1
|
Yu M, Zhou V, Pisano MD, Janz S, Cui X. Changes in the immune microenvironment during plasma cell tumor development in the IL6Myc mouse model of human multiple myeloma. Exp Cell Res 2024; 442:114273. [PMID: 39370095 DOI: 10.1016/j.yexcr.2024.114273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Affiliation(s)
- Manya Yu
- The First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China; Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Vivian Zhou
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Michael D Pisano
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA; Department of Microbiology, A. T. Still University, Kirksville, MO, 63501, USA
| | - Siegfried Janz
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| | - Xing Cui
- Department of Oncology and Hematology, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250001, China.
| |
Collapse
|
2
|
Pisano MD, Sun F, Cheng Y, Parashar D, Zhou V, Jing X, Sompallae R, Abrudan J, Zimmermann MT, Mathison A, Janz S, Pufall MA. IL6Myc mouse is an immunocompetent model for the development of aggressive multiple myeloma. Haematologica 2023; 108:3372-3383. [PMID: 37439384 PMCID: PMC10690922 DOI: 10.3324/haematol.2022.282538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 07/04/2023] [Indexed: 07/14/2023] Open
Abstract
Multiple Myeloma (MM) is a plasma cell neoplasm originating in the bone marrow and is the second most common blood cancer in the United States. One challenge in understanding the pathogenesis of MM and improving treatment is a lack of immunocompetent mouse models. We previously developed the IL6Myc mouse that generates plasmacytomas at 100% penetrance that phenotypically resemble aggressive MM. Using comprehensive genomic analysis, we found that the IL6Myc tumors resemble aggressive MM by RNA and protein expression. We also found that IL6Myc tumors accumulated fusions and missense mutations in genes that overlap significantly with human myeloma, indicating that the mouse is good model for studying disease etiology. Lastly, we derived cell lines from IL6Myc tumors that express cell surface markers typical of MM and readily engraft into mice, home to the bone marrow, and induce osteolytic disease. The cell lines may be useful in developing immunotherapies directed against BAFF-R and TACI, though not BCMA, and may also be a good model for studying dexamethasone resistance. These data indicate that the IL6Myc model is useful for studying development of aggressive MM and for developing new treatments against such forms of the disease.
Collapse
Affiliation(s)
- Michael D Pisano
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States; Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Fumou Sun
- Myeloma Center, Department of Internal Medicine and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Yan Cheng
- Myeloma Center, Department of Internal Medicine and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Deepak Parashar
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Vivian Zhou
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Xuefang Jing
- Department of Pathology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa
| | - Ramakrishna Sompallae
- Iowa Institute for Genetics, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa
| | - Jenica Abrudan
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI
| | - Michael T Zimmermann
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI
| | - Angela Mathison
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI
| | - Siegfried Janz
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Miles A Pufall
- Department of Biochemistry and Molecular Biology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Holden Comprehensive Cancer Center, Iowa City, Iowa.
| |
Collapse
|
3
|
Ishibashi M, Takahashi M, Yamaya T, Imai Y. Current and Future PET Imaging for Multiple Myeloma. Life (Basel) 2023; 13:1701. [PMID: 37629558 PMCID: PMC10455506 DOI: 10.3390/life13081701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/26/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Positron emission tomography (PET) is an imaging modality used for the noninvasive assessment of tumor staging and response to therapy. PET with 18F labeled fluorodeoxyglucose (18F-FDG PET) is widely used to assess the active and inactive lesions in patients with multiple myeloma (MM). Despite the availability of 18F-FDG PET for the management of MM, PET imaging is less sensitive than next-generation flow cytometry and sequencing. Therefore, the novel PET radiotracers 64Cu-LLP2A, 68Ga-pentixafor, and 89Zr-daratumumab have been developed to target the cell surface antigens of MM cells. Furthermore, recent studies attempted to visualize the tumor-infiltrating lymphocytes using PET imaging in patients with cancer to investigate their prognostic effect; however, these studies have not yet been performed in MM patients. This review summarizes the recent studies on PET with 18F-FDG and novel radiotracers for the detection of MM and the resulting preclinical research using MM mouse models and clinical studies. Novel PET technologies may be useful for developing therapeutic strategies for MM in the future.
Collapse
Affiliation(s)
- Mariko Ishibashi
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo 113-8602, Japan;
| | - Miwako Takahashi
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (M.T.); (T.Y.)
| | - Taiga Yamaya
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (M.T.); (T.Y.)
| | - Yoichi Imai
- Department of Hematology and Oncology, Dokkyo Medical University, Tochigi 321-0293, Japan
| |
Collapse
|
4
|
Cheng Y, Sun F, Thornton K, Jing X, Dong J, Yun G, Pisano M, Zhan F, Kim SH, Katzenellenbogen JA, Katzenellenbogen BS, Hari P, Janz S. FOXM1 regulates glycolysis and energy production in multiple myeloma. Oncogene 2022; 41:3899-3911. [PMID: 35794249 PMCID: PMC9355869 DOI: 10.1038/s41388-022-02398-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 12/16/2022]
Abstract
AbstractThe transcription factor, forkhead box M1 (FOXM1), has been implicated in the natural history and outcome of newly diagnosed high-risk myeloma (HRMM) and relapsed/refractory myeloma (RRMM), but the mechanism with which FOXM1 promotes the growth of neoplastic plasma cells is poorly understood. Here we show that FOXM1 is a positive regulator of myeloma metabolism that greatly impacts the bioenergetic pathways of glycolysis and oxidative phosphorylation (OxPhos). Using FOXM1-deficient myeloma cells as principal experimental model system, we find that FOXM1 increases glucose uptake, lactate output, and oxygen consumption in myeloma. We demonstrate that the novel 1,1-diarylethylene small-compound FOXM1 inhibitor, NB73, suppresses myeloma in cell culture and human-in-mouse xenografts using a mechanism that includes enhanced proteasomal FOXM1 degradation. Consistent with the FOXM1-stabilizing chaperone function of heat shock protein 90 (HSP90), the HSP90 inhibitor, geldanamycin, collaborates with NB73 in slowing down myeloma. These findings define FOXM1 as a key driver of myeloma metabolism and underscore the feasibility of targeting FOXM1 for new approaches to myeloma therapy and prevention.
