1
|
Jeyaraman N, Jeyaraman M, Mariappan T, Muthu S, Ramasubramanian S, Sharma S, Santos GS, da Fonseca LF, Lana JF. Insights of gut-liver axis in hepatic diseases: Mechanisms, clinical implications, and therapeutic potentials. World J Gastrointest Pharmacol Ther 2024; 15:98146. [DOI: 10.4292/wjgpt.v15.i6.98146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/06/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
With the rising prevalence of chronic liver diseases worldwide, there exists a need to diversify our artillery to incorporate a plethora of diagnostic and therapeutic methods to combat this disease. Currently, the most common causes of liver disease are non-alcoholic fatty liver disease, hepatitis, and alcoholic liver disease. Some of these chronic diseases have the potential to transform into hepatocellular carcinoma with advancing fibrosis. In this review, we analyse the relationship between the gut and liver and their significance in liver disease. This two-way relationship has interesting effects on each other in liver diseases. The gut microbiota, through its metabolites, influences the metabolism in numerous ways. Careful manipulation of its composition can lead to the discovery of numerous therapeutic potentials that can be applied in the treatment of various liver diseases. Numerous cohort studies with a pan-omics approach are required to understand the association between the gut microbiome and hepatic disease progression through which we can identify effective ways to deal with this issue.
Collapse
Affiliation(s)
- Naveen Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India
- Department of Research Methods, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
| | - Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India
- Department of Research Methods, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| | - Tejaswin Mariappan
- Department of Community Medicine, Government Stanley Medical College and Hospital, Chennai 600001, Tamil Nadu, India
| | - Sathish Muthu
- Department of Research Methods, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
- Department of Orthopaedics, Government Medical College, Karur 639004, Tamil Nadu, India
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
| | - Swaminathan Ramasubramanian
- Department of Orthopaedics, Government Medical College, Omandurar Government Estate, Chennai 600002, Tamil Nadu, India
| | - Shilpa Sharma
- Department of Paediatric Surgery, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Gabriel Silva Santos
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| | - Lucas Furtado da Fonseca
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| | - José Fábio Lana
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| |
Collapse
|
2
|
Zhao F, Tie N, Kwok LY, Ma T, Wang J, Man D, Yuan X, Li H, Pang L, Shi H, Ren S, Yu Z, Shen X, Li H, Zhang H. Baseline gut microbiome as a predictive biomarker of response to probiotic adjuvant treatment in gout management. Pharmacol Res 2024; 209:107445. [PMID: 39396767 DOI: 10.1016/j.phrs.2024.107445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
Gout is characterized by dysregulation of uric acid (UA) metabolism, and the gut microbiota may serve as a regulatory target. This two-month randomized, double-blind, placebo-controlled trial aimed to investigate the additional benefits of coadministering Probio-X alongside febuxostat. A total of 160 patients with gout were randomly assigned to either the probiotic group (n = 120; Probio-X [1 ×1011 CFU/day] with febuxostat) or the placebo group (n = 40; placebo material with febuxostat). Coadministration of Probio-X significantly decreased serum UA levels and the rate of acute gout attacks (P < 0.05). Based on achieving a target sUA level (360 μmol/L) after the intervention, the probiotic group was further subdivided into probiotic-responsive (ProA; n = 54) and probiotic-unresponsive (ProB; n = 66) subgroups. Post-intervention clinical indicators, metagenomic, and metabolomic changes in the ProB and placebo groups were similar, but differed from those in the ProA group, which exhibited significantly lower levels of acute gout attack, gout impact score, serum indicators (UA, XOD, hypoxanthine, and IL-1β), and fecal gene abundances of UA-producing pathways (KEGG orthologs of K13479 and K01487; gut metabolic modules for formate conversion and lactose and galactose degradation). Additionally, the ProA group showed significantly higher levels (P < 0.05) of gut SCFAs-producing bacteria and UA-related metabolites (xanthine, hypoxanthine, bile acids) after the intervention. Finally, we established a gout metagenomic classifier to predict probiotic responsiveness based on subjects' baseline gut microbiota composition. Our results indicate that probiotic-driven therapeutic responses are highly individual, with the probiotic-responsive cohort benefitting significantly from probiotic coadministration.
Collapse
Affiliation(s)
- Feiyan Zhao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Ning Tie
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, Hohhot, Inner Mongolia, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Teng Ma
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Jing Wang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, Hohhot, Inner Mongolia, China
| | - Dafu Man
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, Hohhot, Inner Mongolia, China
| | - Xiangzheng Yuan
- Physical examination center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Huiyun Li
- Department of Rheumatology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China
| | - Lixia Pang
- Department of Rheumatology and Immunology, Hulunbuir People's Hospital, Hohhot, Inner Mongolia, China
| | - Hui Shi
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Inner Mongolia Medical University, Baotou, Inner Mongolia, China
| | - Shuiming Ren
- Department of Rheumatology and Immunology, Ordos School of Clinical Medicine, Inner Mongolia Medical University, Ordos, Inner Mongolia, China
| | - Zhongjie Yu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Xin Shen
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Hongbin Li
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, Hohhot, Inner Mongolia, China.
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China.
| |
Collapse
|
3
|
Zhang X, Li Q, Xia S, He Y, Liu Y, Yang J, Xiao X. Proton Pump Inhibitors and Oral-Gut Microbiota: From Mechanism to Clinical Significance. Biomedicines 2024; 12:2271. [PMID: 39457584 PMCID: PMC11504961 DOI: 10.3390/biomedicines12102271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
Proton pump inhibitors (PPIs) are some of the most commonly prescribed drugs worldwide, but there are increasing concerns about digestive complications linked to PPIs. Next-generation sequencing studies have suggested that PPIs can significantly affect the composition of the gut microbiota, which in turn may substantially contribute to the development of these complications. Recently, emerging evidence has suggested that the translocation of oral microbes into the gut may be the primary mechanism underlying the alterations in the gut microbiota induced by PPIs in the presence of gastric acid suppression and impaired oral-gut barrier function. Moreover, the significance of oral-gut microbial translocation in health and disease conditions has gained increasing recognition. Consequently, it is imperative to enhance our understanding of the functions of the oral-gut microbiota axis in digestive disorders associated with PPI therapies. This review aims to summarize current research findings and further elucidate the contribution of the oral-gut microbiota to the pathogenesis of PPI-related digestive diseases. We aim to provide a theoretical foundation for future therapeutic and preventive strategies targeting PPI-related digestive complications through modulation of the oral-gut microbiota.
Collapse
Affiliation(s)
- Xian Zhang
- Department of Pathology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Qing Li
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.L.); (S.X.); (Y.L.); (J.Y.)
| | - Siyuan Xia
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.L.); (S.X.); (Y.L.); (J.Y.)
| | - Yan He
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.L.); (S.X.); (Y.L.); (J.Y.)
| | - Yuqiang Liu
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.L.); (S.X.); (Y.L.); (J.Y.)
| | - Jinlin Yang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.L.); (S.X.); (Y.L.); (J.Y.)
| | - Xue Xiao
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.L.); (S.X.); (Y.L.); (J.Y.)
| |
Collapse
|
4
|
Sepehrinezhad A, Moghaddam NG, Shayan N, Sahab Negah S. Correlation of ammonia and blood laboratory parameters with hepatic encephalopathy: A systematic review and meta-analysis. PLoS One 2024; 19:e0307899. [PMID: 39226259 PMCID: PMC11371226 DOI: 10.1371/journal.pone.0307899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/12/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Emerging research suggests that hyperammonemia may enhance the probability of hepatic encephalopathy (HE), a condition associated with elevated levels of circulating ammonia in patients with cirrhosis. However, some studies indicate that blood ammonia levels may not consistently correlate with the severity of HE, highlighting the complex pathophysiology of this condition. METHODS A systematic review and meta-analysis through PubMed, Scopus, Embase, Web of Science, and Virtual Health Library were conducted to address this complexity, analyzing and comparing published data on various laboratory parameters, including circulating ammonia, blood creatinine, albumin, sodium, and inflammation markers in cirrhotic patients, both with and without HE. RESULTS This comprehensive review, which included 81 studies from five reputable databases until June 2024, revealed a significant increase in circulating ammonia levels in cirrhotic patients with HE, particularly those with overt HE. Notably, significant alterations were observed in the circulating creatinine, albumin, sodium, interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNFα) in HE patients. CONCLUSIONS These findings suggest an association between ammonia and HE and underscore the importance of considering other blood parameters such as creatinine, albumin, sodium, and pro-inflammatory cytokines when devising new treatment strategies for HE.
Collapse
Affiliation(s)
- Ali Sepehrinezhad
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Navidreza Shayan
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sajad Sahab Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| |
Collapse
|
5
|
Wu S, Li L, Xi H, Wu X, He Y, Sun X, Wu L. Bibliometrics and knowledge mapping of the pathogenesis of hepatic encephalopathy in patients with liver cirrhosis. Heliyon 2024; 10:e34330. [PMID: 39145014 PMCID: PMC11320160 DOI: 10.1016/j.heliyon.2024.e34330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 08/16/2024] Open
Abstract
Background Hepatic encephalopathy is a common and serious complication of decompensated cirrhosis. It can considerably contribute to economic burden and impaired quality of life. However, its pathogenesis remains unclear. Method In this study, we aimed to visually analyse the research status and development trends in hepatic encephalopathy pathogenesis using bibliometrics and knowledge mapping. Information regarding publications between 1978 and 2022 were obtained from the Web of Science Core Collection. CiteSpace was used to analyse and present data by year, author, institution, country, journal, reference, and keyword. Results A total of 1578 publications on hepatic encephalopathy pathogenesis in patients with cirrhosis were retrieved from Web of Science Core Collection. A gradual increasing trend in annual publications has occurred. The collaborative network analysis results suggest the United States of America, the University of London, and Bajaj, Jasmohan S as the most influential country, institution, and author, respectively, in this research field. Notably, China appeariiuis to be the most promising country. Research on 'hepatology' garners the most significant papers in the field. Combined with reference co-citation and keyword co-occurrence analyses, we found that ammonia metabolism, gut microbiota, sarcopenia, and trace elements will become future research frontiers that are likely to be explored for a considerable length of time. Conclusion Future research directions in HE pathogenesis may target modulating the ammonia metabolism, the gut microbiota, sarcopenia, and trace elements.
Collapse
Affiliation(s)
- Shiyan Wu
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
- Department of Gastroenterology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, Sichuan Province, China
| | - Lu Li
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
- Department of Gastroenterology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, Sichuan Province, China
| | - Heng Xi
- Department of Pharmacy, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, Sichuan Province, China
| | - Xiaoping Wu
- Department of Gastroenterology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, Sichuan Province, China
| | - Yumei He
- North Sichuan Medical College, Nanchong, 623300, Sichuan Province, China
| | - Xiaobin Sun
- Department of Gastroenterology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, Sichuan Province, China
| | - Liping Wu
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
- Department of Gastroenterology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, Sichuan Province, China
| |
Collapse
|
6
|
Smith ML, Wade JB, Wolstenholme J, Bajaj JS. Gut microbiome-brain-cirrhosis axis. Hepatology 2024; 80:465-485. [PMID: 36866864 PMCID: PMC10480351 DOI: 10.1097/hep.0000000000000344] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/10/2023] [Indexed: 03/04/2023]
Abstract
Cirrhosis is characterized by inflammation, degeneration, and fibrosis of liver tissue. Along with being the most common cause of liver failure and liver transplant, cirrhosis is a significant risk factor for several neuropsychiatric conditions. The most common of these is HE, which is characterized by cognitive and ataxic symptoms, resulting from the buildup of metabolic toxins with liver failure. However, cirrhosis patients also show a significantly increased risk for neurodegenerative diseases such as Alzheimer and Parkinson diseases, and for mood disorders such as anxiety and depression. In recent years, more attention has been played to communication between the ways the gut and liver communicate with each other and with the central nervous system, and the way these organs influence each other's function. This bidirectional communication has come to be known as the gut-liver-brain axis. The gut microbiome has emerged as a key mechanism affecting gut-liver, gut-brain, and brain-liver communication. Clinical studies and animal models have demonstrated the significant patterns of gut dysbiosis when cirrhosis is present, both with or without concomitant alcohol use disorder, and have provided compelling evidence that this dysbiosis also influences the cognitive and mood-related behaviors. In this review, we have summarized the pathophysiological and cognitive effects associated with cirrhosis, links to cirrhosis-associated disruption of the gut microbiome, and the current evidence from clinical and preclinical studies for the modulation of the gut microbiome as a treatment for cirrhosis and associated neuropsychiatric conditions.
Collapse
Affiliation(s)
- Maren L Smith
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - James B Wade
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jennifer Wolstenholme
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jasmohan S Bajaj
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, Virginia, USA
| |
Collapse
|
7
|
Samanta A, Sen Sarma M. Fecal microbiota transplantation in the treatment of hepatic encephalopathy: A perspective. World J Hepatol 2024; 16:678-683. [PMID: 38818298 PMCID: PMC11135264 DOI: 10.4254/wjh.v16.i5.678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/06/2024] [Accepted: 04/16/2024] [Indexed: 05/22/2024] Open
Abstract
Due to its complex pathogenesis, treatment of hepatic encephalopathy (HE) continues to be a therapeutic challenge. Of late, gut microbiome has garnered much attention for its role in the pathogenesis of various gastrointestinal and liver diseases and its potential therapeutic use. New evidence suggests that gut microbiota plays a significant role in cerebral homeostasis. Alteration in the gut microbiota has been documented in patients with HE in a number of clinical and experimental studies. Research on gut dysbiosis in patients with HE has opened newer therapeutic avenues in the form of probiotics, prebiotics and the latest fecal microbiota transplantation (FMT). Recent studies have shown that FMT is safe and could be effective in improving outcomes in advanced liver disease patients presenting with HE. However, questions over the appropriate dose, duration and route of administration for best treatment outcome remains unsettled.
