1
|
Wu L, Hong Z, Wang S, Huang J, Liu J. Sex differences of negative emotions in adults and infants along the prefrontal-amygdaloid brain pathway. Neuroimage 2024; 304:120948. [PMID: 39571642 DOI: 10.1016/j.neuroimage.2024.120948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
The neural basis of sex-related differences in processing negative emotions remains poorly understood. The amygdala-related fiber pathways serve as the neuroanatomical foundation for emotion processing. However, the precise sex-related variations within these pathways remain largely elusive. Using diffusion magnetic resonance imaging data from 418 healthy individuals, we identified sex differences in white-matter microstructures of the striato-amygdaloid-prefrontal tracts, particularly the amygdala (Amy)-medial prefrontal cortex (mPFC) pathway. These differences were associated with various neurobiological factors, including pain-related negative emotions, pain sensitivity, neurotransmitter receptors, and gene expressions in the human brain. Our findings suggested that the Amy-mPFC pathway may serve as a neuroanatomical foundation for sex-specific negative emotion processing, driven by specific genetic and neurotransmitter profiles. Notably, we also found similar sex differences in this pathway in an infant imaging dataset, hinting at its developmental significance as a precursor to sex differences in adulthood. These findings underscore the importance of the striato-amygdaloid-prefrontal tracts in sex-related differences in processing negative emotions. This may enhance our understanding of sex-specific emotion regulation and potentially inform future research on strategies for preventing and diagnosing emotional regulation disorders across sexes.
Collapse
Affiliation(s)
- Leiming Wu
- School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi, China; Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, Xidian University, Xi'an, Shaanxi, China
| | - Zilong Hong
- School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi, China; Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, Xidian University, Xi'an, Shaanxi, China
| | - Shujun Wang
- School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi, China; Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, Xidian University, Xi'an, Shaanxi, China
| | - Jia Huang
- School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi, China; Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, Xidian University, Xi'an, Shaanxi, China
| | - Jixin Liu
- School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi, China; Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, Xidian University, Xi'an, Shaanxi, China.
| |
Collapse
|
2
|
Ren L, Fan Y, Wu W, Qian Y, He M, Li X, Wang Y, Yang Y, Wen X, Zhang R, Li C, Chen X, Hu J. Anxiety disorders: Treatments, models, and circuitry mechanisms. Eur J Pharmacol 2024; 983:176994. [PMID: 39271040 DOI: 10.1016/j.ejphar.2024.176994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
Anxiety disorders are one of the most prevalent mental health conditions worldwide, imposing a significant burden on individuals affected by them and society in general. Current research endeavors aim to enhance the effectiveness of existing anxiolytic drugs and reduce their side effects through optimization or the development of new treatments. Several anxiolytic novel drugs have been produced as a result of discovery-focused research. However, many drug candidates that show promise in preclinical rodent model studies fail to offer any substantive clinical benefits to patients. This review provides an overview of the diagnosis and classification of anxiety disorders together with a systematic review of anxiolytic drugs with a focus on their targets, therapeutic applications, and side effects. It also provides a concise overview of the constraints and disadvantages associated with frequently administered anxiolytic drugs. Additionally, the study comprehensively reviews animal models used in anxiety studies and their associated molecular mechanisms, while also summarizing the brain circuitry related to anxiety. In conclusion, this article provides a valuable foundation for future anxiolytic drug discovery efforts.
Collapse
Affiliation(s)
- Li Ren
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China.
| | - Yue Fan
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Wenjian Wu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Yuanxin Qian
- Acupuncture and Massage College, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Miao He
- College of Life Sciences and Medicine, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Xinlong Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Yizhu Wang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Yu Yang
- Acupuncture and Massage College, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Xuetong Wen
- Acupuncture and Massage College, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Ruijia Zhang
- Acupuncture and Massage College, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Chenhang Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Xin Chen
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Jingqing Hu
- Institute of Basic Theory of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
3
|
Flerlage WJ, Simmons SC, Thomas EH, Gouty S, Cox BM, Nugent FS. Dysregulation of kappa opioid receptor neuromodulation of lateral habenula synaptic function following a repetitive mild traumatic brain injury. Pharmacol Biochem Behav 2024; 243:173838. [PMID: 39067532 PMCID: PMC11344655 DOI: 10.1016/j.pbb.2024.173838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/09/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Mild traumatic brain injury (mTBI) increases the risk of affective disorders, anxiety and substance use disorder. The lateral habenula (LHb) plays an important role in pathophysiology of psychiatric disorders. Recently, we demonstrated a causal link between mTBI-induced LHb hyperactivity due to excitation/inhibition (E/I) imbalance and motivational deficits in male mice using a repetitive closed head injury mTBI model. A major neuromodulatory system that is responsive to traumatic brain injuries, influences affective states and also modulates LHb activity is the dynorphin/kappa opioid receptor (Dyn/KOR) system. However, the effects of mTBI on KOR neuromodulation of LHb function are unknown. Here, we first used retrograde tracing in male and female Cre mouse lines and identified several major KOR-expressing and two prominent Dyn-expressing inputs projecting to the mouse LHb, highlighting the medial prefrontal cortex (mPFC) and the ventromedial nucleus of the hypothalamus (VMH) as the main LHb-projecting Dyn inputs that regulate KOR signaling to the LHb. We then functionally evaluated the effects of in vitro KOR modulation of spontaneous synaptic activity within the LHb of male and female sham and mTBI mice at 4 week post-injury. We observed sex-specific differences in spontaneous release of glutamate and GABA from presynaptic terminals onto LHb neurons with higher levels of presynaptic glutamate and GABA release in females compared to male mice. However, KOR effects on the spontaneous E/I ratios and synaptic drive ratio within the LHb did not differ between male and female sham and mTBI mice. KOR activation generally suppressed spontaneous glutamatergic transmission without altering GABAergic transmission, resulting in a significant but sex-similar reduction in net spontaneous E/I and synaptic drive ratios in LHb neurons of sham mice. Following mTBI, while responses to KOR activation at LHb glutamatergic synapses remained intact, LHb GABAergic synapses acquired an additional sensitivity to KOR-mediated inhibition where we observed a reduction in GABA release probability in response to KOR stimulation in LHb neurons of mTBI mice. Further analysis of percent change in spontaneous synaptic ratios induced by KOR activation revealed that independent of sex mTBI switches KOR-driven synaptic inhibition of LHb neurons (normally observed in sham mice) in a subset of mTBI mice toward synaptic excitation resulting in mTBI-induced divergence of KOR actions within the LHb. Overall, we uncovered the sources of major Dyn/KOR-expressing synaptic inputs projecting to the mouse LHb. We demonstrate that an engagement of intra-LHb Dyn/KOR signaling provides a global KOR-driven synaptic inhibition within the mouse LHb independent of sex. The additional engagement of KOR-mediated action on LHb GABAergic transmission by mTBI could contribute to the E/I imbalance after mTBI, with Dyn/KOR signaling serving as a disinhibitory mechanism for LHb neurons of a subset of mTBI mice.
Collapse
Affiliation(s)
- William J Flerlage
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD 20814, USA; Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA.
| | - Sarah C Simmons
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD 20814, USA; Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA.
| | - Emily H Thomas
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD 20814, USA; Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA.
| | - Shawn Gouty
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD 20814, USA; Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA.
| | - Brian M Cox
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD 20814, USA; Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA.
| | - Fereshteh S Nugent
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD 20814, USA; Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA.
| |
Collapse
|
4
|
Wu K, Jiang H, Hicks DR, Liu C, Muratspahic E, Ramelot TA, Liu Y, McNally K, Gaur A, Coventry B, Chen W, Bera AK, Kang A, Gerben S, Lamb MYL, Murray A, Li X, Kennedy MA, Yang W, Schober G, Brierley SM, Gelb MH, Montelione GT, Derivery E, Baker D. Sequence-specific targeting of intrinsically disordered protein regions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.15.603480. [PMID: 39071356 PMCID: PMC11275711 DOI: 10.1101/2024.07.15.603480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
A general approach to design proteins that bind tightly and specifically to intrinsically disordered regions (IDRs) of proteins and flexible peptides would have wide application in biological research, therapeutics, and diagnosis. However, the lack of defined structures and the high variability in sequence and conformational preferences has complicated such efforts. We sought to develop a method combining biophysical principles with deep learning to readily generate binders for any disordered sequence. Instead of assuming a fixed regular structure for the target, general recognition is achieved by threading the query sequence through diverse extended binding modes in hundreds of templates with varying pocket depths and spacings, followed by RFdiffusion refinement to optimize the binder-target fit. We tested the method by designing binders to 39 highly diverse unstructured targets. Experimental testing of ~36 designs per target yielded binders with affinities better than 100 nM in 34 cases, and in the pM range in four cases. The co-crystal structure of a designed binder in complex with dynorphin A is closely consistent with the design model. All by all binding experiments for 20 designs binding diverse targets show they are highly specific for the intended targets, with no crosstalk even for the closely related dynorphin A and dynorphin B. Our approach thus could provide a general solution to the intrinsically disordered protein and peptide recognition problem.
Collapse
|
5
|
Gin A, Nguyen PD, Melzer JE, Li C, Strzelinski H, Liggett SB, Su J. Label-free, real-time monitoring of membrane binding events at zeptomolar concentrations using frequency-locked optical microresonators. Nat Commun 2024; 15:7445. [PMID: 39198447 PMCID: PMC11358326 DOI: 10.1038/s41467-024-51320-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
G-protein coupled receptors help regulate cellular function and communication, and are targets of small molecule drug discovery efforts. Conventional techniques to probe these interactions require labels and large amounts of receptor to achieve satisfactory sensitivity. Here, we use frequency-locked optical microtoroids for label-free characterization of membrane interactions in vitro at zeptomolar concentrations for the kappa opioid receptor and its native agonist dynorphin A 1-13, as well as big dynorphin (dynorphin A and dynorphin B) using a supported biomimetic membrane. The measured affinity of the agonist dynorphin A 1-13 to the κ-opioid receptor was also measured and found to be 3.1 nM. Radioligand assays revealed a dissociation constant in agreement with this value (1.1 nM). The limit of detection for the κOR/DynA 1-13 was calculated as 180 zM. The binding of Cholera Toxin B-monosialotetrahexosyl ganglioside was also monitored in real-time and an equilibrium dissociation constant of 1.53 nM was found. Our biosensing platform provides a method for highly sensitive real-time characterization of membrane embedded protein binding kinetics that is rapid and label-free, for drug discovery and toxin screening among other applications.
Collapse
Affiliation(s)
- Adley Gin
- Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ, 85721, USA
| | - Phuong-Diem Nguyen
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, USA
| | - Jeffrey E Melzer
- Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ, 85721, USA
| | - Cheng Li
- Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ, 85721, USA
| | - Hannah Strzelinski
- Department of Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Stephen B Liggett
- Department of Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Judith Su
- Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ, 85721, USA.
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
6
|
Hughes AC, Pittman BG, Xu B, Gammons JW, Webb CM, Nolen HG, Chapman P, Bikoff JB, Schwarz LA. A single-vector intersectional AAV strategy for interrogating cellular diversity and brain function. Nat Neurosci 2024; 27:1400-1410. [PMID: 38802592 DOI: 10.1038/s41593-024-01659-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/22/2024] [Indexed: 05/29/2024]
Abstract
As discovery of cellular diversity in the brain accelerates, so does the need for tools that target cells based on multiple features. Here we developed Conditional Viral Expression by Ribozyme Guided Degradation (ConVERGD), an adeno-associated virus-based, single-construct, intersectional targeting strategy that combines a self-cleaving ribozyme with traditional FLEx switches to deliver molecular cargo to specific neuronal subtypes. ConVERGD offers benefits over existing intersectional expression platforms, such as expanded intersectional targeting with up to five recombinase-based features, accommodation of larger and more complex payloads and a vector that is easy to modify for rapid toolkit expansion. In the present report we employed ConVERGD to characterize an unexplored subpopulation of norepinephrine (NE)-producing neurons within the rodent locus coeruleus that co-express the endogenous opioid gene prodynorphin (Pdyn). These studies showcase ConVERGD as a versatile tool for targeting diverse cell types and reveal Pdyn-expressing NE+ locus coeruleus neurons as a small neuronal subpopulation capable of driving anxiogenic behavioral responses in rodents.
Collapse
Affiliation(s)
- Alex C Hughes
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Human Cell Types, Allen Institute for Brain Science, Seattle, WA, USA
| | - Brittany G Pittman
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jesse W Gammons
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Charis M Webb
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hunter G Nolen
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Phillip Chapman
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jay B Bikoff
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lindsay A Schwarz
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
7
|
Flerlage WJ, Simmons SC, Thomas EH, Gouty S, Cox BM, Nugent FS. Dysregulation of Kappa Opioid Receptor Neuromodulation of Lateral Habenula Synaptic Function following a Repetitive Mild Traumatic Brain Injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.592017. [PMID: 38746139 PMCID: PMC11092670 DOI: 10.1101/2024.05.01.592017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Mild traumatic brain injury (mTBI) increases the risk of cognitive deficits, affective disorders, anxiety and substance use disorder in affected individuals. Substantial evidence suggests a critical role for the lateral habenula (LHb) in pathophysiology of psychiatric disorders. Recently, we demonstrated a causal link between persistent mTBI-induced LHb hyperactivity due to synaptic excitation/inhibition (E/I) imbalance and motivational deficits in self-care grooming behavior in young adult male mice using a repetitive closed head injury mTBI model. One of the major neuromodulatory systems that is responsive to traumatic brain and spinal cord injuries, influences affective states and also modulates LHb activity is the dynorphin/kappa opioid receptor (Dyn/KOR) system. However, the effects of mTBI on KOR neuromodulation of LHb function is unknown. To address this, we first used retrograde tracing to anatomically verify that the mouse LHb indeed receives Dyn/KOR expressing projections. We identified several major KOR-expressing and Dyn-expressing synaptic inputs projecting to the mouse LHb. We then functionally evaluated the effects of in vitro KOR modulation of spontaneous synaptic activity within the LHb of male and female sham and mTBI mice at 4week post-injury using the repetitive closed head injury mTBI model. Similar to what we previously reported in the LHb of male mTBI mice, mTBI presynaptically diminished spontaneous synaptic activity onto LHb neurons, while shifting synaptic E/I toward excitation in female mouse LHb. Furthermore, KOR activation in either mouse male/female LHb generally suppressed spontaneous glutamatergic transmission without altering GABAergic transmission, resulting in a significant reduction in E/I ratios and decreased excitatory synaptic drive to LHb neurons of male and female sham mice. Interestingly following mTBI, while responses to KOR activation at LHb glutamatergic synapses were observed comparable to those of sham, LHb GABAergic synapses acquired an additional sensitivity to KOR-mediated inhibition. Thus, in contrast to sham LHb, we observed a reduction in GABA release probability in response to KOR stimulation in mTBI LHb, resulting in a chronic loss of KOR-mediated net synaptic inhibition within the LHb. Overall, our findings uncovered the previously unknown sources of major Dyn/KOR-expressing synaptic inputs projecting to the mouse LHb. Further, we demonstrate that an engagement of intra-LHb Dyn/KOR signaling provides a global suppression of excitatory synaptic drive to the mouse LHb which could act as an inhibitory braking mechanism to prevent LHb hyperexcitability. The additional engagement of KOR-mediated modulatory action on LHb GABAergic transmission by mTBI could contribute to the E/I imbalance after mTBI, with Dyn/KOR signaling serving as a disinhibitory mechanism for LHb neurons in male and female mTBI mice.
