1
|
Sun Z, Wei S, Guo Q, Ouyang H, Mao Z, Wang W, Tong Z, Ding Y. V9302-loaded copper-polyphenol hydrogel for enhancing the anti-tumor effect of disulfiram. J Colloid Interface Sci 2025; 678:866-877. [PMID: 39270387 DOI: 10.1016/j.jcis.2024.08.240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/25/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Disulfiram (DSF) is a safe drug with negligible toxicity and Cu-dependent anti-tumor efficacy. However, the accumulation and combination of DSF and Cu in non-tumor tissues leads to systemic toxicity owing to the formation of highly poisonous diethyldithiocarbamate (CuET). In addition, CuET-mediated tumor-killing reactive oxygen species may be weakened by intra-tumoral glutathione (GSH). Herein, a synergistic treatment was developed that utilized the oral delivery of DSF and an injectable polyphenol-copper (PA-Cu) hydrogel loaded with the glutamine uptake inhibitor 2-amino-4-bis(phenoxymethyl)aminobutane (V9302). The injectable hydrogels were synthesized by the Schiff base reaction of hydroxypropyl chitosan (HPCS) with a PA-Cu reversible cross-linking agent. Because of the dynamic coordination between PA and Cu, the PA-Cu/HPCS hydrogel gradually releases Cu2+, forming CuET with DSF. The released V9302 inhibits glutamine uptake, thereby suppressing GSH synthesis and enhancing the therapeutic efficacy of the in situ formed CuET. The synergistic effect of PA-Cu/HPCS/V9302 and DSF in eliminating intracellular GSH and killing tumor cells was validated by in vitro cell experiments. Animal experiments further confirmed that PA-Cu/HPCS/V9302 and DSF have an inhibitory effect on tumor growth while maintaining the biosafety of main organs.
Collapse
Affiliation(s)
- Zhongquan Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang 310009, PR China; Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang 310009, PR China; National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang 310009, PR China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Shenyu Wei
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang 310009, PR China; Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang 310009, PR China; National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang 310009, PR China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Quanshi Guo
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
| | - Hanxiang Ouyang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang 310009, PR China; Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang 310009, PR China; National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang 310009, PR China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Zhengwei Mao
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang 310009, PR China; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang 310009, PR China; Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang 310009, PR China; National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang 310009, PR China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, PR China.
| | - Zongrui Tong
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang 310009, PR China; Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang 310009, PR China; National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang 310009, PR China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, PR China.
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang 310009, PR China; Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang 310009, PR China; National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang 310009, PR China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, PR China.
| |
Collapse
|
2
|
Huang J, Campian JL, DeWees TA, Skrott Z, Mistrik M, Johanns TM, Ansstas G, Butt O, Leuthardt E, Dunn GP, Zipfel GJ, Osbun JW, Abraham C, Badiyan S, Schwetye K, Cairncross JG, Rubin JB, Kim AH, Chheda MG. A Phase 1/2 Study of Disulfiram and Copper With Concurrent Radiation Therapy and Temozolomide for Patients With Newly Diagnosed Glioblastoma. Int J Radiat Oncol Biol Phys 2024; 120:738-749. [PMID: 38768767 DOI: 10.1016/j.ijrobp.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/25/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024]
Abstract
PURPOSE This phase 1/2 study aimed to evaluate the safety and preliminary efficacy of combining disulfiram and copper (DSF/Cu) with radiation therapy (RT) and temozolomide (TMZ) in patients with newly diagnosed glioblastoma (GBM). METHODS AND MATERIALS Patients received standard RT and TMZ with DSF (250-375 mg/d) and Cu, followed by adjuvant TMZ plus DSF (500 mg/d) and Cu. Pharmacokinetic analyses determined drug concentrations in plasma and tumors using high-performance liquid chromatography-mass spectrometry. RESULTS Thirty-three patients, with a median follow-up of 26.0 months, were treated, including 12 IDH-mutant, 9 NF1-mutant, 3 BRAF-mutant, and 9 other IDH-wild-type cases. In the phase 1 arm, 18 patients were treated; dose-limiting toxicity probabilities were 10% (95% CI, 3%-29%) at 250 mg/d and 21% (95% CI, 7%-42%) at 375 mg/d. The phase 2 arm treated 15 additional patients at 250 mg/d. No significant difference in overall survival or progression-free survival was noted between IDH- and NF1-mutant cohorts compared with institutional counterparts treated without DSF/Cu. However, extended remission occurred in 3 BRAF-mutant patients. Diethyl-dithiocarbamate-copper, the proposed active metabolite of DSF/Cu, was detected in plasma but not in tumors. CONCLUSIONS The maximum tolerated dose of DSF with RT and TMZ is 375 mg/d. DSF/Cu showed limited clinical efficacy for most patients. However, promising efficacy was observed in BRAF-mutant GBM, warranting further investigation.
Collapse
Affiliation(s)
- Jiayi Huang
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri; Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri.
| | - Jian L Campian
- Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri; Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester, Minnesota
| | - Todd A DeWees
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri; Department of Computational and Quantitative Medicine, Radiation Oncology, Surgery, Division of Biostatistics, City of Hope, Duarte, California
| | - Zdenek Skrott
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Martin Mistrik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Tanner M Johanns
- Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri; Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - George Ansstas
- Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri; Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Omar Butt
- Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri; Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Eric Leuthardt
- Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri; Department of Neurological Surgery, Washington University School of Medicine, St Louis, Missouri
| | - Gavin P Dunn
- Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri; Department of Neurological Surgery, Washington University School of Medicine, St Louis, Missouri
| | - Gregory J Zipfel
- Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri; Department of Neurological Surgery, Washington University School of Medicine, St Louis, Missouri
| | - Joshua W Osbun
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, Missouri
| | - Christopher Abraham
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri; Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
| | - Shahed Badiyan
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Katherine Schwetye
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - J Gregory Cairncross
- Clark H. Smith Brain Tumour Centre, Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Joshua B Rubin
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri; Department of Neuroscience, Washington University School of Medicine, St Louis, Missouri
| | - Albert H Kim
- Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri; Department of Neurological Surgery, Washington University School of Medicine, St Louis, Missouri
| | - Milan G Chheda
- Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri; Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
3
|
Fu H, Dong S, Li K. Identification of SLC31A1 as a prognostic biomarker and a target for therapeutics in breast cancer. Sci Rep 2024; 14:25120. [PMID: 39448672 PMCID: PMC11502855 DOI: 10.1038/s41598-024-76162-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Copper-induced cell death is regulated through protein lipoylation, which is critical for gene expression and phenotypic regulation. Neverless, the role of Cuproptosis-related genes in breast cancer (BC) remains unknown. This study aimed to construct a prognostic signature based on the expression of Cuproptosis-related genes in order to guide the diagnosis and treatment for BC. Cuproptosis-related genes prognostic signature has ata of 1250 BC tissues and 583 normal breast tissues were obtained from The Cancer Genome Atlas (TCGA), Genotype Tissue Expression (GTEx), and GEO GSE65212. The prognostic signature was established and evaluated with nineteen Cuproptosis-related genes. A series of in silico analyses based on SLC31A1, included expression analysis, independent prognostic analysis, correlation analysis, immune-related analysis and survival analysis. Finally, a series of cell experiments (including quantitative real-time polymerase chain reaction and western blot), and mice experiments were applied to evaluate the impact of SLC31A1 on BC. Cuproptosis-related genes prognostic signature has good predictive promising for survival in BC patients. We discovered that SLC31A1SLC31A1 was overexpressed in BC and was its independent prognostic factor. High expression of the SLC31A1 was correlated with poor prognosis and immune infiltrating of BC. SLC31A1 expression is associated with immune, chemotherapeutic and targeted therapy outcomes in BC. The proliferation, migration, and invasiveness of Her2 + enriched BC cells were decreased by SLC31A1 knockdown, also resulting in a decrease in tumor volume in mouse model. SLC31A1 is a candidate biomarker or therapeutic target in precision oncology, with diagnostic and prognostic significance in BC.
Collapse
Affiliation(s)
- Hongtao Fu
- Department of Breast Surgery, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410006, Hunan, China
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210000, China
| | - Shanshan Dong
- Department of Medicine, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, China
| | - Kun Li
- Department of Emergency Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan South Road, Changsha, 410000, China.
| |
Collapse
|
4
|
Zhang C, Huang T, Li L. Targeting cuproptosis for cancer therapy: mechanistic insights and clinical perspectives. J Hematol Oncol 2024; 17:68. [PMID: 39152464 PMCID: PMC11328505 DOI: 10.1186/s13045-024-01589-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024] Open
Abstract
Cuproptosis is a newly identified form of cell death induced by excessive copper (Cu) accumulation within cells. Mechanistically, cuproptosis results from Cu-induced aggregation of dihydrolipoamide S-acetyltransferase, correlated with the mitochondrial tricarboxylic acid cycle and the loss of iron-sulfur cluster proteins, ultimately resulting in proteotoxic stress and triggering cell death. Recently, cuproptosis has garnered significant interest in tumor research due to its potential as a crucial therapeutic strategy against cancer. In this review, we summarized the cellular and molecular mechanisms of cuproptosis and its relationship with other types of cell death. Additionally, we reviewed the current drugs or strategies available to induce cuproptosis in tumor cells, including Cu ionophores, small compounds, and nanomedicine. Furthermore, we targeted cell metabolism and specific regulatory genes in cancer therapy to enhance tumor sensitivity to cuproptosis. Finally, we discussed the feasibility of targeting cuproptosis to overcome tumor chemotherapy and immunotherapy resistance and suggested future research directions. This study suggested that targeting cuproptosis could open new avenues for developing tumor therapy.
Collapse
Affiliation(s)
- Chenliang Zhang
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Tingting Huang
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Liping Li
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
5
|
Chen B, Liu J. Mechanisms associated with cuproptosis and implications for ovarian cancer. J Inorg Biochem 2024; 257:112578. [PMID: 38797108 DOI: 10.1016/j.jinorgbio.2024.112578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/08/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024]
Abstract
Ovarian cancer, a profoundly fatal gynecologic neoplasm, exerts a substantial economic strain on nations globally. The formidable challenge of its frequent relapse necessitates the exploration of novel cytotoxic agents, efficacious antineoplastic medications with minimal adverse effects, and strategies to surmount resistance to primary chemotherapeutic agents. These endeavors aim to supplement extant pharmacological interventions and elucidate molecular mechanisms underlying induced cytotoxicity, distinct from conventional therapeutic modalities. Recent scientific research has unveiled a novel form of cellular demise, known as copper-death, which is contingent upon the intracellular concentration of copper. Diverging from conventional mechanisms of cellular demise, copper-death exhibits a pronounced reliance on mitochondrial respiration, particularly the tricarboxylic acid (TCA) cycle. Tumor cells manifest distinctive metabolic profiles and elevated copper levels in comparison to their normal counterparts. The advent of copper-death presents alluring possibilities for targeted therapeutic interventions within the realm of cancer treatment. Hence, the primary objective of this review is to present an overview of the proteins and intricate mechanisms associated with copper-induced cell death, while providing a comprehensive summary of the knowledge acquired regarding potential therapeutic approaches for ovarian cancer. These findings will serve as valuable references to facilitate the advancement of customized therapeutic interventions for ovarian cancer.
Collapse
Affiliation(s)
- Biqing Chen
- The Second Hospital of Jilin University, Changchun, China
| | - Jiaqi Liu
- The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
6
|
Mohapatra D, Senapati PC, Senapati S, Pandey V, Dubey PK, Singh S, Sahu AN. Quality-by-design-based microemulsion of disulfiram for repurposing in melanoma and breast cancer therapy. Ther Deliv 2024; 15:521-544. [PMID: 38949622 PMCID: PMC11412148 DOI: 10.1080/20415990.2024.2363136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 05/30/2024] [Indexed: 07/02/2024] Open
Abstract
Aim: The current study aims to develop and optimize microemulsions (ME) through Quality-by-Design (QbD) approach to improve the aqueous solubility and dissolution of poorly water-soluble drug disulfiram (DSF) for repurposing in melanoma and breast cancer therapy.Materials & methods: The ME was formulated using Cinnamon oil & Tween® 80, statistically optimized using a D-optimal mixture design-based QbD approach to develop the best ME with low vesicular size (Zavg) and polydispersity index (PDI).Results: The DSF-loaded optimized stable ME showed enhanced dissolution, in-vitro cytotoxicity and improved cellular uptake in B16F10 and MCF-7 cell lines compared with their unformulated free DSF.Conclusion: Our investigations suggested the potential of the statistically designed DSF-loaded optimized ME for repurposing melanoma and breast cancer therapy.
