1
|
Chen J, Fasihianifard P, Lian R, Gibson-Elias LJ, Moreno JL, Chang CEA, Zhong W, Hooley RJ. Supramolecular Host:Guest Arrays Site-Selectively Recognize Peptide Phosphorylation and Kinase Activity. J Am Chem Soc 2025; 147:841-850. [PMID: 39680592 DOI: 10.1021/jacs.4c13757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
A synergistic combination of cationic styrylpyridinium dyes and water-soluble deep cavitand hosts can recognize phosphorylated peptides with both site- and state-selectivity. Two mechanisms of interaction are dominant: either the cationic dye interacts with Trp residues in the peptide or the host:dye pair forms a heteroternary complex with the peptide, driven by both strong dye-peptide and cavitand-peptide binding (Kd values up to 4 μM). The presence of multiple recognition mechanisms results in varying fluorescence responses dependent on the phosphorylation state and position, eliminating the need for covalent modification of the peptide target. Differential sensing aided by machine learning algorithms permits full discrimination between differently positioned serine phosphorylations with a minimal 3-component array. The array is fully functional in the presence of protein kinase A (PKA) and its required cofactors and capable of site-selective monitoring of serine phosphorylation at the privileged PKA motif, in the presence of serine residues that do not undergo reaction, illustrating the potential of the system in kinase-based drug screening.
Collapse
Affiliation(s)
- Junyi Chen
- Department of Chemistry, University of California─Riverside, Riverside, California 92521, United States
| | - Parisa Fasihianifard
- Department of Chemistry, University of California─Riverside, Riverside, California 92521, United States
| | - Ria Lian
- Department of Chemistry, University of California─Riverside, Riverside, California 92521, United States
| | - Lucas J Gibson-Elias
- Department of Chemistry, University of California─Riverside, Riverside, California 92521, United States
| | - Jose L Moreno
- Department of Chemistry, University of California─Riverside, Riverside, California 92521, United States
| | - Chia-En A Chang
- Department of Chemistry, University of California─Riverside, Riverside, California 92521, United States
| | - Wenwan Zhong
- Key Laboratory of Precision and Intelligent Chemistry; Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Richard J Hooley
- Department of Chemistry, University of California─Riverside, Riverside, California 92521, United States
| |
Collapse
|
2
|
Ncube SM, Nagarajan A, Lang D, Sinkala M, Burmeister CA, Serala K, Blackburn J, Prince S. c-Myc, AKT, Hsc70, and the T-Box Transcription Factor TBX3 Form an Important Oncogenic Signaling Axis in Breast Cancer. Mol Cancer Res 2025; 23:20-32. [PMID: 39264104 DOI: 10.1158/1541-7786.mcr-23-1031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/17/2024] [Accepted: 08/07/2024] [Indexed: 09/13/2024]
Abstract
Breast cancer is the second leading cause of death in women globally, and it remains a health burden due to poor therapy response, cancer cell drug resistance, and the debilitating side effects associated with most therapies. One approach to addressing the need to improve breast cancer therapies has been to elucidate the mechanism(s) underpinning this disease to identify key drivers that can be targeted in molecular therapies. The T-box transcription factor, TBX3, is upregulated in breast cancer, in which it contributes to important oncogenic processes, and it has been validated as a potential therapeutic target. Here, we investigated the molecular mechanisms that upregulate TBX3 in breast cancer, and we show that it involves transcriptional activation by c-Myc, post-translational modification by AKT1 and AKT3, and interaction with the molecular chaperone Hsc70. Together, the results from this study provide evidence that c-Myc, AKT, Hsc70, and TBX3 form part of an important oncogenic pathway in breast cancer and thus reveal versatile ways of interfering with the oncogenic activity of TBX3 for the treatment of this neoplasm. Implications: Targeting the c-Myc/AKT/TBX3/Hsc70 signaling axis may be an effective treatment strategy for TBX3-driven breast cancer.
Collapse
Affiliation(s)
- Stephanie M Ncube
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - ArulJothi Nagarajan
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, India
| | - Dirk Lang
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Musalula Sinkala
- Division of Computational Biology, Department of Integrated Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Carly A Burmeister
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Karabo Serala
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Jonathan Blackburn
- Division of Chemical and Systems Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sharon Prince
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
3
|
Massey S, Ang CS, Davidson NM, Quigley A, Rollo B, Harris AR, Kapsa RMI, Christodoulou J, Van Bergen NJ. Novel CDKL5 targets identified in human iPSC-derived neurons. Cell Mol Life Sci 2024; 81:347. [PMID: 39136782 PMCID: PMC11335273 DOI: 10.1007/s00018-024-05389-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/01/2024] [Accepted: 07/31/2024] [Indexed: 08/22/2024]
Abstract
CDKL5 Deficiency Disorder (CDD) is a debilitating epileptic encephalopathy disorder affecting young children with no effective treatments. CDD is caused by pathogenic variants in Cyclin-Dependent Kinase-Like 5 (CDKL5), a protein kinase that regulates key phosphorylation events in neurons. For therapeutic intervention, it is essential to understand molecular pathways and phosphorylation targets of CDKL5. Using an unbiased phosphoproteomic approach we identified novel targets of CDKL5, including GTF2I, PPP1R35, GATAD2A and ZNF219 in human iPSC-derived neuronal cells. The phosphoserine residue in the target proteins lies in the CDKL5 consensus motif. We validated direct phosphorylation of GTF2I and PPP1R35 by CDKL5 using complementary approaches. GTF2I controls axon guidance, cell cycle and neurodevelopment by regulating expression of neuronal genes. PPP1R35 is critical for centriole elongation and cilia morphology, processes that are impaired in CDD. PPP1R35 interacts with CEP131, a known CDKL5 phospho-target. GATAD2A and ZNF219 belong to the Nucleosome Remodelling Deacetylase (NuRD) complex, which regulates neuronal activity-dependent genes and synaptic connectivity. In-depth knowledge of molecular pathways regulated by CDKL5 will allow a better understanding of druggable disease pathways to fast-track therapeutic development.
Collapse
Affiliation(s)
- Sean Massey
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
| | - Ching-Seng Ang
- The Bio21 Institute of Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Nadia M Davidson
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Anita Quigley
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
| | - Ben Rollo
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Alexander R Harris
- Department of Biomedical Engineering, University of Melbourne, Melbourne, 3010, Australia
| | - Robert M I Kapsa
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
- Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Nicole J Van Bergen
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia.
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, Australia.
- Department of Paediatrics, University of Melbourne, c/o MCRI, 50 Flemington Road, Parkville, VIC, 3052, Australia.
| |
Collapse
|
4
|
Yahiro T, Bayless-Edwards L, Jones JA, Ma L, Qin M, Mao T, Zhong H. A high-performance genetically encoded sensor for cellular imaging of PKC activity in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604387. [PMID: 39091834 PMCID: PMC11291028 DOI: 10.1101/2024.07.19.604387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
We report a genetically encoded fluorescence lifetime sensor for protein kinase C (PKC) activity, named CKAR3, based on Förster resonance energy transfer. CKAR3 exhibits a 10-fold increased dynamic range compared to its parental sensors and enables in vivo imaging of PKC activity during animal behavior. Our results reveal robust PKC activity in a sparse neuronal subset in the motor cortex during locomotion, in part mediated by muscarinic acetylcholine receptors.
Collapse
Affiliation(s)
- Takaki Yahiro
- Vollum Institute, Oregon Health and Science University, Portland, OR, 97239
| | | | - James A Jones
- Vollum Institute, Oregon Health and Science University, Portland, OR, 97239
| | - Lei Ma
- Vollum Institute, Oregon Health and Science University, Portland, OR, 97239
| | - Maozhen Qin
- Vollum Institute, Oregon Health and Science University, Portland, OR, 97239
| | - Tianyi Mao
- Vollum Institute, Oregon Health and Science University, Portland, OR, 97239
| | - Haining Zhong
- Vollum Institute, Oregon Health and Science University, Portland, OR, 97239
| |
Collapse
|
5
|
Yaron-Barir TM, Joughin BA, Huntsman EM, Kerelsky A, Cizin DM, Cohen BM, Regev A, Song J, Vasan N, Lin TY, Orozco JM, Schoenherr C, Sagum C, Bedford MT, Wynn RM, Tso SC, Chuang DT, Li L, Li SSC, Creixell P, Krismer K, Takegami M, Lee H, Zhang B, Lu J, Cossentino I, Landry SD, Uduman M, Blenis J, Elemento O, Frame MC, Hornbeck PV, Cantley LC, Turk BE, Yaffe MB, Johnson JL. The intrinsic substrate specificity of the human tyrosine kinome. Nature 2024; 629:1174-1181. [PMID: 38720073 PMCID: PMC11136658 DOI: 10.1038/s41586-024-07407-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 04/10/2024] [Indexed: 05/31/2024]
Abstract
Phosphorylation of proteins on tyrosine (Tyr) residues evolved in metazoan organisms as a mechanism of coordinating tissue growth1. Multicellular eukaryotes typically have more than 50 distinct protein Tyr kinases that catalyse the phosphorylation of thousands of Tyr residues throughout the proteome1-3. How a given Tyr kinase can phosphorylate a specific subset of proteins at unique Tyr sites is only partially understood4-7. Here we used combinatorial peptide arrays to profile the substrate sequence specificity of all human Tyr kinases. Globally, the Tyr kinases demonstrate considerable diversity in optimal patterns of residues surrounding the site of phosphorylation, revealing the functional organization of the human Tyr kinome by substrate motif preference. Using this information, Tyr kinases that are most compatible with phosphorylating any Tyr site can be identified. Analysis of mass spectrometry phosphoproteomic datasets using this compendium of kinase specificities accurately identifies specific Tyr kinases that are dysregulated in cells after stimulation with growth factors, treatment with anti-cancer drugs or expression of oncogenic variants. Furthermore, the topology of known Tyr signalling networks naturally emerged from a comparison of the sequence specificities of the Tyr kinases and the SH2 phosphotyrosine (pTyr)-binding domains. Finally we show that the intrinsic substrate specificity of Tyr kinases has remained fundamentally unchanged from worms to humans, suggesting that the fidelity between Tyr kinases and their protein substrate sequences has been maintained across hundreds of millions of years of evolution.
Collapse
Affiliation(s)
- Tomer M Yaron-Barir
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Brian A Joughin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emily M Huntsman
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Alexander Kerelsky
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Daniel M Cizin
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Benjamin M Cohen
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Amit Regev
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Junho Song
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Neil Vasan
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ting-Yu Lin
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Discovery Technologies, Calico Life Sciences, South San Francisco, CA, USA
| | - Jose M Orozco
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Christina Schoenherr
- Cancer Research United Kingdom Scotland Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Cari Sagum
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - R Max Wynn
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shih-Chia Tso
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David T Chuang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lei Li
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Shawn S-C Li
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Pau Creixell
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Cancer Research UK Cambridge Institute, University of Cambridge Li Ka Shing Centre, Cambridge, UK
| | - Konstantin Krismer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mina Takegami
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Harin Lee
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Bin Zhang
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Jingyi Lu
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Ian Cossentino
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Sean D Landry
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Mohamed Uduman
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - John Blenis
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Margaret C Frame
- Cancer Research United Kingdom Scotland Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Peter V Hornbeck
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Benjamin E Turk
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA.
| | - Michael B Yaffe
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Division of Acute Care Surgery, Trauma, and Surgical Critical Care, and Division of Surgical Oncology, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Jared L Johnson
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Stephenson EH, Higgins JMG. Pharmacological approaches to understanding protein kinase signaling networks. Front Pharmacol 2023; 14:1310135. [PMID: 38164473 PMCID: PMC10757940 DOI: 10.3389/fphar.2023.1310135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Protein kinases play vital roles in controlling cell behavior, and an array of kinase inhibitors are used successfully for treatment of disease. Typical drug development pipelines involve biological studies to validate a protein kinase target, followed by the identification of small molecules that effectively inhibit this target in cells, animal models, and patients. However, it is clear that protein kinases operate within complex signaling networks. These networks increase the resilience of signaling pathways, which can render cells relatively insensitive to inhibition of a single kinase, and provide the potential for pathway rewiring, which can result in resistance to therapy. It is therefore vital to understand the properties of kinase signaling networks in health and disease so that we can design effective multi-targeted drugs or combinations of drugs. Here, we outline how pharmacological and chemo-genetic approaches can contribute to such knowledge, despite the known low selectivity of many kinase inhibitors. We discuss how detailed profiling of target engagement by kinase inhibitors can underpin these studies; how chemical probes can be used to uncover kinase-substrate relationships, and how these tools can be used to gain insight into the configuration and function of kinase signaling networks.