Collapse
|
8
|
Xu C, Ye J, Sun Y, Sun X, Liu JG. The Antidepressant Effect of Magnolol on Depression-Like Behavior of CORT-Treated Mice. J Mol Neurosci 2024; 74:3. [PMID: 38183534 DOI: 10.1007/s12031-023-02185-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/15/2023] [Indexed: 01/08/2024]
Abstract
Although the antidepressant-like effect of magnolol has been revealed in previous reports, the mechanism remains unclear. In this study, the antidepressant-like effect of magnolol on corticosterone-induced (CORT-induced) mice was investigated in vivo. After 21 days of CORT induction, the mice showed marked depressive-like behaviors, with a decrease in sucrose preference score and an increase in immobility time in the tail suspension test (TST) and forced swimming test (FST). Pretreatment with either magnolol (50 mg/kg, i.p.) or the kappa opioid receptor (KOR) antagonist nor-BNI (10 mg/kg, i.p.) prevented CORT-induced depression-like behavior and reduced CORT-induced dynorphin (DYN A) elevation in the hippocampal ventral DG. However, no depression-like behavior was observed in mice with KOR downregulation in the ventral DG. We further found that upregulation of DYN A in the DG caused depression-like behavior, which was blocked by intraperitoneal injection of nor-BNI and modulated by magnolol. The present study demonstrated that magnolol could ameliorate CORT-induced depression-like behaviors, by modulating the DYN A/KOR system in the ventral DG of the hippocampus.
Collapse
Affiliation(s)
- Chi Xu
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Affiliated Hospital of Zhejiang Chinese Medical University, No.548 Binwen Road Binjiang District, Hangzhou, 310053, Zhejiang, China.
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No.260 Baichuan Road, Fuyang District, Hangzhou, 311400, Zhejiang, China.
| | - Jiayu Ye
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No.260 Baichuan Road, Fuyang District, Hangzhou, 311400, Zhejiang, China
| | - Yanting Sun
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No.260 Baichuan Road, Fuyang District, Hangzhou, 311400, Zhejiang, China
| | - Xiujian Sun
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No.260 Baichuan Road, Fuyang District, Hangzhou, 311400, Zhejiang, China
| | - Jing-Gen Liu
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Affiliated Hospital of Zhejiang Chinese Medical University, No.548 Binwen Road Binjiang District, Hangzhou, 310053, Zhejiang, China.
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No.260 Baichuan Road, Fuyang District, Hangzhou, 311400, Zhejiang, China.
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Road Pudong District, Shanghai, 200120, China.
| |
Collapse
|
9
|
Lankhuijzen LM, Ridler T. Opioids, microglia, and temporal lobe epilepsy. Front Neurol 2024; 14:1298489. [PMID: 38249734 PMCID: PMC10796828 DOI: 10.3389/fneur.2023.1298489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
A lack of treatment options for temporal lobe epilepsy (TLE) demands an urgent quest for new therapies to recover neuronal damage and reduce seizures, potentially interrupting the neurotoxic cascades that fuel hyper-excitability. Endogenous opioids, along with their respective receptors, particularly dynorphin and kappa-opioid-receptor, present as attractive candidates for controlling neuronal excitability and therapeutics in epilepsy. We perform a critical review of the literature to evaluate the role of opioids in modulating microglial function and morphology in epilepsy. We find that, in accordance with anticonvulsant effects, acute opioid receptor activation has unique abilities to modulate microglial activation through toll-like 4 receptors, regulating downstream secretion of cytokines. Abnormal activation of microglia is a dominant feature of neuroinflammation, and inflammatory cytokines are found to aggravate TLE, inspiring the challenge to alter microglial activation by opioids to suppress seizures. We further evaluate how opioids can modulate microglial activation in epilepsy to enhance neuroprotection and reduce seizures. With controlled application, opioids may interrupt inflammatory cycles in epilepsy, to protect neuronal function and reduce seizures. Research on opioid-microglia interactions has important implications for epilepsy and healthcare approaches. However, preclinical research on opioid modulation of microglia supports a new therapeutic pathway for TLE.
Collapse
Affiliation(s)
| | - Thomas Ridler
- Hatherly Laboratories, Department of Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
10
|
Gernez E, Lee GR, Niguet JP, Zerimech F, Bennis A, Grzych G. Nitrous Oxide Abuse: Clinical Outcomes, Pharmacology, Pharmacokinetics, Toxicity and Impact on Metabolism. TOXICS 2023; 11:962. [PMID: 38133363 PMCID: PMC10747624 DOI: 10.3390/toxics11120962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/23/2023]
Abstract
The recreational use of nitrous oxide (N2O), also called laughing gas, has increased significantly in recent years. In 2022, the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) recognized it as one of the most prevalent psychoactive substances used in Europe. Chronic nitrous oxide (N2O) exposure can lead to various clinical manifestations. The most frequent symptoms are neurological (sensitive or motor disorders), but there are also other manifestations like psychiatric manifestations or cardiovascular disorders (thrombosis events). N2O also affects various neurotransmitter systems, leading to its anesthetic, analgesic, anxiolytic and antidepressant properties. N2O is very challenging to measure in biological matrices. Thus, in cases of N2O intoxication, indirect biomarkers such as vitamin B12, plasma homocysteine and plasma MMA should be explored for diagnosis and assessment. Others markers, like oxidative stress markers, could be promising but need to be further investigated.
Collapse
Affiliation(s)
- Emeline Gernez
- CHU de Lille, Centre de Biologie Pathologie Génétique, 59000 Lille, France; (E.G.); (F.Z.)
| | | | - Jean-Paul Niguet
- Service de Neurologie, Hôpital Saint Vincent de Paul–GHICL, 59000 Lille, France;
| | - Farid Zerimech
- CHU de Lille, Centre de Biologie Pathologie Génétique, 59000 Lille, France; (E.G.); (F.Z.)
| | - Anas Bennis
- Assistance Publique—Hôpitaux de Paris, Service de Neurologie, Groupe Hospitalier Universitaire Paris Sud, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France;
| | - Guillaume Grzych
- CHU de Lille, Centre de Biologie Pathologie Génétique, 59000 Lille, France; (E.G.); (F.Z.)
| |
Collapse
|
11
|
Gin A, Nguyen PD, Melzer JE, Li C, Strzelinski H, Liggett SB, Su J. Label-free, real-time monitoring of membrane binding events at zeptomolar concentrations using frequency-locked optical microresonators. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558657. [PMID: 37786702 PMCID: PMC10541581 DOI: 10.1101/2023.09.20.558657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Binding events to elements of the cell membrane act as receptors which regulate cellular function and communication and are the targets of many small molecule drug discovery efforts for agonists and antagonists. Conventional techniques to probe these interactions generally require labels and large amounts of receptor to achieve satisfactory sensitivity. Whispering gallery mode microtoroid optical resonators have demonstrated sensitivity to detect single-molecule binding events. Here, we demonstrate the use of frequency-locked optical microtoroids for characterization of membrane interactions in vitro at zeptomolar concentrations using a supported biomimetic membrane. Arrays of microtoroids were produced using photolithography and subsequently modified with a biomimetic membrane, providing high quality (Q) factors (> 10 6 ) in aqueous environments. Fluorescent recovery after photobleaching (FRAP) experiments confirmed the retained fluidity of the microtoroid supported-lipid membrane with a diffusion coefficient of 3.38 ± 0.26 μm 2 ⋅ s - 1 . Utilizing this frequency-locked membrane-on-a-chip model combined with auto-balanced detection and non-linear post-processing techniques, we demonstrate zeptomolar detection levels The binding of Cholera Toxin B- monosialotetrahexosyl ganglioside (GM1) was monitored in real-time, with an apparent equilibrium dissociation constant k d = 1.53 nM . The measured affiny of the agonist dynorphin A 1-13 to the κ -opioid receptor revealed a k d = 3.1 nM using the same approach. Radioligand binding competition with dynorphin A 1-13 revealed a k d in agreement (1.1 nM) with the unlabeled method. The biosensing platform reported herein provides a highly sensitive real-time characterization of membrane embedded protein binding kinetics, that is rapid and label-free, for toxin screening and drug discovery, among other applications.
Collapse
Affiliation(s)
- Adley Gin
- Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ 85721
| | - Phuong-Diem Nguyen
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721
| | - Jeffrey E. Melzer
- Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ 85721
| | - Cheng Li
- Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ 85721
| | - Hannah Strzelinski
- Department of Medicine, University of South Florida Morsani College of Medicine, Tampa, FL 33612
| | - Stephen B. Liggett
- Department of Medicine, University of South Florida Morsani College of Medicine, Tampa, FL 33612
| | - Judith Su
- Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ 85721
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721
| |
Collapse
|
12
|
Dean E, Dominique A, Palillero A, Tran A, Paradis N, Wu C. Probing the Activation Mechanisms of Agonist DPI-287 to Delta-Opioid Receptor and Novel Agonists Using Ensemble-Based Virtual Screening with Molecular Dynamics Simulations. ACS OMEGA 2023; 8:32404-32423. [PMID: 37720760 PMCID: PMC10500586 DOI: 10.1021/acsomega.3c01918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/16/2023] [Indexed: 09/19/2023]
Abstract
Pain drugs targeting mu-opioid receptors face major addiction problems that have caused an epidemic. The delta-opioid receptor (DOR) has shown to not cause addictive effects when bound to an agonist. While the active conformation of the DOR in complex with agonist DPI-287 has been recently solved, there are still no FDA-approved agonists targeting it, providing the opportunity for structure-based virtual screening. In this study, the conformational plasticity of the DOR was probed using molecular dynamics (MD) simulations, identifying two representative conformations from clustering analysis. The two MD conformations as well as the crystal conformation of DOR were used to screen novel compounds from the ZINC database (17 million compounds), in which 69 drugs were picked as potential compounds based on their docking scores. Notably, 37 out of the 69 compounds were obtained from the simulated conformations. The binding stability of the 69 compounds was further investigated using MD simulations. Based on the MM-GBSA binding energy and the predicted drug properties, eight compounds were chosen as the most favorable, six of which were from the simulated conformations. Using a dynamic network model, the communication between the crystal agonist and the top eight molecules with the receptor was analyzed to confirm if these novel compounds share a similar activation mechanism to the crystal ligand. Encouragingly, docking of these eight compounds to the other two opioid receptors (kappa and mu) suggests their good selectivity toward DOR.
Collapse
Affiliation(s)
- Emily Dean
- Department of Molecular &
Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - AnneMarie Dominique
- Department of Molecular &
Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Americus Palillero
- Department of Molecular &
Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Annie Tran
- Department of Molecular &
Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Nicholas Paradis
- Department of Molecular &
Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Chun Wu
- Department of Molecular &
Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| |
Collapse
|
13
|
Di Raddo ME, Milenkovic M, Sivasubramanian M, Hasbi A, Bergman J, Withey S, Madras BK, George SR. Δ9-Tetrahydrocannabinol does not upregulate an aversive dopamine receptor mechanism in adolescent brain unlike in adults. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100107. [PMID: 38020805 PMCID: PMC10663137 DOI: 10.1016/j.crneur.2023.100107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 07/05/2023] [Accepted: 08/18/2023] [Indexed: 12/01/2023] Open
Abstract
Earlier age of cannabis usage poses higher risk of Cannabis Use Disorder and adverse consequences, such as addiction, anxiety, dysphoria, psychosis, largely attributed to its principal psychoactive component, Δ9-tetrahydrocannabinol (THC) and altered dopaminergic function. As dopamine D1-D2 receptor heteromer activation causes anxiety and anhedonia, this signaling complex was postulated to contribute to THC-induced affective symptoms. To investigate this, we administered THC repeatedly to adolescent monkeys and adolescent or adult rats. Drug-naïve adolescent rat had lower striatal densities of D1-D2 heteromer compared to adult rat. Repeated administration of THC to adolescent rat or adolescent monkey did not alter D1-D2 heteromer expression in nucleus accumbens or dorsal striatum but upregulated it in adult rat. Behaviourally, THC-treated adult, but not adolescent rat manifested anxiety and anhedonia-like behaviour, with elevated composite negative emotionality scores that correlated with striatal D1-D2 density. THC modified downstream markers of D1-D2 activation in adult, but not adolescent striatum. THC administered with cannabidiol did not alter D1-D2 expression. In adult rat, co-administration of CB1 receptor (CB1R) inverse agonist with THC attenuated D1-D2 upregulation, implicating cannabinoids in the regulation of striatal D1-D2 heteromer expression. THC exposure revealed an adaptable age-specific, anxiogenic, anti-reward mechanism operant in adult striatum but deficient in adolescent rat and monkey striatum that may confer increased sensitivity to THC reward in adolescence while limiting its negative effects, thus promoting continued use and increasing vulnerability to long-term adverse cannabis effects.
Collapse
Affiliation(s)
- Marie-Eve Di Raddo
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada M5S 1A8
| | - Marija Milenkovic
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada M5S 1A8
| | | | - Ahmed Hasbi
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada M5S 1A8
| | - Jack Bergman
- McLean Hospital, Belmont MA & Department of Psychiatry, Harvard Medical School, Boston, MA, 02478, United States
| | - Sarah Withey
- McLean Hospital, Belmont MA & Department of Psychiatry, Harvard Medical School, Boston, MA, 02478, United States
| | - Bertha K. Madras
- McLean Hospital, Belmont MA & Department of Psychiatry, Harvard Medical School, Boston, MA, 02478, United States
| | - Susan R. George
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada M5S 1A8
- Department of Medicine, University of Toronto, Toronto, Canada M5S 1A8
| |
Collapse
|
14
|
De Rosa F, Giannatiempo B, Charlier B, Coglianese A, Mensitieri F, Gaudino G, Cozzolino A, Filippelli A, Piazza O, Dal Piaz F, Izzo V. Pharmacological Treatments and Therapeutic Drug Monitoring in Patients with Chronic Pain. Pharmaceutics 2023; 15:2088. [PMID: 37631302 PMCID: PMC10457775 DOI: 10.3390/pharmaceutics15082088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/29/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Pain is an unpleasant sensory and emotional experience that affects every aspect of a patient's life and which may be treated through different pharmacological and non-pharmacological approaches. Analgesics are the drugs most commonly used to treat pain, and in specific situations, the use of opioids may be considered with caution. These drugs, in fact, do not always induce optimal analgesia in patients, and several problems are associated with their use. The purpose of this narrative review is to describe the pharmacological approaches currently used for the management of chronic pain. We review several aspects, from the pain-scale-based methods currently available to assess the type and intensity of pain, to the most frequently administered drugs (non-narcotic analgesics and narcotic analgesics), whose pharmacological characteristics are briefly reported. Overall, we attempt to provide an overview of different pharmacological treatments while also illustrating the relevant guidelines and indications. We then report the strategies that may be used to reduce problems related to opioid use. Specifically, we focus our attention on therapeutic drug monitoring (TDM), a tool that could help clinicians select the most suitable drug and dose to be used for each patient. The actual potential of using TDM to optimize and personalize opioid-based pain treatments is finally discussed based on recent scientific reports.