Collapse
Affiliation(s)
- Debadatta Mohapatra
- Phytomedicine Research Laboratory, Department of Pharmaceutical Engineering & Technology, IIT (BHU), Varanasi- 221005, Uttar Pradesh, India
| | | | - Shantibhusan Senapati
- Tumor Microenvironment & Animal Models Laboratory, Institute of Life Sciences, Bhubaneswar- 751023, Odisha, India
| | - Vivek Pandey
- Centre for Genetics Disorders, Institute of Science (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Pawan K Dubey
- Centre for Genetics Disorders, Institute of Science (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Sanjay Singh
- Nanomedicine Research Laboratory, Department of Pharmaceutical Engineering & Technology, IIT (BHU), Varanasi- 221005, Uttar Pradesh, India
| | - Alakh N Sahu
- Phytomedicine Research Laboratory, Department of Pharmaceutical Engineering & Technology, IIT (BHU), Varanasi- 221005, Uttar Pradesh, India
| |
Collapse
|
7
|
Wang J, Li B, Cooper RC, Huang D, Yang H. Localized Sustained Release of Copper Enhances Antitumor Effects of Disulfiram in Head and Neck Cancer. Biomacromolecules 2024; 25:2770-2779. [PMID: 38687975 PMCID: PMC11143945 DOI: 10.1021/acs.biomac.3c01420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Drug repurposing uses approved drugs as candidate anticancer therapeutics, harnesses previous research and development efforts, and benefits from available clinically suitable formulations and evidence of patient tolerability. In this work, the drug used clinically to treat chronic alcoholism, disulfiram (DSF), was studied for its antitumor efficacy in a copper-dependent manner. The combination of DSF and copper could achieve a tumor cell growth inhibition effect comparable to those of 5-fluorouracil and taxol on head and neck cancer cells. Both bulk dendrimer hydrogel and microsized dendrimer hydrogel particles were utilized for the localized sustained release of copper in the tumor site. The localized sustained release of copper facilitated the tumor inhibition effect following intratumoral injection in a mouse's head and neck cancer model.
Collapse
Affiliation(s)
- Juan Wang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Boxuan Li
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Remy C Cooper
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Da Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Hu Yang
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
8
|
Shen Y, Thng DKH, Wong ALA, Toh TB. Mechanistic insights and the clinical prospects of targeted therapies for glioblastoma: a comprehensive review. Exp Hematol Oncol 2024; 13:40. [PMID: 38615034 PMCID: PMC11015656 DOI: 10.1186/s40164-024-00512-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/08/2024] [Indexed: 04/15/2024] Open
Abstract
Glioblastoma (GBM) is a fatal brain tumour that is traditionally diagnosed based on histological features. Recent molecular profiling studies have reshaped the World Health Organization approach in the classification of central nervous system tumours to include more pathogenetic hallmarks. These studies have revealed that multiple oncogenic pathways are dysregulated, which contributes to the aggressiveness and resistance of GBM. Such findings have shed light on the molecular vulnerability of GBM and have shifted the disease management paradigm from chemotherapy to targeted therapies. Targeted drugs have been developed to inhibit oncogenic targets in GBM, including receptors involved in the angiogenic axis, the signal transducer and activator of transcription 3 (STAT3), the PI3K/AKT/mTOR signalling pathway, the ubiquitination-proteasome pathway, as well as IDH1/2 pathway. While certain targeted drugs showed promising results in vivo, the translatability of such preclinical achievements in GBM remains a barrier. We also discuss the recent developments and clinical assessments of targeted drugs, as well as the prospects of cell-based therapies and combinatorial therapy as novel ways to target GBM. Targeted treatments have demonstrated preclinical efficacy over chemotherapy as an alternative or adjuvant to the current standard of care for GBM, but their clinical efficacy remains hindered by challenges such as blood-brain barrier penetrance of the drugs. The development of combinatorial targeted therapies is expected to improve therapeutic efficacy and overcome drug resistance.
Collapse
Affiliation(s)
- Yating Shen
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Dexter Kai Hao Thng
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Andrea Li Ann Wong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Haematology-Oncology, National University Hospital, Singapore, Singapore
| | - Tan Boon Toh
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, Singapore.
- The Institute for Digital Medicine (WisDM), National University of Singapore, Singapore, Singapore.
| |
Collapse
|
9
|
Xiao C, Li J, Hua A, Wang X, Li S, Li Z, Xu C, Zhang Z, Yang X, Li Z. Hyperbaric Oxygen Boosts Antitumor Efficacy of Copper-Diethyldithiocarbamate Nanoparticles against Pancreatic Ductal Adenocarcinoma by Regulating Cancer Stem Cell Metabolism. RESEARCH (WASHINGTON, D.C.) 2024; 7:0335. [PMID: 38766644 PMCID: PMC11100349 DOI: 10.34133/research.0335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/16/2024] [Indexed: 05/22/2024]
Abstract
Cuproptosis-based cancer nanomedicine has received widespread attention recently. However, cuproptosis nanomedicine against pancreatic ductal adenocarcinoma (PDAC) is severely limited by cancer stem cells (CSCs), which reside in the hypoxic stroma and adopt glycolysis metabolism accordingly to resist cuproptosis-induced mitochondria damage. Here, we leverage hyperbaric oxygen (HBO) to regulate CSC metabolism by overcoming tumor hypoxia and to augment CSC elimination efficacy of polydopamine and hydroxyethyl starch stabilized copper-diethyldithiocarbamate nanoparticles (CuET@PH NPs). Mechanistically, while HBO and CuET@PH NPs inhibit glycolysis and oxidative phosphorylation, respectively, the combination of HBO and CuET@PH NPs potently suppresses energy metabolism of CSCs, thereby achieving robust tumor inhibition of PDAC and elongating mice survival importantly. This study reveals novel insights into the effects of cuproptosis nanomedicine on PDAC CSC metabolism and suggests that the combination of HBO with cuproptosis nanomedicine holds significant clinical translation potential for PDAC patients.
Collapse
Affiliation(s)
- Chen Xiao
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Jiayuan Li
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Ao Hua
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xing Wang
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Shiyou Li
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zheng Li
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Chen Xu
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zhijie Zhang
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xiangliang Yang
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- National Engineering Research Center for Nanomedicine,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Key Laboratory of Molecular Biophysics of Ministry of Education,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Hubei Bioinformatics and Molecular Imaging Key Laboratory,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zifu Li
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- National Engineering Research Center for Nanomedicine,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Key Laboratory of Molecular Biophysics of Ministry of Education,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Hubei Bioinformatics and Molecular Imaging Key Laboratory,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
10
|
Li P, Sun Q, Bai S, Wang H, Zhao L. Combination of the cuproptosis inducer disulfiram and anti‑PD‑L1 abolishes NSCLC resistance by ATP7B to regulate the HIF‑1 signaling pathway. Int J Mol Med 2024; 53:19. [PMID: 38186308 PMCID: PMC10781418 DOI: 10.3892/ijmm.2023.5343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 09/25/2023] [Indexed: 01/09/2024] Open
Abstract
Disulfiram (DSF) is used to treat non‑small cell lung cancer (NSCLC). DSF significantly increases expression of programmed death‑ligand 1 (PD‑L1), which may enhance immunosuppression and immune escape of tumors. Therefore, the present study aimed to investigate the role of combined treatment of DSF and anti‑PD‑L1 in NSCLC resistance. The viability and apoptosis of A549 cells were detected by the Cell Counting Kit‑8 assay and flow cytometry, respectively. The expression levels of ATPase copper‑transporting β (ATP7B) and PD‑L1 in A549 cells were detected by reverse transcription‑quantitative PCR and western blot analysis. The levels of reactive oxygen species (ROS), malondialdehyde (MDA) and superoxide dismutase (SOD) in A549 cells were detected by respective assay kits. The expression levels of cuproptosis‑associated proteins ferredoxin‑1 (FDX1), ATP7B, solute carrier family 31 member 1 (SLC31A1), succinate dehydrogenase B (SDHB), PD‑L1 and hypoxia inducible factor (HIF)‑1A were analyzed by western blotting in A549 cells. DSF inhibited the viability of A549 cells and promoted expression levels of ATP7B and PD‑L1 at both mRNA and protein levels in A549 cells. The viability of cisplatin (DPP)‑treated A549 cells was increased following DSF treatment. JQ‑1 (a PD‑L1 inhibitor) suppressed the viability of DPP‑treated A549 cells pretreated with DSF. DSF increased expression levels of ATP7B and PD‑L1. The combination treatment of DSF and JQ‑1 in A549 cells increased levels of ROS and MDA, as well as expression levels of FDX1 and SLC31A1; however, combination treatment decreased levels of SOD, as well as expression levels of ATP7B, SDHB, PD‑L1, and HIF‑1A. PX478 (an HIF‑1 inhibitor) acted with DSF to enhance the inhibitory effects on the viability and on the induction of apoptosis of A549 cells. PX478 upregulated the levels of ROS and MDA, while it downregulated levels of SOD in DSF‑treated A549 cells. PX478 promoted expression levels of FDX1 and SLC31A1, while it suppressed expression levels of ATP7B, PD‑L1, and HIF‑1A in DSF‑treated A549 cells. In conclusion, the combined treatment of A549 cells with anti‑PD‑L1 and DSF enhanced the effect of cuproptosis on the inhibition of NSCLC cell viability.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Radiology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150040, P.R. China
| | - Qi Sun
- Department of Radiology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150040, P.R. China
| | - Shuping Bai
- The Second Department of Respiratory, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150040, P.R. China
| | - Haitao Wang
- The Second Department of Respiratory, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150040, P.R. China
| | - Ling Zhao
- The Second Department of Respiratory, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150040, P.R. China
| |
Collapse
|
11
|
Wang Y, Chen Y, Zhang J, Yang Y, Fleishman JS, Wang Y, Wang J, Chen J, Li Y, Wang H. Cuproptosis: A novel therapeutic target for overcoming cancer drug resistance. Drug Resist Updat 2024; 72:101018. [PMID: 37979442 DOI: 10.1016/j.drup.2023.101018] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/20/2023]
Abstract
Cuproptosis is a newly identified form of cell death driven by copper. Recently, the role of copper and copper triggered cell death in the pathogenesis of cancers have attracted attentions. Cuproptosis has garnered enormous interest in cancer research communities because of its great potential for cancer therapy. Copper-based treatment exerts an inhibiting role in tumor growth and may open the door for the treatment of chemotherapy-insensitive tumors. In this review, we provide a critical analysis on copper homeostasis and the role of copper dysregulation in the development and progression of cancers. Then the core molecular mechanisms of cuproptosis and its role in cancer is discussed, followed by summarizing the current understanding of copper-based agents (copper chelators, copper ionophores, and copper complexes-based dynamic therapy) for cancer treatment. Additionally, we summarize the emerging data on copper complexes-based agents and copper ionophores to subdue tumor chemotherapy resistance in different types of cancers. We also review the small-molecule compounds and nanoparticles (NPs) that may kill cancer cells by inducing cuproptosis, which will shed new light on the development of anticancer drugs through inducing cuproptosis in the future. Finally, the important concepts and pressing questions of cuproptosis in future research that should be focused on were discussed. This review article suggests that targeting cuproptosis could be a novel antitumor therapy and treatment strategy to overcome cancer drug resistance.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, PR China.
| | - Yongming Chen
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, PR China
| | - Junjing Zhang
- Department of Hepato-Biliary Surgery, Department of Surgery, Huhhot First Hospital, Huhhot 010030, PR China
| | - Yihui Yang
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Yan Wang
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, PR China
| | - Jinhua Wang
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Jichao Chen
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, PR China
| | - Yuanfang Li
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, PR China.
| | - Hongquan Wang
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China.
| |
Collapse
|
12
|
Loffelmann M, Škrott Z, Majera D, Štarha P, Kryštof V, Mistrík M. Identification of novel dithiocarbamate-copper complexes targeting p97/NPL4 pathway in cancer cells. Eur J Med Chem 2023; 261:115790. [PMID: 37690264 DOI: 10.1016/j.ejmech.2023.115790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/26/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023]
Abstract
Dithiocarbamates (DTCs) are simple organic compounds with many applications in industry and medicine. They are potent metal chelators forming complexes with various metal ions, including copper. Recently, bis(diethyldithiocarbamate)-copper complex (CuET) has been identified as a metabolic product of the anti-alcoholic drug Antabuse (disulfiram, DSF), standing behind DSF's reported anticancer activity. Mechanistically, CuET in cells causes aggregation of NPL4 protein, an essential cofactor of the p97 segregase, an integral part of the ubiquitin-proteasome system. The malfunction of p97/NPL4 caused by CuET leads to proteotoxic stress accompanied by heat shock and unfolded protein responses and cancer cell death. However, it is not known whether the NPL4 inhibition is unique for CuET or whether it is shared with other dithiocarbamate-copper complexes. Thus, we tested 20 DTCs-copper complexes in this work for their ability to target and aggregate NPL4 protein. Surprisingly, we have found that certain potency against NPL4 is relatively common for structurally different DTCs-copper complexes, as thirteen compounds scored in the cellular NPL4 aggregation assay. These compounds also shared typical cellular phenotypes reported previously for CuET, including the NPL4/p97 proteins immobilization, accumulation of polyubiquitinated proteins, the unfolded protein, and the heat shock responses. Moreover, the active complexes were also toxic to cancer cells (the most potent in the nanomolar range), and we have found a strong positive correlation between NPL4 aggregation and cytotoxicity, confirming NPL4 as a relevant target. These results show the widespread potency of DTCs-copper complexes to target NPL4 with subsequent induction of lethal proteotoxic stress in cancer cells with implications for drug development.
