1
|
Demuth P, Thibol L, Lemsch A, Potlitz F, Schulig L, Grathwol C, Manolikakes G, Schade D, Roukos V, Link A, Fahrer J. Targeting PARP-1 and DNA Damage Response Defects in Colorectal Cancer Chemotherapy with Established and Novel PARP Inhibitors. Cancers (Basel) 2024; 16:3441. [PMID: 39456536 PMCID: PMC11506018 DOI: 10.3390/cancers16203441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/28/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
The DNA repair protein PARP-1 emerged as a valuable target in the treatment of tumor entities with deficiencies of BRCA1/2, such as breast cancer. More recently, the application of PARP inhibitors (PARPi) such as olaparib has been expanded to other cancer entities including colorectal cancer (CRC). We previously demonstrated that PARP-1 is overexpressed in human CRC and promotes CRC progression in a mouse model. However, acquired resistance to PARPi and cytotoxicity-mediated adverse effects limit their clinical applicability. Here, we detailed the role of PARP-1 as a therapeutic target in CRC and studied the efficacy of novel PARPi compounds in wildtype (WT) and DNA repair-deficient CRC cell lines together with the chemotherapeutics irinotecan (IT), 5-fluorouracil (5-FU), and oxaliplatin (OXA). Based on the ComPlat molecule archive, we identified novel PARPi candidates by molecular docking experiments in silico, which were then confirmed by in vitro PARP activity measurements. Two promising candidates (X17613 and X17618) also showed potent PARP-1 inhibition in a CRC cell-based assay. In contrast to olaparib, the PARPi candidates caused no PARP-1 trapping and, consistently, were not or only weakly cytotoxic in WT CRC cells and their BRCA2- or ATR-deficient counterparts. Importantly, both PARPi candidates did not affect the viability of nonmalignant human colonic epithelial cells. While both olaparib and veliparib increased the sensitivity of WT CRC cells towards IT, no synergism was observed for X17613 and X17618. Finally, we provided evidence that all PARPi (olaparib > veliparib > X17613 > X17618) synergize with chemotherapeutic drugs (IT > OXA) in a BRCA2-dependent manner in CRC cells, whereas ATR deficiency had only a minor impact. Collectively, our study identified novel lead structures with potent PARP-1 inhibitory activity in CRC cells but low cytotoxicity due to the lack of PARP-1 trapping, which synergized with IT in homologous recombination deficiency.
Collapse
Affiliation(s)
- Philipp Demuth
- Department of Chemistry, Division of Food Chemistry and Toxicology, RPTU Kaiserslautern-Landau, 67663 Kaiserslautern, Germany; (P.D.); (L.T.); (A.L.)
| | - Lea Thibol
- Department of Chemistry, Division of Food Chemistry and Toxicology, RPTU Kaiserslautern-Landau, 67663 Kaiserslautern, Germany; (P.D.); (L.T.); (A.L.)
| | - Anna Lemsch
- Department of Chemistry, Division of Food Chemistry and Toxicology, RPTU Kaiserslautern-Landau, 67663 Kaiserslautern, Germany; (P.D.); (L.T.); (A.L.)
| | - Felix Potlitz
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, 17489 Greifswald, Germany; (F.P.); (L.S.); (A.L.)
| | - Lukas Schulig
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, 17489 Greifswald, Germany; (F.P.); (L.S.); (A.L.)
| | - Christoph Grathwol
- Institute of Biological and Chemical Systems—Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany;
| | - Georg Manolikakes
- Department of Chemistry, RPTU Kaiserslautern-Landau, 67663 Kaiserslautern, Germany;
| | - Dennis Schade
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany;
| | | | - Andreas Link
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, 17489 Greifswald, Germany; (F.P.); (L.S.); (A.L.)
| | - Jörg Fahrer
- Department of Chemistry, Division of Food Chemistry and Toxicology, RPTU Kaiserslautern-Landau, 67663 Kaiserslautern, Germany; (P.D.); (L.T.); (A.L.)
| |
Collapse
|
2
|
Cheng HH, Shevach JW, Castro E, Couch FJ, Domchek SM, Eeles RA, Giri VN, Hall MJ, King MC, Lin DW, Loeb S, Morgan TM, Offit K, Pritchard CC, Schaeffer EM, Szymaniak BM, Vassy JL, Katona BW, Maxwell KN. BRCA1, BRCA2, and Associated Cancer Risks and Management for Male Patients: A Review. JAMA Oncol 2024; 10:1272-1281. [PMID: 39052257 DOI: 10.1001/jamaoncol.2024.2185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Importance Half of all carriers of inherited cancer-predisposing variants in BRCA1 and BRCA2 are male, but the implications for their health are underrecognized compared to female individuals. Germline variants in BRCA1 and BRCA2 (also known as pathogenic or likely pathogenic variants, referred to here as BRCA1/2 PVs) are well known to significantly increase the risk of breast and ovarian cancers in female carriers, and knowledge of BRCA1/2 PVs informs established cancer screening and options for risk reduction. While risks to male carriers of BRCA1/2 PVs are less characterized, there is convincing evidence of increased risk for prostate cancer, pancreatic cancer, and breast cancer in males. There has also been a rapid expansion of US Food and Drug Administration-approved targeted cancer therapies, including poly ADP ribose polymerase (PARP) inhibitors, for breast, pancreatic, and prostate cancers associated with BRCA1/2 PVs. Observations This narrative review summarized the data that inform cancer risks, targeted cancer therapy options, and guidelines for early cancer detection. It also highlighted areas of emerging research and clinical trial opportunities for male BRCA1/2 PV carriers. These developments, along with the continued relevance to family cancer risk and reproductive options, have informed changes to guideline recommendations for genetic testing and strengthened the case for increased genetic testing for males. Conclusions and Relevance Despite increasing clinical actionability for male carriers of BRCA1/2 PVs, far fewer males than female individuals undergo cancer genetic testing. Oncologists, internists, and primary care clinicians should be vigilant about offering appropriate genetic testing to males. Identifying more male carriers of BRCA1/2 PVs will maximize opportunities for cancer early detection, targeted risk management, and cancer treatment for males, along with facilitating opportunities for risk reduction and prevention in their family members, thereby decreasing the burden of hereditary cancer.
