ileS) and enoyl-[acyl-carrier-protein] reductase (fabI) were specifically identified as having increased susceptibility to mupirocin and triclosan, respectively. These results demonstrated that ileS and fabI antisense strains showed significant increases of susceptibility only to their specific inhibitors. This data demonstrates that a regulated antisense RNA expression library provides an effective tool to assist in the identification of potential targets for novel antibacterial agents.
Collapse
Affiliation(s)
- Dezhong Yin
- Department of Microbiology, GlaxoSmithKline Pharmaceuticals Research and Development, Collegeville, PA 19462, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Bordon-Pallier F, Jullian N, Ferrari P, Girard AM, Bocquel MT, Biton J, Bouquin N, Haesslein JL. Inhibitors of Civ1 kinase belonging to 6-aminoaromatic-2-cyclohexyldiamino purine series as potent anti-fungal compounds. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1697:211-23. [PMID: 15023362 DOI: 10.1016/j.bbapap.2003.11.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2003] [Accepted: 11/12/2003] [Indexed: 11/24/2022]
Abstract
There is today a blatant need for new antifungal agents, because of the recent increase in life-threatening infections involving an ever-greater number of fungal strains. Fungi make extensive use of kinases in the regulation of essential processes, in particular the cell cycle. Most fungal kinases, however, are shared with higher eukaryotes. Only the kinases which have no human homologs, such as the histidine kinases, can be used as targets for antifungal drugs design. This review describes efforts directed towards the discovery of drugs active against a novel target, the atypical cell cycle kinase, Civ1.
Collapse
|