Collapse
Affiliation(s)
- Federica De Rosa
- Department of Medicine, Surgery and Dentistry, Postgraduate School of Clinical Pharmacology and Toxicology, University of Salerno, 84084 Fisciano, Italy; (F.D.R.); (B.G.); (B.C.); (A.C.); (A.F.)
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy; (A.C.); (O.P.)
| | - Bruno Giannatiempo
- Department of Medicine, Surgery and Dentistry, Postgraduate School of Clinical Pharmacology and Toxicology, University of Salerno, 84084 Fisciano, Italy; (F.D.R.); (B.G.); (B.C.); (A.C.); (A.F.)
| | - Bruno Charlier
- Department of Medicine, Surgery and Dentistry, Postgraduate School of Clinical Pharmacology and Toxicology, University of Salerno, 84084 Fisciano, Italy; (F.D.R.); (B.G.); (B.C.); (A.C.); (A.F.)
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy; (A.C.); (O.P.)
| | - Albino Coglianese
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy; (A.C.); (O.P.)
- Department of Medicine, Surgery and Dentistry, Postgraduate School of Clinical Pathology and Clinical Biochemistry, University of Salerno, 84084 Fisciano, Italy
| | - Francesca Mensitieri
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84084 Fisciano, Italy; (F.M.); (G.G.)
| | - Giulia Gaudino
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84084 Fisciano, Italy; (F.M.); (G.G.)
| | - Armando Cozzolino
- Department of Medicine, Surgery and Dentistry, Postgraduate School of Clinical Pharmacology and Toxicology, University of Salerno, 84084 Fisciano, Italy; (F.D.R.); (B.G.); (B.C.); (A.C.); (A.F.)
| | - Amelia Filippelli
- Department of Medicine, Surgery and Dentistry, Postgraduate School of Clinical Pharmacology and Toxicology, University of Salerno, 84084 Fisciano, Italy; (F.D.R.); (B.G.); (B.C.); (A.C.); (A.F.)
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy; (A.C.); (O.P.)
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84084 Fisciano, Italy; (F.M.); (G.G.)
| | - Ornella Piazza
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy; (A.C.); (O.P.)
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84084 Fisciano, Italy; (F.M.); (G.G.)
| | - Fabrizio Dal Piaz
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy; (A.C.); (O.P.)
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84084 Fisciano, Italy; (F.M.); (G.G.)
| | - Viviana Izzo
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy; (A.C.); (O.P.)
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84084 Fisciano, Italy; (F.M.); (G.G.)
| |
Collapse
|
15
|
Lind SF, Stam F, Zelleroth S, Meurling E, Frick A, Grönbladh A. Acute caffeine differently affects risk-taking and the expression of BDNF and of adenosine and opioid receptors in rats with high or low anxiety-like behavior. Pharmacol Biochem Behav 2023:173573. [PMID: 37302662 DOI: 10.1016/j.pbb.2023.173573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/13/2023]
Abstract
Anxiety disorders are common psychiatric conditions with a partially elucidated neurobiology. Caffeine, an unspecific adenosine receptor antagonist, is a common psychostimulant with anxiogenic effects in sensitive individuals. High doses of caffeine produce anxiety-like behavior in rats but it is not known if this is specific for rats with high baseline anxiety-like behavior. Thus, the aim of this study was to investigate general behavior, risk-taking, and anxiety-like behavior, as well as mRNA expression (adenosine A2A and A1, dopamine D2, and, μ, κ, δ opioid, receptors, BDNF, c-fos, IGF-1) in amygdala, caudate putamen, frontal cortex, hippocampus, hypothalamus, after an acute dose of caffeine. Untreated rats were screened using the elevated plus maze (EPM), giving each rat a score on anxiety-like behavior based on their time spent in the open arms, and categorized into a high or low anxiety-like behavior group accordingly. Three weeks after categorization, the rats were treated with 50 mg/kg caffeine and their behavior profile was studied in the multivariate concentric square field (MCSF) test, and one week later in the EPM. qPCR was performed on selected genes and corticosterone plasma levels were measured using ELISA. The results demonstrated that the high anxiety-like behavior rats treated with caffeine spent less time in risk areas of the MCSF and resituated towards the sheltered areas, a behavior accompanied by lower mRNA expression of adenosine A2A receptors in caudate putamen and increased BDNF expression in hippocampus. These results support the hypothesis that caffeine affects individuals differently depending on their baseline anxiety-like behavior, possibly involving adenosine receptors. This highlights the importance of adenosine receptors as a possible drug target for anxiety disorders, although further research is needed to fully elucidate the neurobiological mechanisms of caffeine on anxiety disorders.
Collapse
Affiliation(s)
- Sara Florén Lind
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, SE-751 24, Uppsala University, Uppsala, Sweden.
| | - Frida Stam
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, SE-751 24, Uppsala University, Uppsala, Sweden.
| | - Sofia Zelleroth
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, SE-751 24, Uppsala University, Uppsala, Sweden.
| | - Evelina Meurling
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, SE-751 24, Uppsala University, Uppsala, Sweden
| | - Andreas Frick
- The Beijer Laboratory, Department of Medical Sciences, Psychiatry, SE-751 24, Uppsala University, Uppsala, Sweden.
| | - Alfhild Grönbladh
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, SE-751 24, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
16
|
Hosseinzadeh Sahafi O, Sardari M, Alijanpour S, Rezayof A. Shared Mechanisms of GABAergic and Opioidergic Transmission Regulate Corticolimbic Reward Systems and Cognitive Aspects of Motivational Behaviors. Brain Sci 2023; 13:brainsci13050815. [PMID: 37239287 DOI: 10.3390/brainsci13050815] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The functional interplay between the corticolimbic GABAergic and opioidergic systems plays a crucial role in regulating the reward system and cognitive aspects of motivational behaviors leading to the development of addictive behaviors and disorders. This review provides a summary of the shared mechanisms of GABAergic and opioidergic transmission, which modulate the activity of dopaminergic neurons located in the ventral tegmental area (VTA), the central hub of the reward mechanisms. This review comprehensively covers the neuroanatomical and neurobiological aspects of corticolimbic inhibitory neurons that express opioid receptors, which act as modulators of corticolimbic GABAergic transmission. The presence of opioid and GABA receptors on the same neurons allows for the modulation of the activity of dopaminergic neurons in the ventral tegmental area, which plays a key role in the reward mechanisms of the brain. This colocalization of receptors and their immunochemical markers can provide a comprehensive understanding for clinicians and researchers, revealing the neuronal circuits that contribute to the reward system. Moreover, this review highlights the importance of GABAergic transmission-induced neuroplasticity under the modulation of opioid receptors. It discusses their interactive role in reinforcement learning, network oscillation, aversive behaviors, and local feedback or feedforward inhibitions in reward mechanisms. Understanding the shared mechanisms of these systems may lead to the development of new therapeutic approaches for addiction, reward-related disorders, and drug-induced cognitive impairment.
Collapse
Affiliation(s)
- Oveis Hosseinzadeh Sahafi
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6465, Iran
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Maryam Sardari
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6465, Iran
| | - Sakineh Alijanpour
- Department of Biology, Faculty of Science, Gonbad Kavous University, Gonbad Kavous 4971799151, Iran
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6465, Iran
| |
Collapse
|
17
|
Mark TL, Parish WJ, Weber EM, Steinberg DG, Henretty K. The cost of opioid use disorder-related conditions in Medicare. Drug Alcohol Depend 2023; 244:109778. [PMID: 36701935 DOI: 10.1016/j.drugalcdep.2023.109778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
BACKGROUND Medicare coverage excludes some levels of substance use disorder (SUD) care, such as intensive outpatient and residential treatment. Expanding access to SUD treatment could increase Medicare spending. However, these costs could be offset if SUD treatment resulted in cost savings from reducing SUD-related medical events and SUD-related medical comorbidities. METHODS This study estimated cost savings from expanding access to SUD treatment for persons with opioid use disorders (OUD) using three methods. First, we compared total Medicare fee-for-service spending on individuals with OUD and no treatment with OUD medications (MOUD) to Medicare spending on individuals without OUD after matching on age/sex/Medicare-Medicaid eligibility status. Second, we compared Medicare spending on individuals with OUD who received MOUD to spending individuals with OUD who did not receive MOUD. Third, we determined OUD-attributable Medicare spending for comorbid physical and mental conditions with a strong association with OUD. RESULTS Beneficiaries with OUD but no MOUD totaled $15.8 billion more than beneficiaries without OUD. Beneficiaries with OUD but no MOUD totaled $12.1 billion more than individuals with OUD and MOUD. Lastly, Medicare spending on OUD-attributable comorbidities was $4.7 billion if all medical and mental health comorbidities were included and $3.0 billion with only medical comorbidities. The totals could be 1.7 times higher if Medicare Advantage enrollees were included. CONCLUSION Expanding Medicare coverage of appropriate levels of care could improve access to effective treatment and reduce the costs associated with untreated OUD. This will likely result in substantial Medicare cost savings.
Collapse
Affiliation(s)
- Tami L Mark
- RTI International, 701 13th Street NW, Suite 750, Washington, DC 20005, USA.
| | - William J Parish
- RTI International, 3040 East Cornwallis Rd, P.O. Box 12194, Research Triangle Park, NC 27709, USA.
| | - Ellen M Weber
- Legal Action Center, 810 1st Street, NE, Suite 200, Washington DC 20002, USA.
| | - Deborah G Steinberg
- Legal Action Center, 810 1st Street, NE, Suite 200, Washington DC 20002, USA.
| | - Kristen Henretty
- RTI International, 3040 East Cornwallis Rd, P.O. Box 12194, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
18
|
Chen Y, Wang CY, Zan GY, Yao SY, Deng YZ, Shu XL, Wu WW, Ma Y, Wang YJ, Yu CX, Liu JG. Upregulation of dynorphin/kappa opioid receptor system in the dorsal hippocampus contributes to morphine withdrawal-induced place aversion. Acta Pharmacol Sin 2023; 44:538-545. [PMID: 36127507 PMCID: PMC9958091 DOI: 10.1038/s41401-022-00987-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/22/2022] [Indexed: 11/09/2022] Open
Abstract
Aversive emotion of opioid withdrawal generates motivational state leading to compulsive drug seeking and taking. Kappa opioid receptor (KOR) and its endogenous ligand dynorphin have been shown to participate in the regulation of aversive emotion. In the present study, we investigated the role of dynorphin/KOR system in the aversive emotion following opioid withdrawal in acute morphine-dependent mice. We found that blockade of KORs before pairing by intracerebroventricular injection of KOR antagonist norBNI (20, 40 μg) attenuated the development of morphine withdrawal-induced conditioned place aversion (CPA) behavior. We further found that morphine withdrawal increased dynorphin A expression in the dorsal hippocampus, but not in the amygdala, prefrontal cortex, nucleus accumbens, and thalamus. Microinjection of norBNI (20 μg) into the dorsal hippocampus significantly decreased morphine withdrawal-induced CPA behavior. We further found that p38 MAPK was significantly activated in the dorsal hippocampus after morphine withdrawal, and the activation of p38 MAPK was blocked by pretreatment with norBNI. Accordingly, microinjection of p38 MAPK inhibitor SB203580 (5 μg) into the dorsal hippocampus significantly decreased morphine withdrawal-produced CPA behavior. This study demonstrates that upregulation of dynorphin/KOR system in the dorsal hippocampus plays a critical role in the formation of aversive emotion associated with morphine withdrawal, suggesting that KOR antagonists may have therapeutic value for the treatment of opioid withdrawal-induced mood-related disorders.
Collapse
Affiliation(s)
- Yan Chen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Chen-Yao Wang
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100049, China
| | - Gui-Ying Zan
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Song-Yu Yao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ying-Zhi Deng
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Xue-Lian Shu
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100049, China
| | - Wei-Wei Wu
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Yan Ma
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Yu-Jun Wang
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai, 201203, China.
| | - Chang-Xi Yu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Jing-Gen Liu
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai, 201203, China
| |
Collapse
|
19
|
Hughes AC, Pollard BG, Xu B, Gammons JW, Chapman P, Bikoff JB, Schwarz LA. A Novel Single Vector Intersectional AAV Strategy for Interrogating Cellular Diversity and Brain Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527312. [PMID: 36798174 PMCID: PMC9934562 DOI: 10.1101/2023.02.07.527312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
As the discovery of cellular diversity in the brain accelerates, so does the need for functional tools that target cells based on multiple features, such as gene expression and projection target. By selectively driving recombinase expression in a feature-specific manner, one can utilize intersectional strategies to conditionally promote payload expression only where multiple features overlap. We developed Conditional Viral Expression by Ribozyme Guided Degradation (ConVERGD), a single-construct intersectional targeting strategy that combines a self-cleaving ribozyme with traditional FLEx switches. ConVERGD offers benefits over existing platforms, such as expanded intersectionality, the ability to accommodate larger and more complex payloads, and a vector design that is easily modified to better facilitate rapid toolkit expansion. To demonstrate its utility for interrogating neural circuitry, we employed ConVERGD to target an unexplored subpopulation of norepinephrine (NE)-producing neurons within the rodent locus coeruleus (LC) identified via single-cell transcriptomic profiling to co-express the stress-related endogenous opioid gene prodynorphin (Pdyn). These studies showcase ConVERGD as a versatile tool for targeting diverse cell types and reveal Pdyn-expressing NE+ LC neurons as a small neuronal subpopulation capable of driving anxiogenic behavioral responses in rodents.