Collapse
Affiliation(s)
- Martin Loffelmann
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 1333/5, Olomouc, 779 00, Czech Republic
| | - Zdeněk Škrott
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 1333/5, Olomouc, 779 00, Czech Republic
| | - Dušana Majera
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 1333/5, Olomouc, 779 00, Czech Republic
| | - Pavel Štarha
- Department of Inorganic Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 1192/12, Olomouc, 779 00, Czech Republic
| | - Vladimír Kryštof
- Department of Experimental Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, Olomouc, 783 71, Czech Republic.
| | - Martin Mistrík
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 1333/5, Olomouc, 779 00, Czech Republic.
| |
Collapse
|
13
|
Fernandes Q, Therachiyil L, Khan AQ, Bedhiafi T, Korashy HM, Bhat AA, Uddin S. Shrinking the battlefield in cancer therapy: Nanotechnology against cancer stem cells. Eur J Pharm Sci 2023; 191:106586. [PMID: 37729956 DOI: 10.1016/j.ejps.2023.106586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 09/22/2023]
Abstract
Cancer remains one of the leading causes of mortality worldwide, presenting a significant healthcare challenge owing to the limited efficacy of current treatments. The application of nanotechnology in cancer treatment leverages the unique optical, magnetic, and electrical attributes of nanomaterials to engineer innovative, targeted therapies. Specifically, manipulating nanomaterials allows for enhanced drug loading efficiency, improved bioavailability, and targeted delivery systems, reducing the non-specific cytotoxic effects characteristic of conventional chemotherapies. Furthermore, recent advances in nanotechnology have demonstrated encouraging results in specifically targeting CSCs, a key development considering the role of these cells in disease recurrence and resistance to treatment. Despite these breakthroughs, the clinical approval rates of nano-drugs have not kept pace with research advances, pointing to existing obstacles that must be addressed. In conclusion, nanotechnology presents a novel, powerful tool in the fight against cancer, particularly in targeting the elusive and treatment-resistant CSCs. This comprehensive review delves into the intricacies of nanotherapy, explicitly targeting cancer stem cells, their markers, and associated signaling pathways.
Collapse
Affiliation(s)
- Queenie Fernandes
- College of Medicine, Qatar University, Doha, Qatar; Translational Cancer Research Facility, Hamad Medical Corporation, National Center for Cancer Care and Research, PO. Box 3050, Doha, Qatar
| | - Lubna Therachiyil
- Academic Health System, Hamad Medical Corporation, Translational Research Institute, Doha 3050, Qatar; Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | - Abdul Q Khan
- Academic Health System, Hamad Medical Corporation, Translational Research Institute, Doha 3050, Qatar
| | - Takwa Bedhiafi
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | - Hesham M Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Shahab Uddin
- College of Medicine, Qatar University, Doha, Qatar; Academic Health System, Hamad Medical Corporation, Dermatology Institute, Doha 3050, Qatar; Laboratory of Animal Research Center, Qatar University, Doha 2713, Qatar; Department of Biosciences, Integral University, Lucknow, Uttar Pradesh 22602, India.
| |
Collapse
|
14
|
Wang N, Zhu D, Liu Y, Wu J, Wang M, Jin S, Fu F, Li B, Ji H, Du C, Zheng Z. NPLOC4 is a potential target and a poor prognostic signature in lung squamous cell carcinoma. Sci Rep 2023; 13:20430. [PMID: 37993584 PMCID: PMC10665339 DOI: 10.1038/s41598-023-47782-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 11/18/2023] [Indexed: 11/24/2023] Open
Abstract
Few prognostic biomarkers exist for lung squamous cell carcinoma (LUSC), which has a poor five-year survival rate. Using bioinformatics, this study evaluated NPLOC4 as a prognostic marker for patients with lung squamous cell carcinoma. Shorter survival periods and tumor growth were linked to high NPLOC4 expression.Disulfiram (DSF) combined with copper (Cu) targets NPLOC4 to achieve antitumor effects in lung squamous cell carcinoma. Thus, we investigated the effects of DSF with Cu in LUSC. Gene-set enrichment analysis identified ubiquitin-mediated proteolysis as the NPLOC4-associated mechanism influencing LUSC prognosis. In SK-MES-1 cell lines, DSF + Cu increased K48-linked ubiquitinated protein expression and apoptosis. This study identified NPLOC4 as a prognostic biomarker and a potential therapeutic target for LUSC.
Collapse
Affiliation(s)
- Naixue Wang
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, 110011, China
- Jinzhou Medical University, Jinzhou, 121001, China
| | - Dantong Zhu
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, 110011, China
| | - Yao Liu
- Guizhou Medical University, Guiyang, 550025, China
| | - Jingran Wu
- Dalian Medical University, Dalian, 116085, China
| | - Meiling Wang
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, 110011, China
| | - Shanxiu Jin
- Dalian Medical University, Dalian, 116085, China
| | - Fangwei Fu
- Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Baolei Li
- Jinzhou Medical University, Jinzhou, 121001, China
| | - Hongjuan Ji
- Jinzhou Medical University, Jinzhou, 121001, China
| | - Cheng Du
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, 110011, China.
| | - Zhendong Zheng
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, 110011, China.
| |
Collapse
|
15
|
Yang X, Deng L, Diao X, Yang S, Zou L, Yang Q, Li J, Nie J, Zhao L, Jiao B. Targeting cuproptosis by zinc pyrithione in triple-negative breast cancer. iScience 2023; 26:108218. [PMID: 37953954 PMCID: PMC10637938 DOI: 10.1016/j.isci.2023.108218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/07/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023] Open
Abstract
Triple-negative breast cancer (TNBC) poses a considerable challenge due to its aggressive nature. Notably, metal ion-induced cell death, such as ferroptosis, has garnered significant attention and demonstrated potential implications for cancer. Recently, cuproptosis, a potent cell death pathway reliant on copper, has been identified. However, whether cuproptosis can be targeted for cancer treatment remains uncertain. Here, we screened the US Food and Drug Administration (FDA)-approved drug library and identified zinc pyrithione (ZnPT) as a compound that significantly inhibited TNBC progression. RNA sequencing revealed that ZnPT disrupted copper homeostasis. Furthermore, ZnPT facilitated the oligomerization of dihydrolipoamide S-acetyltransferase, a landmark molecule of cuproptosis. Clinically, high expression levels of cuproptosis-related proteins were significantly correlated with poor prognosis in TNBC patients. Collectively, these findings indicate that ZnPT can induce cell death by targeting and disrupting copper homeostasis, providing a potential experimental foundation for exploring cuproptosis as a target in drug discovery for TNBC patients.
Collapse
Affiliation(s)
- Xu Yang
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650201, China
| | - Li Deng
- Department of Breast Cancer, Third Affiliated Hospital, Kunming Medical University, 519 Kunzhou Road, Kunming, Yunnan 650118, China
| | - Xianhong Diao
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650201, China
| | - Siyuan Yang
- Department of Breast Cancer, Third Affiliated Hospital, Kunming Medical University, 519 Kunzhou Road, Kunming, Yunnan 650118, China
| | - Li Zou
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Qin Yang
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jian Li
- Institutional Center for Shared Technologies and Facilities, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jianyun Nie
- Department of Breast Cancer, Third Affiliated Hospital, Kunming Medical University, 519 Kunzhou Road, Kunming, Yunnan 650118, China
| | - Lina Zhao
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Baowei Jiao
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650203, China
| |
Collapse
|
16
|
Gao J, Wu X, Huang S, Zhao Z, He W, Song M. Novel insights into anticancer mechanisms of elesclomol: More than a prooxidant drug. Redox Biol 2023; 67:102891. [PMID: 37734229 PMCID: PMC10518591 DOI: 10.1016/j.redox.2023.102891] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/27/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
As an essential micronutrient for humans, the metabolism of copper is fine-tuned by evolutionarily conserved homeostatic mechanisms. Copper toxicity occurs when its concentration exceeds a certain threshold, which has been exploited in the development of copper ionophores, such as elesclomol, for anticancer treatment. Elesclomol has garnered recognition as a potent anticancer drug and has been evaluated in numerous clinical trials. However, the mechanisms underlying elesclomol-induced cell death remain obscure. The discovery of cuproptosis, a novel form of cell death triggered by the targeted accumulation of copper in mitochondria, redefines the significance of elesclomol in cancer therapy. Here, we provide an overview of copper homeostasis and its associated pathological disorders, especially copper metabolism in carcinogenesis. We summarize our current knowledge of the tumor suppressive mechanisms of elesclomol, with emphasis on cuproptosis. Finally, we discuss the strategies that may contribute to better application of elesclomol in cancer therapy.
Collapse
Affiliation(s)
- Jialing Gao
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Xiaoxue Wu
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Shuting Huang
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Ziyi Zhao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Weiling He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Department of Gastrointestinal Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China.
| | - Mei Song
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
17
|
Bo Y, Zhou J, Cai K, Wang Y, Feng Y, Li W, Jiang Y, Kuo SH, Roy J, Anorma C, Gardner SH, Luu LM, Lau GW, Bao Y, Chan J, Wang H, Cheng J. Leveraging intracellular ALDH1A1 activity for selective cancer stem-like cell labeling and targeted treatment via in vivo click reaction. Proc Natl Acad Sci U S A 2023; 120:e2302342120. [PMID: 37639589 PMCID: PMC10483628 DOI: 10.1073/pnas.2302342120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/09/2023] [Indexed: 08/31/2023] Open
Abstract
Inhibition of overexpressed enzymes is among the most promising approaches for targeted cancer treatment. However, many cancer-expressed enzymes are "nonlethal," in that the inhibition of the enzymes' activity is insufficient to kill cancer cells. Conventional antibody-based therapeutics can mediate efficient treatment by targeting extracellular nonlethal targets but can hardly target intracellular enzymes. Herein, we report a cancer targeting and treatment strategy to utilize intracellular nonlethal enzymes through a combination of selective cancer stem-like cell (CSC) labeling and Click chemistry-mediated drug delivery. A de novo designed compound, AAMCHO [N-(3,4,6-triacetyl- N-azidoacetylmannosamine)-cis-2-ethyl-3-formylacrylamideglycoside], selectively labeled cancer CSCs in vitro and in vivo through enzymatic oxidation by intracellular aldehyde dehydrogenase 1A1. Notably, azide labeling is more efficient in identifying tumorigenic cell populations than endogenous markers such as CD44. A dibenzocyclooctyne (DBCO)-toxin conjugate, DBCO-MMAE (Monomethylauristatin E), could next target the labeled CSCs in vivo via bioorthogonal Click reaction to achieve excellent anticancer efficacy against a series of tumor models, including orthotopic xenograft, drug-resistant tumor, and lung metastasis with low toxicity. A 5/7 complete remission was observed after single-cycle treatment of an advanced triple-negative breast cancer xenograft (~500 mm3).
Collapse
Affiliation(s)
- Yang Bo
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Jingyi Zhou
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Kaimin Cai
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Iria Pharma,Champaign, IL61820
| | - Ying Wang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Yujun Feng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Wenming Li
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Yunjiang Jiang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Shanny Hsuan Kuo
- Department of Pathobiology at College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Jarron Roy
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Chelsea Anorma
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Sarah H. Gardner
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | | | - Gee W. Lau
- Department of Pathobiology at College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Yan Bao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong510120, China
| | - Jefferson Chan
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Hua Wang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL61801
- School of Engineering, Westlake University, Hangzhou, Zhejiang Province310024, China
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Iria Pharma,Champaign, IL61820
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL61801
- School of Engineering, Westlake University, Hangzhou, Zhejiang Province310024, China
| |
Collapse
|
18
|
Yang S, Song Y, Hu Y, Chen H, Yang D, Song X. Multifaceted Roles of Copper Ions in Anticancer Nanomedicine. Adv Healthc Mater 2023; 12:e2300410. [PMID: 37027332 DOI: 10.1002/adhm.202300410] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/27/2023] [Indexed: 04/08/2023]
Abstract
The significantly increased copper level in tumor tissues and serum indicates the close association of copper ions with tumor development, making copper ions attractive targets in the development of novel tumor treatment methods. The advanced nanotechnology developed in the past decades provides great potential for tumor therapy, among which Cu-based nanotherapeutic systems have received greater attention. Herein, the multifaceted roles of copper ions in cancer progression are summarized and the recent advances in the copper-based nanostructures or nanomedicines for different kinds of tumor therapies including copper depletion therapy, copper-based cytotoxins, copper-ion-based chemodynamic therapy and its combination with other treatments, and copper-ion-induced ferroptosis and cuproptosis activation are discussed. Furthermore, the perspectives for the further development of copper-ion-based nanomedicines for tumor therapy and clinic translation are presented by the authors.
