1
|
Zhu FM, Xu J, He QY, Deng YP, Liu MY, Liu Y, Sun J, Zhao H, Fu L, Yang J. Association of serum interleukin-2 with severity and prognosis in hospitalized patients with community-acquired pneumonia: a prospective cohort study. Intern Emerg Med 2024; 19:1929-1939. [PMID: 38967887 PMCID: PMC11467086 DOI: 10.1007/s11739-024-03699-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
The prior studies have shown that interleukin-2 (IL-2) exerts important roles in the pathological and physiological processes of lung diseases. However, the role of IL-2 in community-acquired pneumonia (CAP) is still uncertain. Through a prospective cohort study, our research will explore the correlations between serum IL-2 levels and the severity and prognosis in CAP patients. There were 267 CAP patients included. Blood samples were obtained. Serum IL-2 were tested by enzyme-linked immunosorbent assay (ELISA). Demographic traits and clinical characteristics were extracted. Serum IL-2 were gradually elevated with increasing severity scores in CAP patients. Correlation analyses revealed that serum IL-2 were connected with physiological parameters including liver and renal function in CAP patients. According to a logistic regression analysis, serum IL-2 were positively correlated with CAP severity scores. We also tracked the prognostic outcomes of CAP patients. The increased risks of adversely prognostic outcomes, including mechanical ventilation, vasoactive agent usage, ICU admission, death, and longer hospital length, were associated with higher levels of IL-2 at admission. Serum IL-2 at admission were positively associated with severe conditions and poor prognosis among CAP patients, indicated that IL-2 may involve in the initiation and development of CAP. As a result, serum IL-2 may be an available biomarker to guide clinicians in assessing the severity and determining the prognosis of CAP.
Collapse
Affiliation(s)
- Feng-Min Zhu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Furong Road No 678, Hefei, 230601, Anhui, China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Juan Xu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Furong Road No 678, Hefei, 230601, Anhui, China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Qi-Yuan He
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Furong Road No 678, Hefei, 230601, Anhui, China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - You-Peng Deng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Furong Road No 678, Hefei, 230601, Anhui, China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Ming-Yan Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Furong Road No 678, Hefei, 230601, Anhui, China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Ying Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Furong Road No 678, Hefei, 230601, Anhui, China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Jing Sun
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Furong Road No 678, Hefei, 230601, Anhui, China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Hui Zhao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Furong Road No 678, Hefei, 230601, Anhui, China.
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China.
| | - Lin Fu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Furong Road No 678, Hefei, 230601, Anhui, China.
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China.
| | - Jin Yang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Furong Road No 678, Hefei, 230601, Anhui, China.
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China.
| |
Collapse
|
2
|
Jafari-Raddani F, Davoodi-Moghaddam Z, Bashash D. Construction of immune-related gene pairs signature to predict the overall survival of multiple myeloma patients based on whole bone marrow gene expression profiling. Mol Genet Genomics 2024; 299:47. [PMID: 38649532 DOI: 10.1007/s00438-024-02140-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/06/2024] [Indexed: 04/25/2024]
Abstract
Multiple myeloma (MM) is a plasma cell dyscrasia that is characterized by the uncontrolled proliferation of malignant PCs in the bone marrow. Due to immunotherapy, attention has returned to the immune system in MM, and it appears necessary to identify biomarkers in this area. In this study, we created a prognostic model for MM using immune-related gene pairs (IRGPs), with the advantage that it is not affected by technical bias. After retrieving microarray data of MM patients, bioinformatics analyses like COX regression and least absolute shrinkage and selection operator (LASSO) were used to construct the signature. Then its prognostic value is assessed via time-dependent receiver operating characteristic (ROC) and the Kaplan-Meier (KM) analysis. We also used XCELL to examine the status of immune cell infiltration among MM patients. 6-IRGP signatures were developed and proved to predict MM prognosis with a P-value of 0.001 in the KM analysis. Moreover, the risk score was significantly associated with clinicopathological characteristics and was an independent prognostic factor. Of note, the combination of age and β2-microglobulin with risk score could improve the accuracy of determining patients' prognosis with the values of the area under the curve (AUC) of 0.73 in 5 years ROC curves. Our model was also associated with the distribution of immune cells. This novel signature, either alone or in combination with age and β2-microglobulin, showed a good prognostic predictive value and might be used to guide the management of MM patients in clinical practice.
Collapse
Affiliation(s)
- Farideh Jafari-Raddani
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Davoodi-Moghaddam
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Cheng Y, Sun F, Alapat DV, Wanchai V, Mery D, Guo W, Cao H, Zhu Y, Ashby C, Bauer MA, Nookaew I, Siegel ER, Ying J, Chen JR, Gai D, Peng B, Xu H, Bailey C, Al Hadidi S, Schinke C, Thanendrarajan S, Zangari M, Chesi M, Bergsagel PL, van Rhee F, Janz S, Tricot G, Shaughnessy JD, Zhan F. High NEK2 expression in myeloid progenitors suppresses T cell immunity in multiple myeloma. Cell Rep Med 2023; 4:101214. [PMID: 37794587 PMCID: PMC10591052 DOI: 10.1016/j.xcrm.2023.101214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/21/2023] [Accepted: 09/08/2023] [Indexed: 10/06/2023]
Abstract
Multiple myeloma (MM) growth is supported by an immune-tolerant bone marrow microenvironment. Here, we find that loss of Never in mitosis gene A (NIMA)-related kinase 2 (NEK2) in tumor microenvironmental cells is associated with MM growth suppression. The absence of NEK2 leads to both fewer tumor-associated macrophages (TAMs) and inhibitory T cells. NEK2 expression in myeloid progenitor cells promotes the generation of functional TAMs when stimulated with MM conditional medium. Clinically, high NEK2 expression in MM cells is associated with increased CD8+ T effector memory cells, while low NEK2 is associated with an IFN-γ gene signature and activated T cell response. Inhibition of NEK2 upregulates PD-L1 expression in MM cells and myeloid cells. In a mouse model, the combination of NEK2 inhibitor INH154 with PD-L1 blockade effectively eliminates MM cells and prolongs survival. Our results provide strong evidence that NEK2 inhibition may overcome tumor immune escape and support its further clinical development.
Collapse
Affiliation(s)
- Yan Cheng
- Myeloma Center, Winthrop P. Rockefeller Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Fumou Sun
- Myeloma Center, Winthrop P. Rockefeller Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Daisy V Alapat
- Department of Pathology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Visanu Wanchai
- Myeloma Center, Winthrop P. Rockefeller Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - David Mery
- Myeloma Center, Winthrop P. Rockefeller Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Wancheng Guo
- Myeloma Center, Winthrop P. Rockefeller Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Huojun Cao
- Iowa Institute for Oral Health Research, Division of Biostatistics and Computational Biology, Department of Endodontics, University of Iowa College of Dentistry, Iowa City, IA 52242, USA
| | - Yuqi Zhu
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Cody Ashby
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Michael Anton Bauer
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Intawat Nookaew
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Eric R Siegel
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jun Ying
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jin-Ran Chen
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Dongzheng Gai
- Myeloma Center, Winthrop P. Rockefeller Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Bailu Peng
- Myeloma Center, Winthrop P. Rockefeller Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Hongwei Xu
- Myeloma Center, Winthrop P. Rockefeller Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Clyde Bailey
- Myeloma Center, Winthrop P. Rockefeller Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Samer Al Hadidi
- Myeloma Center, Winthrop P. Rockefeller Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Carolina Schinke
- Myeloma Center, Winthrop P. Rockefeller Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Sharmilan Thanendrarajan
- Myeloma Center, Winthrop P. Rockefeller Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Maurizio Zangari
- Myeloma Center, Winthrop P. Rockefeller Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Marta Chesi
- Department of Hematology/Oncology, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - P Leif Bergsagel
- Department of Hematology/Oncology, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Frits van Rhee
- Myeloma Center, Winthrop P. Rockefeller Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Siegfried Janz
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Guido Tricot
- Myeloma Center, Winthrop P. Rockefeller Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - John D Shaughnessy
- Myeloma Center, Winthrop P. Rockefeller Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Fenghuang Zhan
- Myeloma Center, Winthrop P. Rockefeller Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
4
|
Monoclonal Gammopathies and the Bone Marrow Microenvironment: From Bench to Bedside and Then Back Again. Hematol Rep 2023; 15:23-49. [PMID: 36648882 PMCID: PMC9844382 DOI: 10.3390/hematolrep15010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/11/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023] Open
Abstract
Multiple myeloma (MM) is an incurable hematologic malignancy characterized by a multistep evolutionary pathway, with an initial phase called monoclonal gammopathy of undetermined significance (MGUS), potentially evolving into the symptomatic disease, often preceded by an intermediate phase called "smoldering" MM (sMM). From a biological point of view, genomic alterations (translocations/deletions/mutations) are already present at the MGUS phase, thus rendering their role in disease evolution questionable. On the other hand, we currently know that changes in the bone marrow microenvironment (TME) could play a key role in MM evolution through a progressive shift towards a pro-inflammatory and immunosuppressive shape, which may drive cancer progression as well as clonal plasma cells migration, proliferation, survival, and drug resistance. Along this line, the major advancement in MM patients' survival has been achieved by the introduction of microenvironment-oriented drugs (including immunomodulatory drugs and monoclonal antibodies). In this review, we summarized the role of the different components of the TME in MM evolution from MGUS as well as potential novel therapeutic targets/opportunities.
Collapse
|
5
|
Botta C, Gigliotta E, Paiva B, Anselmo R, Santoro M, Otero PR, Carlisi M, Conticello C, Romano A, Solimando AG, Cerchione C, Vià MD, Bolli N, Correale P, Di Raimondo F, Gentile M, San Miguel J, Siragusa S. Network meta-analysis of randomized trials in multiple myeloma: Efficacy and safety in frontline therapy for patients not eligible for transplant. Hematol Oncol 2022; 40:987-998. [PMID: 35794705 PMCID: PMC10084226 DOI: 10.1002/hon.3041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/13/2022]
Abstract
The treatment scenario for newly-diagnosed transplant-ineligible multiple myeloma patients (NEMM) is quickly evolving. Currently, combinations of proteasome inhibitors and/or immunomodulatory drugs +/- the monoclonal antibody Daratumumab are used for first-line treatment, even if head-to-head comparisons are lacking. To compare efficacy and safety of these regimens, we performed a network meta-analysis of 27 phase 2/3 randomized trials including a total of 12,935 patients and 23 different schedules. Four efficacy/outcome and one safety indicators were extracted and integrated to obtain (for each treatment) the surface under the cumulative ranking-curve (SUCRA), a metric used to build a ranking chart. With a mean SUCRA of 83.8 and 80.08 respectively, VMP + Daratumumab (DrVMP) and Rd + Daratumumab (DrRd) reached the top of the chart. However, SUCRA is designed to work for single outcomes. To overcome this limitation, we undertook a dimensionality reduction approach through a principal component analysis, that unbiasedly grouped the 23 regimens into three different subgroups. On the bases of our results, we demonstrated that first line treatment for NEMM should be based on DrRd (most active, but continuous treatment), DrVMP (quite "fixed-time" treatment), or, alternatively, VRD and that, surprisingly, melphalan as well as Rd doublets still deserve a role in this setting.