Collapse
Affiliation(s)
| | - Jonathan M. G. Higgins
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle uponTyne, United Kingdom
| |
Collapse
|
7
|
Johnson JL, Yaron TM, Huntsman EM, Kerelsky A, Song J, Regev A, Lin TY, Liberatore K, Cizin DM, Cohen BM, Vasan N, Ma Y, Krismer K, Robles JT, van de Kooij B, van Vlimmeren AE, Andrée-Busch N, Käufer NF, Dorovkov MV, Ryazanov AG, Takagi Y, Kastenhuber ER, Goncalves MD, Hopkins BD, Elemento O, Taatjes DJ, Maucuer A, Yamashita A, Degterev A, Uduman M, Lu J, Landry SD, Zhang B, Cossentino I, Linding R, Blenis J, Hornbeck PV, Turk BE, Yaffe MB, Cantley LC. An atlas of substrate specificities for the human serine/threonine kinome. Nature 2023; 613:759-766. [PMID: 36631611 PMCID: PMC9876800 DOI: 10.1038/s41586-022-05575-3] [Citation(s) in RCA: 281] [Impact Index Per Article: 140.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 11/17/2022] [Indexed: 01/13/2023]
Abstract
Protein phosphorylation is one of the most widespread post-translational modifications in biology1,2. With advances in mass-spectrometry-based phosphoproteomics, 90,000 sites of serine and threonine phosphorylation have so far been identified, and several thousand have been associated with human diseases and biological processes3,4. For the vast majority of phosphorylation events, it is not yet known which of the more than 300 protein serine/threonine (Ser/Thr) kinases encoded in the human genome are responsible3. Here we used synthetic peptide libraries to profile the substrate sequence specificity of 303 Ser/Thr kinases, comprising more than 84% of those predicted to be active in humans. Viewed in its entirety, the substrate specificity of the kinome was substantially more diverse than expected and was driven extensively by negative selectivity. We used our kinome-wide dataset to computationally annotate and identify the kinases capable of phosphorylating every reported phosphorylation site in the human Ser/Thr phosphoproteome. For the small minority of phosphosites for which the putative protein kinases involved have been previously reported, our predictions were in excellent agreement. When this approach was applied to examine the signalling response of tissues and cell lines to hormones, growth factors, targeted inhibitors and environmental or genetic perturbations, it revealed unexpected insights into pathway complexity and compensation. Overall, these studies reveal the intrinsic substrate specificity of the human Ser/Thr kinome, illuminate cellular signalling responses and provide a resource to link phosphorylation events to biological pathways.
Collapse
Affiliation(s)
- Jared L Johnson
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Tomer M Yaron
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Tri-Institutional PhD Program in Computational Biology & Medicine, Weill Cornell Medicine, Memorial Sloan Kettering Cancer Center and The Rockefeller University, New York, NY, USA
| | - Emily M Huntsman
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Alexander Kerelsky
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Junho Song
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Amit Regev
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ting-Yu Lin
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, Cell and Developmental Biology Program, New York, NY, USA
| | - Katarina Liberatore
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Daniel M Cizin
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Benjamin M Cohen
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Neil Vasan
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Yilun Ma
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Konstantin Krismer
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Precision Cancer Medicine, Koch Institute for Integrative Cancer Biology, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jaylissa Torres Robles
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - Bert van de Kooij
- Center for Precision Cancer Medicine, Koch Institute for Integrative Cancer Biology, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anne E van Vlimmeren
- Center for Precision Cancer Medicine, Koch Institute for Integrative Cancer Biology, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicole Andrée-Busch
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Norbert F Käufer
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Maxim V Dorovkov
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Alexey G Ryazanov
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Yuichiro Takagi
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Edward R Kastenhuber
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Marcus D Goncalves
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Division of Endocrinology, Weill Cornell Medicine, New York, NY, USA
| | - Benjamin D Hopkins
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Dylan J Taatjes
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | - Alexandre Maucuer
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, Evry, France
| | - Akio Yamashita
- Department of Investigative Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara-cho, Japan
| | - Alexei Degterev
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Mohamed Uduman
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Jingyi Lu
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Sean D Landry
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Bin Zhang
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Ian Cossentino
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Rune Linding
- Rewire Tx, Humboldt-Universität zu Berlin, Berlin, Germany
| | - John Blenis
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Peter V Hornbeck
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Benjamin E Turk
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA.
| | - Michael B Yaffe
- Center for Precision Cancer Medicine, Koch Institute for Integrative Cancer Biology, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Divisions of Acute Care Surgery, Trauma, and Surgical Critical Care, and Surgical Oncology, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
8
|
Thorner J. TOR complex 2 is a master regulator of plasma membrane homeostasis. Biochem J 2022; 479:1917-1940. [PMID: 36149412 PMCID: PMC9555796 DOI: 10.1042/bcj20220388] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022]
Abstract
As first demonstrated in budding yeast (Saccharomyces cerevisiae), all eukaryotic cells contain two, distinct multi-component protein kinase complexes that each harbor the TOR (Target Of Rapamycin) polypeptide as the catalytic subunit. These ensembles, dubbed TORC1 and TORC2, function as universal, centrally important sensors, integrators, and controllers of eukaryotic cell growth and homeostasis. TORC1, activated on the cytosolic surface of the lysosome (or, in yeast, on the cytosolic surface of the vacuole), has emerged as a primary nutrient sensor that promotes cellular biosynthesis and suppresses autophagy. TORC2, located primarily at the plasma membrane, plays a major role in maintaining the proper levels and bilayer distribution of all plasma membrane components (sphingolipids, glycerophospholipids, sterols, and integral membrane proteins). This article surveys what we have learned about signaling via the TORC2 complex, largely through studies conducted in S. cerevisiae. In this yeast, conditions that challenge plasma membrane integrity can, depending on the nature of the stress, stimulate or inhibit TORC2, resulting in, respectively, up-regulation or down-regulation of the phosphorylation and thus the activity of its essential downstream effector the AGC family protein kinase Ypk1. Through the ensuing effect on the efficiency with which Ypk1 phosphorylates multiple substrates that control diverse processes, membrane homeostasis is maintained. Thus, the major focus here is on TORC2, Ypk1, and the multifarious targets of Ypk1 and how the functions of these substrates are regulated by their Ypk1-mediated phosphorylation, with emphasis on recent advances in our understanding of these processes.
Collapse
Affiliation(s)
- Jeremy Thorner
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, U.S.A
| |
Collapse
|
9
|
Invergo BM. Accurate, high-coverage assignment of in vivo protein kinases to phosphosites from in vitro phosphoproteomic specificity data. PLoS Comput Biol 2022; 18:e1010110. [PMID: 35560139 PMCID: PMC9132282 DOI: 10.1371/journal.pcbi.1010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 05/25/2022] [Accepted: 04/15/2022] [Indexed: 12/03/2022] Open
Abstract
Phosphoproteomic experiments routinely observe thousands of phosphorylation sites. To understand the intracellular signaling processes that generated this data, one or more causal protein kinases must be assigned to each phosphosite. However, limited knowledge of kinase specificity typically restricts assignments to a small subset of a kinome. Starting from a statistical model of a high-throughput, in vitro kinase-substrate assay, I have developed an approach to high-coverage, multi-label kinase-substrate assignment called IV-KAPhE (“In vivo-Kinase Assignment for Phosphorylation Evidence”). Tested on human data, IV-KAPhE outperforms other methods of similar scope. Such computational methods generally predict a densely connected kinase-substrate network, with most sites targeted by multiple kinases, pointing either to unaccounted-for biochemical constraints or significant cross-talk and signaling redundancy. I show that such predictions can potentially identify biased kinase-site misannotations within families of closely related kinase isozymes and they provide a robust basis for kinase activity analysis. Proteins can pass around information inside cells about changes in the environment. This process, called intracellular signaling, helps to trigger appropriate cellular responses to environmental changes. One of the main ways information is passed to proteins is through chemical “tagging,” called phosphorylation, by enzymes called protein kinases. We can measure the phosphorylation state of practically all proteins in a cell at any moment. Starting from known cases of phosphorylation by a kinase, many computational methods have been developed to predict if the kinase might tag a certain spot on another protein or if an observed tag was attached by the kinase, with different models for each kinase. I have developed a new method that instead uses a single model to assign one or more kinases to each observed tag, built from the latest large-scale experimental data. This change in focus and unbiased training data allows my method to be significantly more accurate than past methods. I also explored useful applications for my method. For example, I used it to show that much of our knowledge about which kinase is responsible for each tag is probably inaccurately biased towards the commonly studied ones.
Collapse
Affiliation(s)
- Brandon M. Invergo
- Translational Research Exchange @ Exeter, University of Exeter, Exeter, United Kingdom
- * E-mail:
| |
Collapse
|
10
|
Liu X, Fields R, Schweppe DK, Paulo JA. Strategies for mass spectrometry-based phosphoproteomics using isobaric tagging. Expert Rev Proteomics 2021; 18:795-807. [PMID: 34652972 DOI: 10.1080/14789450.2021.1994390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Protein phosphorylation is a primary mechanism of signal transduction in cellular systems. Isobaric tagging can be used to investigate alterations in phosphorylation events in sample multiplexing experiments where quantification extends across all conditions. As such, innovations in tandem mass tag methods can facilitate the expansion of the depth and breadth of phosphoproteomic analyses. AREAS COVERED This review discusses the current state of tandem mass tag-centric phosphoproteomics and highlights advances in reagent chemistry, instrumentation, data acquisition, and data analysis. We stress that approaches for phosphoproteomic investigations require high-specificity enrichment, sensitive detection, and accurate phosphorylation site localization. EXPERT OPINION Tandem mass tag-centric phosphoproteomics will continue to be an important conduit for our understanding of signal transduction in living organisms. We anticipate that progress in phosphopeptide enrichment methodologies, enhancements in instrumentation and data acquisition technologies, and further refinements in analytical strategies will be key to the discovery of biologically relevant findings from phosphoproteomics studies.
Collapse
Affiliation(s)
- Xinyue Liu
- Department of Cell Biology, Harvard Medical School, Boston, USA
| | - Rose Fields
- Department of Genome Sciences, University of Washington, Seattle, USA
| | - Devin K Schweppe
- Department of Genome Sciences, University of Washington, Seattle, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, USA
| |
Collapse
|
11
|
Pathways to Parkinson's disease: a spotlight on 14-3-3 proteins. NPJ Parkinsons Dis 2021; 7:85. [PMID: 34548498 PMCID: PMC8455551 DOI: 10.1038/s41531-021-00230-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/23/2021] [Indexed: 02/08/2023] Open
Abstract
14-3-3s represent a family of highly conserved 30 kDa acidic proteins. 14-3-3s recognize and bind specific phospho-sequences on client partners and operate as molecular hubs to regulate their activity, localization, folding, degradation, and protein-protein interactions. 14-3-3s are also associated with the pathogenesis of several diseases, among which Parkinson's disease (PD). 14-3-3s are found within Lewy bodies (LBs) in PD patients, and their neuroprotective effects have been demonstrated in several animal models of PD. Notably, 14-3-3s interact with some of the major proteins known to be involved in the pathogenesis of PD. Here we first provide a detailed overview of the molecular composition and structural features of 14-3-3s, laying significant emphasis on their peculiar target-binding mechanisms. We then briefly describe the implication of 14-3-3s in the central nervous system and focus on their interaction with LRRK2, α-Synuclein, and Parkin, three of the major players in PD onset and progression. We finally discuss how different types of small molecules may interfere with 14-3-3s interactome, thus representing a valid strategy in the future of drug discovery.
Collapse
|
12
|
Paulo JA, Schweppe DK. Advances in quantitative high-throughput phosphoproteomics with sample multiplexing. Proteomics 2021; 21:e2000140. [PMID: 33455035 DOI: 10.1002/pmic.202000140] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/18/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
Eukaryotic protein phosphorylation modulates nearly every major biological process. Phosphorylation regulates protein activity, mediates cellular signal transduction, and manipulates cellular structure. Consequently, the dysregulation of kinase and phosphatase pathways has been linked to a multitude of diseases. Mass spectrometry-based proteomic techniques are increasingly used for the global interrogation of perturbations in phosphorylation-based cellular signaling. Strategies for studying phosphoproteomes require high-specificity enrichment, sensitive detection, and accurate localization of phosphorylation sites with advanced LC-MS/MS techniques and downstream informatics. Sample multiplexing with isobaric tags has also been integral to recent advancements in throughput and sensitivity for phosphoproteomic studies. Each of these facets of phosphoproteomics analysis present distinct challenges and thus opportunities for improvement and innovation. Here, we review current methodologies, explore persistent challenges, and discuss the outlook for isobaric tag-based quantitative phosphoproteomic analysis.