Collapse
Affiliation(s)
- Siyuan Yang
- Department of Cardiac Surgery, Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550009, P. R. China
| | - Yingnan Song
- Department of Cardiac Surgery, Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550009, P. R. China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, Guizhou, 550025, P. R. China
| | - Yanling Hu
- Nanjing Polytechnic Institute, 210048, Nanjing, China
| | - HongJin Chen
- Department of Cardiac Surgery, Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550009, P. R. China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, Guizhou, 550025, P. R. China
| | - Dongliang Yang
- School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), 211816, 30 South Puzhu Road, Nanjing, China
| | - Xuejiao Song
- School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), 211816, 30 South Puzhu Road, Nanjing, China
| |
Collapse
|
19
|
Xue Q, Kang R, Klionsky DJ, Tang D, Liu J, Chen X. Copper metabolism in cell death and autophagy. Autophagy 2023; 19:2175-2195. [PMID: 37055935 PMCID: PMC10351475 DOI: 10.1080/15548627.2023.2200554] [Citation(s) in RCA: 99] [Impact Index Per Article: 99.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/16/2023] [Accepted: 03/31/2023] [Indexed: 04/15/2023] Open
Abstract
Copper is an essential trace element in biological systems, maintaining the activity of enzymes and the function of transcription factors. However, at high concentrations, copper ions show increased toxicity by inducing regulated cell death, such as apoptosis, paraptosis, pyroptosis, ferroptosis, and cuproptosis. Furthermore, copper ions can trigger macroautophagy/autophagy, a lysosome-dependent degradation pathway that plays a dual role in regulating the survival or death fate of cells under various stress conditions. Pathologically, impaired copper metabolism due to environmental or genetic causes is implicated in a variety of human diseases, such as rare Wilson disease and common cancers. Therapeutically, copper-based compounds are potential chemotherapeutic agents that can be used alone or in combination with other drugs or approaches to treat cancer. Here, we review the progress made in understanding copper metabolic processes and their impact on the regulation of cell death and autophagy. This knowledge may help in the design of future clinical tools to improve cancer diagnosis and treatment.Abbreviations: ACSL4, acyl-CoA synthetase long chain family member 4; AIFM1/AIF, apoptosis inducing factor mitochondria associated 1; AIFM2, apoptosis inducing factor mitochondria associated 2; ALDH, aldehyde dehydrogenase; ALOX, arachidonate lipoxygenase; AMPK, AMP-activated protein kinase; APAF1, apoptotic peptidase activating factor 1; ATF4, activating transcription factor 4; ATG, autophagy related; ATG13, autophagy related 13; ATG5, autophagy related 5; ATOX1, antioxidant 1 copper chaperone; ATP, adenosine triphosphate; ATP7A, ATPase copper transporting alpha; ATP7B, ATPase copper transporting beta; BAK1, BCL2 antagonist/killer 1; BAX, BCL2 associated X apoptosis regulator; BBC3/PUMA, BCL2 binding component 3; BCS, bathocuproinedisulfonic acid; BECN1, beclin 1; BID, BH3 interacting domain death agonist; BRCA1, BRCA1 DNA repair associated; BSO, buthionine sulphoximine; CASP1, caspase 1; CASP3, caspase 3; CASP4/CASP11, caspase 4; CASP5, caspase 5; CASP8, caspase 8; CASP9, caspase 9; CCS, copper chaperone for superoxide dismutase; CD274/PD-L1, CD274 molecule; CDH2, cadherin 2; CDKN1A/p21, cyclin dependent kinase inhibitor 1A; CDKN1B/p27, cyclin-dependent kinase inhibitor 1B; COMMD10, COMM domain containing 10; CoQ10, coenzyme Q 10; CoQ10H2, reduced coenzyme Q 10; COX11, cytochrome c oxidase copper chaperone COX11; COX17, cytochrome c oxidase copper chaperone COX17; CP, ceruloplasmin; CYCS, cytochrome c, somatic; DBH, dopamine beta-hydroxylase; DDIT3/CHOP, DNA damage inducible transcript 3; DLAT, dihydrolipoamide S-acetyltransferase; DTC, diethyldithiocarbamate; EIF2A, eukaryotic translation initiation factor 2A; EIF2AK3/PERK, eukaryotic translation initiation factor 2 alpha kinase 3; ER, endoplasmic reticulum; ESCRT-III, endosomal sorting complex required for transport-III; ETC, electron transport chain; FABP3, fatty acid binding protein 3; FABP7, fatty acid binding protein 7; FADD, Fas associated via death domain; FAS, Fas cell surface death receptor; FASL, Fas ligand; FDX1, ferredoxin 1; GNAQ/11, G protein subunit alpha q/11; GPX4, glutathione peroxidase 4; GSDMD, gasdermin D; GSH, glutathione; HDAC, histone deacetylase; HIF1, hypoxia inducible factor 1; HIF1A, hypoxia inducible factor 1 subunit alpha; HMGB1, high mobility group box 1; IL1B, interleukin 1 beta; IL17, interleukin 17; KRAS, KRAS proto-oncogene, GTPase; LOX, lysyl oxidase; LPCAT3, lysophosphatidylcholine acyltransferase 3; MAP1LC3, microtubule associated protein 1 light chain 3; MAP2K1, mitogen-activated protein kinase kinase 1; MAP2K2, mitogen-activated protein kinase kinase 2; MAPK, mitogen-activated protein kinases; MAPK14/p38, mitogen-activated protein kinase 14; MEMO1, mediator of cell motility 1; MT-CO1/COX1, mitochondrially encoded cytochrome c oxidase I; MT-CO2/COX2, mitochondrially encoded cytochrome c oxidase II; MTOR, mechanistic target of rapamycin kinase; MTs, metallothioneins; NAC, N-acetylcysteine; NFKB/NF-Κb, nuclear factor kappa B; NLRP3, NLR family pyrin domain containing 3; NPLOC4/NPL4, NPL4 homolog ubiquitin recognition factor; PDE3B, phosphodiesterase 3B; PDK1, phosphoinositide dependent protein kinase 1; PHD, prolyl-4-hydroxylase domain; PIK3C3/VPS34, phosphatidylinositol 3-kinase catalytic subunit type 3; PMAIP1/NOXA, phorbol-12-myristate-13-acetate-induced protein 1; POR, cytochrome P450 oxidoreductase; PUFA-PL, PUFA of phospholipids; PUFAs, polyunsaturated fatty acids; ROS, reactive oxygen species; SCO1, synthesis of cytochrome C oxidase 1; SCO2, synthesis of cytochrome C oxidase 2; SLC7A11, solute carrier family 7 member 11; SLC11A2/DMT1, solute carrier family 11 member 2; SLC31A1/CTR1, solute carrier family 31 member 1; SLC47A1, solute carrier family 47 member 1; SOD1, superoxide dismutase; SP1, Sp1 transcription factor; SQSTM1/p62, sequestosome 1; STEAP4, STEAP4 metalloreductase; TAX1BP1, Tax1 binding protein 1; TEPA, tetraethylenepentamine; TFEB, transcription factor EB; TM, tetrathiomolybdate; TP53/p53, tumor protein p53; TXNRD1, thioredoxin reductase 1; UCHL5, ubiquitin C-terminal hydrolase L5; ULK1, Unc-51 like autophagy activating kinase 1; ULK1, unc-51 like autophagy activating kinase 1; ULK2, unc-51 like autophagy activating kinase 2; USP14, ubiquitin specific peptidase 14; VEGF, vascular endothelial gro wth factor; XIAP, X-linked inhibitor of apoptosis.
Collapse
Affiliation(s)
- Qian Xue
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Affliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jinbao Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Affliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Xin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Affliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
20
|
Shen C, Sheng ZG, Shao J, Tang M, Mao L, Huang CH, Zhang ZH, Zhu BZ. Mechanistic investigation of the differential synergistic neurotoxicity between pesticide metam sodium and copper or zinc. CHEMOSPHERE 2023; 328:138430. [PMID: 36963585 DOI: 10.1016/j.chemosphere.2023.138430] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/21/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Epidemiological studies suggest neurological disorders have been associated with the co-exposure to certain pesticides and transition metals. The present study aims to investigate whether co-exposure to the widely-used pesticide metam sodium and copper (Cu2+) or zinc ion (Zn2+) is able to cause synergistic neurotoxicity in neural PC12 cells and its possible mechanism(s). We found that both metam/Cu2+ and metam/Zn2+ synergistically induced apoptosis, intracellular Cu2+/Zn2+ uptake, reactive oxygen species (ROS) accumulation, double-strand DNA breakage, mitochondrial membrane potential decrease, and nerve function disorder. In addition, metam/Cu2+ was shown to release cytochrome c and apoptosis-inducing factor (AIF) from mitochondria to cytoplasm and nucleus, respectively, and activate the caspase 9, 8, 3, 7. However, metam/Zn2+ induced caspase 7 activation and AIF translocation and mildly activated cytochrome c/caspase 9/caspase 3 pathway. Furthermore, metam/Cu2+ activated caspase 3/7 by the p38 pathway, whereas metam/Zn2+ did so via both the p38 and JNK pathways. These results demonstrated that metam/Cu2+ or metam/Zn2+ co-exposure cause synergistic neurotoxicity via different mechanisms, indicating a potential risk to human health when they environmentally co-exist.
Collapse
Affiliation(s)
- Chen Shen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Guo Sheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jie Shao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Miao Tang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Mao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chun-Hua Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Hui Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Stomatology, Peking University Third Hospital, Beijing, 100191, China
| | - Ben-Zhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Joint Institute for Environmental Science, Research Center for Eco-Environmental Sciences and Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
21
|
Zhang S, Zong Y, Chen L, Li Q, Li Z, Meng R. The immunomodulatory function and antitumor effect of disulfiram: paving the way for novel cancer therapeutics. Discov Oncol 2023; 14:103. [PMID: 37326784 DOI: 10.1007/s12672-023-00729-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/14/2023] [Indexed: 06/17/2023] Open
Abstract
More than 60 years ago, disulfiram (DSF) was employed for the management of alcohol addiction. This promising cancer therapeutic agent inhibits proliferation, migration, and invasion of malignant tumor cells. Furthermore, divalent copper ions can enhance the antitumor effects of DSF. Molecular structure, pharmacokinetics, signaling pathways, mechanisms of action and current clinical results of DSF are summarized here. Additionally, our attention is directed towards the immunomodulatory properties of DSF and we explore novel administration methods that may address the limitations associated with antitumor treatments based on DSF. Despite the promising potential of these various delivery methods for utilizing DSF as an effective anticancer agent, further investigation is essential in order to extensively evaluate the safety and efficacy of these delivery systems.
Collapse
Affiliation(s)
- Sijia Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Zong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Leichong Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qianwen Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhenyu Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Rui Meng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
22
|
GAN YAPING, LIU TING, FENG WEIFENG, WANG LIANG, LI LI, NING YINGXIA. Drug repositioning of disulfiram induces endometrioid epithelial ovarian cancer cell death via the both apoptosis and cuproptosis pathways. Oncol Res 2023; 31:333-343. [PMID: 37305383 PMCID: PMC10229305 DOI: 10.32604/or.2023.028694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/22/2023] [Indexed: 06/13/2023] Open
Abstract
Various therapeutic strategies have been developed to overcome ovarian cancer. However, the prognoses resulting from these strategies are still unclear. In the present work, we screened 54 small molecule compounds approved by the FDA to identify novel agents that could inhibit the viability of human epithelial ovarian cancer cells. Among these, we identified disulfiram (DSF), an old alcohol-abuse drug, as a potential inducer of cell death in ovarian cancer. Mechanistically, DSF treatment significantly reduced the expression of the anti-apoptosis marker B-cell lymphoma/leukemia-2 (Bcl-2) and increase the expression of the apoptotic molecules Bcl2 associated X (Bax) and cleaved caspase-3 to promote human epithelial ovarian cancer cell apoptosis. Furthermore, DSF is a newly identified effective copper ionophore, thus the combination of DSF and copper was used to reduce ovarian cancer viability than DSF single treatment. Combination treatment with DSF and copper also led to the reduced expression of ferredoxin 1 and loss of Fe-S cluster proteins (biomarkers of cuproptosis). In vivo, DSF and copper gluconate significantly decreased the tumor volume and increased the survival rate in a murine ovarian cancer xenograft model. Thus, the role of DSF revealed its potential for used as a viable therapeutic agent for the ovarian cancer.