Collapse
Affiliation(s)
- Heather H Cheng
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington
- Department of Medicine (Hematology and Oncology), University of Washington, Seattle
| | - Jeffrey W Shevach
- Division of Medical Oncology, Duke University School of Medicine, Durham, North Carolina
| | - Elena Castro
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Fergus J Couch
- Division of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, New York
| | - Susan M Domchek
- Department of Medicine, Basser Center for BRCA and Abramson Cancer Center, University of Pennsylvania, Philadelphia
| | - Rosalind A Eeles
- The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Veda N Giri
- Yale School of Medicine and Yale Cancer Center, New Haven, Connecticut
| | - Michael J Hall
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Mary-Claire King
- Department of Medicine (Medical Genetics) and Department of Genome Sciences, University of Washington, Seattle
| | - Daniel W Lin
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington
- Department of Urology, University of Washington, Seattle
| | - Stacy Loeb
- Department of Urology and Population Health, New York University School of Medicine, New York
- Department of Surgery/Urology, Manhattan Veterans Affairs, New York, New York
| | - Todd M Morgan
- Department of Urology, University of Michigan, Ann Arbor
| | - Kenneth Offit
- Clinical Genetics Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Colin C Pritchard
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle
- Brotman Baty Institute for Precision Medicine, Seattle, Washington
| | - Edward M Schaeffer
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Brittany M Szymaniak
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Jason L Vassy
- Harvard Medical School at VA Boston Healthcare System, Boston, Massachusetts
| | - Bryson W Katona
- Department of Medicine, Basser Center for BRCA and Abramson Cancer Center, University of Pennsylvania, Philadelphia
| | - Kara N Maxwell
- Department of Medicine, Basser Center for BRCA and Abramson Cancer Center, University of Pennsylvania, Philadelphia
- Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| |
Collapse
|
3
|
Matuszczak M, Kiljańczyk A, Marciniak W, Derkacz R, Stempa K, Baszuk P, Bryśkiewicz M, Cybulski C, Dębniak T, Gronwald J, Huzarski T, Lener M, Jakubowska A, Szwiec M, Stawicka-Niełacna M, Godlewski D, Prusaczyk A, Jasiewicz A, Kluz T, Tomiczek-Szwiec J, Kilar-Kobierzycka E, Siołek M, Wiśniowski R, Posmyk R, Jarkiewicz-Tretyn J, Scott R, Lubiński J. Antioxidant Properties of Zinc and Copper-Blood Zinc-to Copper-Ratio as a Marker of Cancer Risk BRCA1 Mutation Carriers. Antioxidants (Basel) 2024; 13:841. [PMID: 39061909 PMCID: PMC11273827 DOI: 10.3390/antiox13070841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Pathogenic mutations in BRCA1 (BReast CAncer gene 1) confer high risks of both breast (up to 70%) and ovarian (up to 40%) cancers. Zinc (Zn) and copper (Cu) are essential for various physiological functions, including antioxidant reactions. Their balance, reflected in the Zn/Cu ratio, plays a crucial role in maintaining redox homeostasis, which is vital for cancer prevention. This study examines the antioxidant properties of Zn and Cu, specifically focusing on the blood Zn/Cu ratio as a potential marker for cancer risk among BRCA1 mutation carriers. The study cohort consisted of 989 initially unaffected women, followed up for 7.5 years. Blood samples were analyzed using inductively coupled plasma mass spectrometry. Although individual Zn and Cu levels did not significantly correlate with overall cancer risk, those women with a Zn/Cu ratio above 6.38 experienced a significantly lower cancer risk than women with a ratio below this cut-off point. This suggests that the Zn/Cu ratio may be a valuable biomarker for cancer prevention in this high-risk group. Given the increased cancer risk in BRCA1 mutation carriers, optimizing Zn and Cu levels through dietary and active interventions could provide a preventive strategy.
Collapse
Affiliation(s)
- Milena Matuszczak
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (M.M.); (A.K.); (K.S.); (P.B.); (M.B.); (C.C.); (T.D.); (J.G.); (T.H.); (M.L.); (A.J.)
| | - Adam Kiljańczyk
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (M.M.); (A.K.); (K.S.); (P.B.); (M.B.); (C.C.); (T.D.); (J.G.); (T.H.); (M.L.); (A.J.)
| | - Wojciech Marciniak
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| | - Róża Derkacz
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| | - Klaudia Stempa
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (M.M.); (A.K.); (K.S.); (P.B.); (M.B.); (C.C.); (T.D.); (J.G.); (T.H.); (M.L.); (A.J.)
| | - Piotr Baszuk
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (M.M.); (A.K.); (K.S.); (P.B.); (M.B.); (C.C.); (T.D.); (J.G.); (T.H.); (M.L.); (A.J.)