Collapse
|
5
|
Sun F, Cheng Y, Riordan JD, Dupuy A, Dubois W, Pisano M, Dong J, Mock B, Zhan F, Hari P, Janz S. WDR26 and MTF2 are therapeutic targets in multiple myeloma. J Hematol Oncol 2021; 14:203. [PMID: 34876184 PMCID: PMC8650373 DOI: 10.1186/s13045-021-01217-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/25/2021] [Indexed: 11/22/2022] Open
Abstract
Unbiased genetic forward screening using retroviral insertional mutagenesis in a genetically engineered mouse model of human multiple myeloma may further our understanding of the genetic pathways that govern neoplastic plasma cell development. To evaluate this hypothesis, we performed a tumor induction study in MYC-transgenic mice infected as neonates with the Moloney-derived murine leukemia virus, MOL4070LTR. Next-generation DNA sequencing of proviral genomic integration sites yielded rank-ordered candidate tumor progression genes that accelerated plasma cell neoplasia in mice. Rigorous clinical and biological validation of these genes led to the discovery of two novel myeloma genes: WDR26 (WD repeat-containing protein 26) and MTF2 (metal response element binding transcription factor 2). WDR26, a core component of the carboxy-terminal to LisH (CTLH) complex, is overexpressed or mutated in solid cancers. MTF2, an ancillary subunit of the polycomb repressive complex 2 (PRC2), is a close functional relative of PHD finger protein 19 (PHF19) which is currently emerging as an important driver of myeloma. These findings underline the utility of genetic forward screens in mice for uncovering novel blood cancer genes and suggest that WDR26-CTLH and MTF2-PRC2 are promising molecular targets for new approaches to myeloma treatment and prevention.
Collapse
Affiliation(s)
- Fumou Sun
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, MFRC 6033, Milwaukee, WI, 53226, USA
| | - Yan Cheng
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, MFRC 6033, Milwaukee, WI, 53226, USA
| | - Jesse D Riordan
- Department of Anatomy & Cell Biology, University of Iowa, Iowa City, IA, USA
| | - Adam Dupuy
- Department of Anatomy & Cell Biology, University of Iowa, Iowa City, IA, USA
| | - Wendy Dubois
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Michael Pisano
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, MFRC 6033, Milwaukee, WI, 53226, USA.,Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
| | - Jing Dong
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, MFRC 6033, Milwaukee, WI, 53226, USA.,Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA
| | - Beverly Mock
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Fenghuang Zhan
- Myeloma Center, Division of Hematology and Oncology, Department of Medicine, and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Parameswaran Hari
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, MFRC 6033, Milwaukee, WI, 53226, USA.,Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA
| | - Siegfried Janz
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, MFRC 6033, Milwaukee, WI, 53226, USA. .,Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA.
| |
Collapse
|
6
|
Valtorta S, Toscani D, Chiu M, Sartori A, Coliva A, Brevi A, Taurino G, Grioni M, Ruffini L, Vacondio F, Zanardi F, Bellone M, Moresco RM, Bussolati O, Giuliani N. [ 18F](2 S,4 R)-4-Fluoroglutamine as a New Positron Emission Tomography Tracer in Myeloma. Front Oncol 2021; 11:760732. [PMID: 34712616 PMCID: PMC8546185 DOI: 10.3389/fonc.2021.760732] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022] Open
Abstract
The high glycolytic activity of multiple myeloma (MM) cells is the rationale for use of Positron Emission Tomography (PET) with 18F-fluorodeoxyglucose ([18F]FDG) to detect both bone marrow (BM) and extramedullary disease. However, new tracers are actively searched because [18F]FDG-PET has some limitations and there is a portion of MM patients who are negative. Glutamine (Gln) addiction has been recently described as a typical metabolic feature of MM cells. Yet, the possible exploitation of Gln as a PET tracer in MM has never been assessed so far and is investigated in this study in preclinical models. Firstly, we have synthesized enantiopure (2S,4R)-4-fluoroglutamine (4-FGln) and validated it as a Gln transport analogue in human MM cell lines, comparing its uptake with that of 3H-labelled Gln. We then radiosynthesized [18F]4-FGln, tested its uptake in two different in vivo murine MM models, and checked the effect of Bortezomib, a proteasome inhibitor currently used in the treatment of MM. Both [18F]4-FGln and [18F]FDG clearly identified the spleen as site of MM cell colonization in C57BL/6 mice, challenged with syngeneic Vk12598 cells and assessed by PET. NOD.SCID mice, subcutaneously injected with human MM JJN3 cells, showed high values of both [18F]4-FGln and [18F]FDG uptake. Bortezomib significantly reduced the uptake of both radiopharmaceuticals in comparison with vehicle at post treatment PET. However, a reduction of glutaminolytic, but not of glycolytic, tumor volume was evident in mice showing the highest response to Bortezomib. Our data indicate that [18F](2S,4R)-4-FGln is a new PET tracer in preclinical MM models, yielding a rationale to design studies in MM patients.