Collapse
Affiliation(s)
- Joao A Paulo
- Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
13
|
Sigala I, Koutroumani M, Koukiali A, Giannakouros T, Nikolakaki E. Nuclear Translocation of SRPKs Is Associated with 5-FU and Cisplatin Sensitivity in HeLa and T24 Cells. Cells 2021; 10:cells10040759. [PMID: 33808326 PMCID: PMC8065462 DOI: 10.3390/cells10040759] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 11/16/2022] Open
Abstract
Serine/arginine protein kinases (SRPKs) phosphorylate Arg/Ser dipeptide-containing proteins that play crucial roles in a broad spectrum of basic cellular processes. The existence of a large internal spacer sequence that separates the bipartite kinase catalytic core and anchors the kinases in the cytoplasm is a unique structural feature of SRPKs. Here, we report that exposure of HeLa and T24 cells to DNA damage inducers triggers the nuclear translocation of SRPK1 and SRPK2. Furthermore, we show that nuclear SRPKs did not protect from, but on the contrary, mediated the cytotoxic effects of genotoxic agents, such as 5-fluorouracil (5-FU) and cisplatin. Confirming previous data showing that the kinase activity is essential for the entry of SRPKs into the nucleus, SRPIN340, a selective SRPK1/2 inhibitor, blocked the nuclear accumulation of the kinases, thus diminishing the cytotoxic effects of the drugs. ATR/ATM-dependent phosphorylation of threonine 326 and serine 408 in the spacer domain of SRPK1 was essential for the redistribution of the kinase to the nucleus. Substitution of either of these two residues to alanine or inhibition of ATR/ATM kinase activity abolished nuclear localization of SRPK1 and conferred tolerance to 5-FU treatment. These findings suggest that SRPKs may play an important role in linking cellular signaling to DNA damage in eukaryotic cells.
Collapse
Affiliation(s)
- Ioanna Sigala
- Laboratory of Biochemistry, Department of Chemistry, Aristotelian University, 54124 Thessaloniki, Greece; (I.S.); (A.K.); (T.G.)
| | - Maria Koutroumani
- Centre for Research and Technology-Hellas, Institute of Applied Biosciences, 57001 Thessaloniki, Greece;
| | - Anastasia Koukiali
- Laboratory of Biochemistry, Department of Chemistry, Aristotelian University, 54124 Thessaloniki, Greece; (I.S.); (A.K.); (T.G.)
| | - Thomas Giannakouros
- Laboratory of Biochemistry, Department of Chemistry, Aristotelian University, 54124 Thessaloniki, Greece; (I.S.); (A.K.); (T.G.)
| | - Eleni Nikolakaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotelian University, 54124 Thessaloniki, Greece; (I.S.); (A.K.); (T.G.)
- Correspondence:
| |
Collapse
|
14
|
Zhou X, Chen X, Hong T, Zhang M, Cai Y, Cui L. TTC3-Mediated Protein Quality Control, A Potential Mechanism for Cognitive Impairment. Cell Mol Neurobiol 2021; 42:1659-1669. [PMID: 33638766 PMCID: PMC9239942 DOI: 10.1007/s10571-021-01060-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/11/2021] [Indexed: 01/14/2023]
Abstract
The tetrapeptide repeat domain 3 (TTC3) gene falls within Down's syndrome (DS) critical region. Cognitive impairment is a common phenotype of DS and Alzheimer’s disease (AD), and overexpression of TTC3 can accelerate cognitive decline, but the specific mechanism is unknown. The TTC3-mediated protein quality control (PQC) mechanism, similar to the PQC system, is divided into three parts: it acts as a cochaperone to assist proteins in folding correctly; it acts as an E3 ubiquitin ligase (E3s) involved in protein degradation processes through the ubiquitin–proteasome system (UPS); and it may also eventually cause autophagy by affecting mitochondrial function. Thus, this article reviews the research progress on the structure, function, and metabolism of TTC3, including the recent research progress on TTC3 in DS and AD; the role of TTC3 in cognitive impairment through PQC in combination with the abovementioned attributes of TTC3; and the potential targets of TTC3 in the treatment of such diseases.
Collapse
Affiliation(s)
- Xu Zhou
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, No.57, Renmindadaonan Road, Xiashan District, Zhanjiang, China
| | - Xiongjin Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, No.57, Renmindadaonan Road, Xiashan District, Zhanjiang, China
| | - Tingting Hong
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, No.57, Renmindadaonan Road, Xiashan District, Zhanjiang, China
| | - Miaoping Zhang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, No.57, Renmindadaonan Road, Xiashan District, Zhanjiang, China
| | - Yujie Cai
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, No.57, Renmindadaonan Road, Xiashan District, Zhanjiang, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, No.57, Renmindadaonan Road, Xiashan District, Zhanjiang, China.
| |
Collapse
|
15
|
Cesaro L, Pinna LA. Prevalence and significance of the commonest phosphorylated motifs in the human proteome: a global analysis. Cell Mol Life Sci 2020; 77:5281-5298. [PMID: 32052090 PMCID: PMC11105107 DOI: 10.1007/s00018-020-03474-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/22/2020] [Accepted: 01/28/2020] [Indexed: 01/08/2023]
Abstract
Protein phosphorylation is the most frequent post-translational modification by which the properties of eukaryotic proteins can be reversibly modified. In humans, over 500 protein kinases generate a huge phosphoproteome including more than 200,000 individual phosphosites, a figure which is still continuously increasing. The in vivo selectivity of protein kinases is the outcome of a multifaceted and finely tuned process where numerous factors play an integrated role. To gain information about the actual contribution to this process of local features that reflect the interaction of the protein targets with the catalytic site of the kinases, the prevalence of the commonest motifs determining the consensus sequence of Ser/Thr-specific kinases has been examined in the whole human phosphoproteome and in the phosphoproteomes generated by a panel of the 47 most pleiotropic protein kinases. Our analysis shows that: (1) most phosphosites do conform to at least one of the motifs considered, with a substantial proportion conforming to two or more of them; (2) some motifs, with special reference to the one recognized by protein kinase CK2 (pS/pT-x-x-E/D) are very promiscuous, being abundantly represented also at the phosphosites of all the other protein kinases considered; (3) by contrast, other phosphorylated motifs, notably pS/pT-P, pS/pT-Q and pS-x-E, are more discriminatory and selective, being nearly absent in the phosphosites that are not attributable to certain categories of kinases. The information provided will prove helpful to make reliable inferences based on the manual inspection of individual phosphosites.
Collapse
Affiliation(s)
- Luca Cesaro
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy
| | - Lorenzo A Pinna
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy.
- CNR Institute of Neurosciences, Viale G. Colombo 3, 35131, Padova, Italy.
| |
Collapse
|
16
|
Campbell JR, Li H, Wang Y, Kozhemyakin M, Hunt AJ, Liu X, Janz R, Heidelberger R. Phosphorylation of the Retinal Ribbon Synapse Specific t-SNARE Protein Syntaxin3B Is Regulated by Light via a Ca 2 +-Dependent Pathway. Front Cell Neurosci 2020; 14:587072. [PMID: 33192329 PMCID: PMC7606922 DOI: 10.3389/fncel.2020.587072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/11/2020] [Indexed: 12/27/2022] Open
Abstract
Neurotransmitter release at retinal ribbon-style synapses utilizes a specialized t-SNARE protein called syntaxin3B (STX3B). In contrast to other syntaxins, STX3 proteins can be phosphorylated in vitro at T14 by Ca2+/calmodulin-dependent protein kinase II (CaMKII). This modification has the potential to modulate SNARE complex formation required for neurotransmitter release in an activity-dependent manner. To determine the extent to which T14 phosphorylation occurs in vivo in the mammalian retina and characterize the pathway responsible for the in vivo phosphorylation of T14, we utilized quantitative immunofluorescence to measure the levels of STX3 and STX3 phosphorylated at T14 (pSTX3) in the synaptic terminals of mouse retinal photoreceptors and rod bipolar cells (RBCs). Results demonstrate that STX3B phosphorylation at T14 is light-regulated and dependent upon the elevation of intraterminal Ca2+. In rod photoreceptor terminals, the ratio of pSTX3 to STX3 was significantly higher in dark-adapted mice, when rods are active, than in light-exposed mice. By contrast, in RBC terminals, the ratio of pSTX3 to STX3 was higher in light-exposed mice, when these terminals are active, than in dark-adapted mice. These results were recapitulated in the isolated eyecup preparation, but only when Ca2+ was included in the external medium. In the absence of external Ca2+, pSTX3 levels remained low regardless of light/dark exposure. Using the isolated RBC preparation, we next showed that elevation of intraterminal Ca2+ alone was sufficient to increase STX3 phosphorylation at T14. Furthermore, both the non-specific kinase inhibitor staurosporine and the selective CaMKII inhibitor AIP inhibited the Ca2+-dependent increase in the pSTX3/STX3 ratio in isolated RBC terminals, while in parallel experiments, AIP suppressed RBC depolarization-evoked exocytosis, measured using membrane capacitance measurements. Our data support a novel, illumination-regulated modulation of retinal ribbon-style synapse function in which activity-dependent Ca2+ entry drives the phosphorylation of STX3B at T14 by CaMKII, which in turn, modulates the ability to form SNARE complexes required for exocytosis.
Collapse
Affiliation(s)
- Joseph R Campbell
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Hongyan Li
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yanzhao Wang
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Maxim Kozhemyakin
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Albert J Hunt
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Xiaoqin Liu
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Roger Janz
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, TX, United States.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Ruth Heidelberger
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, TX, United States.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
17
|
Non-cooperative 4E-BP2 folding with exchange between eIF4E-binding and binding-incompatible states tunes cap-dependent translation inhibition. Nat Commun 2020; 11:3146. [PMID: 32561718 PMCID: PMC7305185 DOI: 10.1038/s41467-020-16783-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 05/15/2020] [Indexed: 12/24/2022] Open
Abstract
Phosphorylation of intrinsically disordered eIF4E binding proteins (4E-BPs) regulates cap-dependent translation by weakening their ability to compete with eIF4G for eIF4E binding within the translation initiation complex. We previously showed that phosphorylation of T37 and T46 in 4E-BP2 induces folding of a four-stranded beta-fold domain, partially sequestering the canonical eIF4E-binding helix. The C-terminal intrinsically disordered region (C-IDR), remaining disordered after phosphorylation, contains the secondary eIF4E-binding site and three other phospho-sites, whose mechanisms in inhibiting binding are not understood. Here we report that the domain is non-cooperatively folded, with exchange between beta strands and helical conformations. C-IDR phosphorylation shifts the conformational equilibrium, controlling access to eIF4E binding sites. The hairpin turns formed by pT37/pT46 are remarkably stable and function as transplantable units for phospho-regulation of stability. These results demonstrate how non-cooperative folding and conformational exchange leads to graded inhibition of 4E-BP2:eIF4E binding, shifting 4E-BP2 into an eIF4E binding-incompatible conformation and regulating translation initiation. Phosphorylation of eIF4E binding proteins (4E-BPs) controls their folding and regulates cap-dependent translation. Here, the authors show that phosphorylation of the C-terminal disordered region stabilizes the non-cooperatively folded 4E-BP domain to an eIF4E binding-incompatible state to control translation.