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| | - Marta Bryśkiewicz
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (M.M.); (A.K.); (K.S.); (P.B.); (M.B.); (C.C.); (T.D.); (J.G.); (T.H.); (M.L.); (A.J.)
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| | - Cezary Cybulski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (M.M.); (A.K.); (K.S.); (P.B.); (M.B.); (C.C.); (T.D.); (J.G.); (T.H.); (M.L.); (A.J.)
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| | - Tadeusz Dębniak
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (M.M.); (A.K.); (K.S.); (P.B.); (M.B.); (C.C.); (T.D.); (J.G.); (T.H.); (M.L.); (A.J.)
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| | - Jacek Gronwald
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (M.M.); (A.K.); (K.S.); (P.B.); (M.B.); (C.C.); (T.D.); (J.G.); (T.H.); (M.L.); (A.J.)
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| | - Tomasz Huzarski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (M.M.); (A.K.); (K.S.); (P.B.); (M.B.); (C.C.); (T.D.); (J.G.); (T.H.); (M.L.); (A.J.)
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
- Department of Clinical Genetics and Pathology, University of Zielona Góra, ul. Zyty 28, 65-046 Zielona Góra, Poland;
| | - Marcin Lener
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (M.M.); (A.K.); (K.S.); (P.B.); (M.B.); (C.C.); (T.D.); (J.G.); (T.H.); (M.L.); (A.J.)
| | - Anna Jakubowska
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (M.M.); (A.K.); (K.S.); (P.B.); (M.B.); (C.C.); (T.D.); (J.G.); (T.H.); (M.L.); (A.J.)
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
| | - Marek Szwiec
- Department of Surgery and Oncology, University of Zielona Góra, Zyty 28, 65-046 Zielona Góra, Poland;
| | - Małgorzata Stawicka-Niełacna
- Department of Clinical Genetics and Pathology, University of Zielona Góra, ul. Zyty 28, 65-046 Zielona Góra, Poland;
| | | | | | - Andrzej Jasiewicz
- Genetic Counseling Center, Subcarpatian Oncological Hospital, 18 Bielawskiego St, 36-200 Brzozów, Poland;
| | - Tomasz Kluz
- Department of Gynecology, Gynecology Oncology and Obstetrics, Institute of Medical Sciences, Medical College, Rzeszow University, Rejtana 16c, 35-959 Rzeszow, Poland;
| | - Joanna Tomiczek-Szwiec
- Department of Histology, Department of Biology and Genetics, Faculty of Medicine, University of Opole, 45-040 Opole, Poland;
| | - Ewa Kilar-Kobierzycka
- Department of Oncology, District Specialist Hospital, Leśna 27-29 St, 58-100 Świdnica, Poland;
| | - Monika Siołek
- Holycross Cancer Center, Artwińskiego 3 St, 25-734 Kielce, Poland;
| | - Rafał Wiśniowski
- Regional Oncology Hospital, Wyzwolenia 18 St, 43-300 Bielsko Biała, Poland;
| | - Renata Posmyk
- Department of Clinical Genetics, Medical University in Bialystok, 15-089 Bialystok, Poland;
| | | | - Rodney Scott
- Medical Genetics, Hunter Medical Research Institute, Priority Research Centre for Cancer Research, Innovation and Translation, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle; Pathology North, John Hunter Hospital, King and Auckland Streets, Newcastle, NSW 2300, Australia;
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (M.M.); (A.K.); (K.S.); (P.B.); (M.B.); (C.C.); (T.D.); (J.G.); (T.H.); (M.L.); (A.J.)
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| |
Collapse
|
4
|
Forsah SF, Bijoy S, Arrey Agbor DB, Ugwendum D, Okang M, Syed UM, Aviles C, Nfonoyim J. Metastatic Early-Onset Colon Cancer With BRCA2 Mutation Presenting With a Large Obstructing Pelvic Mass and Causing Acute Liver Failure and Acute Hypoxic Respiratory Failure. Cureus 2024; 16:e64770. [PMID: 39156267 PMCID: PMC11329380 DOI: 10.7759/cureus.64770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
Colorectal cancer (CRC) still constitutes a significant healthcare burden. Although its overall incidence is reducing, the incidence of early-onset CRC is increasing. There is uncertainty about the association between CRC and BRCA2 mutations and also, even though most cancers metastasize to the liver, acute liver failure (ALF) from metastatic cancer and specifically CRC is uncommon. This is a case of a young patient with BRCA2 mutation who presented with a large obstructing CRC with extensive metastatic burden to the liver, causing a fatal ALF. This case shows the growing number of ALFs associated with metastatic disease and suggests a possible association between BRCA2 mutation and CRC. This association needs more research to establish.