Collapse
Affiliation(s)
- Silvia Valtorta
- Department of Medicine and Surgery and Tecnomed Foundation, University of Milan Bicocca, Milano, Italy.,Department of Nuclear Medicine, San Raffaele Scientific Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milano, Italy
| | - Denise Toscani
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Martina Chiu
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Andrea Sartori
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Angela Coliva
- Department of Nuclear Medicine, San Raffaele Scientific Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milano, Italy
| | - Arianna Brevi
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milano, Italy
| | - Giuseppe Taurino
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Matteo Grioni
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milano, Italy
| | - Livia Ruffini
- Nuclear Medicine, "Azienda Ospedaliero-Universitaria di Parma", Parma, Italy
| | | | - Franca Zanardi
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Matteo Bellone
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milano, Italy
| | - Rosa Maria Moresco
- Department of Medicine and Surgery and Tecnomed Foundation, University of Milan Bicocca, Milano, Italy.,Department of Nuclear Medicine, San Raffaele Scientific Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milano, Italy.,Institute of Bioimaging and Molecular Physiology, National Research Council (IBFM-CNR), Milano, Italy
| | - Ovidio Bussolati
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Nicola Giuliani
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,Hematology, "Azienda Ospedaliero-Universitaria di Parma", Parma, Italy
| |
Collapse
|
7
|
Sun F, Cheng Y, Walsh SA, Acevedo MR, Jing X, Han SS, Pisano MD, Tomasson MH, Lichtenstein AK, Zhan F, Hari P, Janz S. Osteolytic disease in IL-6 and Myc dependent mouse model of human myeloma. Haematologica 2019; 105:e111-e115. [PMID: 31221780 DOI: 10.3324/haematol.2019.221127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Fumou Sun
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Yan Cheng
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Susan A Walsh
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI
| | - Michael R Acevedo
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI
| | - Xuefang Jing
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI
| | - Seong Su Han
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
| | - Michael D Pisano
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI.,Interdisciplinary Graduate Program in Immunology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA
| | - Michael H Tomasson
- Internal Medicine, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA.,Holden Comprehensive Cancer Center, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA
| | - Alan K Lichtenstein
- Department of Hematology-Oncology, University of California at Los Angeles, Los Angeles, CA
| | - Fenghuang Zhan
- Internal Medicine, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA.,Holden Comprehensive Cancer Center, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA
| | - Parameswaran Hari
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI.,Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Siegfried Janz
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI .,Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
8
|
Gu C, Jing X, Holman C, Sompallae R, Zhan F, Tricot G, Yang Y, Janz S. Upregulation of FOXM1 leads to diminished drug sensitivity in myeloma. BMC Cancer 2018; 18:1152. [PMID: 30463534 PMCID: PMC6249818 DOI: 10.1186/s12885-018-5015-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 10/30/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Following up on previous work demonstrating the involvement of the transcription factor forkhead box M1 (FOXM1) in the biology and outcome of a high-risk subset of newly diagnosed multiple myeloma (nMM), this study evaluated whether FOXM1 gene expression may be further upregulated upon tumor recurrence in patients with relapsed multiple myeloma (rMM). Also assessed was the hypothesis that increased levels of FOXM1 diminish the sensitivity of myeloma cells to commonly used myeloma drugs, such as the proteasome inhibitor bortezomib (Bz) and the DNA intercalator doxorubicin (Dox). METHODS FOXM1 message was evaluated in 88 paired myeloma samples from patients with nMM and rMM, using gene expression microarrays as measurement tool. Sources of differential gene expression were identified and outlier analyses were performed using statistical methods. Two independent human myeloma cell lines (HMCLs) containing normal levels of FOXM1 (FOXM1N) or elevated levels of lentivirus-encoded FOXM1 (FOXM1Hi) were employed to determine FOXM1-dependent changes in cell proliferation, survival, efflux-pump activity, and drug sensitivity. Levels of retinoblastoma (Rb) protein were determined with the assistance of Western blotting. RESULTS Upregulation of FOXM1 occurred in 61 of 88 (69%) patients with rMM, including 4 patients that exhibited > 20-fold elevated expression peaks. Increased FOXM1 levels in FOXM1Hi myeloma cells caused partial resistance to Bz (1.9-5.6 fold) and Dox (1.5-2.9 fold) in vitro, using FOXM1N myeloma as control. Reduced sensitivity of FOXM1Hi cells to Bz was confirmed in vivo using myeloma-in-mouse xenografts. FOXM1-dependent regulation of total and phosphorylated Rb agreed with a working model of myeloma suggesting that FOXM1 governs both chromosomal instability (CIN) and E2F-dependent proliferation, using a mechanism that involves interaction with NIMA related kinase 2 (NEK2) and cyclin dependent kinase 6 (CDK6), respectively. CONCLUSIONS These findings enhanced our understanding of the emerging FOXM1 genetic network in myeloma and provided preclinical support for the therapeutic targeting of the FOXM1-NEK2 and CDK4/6-Rb-E2F pathways using small-drug CDK and NEK2 inhibitors. Clinical research is warranted to assess whether this approach may overcome drug resistance in FOXM1Hi myeloma and, thereby, improve the outcome of patients in which the transcription factor is expressed at high levels.
Collapse
Affiliation(s)
- Chunyan Gu
- The Third Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, 210023 China
- Department of Pathology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242 USA
| | - Xuefang Jing
- Department of Pathology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242 USA
| | - Carol Holman
- Department of Pathology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242 USA
| | - Ramakrishna Sompallae
- Department of Pathology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242 USA
- Iowa Institute for Genetics, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242 USA
| | - Fenghuang Zhan
- Department of Internal Medicine, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242 USA
- Holden Comprehensive Cancer Center, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242 USA
| | - Guido Tricot
- Department of Internal Medicine, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242 USA
- Holden Comprehensive Cancer Center, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242 USA
| | - Ye Yang
- The Third Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, 210023 China
- Key Laboratory of Acupuncture and Medicine Research, Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Siegfried Janz
- Department of Pathology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242 USA
- Holden Comprehensive Cancer Center, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242 USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53213 USA
| |
Collapse
|
9
|
Tomasson MH, Ali M, De Oliveira V, Xiao Q, Jethava Y, Zhan F, Fitzsimmons AM, Bates ML. Prevention Is the Best Treatment: The Case for Understanding the Transition from Monoclonal Gammopathy of Undetermined Significance to Myeloma. Int J Mol Sci 2018; 19:E3621. [PMID: 30453544 PMCID: PMC6274834 DOI: 10.3390/ijms19113621] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/06/2018] [Accepted: 11/13/2018] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma is an invariably fatal cancer of plasma cells. Despite tremendous advances in treatment, this malignancy remains incurable in most individuals. We postulate that strategies aimed at prevention have the potential to be more effective in preventing myeloma-related death than additional pharmaceutical strategies aimed at treating advanced disease. Here, we present a rationale for the development of prevention therapy and highlight potential target areas of study.