Collapse
Affiliation(s)
- Arghya Samanta
- Department of Pediatric Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Moinak Sen Sarma
- Department of Pediatric Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India.
| |
Collapse
|
8
|
Wu P, Lee PC, Chang TE, Hsieh YC, Chiou JJ, Lin CH, Huang YL, Lin YT, Huo TI, Schnabl B, Lee KC, Hou MC. Fecal Carriage of Multidrug-Resistant Organisms Increases the Risk of Hepatic Encephalopathy in Cirrhotic Patients: Insights from Gut Microbiota and Metabolite Features. RESEARCH SQUARE 2024:rs.3.rs-4328129. [PMID: 38766152 PMCID: PMC11100873 DOI: 10.21203/rs.3.rs-4328129/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Background Impact of fecal colonization by multidrug-resistant organisms (MDROs) on changes in gut microbiota and associated metabolites, as well as its role in cirrhosis-associated outcomes, has not been thoroughly investigated. Methods Eighty-eight cirrhotic patients and 22 healthy volunteers were prospectively enrolled with analysis conducted on plasma metabolites, fecal MDROs, and microbiota. Patients were followed for a minimum of one year. Predictive factors for cirrhosis-associated outcomes were identified using Cox proportional hazards regression models, and risk factors for fecal MDRO carriage were assessed using logistic regression model. Correlations between microbiota and metabolic profiles were evaluated through Spearman's rank test. Results Twenty-nine (33%) cirrhotic patients exhibited MDRO carriage, with a notably higher rate of hepatic encephalopathy (HE) in MDRO carriers (20.7% vs. 3.2%, p = 0.008). Cox regression analysis identified higher serum lipopolysaccharide levels and fecal MDRO carriage as predictors for HE development. Logistic regression analysis showed that MDRO carriage is an independent risk factor for developing HE. Microbiota analysis showed a significant dissimilarity of fecal microbiota between cirrhotic patients with and without MDRO carriage (p = 0.033). Thirty-two metabolites exhibiting significantly different expression levels among healthy controls, cirrhotic patients with and without MDRO carriage were identified. Six of the metabolites showed correlation with specific bacterial taxa expression in MDRO carriers, with isoaustin showing significantly higher levels in MDRO carriers experiencing HE compared to those who did not. Conclusion Fecal MDRO carriage is associated with altered gut microbiota, metabolite modulation, and an elevated risk of HE occurrence within a year.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yi-Long Huang
- National Yang Ming Chiao Tung University - Yangming Campus
| | | | | | | | | | | |
Collapse
|
9
|
Shah YR, Ali H, Tiwari A, Guevara-Lazo D, Nombera-Aznaran N, Pinnam BSM, Gangwani MK, Gopakumar H, Sohail AH, Kanumilli S, Calderon-Martinez E, Krishnamoorthy G, Thakral N, Dahiya DS. Role of fecal microbiota transplant in management of hepatic encephalopathy: Current trends and future directions. World J Hepatol 2024; 16:17-32. [PMID: 38313244 PMCID: PMC10835490 DOI: 10.4254/wjh.v16.i1.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/02/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
Fecal microbiota transplantation (FMT) offers a potential treatment avenue for hepatic encephalopathy (HE) by leveraging beneficial bacterial displacement to restore a balanced gut microbiome. The prevalence of HE varies with liver disease severity and comorbidities. HE pathogenesis involves ammonia toxicity, gut-brain communication disruption, and inflammation. FMT aims to restore gut microbiota balance, addressing these factors. FMT's efficacy has been explored in various conditions, including HE. Studies suggest that FMT can modulate gut microbiota, reduce ammonia levels, and alleviate inflammation. FMT has shown promise in alcohol-associated, hepatitis B and C-associated, and non-alcoholic fatty liver disease. Benefits include improved liver function, cognitive function, and the slowing of disease progression. However, larger, controlled studies are needed to validate its effectiveness in these contexts. Studies have shown cognitive improvements through FMT, with potential benefits in cirrhotic patients. Notably, trials have demonstrated reduced serious adverse events and cognitive enhancements in FMT arms compared to the standard of care. Although evidence is promising, challenges remain: Limited patient numbers, varied dosages, administration routes, and donor profiles. Further large-scale, controlled trials are essential to establish standardized guidelines and ensure FMT's clinical applications and efficacy. While FMT holds potential for HE management, ongoing research is needed to address these challenges, optimize protocols, and expand its availability as a therapeutic option for diverse hepatic conditions.
Collapse
Affiliation(s)
- Yash R Shah
- Department of Internal Medicine, Trinity Health Oakland/Wayne State University, Pontiac, MI 48341, United States
| | - Hassam Ali
- Division of Gastroenterology and Hepatology, East Carolina University/Brody School of Medicine, Greenville, NC 27858, United States
| | - Angad Tiwari
- Department of Internal Medicine, Maharani Laxmi Bai Medical College, Jhansi 284001, India
| | - David Guevara-Lazo
- Faculty of Medicine, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| | | | - Bhanu Siva Mohan Pinnam
- Department of Internal Medicine, John H. Stroger Hospital of Cook County, Chicago, IL 60612, United States
| | - Manesh Kumar Gangwani
- Department of Internal Medicine, The University of Toledo, Toledo, OH 43606, United States
| | - Harishankar Gopakumar
- Department of Gastroenterology and Hepatology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, United States
| | - Amir H Sohail
- Department of Surgery, University of New Mexico, Albuquerque, NM 87106, United States
| | | | - Ernesto Calderon-Martinez
- Department of Internal Medicine, Universidad Nacional Autonoma de Mexico, Ciudad De Mexico 04510, Mexico
| | - Geetha Krishnamoorthy
- Department of Internal Medicine, Trinity Health Oakland/Wayne State University, Pontiac, MI 48341, United States
| | - Nimish Thakral
- Department of Digestive Diseases and Nutrition, University of Kentucky, Lexington, KY 40536, United States
| | - Dushyant Singh Dahiya
- Division of Gastroenterology, Hepatology & Motility, The University of Kansas School of Medicine, Kansas City, KS 66160, United States.
| |
Collapse
|
10
|
Karna R, Babich M. Fecal microbiota transplant in liver diseases: Current evidence and future directions. Clin Liver Dis (Hoboken) 2024; 23:e0154. [PMID: 38841199 PMCID: PMC11152867 DOI: 10.1097/cld.0000000000000154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 02/02/2024] [Indexed: 06/07/2024] Open
Affiliation(s)
- Rahul Karna
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Michael Babich
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
11
|
Cho NA, Strayer K, Dobson B, McDonald B. Pathogenesis and therapeutic opportunities of gut microbiome dysbiosis in critical illness. Gut Microbes 2024; 16:2351478. [PMID: 38780485 PMCID: PMC11123462 DOI: 10.1080/19490976.2024.2351478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
For many years, it has been hypothesized that pathological changes to the gut microbiome in critical illness is a driver of infections, organ dysfunction, and other adverse outcomes in the intensive care unit (ICU). The advent of contemporary microbiome methodologies and multi-omics tools have allowed researchers to test this hypothesis by dissecting host-microbe interactions in the gut to better define its contribution to critical illness pathogenesis. Observational studies of patients in ICUs have revealed that gut microbial communities are profoundly altered in critical illness, characterized by markedly reduced alpha diversity, loss of commensal taxa, and expansion of potential pathogens. These key features of ICU gut dysbiosis have been associated with adverse outcomes including life-threatening hospital-acquired (nosocomial) infections. Current research strives to define cellular and molecular mechanisms connecting gut dysbiosis with infections and other outcomes, and to identify opportunities for therapeutic modulation of host-microbe interactions. This review synthesizes evidence from studies of critically ill patients that have informed our understanding of intestinal dysbiosis in the ICU, mechanisms linking dysbiosis to infections and other adverse outcomes, as well as clinical trials of microbiota-modifying therapies. Additionally, we discuss novel avenues for precision microbial therapeutics to combat nosocomial infections and other life-threatening complications of critical illness.
Collapse
Affiliation(s)
- Nicole A Cho
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kathryn Strayer
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Breenna Dobson
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Braedon McDonald
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
12
|
Ilie OD, Duta R, Nita IB, Dobrin I, Gurzu IL, Girleanu I, Huiban L, Muzica C, Ciobica A, Popescu R, Cianga P, Stanciu C, Cimpoesu D, Trifan A. A Comprehensive Overview of the Past, Current, and Future Randomized Controlled Trials in Hepatic Encephalopathy. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2143. [PMID: 38138246 PMCID: PMC10744451 DOI: 10.3390/medicina59122143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Background: Hepatic encephalopathy (HE) caused by cirrhosis has severe consequences on an individual's lifespan, leading to long-term liver complications and potentially life-threatening outcomes. Despite recent interest in this condition, the effectiveness of secondary prophylaxis involving rixafimin, lactulose, or L-ornithine L-aspartate (LOLA) may be hindered by the unique microbial profiles each patient possesses. Methods: Thus, in this manuscript, we aimed to search, identify, and gather all randomized controlled trials (RCTs) published between 2000-2023 (November) in four major academic databases such as PubMed, ISI Web of Science, Scopus, and ScienceDirect by using a controlled terminology and web strings that reunite six main keywords. We complementarily retrieved data on the ongoing RCTs. Results: Regardless of the relatively high number of results displayed (n = 75), 46.66% (n = 35) were initially deemed eligible after the first evaluation phase after removing duplicates, n = 40 (53.34%). At the second assessment stage, we eliminated 11.42% (n = 4) studies, of which n = 22 finally met the eligibility criteria to be included in the main body of the manuscript. In terms of RCTs, otherwise found in distinct stages of development, n = 3 target FMT and n = 1 probiotics. Conclusions: Although we benefit from the necessary information and technology to design novel strategies for microbiota, only probiotics and synbiotics have been extensively studied in the last decade compared to FMT.
Collapse
Affiliation(s)
- Ovidiu-Dumitru Ilie
- Gastroenterology Group, CENEMED Platform for Interdisciplinary Research, University of Medicine and Pharmacy “Grigore T. Popa”, University Street No. 16, 700115 Iasi, Romania
| | - Raluca Duta
- Gastroenterology Group, CENEMED Platform for Interdisciplinary Research, University of Medicine and Pharmacy “Grigore T. Popa”, University Street No. 16, 700115 Iasi, Romania
| | - Ilinca-Bianca Nita
- Department of Medicine III, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street No. 16, 700115 Iasi, Romania
| | - Irina Dobrin
- Department of Medicine III, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street No. 16, 700115 Iasi, Romania
- Institute of Psychiatry “Socola”, Bucium Street No. 36, 700282 Iasi, Romania
| | - Irina-Luciana Gurzu
- Department of Preventive Medicine and Interdisciplinarity, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street No. 16, 700115 Iasi, Romania
| | - Irina Girleanu
- Department of Gastroenterology, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street No. 16, 700115 Iasi, Romania
- Institute of Gastroenterology and Hepatology, “St. Spiridon” County Emergency Clinical Hospital, Independence Avenue No. 1, 700111 Iasi, Romania
| | - Laura Huiban
- Department of Gastroenterology, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street No. 16, 700115 Iasi, Romania
- Institute of Gastroenterology and Hepatology, “St. Spiridon” County Emergency Clinical Hospital, Independence Avenue No. 1, 700111 Iasi, Romania
| | - Cristina Muzica
- Department of Gastroenterology, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street No. 16, 700115 Iasi, Romania
- Institute of Gastroenterology and Hepatology, “St. Spiridon” County Emergency Clinical Hospital, Independence Avenue No. 1, 700111 Iasi, Romania
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue No. 20A, 700505 Iasi, Romania
- Centre of Biomedical Research, Romanian Academy, Carol I Avenue No. 8, 700506 Iasi, Romania
- Academy of Romanian Scientists, Splaiul Independentei No. 54, Sector 5, 050094 Bucharest, Romania
- Preclinical Department, “Apollonia” University, Păcurari Street No. 11, 700511 Iasi, Romania
| | - Roxana Popescu
- Department of Medical Genetics, University of Medicine and Pharmacy “Grigore T. Popa”, University Street No. 16, 700115 Iasi, Romania
- Department of Medical Genetics, “Saint Mary” Emergency Children’s Hospital, Vasile Lupu Street No. 62, 700309 Iasi, Romania
| | - Petru Cianga
- Department of Immunology, University of Medicine and Pharmacy “Grigore T. Popa”, University Street No. 16, 700115 Iasi, Romania
| | - Carol Stanciu
- Centre of Biomedical Research, Romanian Academy, Carol I Avenue No. 8, 700506 Iasi, Romania
| | - Diana Cimpoesu
- Gastroenterology Group, CENEMED Platform for Interdisciplinary Research, University of Medicine and Pharmacy “Grigore T. Popa”, University Street No. 16, 700115 Iasi, Romania
- Department of Emergency Medicine, “St. Spiridon” County Emergency Clinical Hospital, Independence Avenue No. 1, 700111 Iasi, Romania
| | - Anca Trifan
- Department of Gastroenterology, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street No. 16, 700115 Iasi, Romania
- Institute of Gastroenterology and Hepatology, “St. Spiridon” County Emergency Clinical Hospital, Independence Avenue No. 1, 700111 Iasi, Romania
- Centre of Biomedical Research, Romanian Academy, Carol I Avenue No. 8, 700506 Iasi, Romania
| |
Collapse
|
13
|
Jinato T, Sikaroodi M, Fagan A, Sterling RK, Lee H, Puri P, Davis BC, Fuchs M, Gavis E, Gillevet PM, Bajaj JS. Alterations in gut virome are associated with cognitive function and minimal hepatic encephalopathy cross-sectionally and longitudinally in cirrhosis. Gut Microbes 2023; 15:2288168. [PMID: 38010871 PMCID: PMC10730154 DOI: 10.1080/19490976.2023.2288168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023] Open
Abstract
Cognitive dysfunction due to minimal hepatic encephalopathy (MHE) adversely impacts patients with cirrhosis and more precise therapies are needed. Gut-brain axis changes are therapeutic targets, but prior studies have largely focused on bacterial changes. Our aim was to determine linkages between individual cognitive testing results and bacteria with the virome using a cross-sectional and longitudinal approach. We included cross-sectional (n = 138) and longitudinal analyses (n = 36) of patients with cirrhosis tested using three cognitive modalities, which were psychometric hepatic encephalopathy score (PHES), inhibitory control test (ICT), Stroop, and all three. Stool metagenomics with virome and bacteriome were analyzed studied cross-sectionally and in a subset followed for development/reversal of MHE repeated at 6 months (longitudinally only using PHES). Cross-sectional: We found no significant changes in α/β diversity in viruses or bacteria regardless of cognitive testing. Cognitively impaired patients were more likely to have higher relative abundance of bacteriophages linked with Streptococcus, Faecalibacterium, and Lactobacillus, which were distinct based on modality. These were also linked with cognition on correlation networks. Longitudinally, 27 patients remained stable while 9 changed their MHE status. Similar changes in phages that are linked with Streptococcus, Faecalibacterium, and Lactobacillus were seen. These phages can influence ammonia, lactate, and short-chain fatty acid generation, which are neuro-active. In conclusion, we found linkages between bacteriophages and cognitive function likely due to impact on bacteria that produce neuroactive metabolites cross-sectionally and longitudinally. These findings could help explore bacteriophages as options to influence treatment for MHE in cirrhosis.