Collapse
|
18
|
Deznabi I, Arabaci B, Koyutürk M, Tastan O. DeepKinZero: zero-shot learning for predicting kinase-phosphosite associations involving understudied kinases. Bioinformatics 2020; 36:3652-3661. [PMID: 32044914 PMCID: PMC7320620 DOI: 10.1093/bioinformatics/btaa013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/17/2019] [Accepted: 01/06/2020] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION Protein phosphorylation is a key regulator of protein function in signal transduction pathways. Kinases are the enzymes that catalyze the phosphorylation of other proteins in a target-specific manner. The dysregulation of phosphorylation is associated with many diseases including cancer. Although the advances in phosphoproteomics enable the identification of phosphosites at the proteome level, most of the phosphoproteome is still in the dark: more than 95% of the reported human phosphosites have no known kinases. Determining which kinase is responsible for phosphorylating a site remains an experimental challenge. Existing computational methods require several examples of known targets of a kinase to make accurate kinase-specific predictions, yet for a large body of kinases, only a few or no target sites are reported. RESULTS We present DeepKinZero, the first zero-shot learning approach to predict the kinase acting on a phosphosite for kinases with no known phosphosite information. DeepKinZero transfers knowledge from kinases with many known target phosphosites to those kinases with no known sites through a zero-shot learning model. The kinase-specific positional amino acid preferences are learned using a bidirectional recurrent neural network. We show that DeepKinZero achieves significant improvement in accuracy for kinases with no known phosphosites in comparison to the baseline model and other methods available. By expanding our knowledge on understudied kinases, DeepKinZero can help to chart the phosphoproteome atlas. AVAILABILITY AND IMPLEMENTATION The source codes are available at https://github.com/Tastanlab/DeepKinZero. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Iman Deznabi
- Computer Engineering Department, Bilkent University, Ankara 06800, Turkey
- College of Information and Computer Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Busra Arabaci
- Computer Engineering Department, Bilkent University, Ankara 06800, Turkey
| | - Mehmet Koyutürk
- Department of Computer and Data Sciences
- Center for Proteomics & Bioinformatics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Oznur Tastan
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| |
Collapse
|
19
|
Guo Y, Ning W, Jiang P, Lin S, Wang C, Tan X, Yao L, Peng D, Xue Y. GPS-PBS: A Deep Learning Framework to Predict Phosphorylation Sites that Specifically Interact with Phosphoprotein-Binding Domains. Cells 2020; 9:cells9051266. [PMID: 32443803 PMCID: PMC7290655 DOI: 10.3390/cells9051266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
Protein phosphorylation is essential for regulating cellular activities by modifying substrates at specific residues, which frequently interact with proteins containing phosphoprotein-binding domains (PPBDs) to propagate the phosphorylation signaling into downstream pathways. Although massive phosphorylation sites (p-sites) have been reported, most of their interacting PPBDs are unknown. Here, we collected 4458 known PPBD-specific binding p-sites (PBSs), considerably improved our previously developed group-based prediction system (GPS) algorithm, and implemented a deep learning plus transfer learning strategy for model training. Then, we developed a new online service named GPS-PBS, which can hierarchically predict PBSs of 122 single PPBD clusters belonging to two groups and 16 families. By comparison, GPS-PBS achieved a highly competitive accuracy against other existing tools. Using GPS-PBS, we predicted 371,018 mammalian p-sites that potentially interact with at least one PPBD, and revealed that various PPBD-containing proteins (PPCPs) and protein kinases (PKs) can simultaneously regulate the same p-sites to orchestrate important pathways, such as the PI3K-Akt signaling pathway. Taken together, we anticipate GPS-PBS can be a great help for further dissecting phosphorylation signaling networks.
Collapse
Affiliation(s)
- Yaping Guo
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Wanshan Ning
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Peiran Jiang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shaofeng Lin
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Chenwei Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiaodan Tan
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Lan Yao
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Di Peng
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yu Xue
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
20
|
Choudhary E, Bullen CK, Goel R, Singh AK, Praharaj M, Thakur P, Dhiman R, Bishai WR, Agarwal N. Relative and Quantitative Phosphoproteome Analysis of Macrophages in Response to Infection by Virulent and Avirulent Mycobacteria Reveals a Distinct Role of the Cytosolic RNA Sensor RIG-I in Mycobacterium tuberculosis Pathogenesis. J Proteome Res 2020; 19:2316-2336. [PMID: 32407090 DOI: 10.1021/acs.jproteome.9b00895] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Comparative phosphoproteomics of Mycobacterium tuberculosis (Mtb)- and Mycobacterium bovis BCG (BCG)-infected macrophages could be instrumental in understanding the characteristic post-translational modifications of host proteins and their subsequent involvement in determining Mtb pathogenesis. To identify proteins acquiring a distinct phosphorylation status, herein, we compared the phosphorylation profile of macrophages upon exposure to Mtb and BCG. We observed a significant dephosphorylation of proteins following Mtb infection relative to those with uninfected or BCG-infected cells. A comprehensive tandem mass tag mass spectrometry (MS) approach detected ∼10% phosphosites on a variety of host proteins that are modulated in response to infection. Interestingly, the innate immune-enhancing interferon (IFN)-stimulated genes were identified as a class of proteins differentially phosphorylated during infection, including the cytosolic RNA sensor RIG-I, which has been implicated in the immune response to bacterial infection. We show that Mtb infection results in the activation of RIG-I in primary human macrophages. Studies using RIG-I knockout macrophages reveal that the Mtb-mediated activation of RIG-I promotes IFN-β, IL-1α, and IL-1β levels, dampens autophagy, and facilitates intracellular Mtb survival. To our knowledge, this is the first study providing exhaustive information on relative and quantitative changes in the global phosphoproteome profile of host macrophages that can be further explored in designing novel anti-TB drug targets. The peptide identification and MS/MS spectra have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD013171.
Collapse
Affiliation(s)
- Eira Choudhary
- Laboratory of Mycobacterial Genetics, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India.,Symbiosis School of Biomedical Sciences, Symbiosis International (Deemed University), Pune 412115, Maharashtra, India
| | - C Korin Bullen
- Center for Tuberculosis Research, Johns Hopkins University, Baltimore, Maryland 21287, United States
| | - Renu Goel
- Laboratory of Mycobacterial Genetics, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
| | - Alok Kumar Singh
- Center for Tuberculosis Research, Johns Hopkins University, Baltimore, Maryland 21287, United States
| | - Monali Praharaj
- Center for Tuberculosis Research, Johns Hopkins University, Baltimore, Maryland 21287, United States
| | - Preeti Thakur
- Center for Tuberculosis Research, Johns Hopkins University, Baltimore, Maryland 21287, United States
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - William R Bishai
- Center for Tuberculosis Research, Johns Hopkins University, Baltimore, Maryland 21287, United States
| | - Nisheeth Agarwal
- Laboratory of Mycobacterial Genetics, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
| |
Collapse
|
21
|
Watson NA, Cartwright TN, Lawless C, Cámara-Donoso M, Sen O, Sako K, Hirota T, Kimura H, Higgins JMG. Kinase inhibition profiles as a tool to identify kinases for specific phosphorylation sites. Nat Commun 2020; 11:1684. [PMID: 32245944 PMCID: PMC7125195 DOI: 10.1038/s41467-020-15428-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 03/06/2020] [Indexed: 01/08/2023] Open
Abstract
There are thousands of known cellular phosphorylation sites, but the paucity of ways to identify kinases for particular phosphorylation events remains a major roadblock for understanding kinase signaling. To address this, we here develop a generally applicable method that exploits the large number of kinase inhibitors that have been profiled on near-kinome-wide panels of protein kinases. The inhibition profile for each kinase provides a fingerprint that allows identification of unknown kinases acting on target phosphosites in cell extracts. We validate the method on diverse known kinase-phosphosite pairs, including histone kinases, EGFR autophosphorylation, and Integrin β1 phosphorylation by Src-family kinases. We also use our approach to identify the previously unknown kinases responsible for phosphorylation of INCENP at a site within a commonly phosphorylated motif in mitosis (a non-canonical target of Cyclin B-Cdk1), and of BCL9L at S915 (PKA). We show that the method has clear advantages over in silico and genetic screening.
Collapse
Affiliation(s)
- Nikolaus A Watson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Tyrell N Cartwright
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Conor Lawless
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Marcos Cámara-Donoso
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Onur Sen
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Kosuke Sako
- The Cancer Institute, Japanese Foundation for Cancer Research, Koto, Tokyo, 135-8550, Japan
| | - Toru Hirota
- The Cancer Institute, Japanese Foundation for Cancer Research, Koto, Tokyo, 135-8550, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8503, Japan
| | - Jonathan M G Higgins
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
22
|
Cheng J, Tao J, Li B, Shi Y, Liu H. The tyrosine 73 and serine 83 dephosphorylation of H1N1 swine influenza virus NS1 protein attenuates virus replication and induces high levels of beta interferon. Virol J 2019; 16:152. [PMID: 31805964 PMCID: PMC6896355 DOI: 10.1186/s12985-019-1255-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/21/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nonstructural protein 1 (NS1) is a virulence factor encoded by influenza A virus (IAV) that is expressed in the nucleus and cytoplasm of host cells during the earliest stages of infection. NS1 is a multifunctional protein that plays an important role in virus replication, virulence and inhibition of the host antiviral immune response. However, to date, the phosphorylation sites of NS1 have not been identified, and the relationship between phosphorylation and protein function has not been thoroughly elucidated. METHOD In this study, potential phosphorylation sites in the swine influenza virus (SIV) NS1 protein were bioinformatically predicted and determined by Phos-tag SDS-PAGE analysis. To study the role of NS1 phosphorylation sites, we rescued NS1 mutants (Y73F and S83A) of A/swine/Shanghai/3/2014(H1N1) strain and compared their replication ability, cytokine production as well as the intracellular localization in cultured cells. Additionally, we used small interfering RNA (siRNA) assay to explore whether changes in the type I IFN response with dephosphorylation at positions 73 and 83 were mediated by the RIG-I pathway. RESULTS We checked 18 predicted sites in 30 SIV NS1 genes to exclude strain-specific sites, covering H1N1, H1N2 and H3N2 subtypes and identified two phosphorylation sites Y73 and S83 in the H1N1 SIV protein by Phos-tag SDS-PAGE analysis. We found that dephosphorylation at positions 73 and 83 of the NS1 protein attenuated virus replication and reduced the ability of NS1 to antagonize IFN-β expression but had no effect on nuclear localization. Knockdown of RIG-I dramatically impaired the induction of IFN-β and ISG56 in NS1 Y73F or S83A mutant-infected cells, indicating that RIG-I plays a role in the IFN-β response upon rSIV NS1 Y73F and rSIV NS1 S83A infection. CONCLUSION We first identified two functional phosphorylation sites in the H1N1 SIV protein: Y73 and S83. We found that dephosphorylation at positions 73 and 83 of the NS1 protein affected the antiviral state in the host cells, partly through the RIG-I pathway.
Collapse
Affiliation(s)
- Jinghua Cheng
- Institute of Animal Science and Veterinary Medicine, Shanghai, Academy of Agricultural Science, Shanghai, 201106, China.,Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, 201106, China.,Shanghai Engineering Research Center of Pig Breeding, Shanghai, 201302, China
| | - Jie Tao
- Institute of Animal Science and Veterinary Medicine, Shanghai, Academy of Agricultural Science, Shanghai, 201106, China.,Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, 201106, China.,Shanghai Engineering Research Center of Pig Breeding, Shanghai, 201302, China
| | - Benqiang Li
- Institute of Animal Science and Veterinary Medicine, Shanghai, Academy of Agricultural Science, Shanghai, 201106, China.,Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, 201106, China.,Shanghai Engineering Research Center of Pig Breeding, Shanghai, 201302, China
| | - Ying Shi
- Institute of Animal Science and Veterinary Medicine, Shanghai, Academy of Agricultural Science, Shanghai, 201106, China.,Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, 201106, China.,Shanghai Engineering Research Center of Pig Breeding, Shanghai, 201302, China
| | - Huili Liu
- Institute of Animal Science and Veterinary Medicine, Shanghai, Academy of Agricultural Science, Shanghai, 201106, China. .,Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, 201106, China. .,Shanghai Engineering Research Center of Pig Breeding, Shanghai, 201302, China.
| |
Collapse
|
23
|
Sulak MA, Ghosh M, Sinharoy P, Andrei SR, Damron DS. Modulation of TRPA1 channel activity by Cdk5 in sensory neurons. Channels (Austin) 2019; 12:65-75. [PMID: 29308980 PMCID: PMC5972803 DOI: 10.1080/19336950.2018.1424282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Transient receptor potential cation channel, subfamily A, member 1 (TRPA1), is activated by a broad range of noxious stimuli. Cdk5, a member of the Cdk family, has recently been identified as a modulator of pain signaling pathways. In the current study, we investigated the extent to which Cdk5 modulates TRPA1 activity. Cdk5 inhibition was found to attenuate TRPA1 response to agonist in mouse DRG sensory neurons. Additionally, the presence of active Cdk5 was associated with increased TRPA1 phosphorylation in transfected HEK293 cells that was roscovitine-sensitive and absent in the mouse mutant S449A full-length channel. Immunopurified Cdk5 was observed to phosphorylate human TRPA1 peptide substrate at S448A in vitro. Our results point to a role for Cdk5 in modulating TRPA1 activity.