Collapse
Affiliation(s)
- Sabastain F Forsah
- Internal Medicine, Richmond University Medical Center, Staten Island, USA
| | - Sini Bijoy
- Hematology and Oncology, Richmond University Medical Center, Staten Island, USA
| | | | - Derek Ugwendum
- Internal Medicine, Richmond University Medical Center, Staten Island, USA
| | - Margarieta Okang
- Internal Medicine, Richmond University Medical Center, Staten Island, USA
| | - Uroosa M Syed
- Internal Medicine, Richmond University Medical Center, Staten Island, USA
| | - Cinthya Aviles
- Internal Medicine, Richmond University Medical Center, Staten Island, USA
| | - Jay Nfonoyim
- Pulmonary and Critical Care Medicine, Richmond University Medical Center, Staten Island, USA
| |
Collapse
|
5
|
Chan JM, Clendenning M, Joseland S, Georgeson P, Mahmood K, Joo JE, Walker R, Como J, Preston S, Chai SM, Chu YL, Meyers AL, Pope BJ, Duggan D, Fink JL, Macrae FA, Rosty C, Winship IM, Jenkins MA, Buchanan DD. Inherited BRCA1 and RNF43 pathogenic variants in a familial colorectal cancer type X family. Fam Cancer 2024; 23:9-21. [PMID: 38063999 PMCID: PMC10869370 DOI: 10.1007/s10689-023-00351-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/21/2023] [Indexed: 02/17/2024]
Abstract
Genetic susceptibility to familial colorectal cancer (CRC), including for individuals classified as Familial Colorectal Cancer Type X (FCCTX), remains poorly understood. We describe a multi-generation CRC-affected family segregating pathogenic variants in both BRCA1, a gene associated with breast and ovarian cancer and RNF43, a gene associated with Serrated Polyposis Syndrome (SPS). A single family out of 105 families meeting the criteria for FCCTX (Amsterdam I family history criteria with mismatch repair (MMR)-proficient CRCs) recruited to the Australasian Colorectal Cancer Family Registry (ACCFR; 1998-2008) that underwent whole exome sequencing (WES), was selected for further testing. CRC and polyp tissue from four carriers were molecularly characterized including a single CRC that underwent WES to determine tumor mutational signatures and loss of heterozygosity (LOH) events. Ten carriers of a germline pathogenic variant BRCA1:c.2681_2682delAA p.Lys894ThrfsTer8 and eight carriers of a germline pathogenic variant RNF43:c.988 C > T p.Arg330Ter were identified in this family. Seven members carried both variants, four of which developed CRC. A single carrier of the RNF43 variant met the 2019 World Health Organization (WHO2019) criteria for SPS, developing a BRAF p.V600 wildtype CRC. Loss of the wildtype allele for both BRCA1 and RNF43 variants was observed in three CRC tumors while a LOH event across chromosome 17q encompassing both genes was observed in a CRC. Tumor mutational signature analysis identified the homologous recombination deficiency (HRD)-associated COSMIC signatures SBS3 and ID6 in a CRC for a carrier of both variants. Our findings show digenic inheritance of pathogenic variants in BRCA1 and RNF43 segregating with CRC in a FCCTX family. LOH and evidence of BRCA1-associated HRD supports the importance of both these tumor suppressor genes in CRC tumorigenesis.
Collapse
Affiliation(s)
- James M Chan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, Victorian Comprehensive Cancer Centre, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Centre for Cancer Research, University of Melbourne, The University of Melbourne, Parkville, VIC, Australia
| | - Mark Clendenning
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, Victorian Comprehensive Cancer Centre, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Centre for Cancer Research, University of Melbourne, The University of Melbourne, Parkville, VIC, Australia
| | - Sharelle Joseland
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, Victorian Comprehensive Cancer Centre, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Centre for Cancer Research, University of Melbourne, The University of Melbourne, Parkville, VIC, Australia
| | - Peter Georgeson
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, Victorian Comprehensive Cancer Centre, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Centre for Cancer Research, University of Melbourne, The University of Melbourne, Parkville, VIC, Australia
| | - Khalid Mahmood
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, Victorian Comprehensive Cancer Centre, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Centre for Cancer Research, University of Melbourne, The University of Melbourne, Parkville, VIC, Australia
- Melbourne Bioinformatics, The University of Melbourne, Melbourne, VIC, Australia
| | - Jihoon E Joo
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, Victorian Comprehensive Cancer Centre, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Centre for Cancer Research, University of Melbourne, The University of Melbourne, Parkville, VIC, Australia
| | - Romy Walker
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, Victorian Comprehensive Cancer Centre, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Centre for Cancer Research, University of Melbourne, The University of Melbourne, Parkville, VIC, Australia
| | - Julia Como
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, Victorian Comprehensive Cancer Centre, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Centre for Cancer Research, University of Melbourne, The University of Melbourne, Parkville, VIC, Australia
| | - Susan Preston
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, Victorian Comprehensive Cancer Centre, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Centre for Cancer Research, University of Melbourne, The University of Melbourne, Parkville, VIC, Australia
| | - Shuyi Marci Chai
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, Victorian Comprehensive Cancer Centre, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Centre for Cancer Research, University of Melbourne, The University of Melbourne, Parkville, VIC, Australia
| | - Yen Lin Chu
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, Victorian Comprehensive Cancer Centre, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Centre for Cancer Research, University of Melbourne, The University of Melbourne, Parkville, VIC, Australia
| | - Aaron L Meyers
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, Victorian Comprehensive Cancer Centre, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Centre for Cancer Research, University of Melbourne, The University of Melbourne, Parkville, VIC, Australia
| | - Bernard J Pope
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, Victorian Comprehensive Cancer Centre, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Centre for Cancer Research, University of Melbourne, The University of Melbourne, Parkville, VIC, Australia
- Melbourne Bioinformatics, The University of Melbourne, Melbourne, VIC, Australia
| | - David Duggan
- Quantitative Medicine and Systems Biology Division, Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | - J Lynn Fink
- Faculty of Medicine, Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
- Australian Translational Genomics Centre, Queensland University of Technology, Brisbane, QLD, Australia
| | - Finlay A Macrae
- Colorectal Medicine and Genetics, Royal Melbourne Hospital, Parkville, VIC, Australia
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Christophe Rosty
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, Victorian Comprehensive Cancer Centre, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Centre for Cancer Research, University of Melbourne, The University of Melbourne, Parkville, VIC, Australia
- Envoi Pathology, Brisbane, QLD, Australia
- School of Medicine, University of Queensland, Herston, QLD, Australia
| | - Ingrid M Winship
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, VIC, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Mark A Jenkins
- Centre for Cancer Research, University of Melbourne, The University of Melbourne, Parkville, VIC, Australia
- Centre for Epidemiology and Biostatistics, The University of Melbourne, Melbourne, VIC, Australia
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, Victorian Comprehensive Cancer Centre, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia.