Collapse
Affiliation(s)
- Thananya Jinato
- Microbiome Analysis Center, George Mason University, Manassas, VA, USA
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Andrew Fagan
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, VA, USA
| | - Richard K Sterling
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, VA, USA
| | - Hannah Lee
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, VA, USA
| | - Puneet Puri
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, VA, USA
| | - Brian C Davis
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, VA, USA
| | - Michael Fuchs
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, VA, USA
| | - Edith Gavis
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, VA, USA
| | | | - Jasmohan S Bajaj
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, VA, USA
| |
Collapse
|
14
|
Gilbert MC, Setayesh T, Wan YJY. The contributions of bacteria metabolites to the development of hepatic encephalopathy. LIVER RESEARCH 2023; 7:296-303. [PMID: 38221945 PMCID: PMC10786625 DOI: 10.1016/j.livres.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Over 20% of mortality during acute liver failure is associated with the development of hepatic encephalopathy (HE). Thus, HE is a complication of acute liver failure with a broad spectrum of neuropsychiatric abnormalities ranging from subclinical alterations to coma. HE is caused by the diversion of portal blood into systemic circulation through portosystemic collateral vessels. Thus, the brain is exposed to intestinal-derived toxic substances. Moreover, the strategies to prevent advancement and improve the prognosis of such a liver-brain disease rely on intestinal microbial modulation. This is supported by the findings that antibiotics such as rifaximin and laxative lactulose can alleviate hepatic cirrhosis and/or prevent HE. Together, the significance of the gut-liver-brain axis in human health warrants attention. This review paper focuses on the roles of bacteria metabolites, mainly ammonia and bile acids (BAs) as well as BA receptors in HE. The literature search conducted for this review included searches for phrases such as BA receptors, BAs, ammonia, farnesoid X receptor (FXR), G protein-coupled bile acid receptor 1 (GPBAR1 or TGR5), sphingosine-1-phosphate receptor 2 (S1PR2), and cirrhosis in conjunction with the phrase hepatic encephalopathy and portosystemic encephalopathy. PubMed, as well as Google Scholar, was the search engines used to find relevant publications.
Collapse
Affiliation(s)
- Miranda Claire Gilbert
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA
| | - Tahereh Setayesh
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA
| | - Yu-Jui Yvonne Wan
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
15
|
Také A, Uojima H, Sakaguchi Y, Gotoh K, Satoh T, Hidaka H, Horio K, Mizokami M, Hayashi S, Kusano C. Impact of liver fibrosis on the relative abundance of a urease-positive Streptococcus salivarius group from saliva in patients with chronic liver disease. Hepatol Res 2023; 53:998-1007. [PMID: 37279155 DOI: 10.1111/hepr.13930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/08/2023]
Abstract
AIM We performed genomic analysis to study the relative abundance of a urease-positive Streptococcus salivarius group isolated from the saliva of patients with chronic liver disease. METHODS Male and female patients with chronic liver disease aged over 20 years were included. First, we assessed the frequency and type of the S. salivarius group isolated from oral saliva using molecular biology techniques based on 16S rRNA and dephospho-coenzyme A kinase gene sequencing. Next, we assessed the correlation between the urease positivity rate in the S. salivarius group isolated from oral saliva and liver fibrosis based on chronic liver disease. Urease-positive strains were identified by the urease test using urea broth (Difco, Franklin Lakes, NJ, USA). Liver fibrosis was evaluated by the liver stiffness measurement value based on magnetic resonance elastography. RESULTS A total of 45 patients identified using the multiplex polymerase chain reaction for the 16S rRNA gene were tested using the multiplex polymerase chain reaction for the dephospho-coenzyme A kinase gene. Confirming the strains detected in each of the 45 patients, urease-positive S. salivarius was detected in 28 patients (62%), urease-negative S. salivarius in 25 patients (56%), and urease-positive Streptococcus vestibularis in 12 patients (27%). There was no patient with urease-negative S. vestibularis. The urease-positive rate of the S. salivarius group in the cirrhosis and non-cirrhosis groups were 82.2% and 39.2%, respectively. The liver cirrhosis group had a higher urease positivity rate than the non-cirrhotic group (p < 0.001). CONCLUSIONS Liver fibrosis influences the frequency of a urease-positive S. salivarius group isolated from oral saliva.
Collapse
Affiliation(s)
- Akira Také
- Department of Microbiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Haruki Uojima
- Department of Gastroenterology, Internal Medicine, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
- Department of Genome Medical Sciences Project, Research Institute, National Center for Global Health and Medicine, Ichikawa, Chiba, Japan
| | - Yoshihiko Sakaguchi
- Department of Microbiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan
| | - Kazuyoshi Gotoh
- Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takashi Satoh
- Division of Hematology, Kitasato University School of Allied Health Sciences, Sagamihara, Kanagawa, Japan
| | - Hisashi Hidaka
- Department of Gastroenterology, Internal Medicine, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Kazue Horio
- Department of Gastroenterology, Internal Medicine, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Masashi Mizokami
- Department of Genome Medical Sciences Project, Research Institute, National Center for Global Health and Medicine, Ichikawa, Chiba, Japan
| | - Shunji Hayashi
- Department of Microbiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Chika Kusano
- Department of Gastroenterology, Internal Medicine, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| |
Collapse
|
16
|
Li M, Feng K, Chen J, Liu T, Wu Y, Mi J, Wang Y. Chinese Herbal Extracts Mitigate Ammonia Generation in the Cecum of Laying Hens: An In Vitro Study. Animals (Basel) 2023; 13:2969. [PMID: 37760368 PMCID: PMC10525658 DOI: 10.3390/ani13182969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
The objectives of the study were to screen one or several Chinese herbal extracts with good ammonia emission reduction effects using an in vitro gas production study. The study consisted of a control (without Chinese herbal extract), and 11 experimental groups with added cinnamon extract (CE), Osmanthus extract (OE), tangerine peel extract (TPE), dandelion extract (DE), Coptis chinensis extract (CCE), honeysuckle extract (HE), Pulsatilla root extract (PRE), yucca extract (YE), licorice extract (LE), Ginkgo biloba extract (GBE), or astragalus extract (AE). The results showed that HE, PRE, YE, LE, GBE, and AE significantly reduced ammonia production (p ≤ 0.05). The most significant ammonia inhibition was achieved via AE, resulting in a 26.76% reduction. In all treatments, Chinese herbal extracts had no significant effect on pH, conductivity, or uric acid, urea, and nitrate-nitrogen concentrations (p > 0.05). However, AE significantly reduced urease activity and the relative activity of uricase (p ≤ 0.05). AE significantly increased the relative abundance of Bacteroides and decreased the relative abundance of Clostridium, Desulfovibrio, and Prevotell (p ≤ 0.05). Astragalus extract inhibited ammonia emission from laying hens by changing the gut microbial community structure, reducing the relative abundance of ammonia-producing bacteria, and reducing microorganisms' uricase and urease activities.
Collapse
Affiliation(s)
- Miao Li
- Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (K.F.); (J.C.); (T.L.); (Y.W.); (J.M.)
| | - Kunxian Feng
- Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (K.F.); (J.C.); (T.L.); (Y.W.); (J.M.)
| | - Jingyi Chen
- Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (K.F.); (J.C.); (T.L.); (Y.W.); (J.M.)
| | - Tianxu Liu
- Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (K.F.); (J.C.); (T.L.); (Y.W.); (J.M.)
| | - Yinbao Wu
- Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (K.F.); (J.C.); (T.L.); (Y.W.); (J.M.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiandui Mi
- Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (K.F.); (J.C.); (T.L.); (Y.W.); (J.M.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yan Wang
- Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (K.F.); (J.C.); (T.L.); (Y.W.); (J.M.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
17
|
Yu F, Zhu Y, Li N, Fu HF, Jiang Z, Zhang XY, Zeng L, Hu XY. Gastro‑oesophageal reflux disease in liver cirrhosis: Possible pathogenesis and clinical intervention (Review). Exp Ther Med 2023; 26:414. [PMID: 37559931 PMCID: PMC10407984 DOI: 10.3892/etm.2023.12113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/31/2023] [Indexed: 08/11/2023] Open
Abstract
Oesophageal variceal bleeding is a common complication of decompensated liver cirrhosis (LC). Some studies have reported that reflux oesophagitis (RE) is a risk factor for upper gastrointestinal bleeding, and greatly impacts the quality of life. However, the frequency and mechanism of gastro-oesophageal reflux disease (GERD) in LC remain unclear. The present review explored the possible pathogenesis, and analysed the advantages and disadvantages of the interventional measures and the need for implementation of these measures. By combining the comprehensive terms associated with LC, GERD and RE, EMBASE, Medline/PubMed and the Cochrane Library were systematically searched. The underlying pathological mechanism of GERD in LC was summarized: Transient relaxation of the lower oesophageal sphincter, delayed gastric emptying, increased intra-abdominal pressure, increased intragastric pressure and excessive nitric oxide production destroyed the 'anti-reflux barrier', causing gastric content reflux. Proton pump inhibitors (PPIs) have been widely used empirically to lower the risk of oesophageal venous rupture and bleeding. However, long-term use of acid inhibitors in patients with LC may induce complications, such as spontaneous bacterial peritonitis. The metabolic half-life of PPIs is prolonged in patients with severe liver function impairment. Therefore, the indications for using acid inhibitors lack clarity. However, after endoscopic oesophageal variceal eradication, additional benefits may be gained from the long-term use of PPIs in small doses.
Collapse
Affiliation(s)
- Fei Yu
- Department of Infectious Diseases, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| | - Yue Zhu
- Department of Infectious Diseases, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| | - Na Li
- Department of Infectious Diseases, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| | - Hong-Fang Fu
- Department of Infectious Diseases, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| | - Zhi Jiang
- Department of Infectious Diseases, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| | - Xiao-Yi Zhang
- Department of Infectious Diseases, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| | - Liang Zeng
- Department of Infectious Diseases, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| | - Xiao-Yu Hu
- Department of Infectious Diseases, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
18
|
Badal BD, Bajaj JS. Hepatic Encephalopathy in Acute-on-Chronic Liver Failure. Clin Liver Dis 2023; 27:691-702. [PMID: 37380292 DOI: 10.1016/j.cld.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Acute-on-chronic liver failure (ACLF) is characterized by the presence of chronic liver disease and extrahepatic organ failure and is associated with a high rate of short-term mortality. International societies have sought to define the criteria for ACLF and differ on definitions. Encephalopathy is an important organ failure in ACLF cases and is included as a marker of ACLF across society definitions. Both brain failure and ACLF commonly occur in the presence of a triggering event and in the setting of the large amount of inflammation that ensues. The presence of encephalopathy as a part of ACLF not only increases the chances of mortality but also provides unique challenges in that the patient will be limited in conversations around major decisions such as need for advanced level of care, liver transplant, or even end-of-life decisions. Many decisions need to be made quickly and occur in parallel in the care of patients with encephalopathy and ACLF and include stabilizing the patient, identifying precipitants or alternative diagnoses, and medical management. Infections has emerged as a major trigger for both ACLF and encephalopathy, and special attention should be given to identifying and treating infections as they occur.
Collapse
Affiliation(s)
- Bryan D Badal
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, 1201 Broad Rock Boulevard, Richmond, VA, USA
| | - Jasmohan S Bajaj
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, 1201 Broad Rock Boulevard, Richmond, VA, USA.
| |
Collapse
|
19
|
Di Vincenzo F, Nicoletti A, Negri M, Vitale F, Zileri Dal Verme L, Gasbarrini A, Ponziani FR, Cerrito L. Gut Microbiota and Antibiotic Treatments for the Main Non-Oncologic Hepato-Biliary-Pancreatic Disorders. Antibiotics (Basel) 2023; 12:1068. [PMID: 37370387 DOI: 10.3390/antibiotics12061068] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
The gut microbiota is a pivotal actor in the maintenance of the balance in the complex interconnections of hepato-biliary-pancreatic system. It has both metabolic and immunologic functions, with an influence on the homeostasis of the whole organism and on the pathogenesis of a wide range of diseases, from non-neoplastic ones to tumorigenesis. The continuous bidirectional metabolic communication between gut and hepato-pancreatic district, through bile ducts and portal vein, leads to a continuous interaction with translocated bacteria and their products. Chronic liver disease and pancreatic disorders can lead to reduced intestinal motility, decreased bile acid synthesis and intestinal immune dysfunction, determining a compositional and functional imbalance in gut microbiota (dysbiosis), with potentially harmful consequences on the host's health. The modulation of the gut microbiota by antibiotics represents a pioneering challenge with striking future therapeutic opportunities, even in non-infectious diseases. In this setting, antibiotics are aimed at harmonizing gut microbial function and, sometimes, composition. A more targeted and specific approach should be the goal to pursue in the future, tailoring the treatment according to the type of microbiota modulation to be achieved and using combined strategies.