Collapse
Affiliation(s)
- YAPING GAN
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - TING LIU
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - WEIFENG FENG
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - LIANG WANG
- Guangdong Guojian Pharmaceutical Consulting Co., Ltd., Guangzhou, China
| | - LI LI
- Department of Galactophore Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - YINGXIA NING
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
23
|
Kang X, Jadhav S, Annaji M, Huang CH, Amin R, Shen J, Ashby CR, Tiwari AK, Babu RJ, Chen P. Advancing Cancer Therapy with Copper/Disulfiram Nanomedicines and Drug Delivery Systems. Pharmaceutics 2023; 15:1567. [PMID: 37376016 DOI: 10.3390/pharmaceutics15061567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
Disulfiram (DSF) is a thiocarbamate based drug that has been approved for treating alcoholism for over 60 years. Preclinical studies have shown that DSF has anticancer efficacy, and its supplementation with copper (CuII) significantly potentiates the efficacy of DSF. However, the results of clinical trials have not yielded promising results. The elucidation of the anticancer mechanisms of DSF/Cu (II) will be beneficial in repurposing DSF as a new treatment for certain types of cancer. DSF's anticancer mechanism is primarily due to its generating reactive oxygen species, inhibiting aldehyde dehydrogenase (ALDH) activity inhibition, and decreasing the levels of transcriptional proteins. DSF also shows inhibitory effects in cancer cell proliferation, the self-renewal of cancer stem cells (CSCs), angiogenesis, drug resistance, and suppresses cancer cell metastasis. This review also discusses current drug delivery strategies for DSF alone diethyldithocarbamate (DDC), Cu (II) and DSF/Cu (II), and the efficacious component Diethyldithiocarbamate-copper complex (CuET).
Collapse
Affiliation(s)
- Xuejia Kang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA
| | - Sanika Jadhav
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Manjusha Annaji
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Chung-Hui Huang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Rajesh Amin
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Jianzhong Shen
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy, St. John's University, Queens, NY 11431, USA
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
| | - R Jayachandra Babu
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Pengyu Chen
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
24
|
He Y, Yang M, Yang L, Hao M, Wang F, Li X, Taylor EW, Zhang X, Zhang J. Preparation and anticancer actions of CuET-nanoparticles dispersed by bovine serum albumin. Colloids Surf B Biointerfaces 2023; 226:113329. [PMID: 37156027 DOI: 10.1016/j.colsurfb.2023.113329] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/11/2023] [Accepted: 04/25/2023] [Indexed: 05/10/2023]
Abstract
Diethyldithiocarbamate-copper complex (CuET) shows promising anticancer effect; nonetheless, preclinical evaluations of CuET are hindered due to poor solubility. We prepared bovine serum albumin (BSA)-dispersed CuET nanoparticles (CuET-NPs) to overcome the shortcoming. Results from a cell-free redox system demonstrated that CuET-NPs reacted with glutathione, leading to form hydroxyl radical. Glutathione-mediated production of hydroxyl radicals may help explain why CuET selectively kills drug-resistant cancer cells with higher levels of glutathione. CuET-NPs dispersed by autoxidation products of green tea epigallocatechin gallate (EGCG) also reacted with glutathione; however, the autoxidation products eradicated hydroxyl radicals; consequently, such CuET-NPs exhibited largely compromised cytotoxicity, suggesting that hydroxyl radical is a crucial mediator of CuET anticancer activity. In cancer cells, BSA-dispersed CuET-NPs exhibited cytotoxic activities equivalent to CuET and induced protein poly-ubiquitination. Moreover, the reported powerful inhibition of CuET on colony formation and migration of cancer cells could be replicated by CuET-NPs. These similarities demonstrate BSA-dispersed CuET-NPs is identical to CuET. Thus, we advanced to pilot toxicological and pharmacological evaluations. CuET-NPs caused hematologic toxicities in mice and induced protein poly-ubiquitination and apoptosis of cancer cells inoculated in mice at a defined pharmacological dose. Given high interest in CuET and its poor solubility, BSA-dispersed CuET-NPs pave the way for preclinical evaluations.
Collapse
Affiliation(s)
- Yufeng He
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China; Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Mingchuan Yang
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China
| | - Lumin Yang
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China
| | - Meng Hao
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China
| | - Fuming Wang
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China
| | - Xiuli Li
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China
| | - Ethan Will Taylor
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Xiangchun Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Jinsong Zhang
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
25
|
Benkő BM, Lamprou DA, Sebestyén A, Zelkó R, Sebe I. Clinical, pharmacological, and formulation evaluation of disulfiram in the treatment of glioblastoma - a systematic literature review. Expert Opin Drug Deliv 2023; 20:541-557. [PMID: 36922013 DOI: 10.1080/17425247.2023.2190581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
INTRODUCTION Glioblastoma (GB) is one of the most challenging central nervous system (CNS) tumors in treatment options and response, urging the development of novel management strategies. The anti-alcoholism drug, disulfiram (DS), has a potential anticancer activity, and its complex mechanism of action is assumed to be well exploited against the heterogeneous GB. AREA COVERED Through a systematic literature review about repositioning DS to GB treatment, an evaluation of the clinical, pharmacological, and formulation strategies is provided to specify the challenges of drug delivery and thus to advance its clinical translation. From six databases, 35 articles were selected, including case report (1); clinical trials (3); original articles mainly representing in vitro and preclinical pharmacological data, and 10 dealing with technological approaches. EXPERT OPINION The repositioning of DS in GB treatment is facing drug and tumor-associated limitations due to the oral drug's low bioavailability, unwanted metabolism, and inefficient delivery to brain-tumor tissue. Development strategies using molecular encapsulation of DS and the parenteral dosage forms improve the anticancer pharmacology of the drug. The development of optimized drug delivery systems (DDS) shows promise for the clinical translation of DS into GB adjuvant therapy.
Collapse
Affiliation(s)
- Beáta-Mária Benkő
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Budapest, Hungary
| | | | - Anna Sebestyén
- Tumour Biology, Cell and Tissue Culture Laboratory, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Romána Zelkó
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Budapest, Hungary
| | - István Sebe
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Budapest, Hungary
| |
Collapse
|
26
|
DDTC-Cu(I) based metal-organic framework (MOF) for targeted melanoma therapy by inducing SLC7A11/GPX4-mediated ferroptosis. Colloids Surf B Biointerfaces 2023; 225:113253. [PMID: 36934611 DOI: 10.1016/j.colsurfb.2023.113253] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/22/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
Disulfiram (DSF), a drug for alcohol withdrawal, has attracted extensive scientific attention due to its potential to treat cancer. The metabolite of DSF, diethyl dithiocarbamate (DDTC), forms a Cu-DDTC complex in vivo with copper ions, which has been shown to be a proteasome inhibitor with high antitumor activity. However, the in vivo stability of Cu-DDTC complexes remains a challenge. In this study, the nanomedicine Cu-BTC@DDTC with high antitumor activity was prepared by using the nanoscale metal-organic framework (MOF) Cu-BTC as a carrier and loading diethyldithiocarbamate (DDTC) through coordination interaction. The results showed that Cu-BTC@DDTC had high drug loading and adequate stability, and exhibited DDTC-Cu(I) chemical valence characteristics and polycrystalline structure features. In vitro cytocompatibility investigation and animal xenograft tumor model evaluation demonstrated the anti-cancer potential of Cu-BTC@DDTC, especially the combination of Cu-BTC@DDTC with low-dose cisplatin showed significant antitumor effect and biosafety. This study provides a feasible protocol for developing antitumor drugs based on the drug repurposing strategy.
Collapse
|
27
|
Disulfiram: Mechanisms, Applications, and Challenges. Antibiotics (Basel) 2023; 12:antibiotics12030524. [PMID: 36978391 PMCID: PMC10044060 DOI: 10.3390/antibiotics12030524] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/08/2023] Open
Abstract
Background: Since disulfiram’s discovery in the 1940s and its FDA approval for alcohol use disorder, other indications have been investigated. This review describes potential clinical applications, associated risks, and challenges. Methods: For this narrative review, a PubMed search was conducted for articles addressing in vivo studies of disulfiram with an emphasis on drug repurposing for the treatment of human diseases. The key search terms were “disulfiram” and “Antabuse”. Animal studies and in vitro studies highlighting important mechanisms and safety issues were also included. Results: In total, 196 sources addressing our research focus spanning 1948–2022 were selected for inclusion. In addition to alcohol use disorder, emerging data support a potential role for disulfiram in the treatment of other addictions (e.g., cocaine), infections (e.g., bacteria such as Staphylococcus aureus and Borrelia burgdorferi, viruses, parasites), inflammatory conditions, neurological diseases, and cancers. The side effects range from minor to life-threatening, with lower doses conveying less risk. Caution in human use is needed due to the considerable inter-subject variability in disulfiram pharmacokinetics. Conclusions: While disulfiram has promise as a “repurposed” agent in human disease, its risk profile is of concern. Animal studies and well-controlled clinical trials are needed to assess its safety and efficacy for non-alcohol-related indications.
Collapse
|
28
|
Al-Shamma SA, Zaher DM, Hersi F, Abu Jayab NN, Omar HA. Targeting aldehyde dehydrogenase enzymes in combination with chemotherapy and immunotherapy: An approach to tackle resistance in cancer cells. Life Sci 2023; 320:121541. [PMID: 36870386 DOI: 10.1016/j.lfs.2023.121541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/19/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
Modern cancer chemotherapy originated in the 1940s, and since then, many chemotherapeutic agents have been developed. However, most of these agents show limited response in patients due to innate and acquired resistance to therapy, which leads to the development of multi-drug resistance to different treatment modalities, leading to cancer recurrence and, eventually, patient death. One of the crucial players in inducing chemotherapy resistance is the aldehyde dehydrogenase (ALDH) enzyme. ALDH is overexpressed in chemotherapy-resistant cancer cells, which detoxifies the generated toxic aldehydes from chemotherapy, preventing the formation of reactive oxygen species and, thus, inhibiting the induction of oxidative stress and the stimulation of DNA damage and cell death. This review discusses the mechanisms of chemotherapy resistance in cancer cells promoted by ALDH. In addition, we provide detailed insight into the role of ALDH in cancer stemness, metastasis, metabolism, and cell death. Several studies investigated targeting ALDH in combination with other treatments as a potential therapeutic regimen to overcome resistance. We also highlight novel approaches in ALDH inhibition, including the potential synergistic employment of ALDH inhibitors in combination with chemotherapy or immunotherapy against different cancers, including head and neck, colorectal, breast, lung, and liver.
Collapse
Affiliation(s)
- Salma A Al-Shamma
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Dana M Zaher
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Fatema Hersi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Nour N Abu Jayab
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hany A Omar
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| |
Collapse
|
29
|
Werlenius K, Kinhult S, Solheim TS, Magelssen H, Löfgren D, Mudaisi M, Hylin S, Bartek J, Strandéus M, Lindskog M, Rashid HB, Carstam L, Gulati S, Solheim O, Bartek J, Salvesen Ø, Jakola AS. Effect of Disulfiram and Copper Plus Chemotherapy vs Chemotherapy Alone on Survival in Patients With Recurrent Glioblastoma: A Randomized Clinical Trial. JAMA Netw Open 2023; 6:e234149. [PMID: 37000452 PMCID: PMC10066460 DOI: 10.1001/jamanetworkopen.2023.4149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/01/2023] [Indexed: 04/01/2023] Open
Abstract
Importance Disulfiram has demonstrated broad antitumoral effect in several preclinical studies. One of the proposed indications is for the treatment of glioblastoma. Objective To evaluate the efficacy and safety of disulfiram and copper as add-on to alkylating chemotherapy in patients with recurrent glioblastoma. Design, Setting, and Participants This was a multicenter, open-label, randomized phase II/III clinical trial with parallel group design. Patients were recruited at 7 study sites in Sweden and 2 sites in Norway between January 2017 and November 2020. Eligible patients were 18 years or older, had a first recurrence of glioblastoma, and indication for treatment with alkylating chemotherapy. Patients were followed up until death or a maximum of 24 months. The date of final follow-up was January 15, 2021. Data analysis was performed from February to September 2022. Interventions Patients were randomized 1:1 to receive either standard-of-care (SOC) alkylating chemotherapy alone, or SOC with the addition of disulfiram (400 mg daily) and copper (2.5 mg daily). Main Outcomes and Measures The primary end point was survival at 6 months. Secondary end points included overall survival, progression-free survival, adverse events, and patient-reported quality of life. Results Among the 88 patients randomized to either SOC (n = 45) or SOC plus disulfiram and copper (n = 43), 63 (72%) were male; the mean (SD) age was 55.4 (11.5) years. There was no significant difference between the study groups (SOC vs SOC plus disulfiram and copper) in 6 months survival (62% [26 of 42] vs 44% [19 of 43]; P = .10). Median overall survival was 8.2 months (95% CI, 5.4-10.2 months) with SOC and 5.5 months (95% CI, 3.9-9.3 months) with SOC plus disulfiram and copper, and median progression-free survival was 2.6 months (95% CI, 2.4-4.6 months) vs 2.3 months (95% CI, 1.7-2.6 months), respectively. More patients in the SOC plus disulfiram and copper group had adverse events grade 3 or higher (34% [14 of 41] vs 11% [5 of 44]; P = .02) and serious adverse events (41% [17 of 41] vs 16% [7 of 44]; P = .02), and 10 patients (24%) discontinued disulfiram treatment because of adverse effects. Conclusions and Relevance This randomized clinical trial found that among patients with recurrent glioblastoma, the addition of disulfiram and copper to chemotherapy, compared with chemotherapy alone, resulted in significantly increased toxic effects, but no significant difference in survival. These findings suggest that disulfiram and copper is without benefit in patients with recurrent glioblastoma. Trial Registration ClinicalTrials.gov Identifier: NCT02678975; EUDRACT Identifier: 2016-000167-16.