Collapse
Affiliation(s)
- Cirino Botta
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Emilia Gigliotta
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Bruno Paiva
- Clinica Universidad de Navarra, CCUN Centro de Investigacion Medica Aplicada (CIMA), IDISNA, CIBERONC, Pamplona, Spain
| | - Rita Anselmo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Marco Santoro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Paula Rodriguez Otero
- Clinica Universidad de Navarra, CCUN Centro de Investigacion Medica Aplicada (CIMA), IDISNA, CIBERONC, Pamplona, Spain
| | - Melania Carlisi
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Concetta Conticello
- Division of Hematology, Azienda Policlinico-OVE, University of Catania, Catania, Italy
| | - Alessandra Romano
- Division of Hematology, Azienda Policlinico-OVE, University of Catania, Catania, Italy
| | - Antonio Giovanni Solimando
- Guido Baccelli Unit of Internal Medicine, Department of Biomedical Sciences and Human Oncology (DIMO), School of Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Claudio Cerchione
- Hematology Unit, IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| | - Matteo Da Vià
- Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy.,Hematology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Niccolò Bolli
- Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy.,Hematology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Pierpaolo Correale
- Medical Oncology Unit, Grand Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio Calabria, Italy
| | - Francesco Di Raimondo
- Division of Hematology, Azienda Policlinico-OVE, University of Catania, Catania, Italy
| | - Massimo Gentile
- Hematology Unit, Department of Hemato-Oncology, Annunziata Hospital, Cosenza, Italy
| | - Jesus San Miguel
- Clinica Universidad de Navarra, CCUN Centro de Investigacion Medica Aplicada (CIMA), IDISNA, CIBERONC, Pamplona, Spain
| | - Sergio Siragusa
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| |
Collapse
|
6
|
Exploring the R-ISS stage-specific regular networks in the progression of multiple myeloma at single-cell resolution. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1811-1823. [PMID: 35437648 DOI: 10.1007/s11427-021-2097-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/22/2022] [Indexed: 10/18/2022]
Abstract
The Revised International Staging System (R-ISS) is a simple and powerful prognostic tool for multiple myeloma (MM). However, heterogeneity in R-ISS stage is still poorly characterised, hampering improvement of treatments. We used single-cell RNA-seq to examine novel cellular heterogeneity and regular networks in nine MM patients stratified by R-ISS. Plasma cells were clustered into nine groups (P1-P9) based on gene expression, where P1-P5 were almost enriched in stage III.PDIA6 was significantly upregulated in P3 and LETM1 was enriched in P1, and they were validated to be upregulated in the MM cell line and in 22 other patients' myeloma cells. Furthermore, in progression, PDIA6 was newly found and verified to be activated by UQCRB through oxidative phosphorylation, while LETM1 was activated by STAT1 via the C-type lectin receptor-signalling pathway. Finally, a subcluster of monocytes was exclusively found in stage III specifically expressed chemokines modulated by ATF3. A few ligand-receptor pairs (CCL3/CCL5/CCL3L1-CCR1) were obviously active in monocyte-plasma communications in stage III. Herein, this study identified novel molecules, networks and crosstalk pairs in different R-ISS stages of MM, providing significant insight for its prognosis and treatment.
Collapse
|
7
|
Salomon-Perzyński A, Barankiewicz J, Machnicki M, Misiewicz-Krzemińska I, Pawlak M, Radomska S, Krzywdzińska A, Bluszcz A, Stawiński P, Rydzanicz M, Jakacka N, Solarska I, Borg K, Spyra-Górny Z, Szpila T, Puła B, Grosicki S, Stokłosa T, Płoski R, Lech-Marańda E, Jakubikova J, Jamroziak K. Tracking Clonal Evolution of Multiple Myeloma Using Targeted Next-Generation DNA Sequencing. Biomedicines 2022; 10:biomedicines10071674. [PMID: 35884979 PMCID: PMC9313382 DOI: 10.3390/biomedicines10071674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 12/19/2022] Open
Abstract
Clonal evolution drives treatment failure in multiple myeloma (MM). Here, we used a custom 372-gene panel to track genetic changes occurring during MM progression at different stages of the disease. A tumor-only targeted next-generation DNA sequencing was performed on 69 samples sequentially collected from 30 MM patients. The MAPK/ERK pathway was mostly affected with KRAS mutated in 47% of patients. Acquisition and loss of mutations were observed in 63% and 37% of patients, respectively. Four different patterns of mutation evolution were found: branching-, mutation acquisition-, mutation loss- and a stable mutational pathway. Better response to anti-myeloma therapy was more frequently observed in patients who followed the mutation loss-compared to the mutation acquisition pathway. More than two-thirds of patients had druggable genes mutated (including cases of heavily pre-treated disease). Only 7% of patients had a stable copy number variants profile. Consequently, a redistribution in stages according to R-ISS between the first and paired samples (R-ISS″) was seen. The higher the R-ISS″, the higher the risk of MM progression and death. We provided new insights into the genetics of MM evolution, especially in heavily pre-treated patients. Additionally, we confirmed that redefining R-ISS at MM relapse is of high clinical value.
Collapse
Affiliation(s)
- Aleksander Salomon-Perzyński
- Department of Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland; (A.S.-P.); (J.B.); (N.J.); (T.S.); (B.P.); (E.L.-M.)
| | - Joanna Barankiewicz
- Department of Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland; (A.S.-P.); (J.B.); (N.J.); (T.S.); (B.P.); (E.L.-M.)
| | - Marcin Machnicki
- Department of Tumor Biology and Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland; (M.M.); (T.S.)
| | - Irena Misiewicz-Krzemińska
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland; (I.M.-K.); (M.P.)
| | - Michał Pawlak
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland; (I.M.-K.); (M.P.)
| | - Sylwia Radomska
- Molecular Biology Laboratory, Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland; (S.R.); (I.S.)
| | - Agnieszka Krzywdzińska
- Immunophenotyping Laboratory, Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland;
| | - Aleksandra Bluszcz
- Cytogenetic Laboratory, Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland; (A.B.); (K.B.)
| | - Piotr Stawiński
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland; (P.S.); (M.R.); (R.P.)
| | - Małgorzata Rydzanicz
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland; (P.S.); (M.R.); (R.P.)
| | - Natalia Jakacka
- Department of Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland; (A.S.-P.); (J.B.); (N.J.); (T.S.); (B.P.); (E.L.-M.)
| | - Iwona Solarska
- Molecular Biology Laboratory, Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland; (S.R.); (I.S.)
| | - Katarzyna Borg
- Cytogenetic Laboratory, Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland; (A.B.); (K.B.)
| | - Zofia Spyra-Górny
- Department of Hematology and Cancer Prevention, Faculty od Health Sciences, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (Z.S.-G.); (S.G.)
| | - Tomasz Szpila
- Department of Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland; (A.S.-P.); (J.B.); (N.J.); (T.S.); (B.P.); (E.L.-M.)
| | - Bartosz Puła
- Department of Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland; (A.S.-P.); (J.B.); (N.J.); (T.S.); (B.P.); (E.L.-M.)
| | - Sebastian Grosicki
- Department of Hematology and Cancer Prevention, Faculty od Health Sciences, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (Z.S.-G.); (S.G.)
| | - Tomasz Stokłosa
- Department of Tumor Biology and Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland; (M.M.); (T.S.)
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland; (P.S.); (M.R.); (R.P.)
| | - Ewa Lech-Marańda
- Department of Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland; (A.S.-P.); (J.B.); (N.J.); (T.S.); (B.P.); (E.L.-M.)
| | - Jana Jakubikova
- Department of Tumor Immunology, Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Dubravska Cesta 9, 84505 Bratislava, Slovakia;
| | - Krzysztof Jamroziak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-106 Warsaw, Poland
- Correspondence:
| |
Collapse
|
8
|
Wang QS, Shi QQ, Meng Y, Chen MP, Hou J. Identification of Immune-Related Genes for Risk Stratification in Multiple Myeloma Based on Whole Bone Marrow Gene Expression Profiling. Front Genet 2022; 13:897886. [PMID: 35692836 PMCID: PMC9178200 DOI: 10.3389/fgene.2022.897886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/10/2022] [Indexed: 01/10/2023] Open
Abstract
Background: Multiple myeloma (MM) is characterized by abnormal proliferation of bone marrow clonal plasma cells. Tumor immunotherapy, a new therapy that has emerged in recent years, offers hope to patients, and studying the expression characteristics of immune-related genes (IRGs) based on whole bone marrow gene expression profiling (GEP) in MM patients can help guide personalized immunotherapy.Methods: In this study, we explored the potential prognostic value of IRGs in MM by combining GEP and clinical data from the GEO database. We identified hub IRGs and transcription factors (TFs) associated with disease progression by Weighted Gene Co-expression Network Analysis (WGCNA), and modeled immune-related prognostic signature by univariate and multivariate Cox and least absolute shrinkage and selection operator (LASSO) regression analysis. Subsequently, the prognostic ability of signature was verified by multiple statistical methods. Moreover, ssGSEA and GSEA algorithm reveled different immunological characteristics and biological function variation in different risk groups. We mapped the hub IRGs by protein-protein interaction network (PPI) and extracted the top 10 ranked genes. Finally, we conducted vitro assays on two alternative IRGs.Results: Our study identified a total of 14 TFs and 88 IRGs associated with International Staging System (ISS). Ten IRGs were identified by Cox -LASSO regression analysis, and used to develop optimal prognostic signature for overall survival (OS) in MM patients. The 10-IRGs were BDNF, CETP, CD70, LMBR, LTBP1, NENF, NR1D1, NR1H2, PTK2B and SEMA4. In different groups, risk signatures showed excellent survival prediction ability, and MM patients also could be stratified at survival risk. In addition, IRF7 and SHC1 were hub IRGs in PPI network, and the vitro assays proved that they could promote tumor progression. Notably, ssGSEA and GSEA results confirmed that different risk groups could accurately indicate the status of tumor microenvironment (TME) and activation of biological pathways.Conclusion: Our study suggested that immune-related signature could be used as prognostic markers in MM patients.
Collapse
Affiliation(s)
- Qiang-Sheng Wang
- Department of Hematology, Ningbo Hangzhou Bay Hospital, Ningbo, China
| | - Qi-Qin Shi
- Department of Ophthalmology, Ningbo Hangzhou Bay Hospital, Ningbo, China
| | - Ye Meng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meng-Ping Chen
- Department of Hematology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jian Hou
- Department of Hematology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Jian Hou,
| |
Collapse
|
9
|
Puła A, Robak P, Mikulski D, Robak T. The Significance of mRNA in the Biology of Multiple Myeloma and Its Clinical Implications. Int J Mol Sci 2021; 22:12070. [PMID: 34769503 PMCID: PMC8584466 DOI: 10.3390/ijms222112070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
Multiple myeloma (MM) is a genetically complex disease that results from a multistep transformation of normal to malignant plasma cells in the bone marrow. However, the molecular mechanisms responsible for the initiation and heterogeneous evolution of MM remain largely unknown. A fundamental step needed to understand the oncogenesis of MM and its response to therapy is the identification of driver mutations. The introduction of gene expression profiling (GEP) in MM is an important step in elucidating the molecular heterogeneity of MM and its clinical relevance. Since some mutations in myeloma occur in non-coding regions, studies based on the analysis of mRNA provide more comprehensive information on the oncogenic pathways and mechanisms relevant to MM biology. In this review, we discuss the role of gene expression profiling in understanding the biology of multiple myeloma together with the clinical manifestation of the disease, as well as its impact on treatment decisions and future directions.