- Centre for Cancer Research, University of Melbourne, The University of Melbourne, Parkville, VIC, Australia.
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, VIC, Australia.
| |
Collapse
|
6
|
Liu Y, Si M, Qian Y, Liu Y, Wang Z, Zhang T, Wang Z, Ye K, Xiang C, Xu L, Zhang Y, Xiao Z. Bidirectional Mendelian randomization analysis investigating the genetic association between primary breast cancer and colorectal cancer. Front Immunol 2024; 14:1260941. [PMID: 38283349 PMCID: PMC10811019 DOI: 10.3389/fimmu.2023.1260941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024] Open
Abstract
Purpose With the advancement in early diagnosis and treatment, the prognosis for individuals diagnosed with breast cancer (BC) has improved significantly. The prognosis of primary breast cancer (PBC) survivors can be significantly influenced by the occurrence of colorectal cancer (CRC) as a secondary primary cancer (SPC). The objective of this study is to explore the possible genetic association between PBC and CRC, aiming to lay a groundwork for the development of preventive strategies against SPC-CRC following BC surgery. Methods We employed a bidirectional two-sample Mendelian randomization (MR) approach to thoroughly examine genetic instrumental variables (IVs) derived from genome-wide association studies (GWAS) conducted on PBC and CRC. And applied inverse variance weighted (IVW) and multiple other MR methods (weighted median, simple median, MR-PRESSO and MR-RAPS) to evaluate the association between the two cancers (PBC and CRC) at genetic level. Furthermore, the robustness of the findings was further confirmed through the utilization of the genetic risk score (GRS) method in a secondary analysis. Results Forward MR analysis, a total of 179 BC genetic IVs, 25 estrogen receptor-negative (ER-) genetic IVs and 135 ER-positive (ER+) genetic IVs were screened. Reverse MR analysis, 179 genetic IVs of CRC, 25 genetic IVs of colon cancer, 135 genetic IVs of rectal cancer, 25 genetic IVs of left colon cancer and 135 genetic IVs of right colon cancer were screened. IVW and other MR methods found no significant genetic association between PBC and CRC (P > 0.05). Subgroup analysis also showed that ER- BC and ER+ BC were not correlated with the occurrence of CRC (P > 0.05). The findings of the secondary analysis using GRS were consistent with those obtained from the primary analysis, thereby confirming the robustness and reliability of this study. Conclusions Our findings do not provide any evidence supporting the association between PBC and CRC at the genetic level. Further large-scale prospective studies are warranted to replicate our findings.