Collapse
Affiliation(s)
- Alex C. Hughes
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Brittany G. Pollard
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Jesse W. Gammons
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
- Present address: Department of Pediatrics, Stanford University, Stanford, CA, 94305
| | - Phillip Chapman
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Jay B. Bikoff
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Lindsay A. Schwarz
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
- Lead contact
| |
Collapse
|
20
|
Jackson M, Foret BL, Fontenot J, Hasselschwert D, Smith J, Romero E, Smith KM. Molecular examination of the endogenous opioid system in rhesus macaque monkeys with self-injurious behavior. J Neurosci Res 2023; 101:70-85. [PMID: 36131680 DOI: 10.1002/jnr.25128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/30/2022] [Accepted: 09/10/2022] [Indexed: 11/10/2022]
Abstract
Self-injurious behavior (SIB) can lead to serious injury and occurs in approximately 1%-4% of the adult population, with higher incidences in adolescent and institutionalized populations, as well as in children with developmental disorders such as Autism. SIB also spontaneously occurs in a low percentage of captive monkeys. Rhesus macaque (Macaca mulatta) monkeys are evolutionarily and physiologically similar to humans, share 93% genetic sequence similarity to humans, and have long been used as testing subjects for vaccine and clinical trials. Previous studies hypothesized that altered endogenous opioid expression occurs in the brains of individuals and animals that self-injure. We examined the regional mRNA expression of opioid signaling genes in sixteen rhesus macaques that exhibited SIB and eight sex- and age- matched controls. The brain regions examined are linked to reward reinforcement and stress adaptation including the hypothalamus, orbital frontal cortex, nucleus accumbens, hippocampus, caudate, and the amygdala. We found decreased μ-opioid receptor (OPRM1) in the amygdala of monkeys with SIB, and reduced prodynorphin (PDYN) in the hypothalamus. Our data suggest dysfunction in the regulation of opioid peptide precursors and calls for further investigation of the endogenous opioid system in SIB.
Collapse
Affiliation(s)
- Marques Jackson
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | - Brittany L Foret
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | - Jane Fontenot
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, Louisiana, USA
| | - Dana Hasselschwert
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, Louisiana, USA
| | - Josh Smith
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, Louisiana, USA
| | - Emily Romero
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, Louisiana, USA
| | - Karen Müller Smith
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| |
Collapse
|
21
|
Jiang Y, Wei D, Xie Y. Causal effects of opioids on postpartum depression: a bidirectional, two-sample Mendelian randomization study. Front Psychiatry 2023; 14:1043854. [PMID: 37151969 PMCID: PMC10159056 DOI: 10.3389/fpsyt.2023.1043854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Background Postpartum depression is the most common psychiatric disorder in pregnant women during the postpartum period and requires early detection and treatment. Previous studies have found that opioids use affects depression and anxiety disorders. Although it has long been suspected that opioids may contribute to the development of postpartum depression, observational studies are susceptible to confounding factors and reverse causality, making it difficult to determine the direction of these associations. Methods To examine the causal associations between opioids and non-opioid analgesics with postpartum depression, we utilized large-scale genome-wide association study (GWAS) genetic pooled data from two major databases: opioids, salicylate analgesic, non-steroidal anti-inflammatory drugs (NSAIDs), and aniline analgesics GWAS data from the United Kingdom Biobank database. GWAS data for postpartum depression were obtained from the FinnGen database. The causal analysis methods used random-effects inverse variance weighting (IVW), and complementary sensitivity analyses using weighted median, MR-Egger method, and MR-PRESSO test. Results In the IVW analysis, Mendelian randomization (MR) analysis showed that opioids increased the risk of postpartum depression (OR, 1.169; 95% CI, 1.050-1.303; p = 0.005). Bidirectional analysis showed a significant causal relationship between genetically predicted postpartum depression and increased risk of opioids and non-opioid analgesics use (opioids OR, 1.118; 95% CI, 1.039-1.203; p = 0.002; NSAIDs OR, 1.071; 95% CI, 1.022-1.121; p = 0.004; salicylates OR, 1.085; 95% CI, 1.026-1.146; p = 0.004; and anilides OR, 1.064; 95% CI, 1.018-1.112; p = 0.006). There was no significant heterogeneity or any significant horizontal pleiotropy bias in the sensitivity analysis. Conclusion Our study suggests a potential causal relationship between opioids use and the risk of postpartum depression. Additionally, postpartum depression is associated with an increased risk of opioids and non-opioid analgesics use. These findings may provide new insights into prevention and intervention strategies for opioids abuse and postpartum depression.
Collapse
Affiliation(s)
- Yage Jiang
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Donglei Wei
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yubo Xie
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- *Correspondence: Yubo Xie,
| |
Collapse
|
22
|
Lee SJ, Logsdon AF, Yagi M, Baskin BM, Peskind ER, Raskind MM, Cook DG, Schindler AG. The dynorphin/kappa opioid receptor mediates adverse immunological and behavioral outcomes induced by repetitive blast trauma. J Neuroinflammation 2022; 19:288. [PMID: 36463243 PMCID: PMC9719647 DOI: 10.1186/s12974-022-02643-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/11/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Adverse pathophysiological and behavioral outcomes related to mild traumatic brain injury (mTBI), posttraumatic stress disorder (PTSD), and chronic pain are common following blast exposure and contribute to decreased quality of life, but underlying mechanisms and prophylactic/treatment options remain limited. The dynorphin/kappa opioid receptor (KOR) system helps regulate behavioral and inflammatory responses to stress and injury; however, it has yet to be investigated as a potential mechanism in either humans or animals exposed to blast. We hypothesized that blast-induced KOR activation mediates adverse outcomes related to inflammation and affective behavioral response. METHODS C57Bl/6 adult male mice were singly or repeatedly exposed to either sham (anesthesia only) or blast delivered by a pneumatic shock tube. The selective KOR antagonist norBNI or vehicle (saline) was administered 72 h prior to repetitive blast or sham exposure. Serum and brain were collected 10 min or 4 h post-exposure for dynorphin A-like immunoreactivity and cytokine measurements, respectively. At 1-month post-exposure, mice were tested in a series of behavioral assays related to adverse outcomes reported by humans with blast trauma. RESULTS Repetitive but not single blast exposure resulted in increased brain dynorphin A-like immunoreactivity. norBNI pretreatment blocked or significantly reduced blast-induced increase in serum and brain cytokines, including IL-6, at 4 h post exposure and aversive/anxiety-like behavioral dysfunction at 1-month post-exposure. CONCLUSIONS Our findings demonstrate a previously unreported role for the dynorphin/KOR system as a mediator of biochemical and behavioral dysfunction following repetitive blast exposure and highlight this system as a potential prophylactic/therapeutic treatment target.
Collapse
Affiliation(s)
- Suhjung Janet Lee
- grid.413919.70000 0004 0420 6540VA Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, S182, 1660 South Columbian Way, Seattle, WA 98108 USA
| | - Aric F. Logsdon
- grid.413919.70000 0004 0420 6540VA Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, S182, 1660 South Columbian Way, Seattle, WA 98108 USA ,grid.34477.330000000122986657Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA 98195 USA
| | - Mayumi Yagi
- grid.413919.70000 0004 0420 6540VA Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, S182, 1660 South Columbian Way, Seattle, WA 98108 USA
| | - Britahny M. Baskin
- grid.34477.330000000122986657Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195 USA
| | - Elaine. R. Peskind
- grid.413919.70000 0004 0420 6540VA Northwest Mental Illness Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108 USA ,grid.34477.330000000122986657Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195 USA
| | - Murray M. Raskind
- grid.413919.70000 0004 0420 6540VA Northwest Mental Illness Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108 USA ,grid.34477.330000000122986657Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195 USA
| | - David G. Cook
- grid.413919.70000 0004 0420 6540VA Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, S182, 1660 South Columbian Way, Seattle, WA 98108 USA ,grid.34477.330000000122986657Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195 USA ,grid.34477.330000000122986657Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA 98195 USA ,grid.34477.330000000122986657Department of Pharmacology, University of Washington, Seattle, WA 98195 USA
| | - Abigail. G. Schindler
- grid.413919.70000 0004 0420 6540VA Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, S182, 1660 South Columbian Way, Seattle, WA 98108 USA ,grid.34477.330000000122986657Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195 USA ,grid.34477.330000000122986657Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195 USA ,grid.34477.330000000122986657Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA 98195 USA
| |
Collapse
|
23
|
Karoussiotis C, Sotiriou A, Polissidis A, Symeonof A, Papavranoussi-Daponte D, Nikoletopoulou V, Georgoussi Z. The κ-opioid receptor-induced autophagy is implicated in stress-driven synaptic alterations. Front Mol Neurosci 2022; 15:1039135. [PMID: 36466809 PMCID: PMC9709411 DOI: 10.3389/fnmol.2022.1039135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/26/2022] [Indexed: 08/29/2023] Open
Abstract
Recent evidence has shown that G protein-coupled receptors (GPCRs) are direct sensors of the autophagic machinery and opioid receptors regulate neuronal plasticity and neurotransmission with an as yet unclarified mechanism. Using in vitro and in vivo experimental approaches, this study aims to clarify the potential role of autophagy and κ-opioid receptor (κ-OR) signaling in synaptic alterations. We hereby demonstrate that the selective κ-OR agonist U50,488H, induces autophagy in a time-and dose-dependent manner in Neuro-2A cells stably expressing the human κ-OR by upregulating microtubule-associated protein Light Chain 3-II (LC3-II), Beclin 1 and Autophagy Related Gene 5 (ATG5). Pretreatment of neuronal cells with pertussis toxin blocked the above κ-OR-mediated cellular responses. Our molecular analysis also revealed a κ-OR-driven upregulation of becn1 gene through ERK1,2-dependent activation of the transcription factor CREB in Neuro-2A cells. Moreover, our studies demonstrated that sub-chronic U50,488H administration in mice causes profound increases of specific autophagic markers in the hippocampus with a concomitant decrease of several pre-and post-synaptic proteins, such as spinophilin, postsynaptic density protein 95 (PSD-95) and synaptosomal associated protein 25 (SNAP25). Finally, using acute stress, a stimulus known to increase the levels of the endogenous κ-OR ligand dynorphin, we are demonstrating that administration of the κ-ΟR selective antagonist, nor-binaltorphimine (norBNI), blocks the induction of autophagy and the stress-evoked reduction of synaptic proteins in the hippocampus. These findings provide novel insights about the essential role of autophagic machinery into the mechanisms through which κ-OR signaling regulates brain plasticity.
Collapse
Affiliation(s)
- Christos Karoussiotis
- Laboratory of Cellular Signaling and Molecular Pharmacology, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Aggeliki Sotiriou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Alexia Polissidis
- Center for Clinical Research, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Alexandra Symeonof
- Laboratory of Cellular Signaling and Molecular Pharmacology, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Danae Papavranoussi-Daponte
- Laboratory of Cellular Signaling and Molecular Pharmacology, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | | | - Zafiroula Georgoussi
- Laboratory of Cellular Signaling and Molecular Pharmacology, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
| |
Collapse
|
24
|
Limoges A, Yarur HE, Tejeda HA. Dynorphin/kappa opioid receptor system regulation on amygdaloid circuitry: Implications for neuropsychiatric disorders. Front Syst Neurosci 2022; 16:963691. [PMID: 36276608 PMCID: PMC9579273 DOI: 10.3389/fnsys.2022.963691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Amygdaloid circuits are involved in a variety of emotional and motivation-related behaviors and are impacted by stress. The amygdala expresses several neuromodulatory systems, including opioid peptides and their receptors. The Dynorphin (Dyn)/kappa opioid receptor (KOR) system has been implicated in the processing of emotional and stress-related information and is expressed in brain areas involved in stress and motivation. Dysregulation of the Dyn/KOR system has also been implicated in various neuropsychiatric disorders. However, there is limited information about the role of the Dyn/KOR system in regulating amygdala circuitry. Here, we review the literature on the (1) basic anatomy of the amygdala, (2) functional regulation of synaptic transmission by the Dyn/KOR system, (3) anatomical architecture and function of the Dyn/KOR system in the amygdala, (4) regulation of amygdala-dependent behaviors by the Dyn/KOR system, and (5) future directions for the field. Future work investigating how the Dyn/KOR system shapes a wide range of amygdala-related behaviors will be required to increase our understanding of underlying circuitry modulation by the Dyn/KOR system. We anticipate that continued focus on the amygdala Dyn/KOR system will also elucidate novel ways to target the Dyn/KOR system to treat neuropsychiatric disorders.
Collapse
Affiliation(s)
- Aaron Limoges
- Unit on Neuromodulation and Synaptic Integration, Bethesda, MD, United States
- NIH-Columbia University Individual Graduate Partnership Program, National Institutes of Health, Bethesda, MD, United States
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Hector E. Yarur
- Unit on Neuromodulation and Synaptic Integration, Bethesda, MD, United States
| | - Hugo A. Tejeda
- Unit on Neuromodulation and Synaptic Integration, Bethesda, MD, United States
- *Correspondence: Hugo A. Tejeda,
| |
Collapse
|
25
|
Substance use, microbiome and psychiatric disorders. Pharmacol Biochem Behav 2022; 219:173432. [PMID: 35905802 DOI: 10.1016/j.pbb.2022.173432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/29/2022] [Accepted: 07/20/2022] [Indexed: 11/21/2022]
Abstract
Accumulating evidence from several studies has shown association between substance use, dysregulation of the microbiome and psychiatric disorders such as depression, anxiety, and psychosis. Many of the abused substances such as cocaine and alcohol have been shown to alter immune signaling pathways and cause inflammation in both the periphery and the central nervous system (CNS). In addition, these substances of abuse also alter the composition and function of the gut microbiome which is known to play important roles such as the synthesis of neurotransmitters and metabolites, that affect the CNS homeostasis and consequent behavioral outcomes. The emerging interactions between substance use, microbiome and CNS neurochemical alterations could contribute to the development of psychiatric disorders. This review provides an overview of the associative effects of substance use such as alcohol, cocaine, methamphetamine, nicotine and opioids on the gut microbiome and psychiatric disorders involving anxiety, depression and psychosis. Understanding the relationship between substance use, microbiome and psychiatric disorders will provide insights for potential therapeutic targets, aimed at mitigating these adverse outcomes.