Collapse
Affiliation(s)
- Anna Puła
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland;
| | - Paweł Robak
- Department of Experimental Hematology, Medical University of Lodz, 93-510 Lodz, Poland;
| | - Damian Mikulski
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Tadeusz Robak
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland;
| |
Collapse
|
10
|
Wang Y, Xu L, Zhao W, Chen X, Wen L, Duan W, Yu X, De Zhou F, Liu Y, Hao J, Huang X, Lu J, Ge Q. T cell landscape and dynamics in immunoglobulin light chain amyloidosis before and after daratumumab-based therapy. Clin Transl Med 2021; 11:e582. [PMID: 34845849 PMCID: PMC8630449 DOI: 10.1002/ctm2.582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/05/2021] [Accepted: 09/10/2021] [Indexed: 11/07/2022] Open
Abstract
Amyloid light-chain (AL) is characterized by the presence of small, poorly proliferating plasma cell clones with the production and deposition of light chains into tissues. T cell changes within the tumour microenvironment in AL are poorly understood. By sequencing at a single-cell level of CD3+ T cells purified from bone marrow (BM) and blood of newly diagnosed AL patients before and after a combination of daratumumab with cyclophosphamide, bortezomib, and dexamethasone (Dara-BCD), we analysed the transcriptomic features of T cells and found an expansion, activation and type I cytokine upregulation in BM and circulating T cells after the treatment. More prominent changes were shown in CD8+ T cells. In particular, we found the presence of CD8+ BM resident memory T cells (TRM ) with high expression of inhibitory molecules in AL patients at diagnosis. After Dara-BCD, these TRM cells were quickly activated with downregulation of suppressive molecules and upregulation of IFNG expression. These data collectively demonstrate that Dara-based therapy in patients with AL amyloidosis promotes anti-tumour T cell responses. The similar transcriptomic features of BM and circulating T cells before and after therapy further provide a less invasive approach for molecular monitoring of T cell response in AL amyloidosis.
Collapse
Affiliation(s)
- Yujia Wang
- Department of ImmunologySchool of Basic Medical SciencesPeking University. NHC Key Laboratory of Medical Immunology (Peking University)BeijingChina
| | - Lushuang Xu
- Department of ImmunologySchool of Basic Medical SciencesPeking University. NHC Key Laboratory of Medical Immunology (Peking University)BeijingChina
| | - Weijia Zhao
- Department of ImmunologySchool of Basic Medical SciencesPeking University. NHC Key Laboratory of Medical Immunology (Peking University)BeijingChina
| | | | - Lei Wen
- Beijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's Hospital & Institute of HematologyBeijingChina
| | - Wenbing Duan
- Beijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's Hospital & Institute of HematologyBeijingChina
| | - Xiao‐Juan Yu
- Renal DivisionDepartment of MedicineInstitute of NephrologyPeking University First Hospital, & Renal Pathology CenterPeking UniversityBeijingChina
- Renal Pathology CenterInstitute of NephrologyPeking UniversityBeijingChina
- Key Laboratory of Renal DiseaseMinistry of Health of ChinaBeijingChina
- Key Laboratory of CKD Prevention and TreatmentMinistry of Education of ChinaBeijingChina
| | - Fu‐ De Zhou
- Renal DivisionDepartment of MedicineInstitute of NephrologyPeking University First Hospital, & Renal Pathology CenterPeking UniversityBeijingChina
- Renal Pathology CenterInstitute of NephrologyPeking UniversityBeijingChina
- Key Laboratory of Renal DiseaseMinistry of Health of ChinaBeijingChina
- Key Laboratory of CKD Prevention and TreatmentMinistry of Education of ChinaBeijingChina
| | - Yang Liu
- Beijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's Hospital & Institute of HematologyBeijingChina
| | - Jie Hao
- Department of ImmunologySchool of Basic Medical SciencesPeking University. NHC Key Laboratory of Medical Immunology (Peking University)BeijingChina
| | - Xiaojun Huang
- Beijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's Hospital & Institute of HematologyBeijingChina
| | - Jin Lu
- Beijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's Hospital & Institute of HematologyBeijingChina
- Collaborative Innovation Center of HaematologySoochow UniversitySuzhouJiangsuChina
| | - Qing Ge
- Department of ImmunologySchool of Basic Medical SciencesPeking University. NHC Key Laboratory of Medical Immunology (Peking University)BeijingChina
- Department of Integration of Chinese and Western MedicineSchool of Basic Medical SciencesPeking UniversityBeijingChina
- National Key Laboratory of Human Factors EngineeringChina Astronauts Research and Training CenterBeijingChina
| |
Collapse
|
11
|
FlowCT for the analysis of large immunophenotypic datasets and biomarker discovery in cancer immunology. Blood Adv 2021; 6:690-703. [PMID: 34587246 PMCID: PMC8791585 DOI: 10.1182/bloodadvances.2021005198] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/05/2021] [Indexed: 11/20/2022] Open
Abstract
Large-scale immune monitoring is becoming routinely used in clinical trials to identify determinants of treatment responsiveness, particularly to immunotherapies. Flow cytometry remains one of the most versatile and high throughput approaches for single-cell analysis; however, manual interpretation of multidimensional data poses a challenge to capture full cellular diversity and provide reproducible results. We present FlowCT, a semi-automated workspace empowered to analyze large datasets that includes pre-processing, normalization, multiple dimensionality reduction techniques, automated clustering and predictive modeling tools. As a proof of concept, we used FlowCT to compare the T cell compartment in bone marrow (BM) vs peripheral blood (PB) of patients with smoldering multiple myeloma (MM); identify minimally-invasive immune biomarkers of progression from smoldering to active MM; define prognostic T cell subsets in the BM of patients with active MM after treatment intensification; and assess the longitudinal effect of maintenance therapy in BM T cells. A total of 354 samples were analyzed and immune signatures predictive of malignant transformation in 150 smoldering MM patients (hazard ratio [HR]: 1.7; P <.001), and of progression-free (HR: 4.09; P <.0001) and overall survival (HR: 3.12; P =.047) in 100 active MM patients, were identified. New data also emerged about stem cell memory T cells, the concordance between immune profiles in BM vs PB and the immunomodulatory effect of maintenance therapy. FlowCT is a new open-source computational approach that can be readily implemented by research laboratories to perform quality-control, analyze high-dimensional data, unveil cellular diversity and objectively identify biomarkers in large immune monitoring studies.
Collapse
|
12
|
Murdaca G, Allegra A, Paladin F, Calapai F, Musolino C, Gangemi S. Involvement of Alarmins in the Pathogenesis and Progression of Multiple Myeloma. Int J Mol Sci 2021; 22:9039. [PMID: 34445745 PMCID: PMC8396675 DOI: 10.3390/ijms22169039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE Multiple Myeloma (MM) is a haematological disease resulting from the neoplastic transformation of plasma cells. The uncontrolled growth of plasma cells in the bone marrow and the delivery of several cytokines causes bone erosion that often does not regress, even in the event of disease remission. MM is characterised by a multi-step evolutionary path, which starts with an early asymptomatic stage defined as monoclonal gammopathy of undetermined significance (MGUS) evolving to overt disease. DATA SOURCES AND STUDY SELECTION We have selected scientific publications on the specific topics "alarmis, MGUS, and MM", drawing from PubMed. The keywords we used were alarmines, MGUS, MM, and immune system. RESULTS The analysis confirms the pivotal role of molecules such as high-mobility group box-1, heat shock proteins, and S100 proteins in the induction of neoangiogenesis, which represents a milestone in the negative evolution of MM as well as other haematological and non-haematological tumours. CONCLUSIONS Modulation of the host immune system and the inhibition of neoangiogenesis may represent the therapeutic target for the treatment of MM that is capable of promoting better survival and reducing the risk of RRMM.
Collapse
Affiliation(s)
- Giuseppe Murdaca
- Department of Internal Medicine, University of Genoa, Ospedale Policlinico San Martino IRCCS, 20132 Genoa, Italy;
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (A.A.); (C.M.)
| | - Francesca Paladin
- Department of Internal Medicine, University of Genoa, Ospedale Policlinico San Martino IRCCS, 20132 Genoa, Italy;
| | - Fabrizio Calapai
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy;
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (A.A.); (C.M.)
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy;
| |
Collapse
|
13
|
A Pilot Clinical Study of Hyperacute Serum Treatment in Osteoarthritic Knee Joint: Cytokine Changes and Clinical Effects. Curr Issues Mol Biol 2021; 43:637-649. [PMID: 34287260 PMCID: PMC8929160 DOI: 10.3390/cimb43020046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/15/2022] Open
Abstract
The serum fraction of platelet-rich fibrin (hyperacute serum) has been shown to improve cartilage cell proliferation in in vitro osteoarthritic knee joint models. We hypothesize that hyperacute serum may be a potential regenerative therapeutic for osteoarthritic knees. In this study, the cytokine milieu at the synovial fluid of osteoarthritic knee joints exposed to hyperacute serum intraarticular injections was investigated. Patients with knee osteoarthritis received three injections of autologous hyperacute serum; synovial fluid was harvested before each injection and clinical monitoring was followed-up for 6 months. Forty osteoarthritic-related cytokines, growth factors and structural proteins from synovial fluid were quantified and analysed by Multivariate Factor Analysis. Hyperacute serum provided symptomatic relief regarding pain and joint stability for OA patients. Both patients "with" and "without effusion knees" had improved VAS, KOOS and Lysholm-Tegner scores 6 months after of hyperacute serum treatment. Synovial fluid analysis revealed two main clusters of proteins reacting together as a group, showing strong and significant correlations with their fluctuation patterns after hyperacute serum treatment. In conclusion, hyperacute serum has a positive effect in alleviating symptoms of osteoarthritic knees. Moreover, identified protein clusters may allow the prediction of protein expression, reducing the number of investigated proteins in future studies.
Collapse
|
14
|
Botta C, Mendicino F, Martino EA, Vigna E, Ronchetti D, Correale P, Morabito F, Neri A, Gentile M. Mechanisms of Immune Evasion in Multiple Myeloma: Open Questions and Therapeutic Opportunities. Cancers (Basel) 2021; 13:3213. [PMID: 34203150 PMCID: PMC8268448 DOI: 10.3390/cancers13133213] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/15/2022] Open
Abstract
Multiple myeloma (MM) is the second most common hematologic malignancy, characterized by a multi-step evolutionary path, which starts with an early asymptomatic stage, defined as monoclonal gammopathy of undetermined significance (MGUS) evolving to overt disease in 1% of cases per year, often through an intermediate phase known as "smoldering" MM (sMM). Interestingly, while many genomic alterations (translocation, deletions, mutations) are usually found at early stages, they are not sufficient (alone) to determine disease evolution. The latter, indeed, relies on significant "epigenetic" alterations of different normal cell populations within the bone marrow (BM) niche, including the "evasion" from immune-system control. Additionally, MM cells could "educate" the BM immune microenvironment (BM-IM) towards a pro-inflammatory and immunosuppressive phenotype, which ultimately leads to disease evolution, drug resistance, and patients' worse outcome. Indeed, it is not a case that the most important drugs for the treatment of MM include immunomodulatory agents (thalidomide, lenalidomide, and pomalidomide) and monoclonal antibodies (daratumumab, isatuximab, and elotuzumab). On these bases, in this review, we describe the most recent advances in the comprehension of the role of the different cells composing the BM-IM, and we discuss the potential molecular targets, which could represent new opportunities to improve current treatment strategies for MM patients.