Collapse
Affiliation(s)
- Michael H Tomasson
- Department of Internal Medicine, Hematology, Oncology, and Bone Marrow Transplant Division, University of Iowa, Iowa City, IA 52242, USA.
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA.
| | - Mahmoud Ali
- Department of Internal Medicine, Hematology, Oncology, and Bone Marrow Transplant Division, University of Iowa, Iowa City, IA 52242, USA.
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA.
| | - Vanessa De Oliveira
- Department of Internal Medicine, Hematology, Oncology, and Bone Marrow Transplant Division, University of Iowa, Iowa City, IA 52242, USA.
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA.
| | - Qian Xiao
- Department of Health Human Physiology, University of Iowa, Iowa City, IA 52242, USA.
| | - Yogesh Jethava
- Department of Internal Medicine, Hematology, Oncology, and Bone Marrow Transplant Division, University of Iowa, Iowa City, IA 52242, USA.
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA.
| | - Fenghuang Zhan
- Department of Internal Medicine, Hematology, Oncology, and Bone Marrow Transplant Division, University of Iowa, Iowa City, IA 52242, USA.
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA.
| | - Adam M Fitzsimmons
- Graduate Program in Molecular Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Melissa L Bates
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA.
- Department of Health Human Physiology, University of Iowa, Iowa City, IA 52242, USA.
- Stead Family Department of Pediatrics, University of Iowa, Iowa, IA 52242, USA.
| |
Collapse
|
10
|
Cochran BJ, Ryder WJ, Parmar A, Klaeser K, Reilhac A, Angelis GI, Meikle SR, Barter PJ, Rye KA. Determining Glucose Metabolism Kinetics Using 18F-FDG Micro-PET/CT. J Vis Exp 2017. [PMID: 28518081 DOI: 10.3791/55184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This paper describes the use of 18F-FDG and micro-PET/CT imaging to determine in vivo glucose metabolism kinetics in mice (and is transferable to rats). Impaired uptake and metabolism of glucose in multiple organ systems due to insulin resistance is a hallmark of type 2 diabetes. The ability of this technique to extract an image-derived input function from the vena cava using an iterative deconvolution method eliminates the requirement of the collection of arterial blood samples. Fitting of tissue and vena cava time activity curves to a two-tissue, three compartment model permits the estimation of kinetic micro-parameters related to the 18F-FDG uptake from the plasma to the intracellular space, the rate of transport from intracellular space to plasma and the rate of 18F-FDG phosphorylation. This methodology allows for multiple measures of glucose uptake and metabolism kinetics in the context of longitudinal studies and also provides insights into the efficacy of therapeutic interventions.
Collapse
Affiliation(s)
- Blake J Cochran
- School of Medical Sciences, Faculty of Medicine, UNSW Australia;
| | - William J Ryder
- Department of Nuclear Medicine, Concord Hospital; National Imaging Facility, University of Sydney; Brain and Mind Centre, University of Sydney; Faculty of Health Sciences, University of Sydney
| | | | - Kerstin Klaeser
- Brain and Mind Centre, University of Sydney; Faculty of Health Sciences, University of Sydney
| | | | - Georgios I Angelis
- Brain and Mind Centre, University of Sydney; Faculty of Health Sciences, University of Sydney
| | - Steven R Meikle
- Brain and Mind Centre, University of Sydney; Faculty of Health Sciences, University of Sydney
| | - Philip J Barter
- School of Medical Sciences, Faculty of Medicine, UNSW Australia; Faculty of Health Sciences, University of Sydney
| | - Kerry-Anne Rye
- School of Medical Sciences, Faculty of Medicine, UNSW Australia; Faculty of Health Sciences, University of Sydney
| |
Collapse
|
11
|
Gu Z, Xia J, Xu H, Frech I, Tricot G, Zhan F. NEK2 Promotes Aerobic Glycolysis in Multiple Myeloma Through Regulating Splicing of Pyruvate Kinase. J Hematol Oncol 2017; 10:17. [PMID: 28086949 PMCID: PMC5237262 DOI: 10.1186/s13045-017-0392-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/03/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Aerobic glycolysis, a hallmark of cancer, is characterized by increased metabolism of glucose and production of lactate in normaxia. Recently, pyruvate kinase M2 (PKM2) has been identified as a key player for regulating aerobic glycolysis and promoting tumor cell proliferation and survival. METHODS Tandem affinity purification followed up by mass spectrometry (TAP-MS) and co-immunoprecipitation (Co-IP) were used to study the interaction between NIMA (never in mitosis gene A)-related kinase 2 (NEK2) and heterogeneous nuclear ribonucleoproteins (hnRNP) A1/2. RNA immunoprecipitation (RIP) was performed to identify NEK2 binding to PKM pre-mRNA sequence. Chromatin-immunoprecipitation (ChIP)-PCR was performed to analyze a transcriptional regulation of NEK2 by c-Myc. Western blot and real-time PCR were executed to analyze the regulation of PKM2 by NEK2. RESULTS NEK2 regulates the alternative splicing of PKM immature RNA in multiple myeloma cells by interacting with hnRNPA1/2. RIP shows that NEK2 binds to the intronic sequence flanking exon 9 of PKM pre-mRNA. Knockdown of NEK2 decreases the ratio of PKM2/PKM1 and also other aerobic glycolysis genes including GLUT4, HK2, ENO1, LDHA, and MCT4. Myeloma patients with high expression of NEK2 and PKM2 have lower event-free survival and overall survival. Our data indicate that NEK2 is transcriptionally regulated by c-Myc in myeloma cells. Ectopic expression of NEK2 partially rescues growth inhibition and cell death induced by silenced c-Myc. CONCLUSIONS Our studies demonstrate that NEK2 promotes aerobic glycolysis through regulating splicing of PKM and increasing the PKM2/PKM1 ratio in myeloma cells which contributes to its oncogenic activity.