Collapse
Affiliation(s)
- Federica Di Vincenzo
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Alberto Nicoletti
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Marcantonio Negri
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Federica Vitale
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Lorenzo Zileri Dal Verme
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Lucia Cerrito
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
20
|
Wang Q, Chen C, Zuo S, Cao K, Li H. Integrative analysis of the gut microbiota and faecal and serum short-chain fatty acids and tryptophan metabolites in patients with cirrhosis and hepatic encephalopathy. J Transl Med 2023; 21:395. [PMID: 37330571 PMCID: PMC10276405 DOI: 10.1186/s12967-023-04262-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/09/2023] [Indexed: 06/19/2023] Open
Abstract
OBJECTIVE The purpose of this study was to describe the changes in the gut microbiome of patients with cirrhosis and hepatic encephalopathy (HE), as well as quantify the variations in short-chain fatty acid (SCFA) and tryptophan metabolite levels in serum and faeces. METHODS Fresh faeces and serum were collected from 20 healthy volunteers (NC group), 30 cirrhosis patients (Cir group), and 30 HE patients (HE group). Then, 16S rRNA sequencing and metabolite measurements were performed using the faeces. Gas chromatography‒mass spectrometry and ultrahigh-performance liquid chromatography-tandem mass spectrometry were used to measure SCFA and tryptophan levels, respectively. The results were analysed by SIMCA16.0.2 software. Differences in species were identified using MetaStat and t tests. The correlations among the levels of gut microbes and metabolites and clinical parameters were determined using Spearman correlation analysis. RESULTS Patients with cirrhosis and HE had lower microbial species richness and diversity in faeces than healthy volunteers; these patients also had altered β-diversity. Serum valeric acid levels were significantly higher in the HE group than in the Cir group. Serum SCFA levels did not differ between the Cir and NC groups. Serum melatonin and 5-HTOL levels were significantly higher in the HE group than in the Cir group. The Cir and NC groups had significant differences in the levels of eight serum tryptophan metabolites. Furthermore, the levels of faecal SCFAs did not differ between the HE and Cir groups. Faecal IAA-Ala levels were significantly lower in the HE group than in the Cir group. There were significant differences in the levels of 6 faecal SCFAs and 7 faecal tryptophan metabolites between the Cir and NC groups. Certain gut microbes were associated with serum and faecal metabolites, and some metabolites were associated with certain clinical parameters. CONCLUSION Reduced microbial species richness and diversity were observed in patients with HE and cirrhosis. In both serum and faeces, the levels of different SCFAs and tryptophan metabolites showed varying patterns of change. In HE patients, the levels of some serum tryptophan metabolites, and not SCFAs, were correlated with liver function and systemic inflammation. Systemic inflammation in patients with cirrhosis was correlated with faecal acetic acid levels. In summary, this study identified metabolites important for HE and cirrhosis.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Chengxin Chen
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Shi Zuo
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Kun Cao
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People's Republic of China.
| | - Haiyang Li
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People's Republic of China.
| |
Collapse
|
21
|
Shahbazi A, Sepehrinezhad A, Vahdani E, Jamali R, Ghasempour M, Massoudian S, Sahab Negah S, Larsen FS. Gut Dysbiosis and Blood-Brain Barrier Alteration in Hepatic Encephalopathy: From Gut to Brain. Biomedicines 2023; 11:1272. [PMID: 37238943 PMCID: PMC10215854 DOI: 10.3390/biomedicines11051272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 05/28/2023] Open
Abstract
A common neuropsychiatric complication of advanced liver disease, hepatic encephalopathy (HE), impacts the quality of life and length of hospital stays. There is new evidence that gut microbiota plays a significant role in brain development and cerebral homeostasis. Microbiota metabolites are providing a new avenue of therapeutic options for several neurological-related disorders. For instance, the gut microbiota composition and blood-brain barrier (BBB) integrity are altered in HE in a variety of clinical and experimental studies. Furthermore, probiotics, prebiotics, antibiotics, and fecal microbiota transplantation have been shown to positively affect BBB integrity in disease models that are potentially extendable to HE by targeting gut microbiota. However, the mechanisms that underlie microbiota dysbiosis and its effects on the BBB are still unclear in HE. To this end, the aim of this review was to summarize the clinical and experimental evidence of gut dysbiosis and BBB disruption in HE and a possible mechanism.
Collapse
Affiliation(s)
- Ali Shahbazi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran; (A.S.); (S.M.)
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran;
| | - Ali Sepehrinezhad
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran; (A.S.); (S.M.)
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran;
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad 9919191778, Iran
| | - Edris Vahdani
- Department of Microbiology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 4815733971, Iran;
| | - Raika Jamali
- Research Development Center, Sina Hospital, Tehran University of Medical Sciences, Tehran 1417653761, Iran
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran 1417653761, Iran
| | - Monireh Ghasempour
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran;
| | - Shirin Massoudian
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran; (A.S.); (S.M.)
| | - Sajad Sahab Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad 9919191778, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9919191778, Iran
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 9815733169, Iran
| | - Fin Stolze Larsen
- Department of Intestinal Failure and Liver Diseases, Rigshospitalet, Inge Lehmanns Vej 5, 2100 Copenhagen, Denmark
| |
Collapse
|
22
|
Hayakawa Y, Tamaki N, Nakanishi H, Kurosaki M, Tanaka Y, Inada K, Ishido S, Kirino S, Yamashita K, Nobusawa T, Matsumoto H, Kakegawa T, Higuchi M, Takaura K, Tanaka S, Maeyashiki C, Kaneko S, Yasui Y, Takahashi Y, Tsuchiya K, Okamoto R, Izumi N. Add-on Therapeutic Effects of Rifaximin on Treatment-resistant Hepatic Encephalopathy. Intern Med 2023; 62:973-978. [PMID: 36070941 PMCID: PMC10125807 DOI: 10.2169/internalmedicine.0212-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Objective Rifaximin is used to treat hepatic encephalopathy. However, whether or not rifaximin and lactulose combination therapy can enhance the treatment outcomes and reduce the hospitalization rate of patients with hepatic encephalopathy that are resistant to lactulose has yet to be determined. The present study investigated the hospitalization rate before and after rifaximin add-on therapy in patients resistant to lactulose. Methods A total of 36 patients who were resistant to lactulose with add-on rifaximin therapy were enrolled. Patients who were hospitalized and/or did not achieve normalization of ammonia levels under lactulose administration were defined as treatment-resistant. The primary outcome was the change in hospitalization rate due to hepatic encephalopathy at 24 weeks before and after rifaximin administration. Results Before rifaximin administration, 15 (41.6%) patients were hospitalized due to hepatic encephalopathy. After rifaximin administration, 8 (22.2%) patients were hospitalized due to hepatic encephalopathy. The hospitalization rates were significantly reduced after rifaximin administration (p=0.02). The median (interquartile range) ammonia levels upon rifaximin administration (baseline) and 8, 12, and 24 weeks after rifaximin administration were 124 (24-310) μg/dL, 78 (15-192) μg/dL, 67 (21-233) μg/dL, and 77 (28-200) μg/dL, respectively. Furthermore, the ammonia levels were significantly reduced by rifaximin add-on therapy (p=0.005, p=0.01, and p=0.01). Conclusion The addition of rifaximin to lactulose treatment in treatment-resistant patients decreases the hospitalization rate among patients with hepatic encephalopathy and may be used as an add-on treatment.
Collapse
Affiliation(s)
- Yuka Hayakawa
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Japan
| | - Nobuharu Tamaki
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
| | - Hiroyuki Nakanishi
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Japan
| | - Masayuki Kurosaki
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Japan
| | - Yuki Tanaka
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
| | - Kento Inada
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Japan
| | - Shun Ishido
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Japan
| | - Sakura Kirino
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Japan
| | - Koji Yamashita
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
| | - Tsubasa Nobusawa
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Japan
| | - Hiroaki Matsumoto
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Japan
| | - Tatsuya Kakegawa
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
| | - Mayu Higuchi
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
| | - Kenta Takaura
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
| | - Shohei Tanaka
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Japan
| | - Chiaki Maeyashiki
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Japan
| | - Shun Kaneko
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Japan
| | - Yutaka Yasui
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
| | - Yuka Takahashi
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
| | - Kaoru Tsuchiya
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Japan
| | - Namiki Izumi
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
| |
Collapse
|
23
|
De Oliveira FL, Salgaço MK, de Oliveira MT, Mesa V, Sartoratto A, Peregrino AM, Ramos WS, Sivieri K. Exploring the Potential of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 as Promising Psychobiotics Using SHIME. Nutrients 2023; 15:nu15061521. [PMID: 36986251 PMCID: PMC10056475 DOI: 10.3390/nu15061521] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Psychobiotics are probiotics that have the characteristics of modulating central nervous system (CNS) functions or reconciled actions by the gut-brain axis (GBA) through neural, humoral and metabolic pathways to improve gastrointestinal activity as well as anxiolytic and even antidepressant abilities. The aim of this work was to evaluate the effect of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 on the gut microbiota of mildly anxious adults using SHIME®. The protocol included a one-week control period and two weeks of treatment with L. helveticus R0052 and B. longum R0175. Ammonia (NH4+), short chain fatty acids (SCFAs), gamma-aminobutyric acid (GABA), cytokines and microbiota composition were determined. Probiotic strains decreased significantly throughout the gastric phase. The highest survival rates were exhibited by L. helveticus R0052 (81.58%; 77.22%) after the gastric and intestinal phase when compared to B. longum (68.80%; 64.64%). At the genus level, a taxonomic assignment performed in the ascending colon in the SHIME® model showed that probiotics (7 and 14 days) significantly (p < 0.005) increased the abundance of Lactobacillus and Olsenella and significantly decreased Lachnospira and Escheria-Shigella. The probiotic treatment (7 and 14 days) decreased (p < 0.001) NH4+ production when compared to the control period. For SCFAs, we observed after probiotic treatment (14 days) an increase (p < 0.001) in acetic acid production and total SCFAs when compared to the control period. Probiotic treatment increased (p < 0.001) the secretion of anti-inflammatory (IL-6 and IL-10) and decreased (p < 0.001) pro-inflammatory cytokines (TNF-alpha) when compared to the control period. The gut-brain axis plays an important role in the gut microbiota, producing SCFAs and GABA, stimulating the production of anti-anxiety homeostasis. The signature of the microbiota in anxiety disorders provides a promising direction for the prevention of mental illness and opens a new perspective for using the psychobiotic as a main actor of therapeutic targets.
Collapse
Affiliation(s)
- Fellipe Lopes De Oliveira
- Graduate Program in Food, Nutrition, and Food Engineering, Campus Araraquara, São Paulo State University (UNESP), Araraquara 14800-060, SP, Brazil
| | - Mateus Kawata Salgaço
- Graduate Program in Food, Nutrition, and Food Engineering, Campus Araraquara, São Paulo State University (UNESP), Araraquara 14800-060, SP, Brazil
| | | | - Victoria Mesa
- Université Paris Cité, INSERM, UMR-S 1139 (3PHM), Faculty of Pharmacy, F-75006 Paris, France
- Food and Human Nutrition Research Group, School of Nutrition and Dietetics, Universidad de Antioquia (UdeA), Medellín 050010, Antioquia, Colombia
| | | | | | - Williams Santos Ramos
- APSEN Farmacêutica, Department of Medical Affairs, Santo Amaro 04753-001, SP, Brazil
| | - Katia Sivieri
- Graduate Program in Food, Nutrition, and Food Engineering, Campus Araraquara, São Paulo State University (UNESP), Araraquara 14800-060, SP, Brazil
- University of Araraquara-UNIARA, Araraquara 14801-320, SP, Brazil
| |
Collapse
|
24
|
Abstract
Hepatic encephalopathy (HE) is brain dysfunction secondary to liver insufficiency or portosystemic shunting. HE is a major burden on patients and caregivers, impairs quality of life and is associated with higher mortality. Overt HE is a clinical diagnosis while Covert HE, needs specialized diagnostic strategies. Mainstay of treatment of HE is nonabsorbable disaccharides such as lactulose as well as rifaximin; however, investigational therapies are discussed in this review. Better tools are needed to prognosticate which patients will go on to develop HE but microbiome and metabolomic-driven strategies are promising. Here we review methods to prevent the HE development and admissions.
Collapse
|
25
|
Luo M, Xin RJ, Hu FR, Yao L, Hu SJ, Bai FH. Role of gut microbiota in the pathogenesis and therapeutics of minimal hepatic encephalopathy via the gut-liver-brain axis. World J Gastroenterol 2023; 29:144-156. [PMID: 36683714 PMCID: PMC9850958 DOI: 10.3748/wjg.v29.i1.144] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/23/2022] [Accepted: 12/14/2022] [Indexed: 01/04/2023] Open
Abstract
Minimal hepatic encephalopathy (MHE) is a frequent neurological and psychiatric complication of liver cirrhosis. The precise pathogenesis of MHE is complicated and has yet to be fully elucidated. Studies in cirrhotic patients and experimental animals with MHE have indicated that gut microbiota dysbiosis induces systemic inflammation, hyperammonemia, and endotoxemia, subsequently leading to neuroinflammation in the brain via the gut-liver-brain axis. Related mechanisms initiated by gut microbiota dysbiosis have significant roles in MHE pathogenesis. The currently available therapeutic strategies for MHE in clinical practice, including lactulose, rifaximin, probiotics, synbiotics, and fecal microbiota transplantation, exert their effects mainly by modulating gut microbiota dysbiosis. Microbiome therapies for MHE have shown promised efficacy and safety; however, several controversies and challenges regarding their clinical use deserve to be intensively discussed. We have summarized the latest research findings concerning the roles of gut microbiota dysbiosis in the pathogenesis of MHE via the gut-liver-brain axis as well as the potential mechanisms by which microbiome therapies regulate gut microbiota dysbiosis in MHE patients.