Collapse
Affiliation(s)
- Cirino Botta
- Hematology Unit, Annunziata Hospital of Cosenza, 87100 Cosenza, Italy; (F.M.); (E.A.M.); (E.V.)
- Unit of Hematology, Department of Health Promotion, Maternal-Infant, Internal and Specialized Medicine of Excellence G. D’Alessandro, University of Palermo, 90127 Palermo, Italy
| | - Francesco Mendicino
- Hematology Unit, Annunziata Hospital of Cosenza, 87100 Cosenza, Italy; (F.M.); (E.A.M.); (E.V.)
| | - Enrica Antonia Martino
- Hematology Unit, Annunziata Hospital of Cosenza, 87100 Cosenza, Italy; (F.M.); (E.A.M.); (E.V.)
| | - Ernesto Vigna
- Hematology Unit, Annunziata Hospital of Cosenza, 87100 Cosenza, Italy; (F.M.); (E.A.M.); (E.V.)
| | - Domenica Ronchetti
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (D.R.); (A.N.)
| | - Pierpaolo Correale
- Medical Oncology Unit, Grand Metropolitan Hospital “Bianchi-Melacrino-Morelli”, 89124 Reggio Calabria, Italy;
| | - Fortunato Morabito
- Hematology and Bone Marrow Transplant Unit, Hemato-Oncology Department, Augusta Victoria Hospital, East Jerusalem 91191, Israel;
- Biothecnology Research Unit, AO of Cosenza, 87100 Cosenza, Italy
| | - Antonino Neri
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (D.R.); (A.N.)
- Hematology, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, 20122 Milano, Italy
| | - Massimo Gentile
- Hematology Unit, Annunziata Hospital of Cosenza, 87100 Cosenza, Italy; (F.M.); (E.A.M.); (E.V.)
| |
Collapse
|
15
|
Botta C, Agostino RM, Dattola V, Cianci V, Calandruccio ND, Bianco G, Mafodda A, Maisano R, Iuliano E, Orizzonte G, Mazzacuva D, Falzea AC, Saladino RE, Giannicola R, Restifo G, Aguglia U, Caraglia M, Correale P. Myositis/Myasthenia after Pembrolizumab in a Bladder Cancer Patient with an Autoimmunity-Associated HLA: Immune-Biological Evaluation and Case Report. Int J Mol Sci 2021; 22:6246. [PMID: 34200673 PMCID: PMC8230397 DOI: 10.3390/ijms22126246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023] Open
Abstract
Pembrolizumab (mAb to PD-1) has been recently approved for the therapy of pretreated urothelial cancer. Despite the efficacy, it is often accompanied by unpredictable and sometime severe immune-related (ir) adverse events (AEs). Here, we report the clinical and immune-biological characterization of a patient with a metastatic bladder cancer who developed myositis signs (M) and a myasthenia-like syndrome (MLS) during treatment with pembrolizumab. The patient presented an autoimmunity-associated HLA haplotype (HLA-A*02/HLA-B*08/HLA-C*07/HLA-DRB1*03) and experienced an increase in activated CD8 T-cells along the treatment. The symptomatology regressed after pembrolizumab discontinuation and a pyridostigmine and steroids-based therapy. This is the first report of concurrent M and MLS appearance in cancer patients receiving pembrolizumab. More efforts are needed to define early the risk and the clinical meaning of irAEs in this setting.
Collapse
Affiliation(s)
- Cirino Botta
- Unit of Hematology, Azienda Ospedaliera “Annunziata”, 87100 Cosenza, Italy
- Hematology Unit, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90128 Palermo, Italy
| | - Rita Maria Agostino
- Unit of Oncology, Unit. Grand Metropolitan Hospital “Bianchi Melacrino Morelli”, 89124 Reggio Calabria, Italy; (R.M.A.); (N.D.C.); (G.B.); (A.M.); (R.M.); (E.I.); (G.O.); (A.C.F.); (R.G.)
| | - Vincenzo Dattola
- Unit of Neurology, Unit. Grand Metropolitan Hospital “Bianchi Melacrino Morelli”, 89124 Reggio Calabria, Italy; (V.D.); (V.C.); (U.A.)
| | - Vittoria Cianci
- Unit of Neurology, Unit. Grand Metropolitan Hospital “Bianchi Melacrino Morelli”, 89124 Reggio Calabria, Italy; (V.D.); (V.C.); (U.A.)
| | - Natale Daniele Calandruccio
- Unit of Oncology, Unit. Grand Metropolitan Hospital “Bianchi Melacrino Morelli”, 89124 Reggio Calabria, Italy; (R.M.A.); (N.D.C.); (G.B.); (A.M.); (R.M.); (E.I.); (G.O.); (A.C.F.); (R.G.)
| | - Giovanna Bianco
- Unit of Oncology, Unit. Grand Metropolitan Hospital “Bianchi Melacrino Morelli”, 89124 Reggio Calabria, Italy; (R.M.A.); (N.D.C.); (G.B.); (A.M.); (R.M.); (E.I.); (G.O.); (A.C.F.); (R.G.)
| | - Antonino Mafodda
- Unit of Oncology, Unit. Grand Metropolitan Hospital “Bianchi Melacrino Morelli”, 89124 Reggio Calabria, Italy; (R.M.A.); (N.D.C.); (G.B.); (A.M.); (R.M.); (E.I.); (G.O.); (A.C.F.); (R.G.)
| | - Roberto Maisano
- Unit of Oncology, Unit. Grand Metropolitan Hospital “Bianchi Melacrino Morelli”, 89124 Reggio Calabria, Italy; (R.M.A.); (N.D.C.); (G.B.); (A.M.); (R.M.); (E.I.); (G.O.); (A.C.F.); (R.G.)
| | - Eleonora Iuliano
- Unit of Oncology, Unit. Grand Metropolitan Hospital “Bianchi Melacrino Morelli”, 89124 Reggio Calabria, Italy; (R.M.A.); (N.D.C.); (G.B.); (A.M.); (R.M.); (E.I.); (G.O.); (A.C.F.); (R.G.)
| | - Giovanna Orizzonte
- Unit of Oncology, Unit. Grand Metropolitan Hospital “Bianchi Melacrino Morelli”, 89124 Reggio Calabria, Italy; (R.M.A.); (N.D.C.); (G.B.); (A.M.); (R.M.); (E.I.); (G.O.); (A.C.F.); (R.G.)
| | - Domenico Mazzacuva
- Laboratory of Autoimmunity, Unit. Grand Metropolitan Hospital “Bianchi Melacrino Morelli”, 89124 Reggio Calabria, Italy;
| | - Antonia Consuelo Falzea
- Unit of Oncology, Unit. Grand Metropolitan Hospital “Bianchi Melacrino Morelli”, 89124 Reggio Calabria, Italy; (R.M.A.); (N.D.C.); (G.B.); (A.M.); (R.M.); (E.I.); (G.O.); (A.C.F.); (R.G.)
| | - Rita Emilena Saladino
- HLA Tissue Typing Laboratory, Unit. Grand Metropolitan Hospital “Bianchi Melacrino Morelli”, 89124 Reggio Calabria, Italy;
| | - Rocco Giannicola
- Unit of Oncology, Unit. Grand Metropolitan Hospital “Bianchi Melacrino Morelli”, 89124 Reggio Calabria, Italy; (R.M.A.); (N.D.C.); (G.B.); (A.M.); (R.M.); (E.I.); (G.O.); (A.C.F.); (R.G.)
| | - Giorgio Restifo
- Nuclear Medicine Unit, Grand Metropolitan Hospital “Bianchi Melacrino Morelli”, 89124 Reggio Calabria, Italy;
| | - Umberto Aguglia
- Unit of Neurology, Unit. Grand Metropolitan Hospital “Bianchi Melacrino Morelli”, 89124 Reggio Calabria, Italy; (V.D.); (V.C.); (U.A.)
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy;
- Laboratory of Precision and Molecular Oncology, Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy
| | - Pierpaolo Correale
- Unit of Oncology, Unit. Grand Metropolitan Hospital “Bianchi Melacrino Morelli”, 89124 Reggio Calabria, Italy; (R.M.A.); (N.D.C.); (G.B.); (A.M.); (R.M.); (E.I.); (G.O.); (A.C.F.); (R.G.)
| |
Collapse
|
16
|
Katiyar A, Kaur G, Rani L, Jena L, Singh H, Kumar L, Sharma A, Kaur P, Gupta R. Genome-wide identification of potential biomarkers in multiple myeloma using meta-analysis of mRNA and miRNA expression data. Sci Rep 2021; 11:10957. [PMID: 34040057 PMCID: PMC8154993 DOI: 10.1038/s41598-021-90424-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 04/29/2021] [Indexed: 02/07/2023] Open
Abstract
Multiple myeloma (MM) is a plasma cell malignancy with diverse clinical phenotypes and molecular heterogeneity not completely understood. Differentially expressed genes (DEGs) and miRNAs (DEMs) in MM may influence disease pathogenesis, clinical presentation / drug sensitivities. But these signatures overlap meagrely plausibly due to complexity of myeloma genome, diversity in primary cells studied, molecular technologies/ analytical tools utilized. This warrants further investigations since DEGs/DEMs can impact clinical outcomes and guide personalized therapy. We have conducted genome-wide meta-analysis of DEGs/DEMs in MM versus Normal Plasma Cells (NPCs) and derived unified putative signatures for MM. 100 DEMs and 1,362 DEGs were found deranged between MM and NPCs. Signatures of 37 DEMs ('Union 37') and 154 DEGs ('Union 154') were deduced that shared 17 DEMs and 22 DEGs with published prognostic signatures, respectively. Two miRs (miR-16-2-3p, 30d-2-3p) correlated with survival outcomes. PPI analysis identified 5 topmost functionally connected hub genes (UBC, ITGA4, HSP90AB1, VCAM1, VCP). Transcription factor regulatory networks were determined for five seed DEGs with ≥ 4 biomarker applications (CDKN1A, CDKN2A, MMP9, IGF1, MKI67) and three topmost up/ down regulated DEMs (miR-23b, 195, let7b/ miR-20a, 155, 92a). Further studies are warranted to establish and translate prognostic potential of these signatures for MM.
Collapse
Affiliation(s)
- Amit Katiyar
- Bioinformatics Facility, Centralized Core Research Facility, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
- ICMR-AIIMS Computational Genomics Centre, Division of Biomedical Informatics, Indian Council of Medical Research, Ansari Nagar, New Delhi, 110029, India
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Gurvinder Kaur
- Laboratory Oncology Unit, Dr B. R. A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, 110029, India
- Genomics Facility, Centralized Core Research Facility, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Lata Rani
- Laboratory Oncology Unit, Dr B. R. A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, 110029, India
- Genomics Facility, Centralized Core Research Facility, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Lingaraja Jena
- Laboratory Oncology Unit, Dr B. R. A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Harpreet Singh
- ICMR-AIIMS Computational Genomics Centre, Division of Biomedical Informatics, Indian Council of Medical Research, Ansari Nagar, New Delhi, 110029, India
| | - Lalit Kumar
- Department of Medical Oncology, Dr B. R. A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Atul Sharma
- Department of Medical Oncology, Dr B. R. A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Punit Kaur
- Bioinformatics Facility, Centralized Core Research Facility, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| | - Ritu Gupta
- Laboratory Oncology Unit, Dr B. R. A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, 110029, India.