Collapse
Affiliation(s)
- Yi Liu
- Department of Digestive System, Anqing Municipal Hospital, Anqing, China
| | - Mingxuan Si
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yawei Qian
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Liu
- School of Economics and Management, Wuhan University, Wuhan, China
| | - Zichen Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tongyu Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhenhuan Wang
- Department of Digestive System, Anqing Municipal Hospital, Anqing, China
| | - Kun Ye
- Department of Digestive System, Anqing Municipal Hospital, Anqing, China
| | - Cuijuan Xiang
- Department of Digestive System, Anqing Municipal Hospital, Anqing, China
| | - Linlin Xu
- Department of Digestive System, Anqing Municipal Hospital, Anqing, China
| | - Yanping Zhang
- Department of Digestive System, Anqing Municipal Hospital, Anqing, China
| | - Zhihan Xiao
- Department of Cardiothoracic Surgery, Wuhu Second People’s Hospital, Wuhu, China
| |
Collapse
|
7
|
Youssef ASED, Zekri ARN, Mohanad M, Loutfy SA, Abdel Fattah NF, Elberry MH, El Leithy AA, El-Touny A, Rabie AS, Shalaby M, Hanafy A, Lotfy MM, El-Sisi ER, El-Sayyad GS, Nassar A. Deleterious and ethnic-related BRCA1/2 mutations in tissue and blood of Egyptian colorectal cancer patients and its correlation with human papillomavirus. Clin Exp Med 2023; 23:5063-5088. [PMID: 37804357 PMCID: PMC10725364 DOI: 10.1007/s10238-023-01207-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/22/2023] [Indexed: 10/09/2023]
Abstract
This study aimed to identify BRCA1/2 mutational patterns in the tissue and blood of Egyptian colorectal cancer (CRC) patients and to study the possible correlation of this mutational pattern with Human papillomavirus (HPV) infection. Eighty-two colonoscopic biopsies and forty-six blood samples were collected from Egyptian CRC patients, as well as blood samples of age and sex-matched healthy controls (n = 43) were enrolled. The libraries were performed using Qiaseq Human BRCA1 and BRCA2 targeted DNA panel and sequenced via Ion proton sequencer. Also, the CRC tissues were subjected to conventional PCR targeting the HPV Late 1 (L1) region. Our analysis revealed that the BRCA-DNA damage pathway had been altered in more than 65% of the CRC patients. Comparing tissue and blood samples from CRC patients, 25 somatic mutations were found exclusively in tissue, while 41 germline mutations were found exclusively in blood. Additionally, we identified 23 shared BRCA1/2 pathogenic (PVs) mutations in both blood and tissue samples, with a significantly higher frequency in blood samples compared to tissue samples. The most affected exon in BRCA1 was exon 10, while the most affected exons in BRCA2 were 11, 14, 18, 24, and 27 exons. Notably, we revealed an ethnic-related cluster of polymorphism variants in our population closely related to South Asian and African ethnicities. Novel PVs were identified and submitted to the ClinVar database. HPV was found in 23.8% of the CRC tissues, and 54% of HPV-positive cases had somatic BRCA1/2 PVs. The results of this research point to a possible connection between infection with HPV and BRCA1/2 mutations in the occurrence of colorectal cancer in the Egyptian population, which has a mixed ethnic background. Our data also indicate that liquid biopsy (blood samples) may be more representative than tissue samples for detecting BRCA1/2 mutations. These findings may have implications for cancer screening and the development of personalized, targeted therapies, such as PARP inhibitors, which can effectively target BRCA1/2 mutations.
Collapse
Affiliation(s)
- Amira Salah El-Din Youssef
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt.
| | - Abdel Rahman N Zekri
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Marwa Mohanad
- Department of Biochemistry, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Samah A Loutfy
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
- Nanotechnology Research Center (NTRC), The British University in Egypt (BUE), El-Shorouk City, Suez Desert Road, P. O. Box 43, Cairo, Egypt
| | - Nasra F Abdel Fattah
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mostafa H Elberry
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Asmaa A El Leithy
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza, Egypt
| | - Ahmed El-Touny
- Surgical Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Ahmed Samy Rabie
- Surgical Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mohamed Shalaby
- Surgical Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Ayman Hanafy
- Surgical Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mai M Lotfy
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Enas R El-Sisi
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Gharieb S El-Sayyad
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt.
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt.
- Drug Microbiology Lab., Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Auhood Nassar
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
8
|
Zhunussova G, Omarbayeva N, Kaidarova D, Abdikerim S, Mit N, Kisselev I, Yergali K, Zhunussova A, Goncharova T, Abdrakhmanova A, Djansugurova L. Determination of genetic predisposition to early breast cancer in women of Kazakh ethnicity. Oncotarget 2023; 14:860-877. [PMID: 37791908 PMCID: PMC10549772 DOI: 10.18632/oncotarget.28518] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023] Open
Abstract
Breast cancer (BC) is the most common type of cancer among women in Kazakhstan. To date, little data are available on the spectrum of genetic variation in Kazakh women with BC. We aimed to identify population-specific genetic markers associated with the risk of developing early-onset BC and test their association with clinical and prognostic factors. The study included 224 Kazakh women diagnosed with BC (≤40 age). Entire coding regions (>1700 exons) and the flanking noncoding regions of 94 cancer-associated genes were sequenced from blood DNA using MiSeq platform. We identified 38 unique pathogenic variants (PVs) in 13 different cancer-predisposing genes among 57 patients (25.4%), of which 6 variants were novel. In total, 12 of the 38 distinct PVs were detected recurrently, including BRCA1 c.5266dup, c.5278-2del, and c.2T>C, and BRCA2 c.9409dup and c.9253del that may be founder in this population. BRCA1 carriers were significantly more likely to develop triple-negative BC (OR = 6.61, 95% CI 2.44-17.91, p = 0.0002) and have family history of BC (OR = 3.17, 95% CI 1.14-8.76, p = 0.03) compared to non-carriers. This study allowed the identification of PVs specific to early-onset BC, which may be used as a foundation to develop regional expertise and diagnostic tools for early detection of BC in young Kazakh women.