Collapse
Affiliation(s)
- Zhimin Gu
- Department of Medicine, Division of Hematology, Oncology and Blood and Marrow Transplantation and Holden Comprehensive Cancer Center, University of Iowa, 585 Newton Rd, 52242, Iowa City, IA, USA
| | - Jiliang Xia
- Department of Medicine, Division of Hematology, Oncology and Blood and Marrow Transplantation and Holden Comprehensive Cancer Center, University of Iowa, 585 Newton Rd, 52242, Iowa City, IA, USA
- Institute of Cancer Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hongwei Xu
- Department of Medicine, Division of Hematology, Oncology and Blood and Marrow Transplantation and Holden Comprehensive Cancer Center, University of Iowa, 585 Newton Rd, 52242, Iowa City, IA, USA
| | - Ivana Frech
- Department of Medicine, Division of Hematology, Oncology and Blood and Marrow Transplantation and Holden Comprehensive Cancer Center, University of Iowa, 585 Newton Rd, 52242, Iowa City, IA, USA
| | - Guido Tricot
- Department of Medicine, Division of Hematology, Oncology and Blood and Marrow Transplantation and Holden Comprehensive Cancer Center, University of Iowa, 585 Newton Rd, 52242, Iowa City, IA, USA
| | - Fenghuang Zhan
- Department of Medicine, Division of Hematology, Oncology and Blood and Marrow Transplantation and Holden Comprehensive Cancer Center, University of Iowa, 585 Newton Rd, 52242, Iowa City, IA, USA.
| |
Collapse
|
12
|
Transgenic mouse model of IgM + lymphoproliferative disease mimicking Waldenström macroglobulinemia. Blood Cancer J 2016; 6:e488. [PMID: 27813533 PMCID: PMC5148059 DOI: 10.1038/bcj.2016.95] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 09/16/2016] [Indexed: 12/19/2022] Open
Abstract
Waldenström macroglobulinemia (WM) is a low-grade incurable immunoglobulin M+ (IgM+) lymphoplasmacytic lymphoma for which a genetically engineered mouse model of de novo tumor development is lacking. On the basis of evidence that the pro-inflammatory cytokine, interleukin 6 (IL6), and the survival-enhancing oncoprotein, B cell leukemia 2 (BCL2), have critical roles in the natural history of WM, we hypothesized that the enforced expression of IL6 and BCL2 in mice unable to perform immunoglobulin class switch recombination may result in a lymphoproliferative disease that mimics WM. To evaluate this possibility, we generated compound transgenic BALB/c mice that harbored the human BCL2 and IL6 transgenes, EμSV-BCL2-22 and H2-Ld-hIL6, on the genetic background of activation-induced cytidine deaminase (AID) deficiency. We designated these mice BCL2+IL6+AID- and found that they developed-with full genetic penetrance (100% incidence) and suitably short latency (93 days median survival)-a severe IgM+ lymphoproliferative disorder that recapitulated important features of human WM. However, the BCL2+IL6+AID- model also exhibited shortcomings, such as low serum IgM levels and histopathological changes not seen in patients with WM, collectively indicating that further refinements of the model are required to achieve better correlations with disease characteristics of WM.
Collapse
|
13
|
Gupta N, Labotka R, Liu G, Hui AM, Venkatakrishnan K. Exposure-safety-efficacy analysis of single-agent ixazomib, an oral proteasome inhibitor, in relapsed/refractory multiple myeloma: dose selection for a phase 3 maintenance study. Invest New Drugs 2016; 34:338-46. [PMID: 27039387 PMCID: PMC4859859 DOI: 10.1007/s10637-016-0346-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/15/2016] [Indexed: 12/14/2022]
Abstract
Background Ixazomib is the first oral, small molecule proteasome inhibitor to reach phase 3 trials. The current analysis characterized the exposure-safety and exposure-efficacy relationships of ixazomib in patients with relapsed/refractory multiple myeloma (MM) with a purpose of recommending an approach to ixazomib dosing for maintenance therapy. Methods Logistic regression was used to investigate relationships between ixazomib plasma exposure (area under the curve/day; derived from individual apparent clearance values from a published population pharmacokinetic analysis) and safety/efficacy outcomes (hematologic [grade ≥ 3 vs ≤ 2] or non-hematologic [grade ≥ 2 vs ≤ 1] adverse events [AEs], and clinical benefit [≥stable disease vs progressive disease]) using phase 1 data in relapsed/refractory MM (NCT00963820; N = 44). Results Significant relationships to ixazomib exposure were observed for five AEs (neutropenia, thrombocytopenia, rash, fatigue, and diarrhea) and clinical benefit (p < 0.05). Dose–response relationships indicated a favorable benefit/risk ratio at 3 mg and 4 mg weekly, which are below the maximum tolerated dose of 5.5 mg. At 3 mg, the model predicted that: 37 % of patients will achieve clinical benefit; incidence of grade ≥ 3 neutropenia and thrombocytopenia will be 10 % and 23 %, respectively; and incidence of grade ≥ 2 rash, fatigue, and diarrhea will be 8 %, 19 %, and 19 %, respectively. Conclusions Based on the findings, patients in the phase 3 maintenance trial will initiate ixazomib at a once-weekly dose of 3 mg, increasing to 4 mg if acceptable tolerability after 4 cycles, to provide maximum clinical benefit balanced with adequate tolerability.
Collapse
Affiliation(s)
- Neeraj Gupta
- Clinical Pharmacology, Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, 40 Landsdowne Street, Cambridge, MA, 02139, USA.