- Genomics Facility, Centralized Core Research Facility, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
17
|
Botta C, Martino EA, Conticello C, Mendicino F, Vigna E, Romano A, Palumbo GA, Cerchione C, Martinelli G, Morabito F, Di Raimondo F, Gentile M. Treatment of Lenalidomide Exposed or Refractory Multiple Myeloma: Network Meta-Analysis of Lenalidomide-Sparing Regimens. Front Oncol 2021; 11:643490. [PMID: 33937048 PMCID: PMC8079718 DOI: 10.3389/fonc.2021.643490] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/16/2021] [Indexed: 12/19/2022] Open
Affiliation(s)
- Cirino Botta
- Hematology Unit, "Annunziata" Hospital of Cosenza, Cosenza, Italy
| | | | | | | | - Ernesto Vigna
- Hematology Unit, "Annunziata" Hospital of Cosenza, Cosenza, Italy
| | - Alessandra Romano
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Giuseppe Antonio Palumbo
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Claudio Cerchione
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Giovanni Martinelli
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Fortunato Morabito
- Hematology and Bone Marrow Transplant Unit, Hemato-Oncology Department, Augusta Victoria Hospital, East Jerusalem, Israel
| | - Francesco Di Raimondo
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Massimo Gentile
- Hematology Unit, "Annunziata" Hospital of Cosenza, Cosenza, Italy
| |
Collapse
|
18
|
miRNAs and lncRNAs as Novel Therapeutic Targets to Improve Cancer Immunotherapy. Cancers (Basel) 2021; 13:cancers13071587. [PMID: 33808190 PMCID: PMC8036682 DOI: 10.3390/cancers13071587] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/21/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Cancer onset and progression are promoted by high deregulation of the immune system. Recently, major advances in molecular and clinical cancer immunology have been achieved, offering new agents for the treatment of common tumors, often with astonishing benefits in terms of prolonged survival and even cure. Unfortunately, most tumors are still resistant to current immune therapy approaches, and basic knowledge of the resistance mechanisms is eagerly awaited. We focused our attention on noncoding RNAs, a class of RNA that regulates many biological processes by targeting selectively crucial molecular pathways and that, recently, had their role in cancer cell immune escape and modulation of the tumor microenvironment identified, suggesting their function as promising immunotherapeutic targets. In this scenario, we point out that noncoding RNAs are progressively emerging as immunoregulators, and we depict the current information on the complex network involving the immune system and noncoding RNAs and the promising therapeutic options under investigation. Novel opportunities are emerging from noncoding-RNAs for the treatment of immune-refractory tumors. Abstract Immunotherapy is presently one of the most promising areas of investigation and development for the treatment of cancer. While immune checkpoint-blocking monoclonal antibodies and chimeric antigen receptor (CAR) T-cell-based therapy have recently provided in some cases valuable therapeutic options, the goal of cure has not yet been achieved for most malignancies and more efforts are urgently needed. Noncoding RNAs (ncRNA), including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), regulate several biological processes via selective targeting of crucial molecular signaling pathways. Recently, the key roles of miRNA and lncRNAs as regulators of the immune-response in cancer have progressively emerged, since they may act (i) by shaping the intrinsic tumor cell and microenvironment (TME) properties; (ii) by regulating angiogenesis, immune-escape, epithelial-to-mesenchymal transition, invasion, and drug resistance; and (iii) by acting as potential biomarkers for prognostic assessment and prediction of response to immunotherapy. In this review, we provide an overview on the role of ncRNAs in modulating the immune response and the TME. We discuss the potential use of ncRNAs as potential biomarkers or as targets for development or clinical translation of new therapeutics. Finally, we discuss the potential combinatory approaches based on ncRNA targeting agents and tumor immune-checkpoint inhibitor antibodies or CAR-T for the experimental treatment of human cancer.
Collapse
|
19
|
Liu M, Liu H, Zhou J, Yu Z. miR‑140‑5p inhibits the proliferation of multiple myeloma cells by targeting VEGFA. Mol Med Rep 2020; 23:53. [PMID: 33200797 PMCID: PMC7706004 DOI: 10.3892/mmr.2020.11691] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 06/04/2020] [Indexed: 12/31/2022] Open
Abstract
MicroRNA (miR)-140-5p is associated with the growth and metastasis of various tumor cell types, yet its role in multiple myeloma (MM) remains unclear. Therefore, the present study aimed to investigate the regulatory effect of miR-140-5p on MM. Reverse transcription-quantitative PCR analysis demonstrated that miR-140-5p was downregulated in MM cell lines, particularly in U266 and RPMI 8226 cells. A Cell Counting Kit-8, wound healing and Transwell assays, as well as flow cytometry indicated that a miR-140-5p mimic could suppress cell viability, migration and invasion. In addition, the mimic promoted apoptosis of U266 and RPMI 8226 cells. Western blot data demonstrated that transfection with miR-140-5p mimic significantly reduced the expression levels of Ki-67, cyclin D1, vimentin, Snail, matrix metalloproteinase (MMP)-2 and MMP-3. Moreover, as predicted by TargetScan7.2 and verified by luciferase activity assay, it was demonstrated that vascular endothelial growth factor A (VEGFA) was targeted by miR-140-5p. Further experiments indicated that VEGFA overexpression promoted cell viability, migration and invasion and suppressed apoptosis of MM cells, and that the miR-140-5p mimic partially reversed the effects of VEGFA overexpression. Therefore, miR-140-5p suppressed MM progression by targeting VEGFA. The present findings provide insight into potential therapeutic strategies for the treatment of MM.
Collapse
Affiliation(s)
- Min Liu
- Department of Hematology, Jingzhou Central Hospital, Jingzhou, Hubei 434020, P.R. China
| | - Huimin Liu
- Department of Hematology, Jingzhou Central Hospital, Jingzhou, Hubei 434020, P.R. China
| | - Jing Zhou
- Department of Hematology, Jingzhou Central Hospital, Jingzhou, Hubei 434020, P.R. China
| | - Zhuojun Yu
- Department of Hematology, Jingzhou Central Hospital, Jingzhou, Hubei 434020, P.R. China
| |
Collapse
|
20
|
Leone P, Solimando AG, Malerba E, Fasano R, Buonavoglia A, Pappagallo F, De Re V, Argentiero A, Silvestris N, Vacca A, Racanelli V. Actors on the Scene: Immune Cells in the Myeloma Niche. Front Oncol 2020; 10:599098. [PMID: 33194767 PMCID: PMC7658648 DOI: 10.3389/fonc.2020.599098] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022] Open
Abstract
Two mechanisms are involved in the immune escape of cancer cells: the immunoediting of tumor cells and the suppression of the immune system. Both processes have been revealed in multiple myeloma (MM). Complex interactions between tumor plasma cells and the bone marrow (BM) microenvironment contribute to generate an immunosuppressive milieu characterized by high concentration of immunosuppressive factors, loss of effective antigen presentation, effector cell dysfunction, and expansion of immunosuppressive cell populations, such as myeloid-derived suppressor cells, regulatory T cells and T cells expressing checkpoint molecules such as programmed cell death 1. Considering the great immunosuppressive impact of BM myeloma microenvironment, many strategies to overcome it and restore myeloma immunosurveillance have been elaborated. The most successful ones are combined approaches such as checkpoint inhibitors in combination with immunomodulatory drugs, anti-monoclonal antibodies, and proteasome inhibitors as well as chimeric antigen receptor (CAR) T cell therapy. How best to combine anti-MM therapies and what is the optimal timing to treat the patient are important questions to be addressed in future trials. Moreover, intratumor MM heterogeneity suggests the crucial importance of tailored therapies to identify patients who might benefit the most from immunotherapy, reaching deeper and more durable responses.
Collapse
Affiliation(s)
- Patrizia Leone
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Antonio Giovanni Solimando
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
- Department of Medical Oncology, IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, Bari, Italy
| | - Eleonora Malerba
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Rossella Fasano
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Alessio Buonavoglia
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Fabrizio Pappagallo
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Valli De Re
- Bio-Proteomics Facility, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Antonella Argentiero
- Department of Medical Oncology, IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, Bari, Italy
| | - Nicola Silvestris
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
- Department of Medical Oncology, IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, Bari, Italy
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| |
Collapse
|
21
|
Korbecki J, Grochans S, Gutowska I, Barczak K, Baranowska-Bosiacka I. CC Chemokines in a Tumor: A Review of Pro-Cancer and Anti-Cancer Properties of Receptors CCR5, CCR6, CCR7, CCR8, CCR9, and CCR10 Ligands. Int J Mol Sci 2020; 21:ijms21207619. [PMID: 33076281 PMCID: PMC7590012 DOI: 10.3390/ijms21207619] [Citation(s) in RCA: 210] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/05/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
CC chemokines (or β-chemokines) are 28 chemotactic cytokines with an N-terminal CC domain that play an important role in immune system cells, such as CD4+ and CD8+ lymphocytes, dendritic cells, eosinophils, macrophages, monocytes, and NK cells, as well in neoplasia. In this review, we discuss human CC motif chemokine ligands: CCL1, CCL3, CCL4, CCL5, CCL18, CCL19, CCL20, CCL21, CCL25, CCL27, and CCL28 (CC motif chemokine receptor CCR5, CCR6, CCR7, CCR8, CCR9, and CCR10 ligands). We present their functioning in human physiology and in neoplasia, including their role in the proliferation, apoptosis resistance, drug resistance, migration, and invasion of cancer cells. We discuss the significance of chemokine receptors in organ-specific metastasis, as well as the influence of each chemokine on the recruitment of various cells to the tumor niche, such as cancer-associated fibroblasts (CAF), Kupffer cells, myeloid-derived suppressor cells (MDSC), osteoclasts, tumor-associated macrophages (TAM), tumor-infiltrating lymphocytes (TIL), and regulatory T cells (Treg). Finally, we show how the effect of the chemokines on vascular endothelial cells and lymphatic endothelial cells leads to angiogenesis and lymphangiogenesis.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (S.G.)
| | - Szymon Grochans
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (S.G.)
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (S.G.)
- Correspondence: ; Tel.: +48-914661515
| |
Collapse
|
22
|
Raimondi L, De Luca A, Giavaresi G, Raimondo S, Gallo A, Taiana E, Alessandro R, Rossi M, Neri A, Viglietto G, Amodio N. Non-Coding RNAs in Multiple Myeloma Bone Disease Pathophysiology. Noncoding RNA 2020; 6:ncrna6030037. [PMID: 32916806 PMCID: PMC7549375 DOI: 10.3390/ncrna6030037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/27/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022] Open
Abstract
Bone remodeling is uncoupled in the multiple myeloma (MM) bone marrow niche, resulting in enhanced osteoclastogenesis responsible of MM-related bone disease (MMBD). Several studies have disclosed the mechanisms underlying increased osteoclast formation and activity triggered by the various cellular components of the MM bone marrow microenvironment, leading to the identification of novel targets for therapeutic intervention. In this regard, recent attention has been given to non-coding RNA (ncRNA) molecules, that finely tune gene expression programs involved in bone homeostasis both in physiological and pathological settings. In this review, we will analyze major signaling pathways involved in MMBD pathophysiology, and report emerging evidence of their regulation by different classes of ncRNAs.