Collapse
|
26
|
Bee Pollen and Probiotics May Alter Brain Neuropeptide Levels in a Rodent Model of Autism Spectrum Disorders. Metabolites 2022; 12:metabo12060562. [PMID: 35736494 PMCID: PMC9230532 DOI: 10.3390/metabo12060562] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Neuropeptides play a major role in maintaining normal brain development in children. Dysfunction of some specific neuropeptides can lead to autism spectrum disorders (ASD) in terms of social interaction and repetitive behavior, but the exact underlying etiological mechanisms are still not clear. In this study, we used an animal model of autism to investigate the role of bee pollen and probiotic in maintaining neuropeptide levels in the brain. We measured the Alpha-melanocyte-stimulating hormone (α-MSH), Beta-endorphin (β-End), neurotensin (NT), and substance P (SP) in brain homogenates of six studied groups of rats. Group I served as control, given only PBS for 30 days; Group II as an autistic model treated with 250 mg PPA/kg BW/day for 3 days after being given PBS for 27 days. Groups III-VI were denoted as intervention groups. G-III was treated with bee pollen (BP) 250 mg/kg body weight/day; G-IV with Lactobacillus paracaseii (LB) (109 CFU/mL) suspended in PBS; G-V with 0.2 g/kg body weight/day Protexin®, a mixture of probiotics (MPB); and G-VI was transplanted with stool from normal animals (FT) for 27 days prior to the induction of PPA neurotoxicity on the last 3 days of study (days 28–30). The obtained data were analyzed through the use of principal component analysis (PCA), discriminant analysis (DA), hierarchical clustering, and receiver operating characteristic (ROC) curves as excellent statistical tools in the field of biomarkers. The obtained data revealed that brain levels of the four measured neuropeptides were significantly reduced in PPA-treated animals compared to healthy control animals. Moreover, the findings demonstrate the ameliorative effects of bee pollen as a prebiotic and of the pure or mixed probiotics. This study proves the protective effects of pre and probiotics against the neurotoxic effects of PPA presented as impaired levels of α-MSH, β-End, NT, and SP.
Collapse
|
27
|
Carey M, Sheehan D, Healy S, Knott F, Kinsella S. The Effects of a 16-Week School-Based Exercise Program on Anxiety in Children with Autism Spectrum Disorder. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095471. [PMID: 35564866 PMCID: PMC9104305 DOI: 10.3390/ijerph19095471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 12/04/2022]
Abstract
Physical activity interventions have been shown to decrease anxiety in children with ASD. There is little known regarding the effects of an exercise program on anxiety in both home and school settings and the optimal dosage to reduce anxiety. Therefore, the aim of this study was to assess the effects of a 16-week exercise program on the anxiety levels of children with moderate to severe symptoms of ASD in home and school settings, and to compare the effects at 8 and 16 weeks. This study was a within-subject, non-controlled design, intervention study. Twenty-four children (5−18 years) with moderate to severe ASD were included. A school-based exercise program was implemented three days a week for 16 weeks. Parents and teachers completed the Anxiety Scale for Children for ASD (ASC-ASD) at baseline, week 8, and week 16. A one-way repeated-measure ANOVA with post hoc analysis using Bonferroni adjustment was used to test for a significant effect for time (p < 0.05), with Cohen’s d used to calculate the effect size. For teacher-reported anxiety, there were significant decreases from baseline to week 16 for total ASC-ASD (p < 0.001), performance anxiety (p < 0.001), anxious arousal (p < 0.001), and uncertainty (p < 0.001). There was no significant decrease in parent-reported anxiety. The findings demonstrate that a 16-week exercise program can reduce anxiety in children with ASD in school settings. Results demonstrate that 16 weeks, as opposed to 8, may be necessary to have a significant effect on in-school anxiety.
Collapse
Affiliation(s)
- Marie Carey
- Autism Research Group, Department of Health and Sport Science, Institute of Technology Carlow, R93 V960 Carlow, Ireland; (M.C.); (D.S.)
| | - Damien Sheehan
- Autism Research Group, Department of Health and Sport Science, Institute of Technology Carlow, R93 V960 Carlow, Ireland; (M.C.); (D.S.)
| | - Sean Healy
- School of Nursing, Psychotherapy and Community Health, Dublin City University, D09 Y5N0 Dublin, Ireland;
| | - Fiona Knott
- Department of Psychology, University of Reading, Reading RG6 6EU, UK;
| | - Sharon Kinsella
- Autism Research Group, Department of Health and Sport Science, Institute of Technology Carlow, R93 V960 Carlow, Ireland; (M.C.); (D.S.)
- Correspondence: ; Tel.: +353-599175515
| |
Collapse
|
28
|
Zan GY, Sun X, Wang YJ, Liu R, Wang CY, Du WJ, Guo LB, Chai JR, Li QL, Liu ZQ, Liu JG. Amygdala dynorphin/κ opioid receptor system modulates depressive-like behavior in mice following chronic social defeat stress. Acta Pharmacol Sin 2022; 43:577-587. [PMID: 34035484 PMCID: PMC8888759 DOI: 10.1038/s41401-021-00677-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/02/2021] [Indexed: 02/03/2023] Open
Abstract
Major depression disorder is a severe and recurrent neuropsychological disorder characterized by lowered mood and social activity and cognitive impairment. Owing to unclear molecular mechanisms of depression, limited interventions are available in clinic. In this study we investigated the role of dynorphin/κ opioid receptor system in the development of depression. Mice were subjected to chronic social defeat stress for 14 days. Chronic social defeat stress induced significant social avoidance in mice characterized by decreased time duration in the interaction zone and increased time duration in the corner zone. Pre-administration of a κ opioid receptor antagonist norBNI (10 mg/kg, i.p.) could prevent the development of social avoidance induced by chronic social defeat stress. Social avoidance was not observed in κ opioid receptor knockout mice subjected to chronic social defeat stress. We further revealed that social defeat stress activated c-fos and ERK signaling in the amygdala without affecting the NAc, hippocampus and hypothalamus, and ERK activation was blocked by systemic injection of norBNI. Finally, the expression of dynorphin A, the endogenous ligand of κ opioid receptor, was significantly increased in the amygdala following social defeat stress; microinjection of norBNI into the amygdala prevented the development of depressive-like behaviors caused by social defeat stress. The present study demonstrates that upregulated dynorphin/κ opioid receptor system in the amygdala leads to the emergence of depression following chronic social defeat stress, and sheds light on κ opioid receptor antagonists as potential therapeutic agents for the prevention and treatment of depression following chronic stress.
Collapse
Affiliation(s)
- Gui-ying Zan
- grid.24516.340000000123704535Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China ,grid.419093.60000 0004 0619 8396Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiang Sun
- grid.252251.30000 0004 1757 8247Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Yu-jun Wang
- grid.419093.60000 0004 0619 8396Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Rui Liu
- grid.24516.340000000123704535Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Chen-yao Wang
- grid.419093.60000 0004 0619 8396Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-jia Du
- grid.24516.340000000123704535Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Liu-bin Guo
- grid.419093.60000 0004 0619 8396Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jing-rui Chai
- grid.419093.60000 0004 0619 8396Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qing-lin Li
- grid.252251.30000 0004 1757 8247Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Zhi-qiang Liu
- grid.24516.340000000123704535Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Jing-gen Liu
- grid.419093.60000 0004 0619 8396Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
29
|
Blockade of kappa opioid receptors reduces mechanical hyperalgesia and anxiety-like behavior in a rat model of trigeminal neuropathic pain. Behav Brain Res 2022; 417:113595. [PMID: 34592375 DOI: 10.1016/j.bbr.2021.113595] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 09/12/2021] [Accepted: 09/20/2021] [Indexed: 12/18/2022]
Abstract
It has been shown that kappa opioid receptor (KOR) antagonists, such as nor-binaltorphimine (nor-BNI), have antinociceptive effects in some pain models that affect the trigeminal system. Also, its anxiolytic-like effect has been extensively demonstrated in the literature. The present study aimed to investigate the systemic, local, and central effect of nor-BNI on trigeminal neuropathic pain using the infraorbital nerve constriction model (CCI-ION), as well as to evaluate its effect on anxiety-like behavior associated with this model. Animals received nor-BNI systemically; in the trigeminal ganglion (TG); in the subarachnoid space to target the spinal trigeminal nucleus caudalis (Sp5C) or in the central amygdala (CeA) 14 days after CCI-ION surgery. Systemic administration of nor-BNI caused a significant reduction of facial mechanical hyperalgesia and promoted an anxiolytic-like effect, which was detected in the elevated plus-maze and the light-dark transition tests. When administered in the TG or CeA, the KOR antagonist was able to reduce facial mechanical hyperalgesia induced by CCI-ION, but without changing the anxiety-like behavior. Moreover, no change was observed on nociception and anxiety-like behavior after nor-BNI injection into the Sp5C. The present study demonstrated antinociceptive and anxiolytic-like effects of nor-BNI in a model of trigeminal neuropathic pain. The antinociceptive effect seems to be dissociated from the anxiolytic-like effect, at both the sites involved and at the dose need to achieve the effect. In conclusion, the kappa opioid system may represent a promising target to be explored for the control of trigeminal pain and associated anxiety. However, further studies are necessary to better elucidate its functioning and modulatory role in chronic trigeminal pain states.
Collapse
|
30
|
Almeida CAF, Pereira-Junior AA, Rangel JG, Pereira BP, Costa KCM, Bruno V, Silveira GO, Ceron CS, Yonamine M, Camarini R, Garcia RCT, Marcourakis T, Torres LH. Ayahuasca, a psychedelic beverage, modulates neuroplasticity induced by ethanol in mice. Behav Brain Res 2022; 416:113546. [PMID: 34437939 DOI: 10.1016/j.bbr.2021.113546] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/30/2021] [Accepted: 08/21/2021] [Indexed: 12/29/2022]
Abstract
Alcohol use disorder needs more effective treatments because relapse rates remain high. Psychedelics, such as ayahuasca, have been used to treat substance use disorders. Our study aimed to evaluate the effects of ayahuasca on ethanol-induced behavioral sensitization (EIBS). Swiss mice received 2.2 g/kg ethanol or saline IP injections every other day across nine days (D1, D3, D5, D7, and D9), and locomotor activity was evaluated 10 min after each injection. Then, animals were treated daily with ayahuasca (corresponding to 1.76 mg/kg of N,N-dimethyltryptamine, DMT) or water by oral gavage for eight consecutive days. On the seventh day, mice were evaluated in the elevated plus maze. Then, mice were challenged with a single dose of ethanol to measure their locomotor activity. Dopamine receptors, serotonin receptors, dynorphin, and prodynorphin levels were quantified in the striatum and hippocampus by blot analysis. Repeated ethanol administration resulted in EIBS. However, those animals treated with ayahuasca had an attenuated EIBS. Moreover, ayahuasca reduced the anxiogenic response to ethanol withdrawal and prevented the ethanol-induced changes on 5-HT1a receptor and prodynorphin levels in the hippocampus and reduced ethanol effects in the dynorphin/prodynorphin ratio levels in the striatum. These results suggest a potential application of ayahuasca to modulate the neuroplastic changes induced by ethanol.
Collapse
Affiliation(s)
- Carolina Aparecida Faria Almeida
- Department of Food and Drugs, School of Pharmaceutical Sciences, Federal University of Alfenas, Rua Gabriel Monteiro Da Silva, 700, 37130-001, Alfenas, MG, Brazil
| | - Antonio Alves Pereira-Junior
- Department of Food and Drugs, School of Pharmaceutical Sciences, Federal University of Alfenas, Rua Gabriel Monteiro Da Silva, 700, 37130-001, Alfenas, MG, Brazil
| | - Jéssica Gonçalves Rangel
- Department of Food and Drugs, School of Pharmaceutical Sciences, Federal University of Alfenas, Rua Gabriel Monteiro Da Silva, 700, 37130-001, Alfenas, MG, Brazil
| | - Bruna Pinheiro Pereira
- Department of Food and Drugs, School of Pharmaceutical Sciences, Federal University of Alfenas, Rua Gabriel Monteiro Da Silva, 700, 37130-001, Alfenas, MG, Brazil
| | - Karla Cristinne Mancini Costa
- Department of Food and Drugs, School of Pharmaceutical Sciences, Federal University of Alfenas, Rua Gabriel Monteiro Da Silva, 700, 37130-001, Alfenas, MG, Brazil
| | - Vitor Bruno
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, Bl. 13B, 05508-000, São Paulo, SP, Brazil
| | - Gabriela Oliveira Silveira
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, Bl. 13B, 05508-000, São Paulo, SP, Brazil
| | - Carla Speroni Ceron
- Department of Food and Drugs, School of Pharmaceutical Sciences, Federal University of Alfenas, Rua Gabriel Monteiro Da Silva, 700, 37130-001, Alfenas, MG, Brazil
| | - Mauricio Yonamine
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, Bl. 13B, 05508-000, São Paulo, SP, Brazil
| | - Rosana Camarini
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes, 1524, Prédio 1, 05508-900, São Paulo, SP, Brazil
| | - Raphael Caio Tamborelli Garcia
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Rua São Nicolau, 210, 1° Andar, 09913-030, Diadema, SP, Brazil
| | - Tania Marcourakis
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, Bl. 13B, 05508-000, São Paulo, SP, Brazil
| | - Larissa Helena Torres
- Department of Food and Drugs, School of Pharmaceutical Sciences, Federal University of Alfenas, Rua Gabriel Monteiro Da Silva, 700, 37130-001, Alfenas, MG, Brazil.
| |
Collapse
|
31
|
Grillo L. A Possible Anti-anxiety Effect of Appetitive Aggression and a Possible Link to the Work of Donald Winnicott. Scand J Child Adolesc Psychiatr Psychol 2022; 10:102-113. [PMID: 36133733 PMCID: PMC9454322 DOI: 10.2478/sjcapp-2022-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Various pleasant sensations that give a particularly intense pleasure are able to improve anxiety. In the present study I consider the possibility that their anti-anxiety action depends on the strong pleasure they provide, and I propose a possible mechanism of this action. According to some studies, also appetitive aggression (an aggression that provokes a strong pleasure and that is performed only for the pleasure it provides) can improve anxiety, and in this article I consider the possibility that the pleasure of appetitive aggression is able to reduce anxiety by the same mechanism I have proposed for other intense pleasurable sensations. The aggression performed by a child against the mother or against a substitute for the mother in the first period of life (a period in which this aggression is not dangerous) is a recurring theme throughout the work of of Donald Winnicott. Winnicott stresses that this aggression is necessary for the normal development of the child, and that the child must be free to practise it. According to Winnicott, this aggression is highly pleasurable and is not a response to unpleasant or hostile external situations. For these characteristics it seems to correspond to appetitive aggression in the adult that has been found to be able to reduce anxiety. Consequently, aggression performed by the child in the first period of life may also relieve anxiety, in the same way that appetitive aggression helps against anxiety in the adult. In his writings, Winnicott returns several times to an unthinkable or archaic anxiety that children experience when they feel abandoned by their mother for a period that is too long for them, and all children, according to Winnicott, live on the brink of this anxiety. In this study I propose the hypothesis that aggression in the early period of life may be necessary for children because the intense pleasure it provides may help them against this continuously impending anxiety.