| | - Richard Labotka
- Clinical Research, Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, 40 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Guohui Liu
- Biostatistics, Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, 40 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Ai-Min Hui
- Clinical Research, Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, 40 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Karthik Venkatakrishnan
- Clinical Pharmacology, Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, 40 Landsdowne Street, Cambridge, MA, 02139, USA
| |
Collapse
|
14
|
Gu C, Yang Y, Sompallae R, Xu H, Tompkins VS, Holman C, Hose D, Goldschmidt H, Tricot G, Zhan F, Janz S. FOXM1 is a therapeutic target for high-risk multiple myeloma. Leukemia 2016; 30:873-82. [PMID: 26648534 PMCID: PMC4826574 DOI: 10.1038/leu.2015.334] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/05/2015] [Accepted: 11/24/2015] [Indexed: 12/23/2022]
Abstract
The transcription factor forkhead box M1 (FOXM1) is a validated oncoprotein in solid cancers, but its role in malignant plasma cell tumors such as multiple myeloma (MM) is unknown. We analyzed publicly available MM data sets and found that overexpression of FOXM1 prognosticates inferior outcome in a subset (~15%) of newly diagnosed cases, particularly patients with high-risk disease based on global gene expression changes. Follow-up studies using human myeloma cell lines (HMCLs) as the principal experimental model system demonstrated that enforced expression of FOXM1 increased growth, survival and clonogenicity of myeloma cells, whereas knockdown of FOXM1 abolished these features. In agreement with that, constitutive upregulation of FOXM1 promoted HMCL xenografts in laboratory mice, whereas inducible knockdown of FOXM1 led to growth inhibition. Expression of cyclin-dependent kinase 6 (CDK6) and NIMA-related kinase 2 (NEK2) was coregulated with FOXM1 in both HMCLs and myeloma patient samples, suggesting interaction of these three genes in a genetic network that may lend itself to targeting with small-drug inhibitors for new approaches to myeloma therapy and prevention. These results establish FOXM1 as high-risk myeloma gene and provide support for the design and testing of FOXM1-targeted therapies specifically for the FOXM1(High) subset of myeloma.
Collapse
Affiliation(s)
- Chunyan Gu
- Basic Medical College, Nanjing University of Chinese Medicine, 210046 Nanjing, People’s Republic of China
- Department of Pathology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, 52242 Iowa, USA
| | - Ye Yang
- Basic Medical College, Nanjing University of Chinese Medicine, 210046 Nanjing, People’s Republic of China
- Department of Internal Medicine, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, 52242 Iowa, USA
| | - Ramakrishna Sompallae
- Basic Medical College, Nanjing University of Chinese Medicine, 210046 Nanjing, People’s Republic of China
- Department of Bioinformatics Core Facility, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, 52242 Iowa, USA
| | - Hongwei Xu
- Department of Internal Medicine, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, 52242 Iowa, USA
| | - Van S. Tompkins
- Department of Pathology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, 52242 Iowa, USA
| | - Carol Holman
- Department of Pathology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, 52242 Iowa, USA
| | - Dirk Hose
- Medizinische Klinik V, Universitätsklinikum Heidelberg
- Nationales Centrum für Tumorerkrankungen, Heidelberg, Germany
| | - Hartmut Goldschmidt
- Medizinische Klinik V, Universitätsklinikum Heidelberg
- Nationales Centrum für Tumorerkrankungen, Heidelberg, Germany
| | - Guido Tricot
- Department of Internal Medicine, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, 52242 Iowa, USA
- Holden Comprehensive Cancer Center, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, 52242 Iowa, USA
| | - Fenghuang Zhan
- Department of Internal Medicine, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, 52242 Iowa, USA
- Holden Comprehensive Cancer Center, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, 52242 Iowa, USA
| | - Siegfried Janz
- Department of Pathology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, 52242 Iowa, USA
- Holden Comprehensive Cancer Center, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, 52242 Iowa, USA
| |
Collapse
|
15
|
Rosean TR, Holman CJ, Tompkins VS, Jing X, Krasowski MD, Rose-John S, Janz S. KSHV-encoded vIL-6 collaborates with deregulated c-Myc to drive plasmablastic neoplasms in mice. Blood Cancer J 2016; 6:e398. [PMID: 26918362 PMCID: PMC4771969 DOI: 10.1038/bcj.2016.6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- T R Rosean
- Department of Pathology, University of Iowa (UI) Carver College of Medicine, Iowa City, IA, USA
| | - C J Holman
- Department of Pathology, University of Iowa (UI) Carver College of Medicine, Iowa City, IA, USA
| | - V S Tompkins
- Department of Pathology, University of Iowa (UI) Carver College of Medicine, Iowa City, IA, USA
| | - X Jing
- Department of Pathology, University of Iowa (UI) Carver College of Medicine, Iowa City, IA, USA
| | - M D Krasowski
- Department of Pathology, University of Iowa (UI) Carver College of Medicine, Iowa City, IA, USA
| | - S Rose-John
- Institute of Biochemistry, Christian-Albrechts-University, Kiel, Germany
| | - S Janz
- Department of Pathology, University of Iowa (UI) Carver College of Medicine, Iowa City, IA, USA
- UI Holden Comprehensive Cancer Center, Iowa City, IA, USA
| |
Collapse
|
16
|
Preclinical animal models of multiple myeloma. BONEKEY REPORTS 2016; 5:772. [PMID: 26909147 DOI: 10.1038/bonekey.2015.142] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 11/30/2015] [Indexed: 01/19/2023]
Abstract
Multiple myeloma is an incurable plasma-cell malignancy characterized by osteolytic bone disease and immunosuppression. Murine models of multiple myeloma and myeloma bone disease are critical tools for an improved understanding of the pathogenesis of the disease and the development of novel therapeutic strategies. This review will cover commonly used immunocompetent and xenograft models of myeloma, describing the advantages and disadvantages of each model system. In addition, this review provides detailed protocols for establishing systemic and local models of myeloma using both murine and human myeloma cell lines.