Collapse
Affiliation(s)
- Ming Luo
- Department of Gastroenterology, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan 750021, Ningxia Hui Autonomous Region, China
| | - Rui-Juan Xin
- Department of Gastroenterology, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan 750021, Ningxia Hui Autonomous Region, China
| | - Fang-Rui Hu
- Department of Gastroenterology, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan 750021, Ningxia Hui Autonomous Region, China
| | - Li Yao
- Department of Gastroenterology, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan 750021, Ningxia Hui Autonomous Region, China
| | - Sheng-Juan Hu
- Department of Gastroenterology, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan 750021, Ningxia Hui Autonomous Region, China
| | - Fei-Hu Bai
- Department of Gastroenterology, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan 750021, Ningxia Hui Autonomous Region, China
| |
Collapse
|
26
|
Huang L, Yu Q, Peng H, Zhen Z. Alterations of gut microbiome and effects of probiotic therapy in patients with liver cirrhosis: A systematic review and meta-analysis. Medicine (Baltimore) 2022; 101:e32335. [PMID: 36595801 PMCID: PMC9794299 DOI: 10.1097/md.0000000000032335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Alterations in the gut microbiome usually occur in liver cirrhosis. Gut microbiome dysregulation damages the liver and accelerates the development of liver fibrosis. Probiotic treatment has gradually become a major method for improving the prognosis of liver cirrhosis and reducing its complications. However, alterations in the gut microbiome have revealed different results, and the therapeutic effects of various probiotics are inconsistent. METHODS We searched the PubMed, Medline, EMBASE, ScienceDirect, and Cochrane databases up to August 2022 and conducted a systematic review and meta-analysis of 17 relevant studies. RESULTS The counts of Enterobacter (standardized mean difference [SMD] -1.79, 95% confidence interval [CI]: -3.08 to -0.49) and Enterococcus (SMD -1.41, 95% CI: -2.26 to -0.55) increased significantly in patients with cirrhosis, while the counts of Lactobacillus (SMD 0.63, 95% CI: 0.12-1.15) and Bifidobacterium (SMD 0.44, 95% CI: 0.12-0.77) decreased significantly. Blood ammonia (weighted mean difference [WMD] 14.61, 95% CI: 7.84-21.37) and the incidence of hepatic encephalopathy (WMD 0.40, 95% CI: 0.27-0.61) were significantly decreased in the probiotic group. As for mortality (MD 0.75, 95% CI: 0.48-1.16) and the incidence of spontaneous bacterial peritonitis (WMD -0.02, 95% CI: -0.07 to 0.03), no significant differences were found between the probiotic and placebo groups. CONCLUSION In summary, the gut microbiome in cirrhosis manifests as decreased counts of Lactobacillus and Bifidobacterium and increased counts of Enterobacter and Enterococcus. Targeted supplementation of probiotics in cirrhosis, including Lactobacillus combined with Bifidobacterium or Bifidobacterium alone, can reduce blood ammonia and the incidence of hepatic encephalopathy. The effect is similar to that of lactulose, but it has no obvious effect on mortality and spontaneous bacterial peritonitis.
Collapse
Affiliation(s)
- Long Huang
- Department of No. 1 Surgery, The First Hospital Affiliated to Anhui University of Traditional Chinese Medicine, Hefei, Anhui Province, China
- * Correspondence: Long Huang, The First Hospital Affiliated to Anhui University of Traditional Chinese Medicine, No. 117 Meishan Road, Hefei, Anhui Province 230031, China (e-mail: )
| | - Qingsheng Yu
- Department of No. 1 Surgery, The First Hospital Affiliated to Anhui University of Traditional Chinese Medicine, Hefei, Anhui Province, China
| | - Hui Peng
- Department of No. 1 Surgery, The First Hospital Affiliated to Anhui University of Traditional Chinese Medicine, Hefei, Anhui Province, China
| | - Zhou Zhen
- Department of Surgery, The Second Hospital Affiliated to Anhui University of Traditional Chinese Medicine, Hefei, Anhui Province, China
| |
Collapse
|
27
|
Sharpton SR, Oh TG, Madamba E, Wang C, Yu RT, Atkins AR, Huan T, Downes M, Evans RM, Loomba R. Gut metagenome-derived signature predicts hepatic decompensation and mortality in NAFLD-related cirrhosis. Aliment Pharmacol Ther 2022; 56:1475-1485. [PMID: 36164267 PMCID: PMC9746351 DOI: 10.1111/apt.17236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/14/2022] [Accepted: 09/15/2022] [Indexed: 01/30/2023]
Abstract
BACKGROUND There are limited data on the diagnostic accuracy of gut microbial signatures for predicting hepatic decompensation in patients with cirrhosis. AIMS To determine whether a stool metagenome-derived signature accurately detects hepatic decompensation and mortality risk in cirrhosis secondary to non-alcoholic fatty liver disease (NAFLD) METHODS: Shotgun metagenomic sequencing was performed on faecal samples collected at study entry from a prospective cohort of adults with NAFLD-related cirrhosis. A Random Forest machine learning algorithm was utilised to identify a metagenomic signature of decompensated cirrhosis (defined by ascites, hepatic encephalopathy or variceal haemorrhage) and subsequently validated in an external cohort. A Cox proportional hazards regression model was used to examine predictors of all-cause mortality. RESULTS In all, 25 adults with NAFLD-related cirrhosis (training cohort) were included. Among the 16 participants with decompensated cirrhosis, 33% had ascites, 56% had hepatic encephalopathy and 22% had experienced a variceal haemorrhage (not mutually exclusive). We identified a stool metagenomic signature comprising 13 discriminatory species that reliably distinguished decompensated NAFLD-related cirrhosis (diagnostic accuracy, 0.97, 95% confidence interval [CI] 0.96-0.99). Diagnostic accuracy of the 13-species signature remained high after adjustment for lactulose (area under the curve [AUC] 0.99) and rifaximin use (AUC 0.93). The discriminative ability of 13-species metagenomic signature was robust in an independent test cohort (AUC 0.95, 95% CI 0.81-1.00). The 13-species metagenomic signature (hazard ratio [HR] 1.54, 95% CI 1.10-2.15, p = 0.01) was a stronger predictor of mortality than the Model for End-Stage Liver Disease score (HR 1.25, 95% CI 1.03-1.53, p = 0.03). CONCLUSIONS This study provides evidence for a gut metagenome-derived signature with high diagnostic accuracy for hepatic decompensation that predicts risk of mortality in NAFLD-related cirrhosis.
Collapse
Affiliation(s)
- Suzanne R. Sharpton
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, California, USA
- NAFLD Research Center, Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Tae Gyu Oh
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Egbert Madamba
- NAFLD Research Center, Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Chenjingyi Wang
- Faculty of Science, Department of Chemistry, University of British Columbia, Vancouver, Canada
| | - Ruth T. Yu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Annette R. Atkins
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Tao Huan
- Faculty of Science, Department of Chemistry, University of British Columbia, Vancouver, Canada
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Ronald M. Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Rohit Loomba
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, California, USA
- NAFLD Research Center, Department of Medicine, University of California San Diego, La Jolla, California, USA
- Division of Epidemiology, Department of Family Medicine and Public Health, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
28
|
Won SM, Oh KK, Gupta H, Ganesan R, Sharma SP, Jeong JJ, Yoon SJ, Jeong MK, Min BH, Hyun JY, Park HJ, Eom JA, Lee SB, Cha MG, Kwon GH, Choi MR, Kim DJ, Suk KT. The Link between Gut Microbiota and Hepatic Encephalopathy. Int J Mol Sci 2022; 23:ijms23168999. [PMID: 36012266 PMCID: PMC9408988 DOI: 10.3390/ijms23168999] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Hepatic encephalopathy (HE) is a serious complication of cirrhosis that causes neuropsychiatric problems, such as cognitive dysfunction and movement disorders. The link between the microbiota and the host plays a key role in the pathogenesis of HE. The link between the gut microbiome and disease can be positively utilized not only in the diagnosis area of HE but also in the treatment area. Probiotics and prebiotics aim to resolve gut dysbiosis and increase beneficial microbial taxa, while fecal microbiota transplantation aims to address gut dysbiosis through transplantation (FMT) of the gut microbiome from healthy donors. Antibiotics, such as rifaximin, aim to improve cognitive function and hyperammonemia by targeting harmful taxa. Current treatment regimens for HE have achieved some success in treatment by targeting the gut microbiota, however, are still accompanied by limitations and problems. A focused approach should be placed on the establishment of personalized trial designs and therapies for the improvement of future care. This narrative review identifies factors negatively influencing the gut–hepatic–brain axis leading to HE in cirrhosis and explores their relationship with the gut microbiome. We also focused on the evaluation of reported clinical studies on the management and improvement of HE patients with a particular focus on microbiome-targeted therapy.
Collapse
|
29
|
Association Between Proton Pump Inhibitor Therapy and Spontaneous Bacterial Peritonitis Occurrence in Cirrhotic Patients: A Clinical Review. Curr Med Sci 2022; 42:673-680. [DOI: 10.1007/s11596-022-2607-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 01/20/2022] [Indexed: 11/26/2022]
|
30
|
Bloom PP, Donlan J, Torres Soto M, Daidone M, Hohmann E, Chung RT. Fecal microbiota transplant improves cognition in hepatic encephalopathy and its effect varies by donor and recipient. Hepatol Commun 2022; 6:2079-2089. [PMID: 35384391 PMCID: PMC9315114 DOI: 10.1002/hep4.1950] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/23/2022] [Accepted: 03/12/2022] [Indexed: 01/25/2023] Open
Abstract
Early data suggest fecal microbiota transplant (FMT) may treat hepatic encephalopathy (HE). Optimal FMT donor and recipient characteristics are unknown. We assessed the safety and efficacy of FMT in patients with prior overt HE, comparing five FMT donors. We performed an open-label study of FMT capsules, administered 5 times over 3 weeks. Primary outcomes were change in psychometric HE score (PHES) and serious adverse events (SAEs). Serial stool samples underwent shallow shotgun metagenomic sequencing. Ten patients completed FMT administration and 6-month follow-up. Model for End-Stage Liver Disease (MELD) score did not change after FMT (14 versus 14, p = 0.51). Thirteen minor adverse events and three serious adverse events (two unrelated to FMT) were reported. One SAE was extended-spectrum beta-lactamase Escherichia coli bacteremia. The PHES improved after three doses of FMT (+2.1, p < 0.05), after five doses of FMT (+2.9, p = 0.007), and 4 weeks after the fifth dose of FMT (+3.1, p = 0.02). Mean change in the PHES ranged from -1 to +6 by donor. Two taxa were identified by random forest analysis and confirmed by linear regression to predict the PHES- Bifidobacterium adolescentis (adjusted R2 = 0.27) and B. angulatum (adjusted R2 = 0.25)-both short-chain fatty acid (SCFA) producers. Patients who responded to FMT had higher levels of Bifidobacterium as well as other known beneficial taxa at baseline and throughout the study. The FMT donor with poorest cognitive outcomes in recipients had the lowest fecal SCFA levels. Conclusion: FMT capsules improved cognition in HE, with an effect varying by donor and recipient factors (NCT03420482).
Collapse
Affiliation(s)
- Patricia P. Bloom
- Division of GastroenterologyUniversity of MichiganAnn ArborMichiganUSA
| | - John Donlan
- Harvard Medical SchoolBostonMassachusettsUSA
| | | | - Michael Daidone
- Division of GastroenterologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Elizabeth Hohmann
- Division of Infectious DiseaseMassachusetts General HospitalBostonMassachusettsUSA
| | - Raymond T. Chung
- Division of GastroenterologyMassachusetts General HospitalBostonMassachusettsUSA
| |
Collapse
|
31
|
Luo M, Hu FR, Xin RJ, Yao L, Hu SJ, Bai FH. Altered gut microbiota is associated with sleep disturbances in patients with minimal hepatic encephalopathy caused by hepatitis B-related liver cirrhosis. Expert Rev Gastroenterol Hepatol 2022; 16:797-807. [PMID: 35942803 DOI: 10.1080/17474124.2022.2111300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Sleep disturbances are prevalent in patients with minimal hepatic encephalopathy (MHE). This study aimed to evaluate the association between sleep disturbances and altered gut microbiota in patients with MHE caused by hepatitis B-related liver cirrhosis. RESEARCH DESIGN AND METHODS Ninety-eight and 45 patients with MHE were included in exploration and validation cohorts, respectively. Sleep disturbances were assessed using the Chinese version of the Pittsburgh Sleep Quality Index (PSQI) questionnaire. Microbiota in fecal samples were analyzed via amplicon sequencing of bacterial 16S ribosomal RNA genes. RESULTS The gut microbiomes of MHE patients with sleep disturbances were characterized by lower bacterial diversity and distinct bacterial composition. Relative abundances of Streptococcus salivarius and Veillonella were independent predictors of sleep disturbances in MHE patients and well-distinguished MHE patients with and without sleep disturbances in both the exploration and validation cohorts. Moreover, the relative abundances of S. salivarius were positively correlated with plasma ammonia levels, and functional modules associated with protein digestion and absorption and lipopolysaccharide biosynthesis were enriched in the microbiomes of MHE patients with sleep disturbances. CONCLUSIONS Both S. salivarius and Veillonella were associated with sleep disturbances in patients with MHE caused by hepatitis B-related liver cirrhosis.
Collapse
Affiliation(s)
- Ming Luo
- Department of Gastroenterology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Fang-Rui Hu
- Department of Gastroenterology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Rui-Juan Xin
- Department of Gastroenterology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Li Yao
- Department of Gastroenterology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Sheng-Juan Hu
- Department of Gastroenterology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Fei-Hu Bai
- Department of Gastroenterology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia Hui Autonomous Region, China
| |
Collapse
|
32
|
Yukawa-Muto Y, Kamiya T, Fujii H, Mori H, Toyoda A, Sato I, Konishi Y, Hirayama A, Hara E, Fukuda S, Kawada N, Ohtani N. Distinct responsiveness to rifaximin in patients with hepatic encephalopathy depends on functional gut microbial species. Hepatol Commun 2022; 6:2090-2104. [PMID: 35429147 PMCID: PMC9315133 DOI: 10.1002/hep4.1954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/09/2022] [Accepted: 03/19/2022] [Indexed: 12/11/2022] Open
Abstract
Hepatic encephalopathy (HE) is the neuropsychiatric complication of liver cirrhosis (LC). The influence of gut microbiota on HE pathogenesis has been suggested but not precisely elucidated. Here, we investigate how the gut microbial profile changed in patients with HE to clarify the functional gut microbial species associated with HE. We focused on their responses to rifaximin (RFX), a nonabsorbable antibiotic used in HE therapy. Feces samples were collected from patients with decompensated LC (all HE), patients with compensated LC, and healthy controls, and fecal gut microbial profiles were compared using 16S ribosomal RNA gene amplicon and metagenomic sequencing. The linear discriminant analysis effect size was used to identify specific species. Urease-positive Streptococcus salivarius, which can produce ammonia, was identified as the most significantly abundant gut microbiota in the HE group, and its ability to elevate the levels of blood ammonia as well as brain glutamine was experimentally verified in mice. Urease-negative Ruminococcus gnavus was also identified as a significantly abundant species in patients with RFX-nonresponsive HE after RFX administration. Interestingly, R. gnavus enhanced urease activity of recombinant urease itself, implying that R. gnavus could amplify ammonia production of surrounding urease-positive microbiota. Furthermore, the sensitivity of S. salivarius and R. gnavus to RFX depended on conjugated secondary bile acid levels, suggesting a therapeutic potential of the combined use of secondary bile acid levels with RFX for enhancing the efficacy of RFX. This study identified specific gut bacterial species abundant in patients with HE and verified their functions linked to HE pathophysiology. Targeting these bacteria could be a potentially effective strategy to treat HE.