Collapse
Affiliation(s)
- Katja Werlenius
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sara Kinhult
- Department of Oncology, Department of Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden
| | - Tora Skeidsvoll Solheim
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Cancer Clinic, St Olavs Hospital, Trondheim, Norway
| | | | - David Löfgren
- Department of Oncology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Munila Mudaisi
- Department of Oncology, Linköping University Hospital, Linköping, Sweden
- The Finnmark Hospital, Hammerfest, Norway
| | - Sofia Hylin
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Jiri Bartek
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Department of Neurosurgery, Rigshospitalet, Copenhagen, Denmark
| | | | - Magnus Lindskog
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Department of Pelvic Cancer, Section of Genitourinary Oncology, Karolinska University Hospital, Stockholm, Sweden
| | | | - Louise Carstam
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sasha Gulati
- Department of Neurosurgery, St Olavs Hospital, Trondheim, Norway
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ole Solheim
- Department of Neurosurgery, St Olavs Hospital, Trondheim, Norway
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jiri Bartek
- Department of Medical Biochemistry and Biophysics, Division of Genome Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Øyvind Salvesen
- Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Asgeir Store Jakola
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurosurgery, St Olavs Hospital, Trondheim, Norway
| |
Collapse
|
30
|
Chang MR, Rusanov DA, Arakelyan J, Alshehri M, Asaturova AV, Kireeva GS, Babak MV, Ang WH. Targeting emerging cancer hallmarks by transition metal complexes: Cancer stem cells and tumor microbiome. Part I. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
31
|
Johanssen T, McVeigh L, Erridge S, Higgins G, Straehla J, Frame M, Aittokallio T, Carragher NO, Ebner D. Glioblastoma and the search for non-hypothesis driven combination therapeutics in academia. Front Oncol 2023; 12:1075559. [PMID: 36733367 PMCID: PMC9886867 DOI: 10.3389/fonc.2022.1075559] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Glioblastoma (GBM) remains a cancer of high unmet clinical need. Current standard of care for GBM, consisting of maximal surgical resection, followed by ionisation radiation (IR) plus concomitant and adjuvant temozolomide (TMZ), provides less than 15-month survival benefit. Efforts by conventional drug discovery to improve overall survival have failed to overcome challenges presented by inherent tumor heterogeneity, therapeutic resistance attributed to GBM stem cells, and tumor niches supporting self-renewal. In this review we describe the steps academic researchers are taking to address these limitations in high throughput screening programs to identify novel GBM combinatorial targets. We detail how they are implementing more physiologically relevant phenotypic assays which better recapitulate key areas of disease biology coupled with more focussed libraries of small compounds, such as drug repurposing, target discovery, pharmacologically active and novel, more comprehensive anti-cancer target-annotated compound libraries. Herein, we discuss the rationale for current GBM combination trials and the need for more systematic and transparent strategies for identification, validation and prioritisation of combinations that lead to clinical trials. Finally, we make specific recommendations to the preclinical, small compound screening paradigm that could increase the likelihood of identifying tractable, combinatorial, small molecule inhibitors and better drug targets specific to GBM.
Collapse
Affiliation(s)
- Timothy Johanssen
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Laura McVeigh
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Sara Erridge
- Edinburgh Cancer Centre, Western General Hospital, Edinburgh, United Kingdom
| | - Geoffrey Higgins
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Joelle Straehla
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Division of Pediatric Hematology/Oncology, Boston Children’s Hospital, Boston, MA, United States
| | - Margaret Frame
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Institute for Cancer Research, Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway
- Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Neil O. Carragher
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Daniel Ebner
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
32
|
Rajabi A, Kayedi M, Rahimi S, Dashti F, Mirazimi SMA, Homayoonfal M, Mahdian SMA, Hamblin MR, Tamtaji OR, Afrasiabi A, Jafari A, Mirzaei H. Non-coding RNAs and glioma: Focus on cancer stem cells. Mol Ther Oncolytics 2022; 27:100-123. [PMID: 36321132 PMCID: PMC9593299 DOI: 10.1016/j.omto.2022.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Glioblastoma and gliomas can have a wide range of histopathologic subtypes. These heterogeneous histologic phenotypes originate from tumor cells with the distinct functions of tumorigenesis and self-renewal, called glioma stem cells (GSCs). GSCs are characterized based on multi-layered epigenetic mechanisms, which control the expression of many genes. This epigenetic regulatory mechanism is often based on functional non-coding RNAs (ncRNAs). ncRNAs have become increasingly important in the pathogenesis of human cancer and work as oncogenes or tumor suppressors to regulate carcinogenesis and progression. These RNAs by being involved in chromatin remodeling and modification, transcriptional regulation, and alternative splicing of pre-mRNA, as well as mRNA stability and protein translation, play a key role in tumor development and progression. Numerous studies have been performed to try to understand the dysregulation pattern of these ncRNAs in tumors and cancer stem cells (CSCs), which show robust differentiation and self-regeneration capacity. This review provides recent findings on the role of ncRNAs in glioma development and progression, particularly their effects on CSCs, thus accelerating the clinical implementation of ncRNAs as promising tumor biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Ali Rajabi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehrdad Kayedi
- Department of Radiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Rahimi
- School of Medicine,Fasa University of Medical Sciences, Fasa, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Amin Mahdian
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Omid Reza Tamtaji
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Afrasiabi
- Department of Internal Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
33
|
Chen L, Min J, Wang F. Copper homeostasis and cuproptosis in health and disease. Signal Transduct Target Ther 2022; 7:378. [PMID: 36414625 PMCID: PMC9681860 DOI: 10.1038/s41392-022-01229-y] [Citation(s) in RCA: 383] [Impact Index Per Article: 191.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/19/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022] Open
Abstract
As an essential micronutrient, copper is required for a wide range of physiological processes in virtually all cell types. Because the accumulation of intracellular copper can induce oxidative stress and perturbing cellular function, copper homeostasis is tightly regulated. Recent studies identified a novel copper-dependent form of cell death called cuproptosis, which is distinct from all other known pathways underlying cell death. Cuproptosis occurs via copper binding to lipoylated enzymes in the tricarboxylic acid (TCA) cycle, which leads to subsequent protein aggregation, proteotoxic stress, and ultimately cell death. Here, we summarize our current knowledge regarding copper metabolism, copper-related disease, the characteristics of cuproptosis, and the mechanisms that regulate cuproptosis. In addition, we discuss the implications of cuproptosis in the pathogenesis of various disease conditions, including Wilson's disease, neurodegenerative diseases, and cancer, and we discuss the therapeutic potential of targeting cuproptosis.
Collapse
Affiliation(s)
- Liyun Chen
- grid.13402.340000 0004 1759 700XThe Fourth Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China ,grid.412017.10000 0001 0266 8918The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Junxia Min
- The Fourth Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fudi Wang
- The Fourth Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China. .,The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
34
|
Hu P, Wang Y, Zhang Y, Jin Y. Glass Nanopore Detection of Copper Ions in Single Cells Based on Click Chemistry. Anal Chem 2022; 94:14273-14279. [PMID: 36197035 DOI: 10.1021/acs.analchem.2c02690] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As a common redox metal ion pair in cells, copper ions (Cu2+/Cu+) often transform between oxidation (Cu2+) and reduction (Cu+) states. They play important roles in the redox process, so monitoring the change of intracellular copper ions helps understand the redox balance and events in cells. In this study, by self-assembling a thiolated ssDNA (with an alkyne end group) onto a gold-coated glass nanopore (G-nanopore) via the Au-S bond, an alkyne-end single-stranded DNA (ssDNA)-functionalized G-nanopore sensing platform (AG-nanopore) was developed to detect copper ions in cells. In the presence of Cu2+ or Cu+, the introduction of another ssDNA with an azide group will be ligated with an alkyne group on the functionalized nanopore via a copper-catalyzed azide-alkyne 1,3-cycloaddition (CuAAC) click reaction and hence cause the change of the rectification behavior of the AG-nanopore. The rectification ratio variation of the AG-nanopore had a good response to the intracellular copper ion concentration, and the sensing platform was further applied to the study of the relationship between intracellular oxidative stress and the value of Cu2+/Cu+.
Collapse
Affiliation(s)
- Ping Hu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yong Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ying Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
35
|
Li Q, Chao Y, Liu B, Xiao Z, Yang Z, Wu Y, Liu Z. Disulfiram loaded calcium phosphate nanoparticles for enhanced cancer immunotherapy. Biomaterials 2022; 291:121880. [DOI: 10.1016/j.biomaterials.2022.121880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/15/2022] [Accepted: 10/23/2022] [Indexed: 11/02/2022]
|
36
|
Zhong S, Shengyu Liu, Xin Shi, Zhang X, Li K, Liu G, Li L, Tao S, Zheng B, Sheng W, Ye Z, Xing Q, Zhai Q, Ren L, Wu Y, Bao Y. Disulfiram in glioma: Literature review of drug repurposing. Front Pharmacol 2022; 13:933655. [PMID: 36091753 PMCID: PMC9448899 DOI: 10.3389/fphar.2022.933655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Gliomas are the most common malignant brain tumors. High-grade gliomas, represented by glioblastoma multiforme (GBM), have a poor prognosis and are prone to recurrence. The standard treatment strategy is tumor removal combined with radiotherapy and chemotherapy, such as temozolomide (TMZ). However, even after conventional treatment, they still have a high recurrence rate, resulting in an increasing demand for effective anti-glioma drugs. Drug repurposing is a method of reusing drugs that have already been widely approved for new indication. It has the advantages of reduced research cost, safety, and increased efficiency. Disulfiram (DSF), originally approved for alcohol dependence, has been repurposed for adjuvant chemotherapy in glioma. This article reviews the drug repurposing method and the progress of research on disulfiram reuse for glioma treatment.
Collapse
|
37
|
Liao F, Zhang J, Hu Y, Najafabadi AH, Moon JJ, Wicha MS, Kaspo B, Whitfield J, Chang AE, Li Q. Efficacy of an ALDH peptide-based dendritic cell vaccine targeting cancer stem cells. Cancer Immunol Immunother 2022; 71:1959-1973. [DOI: 10.1007/s00262-021-03129-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 12/08/2021] [Indexed: 11/29/2022]
|
38
|
Ntafoulis I, Koolen SLW, Leenstra S, Lamfers MLM. Drug Repurposing, a Fast-Track Approach to Develop Effective Treatments for Glioblastoma. Cancers (Basel) 2022; 14:3705. [PMID: 35954371 PMCID: PMC9367381 DOI: 10.3390/cancers14153705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/10/2022] Open
Abstract
Glioblastoma (GBM) remains one of the most difficult tumors to treat. The mean overall survival rate of 15 months and the 5-year survival rate of 5% have not significantly changed for almost 2 decades. Despite progress in understanding the pathophysiology of the disease, no new effective treatments to combine with radiation therapy after surgical tumor debulking have become available since the introduction of temozolomide in 1999. One of the main reasons for this is the scarcity of compounds that cross the blood-brain barrier (BBB) and reach the brain tumor tissue in therapeutically effective concentrations. In this review, we focus on the role of the BBB and its importance in developing brain tumor treatments. Moreover, we discuss drug repurposing, a drug discovery approach to identify potential effective candidates with optimal pharmacokinetic profiles for central nervous system (CNS) penetration and that allows rapid implementation in clinical trials. Additionally, we provide an overview of repurposed candidate drug currently being investigated in GBM at the preclinical and clinical levels. Finally, we highlight the importance of phase 0 trials to confirm tumor drug exposure and we discuss emerging drug delivery technologies as an alternative route to maximize therapeutic efficacy of repurposed candidate drug.