Collapse
|
17
|
Improved Follow-Up and Response Monitoring of Thoracic Cage Involvement in Multiple Myeloma Using a Novel CT Postprocessing Software: The Lessons We Learned. AJR Am J Roentgenol 2016; 206:57-63. [DOI: 10.2214/ajr.15.15089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
18
|
|
19
|
Morgan DA, McDaniel LN, Yin T, Khan M, Jiang J, Acevedo MR, Walsh SA, Ponto LLB, Norris AW, Lutter M, Rahmouni K, Cui H. Regulation of glucose tolerance and sympathetic activity by MC4R signaling in the lateral hypothalamus. Diabetes 2015; 64:1976-87. [PMID: 25605803 PMCID: PMC4439564 DOI: 10.2337/db14-1257] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 01/10/2015] [Indexed: 02/06/2023]
Abstract
Melanocortin 4 receptor (MC4R) signaling mediates diverse physiological functions, including energy balance, glucose homeostasis, and autonomic activity. Although the lateral hypothalamic area (LHA) is known to express MC4Rs and to receive input from leptin-responsive arcuate proopiomelanocortin neurons, the physiological functions of MC4Rs in the LHA are incompletely understood. We report that MC4R(LHA) signaling regulates glucose tolerance and sympathetic nerve activity. Restoring expression of MC4Rs specifically in the LHA improves glucose intolerance in obese MC4R-null mice without affecting body weight or circulating insulin levels. Fluorodeoxyglucose-mediated tracing of whole-body glucose uptake identifies the interscapular brown adipose tissue (iBAT) as a primary source where glucose uptake is increased in MC4R(LHA) mice. Direct multifiber sympathetic nerve recording further reveals that sympathetic traffic to iBAT is significantly increased in MC4R(LHA) mice, which accompanies a significant elevation of Glut4 expression in iBAT. Finally, bilateral iBAT denervation prevents the glucoregulatory effect of MC4R(LHA) signaling. These results identify a novel role for MC4R(LHA) signaling in the control of sympathetic nerve activity and glucose tolerance independent of energy balance.
Collapse
Affiliation(s)
- Donald A Morgan
- Department of Pharmacology, University of Iowa, Carver College of Medicine, Iowa City, IA
| | - Latisha N McDaniel
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, IA
| | - Terry Yin
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, IA
| | - Michael Khan
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, IA
| | - Jingwei Jiang
- Department of Pharmacology, University of Iowa, Carver College of Medicine, Iowa City, IA
| | - Michael R Acevedo
- Small Animal Imaging Core, University of Iowa, Carver College of Medicine, Iowa City, IA
| | - Susan A Walsh
- Small Animal Imaging Core, University of Iowa, Carver College of Medicine, Iowa City, IA
| | - Laura L Boles Ponto
- Department of Radiology, University of Iowa, Carver College of Medicine, Iowa City, IA Department of Pediatrics, University of Iowa, Carver College of Medicine, Iowa City, IA
| | - Andrew W Norris
- Department of Pediatrics, University of Iowa, Carver College of Medicine, Iowa City, IA
| | - Michael Lutter
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, IA Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Carver College of Medicine, Iowa City, IA Obesity Research and Education Initiative, University of Iowa, Carver College of Medicine, Iowa City, IA
| | - Kamal Rahmouni
- Department of Pharmacology, University of Iowa, Carver College of Medicine, Iowa City, IA Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Carver College of Medicine, Iowa City, IA Obesity Research and Education Initiative, University of Iowa, Carver College of Medicine, Iowa City, IA
| | - Huxing Cui
- Department of Pharmacology, University of Iowa, Carver College of Medicine, Iowa City, IA Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, IA Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Carver College of Medicine, Iowa City, IA
| |
Collapse
|
20
|
High-throughput screening with nanoimprinting 3D culture for efficient drug development by mimicking the tumor environment. Biomaterials 2015; 51:278-289. [DOI: 10.1016/j.biomaterials.2015.02.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/26/2015] [Accepted: 02/01/2015] [Indexed: 12/19/2022]
|
21
|
Richardson PG, Moreau P, Laubach JP, Gupta N, Hui AM, Anderson KC, San Miguel JF, Kumar S. The investigational proteasome inhibitor ixazomib for the treatment of multiple myeloma. Future Oncol 2015; 11:1153-68. [DOI: 10.2217/fon.15.9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
ABSTRACT Ixazomib is an investigational, reversible 20S proteasome inhibitor. It is the first oral proteasome inhibitor under clinical investigation in multiple myeloma (MM). Under physiological conditions, the stable citrate ester drug substance, ixazomib citrate (MLN9708), rapidly hydrolyzes to the biologically active boronic acid, ixazomib (MLN2238). Preclinical studies have demonstrated antitumor activity in MM cell lines and xenograft models. In Phase I/II clinical studies ixazomib has had generally manageable toxicities, with limited peripheral neuropathy observed to date. Preliminary data from these studies indicate ixazomib is active as a single agent in relapsed/refractory MM and as part of combination regimens in newly diagnosed patients. Phase III studies in combination with lenalidomide–dexamethasone are ongoing.
Collapse
Affiliation(s)
- Paul G Richardson
- Division of Hematologic Malignancy, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Philippe Moreau
- Hematology Department, University Hospital Hotel-Dieu, Nantes, France
| | - Jacob P Laubach
- Division of Hematologic Malignancy, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Neeraj Gupta
- Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Ltd, Cambridge, MA, USA
| | - Ai-Min Hui
- Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Ltd, Cambridge, MA, USA
| | - Kenneth C Anderson
- Division of Hematologic Malignancy, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Jesús F San Miguel
- Clinica Universidad de Navarra, Centro Investigación Medica Aplicada (CIMA), Pamplona, Spain
| | - Shaji Kumar
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
22
|
Han SS, Tompkins VS, Son DJ, Han S, Yun H, Kamberos NL, Dehoedt CL, Gu C, Holman C, Tricot G, Zhan F, Janz S. CDKN1A and FANCD2 are potential oncotargets in Burkitt lymphoma and multiple myeloma. Exp Hematol Oncol 2015; 4:9. [PMID: 25838973 PMCID: PMC4383050 DOI: 10.1186/s40164-015-0005-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 03/10/2015] [Indexed: 02/06/2023] Open
Abstract