Collapse
Affiliation(s)
- Lavinia Raimondi
- IRCSS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche–SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, 40136 Bologna, Italy; (A.D.L.); (G.G.)
- Correspondence: (L.R.); (N.A.); Tel.: +39-091-6236011 (L.R.); +39-0961-3694159 (N.A.)
| | - Angela De Luca
- IRCSS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche–SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, 40136 Bologna, Italy; (A.D.L.); (G.G.)
| | - Gianluca Giavaresi
- IRCSS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche–SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, 40136 Bologna, Italy; (A.D.L.); (G.G.)
| | - Stefania Raimondo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (S.R.); (R.A.)
| | - Alessia Gallo
- IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Research Department, 90127 Palermo, Italy;
| | - Elisa Taiana
- Department of Oncology and Hemato-oncology, University of Milan, 20122 Milan, Italy; (E.T.); (A.N.)
- Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122 Milan, Italy
| | - Riccardo Alessandro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (S.R.); (R.A.)
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy
| | - Marco Rossi
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (M.R.); (G.V.)
| | - Antonino Neri
- Department of Oncology and Hemato-oncology, University of Milan, 20122 Milan, Italy; (E.T.); (A.N.)
- Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122 Milan, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (M.R.); (G.V.)
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (M.R.); (G.V.)
- Correspondence: (L.R.); (N.A.); Tel.: +39-091-6236011 (L.R.); +39-0961-3694159 (N.A.)
| |
Collapse
|
23
|
Pehlivan M, Nursal AF, Gündeş İ, Oyacı Y, Kıvanç D, Pehlivan S. Role of MIF-173G/C and Mbl2 Codon 54A/B Variants in the Risk of Multiple Myeloma: An Association Study. Endocr Metab Immune Disord Drug Targets 2020; 21:925-931. [PMID: 32811420 DOI: 10.2174/1871530320999200818102731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/08/2020] [Accepted: 07/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Multiple myeloma (MM) is a malignant disease manifested by the clonal proliferation of atypical plasma cells. Macrophage inhibitory factor (MIF) is one of the pleiotropic regulators in various biological and cellular processes. Mannose-binding lectin (MBL) is a crucial protein involved in the lectin pathway of the immune system. OBJECTIVE We aimed to assess whether variants of MIF and MBL2 genes are associated with MM among a Turkish population. METHODS We analyzed the MIF-173G/C (rs755622) and MBL2 codon 54A/B (rs1800450) variants in 200 patients with MM and 200 healthy control subjects using a polymerase chain reaction (PCR) followed by restriction endonuclease digestion. There was also an evaluation of the patients undergoing autologous stem-cell transplantation (ASCT) for these variants. RESULTS AA and BB genotypes of MBL2 codon 54A/B increased in the patients as compared to the controls (p=0.008, p=0.001, respectively). The subjects carrying AA and BB genotypes of MBL2 were at high risk of development of susceptibility to MM by 7.377 and 8.812 times, respectively. The distribution of MBL2 codon 54A/B alleles was similar between the groups (p>0 .05). There was no statistical difference between the patients and controls in the genotype and allele frequencies of the MIF- 173G/C variant (p>0 .05). The patients undergoing ASCT, MBL2 codon 54A/B AA and BB genotypes also showed association with increased risk for MM (p=0.004, p=0.001, respectively). CONCLUSION As far as we know, this is the first report of the study on an association between these variants and MM in our population. Our results indicate that the MBL2 codon 54A/B variant may be associated with susceptibility to MM.
Collapse
Affiliation(s)
- Mustafa Pehlivan
- Department of Hematology, Gaziantep Univesity, Faculty of Medicine, Gaziantep, Turkey
| | - Ayşe F Nursal
- Department of Medical Genetics, Hitit University, Faculty of Medicine, Corum, Turkey
| | - İlknur Gündeş
- Department of Hematology, Gaziantep Univesity, Faculty of Medicine, Gaziantep, Turkey
| | - Yasemin Oyacı
- Department of Medical Biology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Demet Kıvanç
- Department of Medical Biology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Sacide Pehlivan
- Department of Medical Biology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
24
|
Genome-Wide Association Study Using Fix-Length Haplotypes and Network Analysis Revealed New Candidate Genes for Nematode Resistance and Body Weight in Blackface Lambs. ANNALS OF ANIMAL SCIENCE 2020. [DOI: 10.2478/aoas-2020-0028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The objectives of this study were to identify genomic regions by Bayesian methods (BayesA, BayesB, or BayesN) that fit fixed-length haplotypes or SNPs using GenSel. Covariates for haplo-type alleles of five lengths (125, 250, 500 kb, 1 or 2 Mb) were generated, and rare haplotypes were removed at three thresholds (1, 5, or 10%). Subsequently, we performed gene network analyses to investigate the biological processes shared by genes that were identified for the same across traits. Genotypes at 41,034 SNPs that were common on OvineSNP50 panel were phased for 751 Scottish Blackface (SBF) lambs. This is the first study to quantify the proportion of genetic variance using haplotypes across the whole genome in an SBF population. The genetic variance explained of haplotype-based GWAS was higher than that of SNP-based GWAS in across traits studied. In this population, fitting 500kb haplotypes with a 1% frequency threshold resulted in the highest proportion of genetic variance explained for nematode resistance and fitting 2Mb haplotypes with a 10% frequency threshold improved genetic variance explained for body weight comparable to fitting SNPs by BayesB. Candidate genes, including CXCR4, STAT4, CCL1, CCL2, CCL3, CCL5, CCL8, CCL16, CCL18, CARMIL2, and HSPA14 were identified for nematode resistance and ADH5, PPP3CA, and FABP4 for body weight traits. Network analysis provided annotation results linking to all identified candidate genes. This study supported previous results from GWAS of nematode resistance and body weight and revealed additional regions in the ovine genome associated with these economically important traits. These results suggest that network analysis can provide new information regarding biological mechanisms and genes leading to complex phenotypes, like nematode resistance and body weight of lamb.
Collapse
|
25
|
Watson CJF, Maguire ARR, Rouillard MM, Crozier RWE, Yousef M, Bruton KM, Fajardo VA, MacNeil AJ. TAK1 signaling activity links the mast cell cytokine response and degranulation in allergic inflammation. J Leukoc Biol 2020; 107:649-661. [PMID: 32108376 DOI: 10.1002/jlb.2a0220-401rrr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/13/2020] [Accepted: 02/15/2020] [Indexed: 12/23/2022] Open
Abstract
Mast cells drive the inappropriate immune response characteristic of allergic inflammatory disorders via release of pro-inflammatory mediators in response to environmental cues detected by the IgE-FcεRI complex. The role of TGF-β-activated kinase 1 (TAK1), a participant in related signaling in other contexts, remains unknown in allergy. We detect novel activation of TAK1 at Ser412 in response to IgE-mediated activation under SCF-c-kit potentiation in a mast cell-driven response characteristic of allergic inflammation, which is potently blocked by TAK1 inhibitor 5Z-7-oxozeaenol (OZ). We, therefore, interrogated the role of TAK1 in a series of mast cell-mediated responses using IgE-sensitized murine bone marrow-derived mast cells, stimulated with allergen under several TAK1 inhibition strategies. TAK1 inhibition by OZ resulted in significant impairment in the phosphorylation of MAPKs p38, ERK, and JNK; and mediation of the NF-κB pathway via IκBα. Impaired gene expression and near abrogation in release of pro-inflammatory cytokines TNF, IL-6, IL-13, and chemokines CCL1, and CCL2 was detected. Finally, a significant inhibition of mast cell degranulation, accompanied by an impairment in calcium mobilization, was observed in TAK1-inhibited cells. These results suggest that TAK1 acts as a signaling node, not only linking the MAPK and NF-κB pathways in driving the late-phase response, but also initiation of the degranulation mechanism of the mast cell early-phase response following allergen recognition and may warrant consideration in future therapeutic development.
Collapse
Affiliation(s)
- Colton J F Watson
- Department of Health Sciences, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| | - Aindriu R R Maguire
- Department of Health Sciences, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| | - Melissa M Rouillard
- Department of Health Sciences, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| | - Robert W E Crozier
- Department of Health Sciences, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| | - Michael Yousef
- Department of Health Sciences, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| | - Kelly M Bruton
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Val A Fajardo
- Department of Kinesiology, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| | - Adam J MacNeil
- Department of Health Sciences, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| |
Collapse
|
26
|
Cucè M, Gallo Cantafio ME, Siciliano MA, Riillo C, Caracciolo D, Scionti F, Staropoli N, Zuccalà V, Maltese L, Di Vito A, Grillone K, Barbieri V, Arbitrio M, Di Martino MT, Rossi M, Amodio N, Tagliaferri P, Tassone P, Botta C. Trabectedin triggers direct and NK-mediated cytotoxicity in multiple myeloma. J Hematol Oncol 2019; 12:32. [PMID: 30898137 PMCID: PMC6429746 DOI: 10.1186/s13045-019-0714-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/26/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Genomic instability is a feature of multiple myeloma (MM), and impairment in DNA damaging response (DDR) has an established role in disease pathobiology. Indeed, a deregulation of DNA repair pathways may contribute to genomic instability, to the establishment of drug resistance to genotoxic agents, and to the escape from immune surveillance. On these bases, we evaluated the role of different DDR pathways in MM and investigated, for the first time, the direct and immune-mediated anti-MM activity of the nucleotide excision repair (NER)-dependent agent trabectedin. METHODS Gene-expression profiling (GEP) was carried out with HTA2.0 Affymetrix array. Evaluation of apoptosis, cell cycle, and changes in cytokine production and release have been performed in 2D and 3D Matrigel-spheroid models through flow cytometry on MM cell lines and patients-derived primary MM cells exposed to increasing nanomolar concentrations of trabectedin. DNA-damage response has been evaluated through Western blot, immunofluorescence, and DNA fragmentation assay. Trabectedin-induced activation of NK has been assessed by CD107a degranulation. miRNAs quantification has been done through RT-PCR. RESULTS By comparing GEP meta-analysis of normal and MM plasma cells (PCs), we observed an enrichment in DNA NER genes in poor prognosis MM. Trabectedin triggered apoptosis in primary MM cells and MM cell lines in both 2D and 3D in vitro assays. Moreover, trabectedin induced DDR activation, cellular stress with ROS production, and cell cycle arrest. Additionally, a significant reduction of MCP1 cytokine and VEGF-A in U266-monocytes co-cultures was observed, confirming the impairment of MM-promoting milieu. Drug-induced cell stress in MM cells led to upregulation of NK activating receptors ligands (i.e., NKG2D), which translated into increased NK activation and degranulation. Mechanistically, this effect was linked to trabectedin-induced inhibition of NKG2D-ligands negative regulators IRF4 and IKZF1, as well as to miR-17 family downregulation in MM cells. CONCLUSIONS Taken together, our findings indicate a pleiotropic activity of NER-targeting agent trabectedin, which appears a promising candidate for novel anti-MM therapeutic strategies.