Collapse
Affiliation(s)
- Yoshimi Yukawa-Muto
- Department of PathophysiologyGraduate School of MedicineOsaka Metropolitan University (formerly, Osaka City University)OsakaJapan.,Department of HepatologyGraduate School of MedicineOsaka Metropolitan University (formerly, Osaka City University)OsakaJapan
| | - Tomonori Kamiya
- Department of PathophysiologyGraduate School of MedicineOsaka Metropolitan University (formerly, Osaka City University)OsakaJapan
| | - Hideki Fujii
- Department of Premier Preventive MedicineGraduate School of MedicineOsaka City UniversityOsakaJapan
| | - Hiroshi Mori
- 26359Advanced Genomics CenterNational Institute of GeneticsMishimaJapan
| | - Atsushi Toyoda
- 26359Advanced Genomics CenterNational Institute of GeneticsMishimaJapan
| | - Ikuya Sato
- Medical Affairs DepartmentASKA Pharmaceutical Co., Ltd.TokyoJapan
| | - Yusuke Konishi
- Research Institute for Microbial DiseasesOsaka UniversitySuitaJapan
| | | | - Eiji Hara
- Research Institute for Microbial DiseasesOsaka UniversitySuitaJapan.,Immunology Frontier Research CenterOsaka UniversitySuitaJapan.,Center for Infectious Disease Education and ResearchOsaka UniversitySuitaJapan
| | - Shinji Fukuda
- Institute for Advanced BiosciencesKeio UniversityTsuruokaJapan.,Gut Environmental Design GroupKanagawa Institute of Industrial Science and TechnologyKawasakiJapan.,Transborder Medical Research CenterUniversity of TsukubaTsukubaJapan
| | - Norifumi Kawada
- Department of HepatologyGraduate School of MedicineOsaka Metropolitan University (formerly, Osaka City University)OsakaJapan
| | - Naoko Ohtani
- Department of PathophysiologyGraduate School of MedicineOsaka Metropolitan University (formerly, Osaka City University)OsakaJapan.,AMED-CRESTJapan Agency for Medical Research and DevelopmentTokyoJapan
| |
Collapse
|
33
|
Wang L, Cao ZM, Zhang LL, Li JM, Lv WL. The Role of Gut Microbiota in Some Liver Diseases: From an Immunological Perspective. Front Immunol 2022; 13:923599. [PMID: 35911738 PMCID: PMC9326173 DOI: 10.3389/fimmu.2022.923599] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota is a microecosystem composed of various microorganisms. It plays an important role in human metabolism, and its metabolites affect different tissues and organs. Intestinal flora maintains the intestinal mucosal barrier and interacts with the immune system. The liver is closely linked to the intestine by the gut-liver axis. As the first organ that comes into contact with blood from the intestine, the liver will be deeply influenced by the gut microbiota and its metabolites, and the intestinal leakage and the imbalance of the flora are the trigger of the pathological reaction of the liver. In this paper, we discuss the role of gut microbiota and its metabolites in the pathogenesis and development of autoimmune liver diseases((including autoimmune hepatitis, primary biliary cirrhosis, primary sclerosing cholangitis), metabolic liver disease such as non-alcoholic fatty liver disease, cirrhosisits and its complications, and liver cancer from the perspective of immune mechanism. And the recent progress in the treatment of these diseases was reviewed from the perspective of gut microbiota.
Collapse
Affiliation(s)
- Li Wang
- *Correspondence: Li Wang, ; Zheng-Min Cao, ; Juan-mei Li, ; Wen-liang Lv,
| | - Zheng-Min Cao
- *Correspondence: Li Wang, ; Zheng-Min Cao, ; Juan-mei Li, ; Wen-liang Lv,
| | | | - Juan-mei Li
- Department of Infection, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wen-liang Lv
- Department of Infection, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
34
|
Wang T, Rong X, Zhao C. Circadian Rhythms Coordinated With Gut Microbiota Partially Account for Individual Differences in Hepatitis B-Related Cirrhosis. Front Cell Infect Microbiol 2022; 12:936815. [PMID: 35846774 PMCID: PMC9283756 DOI: 10.3389/fcimb.2022.936815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/09/2022] [Indexed: 12/12/2022] Open
Abstract
Cirrhosis is the end stage of chronic liver diseases like chronic hepatitis B. In China, hepatitis B accounts for around 60% of cases of cirrhosis. So far, clinical and laboratory indexes for the early diagnosis of cirrhosis are far from satisfactory. Nevertheless, there haven’t been specific drugs for cirrhosis. Thus, it is quite necessary to uncover more specific factors which play their roles in cirrhosis and figure out the possible therapeutic targets. Among emerging factors taking part in the initiation and progression of cirrhosis, gut microbiota might be a pivot of systemic factors like metabolism and immune and different organs like gut and liver. Discovery of detailed molecular mechanism in gut microbiota and gut liver axis leads to a more promising prospect of developing new drugs intervening in these pathways. Time-based medication regimen has been proofed to be helpful in hormonotherapy, especially in the use of glucocorticoid. Thus, circadian rhythms, though haven’t been strongly linked to hepatitis B and its complications, are still pivotal to various pathophysiological progresses. Gut microbiota as a potential effective factor of circadian rhythms has also received increasing attentions. Here, our work, restricting cirrhosis to the post-hepatitis B one, is aimed to summarize how circadian rhythms and hepatitis B-related cirrhosis can intersect via gut microbiota, and to throw new insights on the development of new and time-based therapies for hepatitis B-related cirrhosis and other cirrhosis.
Collapse
Affiliation(s)
- Tongyao Wang
- Ministry of Education (MOE)/National Health Commission (NHC)/Chinese Academy of Medical Science (CAMS) Key Lab of Medical Molecular Virology, School of Basic Medical Sciences & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xingyu Rong
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Chao Zhao
- Ministry of Education (MOE)/National Health Commission (NHC)/Chinese Academy of Medical Science (CAMS) Key Lab of Medical Molecular Virology, School of Basic Medical Sciences & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai, China
- *Correspondence: Chao Zhao,
| |
Collapse
|
35
|
Li Z, Zhou J, Liang H, Ye L, Lan L, Lu F, Wang Q, Lei T, Yang X, Cui P, Huang J. Differences in Alpha Diversity of Gut Microbiota in Neurological Diseases. Front Neurosci 2022; 16:879318. [PMID: 35837118 PMCID: PMC9274120 DOI: 10.3389/fnins.2022.879318] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background Neurological diseases are difficult to diagnose in time, and there is currently a lack of effective predictive methods. Previous studies have indicated that a variety of neurological diseases cause changes in the gut microbiota. Alpha diversity is a major indicator to describe the diversity of the gut microbiota. At present, the relationship between neurological diseases and the alpha diversity of the gut microbiota remains unclear. Methods We performed a systematic literature search of Pubmed and Bioproject databases up to January 2021. Six indices were used to measure alpha diversity, including community richness (observed species, Chao1 and ACE), community diversity (Shannon, Simpson), and phylogenetic diversity (PD). Random-effects meta-analyses on the standardized mean difference (SMD) were carried out on the alpha diversity indices. Subgroup analyses were performed to explore the sources of interstudy heterogeneity. Meta-analysis was performed on articles by matching the age, sex, and body mass index (BMI) of the disease group with the control group. Meanwhile, subgroup analysis was performed to control the variability of the sequencing region, platform, geographical region, instrument, and diseases. The area under the curve (AUC) value of the receiver operating characteristic (ROC) curve was calculated to assess the prediction effectiveness of the microbial alpha diversity indices. Results We conducted a meta-analysis of 24 published studies on 16S rRNA gene amplified sequencing of the gut microbiota and neurological diseases from the Pubmed and Bioproject database (patients, n = 1,469; controls, n = 1,289). The pooled estimate demonstrated that there was no significant difference in the alpha diversity between patients and controls (P < 0.05). Alpha diversity decreased only in Parkinson's disease patients, while it increased in anorexia nervosa patients compared to controls. After adjusting for age, sex, BMI, and geographical region, none of the alpha diversity was associated with neurological diseases. In terms of Illumina HiSeq 2000 and the V3-V5 sequencing region, the results showed that alpha diversity increased significantly in comparison with the controls, while decreased in Illumina HiSeq 2500. ROC curves suggested that alpha diversity could be used as a biomarker to predict the AD (Simpson, AUC= 0.769, P = 0.0001), MS (observed species, AUC= 0.737, P = 0.001), schizophrenia (Chao1, AUC = 0.739, P = 0.002). Conclusions Our review summarized the relationship between alpha diversity of the gut microbiota and neurological diseases. The alpha diversity of gut microbiota could be a promising predictor for AD, schizophrenia, and MS, but not for all neurological diseases.
Collapse
Affiliation(s)
- Zhuoxin Li
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, China
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Jie Zhou
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, China
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, China
- Life Science Institute, Guangxi Medical University, Nanning, China
| | - Li Ye
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, China
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Liuyan Lan
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, China
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Fang Lu
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, China
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Qing Wang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, China
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Ting Lei
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, China
- Geriatrics Digestion Department of Internal Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiping Yang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, China
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Ping Cui
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, China
- Life Science Institute, Guangxi Medical University, Nanning, China
- Ping Cui
| | - Jiegang Huang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, China
- School of Public Health, Guangxi Medical University, Nanning, China
- *Correspondence: Jiegang Huang
| |
Collapse
|
36
|
Analysis of Gut Microbiome Structure Based on GMPR+Spectrum. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12125895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The gut microbiome is related to many major human diseases, and it is of great significance to study the structure of the gut microbiome under different conditions. Multivariate statistics or pattern recognition methods were often used to identify different structural patterns in gut microbiome data. However, these methods have some limitations. Minimal hepatic encephalopathy (MHE) datasets were taken as an example. Due to the physical lack or insufficient sampling of the gut microbiome in the sequencing process, the microbiome data contains many zeros. Therefore, the geometric mean of pairwise ratios (GMPR) was used to normalize gut microbiome data, then Spectrum was used to analyze the structure of the gut microbiome, and lastly, the structure of core microflora was compared with Network analysis. GMPR calculates the Intraclass correlation coefficient (ICC), whose reproducibility was significantly better than other normalization methods. In addition, running-time, Normalized Mutual Information (NMI), Davies-Boulding Index (DBI), and Calinski-Harabasz index (CH) of GMPR+Spectrum were far superior to other clustering algorithms such as M3C, iClusterPlus. GMPR+Spectrum can not only perform better but also effectively identify the structural differences of intestinal microbiota in different patients and excavate the unique critical bacteria such as Akkermansia, and Lactobacillus in MHE patients, which may provide a new reference for the study of the gut microbiome in disease.
Collapse
|
37
|
Manzoor R, Ahmed W, Afify N, Memon M, Yasin M, Memon H, Rustom M, Al Akeel M, Alhajri N. Trust Your Gut: The Association of Gut Microbiota and Liver Disease. Microorganisms 2022; 10:1045. [PMID: 35630487 PMCID: PMC9146349 DOI: 10.3390/microorganisms10051045] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/08/2022] [Accepted: 05/16/2022] [Indexed: 02/07/2023] Open
Abstract
The gut microbiota composition is important for nutrient metabolism, mucosal barrier function, immunomodulation, and defense against pathogens. Alterations in the gut microbiome can disturb the gut ecosystem. These changes may lead to the loss of beneficial bacteria or an increase in potentially pathogenic bacteria. Furthermore, these have been shown to contribute to the pathophysiology of gastrointestinal and extra-intestinal diseases. Pathologies of the liver, such as non-alcoholic liver disease, alcoholic liver disease, cirrhosis, hepatocellular carcinoma, autoimmune hepatitis, viral hepatitis, and primary sclerosing cholangitis have all been linked to changes in the gut microbiome composition. There is substantial evidence that links gut dysbiosis to the progression and complications of these pathologies. This review article aimed to describe the changes seen in the gut microbiome in liver diseases and the association between gut dysbiosis and liver disease, and finally, explore treatment options that may improve gut dysbiosis in patients with liver disease.