Background Comparative genetic and biological studies on malignant tumor counterparts in human beings and laboratory mice may be powerful gene discovery tools for blood cancers, including neoplasms of mature B-lymphocytes and plasma cells such as Burkitt lymphoma (BL) and multiple myeloma (MM). Methods We used EMSA to detect constitutive NF-κB/STAT3 activity in BL- and MM-like neoplasms that spontaneously developed in single-transgenic IL6 (interleukin-6) or MYC (c-Myc) mice, or in double-transgenic IL6MYC mice. qPCR measurements and analysis of clinical BL and MM datasets were employed to validate candidate NF-κB/STAT3 target genes. Results qPCR demonstrated that IL6- and/or MYC-dependent neoplasms in mice invariably contain elevated mRNA levels of the NF-κB target genes, Cdkn1a and Fancd2. Clinical studies on human CDKN1A, which encodes the cell cycle inhibitor and tumor suppressor p21, revealed that high p21 message predicts poor therapy response and survival in BL patients. Similarly, up-regulation of FANCD2, which encodes a key member of the Fanconi anemia and breast cancer pathway of DNA repair, was associated with poor outcome of patients with MM, particularly those with high-risk disease. Conclusions Our findings suggest that CDKN1A and FANCD2 are potential oncotargets in BL and MM, respectively. Additionally, the IL-6- and/or MYC-driven mouse models of human BL and MM used in this study may lend themselves to the biological validation of CDKN1A and FANCD2 as molecular targets for new approaches to cancer therapy and prevention. Electronic supplementary material The online version of this article (doi:10.1186/s40164-015-0005-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Seong-Su Han
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA USA
| | - Van S Tompkins
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA USA
| | - Dong-Ju Son
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701 South Korea
| | - Sangwoo Han
- Department of Health and Human Physiology, University of Iowa Carver College of Medicine, Iowa City, IA USA
| | - Hwakyung Yun
- Department of Biological Sciences, Hanseo University, Choognam, South Korea
| | - Natalie L Kamberos
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA USA
| | - Casey L Dehoedt
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA USA
| | - Chunyan Gu
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA USA
| | - Carol Holman
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA USA
| | - Guido Tricot
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA USA
| | - Fenghuang Zhan
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA USA
| | - Siegfried Janz
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA USA
| |
Collapse
|
23
|
Yang Y, Shi J, Gu Z, Salama ME, Das S, Wendlandt E, Xu H, Huang J, Tao Y, Hao M, Franqui R, Levasseur D, Janz S, Tricot G, Zhan F. Bruton tyrosine kinase is a therapeutic target in stem-like cells from multiple myeloma. Cancer Res 2015; 75:594-604. [PMID: 25589346 DOI: 10.1158/0008-5472.can-14-2362] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ibrutinib (Imbruvica), a small-drug inhibitor of Bruton tyrosine kinase (BTK), is currently undergoing clinical testing in patients with multiple myeloma, yet important questions on the role of BTK in myeloma biology and treatment are outstanding. Using flow-sorted side population cells from human myeloma cell lines and multiple myeloma primary samples as surrogate for the elusive multiple myeloma stem cell, we found that elevated expression of BTK in myeloma cells leads to AKT/WNT/β-catenin-dependent upregulation of key stemness genes (OCT4, SOX2, NANOG, and MYC) and enhanced self-renewal. Enforced transgenic expression of BTK in myeloma cells increased features of cancer stemness, including clonogenicity and resistance to widely used myeloma drugs, whereas inducible knockdown of BTK abolished them. Furthermore, overexpression of BTK in myeloma cells promoted tumor growth in laboratory mice and rendered side population-derived tumors that contained high levels of BTK more sensitive to the selective, second-generation BTK inhibitor, CGI1746, than side population-derived tumors that harbored low levels of BTK. Taken together, these findings implicate BTK as a positive regulator of myeloma stemness and provide additional support for the clinical testing of BTK-targeted therapies in patients with myeloma.
Collapse
Affiliation(s)
- Ye Yang
- Department of Internal Medicine, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa
| | - Jumei Shi
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhimin Gu
- Department of Internal Medicine, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa
| | - Mohamed E Salama
- Department of Pathology, University of Utah, and Associated Regional University Pathologists (ARUP) Laboratories, Salt Lake City, Utah
| | - Satyabrata Das
- Department of Internal Medicine, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa
| | - Erik Wendlandt
- Department of Internal Medicine, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa
| | - Hongwei Xu
- Department of Internal Medicine, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa
| | - Junwei Huang
- Department of Internal Medicine, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa
| | - Yi Tao
- Department of Internal Medicine, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa
| | - Mu Hao
- Department of Internal Medicine, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa
| | - Reinaldo Franqui
- Interdisciplinary Program in Molecular and Cellular Biology, University of Iowa, Iowa City, Iowa
| | - Dana Levasseur
- Department of Internal Medicine, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa
| | - Siegfried Janz
- Department of Pathology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa
| | - Guido Tricot
- Department of Internal Medicine, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa.
| | - Fenghuang Zhan
- Department of Internal Medicine, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa. Interdisciplinary Program in Molecular and Cellular Biology, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
24
|
The tumor microenvironment is the main source of IL-6 for plasma cell tumor development in mice. Leukemia 2014; 29:233-7. [PMID: 25257990 DOI: 10.1038/leu.2014.260] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
25
|
Rosean TR, Tompkins VS, Tricot G, Holman CJ, Olivier AK, Zhan F, Janz S. Preclinical validation of interleukin 6 as a therapeutic target in multiple myeloma. Immunol Res 2014; 59:188-202. [PMID: 24845460 PMCID: PMC4209159 DOI: 10.1007/s12026-014-8528-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Studies on the biologic and molecular genetic underpinnings of multiple myeloma (MM) have identified the pleiotropic, pro-inflammatory cytokine, interleukin-6 (IL-6), as a factor crucial to the growth, proliferation and survival of myeloma cells. IL-6 is also a potent stimulator of osteoclastogenesis and a sculptor of the tumor microenvironment in the bone marrow of patients with myeloma. This knowledge has engendered considerable interest in targeting IL-6 for therapeutic purposes, using a variety of antibody- and small-molecule-based therapies. However, despite the early recognition of the importance of IL-6 for myeloma and the steady progress in our knowledge of IL-6 in normal and malignant development of plasma cells, additional efforts will be required to translate the promise of IL-6 as a target for new myeloma therapies into significant clinical benefits for patients with myeloma. This review summarizes published research on the role of IL-6 in myeloma development and describes ongoing efforts by the University of Iowa Myeloma Multidisciplinary Oncology Group to develop new approaches to the design and testing of IL-6-targeted therapies and preventions of MM.
Collapse
Affiliation(s)
- Timothy R Rosean
- Interdisciplinary Graduate Program in Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | | | | | | | | | | |
Collapse
|