Collapse
Affiliation(s)
- Maria Cucè
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Viale Europa, 88100, Catanzaro, Italy
| | - Maria Eugenia Gallo Cantafio
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Viale Europa, 88100, Catanzaro, Italy
| | - Maria Anna Siciliano
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Viale Europa, 88100, Catanzaro, Italy
| | - Caterina Riillo
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Viale Europa, 88100, Catanzaro, Italy
| | - Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Viale Europa, 88100, Catanzaro, Italy
| | - Francesca Scionti
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Viale Europa, 88100, Catanzaro, Italy
| | - Nicoletta Staropoli
- Medical and Translational Oncology Units, AOU Mater Domini, Catanzaro, Italy
| | | | | | - Anna Di Vito
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Viale Europa, 88100, Catanzaro, Italy
| | - Katia Grillone
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Viale Europa, 88100, Catanzaro, Italy
| | - Vito Barbieri
- Medical and Translational Oncology Units, AOU Mater Domini, Catanzaro, Italy
| | - Mariamena Arbitrio
- Institute of Neurological Sciences, UOS of Pharmacology, Catanzaro, Italy
| | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Viale Europa, 88100, Catanzaro, Italy
- Medical and Translational Oncology Units, AOU Mater Domini, Catanzaro, Italy
| | - Marco Rossi
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Viale Europa, 88100, Catanzaro, Italy
- Medical and Translational Oncology Units, AOU Mater Domini, Catanzaro, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Viale Europa, 88100, Catanzaro, Italy
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Viale Europa, 88100, Catanzaro, Italy
- Medical and Translational Oncology Units, AOU Mater Domini, Catanzaro, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Viale Europa, 88100, Catanzaro, Italy.
- Medical and Translational Oncology Units, AOU Mater Domini, Catanzaro, Italy.
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.
| | - Cirino Botta
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Viale Europa, 88100, Catanzaro, Italy
| |
Collapse
|
27
|
Holstein SA, Ye JC, Howard A, Bhutani M, Gormley N, Hahn T, Hillengass J, Krishnan A, Landgren CO, Munshi NC, Oliva S, Owen RG, Pasquini MC, Puig N, Weinhold N, Weisel K, McCarthy PL. Summary of the Second Annual BMT CTN Myeloma Intergroup Workshop on Minimal Residual Disease and Immune Profiling. Biol Blood Marrow Transplant 2019; 25:e89-e97. [PMID: 30408566 PMCID: PMC6445685 DOI: 10.1016/j.bbmt.2018.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/01/2018] [Indexed: 12/18/2022]
Abstract
The second annual Blood and Marrow Transplant Clinical Trials Network (BMT CTN) Myeloma Intergroup Workshop on Minimal Residual Disease and Immune Profiling was convened on December 7, 2017, at the American Society of Hematology (ASH) meeting. During this workshop, investigators from around the world presented their latest research involving assessment of minimal residual disease (MRD) and immune profiling (IP) in myeloma. This document summarizes the workshop presentations as well as relevant ASH abstracts and focuses on the regulatory issues involved in the integration of MRD and IP assessment in clinical trial design and practice.
Collapse
Affiliation(s)
- Sarah A Holstein
- Department of Internal Medicine, Division of Oncology and Hematology, University of Nebraska Medical Center, Omaha, Nebraska.
| | - J Christine Ye
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan
| | - Alan Howard
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota
| | - Manisha Bhutani
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Charlotte, North Carolina
| | - Nicole Gormley
- US Food and Drug Administration, Silver Spring, Maryland
| | - Theresa Hahn
- The Transplant & Cellular Therapy Center, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Jens Hillengass
- The Transplant & Cellular Therapy Center, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Amrita Krishnan
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - C Ola Landgren
- Department of Medicine, Myeloma Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nikhil C Munshi
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Stefania Oliva
- Division of Hematology, Myeloma Unit, University of Torino, Torino, Italy
| | - Roger G Owen
- Haematological Malignancy Diagnostic Service, St James's Institute of Oncology, Leeds, United Kingdom
| | - Marcelo C Pasquini
- Department of Medicine, Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Noemi Puig
- Department of Hematology, Universit Hospital of Salamanca, Salamanca, Spain
| | - Niels Weinhold
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Katja Weisel
- Department of Hematology, Oncology, Immunology and Rheumatology, Universitatsklinikum Tubingen, Tubingen, Germany
| | - Philip L McCarthy
- The Transplant & Cellular Therapy Center, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| |
Collapse
|
28
|
Costa F, Das R, Kini Bailur J, Dhodapkar K, Dhodapkar MV. Checkpoint Inhibition in Myeloma: Opportunities and Challenges. Front Immunol 2018; 9:2204. [PMID: 30319648 PMCID: PMC6168958 DOI: 10.3389/fimmu.2018.02204] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/05/2018] [Indexed: 12/12/2022] Open
Abstract
Despite major improvements in the treatment landscape, most multiple myeloma (MM) patients eventually succumb to the underlying malignancy. Immunotherapy represents an attractive strategy to achieve durable remissions due to its specificity and capacity for long term memory. Activation of immune cells is controlled by a balance of agonistic and inhibitory signals via surface and intracellular receptors. Blockade of such inhibitory immune receptors (termed as "immune checkpoints") including PD-1/PD-L1 has led to impressive tumor regressions in several cancers. Preclinical studies suggest that these immune checkpoints may also play a role in regulating tumor immunity in MM. Indeed, myeloma was among the first tumors wherein therapeutic efficacy of blockade of PD-1 axis was demonstrated in preclinical models. Expression of PD-L1 on tumor and immune cells also correlates with the risk of malignant transformation. However, early clinical studies of single agent PD-1 blockade have not led to meaningful tumor regressions. Immune modulatory drugs (IMiDs) are now the mainstay of most MM therapies. Interestingly, the mechanism of immune activation by IMiDs also involves release of inhibitory checkpoints, such as Ikaros-mediated suppression of IL-2. Combination of PD-1 targeted agents with IMiDs led to promising clinical activity, including objective responses in some patients refractory to IMiD therapy. However, some of these studies were transiently halted in 2017 due to concern for a possible safety signal with IMiD-PD1 combination. The capacity of the immune system to control MM has been further reinforced by recent success of adoptive cell therapies, such as T cells redirected by chimeric-antigen receptors (CAR-Ts). There remains an unmet need to better understand the immunologic effects of checkpoint blockade, delineate mechanisms of resistance to these therapies and identify optimal combination of agonistic signaling, checkpoint inhibitors as well as other therapies including CAR-Ts, to realize the potential of the immune system to control and prevent MM.
Collapse
Affiliation(s)
- Federica Costa
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Rituparna Das
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | | | - Kavita Dhodapkar
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | | |
Collapse
|
29
|
Adamik J, Galson DL, Roodman GD. Osteoblast suppression in multiple myeloma bone disease. J Bone Oncol 2018; 13:62-70. [PMID: 30591859 PMCID: PMC6303385 DOI: 10.1016/j.jbo.2018.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 12/29/2022] Open
Abstract
Multiple myeloma (MM) is the most frequent cancer to involve the skeleton with patients developing osteolytic bone lesions due to hyperactivation of osteoclasts and suppression of BMSCs differentiation into functional osteoblasts. Although new therapies for MM have greatly improved survival, MM remains incurable for most patients. Despite the major advances in current anti-MM and anti-resorptive treatments that can significantly improve osteolytic bone lysis, many bone lesions can persist even after therapeutic remission of active disease. Bone marrow mesenchymal stem cells (BMSCs) from MM patients are phenotypically distinct from their healthy counterparts and the mechanisms associated with the long-term osteogenic suppression are largely unknown. In this review we will highlight recent results of transcriptomic profiling studies that provide new insights into the establishment and maintenance of the persistent pathological alterations in MM-BMSCs that occur in MM. We will we discuss the role of genomic instabilities and senescence in propagating the chronically suppressed state and pro-inflammatory phenotype associated with MM-BMSCs. Lastly we describe the role of epigenetic-based mechanisms in regulating osteogenic gene expression to establish and maintain the pro-longed suppression of MM-BMSC differentiation into functional OBs.
Collapse
Affiliation(s)
- Juraj Adamik
- Department of Medicine, Division of Hematology/Oncology, UPMC Hillman Cancer Center, The McGowan Institute for Regenerative Medicine University of Pittsburgh, Pittsburgh, PA, USA
| | - Deborah L Galson
- Department of Medicine, Division of Hematology/Oncology, UPMC Hillman Cancer Center, The McGowan Institute for Regenerative Medicine University of Pittsburgh, Pittsburgh, PA, USA
| | - G David Roodman
- Department of Medicine, Division of Hematology-Oncology, Indiana University, Indianapolis, IN, USA.,Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| |
Collapse
|
30
|
Agnarelli A, Chevassut T, Mancini EJ. IRF4 in multiple myeloma—Biology, disease and therapeutic target. Leuk Res 2018; 72:52-58. [DOI: 10.1016/j.leukres.2018.07.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 01/29/2023]
|
31
|
Abstract
Multiple myeloma (MM) is the second-most-common hematologic malignancy and the most frequent cancer to involve bone. MM bone disease (MMBD) has devastating consequences for patients, including dramatic bone loss, severe bone pain, and pathological fractures that markedly decrease the quality of life and impact survival of MM patients. MMBD results from excessive osteoclastic bone resorption and persistent suppressed osteoblastic bone formation, causing lytic lesions that do not heal, even when patients are in complete and prolonged remission. This review discusses the cellular and molecular mechanisms that regulate the uncoupling of bone remodeling in MM, the effects of MMBD on tumor growth, and potential therapeutic approaches that may prevent severe bone loss and repair damaged bone in MM patients.
Collapse
Affiliation(s)
- Silvia Marino
- Department of Medicine, Division Hematology Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - G David Roodman
- Department of Medicine, Division Hematology Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Roudebush VA Medical Center, Indianapolis, Indiana 46202
| |
Collapse
|
32
|
Rossi M, Botta C, Arbitrio M, Grembiale RD, Tagliaferri P, Tassone P. Mouse models of multiple myeloma: technologic platforms and perspectives. Oncotarget 2018; 9:20119-20133. [PMID: 29732008 PMCID: PMC5929451 DOI: 10.18632/oncotarget.24614] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/24/2018] [Indexed: 12/19/2022] Open
Abstract
Murine models of human multiple myeloma (MM) are key tools for the study of disease biology as well as for investigation and selection of novel candidate therapeutics for clinical translation. In the last years, a variety of pre-clinical models have been generated to recapitulate a wide spectrum of biological features of MM. These systems range from spontaneous or transgenic models of murine MM, to subcutaneous or orthothopic xenografts of human MM cell lines in immune compromised animals, to platform allowing the engraftment of primary/bone marrow-dependent MM cells within a human bone marrow milieu to fully recapitulate human disease. Selecting the right model for specific pre-clinical research is essential for the successful completion of investigation. We here review recent and most known pre-clinical murine, transgenic and humanized models of MM, focusing on major advantages and/or weaknesses in the light of different research aims.
Collapse
Affiliation(s)
- Marco Rossi
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Cirino Botta
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Mariamena Arbitrio
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | | | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| |
Collapse
|
33
|
Holstein SA, Avet-Loiseau H, Hahn T, Ho CM, Lohr JG, Munshi NC, Paiva B, Pasquini MC, Tario JD, Usmani SZ, Wallace PK, Weisel K, McCarthy PL. BMT CTN Myeloma Intergroup Workshop on Minimal Residual Disease and Immune Profiling: Summary and Recommendations from the Organizing Committee. Biol Blood Marrow Transplant 2017; 24:641-648. [PMID: 29242112 DOI: 10.1016/j.bbmt.2017.12.774] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/05/2017] [Indexed: 12/21/2022]
Abstract
The Blood and Marrow Transplant Clinical Trials Network Myeloma Intergroup Workshop on Minimal Residual Disease and Immune Profiling was convened on December 1, 2016 at the American Society of Hematology meeting to discuss the emerging data and technologies for minimal residual disease assessment and immune profiling in myeloma. Particular emphasis was placed on developing strategies to incorporate these techniques into clinical trial design. This document reviews the literature, summarizes the topics discussed in the workshop, and provides recommendations for integration of these techniques into future clinical trial design.