Collapse
Affiliation(s)
- Ioannis Ntafoulis
- Brain Tumor Center, Department of Neurosurgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; (I.N.); (S.L.)
| | - Stijn L. W. Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands;
- Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Sieger Leenstra
- Brain Tumor Center, Department of Neurosurgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; (I.N.); (S.L.)
| | - Martine L. M. Lamfers
- Brain Tumor Center, Department of Neurosurgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; (I.N.); (S.L.)
| |
Collapse
|
39
|
Zhu Y, Lei C, Jiang Q, Yu Q, Qiu L. DSF/Cu induces antitumor effect against diffuse large B-cell lymphoma through suppressing NF-κB/BCL6 pathways. Cancer Cell Int 2022; 22:236. [PMID: 35883106 PMCID: PMC9317061 DOI: 10.1186/s12935-022-02661-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/08/2022] [Indexed: 11/24/2022] Open
Abstract
Background The B-cell lymphoma 6 (BCL6) oncogene is required for the survival of diffuse large B-cell lymphoma (DLBCL), which is incurable using conventional chemotherapy. Thus, it is imperative to improve the survival of patients with DLBCL. Disulfide (DSF) has been shown to have anticancer effects, but its effect on DLBCL remains unclear. Methods Four DLBCL cell lines (OCI-LY1, OCI-LY7, OCI-LY10 and U2932) and primary DLBCL cells from eight newly diagnosed DLBCL patients were pretreated with DSF alone or in combination with Cu. Cell morphology was observed under microscope. Flow cytometry was performed to evaluate the cell apoptosis, cell cycle, the mitochondrial membrane potential and the intracellular accumulation of reactive oxygen species (ROS). The protein expression was respectively measured by flow cytometry and western blotting. Results DSF or DSF/Cu exhibited a marked inhibitory effect on the growth of DLBCL cells, accompanied by cell cycle arrest at the G0/G1 phase. Meanwhile, DSF or DSF/Cu significantly induced DLBCL cells apoptosis. Further study revealed that DSF or DSF/Cu promoted apoptosis by inhibiting NF-κB signaling pathway. Interestingly, DSF/Cu significantly reduced BCL6 and AIP levels. In addition, DSF significantly up-regulate p53 protein in OCI-LY7 and OCI-LY10 while down-regulate p53 protein in OCI-LY1 and U2932. Conclusion These results provided evidence for the anti-lymphoma effects of DSF on DLBCL and suggested that DSF has therapeutic potential to DLBCL. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02661-4.
Collapse
Affiliation(s)
- Yunying Zhu
- Department of Clinical Laboratory, College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, 310014, Zhejiang, China.,Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Chenshuang Lei
- Department of Clinical Laboratory, College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, 310014, Zhejiang, China.,Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Qian Jiang
- Department of Clinical Laboratory, College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, 310014, Zhejiang, China.,Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Qinhua Yu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Liannv Qiu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
40
|
Yang XM, Wu Z, Wang X, Zhou Y, Zhu L, Li D, Nie HZ, Wang YH, Li J, Ma X. Disulfiram inhibits liver fibrosis in rats by suppressing hepatic stellate cell activation and viability. BMC Pharmacol Toxicol 2022; 23:54. [PMID: 35864505 PMCID: PMC9306139 DOI: 10.1186/s40360-022-00583-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/08/2022] [Indexed: 11/10/2022] Open
Abstract
Background Liver fibrosis is a wound-healing response to chronic injury, featuring with excess accumulation of extracellular matrix secreted by the activated hepatic stellate cells (HSC). Disulfiram (DSF), also known as Antabuse, has been used for the treatment of alcohol addiction and substance abuse. Recently, overwhelming studies had revealed anti-cancer effects of DSF in multiple cancers, including liver cancer. But the actual effects of DSF on liver fibrosis and liver function remain unknown. Methods In this study, we evaluated the effects of low-dose DSF in CCl4- and Bile Duct Ligation (BDL)—induced hepatic fibrosis rat models. Cell proliferation was detected by using the Cell-Light™ EdU Apollo®567 Cell Tracking Kit. Cell apoptosis was analyzed using a TdT-mediated dUTP nick end labeling (TUNEL) kit, viability was measured with Cell Counting Kit-8(CCK8). Relative mRNA expression of pro-fibrogenic was assessed using quantitative RT-PCR. The degree of liver fibrosis, activated HSCs, were separately evaluated through Sirius Red-staining, immunohistochemistry and immunofluorescence. Serum alanine aminotransferase (ALT) and asparagine aminotransferase (AST) activities were detected with ALT and AST detecting kits using an automated analyzer. Results Liver fibrosis was distinctly attenuated while liver functions were moderately ameliorated in the DSF-treated group. Activation and proliferation of primary rat HSCs isolated from rat livers were significantly suppressed by low-dose DSF. DSF also inhibited the viability of in vitro cultured rat or human HSC cells dose-dependently but had no repressive role on human immortalized hepatocyte THLE-2 cells. Interestingly, upon DSF treatment, the viability of LX-2 cells co-cultured with THLE-2 was significantly inhibited, while that of THLE-2 co-cultured with LX-2 was increased. Further study indicated that HSCs apoptosis was increased in DSF/CCl4-treated liver samples. These data indicated that DSF has potent anti-fibrosis effects and protective effects toward hepatocytes and could possibly be repurposed as an anti-fibrosis drug in the clinic. Conclusions DSF attenuated ECM remodeling through suppressing the transformation of quiet HSCs into proliferative, fibrogenic myofibroblasts in hepatic fibrosis rat models. DSF provides a novel approach for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Xiao-Mei Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Dongchuan Road, NO. 800, Shanghai, 200240, China
| | - Zheng Wu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Dongchuan Road, NO. 800, Shanghai, 200240, China.,Department of Radiation Oncology, Affiliated to School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Xiaoqi Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Dongchuan Road, NO. 800, Shanghai, 200240, China
| | - Yaoqi Zhou
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Dongchuan Road, NO. 800, Shanghai, 200240, China
| | - Lei Zhu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Dongchuan Road, NO. 800, Shanghai, 200240, China
| | - Dongxue Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Dongchuan Road, NO. 800, Shanghai, 200240, China
| | - Hui-Zhen Nie
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Dongchuan Road, NO. 800, Shanghai, 200240, China
| | - Ya-Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Dongchuan Road, NO. 800, Shanghai, 200240, China
| | - Jun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Dongchuan Road, NO. 800, Shanghai, 200240, China.
| | - Xueyun Ma
- Institute of Biomedical Sciences, East China Normal University, Shanghai, 200241, People's Republic of China.
| |
Collapse
|
41
|
Saifi MA, Godugu C. Copper chelation therapy inhibits renal fibrosis by modulating copper transport proteins. Biofactors 2022; 48:934-945. [PMID: 35322483 DOI: 10.1002/biof.1837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/25/2022] [Indexed: 11/11/2022]
Abstract
The copper (Cu) transporter proteins play an important role in the maintenance of the Cu homeostasis in the body. Lysyl oxidase (LOX) proteins are involved in crosslinking of collagens and elastin molecules resulting in the establishment of extracellular matrix (ECM) and require Cu for their functional activity. Although there are few reports showing the protective effects of Cu chelators, the mechanism behind protection remains unknown. The present study investigated the role of Cu transporter proteins in renal fibrosis. We used tubular epithelial cells and three different animal models of renal injury to investigate the induction of Cu transporter proteins in renal injury with different etiology. We used disulfiram, clioquinol as two Cu chelators and ammonium tetrathiomolybdate as a standard Cu chelator. In addition, β-aminopropionitrile (BAPN) was used as a standard LOX inhibitor. We demonstrated that renal fibrosis is associated with the induction of Cu transporter proteins such as ATP7A and Copper Transporter 1 (CTR1) but the Cu overload did not induce renal fibrosis. In addition, the Cu chelators inhibited renal fibrosis by inhibiting the Cu transporter proteins.
Collapse
Affiliation(s)
- Mohd Aslam Saifi
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Chandraiah Godugu
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| |
Collapse
|
42
|
Baker NC, Pierro JD, Taylor LW, Knudsen TB. Identifying candidate reference chemicals for in vitro testing of the retinoid pathway for predictive developmental toxicity. ALTEX 2022; 40:217–236. [PMID: 35796328 PMCID: PMC10765368 DOI: 10.14573/altex.2202231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/21/2022] [Indexed: 11/23/2022]
Abstract
Evaluating chemicals for potential in vivo toxicity based on their in vitro bioactivity profile is an important step toward animal- free testing. A compendium of reference chemicals and data describing their bioactivity on specific molecular targets, cellular pathways, and biological processes is needed to bolster confidence in the predictive value of in vitro hazard detection. Endogenous signaling by all-trans retinoic acid (ATRA) is an important pathway in developmental processes and toxicities. Employing data extraction methods and advanced literature extraction tools, we assembled a set of candidate reference chemicals with demonstrated activity on ten protein family targets in the retinoid system. The compendium was culled from Protein Data Bank, ChEMBL, ToxCast/Tox21, and the biomedical literature in PubMed. Finally, we performed a case study on one chemical in our collection, citral, an inhibitor of endogenous ATRA production, to determine whether the literature supports an adverse outcome pathway explaining the compound’s developmental toxicity initiated by disruption of the retinoid pathway. We also deliver an updated Abstract Sifter tool populated with these reference compounds and complex search terms designed to query the literature for the downstream consequences to support concordance with targeted retinoid pathway disruption.
Collapse
Affiliation(s)
| | - Jocylin D. Pierro
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Laura W. Taylor
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Thomas B. Knudsen
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
43
|
Lastakchi S, Olaloko MK, McConville C. A Potential New Treatment for High-Grade Glioma: A Study Assessing Repurposed Drug Combinations against Patient-Derived High-Grade Glioma Cells. Cancers (Basel) 2022; 14:2602. [PMID: 35681582 PMCID: PMC9179370 DOI: 10.3390/cancers14112602] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/06/2022] [Accepted: 05/17/2022] [Indexed: 02/05/2023] Open
Abstract
Repurposed drugs have demonstrated in vitro success against high-grade gliomas; however, their clinical success has been limited due to the in vitro model not truly representing the clinical scenario. In this study, we used two distinct patient-derived tumour fragments (tumour core (TC) and tumour margin (TM)) to generate a heterogeneous, clinically relevant in vitro model to assess if a combination of repurposed drugs (irinotecan, pitavastatin, disulfiram, copper gluconate, captopril, celecoxib, itraconazole and ticlopidine), each targeting a different growth promoting pathway, could successfully treat high-grade gliomas. To ensure the clinical relevance of our data, TC and TM samples from 11 different patients were utilized. Our data demonstrate that, at a concentration of 100µm or lower, all drug combinations achieved lower LogIC50 values than temozolomide, with one of the combinations almost eradicating the cancer by achieving cell viabilities below 4% in five of the TM samples 6 days after treatment. Temozolomide was unable to stop tumour growth over the 14-day assay, while combination 1 stopped tumour growth, with combinations 2, 3 and 4 slowing down tumour growth at higher doses. To validate the cytotoxicity data, we used two distinct assays, end point MTT and real-time IncuCyte life analysis, to evaluate the cytotoxicity of the combinations on the TC fragment from patient 3, with the cell viabilities comparable across both assays. The local administration of combinations of repurposed drugs that target different growth promoting pathways of high-grade gliomas have the potential to be translated into the clinic as a novel treatment strategy for high-grade gliomas.
Collapse
Affiliation(s)
| | | | - Christopher McConville
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (S.L.); (M.K.O.)
| |
Collapse
|
44
|
Kannappan V, Liu Y, Wang Z, Azar K, Kurusamy S, Kilari RS, Armesilla AL, Morris MR, Najlah M, Liu P, Bian XW, Wang W. PLGA-nano-encapsulated Disulfiram inhibits hypoxia-induced NFκB, cancer stem cells and targets glioblastoma in vitro and in vivo. Mol Cancer Ther 2022; 21:1273-1284. [PMID: 35579893 DOI: 10.1158/1535-7163.mct-22-0066] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/02/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022]
Abstract
Glioblastoma stem cell (GSC) is the major cause of glioblastoma multiforme (GBM) chemotherapy failure. Hypoxia is one of the determinants of GSC. NFκB plays a pivotal link between hypoxia and cancer stem cells (CSCs). Disulfiram (DS), an antialcoholism drug, has very strong NFκB-inhibiting and anti-CSC activity. In this study, the in vitro anti-GSC activity of DS and in vivo anti-GBM efficacy of poly lactic-co-glycolic acid nanoparticle-encapsulated DS (DS-PLGA) were examined. We attempt to elucidate the molecular network between hypoxia and GSCs, and also examined the anti-GSC activity of DS in vitro and in vivo. The influence of GSCs and hypoxia on GBM chemoresistance and invasiveness was studied in hypoxic and spheroid cultures. The molecular regulatory roles of NFκB, HIF1α and HIF2α were investigated using stably transfected U373MG cell lines. The hypoxia in neurospheres determines the cancer stem cell characters of the sphere-cultured GBM cell lines (U87MG, U251MG, U373MG). NFκB is located at a higher hierarchical position than HIF1α/HIF2α in hypoxic regulatory network and plays a key role in hypoxia-induced GSC characters. DS inhibits NFκB activity and targets hypoxia-induced GSCs. It showed selective toxicity to GBM cells, eradicates GSC and blocks migration and invasion at very low concentrations. DS-PLGA efficaciously inhibits orthotopic and subcutaneous U87MG xenograft in mouse models with no toxicity to vital organs.