Collapse
Affiliation(s)
- Gulnur Zhunussova
- Laboratory of Molecular Genetics, Institute of Genetics and Physiology, Almaty 050060, Kazakhstan
- Al-Farabi Kazakh National University, Almaty 050060, Kazakhstan
| | - Nazgul Omarbayeva
- Kazakh Institute of Oncology and Radiology, Almaty 050060, Kazakhstan
- Asfendiyarov Kazakh National Medical University, Almaty 050060, Kazakhstan
| | - Dilyara Kaidarova
- Kazakh Institute of Oncology and Radiology, Almaty 050060, Kazakhstan
- Asfendiyarov Kazakh National Medical University, Almaty 050060, Kazakhstan
| | - Saltanat Abdikerim
- Laboratory of Molecular Genetics, Institute of Genetics and Physiology, Almaty 050060, Kazakhstan
- Al-Farabi Kazakh National University, Almaty 050060, Kazakhstan
| | - Natalya Mit
- Laboratory of Molecular Genetics, Institute of Genetics and Physiology, Almaty 050060, Kazakhstan
| | - Ilya Kisselev
- Laboratory of Molecular Genetics, Institute of Genetics and Physiology, Almaty 050060, Kazakhstan
| | - Kanagat Yergali
- Laboratory of Molecular Genetics, Institute of Genetics and Physiology, Almaty 050060, Kazakhstan
| | - Aigul Zhunussova
- Laboratory of Molecular Genetics, Institute of Genetics and Physiology, Almaty 050060, Kazakhstan
| | | | - Aliya Abdrakhmanova
- Kazakh Institute of Oncology and Radiology, Almaty 050060, Kazakhstan
- Asfendiyarov Kazakh National Medical University, Almaty 050060, Kazakhstan
| | - Leyla Djansugurova
- Laboratory of Molecular Genetics, Institute of Genetics and Physiology, Almaty 050060, Kazakhstan
- Al-Farabi Kazakh National University, Almaty 050060, Kazakhstan
| |
Collapse
|
9
|
Fanale D, Corsini LR, Pedone E, Randazzo U, Fiorino A, Di Piazza M, Brando C, Magrin L, Contino S, Piraino P, Bazan Russo TD, Cipolla C, Russo A, Bazan V. Potential agnostic role of BRCA alterations in patients with several solid tumors: One for all, all for one? Crit Rev Oncol Hematol 2023; 190:104086. [PMID: 37536445 DOI: 10.1016/j.critrevonc.2023.104086] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023] Open
Abstract
Germline BRCA1/2 alterations in the Homologous Recombination (HR) pathway are considered as main susceptibility biomarkers to Hereditary Breast and Ovarian Cancers (HBOC). The modern molecular biology technologies allowed to characterize germline and somatic BRCA1/2 alterations in several malignancies, broadening the landscape of BRCA1/2-alterated tumors. In the last years, BRCA genetic testing, beyond the preventive value, also assumed a predictive and prognostic significance for patient management. The approval of molecules with agnostic indication is leading to a new clinical model, defined "mutational". Among these drugs, the Poly (ADP)-Ribose Polymerase inhibitors (PARPi) for BRCA1/2-deficient tumors were widely studied leading to increasing therapeutic implications. In this Review we provided an overview of the main clinical studies describing the association between BRCA-mutated tumors and PARPi response, focusing on the controversial evidence about the potential agnostic indication based on BRCA1/2 alterations in several solid tumors.
Collapse
Affiliation(s)
- Daniele Fanale
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Lidia Rita Corsini
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Erika Pedone
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Ugo Randazzo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Alessia Fiorino
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Marianna Di Piazza
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Chiara Brando
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Luigi Magrin
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Silvia Contino
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Paola Piraino
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Tancredi Didier Bazan Russo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Calogero Cipolla
- Division of General and Oncological Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Antonio Russo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy.
| | - Viviana Bazan
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
10
|
Feng Z, Yang X, Tian M, Zeng N, Bai Z, Deng W, Zhao Y, Guo J, Yang Y, Zhang Z, Yang Y. BRCA genes as candidates for colorectal cancer genetic testing panel: systematic review and meta-analysis. BMC Cancer 2023; 23:807. [PMID: 37644384 PMCID: PMC10464413 DOI: 10.1186/s12885-023-11328-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Breast cancer susceptibility gene (BRCA) mutation carriers are at an increased risk for breast, ovarian, prostate and pancreatic cancers. However, the role of BRCA is unclear in colorectal cancer; the results regarding the association between BRCA gene mutations and colorectal cancer risk are inconsistent and even controversial. This study aimed to investigate whether BRCA1 and BRCA2 gene mutations are associated with colorectal cancer risk. METHODS In this systematic review, we searched PubMed/MEDLINE, Embase and Cochrane Library databases, adhering to PRISMA guidelines. Study quality was assessed using the Newcastle-Ottawa Scale (NOS). Unadjusted odds ratios (ORs) were used to estimate the probability of Breast Cancer Type 1 Susceptibility gene (BRCA1) and Breast Cancer Type 2 Susceptibility gene (BRCA2) mutations in colorectal cancer patients. The associations were evaluated using fixed effect models. RESULTS Fourteen studies were included in the systematic review. Twelve studies, including seven case-control and five cohort studies, were included in the meta-analysis. A significant increase in the frequency of BRCA1 and BRCA2 mutations was observed in patients with colorectal cancer [OR = 1.34, 95% confidence interval (CI) = 1.02-1.76, P = 0.04]. In subgroup analysis, colorectal cancer patients had an increased odds of BRCA1 (OR = 1.48, 95% CI = 1.10-2.01, P = 0.01) and BRCA2 (OR = 1.56, 95% CI = 1.06-2.30, P = 0.02) mutations. CONCLUSIONS BRCA genes are one of the genes that may increase the risk of developing colorectal cancer. Thus, BRCA genes could be potential candidates that may be included in the colorectal cancer genetic testing panel.