Collapse
Affiliation(s)
- Luigi Grillo
- San Giorgio su Legnano via Ragazzi del 99Milano MI, Italy
| |
Collapse
|
32
|
Leung J, Santo T, Colledge-Frisby S, Mekonen T, Thomson K, Degenhardt L, Connor JP, Hall W, Stjepanović D. OUP accepted manuscript. PAIN MEDICINE 2022; 23:1442-1456. [PMID: 35167694 PMCID: PMC9340651 DOI: 10.1093/pm/pnac029] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/21/2021] [Accepted: 01/28/2022] [Indexed: 12/01/2022]
Abstract
Objective To review evidence from longitudinal studies on the association between prescription opioid use and common mood and anxiety symptoms. Design We conducted a systematic review and meta-analysis according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Methods We searched PubMed, Embase, and PsycINFO for search terms related to opioids AND (depression OR bipolar OR anxiety OR post-traumatic stress disorder [PTSD]). Findings were summarized narratively, and random-effects meta-analyses were used to pool effect sizes. Results We identified 10,290 records and found 10 articles that met our inclusion criteria. Incidence studies showed that people who used prescription opioids had an elevated risk of any mood outcome (adjusted effect size [aES] = 1.80 [95% confidence interval = 1.40–2.30]) and of an anxiety outcome (aES = 1.40 [1.20–1.80]) compared with those who did not use prescription opioids. Associations with depression were small and not significant after adjustment for potential confounders (aES = 1.18 [0.98–1.41]). However, some studies reported an increased risk of depressive symptoms after increased (aES = 1.58 [1.30–1.93]) or prolonged opioid use (aES = 1.49 [1.19–1.86]). Conclusions Mental health should be considered when opioids are prescribed because some patients could be vulnerable to adverse mental health outcomes.
Collapse
Affiliation(s)
- Janni Leung
- National Centre for Youth Substance Use Research, The University of Queensland, St Lucia, Australia
- School of Psychology, The University of Queensland, St Lucia, Australia
- National Drug and Alcohol Research Centre, University of New South Wales, Sydney, Australia
| | - Thomas Santo
- National Drug and Alcohol Research Centre, University of New South Wales, Sydney, Australia
| | | | - Tesfa Mekonen
- National Centre for Youth Substance Use Research, The University of Queensland, St Lucia, Australia
- School of Psychology, The University of Queensland, St Lucia, Australia
- Psychiatry Department, Bahir Dar University, Bahir Dar, Ethiopia
| | - Kate Thomson
- National Centre for Youth Substance Use Research, The University of Queensland, St Lucia, Australia
- School of Medicine and Dentistry, Griffith Health, Griffith University, Southport, Australia
| | - Louisa Degenhardt
- National Drug and Alcohol Research Centre, University of New South Wales, Sydney, Australia
| | - Jason P Connor
- National Centre for Youth Substance Use Research, The University of Queensland, St Lucia, Australia
- Discipline of Psychiatry, Faculty of Medicine, The University of Queensland, Herston, Australia
| | - Wayne Hall
- National Centre for Youth Substance Use Research, The University of Queensland, St Lucia, Australia
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Herston, Australia
- Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Daniel Stjepanović
- Correspondence to: Daniel Stjepanović, PhD, NCYSUR, The University of Queensland, 17 Upland Road, St Lucia, Brisbane, QLD 4072, Australia. Tel: +61 7 3443 2534; Fax: +61 7 334 69136; E-mail:
| |
Collapse
|
33
|
Estave PM, Spodnick MB, Karkhanis AN. KOR Control over Addiction Processing: An Exploration of the Mesolimbic Dopamine Pathway. Handb Exp Pharmacol 2022; 271:351-377. [PMID: 33301050 PMCID: PMC8192597 DOI: 10.1007/164_2020_421] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Drug addiction is a complex, persistent, and chronically relapsing neurological disorder exacerbated by acute and chronic stress. It is well known that the dynorphin/kappa opioid receptor (KOR) system regulates stress perception and responsivity, while the mesolimbic dopamine system plays a role in reward and reinforcement associated with alcohol and substance use disorders. Interestingly, the dopamine and dynorphin/KOR systems are highly integrated in mesolimbic areas, with KOR activation leading to inhibition of dopamine release, further altering the perception of reinforcing and aversive stimuli. Chronic or repeated exposure to stress or drugs potentiates KOR function ultimately contributing to a hypodopaminergic state. This hypodopaminergic state is one of the hallmarks of hyperkatifeia, defined as the hypersensitivity to emotional distress that is exacerbated during drug withdrawal and abstinence. The relationship between stress and drug addiction is bidirectional; repeated/chronic stress promotes pro-addictive behaviors, and repeated cycles of drug exposure and withdrawal, across various drug classes, produces stress. Neuroadaptations driven by this bidirectional relationship ultimately influence the perception of the reinforcing value of rewarding stimuli. In this chapter, we address the involvement of the dopamine and dynorphin/KOR systems and their interactions in shaping reinforcement value processing after drug and stress exposure, as well as a combinatorial impact of both drugs and stress.
Collapse
Affiliation(s)
- Paige M Estave
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Mary B Spodnick
- Department of Psychology, Developmental Exposure Alcohol Research Center, Center for Developmental and Behavioral Neuroscience, Binghamton University - SUNY, Binghamton, NY, USA
| | - Anushree N Karkhanis
- Department of Psychology, Developmental Exposure Alcohol Research Center, Center for Developmental and Behavioral Neuroscience, Binghamton University - SUNY, Binghamton, NY, USA.
| |
Collapse
|
34
|
Karasawa Y, Miyano K, Fujii H, Mizuguchi T, Kuroda Y, Nonaka M, Komatsu A, Ohshima K, Yamaguchi M, Yamaguchi K, Iseki M, Uezono Y, Hayashida M. In Vitro Analyses of Spinach-Derived Opioid Peptides, Rubiscolins: Receptor Selectivity and Intracellular Activities through G Protein- and β-Arrestin-Mediated Pathways. Molecules 2021; 26:molecules26196079. [PMID: 34641621 PMCID: PMC8513079 DOI: 10.3390/molecules26196079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022] Open
Abstract
Activated opioid receptors transmit internal signals through two major pathways: the G-protein-mediated pathway, which exerts analgesia, and the β-arrestin-mediated pathway, which leads to unfavorable side effects. Hence, G-protein-biased opioid agonists are preferable as opioid analgesics. Rubiscolins, the spinach-derived naturally occurring opioid peptides, are selective δ opioid receptor agonists, and their p.o. administration exhibits antinociceptive effects. Although the potency and effect of rubiscolins as G-protein-biased molecules are partially confirmed, their in vitro profiles remain unclear. We, therefore, evaluated the properties of rubiscolins, in detail, through several analyses, including the CellKeyTM assay, cADDis® cAMP assay, and PathHunter® β-arrestin recruitment assay, using cells stably expressing µ, δ, κ, or µ/δ heteromer opioid receptors. In the CellKeyTM assay, rubiscolins showed selective agonistic effects for δ opioid receptor and little agonistic or antagonistic effects for µ and κ opioid receptors. Furthermore, rubiscolins were found to be G-protein-biased δ opioid receptor agonists based on the results obtained in cADDis® cAMP and PathHunter® β-arrestin recruitment assays. Finally, we found, for the first time, that they are also partially agonistic for the µ/δ dimers. In conclusion, rubiscolins could serve as attractive seeds, as δ opioid receptor-specific agonists, for the development of novel opioid analgesics with reduced side effects.
Collapse
Affiliation(s)
- Yusuke Karasawa
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.K.); (Y.K.); (A.K.); (M.Y.); (K.Y.); (M.I.); (M.H.)
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (M.N.); (K.O.)
- Medical Affairs, Viatris Pharmaceuticals Japan Inc., 5-11-2, Toranomon, Minato-ku, Tokyo 105-0001, Japan
| | - Kanako Miyano
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan;
| | - Hideaki Fujii
- Laboratory of Medicinal Chemistry and Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan; (H.F.); (T.M.)
| | - Takaaki Mizuguchi
- Laboratory of Medicinal Chemistry and Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan; (H.F.); (T.M.)
| | - Yui Kuroda
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.K.); (Y.K.); (A.K.); (M.Y.); (K.Y.); (M.I.); (M.H.)
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (M.N.); (K.O.)
- Department of Anesthesiology and Pain Medicine, Faculty of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Miki Nonaka
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (M.N.); (K.O.)
| | - Akane Komatsu
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.K.); (Y.K.); (A.K.); (M.Y.); (K.Y.); (M.I.); (M.H.)
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (M.N.); (K.O.)
- Department of Anesthesiology and Pain Medicine, Faculty of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kaori Ohshima
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (M.N.); (K.O.)
| | - Masahiro Yamaguchi
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.K.); (Y.K.); (A.K.); (M.Y.); (K.Y.); (M.I.); (M.H.)
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (M.N.); (K.O.)
- Medical Affairs, Pfizer Japan Inc., 3-22-7, Yoyogi, Shibuya-ku, Tokyo 151-0053, Japan
| | - Keisuke Yamaguchi
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.K.); (Y.K.); (A.K.); (M.Y.); (K.Y.); (M.I.); (M.H.)
- Department of Anesthesiology and Pain Medicine, Faculty of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Masako Iseki
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.K.); (Y.K.); (A.K.); (M.Y.); (K.Y.); (M.I.); (M.H.)
- Department of Anesthesiology and Pain Medicine, Faculty of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yasuhito Uezono
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.K.); (Y.K.); (A.K.); (M.Y.); (K.Y.); (M.I.); (M.H.)
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (M.N.); (K.O.)
- Correspondence:
| | - Masakazu Hayashida
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.K.); (Y.K.); (A.K.); (M.Y.); (K.Y.); (M.I.); (M.H.)
- Department of Anesthesiology and Pain Medicine, Faculty of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
35
|
Maltsev DV, Spasov AA, Miroshnikov MV, Skripka MO. Current Approaches to the Search of Anxiolytic Drugs. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021030122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Rosoff DB, Smith GD, Lohoff FW. Prescription Opioid Use and Risk for Major Depressive Disorder and Anxiety and Stress-Related Disorders: A Multivariable Mendelian Randomization Analysis. JAMA Psychiatry 2021; 78:151-160. [PMID: 33175090 PMCID: PMC7658804 DOI: 10.1001/jamapsychiatry.2020.3554] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
IMPORTANCE Growing evidence suggests that prescription opioid use affects depression and anxiety disorders; however, observational studies are subject to confounding, making causal inference and determining the direction of these associations difficult. OBJECTIVE To investigate the potential bidirectional associations between the genetic liability for prescription opioid and other nonopioid pain medications and both major depressive disorder (MDD) and anxiety and stress-related disorders (ASRD) using genetically based methods. DESIGN, SETTING, AND PARTICIPANTS We performed 2-sample mendelian randomization (MR) using summary statistics from genome-wide association studies (GWAS) to assess potential associations of self-reported prescription opioid and nonopioid analgesics, including nonsteroidal anti-inflammatories (NSAIDs) and acetaminophen-like derivatives use with MDD and ASRD. The GWAS data were derived from participants of predominantly European ancestry included in observational cohorts. Data were analyzed February 20, 2020, to May 4, 2020. MAIN OUTCOMES AND MEASURES Major depressive disorder, ASRD, and self-reported pain medications (opioids, NSAIDs, anilides, and salicylic acid). RESULTS The GWAS data were derived from participants of predominantly European ancestry included in the population-based UK Biobank and Lundbeck Foundation Initiative for Integrative Psychiatric Research studies: approximately 54% of the initial UK Biobank sample and 55.6% of the Lundbeck Foundation Initiative for Integrative Psychiatric Research sample selected for the ASRD GWAS were women. In a combined sample size of 737 473 study participants, single-variable MR showed that genetic liability for increased prescription opioid use was associated with increased risk of both MDD (odds ratio [OR] per unit increase in log odds opioid use, 1.14; 95% CI, 1.06-1.22; P < .001) and ASRD (OR, 1.24; 95% CI, 1.07-1.44; P = .004). Using multivariable MR, these opioid use estimates remained after accounting for other nonopioid pain medications (MDD OR, 1.14; 95% CI, 1.04-1.25; P = .005; ASRD OR, 1.30; 95% CI, 1.08-1.46; P = .006), and in separate models, accounting for comorbid pain conditions. Bidirectional analyses showed that genetic liability for MDD but not ASRD was associated with increased prescription opioid use risk (OR, 1.18; 95% CI, 1.08-1.30; P < .001). These estimates were generally consistent across single-variable and multivariable inverse variance-weighted (MV-IVW) and MR-Egger sensitivity analyses. Pleiotropy-robust methods did not indicate bias in any MV-IVW estimates. CONCLUSIONS AND RELEVANCE The findings of this mendelian randomization analysis suggest evidence for potential causal associations between the genetic liability for increased prescription opioid use and the risk for MDD and ASRD. While replication studies are necessary, these findings may inform prevention and intervention strategies directed toward the opioid epidemic and depression.
Collapse
Affiliation(s)
- Daniel B. Rosoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - George Davey Smith
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, England
| | - Falk W. Lohoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
37
|
Brockway DF, Crowley NA. Turning the 'Tides on Neuropsychiatric Diseases: The Role of Peptides in the Prefrontal Cortex. Front Behav Neurosci 2020; 14:588400. [PMID: 33192369 PMCID: PMC7606924 DOI: 10.3389/fnbeh.2020.588400] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
Recent advancements in technology have enabled researchers to probe the brain with the greater region, cell, and receptor specificity. These developments have allowed for a more thorough understanding of how regulation of the neurophysiology within a region is essential for maintaining healthy brain function. Stress has been shown to alter the prefrontal cortex (PFC) functioning, and evidence links functional impairments in PFC brain activity with neuropsychiatric disorders. Moreover, a growing body of literature highlights the importance of neuropeptides in the PFC to modulate neural signaling and to influence behavior. The converging evidence outlined in this review indicates that neuropeptides in the PFC are specifically impacted by stress, and are found to be dysregulated in numerous stress-related neuropsychiatric disorders including substance use disorder, major depressive disorder (MDD), posttraumatic stress disorder, and schizophrenia. This review explores how neuropeptides in the PFC function to regulate the neural activity, and how genetic and environmental factors, such as stress, lead to dysregulation in neuropeptide systems, which may ultimately contribute to the pathology of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Dakota F Brockway
- Neuroscience Curriculum, Pennsylvania State University, University Park, PA, United States
| | - Nicole A Crowley
- Neuroscience Curriculum, Pennsylvania State University, University Park, PA, United States.,The Department of Biology, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
38
|
Calvo F, Almada RC, da Silva JA, Medeiros P, da Silva Soares R, de Paiva YB, Roncon CM, Coimbra NC. The Blockade of µ1- and κ-Opioid Receptors in the Inferior Colliculus Decreases the Expression of Panic Attack-Like Behaviours Induced by Chemical Stimulation of the Dorsal Midbrain. Neuropsychobiology 2020; 78:218-228. [PMID: 31514182 DOI: 10.1159/000502439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/22/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Gamma-aminobutyric acid (GABA)ergic and opioid systems play a crucial role in the neural modulation of innate fear organised by the inferior colliculus (IC). In addition, the IC is rich in GABAergic fibres and opioid neurons, which are also connected to other mesencephalic structures, such as the superior colliculus and the substantia nigra. However, the contribution of distinct opioid receptors (ORs) in the IC during the elaboration and expression of innate fear and panic-like responses is unclear. The purpose of the present work was to investigate a possible integrated action exerted by ORs and the GABAA receptor-mediated system in the IC on panic-like responses. METHODS The effect of the blockade of either µ1- or κ-ORs in the IC was evaluated in the unconditioned fear-induced responses elicited by GABAA antagonism with bicuculline. Microinjections of naloxonazine, a µ1-OR antagonist, or nor-binaltorphimine (nor-BNI), a κ-OR antagonist, were made into the IC, followed by intramesencephalic administration of the GABAA-receptor antagonist bicuculline. The defensive behaviours elicited by the treatments in the IC were quantitatively analysed, recording the number of escapes expressed as running (crossing), jumps, and rotations, over a 30-min period in a circular arena. The exploratory behaviour of rearing was also recorded. RESULTS GABAA-receptor blockade with bicuculline in the IC increased defensive behaviours. However, pretreatment of the IC with higher doses (5 µg) of naloxonazine or nor-BNI followed by bicuculline resulted in a significant decrease in unconditioned fear-induced responses. CONCLUSIONS These findings suggest a role played by µ1- and κ-OR-containing connexions and GABAA receptor-mediated neurotransmission on the organisation of panic attack-related responses elaborated by the IC neurons.