Collapse
Affiliation(s)
- Michael A Sulak
- a Department of Human Genetics , University of Chicago , Chicago , IL , USA
| | - Monica Ghosh
- b Department of Biological Sciences , Kent State University , Kent , OH , USA
| | - Pritam Sinharoy
- c Department of Anesthesia , Perioperative and Pain Medicine, Stanford School of Medicine , Stanford , CA , USA
| | - Spencer R Andrei
- d Department of Medicine , Vanderbilt University Medical Center , Nashville , TN , USA
| | - Derek S Damron
- b Department of Biological Sciences , Kent State University , Kent , OH , USA
| |
Collapse
|
24
|
Leroux AE, Gross LZF, Sacerdoti M, Biondi RM. Allosteric Regulation of Protein Kinases Downstream of PI3-Kinase Signalling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1163:279-311. [PMID: 31707708 DOI: 10.1007/978-981-13-8719-7_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Allostery is a basic principle that enables proteins to process and transmit cellular information. Protein kinases evolved allosteric mechanisms to transduce cellular signals to downstream signalling components or effector molecules. Protein kinases catalyse the transfer of the terminal phosphate from ATP to protein substrates upon specific stimuli. Protein kinases are targets for the development of small molecule inhibitors for the treatment of human diseases. Drug development has focussed on ATP-binding site, while there is increase interest in the development of drugs targeting alternative sites, i.e. allosteric sites. Here, we review the mechanism of regulation of protein kinases, which often involve the allosteric modulation of the ATP-binding site, enhancing or inhibiting activity. We exemplify the molecular mechanism of allostery in protein kinases downstream of PI3-kinase signalling with a focus on phosphoinositide-dependent protein kinase 1 (PDK1), a model kinase where small compounds can allosterically modulate the conformation of the kinase bidirectionally.
Collapse
Affiliation(s)
- Alejandro E Leroux
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Lissy Z F Gross
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Mariana Sacerdoti
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Ricardo M Biondi
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina.
- Department of Internal Medicine I, Universitätsklinikum Frankfurt, Frankfurt, Germany.
- DKTK German Cancer Consortium (DKTK), Frankfurt, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
25
|
Amano M, Nishioka T, Tsuboi D, Kuroda K, Funahashi Y, Yamahashi Y, Kaibuchi K. Comprehensive analysis of kinase-oriented phospho-signalling pathways. J Biochem 2018; 165:301-307. [DOI: 10.1093/jb/mvy115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/15/2018] [Indexed: 02/01/2023] Open
Affiliation(s)
- Mutsuki Amano
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa-ku, Nagoya, Aichi, Japan
| | - Tomoki Nishioka
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa-ku, Nagoya, Aichi, Japan
| | - Daisuke Tsuboi
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa-ku, Nagoya, Aichi, Japan
| | - Keisuke Kuroda
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa-ku, Nagoya, Aichi, Japan
| | - Yasuhiro Funahashi
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa-ku, Nagoya, Aichi, Japan
| | - Yukie Yamahashi
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa-ku, Nagoya, Aichi, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa-ku, Nagoya, Aichi, Japan
| |
Collapse
|
26
|
Lau BYC, Othman A, Ramli US. Application of Proteomics Technologies in Oil Palm Research. Protein J 2018; 37:473-499. [DOI: 10.1007/s10930-018-9802-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
27
|
Wiredja DD, Tabler CO, Schlatzer DM, Li M, Chance MR, Tilton JC. Global phosphoproteomics of CCR5-tropic HIV-1 signaling reveals reprogramming of cellular protein production pathways and identifies p70-S6K1 and MK2 as HIV-responsive kinases required for optimal infection of CD4+ T cells. Retrovirology 2018; 15:44. [PMID: 29970186 PMCID: PMC6029029 DOI: 10.1186/s12977-018-0423-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/26/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Viral reprogramming of host cells enhances replication and is initiated by viral interaction with the cell surface. Upon human immunodeficiency virus (HIV) binding to CD4+ T cells, a signal transduction cascade is initiated that reorganizes the actin cytoskeleton, activates transcription factors, and alters mRNA splicing pathways. METHODS We used a quantitative mass spectrometry-based phosphoproteomic approach to investigate signal transduction cascades initiated by CCR5-tropic HIV, which accounts for virtually all transmitted viruses and the vast majority of viruses worldwide. RESULTS CCR5-HIV signaling induced significant reprogramming of the actin cytoskeleton and mRNA splicing pathways, as previously described. In addition, CCR5-HIV signaling induced profound changes to the mRNA transcription, processing, translation, and post-translational modifications pathways, indicating that virtually every stage of protein production is affected. Furthermore, we identified two kinases regulated by CCR5-HIV signaling-p70-S6K1 (RPS6KB1) and MK2 (MAPKAPK2)-that were also required for optimal HIV infection of CD4+ T cells. These kinases regulate protein translation and cytoskeletal architecture, respectively, reinforcing the importance of these pathways in viral replication. Additionally, we found that blockade of CCR5 signaling by maraviroc had relatively modest effects on CCR5-HIV signaling, in agreement with reports that signaling by CCR5 is dispensable for HIV infection but in contrast to the critical effects of CXCR4 on cortical actin reorganization. CONCLUSIONS These results demonstrate that CCR5-tropic HIV induces significant reprogramming of host CD4+ T cell protein production pathways and identifies two novel kinases induced upon viral binding to the cell surface that are critical for HIV replication in host cells.
Collapse
Affiliation(s)
- Danica D Wiredja
- Department of Nutrition, Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Caroline O Tabler
- Department of Nutrition, Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Daniela M Schlatzer
- Department of Nutrition, Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Ming Li
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Mark R Chance
- Department of Nutrition, Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - John C Tilton
- Department of Nutrition, Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
28
|
Naderi A. SRARP and HSPB7 are epigenetically regulated gene pairs that function as tumor suppressors and predict clinical outcome in malignancies. Mol Oncol 2018; 12:724-755. [PMID: 29577611 PMCID: PMC5928383 DOI: 10.1002/1878-0261.12195] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 02/27/2018] [Accepted: 03/10/2018] [Indexed: 12/16/2022] Open
Abstract
Deletions of chromosome 1p36 are common in cancers; however, despite extensive studies, there has been limited success for discovering candidate tumor suppressors in this region. SRARP has recently been identified as a novel corepressor of the androgen receptor (AR) and is located on chromosome 1p36. Here, bioinformatics analysis of large tumor datasets was performed to study SRARP and its gene pair, HSPB7. In addition, using cancer cell lines, mechanisms of SRARP and HSPB7 regulation and their molecular functions were investigated. This study demonstrated that SRARP and HSPB7 are a gene pair located 5.2 kb apart on 1p36.13 and are inactivated by deletions and epigenetic silencing in malignancies. Importantly, SRARP and HSPB7 have tumor suppressor functions in clonogenicity and cell viability associated with the downregulation of Akt and ERK. SRARP expression is inversely correlated with genes that promote cell proliferation and signal transduction, which supports its functions as a tumor suppressor. In addition, AR exerts dual regulatory effects on SRARP, and although an increased AR activity suppresses SRARP transcription, a minimum level of AR activity is required to maintain baseline SRARP expression in AR+ cancer cells. Furthermore, as observed with SRARP, HSPB7 interacts with the 14-3-3 protein, presenting a shared molecular feature between SRARP and HSPB7. Of note, genome- and epigenome-wide associations of SRARP and HSPB7 with survival strongly support their tumor suppressor functions. In particular, DNA hypermethylation, lower expression, somatic mutations, and lower copy numbers of SRARP are associated with worse cancer outcome. Moreover, DNA hypermethylation and lower expression of SRARP in normal adjacent tissues predict poor survival, suggesting that SRARP inactivation is an early event in carcinogenesis. In summary, SRARP and HSPB7 are tumor suppressors that are commonly inactivated in malignancies. SRARP inactivation is an early event in carcinogenesis that is strongly associated with worse survival, presenting potential translational applications.
Collapse
Affiliation(s)
- Ali Naderi
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| |
Collapse
|
29
|
Shen Y, Sherman JW, Chen X, Wang R. Phosphorylation of CDC25C by AMP-activated protein kinase mediates a metabolic checkpoint during cell-cycle G 2/M-phase transition. J Biol Chem 2018; 293:5185-5199. [PMID: 29467227 PMCID: PMC5892595 DOI: 10.1074/jbc.ra117.001379] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/01/2018] [Indexed: 12/30/2022] Open
Abstract
From unicellular to multicellular organisms, cell-cycle progression is tightly coupled to biosynthetic and bioenergetic demands. Accumulating evidence has demonstrated the G1/S-phase transition as a key checkpoint where cells respond to their metabolic status and commit to replicating the genome. However, the mechanism underlying the coordination of metabolism and the G2/M-phase transition in mammalian cells remains unclear. Here, we show that the activation of AMP-activated protein kinase (AMPK), a highly conserved cellular energy sensor, significantly delays mitosis entry. The cell-cycle G2/M-phase transition is controlled by mitotic cyclin-dependent kinase complex (CDC2-cyclin B), which is inactivated by WEE1 family protein kinases and activated by the opposing phosphatase CDC25C. AMPK directly phosphorylates CDC25C on serine 216, a well-conserved inhibitory phosphorylation event, which has been shown to mediate DNA damage–induced G2-phase arrest. The acute induction of CDC25C or suppression of WEE1 partially restores mitosis entry in the context of AMPK activation. These findings suggest that AMPK-dependent phosphorylation of CDC25C orchestrates a metabolic checkpoint for the cell-cycle G2/M-phase transition.
Collapse
Affiliation(s)
- Yuqing Shen
- From the Center for Childhood Cancer and Blood Diseases, Hematology/Oncology and BMT, Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, Ohio 43205 and.,the Department of Microbiology and Immunology, Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - John William Sherman
- From the Center for Childhood Cancer and Blood Diseases, Hematology/Oncology and BMT, Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, Ohio 43205 and
| | - Xuyong Chen
- From the Center for Childhood Cancer and Blood Diseases, Hematology/Oncology and BMT, Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, Ohio 43205 and
| | - Ruoning Wang
- From the Center for Childhood Cancer and Blood Diseases, Hematology/Oncology and BMT, Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, Ohio 43205 and
| |
Collapse
|
30
|
Assaying kinase activity of the TPL-2/NF-κB1 p105/ABIN-2 complex using an optimal peptide substrate. Biochem J 2018; 475:329-340. [PMID: 29229763 PMCID: PMC5763956 DOI: 10.1042/bcj20170579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/08/2017] [Accepted: 12/11/2017] [Indexed: 11/17/2022]
Abstract
The MKK1/2 kinase tumour progression locus 2 (TPL-2) is critical for the production of tumour necrosis factor alpha (TNFα) in innate immune responses and a potential anti-inflammatory drug target. Several earlier pharmaceutical company screens with the isolated TPL-2 kinase domain have identified small-molecule inhibitors that specifically block TPL-2 signalling in cells, but none of these have progressed to clinical development. We have previously shown that TPL-2 catalytic activity regulates TNF production by macrophages while associated with NF-κB1 p105 and ABIN-2, independently of MKK1/2 phosphorylation via an unknown downstream substrate. In the present study, we used a positional scanning peptide library to determine the optimal substrate specificity of a complex of TPL-2, NF-κB1 p105 and ABIN-2. Using an optimal peptide substrate based on this screen and a high-throughput mass spectrometry assay to monitor kinase activity, we found that the TPL-2 complex has significantly altered sensitivities versus existing ATP-competitive TPL-2 inhibitors than the isolated TPL-2 kinase domain. These results imply that screens with the more physiologically relevant TPL-2/NF-κB1 p105/ABIN-2 complex have the potential to deliver novel TPL-2 chemical series; both ATP-competitive and allosteric inhibitors could emerge with significantly improved prospects for development as anti-inflammatory drugs.