Collapse
Affiliation(s)
- Sarah A Holstein
- Division of Oncology and Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska.
| | - Hervé Avet-Loiseau
- Centre de Recherches en Cancerologie de Toulouse CRCT, Institut National de la Sante et de la Recherche Medicale, University Cancer Center of Toulouse, Toulouse, France
| | - Theresa Hahn
- Department of Medicine, Blood & Marrow Transplant Center, Roswell Park Cancer Institute, Buffalo, New York
| | - Christine M Ho
- Department of Medicine, Blood & Marrow Transplant Center, Roswell Park Cancer Institute, Buffalo, New York
| | - Jens G Lohr
- Department of Medicine, Hematologic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Nikhil C Munshi
- Department of Medicine, Hematologic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Bruno Paiva
- Centro de Investigación Medica Aplicadas, Instituto de Investigación Sanitaria de Navarra, Centro de Investigacion Biomedica en Red Cancer, Clínica Universidad de Navarra, Pamplona, Spain
| | - Marcelo C Pasquini
- Department of Medicine, Hematology and Oncology, Medical College of Wisconsin, Milwaukee, Milwaukee
| | - Joseph D Tario
- Department of Medicine, Blood & Marrow Transplant Center, Roswell Park Cancer Institute, Buffalo, New York
| | - Saad Z Usmani
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Charlotte, North Carolina
| | - Paul K Wallace
- Department of Medicine, Blood & Marrow Transplant Center, Roswell Park Cancer Institute, Buffalo, New York
| | - Katja Weisel
- Department of Hematology and Oncology, Universitatsklinikum Tubingen, Tubingen, Germany
| | - Philip L McCarthy
- Department of Medicine, Blood & Marrow Transplant Center, Roswell Park Cancer Institute, Buffalo, New York
| |
Collapse
|
34
|
MiR-29b antagonizes the pro-inflammatory tumor-promoting activity of multiple myeloma-educated dendritic cells. Leukemia 2017; 32:1003-1015. [PMID: 29158557 PMCID: PMC5886056 DOI: 10.1038/leu.2017.336] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/05/2017] [Accepted: 11/10/2017] [Indexed: 12/29/2022]
Abstract
Dendritic cells (DCs) have a key role in regulating tumor immunity, tumor cell growth and drug resistance. We hypothesized that multiple myeloma (MM) cells might recruit and reprogram DCs to a tumor-permissive phenotype by changes within their microRNA (miRNA) network. By analyzing six different miRNA-profiling data sets, miR-29b was identified as the only miRNA upregulated in normal mature DCs and significantly downregulated in tumor-associated DCs. This finding was validated in primary DCs co-cultured in vitro with MM cell lines and in primary bone marrow DCs from MM patients. In DCs co-cultured with MM cells, enforced expression of miR-29b counteracted pro-inflammatory pathways, including signal transducer and activator of transcription 3 and nuclear factor-κB, and cytokine/chemokine signaling networks, which correlated with patients' adverse prognosis and development of bone disease. Moreover, miR-29b downregulated interleukin-23 in vitro and in the SCID-synth-hu in vivo model, and antagonized a Th17 inflammatory response. All together, these effects translated into strong anti-proliferative activity and reduction of genomic instability of MM cells. Our study demonstrates that MM reprograms the DCs functional phenotype by downregulating miR-29b whose reconstitution impairs DCs ability to sustain MM cell growth and survival. These results underscore miR-29b as an innovative and attractive candidate for miRNA-based immune therapy of MM.
Collapse
|
35
|
Valor LM, Rodríguez-Bayona B, Ramos-Amaya AB, Brieva JA, Campos-Caro A. The transcriptional profiling of human in vivo-generated plasma cells identifies selective imbalances in monoclonal gammopathies. PLoS One 2017; 12:e0183264. [PMID: 28817638 PMCID: PMC5560601 DOI: 10.1371/journal.pone.0183264] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 08/01/2017] [Indexed: 12/13/2022] Open
Abstract
Plasma cells (PC) represent the heterogeneous final stage of the B cells (BC) differentiation process. To characterize the transition of BC into PC, transcriptomes from human naïve BC were compared to those of three functionally-different subsets of human in vivo-generated PC: i) tonsil PC, mainly consisting of early PC; ii) PC released to the blood after a potent booster-immunization (mostly cycling plasmablasts); and, iii) bone marrow CD138+ PC that represent highly mature PC and include the long-lived PC compartment. This transcriptional transition involves subsets of genes related to key processes for PC maturation: the already known protein processing, apoptosis and homeostasis, and of new discovery including histones, macromolecule assembly, zinc-finger transcription factors and neuromodulation. This human PC signature is partially reproduced in vitro and is conserved in mouse. Moreover, the present study identifies genes that define PC subtypes (e.g., proliferation-associated genes for circulating PC and transcriptional-related genes for tonsil and bone marrow PC) and proposes some putative transcriptional regulators of the human PC signatures (e.g., OCT/POU, XBP1/CREB, E2F, among others). Finally, we also identified a restricted imbalance of the present PC transcriptional program in monoclonal gammopathies that correlated with PC malignancy.
Collapse
Affiliation(s)
- Luis M. Valor
- Unidad de Investigación, Hospital Universitario Puerta del Mar and Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Cádiz, Spain
| | - Beatriz Rodríguez-Bayona
- Unidad de Investigación, Hospital Universitario Puerta del Mar and Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Cádiz, Spain
| | - Ana B. Ramos-Amaya
- Unidad de Investigación, Hospital Universitario Puerta del Mar and Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Cádiz, Spain
| | - José A. Brieva
- Unidad de Investigación, Hospital Universitario Puerta del Mar and Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Cádiz, Spain
| | - Antonio Campos-Caro
- Unidad de Investigación, Hospital Universitario Puerta del Mar and Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Cádiz, Spain
- * E-mail:
| |
Collapse
|
36
|
Terpos E, Matsaridis D, Koutoulidis V, Zagouri F, Christoulas D, Fontara S, Panourgias E, Gavriatopoulou M, Kastritis E, Dimopoulos MA, Moulopoulos LA. Dynamic contrast-enhanced magnetic resonance imaging parameters correlate with advanced revised-ISS and angiopoietin-1/angiopoietin-2 ratio in patients with multiple myeloma. Ann Hematol 2017; 96:1707-1714. [PMID: 28766001 DOI: 10.1007/s00277-017-3078-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/23/2017] [Indexed: 11/28/2022]
Abstract
The aim of the study was to assess the value of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in patients with newly diagnosed multiple myeloma (MM) who were treated with novel anti-myeloma agents. We studied 60 previously untreated MM patients at diagnosis, 14 with smoldering MM (SMM) and 5 with MGUS. All patients underwent MRI of the thoracolumbar spine and pelvis before the administration of any kind of therapy, and DCE-MRI was performed. The MRI perfusion parameters evaluated were wash-in (WIN), washout (WOUT), time-to-peak (TTPK), time-to-maximum slope (TMSP), and the WIN/TMSP ratio. The following serum levels of angiogenic cytokines were measured on the day of MRI: VEGF, angiogenin (Ang), angiopoietin-1 (Angp-1), and -2 (Angp-2). Symptomatic MM patients had increased WIN compared to SMM (p < 0.05) and MGUS patients (p = 0.001). TTPK was decreased, and WIN/TMSP was increased in both symptomatic and SMM patients compared to MGUS patients (p < 0.05). Symptomatic MM patients had decreased TMSP compared to MGUS patients. The Angp-1/Angp-2 ratio was reduced in symptomatic MM compared to SMM (p = 0.017) and MGUS patients (p < 0.001). TTPK correlated with Angp-1/Angp-2 ratio and importantly with R-ISS. Patients with R-ISS-3 had lower TTPK median value (23 s, range 18-29 s) compared to patients with R-ISS-2 (48 s, range 27-68 s) and patients with R-ISS-1 MM (54 s, range 42-76 s; p ANOVA = 0.01). A subset of patients with low TTPK (lower quartile) had shorter time to progression compared to all other patients. These data suggest that certain DCE-MRI parameters correlate with R-ISS and adverse prognostic features of angiogenesis, such as the ratio of Angp-1/Angp-2.
Collapse
Affiliation(s)
- Evangelos Terpos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece.
| | - Dimitris Matsaridis
- First Department of Radiology, National and Kapodistrian University of Athens, School of Medicine, "Aretaieion" Hospital, Athens, Greece
| | - Vassilis Koutoulidis
- First Department of Radiology, National and Kapodistrian University of Athens, School of Medicine, "Aretaieion" Hospital, Athens, Greece
| | - Flora Zagouri
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Dimitrios Christoulas
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Sophia Fontara
- First Department of Radiology, National and Kapodistrian University of Athens, School of Medicine, "Aretaieion" Hospital, Athens, Greece
| | - Evangelia Panourgias
- First Department of Radiology, National and Kapodistrian University of Athens, School of Medicine, "Aretaieion" Hospital, Athens, Greece
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Meletios A Dimopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Lia A Moulopoulos
- First Department of Radiology, National and Kapodistrian University of Athens, School of Medicine, "Aretaieion" Hospital, Athens, Greece
| |
Collapse
|
37
|
Network meta-analysis of randomized trials in multiple myeloma: efficacy and safety in relapsed/refractory patients. Blood Adv 2017; 1:455-466. [PMID: 29296961 DOI: 10.1182/bloodadvances.2016003905] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/07/2017] [Indexed: 12/21/2022] Open
Abstract
Despite major therapeutic advancements, multiple myeloma (MM) is still incurable and relapsed/refractory multiple myeloma (RRMM) remains a challenge; the rational choice of the most appropriate regimen in this setting is currently undefined. We performed a systematic review and 2 standard pairwise meta-analyses to evaluate the efficacy of regimens that have been directly compared with bortezomib or immunomodulatory imide drugs (IMiDs) in head-to-head clinical trials and a network meta-analysis (NMA) to determine the relevance of each regimen on the basis of all the available direct and indirect evidence. Sixteen trials were included in the pairwise meta-analyses, and 18 trials were included in the NMA. Pairwise meta-analyses showed that a 3-drug regimen (bortezomib- or IMiD-based) was superior to a 2-drug regimen in progression-free-survival (PFS) and overall response rate (ORR). NMA showed that an IMiD backbone associated with anti-MM monoclonal antibodies (mAbs) (preferably) or proteasome inhibitors had the highest probability of being the most effective regimen with the lowest toxicity. The combination of daratumumab, lenalidomide, and dexamethasone ranked as the first regimen in terms of activity, efficacy, and tolerability according to the average value between surface under the cumulative ranking curve of PFS, overall survival, ORR, complete response rate, and safety. This is the first NMA comparing all currently available regimens evaluated in published randomized trials for the treatment of RRMM, but our results need to be interpreted taking into account differences in their patient populations. Our analysis suggests that IMiDs plus new anti-MM mAb-containing regimens are the most active therapeutic option in RRMM.
Collapse
|