Collapse
Affiliation(s)
- Fabrício Calvo
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil.,Department of Pharmacology, São Lucas College, Porto Velho, Brazil.,Aparício Carvalho Integrative College (FIMCA), Porto Velho, Brazil
| | - Rafael Carvalho Almada
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil.,Institute of Neuroscience and Behaviour (INeC), Ribeirão Preto, Brazil
| | - Juliana Almeida da Silva
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil.,Institute of Neuroscience and Behaviour (INeC), Ribeirão Preto, Brazil
| | - Priscila Medeiros
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Raimundo da Silva Soares
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Yara Bezerra de Paiva
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Camila Marroni Roncon
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil.,Assis County Educational Foundation (FEMA), Assis, Brazil
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil, .,Institute of Neuroscience and Behaviour (INeC), Ribeirão Preto, Brazil, .,NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil,
| |
Collapse
|
39
|
Varlinskaya EI, Johnson JM, Przybysz KR, Deak T, Diaz MR. Adolescent forced swim stress increases social anxiety-like behaviors and alters kappa opioid receptor function in the basolateral amygdala of male rats. Prog Neuropsychopharmacol Biol Psychiatry 2020; 98:109812. [PMID: 31707090 PMCID: PMC6920550 DOI: 10.1016/j.pnpbp.2019.109812] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/15/2022]
Abstract
Adolescence is a developmental period marked by robust neural alterations and heightened vulnerability to stress, a factor that is highly associated with increased risk for emotional processing deficits, such as anxiety. Stress-induced upregulation of the dynorphin/kappa opioid receptor (DYN/KOP) system is thought to, in part, underlie the negative affect associated with stress. The basolateral amygdala (BLA) is a key structure involved in anxiety, and neuromodulatory systems, such as the DYN/KOP system, can 1) regulate BLA neural activity in an age-dependent manner in stress-naïve animals and 2) underlie stress-induced anxiety in adults. However, the role of the DYN/KOP system in modulating stress-induced anxiety in adolescents is unknown. To test this, we examined the impact of an acute, 2-day forced swim stress (FSS - 10 min each day) on adolescent (~postnatal day (P) 35) and adult Sprague-Dawley rats (~P70), followed by behavioral, molecular and electrophysiological assessment 24 h following FSS. Adolescent males, but not adult males or females of either age, demonstrated social anxiety-like behavioral alterations indexed via significantly reduced social investigation and preference when tested 24 h following FSS. Conversely, adult males exhibited increased social preference. While there were no FSS-induced changes in expression of genes related to the DYN/KOP system in the BLA, these behavioral alterations were associated with alterations in BLA KOP function. Specifically, while GABA transmission in BLA pyramidal neurons from non-stressed adolescent males responded variably (potentiated, suppressed, or was unchanged) to the KOP agonist, U69593, U69593 significantly inhibited BLA GABA transmission in the majority of neurons from stressed adolescent males, consistent with the observed anxiogenic phenotype in stressed adolescent males. This is the first study to demonstrate stress-induced alterations in BLA KOP function that may contribute to stress-induced social anxiety in adolescent males. Importantly, these findings provide evidence for potential KOP-dependent mechanisms that may contribute to pathophysiological interactions with subsequent stress challenges.
Collapse
Affiliation(s)
- E I Varlinskaya
- Department of Psychology, Center for Development and Behavioral Neuroscience, Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY 13902, United States
| | - J M Johnson
- Department of Psychology, Center for Development and Behavioral Neuroscience, Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY 13902, United States
| | - K R Przybysz
- Department of Psychology, Center for Development and Behavioral Neuroscience, Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY 13902, United States
| | - T Deak
- Department of Psychology, Center for Development and Behavioral Neuroscience, Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY 13902, United States
| | - M R Diaz
- Department of Psychology, Center for Development and Behavioral Neuroscience, Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY 13902, United States.
| |
Collapse
|
40
|
Przybysz KR, Varlinskaya EI, Diaz MR. Age and sex regulate kappa opioid receptor-mediated anxiety-like behavior in rats. Behav Brain Res 2020; 379:112379. [PMID: 31765725 PMCID: PMC10466214 DOI: 10.1016/j.bbr.2019.112379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/04/2019] [Accepted: 11/21/2019] [Indexed: 12/18/2022]
Abstract
Anxiety occurs across ontogeny, but there is evidence that its etiology may vary across the lifespan. The kappa opioid receptor (KOR) system mediates some of the anxiogenic effects of stress and drug exposure, and is involved in aversive responses to environmental stimuli. However, much of this work has been conducted in adult males. Work assessing the effects of KOR activation in younger males has demonstrated that this system produces an anxiolytic/no response, indicating that that this system may be developmentally regulated. Despite these discrepancies, a direct comparison of KOR-induced anxiety in stress-naïve adolescents and adults has not been done. Additionally, the effects of KOR activation in females are poorly understood. Therefore, we assessed the impact of KOR activation on anxiety-like behavior in adolescent and adult male and female Sprague-Dawley rats. Animals were given an i.p. injection of the KOR agonist U69593 (0.01, 0.1, 1.0 mg/kg or vehicle) and were tested using the elevated plus maze. U69593 decreased open arm time in adult males, indicating increased anxiety-like behavior. Adolescents exhibited decreased stretch attend postures when collapsed across sex, suggesting reduced anxiety-like behavior. Adult females were not affected by U69593 administration. These data support studies that have identified age-dependent changes in the KOR system in males, and provide novel evidence that females may not exhibit this ontogenetic change. Given the prevalence of stress and drug exposure during the adolescent period, differences in how the KOR system may mediate the effects of these exposures across age and sex should be explored.
Collapse
Affiliation(s)
- Kathryn R Przybysz
- Department of Psychology, Center for Development and Behavioral Neuroscience, United States; Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY 13902, United States
| | - Elena I Varlinskaya
- Department of Psychology, Center for Development and Behavioral Neuroscience, United States; Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY 13902, United States
| | - Marvin R Diaz
- Department of Psychology, Center for Development and Behavioral Neuroscience, United States; Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY 13902, United States.
| |
Collapse
|
41
|
Jacobson ML, Browne CA, Lucki I. Kappa Opioid Receptor Antagonists as Potential Therapeutics for Stress-Related Disorders. Annu Rev Pharmacol Toxicol 2020; 60:615-636. [DOI: 10.1146/annurev-pharmtox-010919-023317] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Exposure to stressful stimuli activates kappa opioid receptor (KOR) signaling, a process known to produce aversion and dysphoria in humans and other species. This endogenous opioid system is dysregulated in stress-related disorders, specifically in major depressive disorder (MDD). These findings serve as the foundation for a growing interest in the therapeutic potential of KOR antagonists as novel antidepressants. In this review, data supporting the hypothesis of dysregulated KOR function in MDD are considered. The clinical data demonstrating the therapeutic efficacy and safety of selective and mixed opioid antagonists are then presented. Finally, the preclinical evidence illustrating the induction of behaviors relevant to the endophenotypes of MDD and KOR antagonist activity in stress-naïve and stress-exposed animals is evaluated. Overall, this review highlights the emergent literature supporting the pursuit of KOR antagonists as novel therapeutics for MDD and other stress-related disorders.
Collapse
Affiliation(s)
- Moriah L. Jacobson
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | - Caroline A. Browne
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | - Irwin Lucki
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
- Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| |
Collapse
|
42
|
Xi MY, Li SS, Zhang C, Zhang L, Wang T, Yu C. Nalbuphine for Analgesia After Orthognathic Surgery and Its Effect on Postoperative Inflammatory and Oxidative Stress: A Randomized Double-Blind Controlled Trial. J Oral Maxillofac Surg 2019; 78:528-537. [PMID: 31785250 DOI: 10.1016/j.joms.2019.10.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 12/19/2022]
Abstract
PURPOSE Postoperative pain is a negative factor that seriously affects a surgical patient's rehabilitation. We investigated whether nalbuphine provides superior postoperative analgesia in orthognathic surgery compared with sufentanil and whether the superior analgesia is achieved by the regulation of inflammatory and oxidative stress. PATIENTS AND METHODS In the present randomized, double-blind, controlled clinical trial, 60 patients scheduled to undergo orthognathic surgery were randomized to receive 2.5 μg/kg of sufentanil (group S) or 2 mg/kg of nalbuphine (group N) for postoperative controlled intravenous analgesia. The primary outcome variable was the visual analog scale (VAS) score. The secondary outcome variables included the sedation score (Ramsay score) and plasma levels of inflammation factors, including tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), and oxidant stress factors, including malondialdehyde (MDA) and superoxide dismutase (SOD). RESULTS The VAS scores of group N were significantly lower than those of group S, and the Ramsay scores for group N were greater. The plasma levels of TNF-α, IL-6, and MDA for group N were significantly lower than those for group S, and the SOD levels were greater than those for group S. Furthermore, the VAS scores correlated positively with the plasma levels of TNF-α, IL-6, and MDA and correlated negatively with the SOD levels. CONCLUSIONS Nalbuphine offers better postoperative analgesia and sedation after orthognathic surgery. Nalbuphine also seems to provide superior postoperative analgesia by reducing inflammatory and oxidative stress.
Collapse
Affiliation(s)
- Meng Ying Xi
- Resident, College of Stomatology, Chongqing Medical University; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Si Si Li
- Resident, Department of Anesthesiology, Affiliated Hospital of Stomatology, Chongqing Medical University; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences; and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Chao Zhang
- Resident, Department of Anesthesiology, Affiliated Hospital of Stomatology, Chongqing Medical University; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences; and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Lin Zhang
- Resident, College of Stomatology, Chongqing Medical University; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Tao Wang
- Professor, Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Chongqing Medical University; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences; and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Cong Yu
- Professor, Department of Anesthesiology, Affiliated Hospital of Stomatology, Chongqing Medical University; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences; and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| |
Collapse
|
43
|
Age as a factor in stress and alcohol interactions: A critical role for the kappa opioid system. Alcohol 2018; 72:9-18. [PMID: 30322483 DOI: 10.1016/j.alcohol.2017.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 09/27/2017] [Accepted: 10/06/2017] [Indexed: 12/18/2022]
Abstract
The endogenous kappa opioid system has primarily been shown to be involved with a state of dysphoria and aversion. Stress and exposure to drugs of abuse, particularly alcohol, can produce similar states of unease and anxiety, implicating the kappa opioid system as a target of stress and alcohol. Numerous behavioral studies have demonstrated reduced sensitivity to manipulations of the kappa opioid system in early life relative to adulthood, and recent reports have shown that the kappa opioid system is functionally different across ontogeny. Given the global rise in early-life stress and alcohol consumption, understanding how the kappa opioid system responds and adapts to stress and/or alcohol exposure differently in early life and adulthood is imperative. Therefore, the objective of this review is to highlight and discuss studies examining the impact of early-life stress and/or alcohol on the kappa opioid system, with focus on the documented neuroadaptations that may contribute to future vulnerability to stress and/or increase the risk of relapse. We first provide a brief summary of the importance of studying the effects of stress and alcohol during early life (prenatal, neonatal/juvenile, and adolescence). We then discuss the literature on the effects of stress or alcohol during early life and adulthood on the kappa opioid system. Finally, we discuss the few studies that have shown interactions between stress and alcohol on the kappa opioid system and provide some discussion about the need for studies investigating the development of the kappa opioid system.
Collapse
|
44
|
Varlinskaya EI, Spear LP, Diaz MR. Stress alters social behavior and sensitivity to pharmacological activation of kappa opioid receptors in an age-specific manner in Sprague Dawley rats. Neurobiol Stress 2018; 9:124-132. [PMID: 30450378 PMCID: PMC6234253 DOI: 10.1016/j.ynstr.2018.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/04/2018] [Accepted: 09/08/2018] [Indexed: 12/23/2022] Open
Abstract
The dynorphin/kappa opioid receptor (DYN/KOR) system has been identified as a primary target of stress due to behavioral effects, such as dysphoria, aversion, and anxiety-like alterations that result from activation of this system. Numerous adaptations in the DYN/KOR system have also been identified in response to stress. However, whereas most studies examining the function of the DYN/KOR system have been conducted in adult rodents, there is growing evidence suggesting that this system is ontogenetically regulated. Likewise, the outcome of exposure to stress also differs across ontogeny. Based on these developmental similarities, the objective of this study was to systematically test effects of a selective KOR agonist, U-62066, on various aspects of social behavior across ontogeny in non-stressed male and female rats as well as in males and females with a prior history of repeated exposure to restraint (90 min/day, 5 exposures). We found that the social consequences of repeated restraint differed as a function of age: juvenile stress produced substantial increases in play fighting, whereas adolescent and adult stress resulted in decreases in social investigation and social preference. The KOR agonist U-62066 dose-dependently reduced social behaviors in non-stressed adults, producing social avoidance at the highest dose tested, while younger animals displayed reduced sensitivity to this socially suppressing effect of U-62066. Interestingly, in stressed animals, the socially suppressing effects of the KOR agonist were blunted at all ages, with juveniles and adolescents exhibiting increased social preference in response to certain doses of U-62066. Taken together, these findings support the hypothesis that the DYN/KOR system changes with age and differentially responds and adapts to stress across development.