Collapse
|
31
|
Erdős G, Szaniszló T, Pajkos M, Hajdu-Soltész B, Kiss B, Pál G, Nyitray L, Dosztányi Z. Novel linear motif filtering protocol reveals the role of the LC8 dynein light chain in the Hippo pathway. PLoS Comput Biol 2017; 13:e1005885. [PMID: 29240760 PMCID: PMC5746249 DOI: 10.1371/journal.pcbi.1005885] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/28/2017] [Accepted: 11/20/2017] [Indexed: 01/12/2023] Open
Abstract
Protein-protein interactions (PPIs) formed between short linear motifs and globular domains play important roles in many regulatory and signaling processes but are highly underrepresented in current protein-protein interaction databases. These types of interactions are usually characterized by a specific binding motif that captures the key amino acids shared among the interaction partners. However, the computational proteome-level identification of interaction partners based on the known motif is hindered by the huge number of randomly occurring matches from which biologically relevant motif hits need to be extracted. In this work, we established a novel bioinformatic filtering protocol to efficiently explore interaction network of a hub protein. We introduced a novel measure that enabled the optimization of the elements and parameter settings of the pipeline which was built from multiple sequence-based prediction methods. In addition, data collected from PPI databases and evolutionary analyses were also incorporated to further increase the biological relevance of the identified motif hits. The approach was applied to the dynein light chain LC8, a ubiquitous eukaryotic hub protein that has been suggested to be involved in motor-related functions as well as promoting the dimerization of various proteins by recognizing linear motifs in its partners. From the list of putative binding motifs collected by our protocol, several novel peptides were experimentally verified to bind LC8. Altogether 71 potential new motif instances were identified. The expanded list of LC8 binding partners revealed the evolutionary plasticity of binding partners despite the highly conserved binding interface. In addition, it also highlighted a novel, conserved function of LC8 in the upstream regulation of the Hippo signaling pathway. Beyond the LC8 system, our work also provides general guidelines that can be applied to explore the interaction network of other linear motif binding proteins or protein domains. Fine-tuning of many cellular processes relies on weak, transient protein-protein interactions. Such interactions often involve compact functional modules, called short linear motifs (SLiMs) that can bind to specific globular domains. SLiM-mediated interactions can carry out diverse molecular functions by targeting proteins to specific cellular locations, regulating the activity and binding preferences of proteins, or aiding the assembly of macromolecular complexes. The key to the function of SLiMs is their small size and highly flexible nature. At the same time, these properties make their experimental identification challenging. Consequently, only a small portion of SLiM-mediated interactions is currently known. This underlies the importance of novel computational methods that can reliably identify candidate sites involved in binding to linear motif binding domains. Here we present a novel bioinformatic approach that efficiently predicts new binding partners for SLiM-binding domains. We applied this method to the dynein light chain LC8, a protein that was already known to bind many partners in a wide range of organisms. With this method, we not only significantly expanded the interaction network of LC8, but also identified a novel function of LC8 in a highly important pathway controlling organ size in animals.
Collapse
Affiliation(s)
- Gábor Erdős
- MTA-ELTE Lendület Bioinformatics Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Tamás Szaniszló
- MTA-ELTE Lendület Bioinformatics Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Mátyás Pajkos
- MTA-ELTE Lendület Bioinformatics Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Borbála Hajdu-Soltész
- MTA-ELTE Lendület Bioinformatics Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Bence Kiss
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Gábor Pál
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - László Nyitray
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Zsuzsanna Dosztányi
- MTA-ELTE Lendület Bioinformatics Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
- * E-mail:
| |
Collapse
|
32
|
CaMKII-mediated Beclin 1 phosphorylation regulates autophagy that promotes degradation of Id and neuroblastoma cell differentiation. Nat Commun 2017; 8:1159. [PMID: 29079782 PMCID: PMC5660092 DOI: 10.1038/s41467-017-01272-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 09/02/2017] [Indexed: 01/11/2023] Open
Abstract
Autophagy is a degradative pathway that delivers cellular components to the lysosome for degradation. The role of autophagy in cell differentiation is poorly understood. Here we show that CaMKII can directly phosphorylate Beclin 1 at Ser90 to promote K63-linked ubiquitination of Beclin 1 and activation of autophagy. Meanwhile, CaMKII can also promote K63-linked ubiquitination of inhibitor of differentiation 1/2 (Id-1/2) by catalyzing phosphorylation of Id proteins and recruiting TRAF-6. Ubiquitinated Id-1/Id-2 can then bind to p62 and be transported to autolysosomes for degradation. Id degradation promotes the differentiation of neuroblastoma cells and reduces the proportion of stem-like cells. Our study proposes a mechanism by which autophagic degradation of Id proteins can regulate cell differentiation. This suggests that targeting of CaMKII and the regulation of autophagic degradation of Id may be an effective therapeutic strategy to induce cell differentiation in neuroblastoma. Neuroblastoma cell differentiation is regulated by Id proteins. Here, the authors show that CaMKII-mediated phosphorylation of Beclin 1 can activate K63-linked ubiquitination and autophagic degradation of Id proteins uncovering a role for autophagy in cell differentiation.
Collapse
|
33
|
Nygren PJ, Mehta S, Schweppe DK, Langeberg LK, Whiting JL, Weisbrod CR, Bruce JE, Zhang J, Veesler D, Scott JD. Intrinsic disorder within AKAP79 fine-tunes anchored phosphatase activity toward substrates and drug sensitivity. eLife 2017; 6:e30872. [PMID: 28967377 PMCID: PMC5653234 DOI: 10.7554/elife.30872] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 09/28/2017] [Indexed: 12/23/2022] Open
Abstract
Scaffolding the calcium/calmodulin-dependent phosphatase 2B (PP2B, calcineurin) focuses and insulates termination of local second messenger responses. Conformational flexibility in regions of intrinsic disorder within A-kinase anchoring protein 79 (AKAP79) delineates PP2B access to phosphoproteins. Structural analysis by negative-stain electron microscopy (EM) reveals an ensemble of dormant AKAP79-PP2B configurations varying in particle length from 160 to 240 Å. A short-linear interaction motif between residues 337-343 of AKAP79 is the sole PP2B-anchoring determinant sustaining these diverse topologies. Activation with Ca2+/calmodulin engages additional interactive surfaces and condenses these conformational variants into a uniform population with mean length 178 ± 17 Å. This includes a Leu-Lys-Ile-Pro sequence (residues 125-128 of AKAP79) that occupies a binding pocket on PP2B utilized by the immunosuppressive drug cyclosporin. Live-cell imaging with fluorescent activity-sensors infers that this region fine-tunes calcium responsiveness and drug sensitivity of the anchored phosphatase.
Collapse
Affiliation(s)
- Patrick J Nygren
- Department of PharmacologyHoward Hughes Medical Institute, University of WashingtonSeattleUnited States
| | - Sohum Mehta
- Department of PharmacologyUniversity of California, San DiegoSan DiegoUnited States
| | - Devin K Schweppe
- Department of Genome SciencesUniversity of WashingtonSeattleUnited States
| | - Lorene K Langeberg
- Department of PharmacologyHoward Hughes Medical Institute, University of WashingtonSeattleUnited States
| | - Jennifer L Whiting
- Department of PharmacologyHoward Hughes Medical Institute, University of WashingtonSeattleUnited States
| | - Chad R Weisbrod
- National High Magnetic Field LaboratoryFlorida State UniversityTallahasseeUnited States
| | - James E Bruce
- Department of Genome SciencesUniversity of WashingtonSeattleUnited States
| | - Jin Zhang
- Department of PharmacologyUniversity of California, San DiegoSan DiegoUnited States
| | - David Veesler
- Department of BiochemistryUniversity of WashingtonSeattleUnited States
| | - John D Scott
- Department of PharmacologyHoward Hughes Medical Institute, University of WashingtonSeattleUnited States
| |
Collapse
|
34
|
Nikolakaki E, Mylonis I, Giannakouros T. Lamin B Receptor: Interplay between Structure, Function and Localization. Cells 2017; 6:cells6030028. [PMID: 28858257 PMCID: PMC5617974 DOI: 10.3390/cells6030028] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/28/2017] [Accepted: 08/30/2017] [Indexed: 12/15/2022] Open
Abstract
Lamin B receptor (LBR) is an integral protein of the inner nuclear membrane, containing a hydrophilic N-terminal end protruding into the nucleoplasm, eight hydrophobic segments that span the membrane and a short, nucleoplasmic C-terminal tail. Two seemingly unrelated functions have been attributed to LBR. Its N-terminal domain tethers heterochromatin to the nuclear periphery, thus contributing to the shape of interphase nuclear architecture, while its transmembrane domains exhibit sterol reductase activity. Mutations within the transmembrane segments result in defects in cholesterol synthesis and are associated with diseases such as the Pelger–Huët anomaly and Greenberg skeletal dysplasia, whereas no such harmful mutations related to the anchoring properties of LBR have been reported so far. Recent evidence suggests a dynamic regulation of LBR expression levels, structural organization, localization and function, in response to various signals. The molecular mechanisms underlying this dynamic behavior have not yet been fully unraveled. Here, we provide an overview of the current knowledge of the interplay between the structure, function and localization of LBR, and hint at the interconnection of the two distinct functions of LBR.
Collapse
Affiliation(s)
- Eleni Nikolakaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotelian University, Thessaloniki 54124, Greece.
| | - Ilias Mylonis
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Panepistimiou 3 BIOPOLIS, Larissa 41500, Greece.
| | - Thomas Giannakouros
- Laboratory of Biochemistry, Department of Chemistry, Aristotelian University, Thessaloniki 54124, Greece.
| |
Collapse
|
35
|
|
36
|
Naderi A. C1orf64 is a novel androgen receptor target gene and coregulator that interacts with 14-3-3 protein in breast cancer. Oncotarget 2017; 8:57907-57933. [PMID: 28915724 PMCID: PMC5593696 DOI: 10.18632/oncotarget.17826] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/11/2017] [Indexed: 12/12/2022] Open
Abstract
This study investigated the network of genes that are co-expressed with androgen receptor (AR) to discover novel AR targets in breast cancer. Bioinformatics analysis of two datasets from breast cancer cell lines resulted in the identification of an AR-gene signature constituted of 98 genes that highly correlated with AR expression. Notably, C1orf64 showed the highest positive correlation with AR across the datasets with a correlation coefficient (CC) of 0.737. In addition, C1orf64 closely correlated with AR expression in primary and metastatic breast tumors and C1orf64 expression was relatively higher in breast tumors with a lower grade and lobular histology. Furthermore, there is a functional interplay between AR and C1orf64 in breast cancer. In this process, AR activation directly represses C1orf64 transcription and C1orf64, in turn, interacts with AR as a corepressor and negatively regulates the AR-mediated induction of prolactin-induced protein (PIP) and AR reporter activity. Moreover, the corepressor effect of C1orf64 results in a reduction of AR binding to PIP promoter. The other aspect of this interplay involves a cross-talk between AR and estrogen receptor (ER) signaling in which C1orf64 silencing intensifies the AR-mediated down-regulation of ER target gene, progesterone receptor. Therefore, the repression of C1orf64 by AR provides an underlying mechanism for the AR inhibitory effects on ER signaling. To elucidate the biochemical mechanisms of C1orf64 function, this study demonstrates that C1orf64 is a phosphothreonine protein that interacts with the chaperone protein 14-3-3. In summary, C1orf64 is a novel AR coregulator and a 14-3-3 binding partner in breast cancer.
Collapse
Affiliation(s)
- Ali Naderi
- University of Hawaii Cancer Center, Cancer Biology Program, Honolulu, Hawaii 96813, USA
| |
Collapse
|
37
|
Discovery of nitrate-CPK-NLP signalling in central nutrient-growth networks. Nature 2017; 545:311-316. [PMID: 28489820 DOI: 10.1038/nature22077] [Citation(s) in RCA: 368] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 03/16/2017] [Indexed: 12/17/2022]
Abstract
Nutrient signalling integrates and coordinates gene expression, metabolism and growth. However, its primary molecular mechanisms remain incompletely understood in plants and animals. Here we report unique Ca2+ signalling triggered by nitrate with live imaging of an ultrasensitive biosensor in Arabidopsis leaves and roots. A nitrate-sensitized and targeted functional genomic screen identifies subgroup III Ca2+-sensor protein kinases (CPKs) as master regulators that orchestrate primary nitrate responses. A chemical switch with the engineered mutant CPK10(M141G) circumvents embryo lethality and enables conditional analyses of cpk10 cpk30 cpk32 triple mutants to define comprehensive nitrate-associated regulatory and developmental programs. Nitrate-coupled CPK signalling phosphorylates conserved NIN-LIKE PROTEIN (NLP) transcription factors to specify the reprogramming of gene sets for downstream transcription factors, transporters, nitrogen assimilation, carbon/nitrogen metabolism, redox, signalling, hormones and proliferation. Conditional cpk10 cpk30 cpk32 and nlp7 mutants similarly impair nitrate-stimulated system-wide shoot growth and root establishment. The nutrient-coupled Ca2+ signalling network integrates transcriptome and cellular metabolism with shoot-root coordination and developmental plasticity in shaping organ biomass and architecture.