Collapse
Affiliation(s)
- Ridda Manzoor
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates; (R.M.); (W.A.); (N.A.); (M.M.); (M.Y.); (H.M.); (M.R.)
| | - Weshah Ahmed
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates; (R.M.); (W.A.); (N.A.); (M.M.); (M.Y.); (H.M.); (M.R.)
| | - Nariman Afify
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates; (R.M.); (W.A.); (N.A.); (M.M.); (M.Y.); (H.M.); (M.R.)
| | - Mashal Memon
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates; (R.M.); (W.A.); (N.A.); (M.M.); (M.Y.); (H.M.); (M.R.)
| | - Maryam Yasin
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates; (R.M.); (W.A.); (N.A.); (M.M.); (M.Y.); (H.M.); (M.R.)
| | - Hamda Memon
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates; (R.M.); (W.A.); (N.A.); (M.M.); (M.Y.); (H.M.); (M.R.)
| | - Mohammad Rustom
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates; (R.M.); (W.A.); (N.A.); (M.M.); (M.Y.); (H.M.); (M.R.)
| | - Mohannad Al Akeel
- Division of Family Medicine, Department of Health, Abu Dhabi P.O. Box 5674, United Arab Emirates;
| | - Noora Alhajri
- Department of Medicine, Sheikh Shakhbout Medical City (SSMC), Abu Dhabi P.O. Box 11001, United Arab Emirates
| |
Collapse
|
38
|
Sharpton SR, Podlaha O, Chuang JC, Gindin Y, Myers RP, Loomba R. Changes in the gut microbiome associated with liver stiffness improvement in nonalcoholic steatohepatitis. Therap Adv Gastroenterol 2022; 15:17562848221098243. [PMID: 35601801 PMCID: PMC9121469 DOI: 10.1177/17562848221098243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 04/13/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Longitudinal studies are needed to decipher mechanistic links between the gut microbiome and nonalcoholic steatohepatitis (NASH). We examined shifts in the gut microbiome in persons with NASH with improvement in liver stiffness measurement (LSM) by magnetic resonance (MR) elastography. METHODS Gut microbial profiling was performed at baseline and study completion (24 weeks) using 16 S rRNA gene sequencing in 69 adults with biopsy-confirmed NASH and significant fibrosis (stages 2-3) enrolled in a multi-center randomized controlled trial evaluating selonsertib alone or in combination with simtuzumab. Differential abundance of bacterial taxa at baseline and end of study were examined in participants with and without longitudinal improvement in LSM. Gut microbial shifts that correlated with secondary outcomes, including reduction in MR imaging-derived proton density fat faction (MRI-PDFF) and histologic fibrosis regression were evaluated. Fecal samples from 32 healthy adults were profiled and genus-level multidimensional scaling was used to determine if microbial shifts in persons with NASH improvement represented a shift toward a healthy gut microbiome. RESULTS Shifts in abundance of 36 bacterial taxa including Lactobacillus (log2FC = -4.51, FDR < 0.001), Enterococcus (log2FC = -6.72, FDR < 0.001), and Megasphaera (log2FC = 7.74, FDR < 0.001) were associated with improvement in LSM. Improvement in LSM was associated with microbial shifts toward healthy reference (p = 0.05). Significant shifts in 10 and 12 bacterial taxa were associated with improvement in LSM in addition to MRI-PDFF and fibrosis regression, respectively, indicating consistent taxonomic changes across multiple clinical endpoints. CONCLUSION Longitudinal changes in the gut microbiota are observed in adults with NASH and clinical improvement and represent a shift toward a healthy microbiome.
Collapse
Affiliation(s)
- Suzanne R. Sharpton
- Division of Gastroenterology, Department of
Medicine, University of California, San Diego, La Jolla, CA, USA,NAFLD Research Center, Division of
Gastroenterology, University of California, San Diego, La Jolla, CA,
USA
| | | | | | | | | | | |
Collapse
|
39
|
Bloom PP, Luévano JM, Miller KJ, Chung RT. Deep stool microbiome analysis in cirrhosis reveals an association between short-chain fatty acids and hepatic encephalopathy. Ann Hepatol 2022; 25:100333. [PMID: 33621653 DOI: 10.1016/j.aohep.2021.100333] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/06/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION AND OBJECTIVES Hepatic encephalopathy (HE) is a complication of cirrhosis linked to the microbiome. We aimed to characterize the fecal microbiome of patients with prior and future overt HE, and explore the relationship between fecal species, short-chain fatty acids (SCFAs) and ammonia on HE pathogenesis. MATERIALS AND METHODS Consecutive inpatients and outpatients with cirrhosis were recruited. A single stool sample was collected and underwent shallow shotgun sequencing, and SCFA and ammonia quantification. Patients were followed until the end of the study period. Prior and new overt HE was diagnosed by the treating hepatologist. RESULTS Forty-nine patients with cirrhosis, mean MELD-Na 20 (SD = 9) and 33 (67%) with a history of OHE provided a stool sample. Over a median 85 days of follow up (interquartile range 34-181 days), 16 developed an OHE episode. Eight fecal bacterial species were associated with a history of OHE, and no species predicted future OHE. Bacterial species positively associated with SCFA content were inversely related to cirrhosis disease severity. Patients with a history of OHE had lower concentrations of 6 fecal SCFAs. Fecal ammonia concentrations were similar between those with and without a history of OHE (273 μmol/g ± 214 vs. 327 ± 234, P = 0.43). CONCLUSIONS We found 8 fecal species and 6 SCFAs linked to OHE. Many of the species inversely linked to OHE also have an association with SCFA production. Further work is needed to detail this relationship and to develop targeted interventions to treat HE.
Collapse
Affiliation(s)
| | - Jesús M Luévano
- Department of Medicine, Harvard Medical School, United States; Department of Medicine, Massachusetts General Hospital, United States
| | | | - Raymond T Chung
- Department of Medicine, Harvard Medical School, United States; Liver Center, Gastroenterology Division, Massachusetts General Hospital, United States.
| |
Collapse
|
40
|
Lin Y, Yan G, Feng F, Wang M, Long F. Characterization of intestinal microbiota and serum metabolites in patients with mild hepatic encephalopathy. Open Life Sci 2022; 17:139-154. [PMID: 35350446 PMCID: PMC8919820 DOI: 10.1515/biol-2021-0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 10/15/2021] [Accepted: 11/18/2021] [Indexed: 11/15/2022] Open
Abstract
Mild micro-hepatic encephalopathy (MHE) is a severe complication of cirrhosis. At present, there are differences in the consistency of detection strategies and treatment directions for MHE. The characteristic changes in intestinal microbiota and serum metabolites in MHE patients and the possible relevant interaction mechanisms would inevitably affect the developmental direction of MHE. Therefore, the changes in the characteristics of intestinal microbiota and serum metabolites of MHE patients were determined, and the possible interactions between them were analyzed. Stool and serum tests were performed on both the MHE patients and healthy individuals. The 16S rRNA gene high-throughput sequencing and bioinformatics analyses were used to analyze the differences in intestinal microbiota in MHE patients. The serum metabolites were detected using liquid LC-MS/MS (liquid chromatography-mass spectrometry) technology, and the differences in the metabolic networks of blood metabolites in MHE patients were analyzed. A comprehensive bioinformatics analysis approach was adopted to identify the composition and characteristics of microbiota and serum metabolites and the possible correlation between them. The main characteristics of the structural imbalance in the intestinal microbiota of MHE patients included a decrease in the number of beneficial bacteria at the levels of phylum, class, order, family, and genus and an increase in the pathogenic bacteria, resulting in substantial changes in the relative abundances of bacteria in the intestinal microbiota. The main predicted functions that showed significant differences included chromosome, amino acid-related enzymes, methane metabolism, and arginine and proline metabolism. The detection of serum metabolites resulted in 10 different metabolites, including taurocholic acid, citrulline, d-phenyl-lactic acid, l-tyrosine, benzoate, phenylalanine, linoleic acid, eicosapedienic acid, alpha-dimorphecolic acid, and dehydroepiandrosterone. The subsequent metabolite pathways analysis showed differences in the metabolism of linoleic acid, phenyl-propane, caffeine, arginine, proline, glycine, serine, threonine, tyrosine, and pyrimidine compared to the control group. In summary, it seems that the changes in the microbiome that we have identified have resulted in corresponding changes to the serum metabolome. In turn, this may represent changes in the absorption of metabolites from the gut or reflect the changed metabolic capacity of the MHE liver or both. There were characteristic changes in the intestinal microbiota and serum metabolites in the MHE patients. There might be a related interaction mechanism between the two, which would provide evidence and direction for the detection and treatment strategies of MHE.
Collapse
Affiliation(s)
- Yong Lin
- Department of Liver Disease, The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine , Nanning , Guangxi 530023 , China
| | - Gengjie Yan
- Department of Liver Disease, The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine , Nanning , Guangxi 530023 , China
| | - Feng Feng
- Department of Liver Disease, The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine , Nanning , Guangxi 530023 , China
| | - Minggang Wang
- Department of Liver Disease, The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine , Nanning , Guangxi 530023 , China
| | - Fuli Long
- Department of Liver Disease, The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine , Nanning , Guangxi 530023 , China
| |
Collapse
|
41
|
Xu H, Tian B, Shi W, Tian J, Zhang X, Zeng J, Qin M. A Correlation Study of the Microbiota Between Oral Cavity and Tonsils in Children With Tonsillar Hypertrophy. Front Cell Infect Microbiol 2022; 11:724142. [PMID: 35155268 PMCID: PMC8831826 DOI: 10.3389/fcimb.2021.724142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Tonsillar hypertrophy is a common disease in 3-to-6-year-old children, which may cause serve symptoms like airway obstruction. Microbiological factors play an important role in the etiology of tonsillar hypertrophy. As the starting point of digestive and respiratory tracts, the microbial composition of the oral cavity is not only unique but also closely related to the resident microbiota in other body sites. Here we reported a correlation study of the microbiota between oral cavity and tonsils in children with tonsillar hypertrophy. Saliva, supragingival plaque, and wiped samples from the tonsil surface were collected from both tonsillar hypertrophy patients and participants with healthy tonsils and were then analyzed using Illumina Miseq Sequencing of the 16S rRNA gene. In the tonsillar hypertrophic state, more genera were detected on the tonsil surface than in the tonsil parenchyma, with more intra-microbiota correlations. When tonsillar hypertrophy occurred, both the oral cavity and tonsil surface endured microbiome shift with increased genera category and more active bacterial interactions. Over half of the newly detected genera from the tonsillar hypertrophic state were associated with infection and inflammation process or exhibited antibiotic-resistant characters. Of each individual, the microbial composition and structure of saliva seemed more similar to that of the tonsil surface, compared with the supragingival plaque. In salivary microbiota, genus Johnsonella might be relative with the healthy state of tonsils, while Pseudoxanthomonas might be relative with tonsillar hypertrophy. Our study supported the link between oral microbiota with the healthy and hypertrophic states of tonsils and may provide new directions for future researches in the specific role of oral microbiota in the etiology of tonsil diseases.
Collapse
Affiliation(s)
- He Xu
- Pediatric Department, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Bijun Tian
- Pediatric Department, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Weihua Shi
- Pediatric Department, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Jing Tian
- Pediatric Department, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Xuexi Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health (NCCH), Beijing, China
| | - Jin Zeng
- Department of Otorhinolaryngology - Head and Neck Surgery, Peking University Third Hospital, Beijing, China
| | - Man Qin
- Pediatric Department, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- *Correspondence: Man Qin,
| |
Collapse
|
42
|
Yang M, Luo P, Zhang F, Xu K, Feng R, Xu P. Large-scale correlation analysis of deep venous thrombosis and gut microbiota. Front Cardiovasc Med 2022; 9:1025918. [PMID: 36419497 PMCID: PMC9677955 DOI: 10.3389/fcvm.2022.1025918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
Objective Although previous studies have shown that gut microbiota may be involved in the occurrence of deep venous thrombosis (DVT), the specific link between the two remains unclear. The present study aimed to explore this question from a genetic perspective. Materials and methods Genome-wide association study (GWAS) summary data of DVT were obtained from the UK Biobank (N = 9,059). GWAS summary data of the gut microbiota were obtained from the Flemish Gut Flora Project (N = 2,223) and two German cohorts (FoCus, N = 950; PopGen, N = 717). All the participants were of European ancestry. Linkage disequilibrium score (LDSC) regression has great potential for analyzing the heritability of disease or character traits. LDSC regression was used to analyze the genetic correlation between DVT and the gut microbiota based on the GWAS summary data obtained from previous studies. Mendelian randomization (MR) was used to analyze the genetic causal relationship between DVT and the gut microbiota. We used the random effects inverse variance weighted, MR Egger, weighted median, simple mode, and weighted mode to perform MR analysis. We performed a sensitivity analysis of the MR analysis results by examining heterogeneity and horizontal pleiotropy. Results Linkage disequilibrium score analysis showed that Streptococcaceae (correlation coefficient = -0.542, SE = 0.237, P = 0.022), Dialister (correlation coefficient = -0.623, SE = 0.316, P = 0.049), Streptococcus (correlation coefficient = -0.576, SE = 0.264, P = 0.029), and Lactobacillales (correlation coefficient = -0.484, SE = 0.237, P = 0.042) had suggestive genetic correlation with DVT. In addition, the MR analysis showed that Streptococcaceae had a positive genetic causal relationship with DVT (P = 0.027, OR = 1.005). There was no heterogeneity or horizontal pleiotropy in the MR analysis (P > 0.05). Conclusion In this study, four gut microbes (Streptococcaceae, Dialister Streptococcus, Lactobacillales) had suggestive genetic correlations with DVT, and Streptococcaceae had a positive causal relationship with DVT. Our findings provide a new research direction for the further study of and prevention of DVT.
Collapse
Affiliation(s)
- Mingyi Yang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Pan Luo
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ke Xu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ruoyang Feng
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Peng Xu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
43
|
Rocco A, Sgamato C, Compare D, Coccoli P, Nardone OM, Nardone G. Gut Microbes and Hepatic Encephalopathy: From the Old Concepts to New Perspectives. Front Cell Dev Biol 2021; 9:748253. [PMID: 34900994 PMCID: PMC8662376 DOI: 10.3389/fcell.2021.748253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/31/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatic encephalopathy (HE) is a severe complication of advanced liver disease and acute liver failure. The clinical spectrum ranges from minor cognitive dysfunctions to lethargy, depressed consciousness, and coma and significantly impact the quality of life, morbidity, and mortality of the patients. It is commonly accepted that the gut milieu is essential for the development of HE; however, despite intensive research efforts, the pathogenesis of HE is still not fully elucidated. As our knowledge of gut microbiota moves from the pioneering era of culture-dependent studies, the connection between microbes, inflammation, and metabolic pathways in the pathogenesis of HE is becoming increasingly clear, providing exciting therapeutic perspectives. This review will critically examine the latest research findings on the role of gut microbes in the pathophysiological pathways underlying HE. Moreover, currently available therapeutic options and novel treatment strategies are discussed.