Collapse
Affiliation(s)
| | - Ying Liu
- Queen Mary University of London, London, United Kingdom
| | | | - Karim Azar
- University of Wolverhampton, Wolverhampton, United Kingdom
| | | | | | | | - Mark R Morris
- University of Wolverhampton, Wolverhampoton, United Kingdom
| | | | - Peng Liu
- Queen Mary University of London, LONDON, United Kingdom
| | - Xiu-Wu Bian
- Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Weiguang Wang
- University of Wolverhampton, Wolverhampton, United Kingdom
| |
Collapse
|
45
|
Sun F, Wang H, Nie J, Hong B. Repurposing disulfiram as a chemo-therapeutic sensitizer: molecular targets and mechanisms. Anticancer Agents Med Chem 2022; 22:2920-2926. [PMID: 35430981 DOI: 10.2174/1871520621666220415102553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/20/2021] [Accepted: 02/03/2022] [Indexed: 11/22/2022]
Abstract
Currently, chemo-therapy is still the main strategy for cancer treatment. However, chemo-therapy resistance remains its main challenge. Disulfiram [DSF] is a drug approved by FDA for the treatment of alcohol addiction, but it is later discovered that it has the anticancer activity. Importantly, there have been many literatures reporting that DSF can be used as a chemo-therapeutic sensitizer to enhance the anticancer activity of chemo-drugs in a variety of cancers. Furthermore, the combinations of DSF and chemo-drugs have been tested in clinic trials. In the review, we summarized the possible molecular targets and mechanisms of DSF to reverse chemo-resistance. We also further discussed the opportunities and challenges of DSF as a chemo-therapeutic sensitizer. In conclusion, DSF could be a potential repurposed drug to sensitize cancer cells to chemo-therapy in clinic.
Collapse
Affiliation(s)
- Feilong Sun
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.,University of Science and Technology of China, Hefei, Anhui, China
| | - Hongzhi Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Jinfu Nie
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Bo Hong
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, China
| |
Collapse
|
46
|
Kao Y, Huang LC, Hsu SY, Huang SM, Hueng DY. The Effect of Disulfiram and Copper on Cellular Viability, ER Stress and ALDH Expression of Human Meningioma Cells. Biomedicines 2022; 10:887. [PMID: 35453636 PMCID: PMC9025959 DOI: 10.3390/biomedicines10040887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/27/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Meningiomas are the most common intracranial tumors in adults; currently there is no effective chemotherapy for malignant meningiomas. The effect of disulfiram (DSF)/Copper (Cu) on meningiomas remains unclear; (2) Methods: The impact of DSF/Cu on cell viability of meningioma adhesion cells (MgACs) and sphere cells (MgSCs) was assessed via MTS assay. The effects of DSF/Cu on intracellular Cu levels, cell senescence, and apoptosis were analyzed using CopperGreen, C12FDG, and Annexin V assays. Intracellular ALDH isoform expression and canonical pathway expression after DSF/Cu treatment were analyzed using mRNA microarray and Ingenuity Pathway Analysis, with further verification through qRT-PCR and immunoblotting; (3) Results: The viability of MgACs and MgSCs were inhibited by DSF/Cu. DSF/Cu increased intracellular Cu levels and cellular senescence. DSF/Cu also induced ER stress in MgACs and activated the PERK/eIF2 pathway for further adaptive response, apoptosis, and autophagy. Finally, DSF/Cu inhibited the expression of different ALDH isoforms in MgACs and MgSCs; (4) Conclusions: DSF/Cu exerts cytotoxic effects against both meningioma cells and stem-like cells and has treatment potential for meningioma.
Collapse
Affiliation(s)
- Ying Kao
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan;
- Division of Neurosurgery, Department of Surgery, Taipei City Hospital Zhongxing Branch, Taipei 10341, Taiwan
| | - Li-Chun Huang
- Department of Biochemistry, National Defense Medical Center, Taipei 11490, Taiwan; (L.-C.H.); (S.-M.H.)
| | - Shao-Yuan Hsu
- Division of Neurosurgery, Department of Surgery, Taipei City Hospital Renai Branch, Taipei 106243, Taiwan;
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei 11490, Taiwan; (L.-C.H.); (S.-M.H.)
| | - Dueng-Yuan Hueng
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan;
- Department of Biochemistry, National Defense Medical Center, Taipei 11490, Taiwan; (L.-C.H.); (S.-M.H.)
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| |
Collapse
|
47
|
Disulfiram/copper induces antitumor activity against gastric cancer cells in vitro and in vivo by inhibiting S6K1 and c-Myc. Cancer Chemother Pharmacol 2022; 89:451-458. [PMID: 35201421 DOI: 10.1007/s00280-022-04398-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/10/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Disulfiram (DSF) is an approved drug for the treatment of alcohol dependence. Accumulating evidence indicates that DSF, alone or in combination with copper (Cu), possesses strong antitumor activity in various malignancies. This study investigated the effects of DSF on gastric cancer (GC) and the potential mechanisms involved. METHODS GC cell proliferation and apoptosis upon treatment with DSF with or without copper were analyzed using CCK-8 assay, colony formation assay, and flow cytometry. Glucose metabolism was investigated using glucose consumption and lactate production assays. The expression of caspase-3, Bcl-2, LC-3, P62, S6K1, c-Myc, GLUT1, PKM2, and LDHA was analyzed using western blot assay. In vivo nude mice studies were performed to verify the findings from in vitro analyses. RESULTS Our study showed that DSF was highly toxic to GC cells in a Cu-dependent manner. Nontoxic concentrations of Cu enhanced the inhibitory effects of DSF on cell viability and colony formation. DSF also induced apoptotic and autophagic cell death in the presence of Cu. In addition, DSF/Cu inhibited glycolysis and xenograft growth of GC cells by suppressing the expression of S6K1, c-Myc, and their downstream molecules, including GLUT1, PKM2, and LDHA. CONCLUSION Our study demonstrated that DSF/Cu exerted antitumor activity against GC cells both in vitro and in vivo. DSF/Cu may represent a promising therapeutic strategy for the treatment of GC.
Collapse
|
48
|
Bahmad HF, Demus T, Moubarak MM, Daher D, Alvarez Moreno JC, Polit F, Lopez O, Merhe A, Abou-Kheir W, Nieder AM, Poppiti R, Omarzai Y. Overcoming Drug Resistance in Advanced Prostate Cancer by Drug Repurposing. Med Sci (Basel) 2022; 10:medsci10010015. [PMID: 35225948 PMCID: PMC8883996 DOI: 10.3390/medsci10010015] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is the second most common cancer in men. Common treatments include active surveillance, surgery, or radiation. Androgen deprivation therapy and chemotherapy are usually reserved for advanced disease or biochemical recurrence, such as castration-resistant prostate cancer (CRPC), but they are not considered curative because PCa cells eventually develop drug resistance. The latter is achieved through various cellular mechanisms that ultimately circumvent the pharmaceutical’s mode of action. The need for novel therapeutic approaches is necessary under these circumstances. An alternative way to treat PCa is by repurposing of existing drugs that were initially intended for other conditions. By extrapolating the effects of previously approved drugs to the intracellular processes of PCa, treatment options will expand. In addition, drug repurposing is cost-effective and efficient because it utilizes drugs that have already demonstrated safety and efficacy. This review catalogues the drugs that can be repurposed for PCa in preclinical studies as well as clinical trials.
Collapse
Affiliation(s)
- Hisham F. Bahmad
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (J.C.A.M.); (F.P.); (R.P.); (Y.O.)
- Correspondence: or ; Tel.: +1-786-961-0216
| | - Timothy Demus
- Division of Urology, Columbia University, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (T.D.); (A.M.N.)
| | - Maya M. Moubarak
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon; (M.M.M.); (W.A.-K.)
- CNRS, IBGC, UMR5095, Universite de Bordeaux, F-33000 Bordeaux, France
| | - Darine Daher
- Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon;
| | - Juan Carlos Alvarez Moreno
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (J.C.A.M.); (F.P.); (R.P.); (Y.O.)
| | - Francesca Polit
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (J.C.A.M.); (F.P.); (R.P.); (Y.O.)
| | - Olga Lopez
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA;
| | - Ali Merhe
- Department of Urology, Jackson Memorial Hospital, University of Miami, Leonard M. Miller School of Medicine, Miami, FL 33136, USA;
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon; (M.M.M.); (W.A.-K.)
| | - Alan M. Nieder
- Division of Urology, Columbia University, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (T.D.); (A.M.N.)
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA;
| | - Robert Poppiti
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (J.C.A.M.); (F.P.); (R.P.); (Y.O.)
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA;
| | - Yumna Omarzai
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (J.C.A.M.); (F.P.); (R.P.); (Y.O.)
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA;
| |
Collapse
|
49
|
El Fawal G, Abu-Serie MM, El-Gendi H, El-Fakharany EM. Fabrication, characterization and in vitro evaluation of disulfiram-loaded cellulose acetate/poly(ethylene oxide) nanofiber scaffold for breast and colon cancer cell lines treatment. Int J Biol Macromol 2022; 204:555-564. [PMID: 35139395 DOI: 10.1016/j.ijbiomac.2022.01.145] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/12/2022] [Accepted: 01/23/2022] [Indexed: 12/13/2022]
Abstract
Cancer and microbial infections threaten human health. Currently, chemotherapeutic drugs for cancer lack selectivity between normal and cancer cells, exacerbating this problem. Effective anticancer drug encapsulation is the golden key to solving this issue. Disulfiram (DS), an anticancer drug, has low solubility and selectivity and to tackle this concern, cellulose acetate (CA) and poly (ethylene oxide) (PEO) was selected as a matrix to prepare nanofiber containing DS (DS@CA/PEO) via electrospinning technique. DS@CA/PEO nanofiber was characterized by SEM, FTIR, TGA, and X-rd patterns and the results confirmed DS incorporation in CA/PEO nanofiber. DS@CA/PEO nanofiber scaffold showed higher safety than DS-free on human normal cells (Wi-38) with revealing similar anticancer activity of DS-free against colon cancer line (Caco-2) and breast cancer line (MDA-MB 231). This higher selectivity of DS@CA/PEO towards cancer cells than normal cells was associated with maintaining apoptotic activity and aldehyde dehydrogenase-inhibitory potency of DS. The latter efficacy led to eradicating colon and breast cancer stem cells, as evidenced by flow cytometry. Moreover, DS@CA/PEO nanofiber scaffold showed potent antibacterial activity (in vitro) against both Gram-negative and Gram-positive bacteria. These results investigated that DS@CA/PEO nanofiber scaffold could be a potential dual candidate as a selective anticancer and antimicrobial agent.
Collapse
Affiliation(s)
- Gomaa El Fawal
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt.
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab City 21934, Alexandria, Egypt
| | - Hamada El-Gendi
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA City), New Borg El-Arab 21934, Egypt
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA City), New Borg El-Arab 21934, Egypt
| |
Collapse
|
50
|
Ma B, Liu Z, Xu H, Liu L, Huang T, Meng L, Wang L, Zhang Y, Li L, Han X. Molecular Characterization and Clinical Relevance of ALDH2 in Human Cancers. Front Med (Lausanne) 2022; 8:832605. [PMID: 35096916 PMCID: PMC8792945 DOI: 10.3389/fmed.2021.832605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Aldehyde dehydrogenase 2 (ALDH2) is well-known to be a key enzyme in alcohol metabolism. However, a comprehensive understanding of ALDH2 across human cancers is lacking. Methods: A systematic and comprehensive analysis of the molecular alterations and clinical relevance for ALDH2 in more than 10,000 samples from 33 cancer types was performed. qRT-PCR was performed on 60 cancer and 60 paired nontumor tissues. Results: It was observed that ALDH2 was generally downregulated in most cancers, which was mainly driven by DNA hypermethylation rather than mutations or copy number variations. Besides, ALDH2 was closely related to the inhibition and activation of tumor pathways and a variety of potential targeted agents had been discovered in our research. Last but not least, ALDH2 had the best prediction efficacy in assessing immunotherapeutic response compared with PD-L1, PD-1, CTLA4, CD8, and tumor mutation burden (TMB) in cutaneous melanoma. According to the analysis of large-scale public data and 60 pairs of clinical cancer samples, we found the downregulation of ALDH2 expression tends to suggest the malignant phenotypes and adverse prognosis, which might enhance the precise diagnosis and timely intervention of cancer patients. Conclusion: This study advanced the understanding of ALDH2 across cancers, and provided important insight into chemotherapy, immunotherapy and prognosis of patients with cancer.
Collapse
Affiliation(s)
- Bo Ma
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Provice, Zhengzhou, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Provice, Zhengzhou, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tao Huang
- Medical School, Huanghe Science and Technology University, Zhengzhou, China
| | - Lingfang Meng
- Department of Infection Management, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Libo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lifeng Li
- Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Provice, Zhengzhou, China
| |
Collapse
|