Collapse
|
38
|
PAIRS: Prediction of Activation/Inhibition Regulation Signaling Pathway. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2017; 2017:7024516. [PMID: 28469669 PMCID: PMC5392402 DOI: 10.1155/2017/7024516] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 03/13/2017] [Indexed: 11/18/2022]
Abstract
Uncovering the signaling architecture in protein-protein interaction (PPI) can certainly benefit the understanding of disease mechanisms and promise to facilitate the therapeutic interventions. Therefore, it is important to reveal the signaling relationship from one protein to another in terms of activation and inhibition. In this study, we propose a new measurement to characterize the regulation relationship of a PPI pair. By utilizing both Gene Ontology (GO) functional annotation and protein domain information, we developed a tool called Prediction of Activation/Inhibition Regulation Signaling Pathway (PAIRS) that takes protein interaction pairs as input and gives both known and predicted result of the human protein regulation relationship in terms of activation and inhibition. It helps to give prognostic regulation information for further signaling pathway reconstruction.
Collapse
|
39
|
Extracellular Signal-Regulated Kinases 1 and 2 Phosphorylate Gab2 To Promote a Negative-Feedback Loop That Attenuates Phosphoinositide 3-Kinase/Akt Signaling. Mol Cell Biol 2017; 37:MCB.00357-16. [PMID: 28096188 DOI: 10.1128/mcb.00357-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 12/28/2016] [Indexed: 11/20/2022] Open
Abstract
The scaffolding adapter protein Gab2 (Grb2-associated binder) promotes cell proliferation, survival, and motility by engaging several signaling pathways downstream of growth factor and cytokine receptors. In particular, Gab2 plays essential roles in mast cells, as it is required for phosphoinositide 3-kinase (PI3K) activation in response to Kit and the high-affinity IgE receptor. While the positive role of Gab2 in PI3K signaling is well documented, very little is known about the mechanisms that attenuate its function. Here we show that Gab2 becomes phosphorylated on multiple proline-directed sites upon stimulation of the Ras/extracellular signal-regulated kinase (ERK) signaling pathway. We demonstrate that ERK1 and ERK2 interact with Gab2 via a novel docking motif, which is required for subsequent Gab2 phosphorylation in response to ERK1/2 activation. We identified four ERK1/2-dependent phosphorylation sites in Gab2 that prevent the recruitment of the p85 regulatory subunit of PI3K. Using bone marrow-derived mast cells to study Gab2-dependent signaling, we found that the inhibition of ERK1/2 activity promotes Akt signaling in response to Kit and the high-affinity IgE receptor. Together, our results indicate that ERK1/2 participates in a negative-feedback loop that attenuates PI3K/Akt signaling in response to various agonists.
Collapse
|
40
|
Venerando A, Cesaro L, Pinna LA. From phosphoproteins to phosphoproteomes: a historical account. FEBS J 2017; 284:1936-1951. [PMID: 28079298 DOI: 10.1111/febs.14014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/20/2016] [Accepted: 01/10/2017] [Indexed: 12/17/2022]
Abstract
The first phosphoprotein (casein) was discovered in 1883, yet the enzyme responsible for its phosphorylation was identified only 130 years later, in 2012. In the intervening time, especially in the last decades of the 1900s, it became evident that, far from being an oddity, phosphorylation affects the majority of eukaryotic proteins during their lifespan, and that this reaction is catalysed by the members of a large family of protein kinases, susceptible to a variety of stimuli controlling nearly every aspect of life and death. The aim of this review is to present a historical account of the main steps of this spectacular revolution, which transformed our conception of a biochemical reaction originally held as a sporadic curiosity into the master mechanism governing cell regulation, and, if it is perturbed, causing cell dysregulation.
Collapse
Affiliation(s)
| | - Luca Cesaro
- Department of Biomedical Sciences, University of Padova, Italy
| | - Lorenzo A Pinna
- Department of Biomedical Sciences, University of Padova, Italy.,CNR Neuroscience Institute, Padova, Italy
| |
Collapse
|
41
|
Meents JE, Fischer MJM, McNaughton PA. Sensitization of TRPA1 by Protein Kinase A. PLoS One 2017; 12:e0170097. [PMID: 28076424 PMCID: PMC5226813 DOI: 10.1371/journal.pone.0170097] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/28/2016] [Indexed: 01/08/2023] Open
Abstract
The TRPA1 ion channel is expressed in nociceptive (pain-sensitive) somatosensory neurons and is activated by a wide variety of chemical irritants, such as acrolein in smoke or isothiocyanates in mustard. Here, we investigate the enhancement of TRPA1 function caused by inflammatory mediators, which is thought to be important in lung conditions such as asthma and COPD. Protein kinase A is an important kinase acting downstream of inflammatory mediators to cause sensitization of TRPA1. By using site-directed mutagenesis, patch-clamp electrophysiology and calcium imaging we identify four amino acid residues, S86, S317, S428, and S972, as the principal targets of PKA-mediated phosphorylation and sensitization of TRPA1.
Collapse
Affiliation(s)
- Jannis E. Meents
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
- Institute of Physiology, Uniklinik RWTH Aachen, Aachen, Germany
| | - Michael J. M. Fischer
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
- Institute of Physiology and Pathophysiology, University of Erlangen-Nuremberg, Erlangen, Germany
- Center for Physiology and Pharmacology, Medical University Wien, Wien, Austria
| | - Peter A. McNaughton
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
| |
Collapse
|
42
|
Colonne PM, Winchell CG, Graham JG, Onyilagha FI, MacDonald LJ, Doeppler HR, Storz P, Kurten RC, Beare PA, Heinzen RA, Voth DE. Vasodilator-Stimulated Phosphoprotein Activity Is Required for Coxiella burnetii Growth in Human Macrophages. PLoS Pathog 2016; 12:e1005915. [PMID: 27711191 PMCID: PMC5053435 DOI: 10.1371/journal.ppat.1005915] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 09/05/2016] [Indexed: 11/18/2022] Open
Abstract
Coxiella burnetii is an intracellular bacterial pathogen that causes human Q fever, an acute flu-like illness that can progress to chronic endocarditis and liver and bone infections. Humans are typically infected by aerosol-mediated transmission, and C. burnetii initially targets alveolar macrophages wherein the pathogen replicates in a phagolysosome-like niche known as the parasitophorous vacuole (PV). C. burnetii manipulates host cAMP-dependent protein kinase (PKA) signaling to promote PV formation, cell survival, and bacterial replication. In this study, we identified the actin regulatory protein vasodilator-stimulated phosphoprotein (VASP) as a PKA substrate that is increasingly phosphorylated at S157 and S239 during C. burnetii infection. Avirulent and virulent C. burnetii triggered increased levels of phosphorylated VASP in macrophage-like THP-1 cells and primary human alveolar macrophages, and this event required the Cα subunit of PKA. VASP phosphorylation also required bacterial protein synthesis and secretion of effector proteins via a type IV secretion system, indicating the pathogen actively triggers prolonged VASP phosphorylation. Optimal PV formation and intracellular bacterial replication required VASP activity, as siRNA-mediated depletion of VASP reduced PV size and bacterial growth. Interestingly, ectopic expression of a phospho-mimetic VASP (S239E) mutant protein prevented optimal PV formation, whereas VASP (S157E) mutant expression had no effect. VASP (S239E) expression also prevented trafficking of bead-containing phagosomes to the PV, indicating proper VASP activity is critical for heterotypic fusion events that control PV expansion in macrophages. Finally, expression of dominant negative VASP (S157A) in C. burnetii-infected cells impaired PV formation, confirming importance of the protein for proper infection. This study provides the first evidence of VASP manipulation by an intravacuolar bacterial pathogen via activation of PKA in human macrophages. Q fever, caused by the intracellular bacterial pathogen Coxiella burnetii, is an aerosol-transmitted infection that can develop into life-threatening chronic infections such as endocarditis. The pathogen preferentially grows within alveolar macrophages in a phagolysosome-like compartment termed the parasitophorous vacuole (PV). C. burnetii actively manipulates host cAMP-dependent protein kinase (PKA) signaling to promote PV formation and cell survival. Identification of bacterial effector proteins that manipulate PKA and downstream target proteins is critical to fully understand pathogen-mediated signaling circuits and develop new therapeutic strategies. Here, we found that PKA controls vasodilator-stimulated phosphoprotein (VASP) activity to promote PV formation and bacterial replication. VASP regulates actin-based motility used by a subset of intracellular bacteria for propulsion through the host cell cytosol and into bystander cells. However, C. burnetii does not use actin-based motility and replicates throughout its life cycle within a membrane bound vacuole. Thus, this study provides the first evidence of VASP manipulation by an intravacuolar bacterial pathogen. Characterization of VASP function in PV formation and identification of additional PKA substrates that promote infection will provide new insight into host-pathogen interactions during Q fever.
Collapse
Affiliation(s)
- Punsiri M. Colonne
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Caylin G. Winchell
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Joseph G. Graham
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Frances I. Onyilagha
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Laura J. MacDonald
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Heike R. Doeppler
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Richard C. Kurten
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Arkansas Children’s Hospital Research Institute, Little Rock, Arkansas, United States of America
| | - Paul A. Beare
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Robert A. Heinzen
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Daniel E. Voth
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
43
|
Sugiyama N, Ishihama Y. Large-scale profiling of protein kinases for cellular signaling studies by mass spectrometry and other techniques. J Pharm Biomed Anal 2016; 130:264-272. [DOI: 10.1016/j.jpba.2016.05.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 01/26/2023]
|
44
|
Liu W, Zhang B, He W, Wang Z, Li G, Liu J. Characterization of in vivo phosphorylation modification of differentially accumulated proteins in cotton fiber-initiation process. Acta Biochim Biophys Sin (Shanghai) 2016; 48:756-61. [PMID: 27297637 DOI: 10.1093/abbs/gmw055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 05/16/2016] [Indexed: 11/13/2022] Open
Abstract
Initiation of cotton fiber from ovule epidermal cells determines the ultimate number of fibers per cotton ovule, making it one of the restriction factors of cotton fiber yield. Previous comparative proteomics studies have collectively revealed 162 important differentially accumulated proteins (DAPs) in cotton fiber-initiation process, however, whether and how post-translational modifications, especially phosphorylation modification, regulate the expression and function of the DAPs are still unclear. Here we reported the successful identification of 17 phosphopeptides from 16 phosphoproteins out of the 162 DAPs using the integrated bioinformatics analyses of peptide mass fingerprinting data and targeted MS/MS identification method. In-depth analyses indicated that 15 of the 17 phosphorylation sites were novel phosphorylation sites first identified in plants, whereas 6 of the 16 phosphoproteins were found to be the phosphorylated isoforms of 6 proteins. The phosphorylation-regulated dynamic protein network derived from this study not only expanded our understanding of the cotton fiber-initiation process, but also provided a valuable resource for future functional studies of the phosphoproteins.
Collapse
Affiliation(s)
- Wenying Liu
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bing Zhang
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wenying He
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zi Wang
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guanqiao Li
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jinyuan Liu
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
45
|
Trost B, Maleki F, Kusalik A, Napper S. DAPPLE 2: a Tool for the Homology-Based Prediction of Post-Translational Modification Sites. J Proteome Res 2016; 15:2760-7. [PMID: 27367363 DOI: 10.1021/acs.jproteome.6b00304] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The post-translational modification of proteins is critical for regulating their function. Although many post-translational modification sites have been experimentally determined, particularly in certain model organisms, experimental knowledge of these sites is severely lacking for many species. Thus, it is important to be able to predict sites of post-translational modification in such species. Previously, we described DAPPLE, a tool that facilitates the homology-based prediction of one particular post-translational modification, phosphorylation, in an organism of interest using known phosphorylation sites from other organisms. Here, we describe DAPPLE 2, which expands and improves upon DAPPLE in three major ways. First, it predicts sites for many post-translational modifications (20 different types) using data from several sources (15 online databases). Second, it has the ability to make predictions approximately 2-7 times faster than DAPPLE depending on the database size and the organism of interest. Third, it simplifies and accelerates the process of selecting predicted sites of interest by categorizing them based on gene ontology terms, keywords, and signaling pathways. We show that DAPPLE 2 can successfully predict known human post-translational modification sites using, as input, known sites from species that are either closely (e.g., mouse) or distantly (e.g., yeast) related to humans. DAPPLE 2 can be accessed at http://saphire.usask.ca/saphire/dapple2 .