Collapse
Affiliation(s)
- Elena I Varlinskaya
- Department of Psychology, Center for Development and Behavioral Neuroscience, Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY13902, United States
| | - Linda Patia Spear
- Department of Psychology, Center for Development and Behavioral Neuroscience, Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY13902, United States
| | - Marvin R Diaz
- Department of Psychology, Center for Development and Behavioral Neuroscience, Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY13902, United States
| |
Collapse
|
45
|
Demin KA, Meshalkina DA, Kysil EV, Antonova KA, Volgin AD, Yakovlev OA, Alekseeva PA, Firuleva MM, Lakstygal AM, de Abreu MS, Barcellos LJG, Bao W, Friend AJ, Amstislavskaya TG, Rosemberg DB, Musienko PE, Song C, Kalueff AV. Zebrafish models relevant to studying central opioid and endocannabinoid systems. Prog Neuropsychopharmacol Biol Psychiatry 2018; 86:301-312. [PMID: 29604314 DOI: 10.1016/j.pnpbp.2018.03.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/26/2018] [Accepted: 03/26/2018] [Indexed: 12/19/2022]
Abstract
The endocannabinoid and opioid systems are two interplaying neurotransmitter systems that modulate drug abuse, anxiety, pain, cognition, neurogenesis and immune activity. Although they are involved in such critical functions, our understanding of endocannabinoid and opioid physiology remains limited, necessitating further studies, novel models and new model organisms in this field. Zebrafish (Danio rerio) is rapidly emerging as one of the most effective translational models in neuroscience and biological psychiatry. Due to their high physiological and genetic homology to humans, zebrafish may be effectively used to study the endocannabinoid and opioid systems. Here, we discuss current models used to target the endocannabinoid and opioid systems in zebrafish, and their potential use in future translational research and high-throughput drug screening. Emphasizing the high degree of conservation of the endocannabinoid and opioid systems in zebrafish and mammals, we suggest zebrafish as an excellent model organism to study these systems and to search for the new drugs and therapies targeting their evolutionarily conserved mechanisms.
Collapse
Affiliation(s)
- Konstantin A Demin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, St. Petersburg, Russia; Laboratory of Preclinical Bioscreening, Russian Research Center for Radiology and Surgical Technologies, Ministry of Health, St. Petersburg, Russia
| | - Darya A Meshalkina
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, St. Petersburg, Russia; Laboratory of Preclinical Bioscreening, Russian Research Center for Radiology and Surgical Technologies, Ministry of Health, St. Petersburg, Russia
| | - Elana V Kysil
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Kristina A Antonova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Andrey D Volgin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Medical Military Academy, St. Petersburg, Russia
| | - Oleg A Yakovlev
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Medical Military Academy, St. Petersburg, Russia
| | - Polina A Alekseeva
- Institute of Experimental Medicine, Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Maria M Firuleva
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Anton M Lakstygal
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil; Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Leonardo J G Barcellos
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil; Graduate Programs in Environmental Sciences, and Bio-Experimentation, University of Passo Fundo (UPF), Passo Fundo, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| | - Wandong Bao
- School of Pharmacy, Southwest University, Chongqing, China
| | - Ashton J Friend
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA; Tulane University School of Science and Engineering, New Orleans, LA, USA
| | - Tamara G Amstislavskaya
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA; Laboratory of Translational Biopsychiatry, Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia; Neuroscience Department, Novosibirsk State University, Novosibirsk, Russia
| | - Denis B Rosemberg
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA; Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Pavel E Musienko
- Laboratory of Neuroprosthetics, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Laboratory of Motor Physiology, Pavlov Institute of Physiology RAS, St. Petersburg, Russia; Laboratory of Neurophysiology and Experimental Neurorehabilitation, St. Petersburg State Research Institute of Phthysiopulmonology, Ministry of Health, St. Petersburg, Russia; Russian Research Center of Radiology and Surgical Technologies, Ministry of Health, St. Petersburg, Russia
| | - Cai Song
- Research Institute for Marine Drugs and Nutrition, Guangdong Ocean University, Zhanjiang, China; Marine Medicine Research and Development Center, Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Laboratory of Translational Biopsychiatry, Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia; Neuroscience Department, Novosibirsk State University, Novosibirsk, Russia; ZENEREI Research Center, Slidell, LA, USA; Russian Research Center of Radiology and Surgical Technologies, Ministry of Health, St. Petersburg, Russia; Ural Federal University, Ekaterinburg, Russia; Aquatic Laboratory, Institute of Experimental Medicine, Almazov National Medical Research Centre, St. Petersburg, Russia.
| |
Collapse
|
46
|
A Possible Link between Anxiety and Schizophrenia and a Possible Role of Anhedonia. SCHIZOPHRENIA RESEARCH AND TREATMENT 2018; 2018:5917475. [PMID: 29593903 PMCID: PMC5822762 DOI: 10.1155/2018/5917475] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/24/2017] [Accepted: 12/10/2017] [Indexed: 12/21/2022]
Abstract
In the prodromal phase of schizophrenia, severe alterations of the visual appearance of the environment have been found, accompanied by a state of intense anxiety. The present study considers the possibility that these alterations really exist in the appearance of objects, but that healthy people do not see them. The image of the world that we see is continuously deformed and fragmented by foreshortenings, partial overlapping, and so on and must be constantly reassembled and interpreted; otherwise, it could change so much that we would hardly recognize it. Since pleasure has been found to be involved in visual and cognitive information processing, the possibility is considered that anhedonia (the reduction of the ability to feel pleasure) might interfere with the correct reconstruction and interpretation of the image of the environment and alter its appearance. The possibility is also considered that these alterations might make the environment hostile, might at times evoke the sensation of being trapped by a predator, and might be the cause of the anxiety that accompanies them. According to some authors, they might also induce delusional ideas, in an attempt to restore meaning in a world that has become chaotic and frightening.
Collapse
|
47
|
Anderson RI, Becker HC. Role of the Dynorphin/Kappa Opioid Receptor System in the Motivational Effects of Ethanol. Alcohol Clin Exp Res 2017; 41:1402-1418. [PMID: 28425121 DOI: 10.1111/acer.13406] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 04/13/2017] [Indexed: 12/20/2022]
Abstract
Evidence has demonstrated that dynorphin (DYN) and the kappa opioid receptor (KOR) system contribute to various psychiatric disorders, including anxiety, depression, and addiction. More recently, this endogenous opioid system has received increased attention as a potential therapeutic target for treating alcohol use disorders. In this review, we provide an overview and synthesis of preclinical studies examining the influence of alcohol (ethanol [EtOH]) exposure on DYN/KOR expression and function, as well as studies examining the effects of DYN/KOR manipulation on EtOH's rewarding and aversive properties. We then describe work that has characterized effects of KOR activation and blockade on EtOH self-administration and EtOH dependence/withdrawal-related behaviors. Finally, we address how the DYN/KOR system may contribute to stress-EtOH interactions. Despite an apparent role for the DYN/KOR system in motivational effects of EtOH, support comes from relatively few studies. Nevertheless, review of this literature reveals several common themes: (i) rodent strains genetically predisposed to consume more EtOH generally appear to have reduced DYN/KOR tone in brain reward circuitry; (ii) acute and chronic EtOH exposure typically up-regulate the DYN/KOR system; (iii) KOR antagonists reduce behavioral indices of negative affect associated with stress and chronic EtOH exposure/withdrawal; and (iv) KOR antagonists are effective in reducing EtOH consumption, but are often more efficacious under conditions that engender high levels of consumption, such as dependence or stress exposure. These results support the contention that the DYN/KOR system plays a significant role in contributing to dependence- and stress-induced elevation in EtOH consumption. Overall, more comprehensive analyses (on both behavioral and mechanistic levels) are needed to provide additional insight into how the DYN/KOR system is engaged and adapts to influence the motivation effects of EtOH. This information will be critical for the development of new pharmacological agents targeting KORs as promising novel therapeutics for alcohol use disorders and comorbid affective disorders.
Collapse
Affiliation(s)
- Rachel I Anderson
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Howard C Becker
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina.,Department of Neuroscience , Medical University of South Carolina, Charleston, South Carolina.,RHJ Department of Veterans Affairs Medical Center , Charleston, South Carolina
| |
Collapse
|
48
|
Negrete R, García Gutiérrez MS, Manzanares J, Maldonado R. Involvement of the dynorphin/KOR system on the nociceptive, emotional and cognitive manifestations of joint pain in mice. Neuropharmacology 2016; 116:315-327. [PMID: 27567942 DOI: 10.1016/j.neuropharm.2016.08.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/29/2016] [Accepted: 08/23/2016] [Indexed: 12/18/2022]
Abstract
Joint pain is a major clinical problem mainly associated to osteoarthritis, and characterized by articular cartilage degradation resulting in a complex chronic pain state that includes nociceptive, emotional and cognitive manifestations. Memory impairment, depressive- and anxiety-like symptoms have been reported to be associated with chronic pain, leading to a decrease of life quality. In this study, we evaluated the involvement of the endogenous dynorphin/kappa opioid receptor (KOR) system on the nociceptive, emotional, cognitive, neurochemical and epigenetic manifestations of joint pain. The murine model of monosodium iodoacetate (MIA) was used to induce joint pain in knockout mice for KOR (KOR-KO), prodynorphin (PDYN-KO) and their wild-type (WT) littermates. KOR-KO and PDYN-KO mice developed mechanical allodynia after intra-articular injection of MIA. This allodynia was significantly increased in both KOR-KO and PDYN-KO when compared to WT mice. Accordingly, both mutants showed increased microglial activation on the lumbar section of the spinal cord after MIA. The emotional responses were evaluated by measuring anxiety-like behaviour in the elevated plus maze and anhedonia as depressive-like behaviour, and cognitive alterations in the object recognition paradigm. Emotional and cognitive impairments after joint pain were differently modified in KOR-KO and PDYN-KO mice. Alterations of corticotropin-releasing factor (CRF) on the amygdala and hippocampus and down regulation of histone 3 acetylation on the amygdala suggest a possible mechanism to explain these emotional and cognitive manifestations. Our results reveal a specific involvement of the dynorphin/KOR system on joint pain manifestations that are usually associated to osteoarthritis.
Collapse
Affiliation(s)
- Roger Negrete
- Laboratory of Neuropharmacology, Department of Experimental and Health Science, Pompeu Fabra University (CEXS-UPF), Barcelona, Spain
| | - María Salud García Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain; Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain; Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Rafael Maldonado
- Laboratory of Neuropharmacology, Department of Experimental and Health Science, Pompeu Fabra University (CEXS-UPF), Barcelona, Spain.
| |
Collapse
|
49
|
Wang Q, Long Y, Hang A, Zan GY, Shu XH, Wang YJ, Liu JG. The anxiolytic- and antidepressant-like effects of ATPM-ET, a novel κ agonist and μ partial agonist, in mice. Psychopharmacology (Berl) 2016; 233:2411-8. [PMID: 27113225 DOI: 10.1007/s00213-016-4292-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 04/01/2016] [Indexed: 01/21/2023]
Abstract
RATIONALE Opioid receptors are implicated in the regulation of motivation and emotion. However, animal studies show that activation of κ opioid receptor produces contrasting mood-altering effects in models of anxiety-like and depressive-like behaviors, and consequently, the role of κ receptor in mood control remains unsettled. The effect of κ/μ opioid combination in emotion regulation was unexplored. OBJECTIVES The aim of the study was to investigate the effects of (-)-3-N-ethylaminothiazolo [5,4-b]-N-cyclopropylmethylmorphinan hydrochloride (ATPM-ET), a novel κ agonist and μ partial agonist, in regulating emotional responses. METHODS The emotional responses of ATPM-ET were detected in the elevated plus maze (EPM), open field test (OFT), forced swim test (FST), and tail suspension test (TST). Selective κ antagonist nor-binaltorphimine (nor-BNI) and μ antagonist β-funaltrexamine (β-FNA) were applied to determine the type of receptor involved. The conditioned place aversion model was used to evaluate the effects on aversive emotion. RESULTS In the EPM and OFT, ATPM-ET (1 and 2 mg/kg, s.c.) significantly increased the time spent in the open arm and in the central area, respectively. In the FST and TST, ATPM-ET (0.5 and 1 mg/kg, s.c.) significantly reduced the duration of immobility. These effects were prevented by nor-BNI (10 mg/kg, i.p., -24 h), but not by β-FNA (10 and20 mg/kg, i.p., -24 h) pretreatment. At the dose of 2 mg/kg, ATPM-ET did not induce conditioned place aversion. CONCLUSIONS ATPM-ET, at doses from 0.5 to 2 mg/kg, produced anxiolytic- and antidepressant-like effects without inducing aversive emotion. These effects were more closely mediated by activation of κ receptor than μ receptor.
Collapse
Affiliation(s)
- Qian Wang
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Yu Long
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Ai Hang
- Pharmacology and Toxicology Department, Shanghai Institute for Food and Drug Control, Shanghai, 201203, China
| | - Gui-Ying Zan
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica and Collaborative Innovation Center for Brain Science, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiao-Hong Shu
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China.
| | - Yu-Jun Wang
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica and Collaborative Innovation Center for Brain Science, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Jing-Gen Liu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica and Collaborative Innovation Center for Brain Science, Chinese Academy of Sciences, Shanghai, 201203, China
| |
Collapse
|
50
|
Collybolide is a novel biased agonist of κ-opioid receptors with potent antipruritic activity. Proc Natl Acad Sci U S A 2016; 113:6041-6. [PMID: 27162327 DOI: 10.1073/pnas.1521825113] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Among the opioid receptors, the κ-opioid receptor (κOR) has been gaining considerable attention as a potential therapeutic target for the treatment of complex CNS disorders including depression, visceral pain, and cocaine addiction. With an interest in discovering novel ligands targeting κOR, we searched natural products for unusual scaffolds and identified collybolide (Colly), a nonnitrogenous sesquiterpene from the mushroom Collybia maculata. This compound has a furyl-δ-lactone core similar to that of Salvinorin A (Sal A), another natural product from the plant Salvia divinorum Characterization of the molecular pharmacological properties reveals that Colly, like Sal A, is a highly potent and selective κOR agonist. However, the two compounds differ in certain signaling and behavioral properties. Colly exhibits 10- to 50-fold higher potency in activating the mitogen-activated protein kinase pathway compared with Sal A. Taken with the fact that the two compounds are equipotent for inhibiting adenylyl cyclase activity, these results suggest that Colly behaves as a biased agonist of κOR. Behavioral studies also support the biased agonistic activity of Colly in that it exhibits ∼10-fold higher potency in blocking non-histamine-mediated itch compared with Sal A, and this difference is not seen in pain attenuation by these two compounds. These results represent a rare example of functional selectivity by two natural products that act on the same receptor. The biased agonistic activity, along with an easily modifiable structure compared with Sal A, makes Colly an ideal candidate for the development of novel therapeutics targeting κOR with reduced side effects.
Collapse
|