Collapse
Affiliation(s)
- Alba Rocco
- Gastroenterology and Hepatology, Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Costantino Sgamato
- Gastroenterology and Hepatology, Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Debora Compare
- Gastroenterology and Hepatology, Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Pietro Coccoli
- Gastroenterology and Hepatology, Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Olga Maria Nardone
- Gastroenterology and Hepatology, Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Gerardo Nardone
- Gastroenterology and Hepatology, Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| |
Collapse
|
44
|
Oulas A, Zachariou M, Chasapis CT, Tomazou M, Ijaz UZ, Schmartz GP, Spyrou GM, Vlamis-Gardikas A. Putative Antimicrobial Peptides Within Bacterial Proteomes Affect Bacterial Predominance: A Network Analysis Perspective. Front Microbiol 2021; 12:752674. [PMID: 34867874 PMCID: PMC8636115 DOI: 10.3389/fmicb.2021.752674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
The predominance of bacterial taxa in the gut, was examined in view of the putative antimicrobial peptide sequences (AMPs) within their proteomes. The working assumption was that compatible bacteria would share homology and thus immunity to their putative AMPs, while competing taxa would have dissimilarities in their proteome-hidden AMPs. A network-based method ("Bacterial Wars") was developed to handle sequence similarities of predicted AMPs among UniProt-derived protein sequences from different bacterial taxa, while a resulting parameter ("Die" score) suggested which taxa would prevail in a defined microbiome. T he working hypothesis was examined by correlating the calculated Die scores, to the abundance of bacterial taxa from gut microbiomes from different states of health and disease. Eleven publicly available 16S rRNA datasets and a dataset from a full shotgun metagenomics served for the analysis. The overall conclusion was that AMPs encrypted within bacterial proteomes affected the predominance of bacterial taxa in chemospheres.
Collapse
Affiliation(s)
- Anastasis Oulas
- Bioinformatics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,The Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Margarita Zachariou
- Bioinformatics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,The Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Christos T Chasapis
- NMR Center, Instrumental Analysis Laboratory, School of Natural Sciences, University of Patras, Patras, Greece
| | - Marios Tomazou
- Bioinformatics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,The Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Umer Z Ijaz
- School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | | | - George M Spyrou
- Bioinformatics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,The Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Alexios Vlamis-Gardikas
- Division of Organic Chemistry, Biochemistry and Natural Products, Department of Chemistry, University of Patras, Patras, Greece
| |
Collapse
|
45
|
Bloom PP, Tapper EB, Young VB, Lok AS. Microbiome therapeutics for hepatic encephalopathy. J Hepatol 2021; 75:1452-1464. [PMID: 34453966 PMCID: PMC10471317 DOI: 10.1016/j.jhep.2021.08.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/20/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022]
Abstract
Hepatic encephalopathy (HE) is a complication of cirrhosis characterised by neuropsychiatric and motor dysfunction. Microbiota-host interactions play an important role in HE pathogenesis. Therapies targeting microbial community composition and function have been explored for the treatment of HE. Prebiotics, probiotics and faecal microbiota transplant (FMT) have been used with the aim of increasing the abundance of potentially beneficial taxa, while antibiotics have been used to decrease the abundance of potentially harmful taxa. Other microbiome therapeutics, including postbiotics and absorbents, have been used to target microbial products. Microbiome-targeted therapies for HE have had some success, notably lactulose and rifaximin, with probiotics and FMT also showing promise. However, there remain several challenges to the effective application of microbiome therapeutics in HE, including the resilience of the microbiome to sustainable change and unpredictable clinical outcomes from microbiota alterations. Future work in this space should focus on rigorous trial design, microbiome therapy selection, and a personalised approach to HE.
Collapse
Affiliation(s)
- Patricia P Bloom
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, USA.
| | - Elliot B Tapper
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, USA
| | - Vincent B Young
- Department of Internal Medicine, Division of Infectious Disease, University of Michigan, USA; Department of Microbiology and Immunology, University of Michigan, USA
| | - Anna S Lok
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, USA
| |
Collapse
|
46
|
Thomson P, Núñez P, Quera R, Bay C. Gastrointestinal microbiome, what is behind faecal microbiota transplantation? New Microbes New Infect 2021; 42:100898. [PMID: 34168881 PMCID: PMC8207221 DOI: 10.1016/j.nmni.2021.100898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 12/19/2022] Open
Abstract
The intestinal microbiota is made up of billions of microorganisms that coexist in an organised ecosystem, where strict and facultative anaerobic bacteria predominate. The alteration or imbalance of these microorganisms, known as dysbiosis, can be associated with both gastrointestinal and extraintestinal diseases. Based on a review of the literature, the intestinal microbiota is described in its state of health, the changes associated with some gastrointestinal diseases and the potential role that faecal microbiota transplantation has in the reestablishment of an altered ecosystem. Undoubtedly, the information revealed makes us reflect on the indication of faecal microbiota transplantation in various pathologies of intestinal origin. However, to ensure the efficacy and safety of this therapy, more studies are needed to obtain more evidence.
Collapse
Affiliation(s)
- P. Thomson
- Veterinarian School of Medicine, Faculty of Life Science, Andrés Bello University, Avenida República 440, Santiago, Chile
| | - P. Núñez
- Department of Gastroenterology, Hospital San Juan De Dios – University of Chile, Huérfanos 3255, Santiago, Chile
- Gastroenterology Department, Clínica Universidad de los Andes, Avda. Plaza 2501, Chile
| | - R. Quera
- Gastroenterology Department, Clínica Universidad de los Andes, Avda. Plaza 2501, Chile
| | - C. Bay
- Department of Pediatrics, Medicine School, Pontificia Universidad Católica de Chile, Marcoleta 367, Santiago, Chile
| |
Collapse
|
47
|
Bajaj JS, Sikaroodi M, Shamsaddini A, Henseler Z, Santiago-Rodriguez T, Acharya C, Fagan A, Hylemon PB, Fuchs M, Gavis E, Ward T, Knights D, Gillevet PM. Interaction of bacterial metagenome and virome in patients with cirrhosis and hepatic encephalopathy. Gut 2021; 70:1162-1173. [PMID: 32998876 DOI: 10.1136/gutjnl-2020-322470] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/18/2020] [Accepted: 08/30/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Altered bacterial composition is associated with disease progression in cirrhosis but the role of virome, especially phages, is unclear. DESIGN Cross-sectional and pre/post rifaximin cohorts were enrolled. Cross-sectional: controls and cirrhotic outpatients (compensated, on lactulose (Cirr-L), on rifaximin (Cirr-LR)) were included and followed for 90-day hospitalisations. Pre/post: compensated cirrhotics underwent stool collection pre/post 8 weeks of rifaximin. Stool metagenomics for bacteria and phages and their correlation networks were analysed in controls versus cirrhosis, within cirrhotics, hospitalised/not and pre/post rifaximin. RESULTS Cross-sectional: 40 controls and 163 cirrhotics (63 compensated, 43 Cirr-L, 57 Cirr-LR) were enrolled. Cirr-L/LR groups were similar on model for end-stage liver disease (MELD) score but Cirr-L developed greater hospitalisations versus Cirr-LR (56% vs 30%, p=0.008). Bacterial alpha/beta diversity worsened from controls through Cirr-LR. While phage alpha diversity was similar, beta diversity was different between groups. Autochthonous bacteria linked negatively, pathobionts linked positively with MELD but only modest phage-MELD correlations were seen. Phage-bacterial correlation network complexity was highest in controls, lowest in Cirr-L and increased in Cirr-LR. Microviridae and Faecalibacterium phages were linked with autochthonous bacteria in Cirr-LR, but not Cirr-L hospitalised patients had greater pathobionts, lower commensal bacteria and phages focused on Streptococcus, Lactococcus and Myoviridae. Pre/post: No changes in alpha/beta diversity of phages or bacteria were seen postrifaximin. Phage-bacterial linkages centred around urease-producing Streptococcus species collapsed postrifaximin. CONCLUSION Unlike bacteria, faecal phages are sparsely linked with cirrhosis characteristics and 90-day outcomes. Phage and bacterial linkages centred on urease-producing, ammonia-generating Streptococcus species were affected by disease progression and rifaximin therapy and were altered in patients who experienced 90-day hospitalisations.
Collapse
Affiliation(s)
- Jasmohan S Bajaj
- Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, Virginia, USA
| | - Masoumeh Sikaroodi
- Microbiome Analysis Center, George Mason University, Manassas, Virginia, USA
| | | | | | | | - Chathur Acharya
- Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, Virginia, USA
| | - Andrew Fagan
- Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, Virginia, USA
| | - Phillip B Hylemon
- Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, Virginia, USA
| | - Michael Fuchs
- Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, Virginia, USA
| | - Edith Gavis
- Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, Virginia, USA
| | - Tonya Ward
- Diversigen, New Brighton, Minnesota, USA
| | - Dan Knights
- Diversigen, New Brighton, Minnesota, USA.,Department of Computer Science and Engineering, U, University of Minnesota, Minneapolis, MN, USA.,Minnesota Biotechnology Institute, University of Minnesota, Minneapolis, MN, USA
| | - Patrick M Gillevet
- Microbiome Analysis Center, George Mason University, Manassas, Virginia, USA
| |
Collapse
|
48
|
Díaz-Orozco LE, Méndez-Sánchez N. Nutraceuticals & microbiota: review. Minerva Gastroenterol (Torino) 2021; 67:326-338. [PMID: 33978392 DOI: 10.23736/s2724-5985.21.02914-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nutraceuticals are defined as products isolated or purified from foods that are generally sold in medicinal or dosage forms not usually associated with food which is demonstrated to have a physiological benefit or provide protection against chronic disease. In this context, the products offered should be rigorously evaluated by international regulatory agencies. More recently, nutraceuticals have been proposed as a potential preventive and therapeutic option in the assessment of chronic diseases, mainly by altering the microbiome composition. However, the current lack of conclusive evidence supporting the "healthy" or "normal" microbiome, along with the dysbiosis concept paradigm, could be both contributing to the lack of homogeneous results. These issues may be solved in the next years with the use of emergent technologies in the individual's microbiome assessment and its fluctuations in time or related to many factors, such as nutraceuticals. Additionally, future research assessing the independent association between the dysbiosis modification and any "potential" nutraceutical product (including bioactive ingredient or chemical compound in food) is going to enlarge the currently reduced "established nutraceuticals" group. In this work we have assessed the nutraceutical's potential role as a microbiome-targeted manipulation therapy, and the gut-liver axis involved in the digestive diseases' pathogenesis and progression, including the chronic liver diseases. Moreover, microbiome targeted nutraceuticals that show consistent results might be further included in clinical research and trials in the therapeutic assessment of chronic diseases. Finally, the indication of these quality microbiome-targeted nutraceuticals will undoubtedly carry health benefits for individuals.
Collapse
Affiliation(s)
- Luis E Díaz-Orozco
- National Autonomous University of Mexico, Mexico City, Mexico.,Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | - Nahum Méndez-Sánchez
- National Autonomous University of Mexico, Mexico City, Mexico - .,Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| |
Collapse
|
49
|
Wirbel J, Zych K, Essex M, Karcher N, Kartal E, Salazar G, Bork P, Sunagawa S, Zeller G. Microbiome meta-analysis and cross-disease comparison enabled by the SIAMCAT machine learning toolbox. Genome Biol 2021; 22:93. [PMID: 33785070 PMCID: PMC8008609 DOI: 10.1186/s13059-021-02306-1] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 02/24/2021] [Indexed: 02/08/2023] Open
Abstract
The human microbiome is increasingly mined for diagnostic and therapeutic biomarkers using machine learning (ML). However, metagenomics-specific software is scarce, and overoptimistic evaluation and limited cross-study generalization are prevailing issues. To address these, we developed SIAMCAT, a versatile R toolbox for ML-based comparative metagenomics. We demonstrate its capabilities in a meta-analysis of fecal metagenomic studies (10,803 samples). When naively transferred across studies, ML models lost accuracy and disease specificity, which could however be resolved by a novel training set augmentation strategy. This reveals some biomarkers to be disease-specific, with others shared across multiple conditions. SIAMCAT is freely available from siamcat.embl.de .
Collapse
Affiliation(s)
- Jakob Wirbel
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Konrad Zych
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- Present Address: Clinical Microbiomics A/S, Ole Maaløes Vej 3, 2200 København, Denmark
| | - Morgan Essex
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- Present Address: Experimental and Clinical Research Center (ECRC) of the Max Delbrück Center for Molecular Medicine and Charité University Hospital, 13125 Berlin, Germany
| | - Nicolai Karcher
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- Department CIBIO, University of Trento, 38123 Trento, Italy
| | - Ece Kartal
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Guillem Salazar
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, 8093 Zürich, Switzerland
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- Molecular Medicine Partnership Unit, Heidelberg, Germany
- Max Delbrück Centre for Molecular Medicine, 13125 Berlin, Germany
- Department of Bioinformatics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, 8093 Zürich, Switzerland
| | - Georg Zeller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| |
Collapse
|
50
|
Yamamoto K, Honda T, Ito T, Ishizu Y, Kuzuya T, Nakamura M, Miyahara R, Kawashima H, Ishigami M, Fujishiro M. The relationship between oral-origin bacteria in the fecal microbiome and albumin-bilirubin grade in patients with hepatitis C. J Gastroenterol Hepatol 2021; 36:790-799. [PMID: 32744764 DOI: 10.1111/jgh.15206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Bacteria of oral origin (BO) in the gut are associated with prognosis in patients with cirrhosis. The Greengenes database (gg_13_8) is widely used in microbiome analysis, but the expanded Human Oral Microbiome Database (eHOMD), a specialized database for BO, can add more detailed information. We used each database to evaluate the relationship between the albumin-bilirubin grade (ALBI) and the microbiome in patients with hepatitis C. METHODS Eighty patients were classified into the low ALBI group (LA; n = 34) or high ALBI group (HA; n = 46). Isolated DNA from stool was amplified to target the V3-4 regions of 16S rRNA. The microbiomes of the two groups were compared using gg_13_8 or eHOMD. We evaluated the associations between microbiomes and prognoses using Cox proportional hazards models. RESULTS At the genus level, the two groups differed significantly regarding 6 (gg_13_8) and 7 (eHOMD) types of bacteria. All types except Akkermansia are classified as BO. Both databases showed an increase in Streptococcus and Veillonella. eHOMD showed a decrease in Fusobacterium and an increase in Fretibacterium; both produce various types of short-chain fatty acids. At the species level, the two groups demonstrated significant differences in 2 (gg_13_8) and 6 (eHOMD) bacterial types. Selenomonas noxia and Streptococcus salivarius were related to poor prognosis in univariate analysis. CONCLUSION The HA group demonstrated increased BO, most of which produce lactic acid or acetic acid. The correlation between the microbiome and metabolism might be related to prognosis. eHOMD was a useful database for analyzing BO.
Collapse
Affiliation(s)
- Kenta Yamamoto
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Honda
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takanori Ito
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoji Ishizu
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Teiji Kuzuya
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masanao Nakamura
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryoji Miyahara
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Kawashima
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masatoshi Ishigami
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|