Collapse
Affiliation(s)
- Brett Trost
- Vaccine and Infectious Disease Organization, ‡Department of Computer Science, and §Department of Biochemistry, University of Saskatchewan , Saskatoon, SK S7N 5A2, Canada
| | - Farhad Maleki
- Vaccine and Infectious Disease Organization, ‡Department of Computer Science, and §Department of Biochemistry, University of Saskatchewan , Saskatoon, SK S7N 5A2, Canada
| | - Anthony Kusalik
- Vaccine and Infectious Disease Organization, ‡Department of Computer Science, and §Department of Biochemistry, University of Saskatchewan , Saskatoon, SK S7N 5A2, Canada
| | - Scott Napper
- Vaccine and Infectious Disease Organization, ‡Department of Computer Science, and §Department of Biochemistry, University of Saskatchewan , Saskatoon, SK S7N 5A2, Canada
| |
Collapse
|
46
|
Mohammad DK, Nore BF, Gustafsson MO, Mohamed AJ, Smith CIE. Protein kinase B (AKT) regulates SYK activity and shuttling through 14-3-3 and importin 7. Int J Biochem Cell Biol 2016; 78:63-74. [PMID: 27381982 DOI: 10.1016/j.biocel.2016.06.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/24/2016] [Accepted: 06/30/2016] [Indexed: 01/10/2023]
Abstract
The Protein kinase B (AKT) regulates a plethora of intracellular signaling proteins to fine-tune signaling of multiple pathways. Here, we found that following B-cell receptor (BCR)-induced tyrosine phosphorylation of the cytoplasmic tyrosine kinase SYK and the adaptor BLNK, the AKT/PKB enzyme strongly induced BLNK (>100-fold) and SYK (>100-fold) serine/threonine phosphorylation (pS/pT). Increased phosphorylation promoted 14-3-3 binding to BLNK (37-fold) and SYK (2.5-fold) in a pS/pT-concentration dependent manner. We also demonstrated that the AKT inhibitor MK2206 reduced pS/pT of both BLNK (3-fold) and SYK (2.5-fold). Notably, the AKT phosphatase, PHLPP2 maintained the activating phosphorylation of BLNK at Y84 and increased protein stability (8.5-fold). In addition, 14-3-3 was required for the regulation SYK's interaction with BLNK and attenuated SYK binding to Importin 7 (5-fold), thereby perturbing shuttling to the nucleus. Moreover, 14-3-3 proteins also sustained tyrosine phosphorylation of SYK and BLNK. Furthermore, substitution of S295 or S297 for alanine abrogated SYK's binding to Importin 7. SYK with S295A or S297A replacements showed intense pY525/526 phosphorylation, and BLNK pY84 phosphorylation correlated with the SYK pY525/526 phosphorylation level. Conversely, the corresponding mutations to aspartic acid in SYK reduced pY525/526 phosphorylation. Collectively, these and previous results suggest that AKT and 14-3-3 proteins down-regulate the activity of several BCR-associated components, including BTK, BLNK and SYK and also inhibit SYK's interaction with Importin 7.
Collapse
Affiliation(s)
- Dara K Mohammad
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska Hospital Huddinge, SE-141 86 Huddinge, Stockholm, Sweden; Department of Biology, College of Science, University of Salahaddin, Erbil, Kurdistan Region, Iraq.
| | - Beston F Nore
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska Hospital Huddinge, SE-141 86 Huddinge, Stockholm, Sweden; Department of Biochemistry, School of Medicine, University of Sulaimani, Sulaimaniyah, Kurdistan Region, Iraq
| | - Manuela O Gustafsson
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska Hospital Huddinge, SE-141 86 Huddinge, Stockholm, Sweden
| | - Abdalla J Mohamed
- Universiti Brunei Darussalam, Environmental and Life Sciences, Faculty of Science, Jalan Tungku Link, Gadong BE1410 Negara Brunei Darussalam, Brunei
| | - C I Edvard Smith
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska Hospital Huddinge, SE-141 86 Huddinge, Stockholm, Sweden.
| |
Collapse
|
47
|
Voukkalis N, Koutroumani M, Zarkadas C, Nikolakaki E, Vlassi M, Giannakouros T. SRPK1 and Akt Protein Kinases Phosphorylate the RS Domain of Lamin B Receptor with Distinct Specificity: A Combined Biochemical and In Silico Approach. PLoS One 2016; 11:e0154198. [PMID: 27105349 PMCID: PMC4841541 DOI: 10.1371/journal.pone.0154198] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/10/2016] [Indexed: 02/03/2023] Open
Abstract
Activated Akt has been previously implicated in acting on RS domain-containing proteins. However, it has been questioned whether its action is direct or it is mediated by co-existing SR kinase activity. To address this issue we studied in detail the phosphorylation of Lamin B Receptor (LBR) by Akt. Using synthetic peptides and a set of recombinant proteins expressing mutants of the LBR RS domain we now demonstrate that while all serines of the RS domain represent more or less equal phosphoacceptor sites for SRPK1, Ser80 and Ser82 are mainly targeted by Akt. 3D-modeling combined with molecular dynamics (MD) simulations show that amongst short, overlapping LBR RS-containing peptides complying with the minimum Akt recognition consensus sequence, only those bearing phosphosites either at Ser80 or Ser82 are able to fit into the active site of Akt, at least as effectively as its known substrate, GSK3-β. Combined our results provide evidence that Akt kinases directly phosphorylate an RS domain-containing protein and that both the residues N-terminal the phosphosite and at position +1 are essential for Akt specificity, with the latter substrate position being compatible with the arginine residue of RS-repeats.
Collapse
Affiliation(s)
- Nikolaos Voukkalis
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University, Thessaloniki, Greece
| | - Maria Koutroumani
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University, Thessaloniki, Greece
| | - Christoforos Zarkadas
- Institute of Biosciences & Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Eleni Nikolakaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University, Thessaloniki, Greece
| | - Metaxia Vlassi
- Institute of Biosciences & Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Thomas Giannakouros
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University, Thessaloniki, Greece
| |
Collapse
|
48
|
Engineering microdeletions and microduplications by targeting segmental duplications with CRISPR. Nat Neurosci 2016; 19:517-22. [PMID: 26829649 PMCID: PMC4903018 DOI: 10.1038/nn.4235] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 01/07/2016] [Indexed: 12/16/2022]
Abstract
Recurrent, reciprocal genomic disorders resulting from non-allelic homologous recombination (NAHR) between near-identical segmental duplications (SDs) are a major cause of human disease, often producing phenotypically distinct syndromes. The genomic architecture of flanking SDs presents a significant challenge for modeling these syndromes; however, the capability to efficiently generate reciprocal copy number variants (CNVs) that mimic NAHR would represent an invaluable modeling tool. We describe here a CRISPR/Cas9 genome engineering method, Single-guide-CRISPR/Cas-targeting-Of-Repetitive-Elements (SCORE), to model reciprocal genomic disorders and demonstrate its capabilities by generating reciprocal CNVs of 16p11.2 and 15q13.3, including alteration of one copy-equivalent of the SDs that mediate NAHR in vivo. The method is reproducible and RNAseq reliably clusters transcriptional signatures from human subjects with in vivo CNV and their corresponding in vitro models. This new approach will provide broad applicability for the study of genomic disorders and, with further development, may also permit efficient correction of these defects.
Collapse
|
49
|
Ekong R, Nellist M, Hoogeveen-Westerveld M, Wentink M, Panzer J, Sparagana S, Emmett W, Dawson NL, Malinge MC, Nabbout R, Carbonara C, Barberis M, Padovan S, Futema M, Plagnol V, Humphries SE, Migone N, Povey S. Variants Within TSC2 Exons 25 and 31 Are Very Unlikely to Cause Clinically Diagnosable Tuberous Sclerosis. Hum Mutat 2016; 37:364-70. [PMID: 26703369 PMCID: PMC4843954 DOI: 10.1002/humu.22951] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 12/07/2015] [Indexed: 11/16/2022]
Abstract
Inactivating mutations in TSC1 and TSC2 cause tuberous sclerosis complex (TSC). The 2012 international consensus meeting on TSC diagnosis and management agreed that the identification of a pathogenic TSC1 or TSC2 variant establishes a diagnosis of TSC, even in the absence of clinical signs. However, exons 25 and 31 of TSC2 are subject to alternative splicing. No variants causing clinically diagnosed TSC have been reported in these exons, raising the possibility that such variants would not cause TSC. We present truncating and in‐frame variants in exons 25 and 31 in three individuals unlikely to fulfil TSC diagnostic criteria and examine the importance of these exons in TSC using different approaches. Amino acid conservation analysis suggests significantly less conservation in these exons compared with the majority of TSC2 exons, and TSC2 expression data demonstrates that the majority of TSC2 transcripts lack exons 25 and/or 31 in many human adult tissues. In vitro assay of both exons shows that neither exon is essential for TSC complex function. Our evidence suggests that variants in TSC2 exons 25 or 31 are very unlikely to cause classical TSC, although a role for these exons in tissue/stage specific development cannot be excluded.
Collapse
Affiliation(s)
- Rosemary Ekong
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Mark Nellist
- Department of Clinical Genetics, Erasmus MC, Rotterdam, 3015CN, The Netherlands
| | | | - Marjolein Wentink
- Department of Clinical Genetics, Erasmus MC, Rotterdam, 3015CN, The Netherlands
| | - Jessica Panzer
- Department of Pediatrics, Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104-4318.,Department of Neurology Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | | | - Warren Emmett
- University College London Genetics Institute, Darwin building, Gower Street, London, WC1E 6BT, UK
| | - Natalie L Dawson
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Marie Claire Malinge
- UF de Génétique Moléculaire, Département de Biochimie Génétique PBMM, Institut de Biologie en Santé CHU Angers, 49933 Angers, Cedex 9, France
| | - Rima Nabbout
- Centre de Référence des Epilepsies Rares, Hôpital Universitaire Necker - Enfants Malades, 75015, Paris, France
| | - Caterina Carbonara
- Neonatology and Neonatal Intensive Care Unit, S. Anna Hospital, 10126, Torino, Italy
| | - Marco Barberis
- Laboratory of Molecular Genetics, Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Presidio OIRM S. Anna, 10126, Torino, Italy
| | - Sergio Padovan
- CNR-IBB UOS-TO at MBC, Molecular Biotechnology Center for University of Turin, 10126, Torino, Italy
| | - Marta Futema
- Centre for Cardiovascular Genetics, British Heart Foundation Laboratories, Institute of Cardiovascular Sciences, University College London, London, UK
| | - Vincent Plagnol
- University College London Genetics Institute, Darwin building, Gower Street, London, WC1E 6BT, UK
| | - Steve E Humphries
- Centre for Cardiovascular Genetics, British Heart Foundation Laboratories, Institute of Cardiovascular Sciences, University College London, London, UK
| | - Nicola Migone
- Department of Medical Sciences, University of Turin, 10126, Torino, Italy
| | - Sue Povey
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| |
Collapse
|
50
|
Miller CJ, Turk BE. Rapid Identification of Protein Kinase Phosphorylation Site Motifs Using Combinatorial Peptide Libraries. Methods Mol Biol 2016; 1360:203-16. [PMID: 26501912 DOI: 10.1007/978-1-4939-3073-9_15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Eukaryotic protein kinases phosphorylate substrates at serine, threonine, and tyrosine residues that fall within the context of short sequence motifs. Knowing the phosphorylation site motif for a protein kinase facilitates designing substrates for kinase assays and mapping phosphorylation sites in protein substrates. Here, we describe an arrayed peptide library protocol for rapidly determining kinase phosphorylation consensus sequences. This method uses a set of peptide mixtures in which each of the 20 amino acid residues is systematically substituted at nine positions surrounding a central site of phosphorylation. Peptide mixtures are arrayed in multiwell plates and analyzed by radiolabel assay with the kinase of interest. The preferred sequence is determined from the relative rate of phosphorylation of each peptide in the array. Consensus peptides based on these sequences typically serve as efficient and specific kinase substrates for high-throughput screening or incorporation into biosensors.
Collapse
Affiliation(s)
- Chad J Miller
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, 208066, New Haven, CT, 06520, USA
| | - Benjamin E Turk
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, 208066, New Haven, CT, 06520, USA.
| |
Collapse
|