Collapse
Affiliation(s)
- Zhewen Feng
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, No.95, Yong An Road, Xicheng District, Beijing, 100050, China
| | - Xiaobao Yang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, No.95, Yong An Road, Xicheng District, Beijing, 100050, China
| | - Mingwei Tian
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, No.95, Yong An Road, Xicheng District, Beijing, 100050, China
| | - Na Zeng
- School of Public Health, Peking University, Beijing, China
| | - Zhigang Bai
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, No.95, Yong An Road, Xicheng District, Beijing, 100050, China
| | - Wei Deng
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, No.95, Yong An Road, Xicheng District, Beijing, 100050, China
| | - Yanyan Zhao
- MyGene Diagnostics Co., Ltd, Guangzhou, China
| | - Jianru Guo
- MyGene Diagnostics Co., Ltd, Guangzhou, China
| | - Yingchi Yang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, No.95, Yong An Road, Xicheng District, Beijing, 100050, China
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, No.95, Yong An Road, Xicheng District, Beijing, 100050, China
| | - Yun Yang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, No.95, Yong An Road, Xicheng District, Beijing, 100050, China.
| |
Collapse
|
11
|
Côrtes L, Basso TR, Villacis RAR, Souza JDS, Jørgensen MMA, Achatz MI, Rogatto SR. Co-Occurrence of Germline Genomic Variants and Copy Number Variations in Hereditary Breast and Colorectal Cancer Patients. Genes (Basel) 2023; 14:1580. [PMID: 37628631 PMCID: PMC10454294 DOI: 10.3390/genes14081580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Hereditary Breast and Ovarian Cancer (HBOC) syndrome is an autosomal dominant disease associated with a high risk of developing breast, ovarian, and other malignancies. Lynch syndrome is caused by mutations in mismatch repair genes predisposing to colorectal and endometrial cancers, among others. A rare phenotype overlapping hereditary colorectal and breast cancer syndromes is poorly characterized. Three breast and colorectal cancer unrelated patients fulfilling clinical criteria for HBOC were tested by whole exome sequencing. A family history of colorectal cancer was reported in two patients (cases 2 and 3). Several variants and copy number variations were identified, which potentially contribute to the cancer risk or prognosis. All patients presented copy number imbalances encompassing PMS2 (two deletions and one duplication), a known gene involved in the DNA mismatch repair pathway. Two patients showed gains covering the POLE2 (cases 1 and 3), which is associated with DNA replication. Germline potentially damaging variants were found in PTCH1 (patient 3), MAT1A, and WRN (patient 2). Overall, concurrent genomic alterations were described that may increase the risk of cancer appearance in HBOC patients with breast and colorectal cancers.
Collapse
Affiliation(s)
- Luiza Côrtes
- Department of Clinical Genetics, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark; (L.C.); (T.R.B.); (M.M.A.J.)
- Tocogynecoly Graduation Program, Botucatu Medical School, University of São Paulo State—UNESP, Botucatu 18618-687, SP, Brazil
| | - Tatiane Ramos Basso
- Department of Clinical Genetics, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark; (L.C.); (T.R.B.); (M.M.A.J.)
| | - Rolando André Rios Villacis
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília—UnB, Brasília 70910-900, DF, Brazil;
| | | | - Mads Malik Aagaard Jørgensen
- Department of Clinical Genetics, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark; (L.C.); (T.R.B.); (M.M.A.J.)
| | - Maria Isabel Achatz
- Cancer Genetics Unit, Oncology Branch, Hospital Sirio-Libanês, São Paulo 01308-050, SP, Brazil;
| | - Silvia Regina Rogatto
- Department of Clinical Genetics, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark; (L.C.); (T.R.B.); (M.M.A.J.)
- Institute of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, 5000 Odense, Denmark
- Danish Colorectal Cancer Center South, 7100 Vejle, Denmark
| |
Collapse
|
12
|
Liu J, Yao L, Sun J, Hu L, Chen J, Zhang J, Xu Y, Xie Y. Cancer risk in relatives of BRCA1/2 pathogenic variant carriers in a large series of unselected patients with breast cancer. Cancer Biol Med 2023; 20:j.issn.2095-3941.2022.0593. [PMID: 36861435 PMCID: PMC9978892 DOI: 10.20892/j.issn.2095-3941.2022.0593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
OBJECTIVE The spectrum and risk of cancer in relatives of BRCA1/2 pathogenic variant carriers in the Chinese population have not been established. METHODS A family history of cancer in 9903 unselected breast cancer patients was retrospectively analyzed. BRCA1/2 status was determined for all patients and relative risks (RRs) were calculated to evaluate cancer risk in relatives of the patients. RESULTS The incidences of breast cancer in female relatives of BRCA1 carriers, BRCA2 carriers, and non-carriers were 33.0%, 32.2%, and 7.7%, respectively. The corresponding incidences of ovarian cancer were 11.5%, 2.4%, and 0.5%, respectively. The incidences of pancreatic cancer in male relatives of BRCA1 carriers, BRCA2 carriers, and non-carriers were 1.4%, 2.7%, and 0.6%, respectively. The corresponding incidences of prostate cancer were 1.0%, 2.1%, and 0.4%, respectively. The risks of breast and ovarian cancers in female relatives of BRCA1 and BRCA2 carriers were significantly higher than female relatives of non-carriers (BRCA1: RR = 4.29, P < 0.001 and RR = 21.95, P < 0.001; BRCA2: RR = 4.19, P < 0.001 and RR = 4.65, P < 0.001, respectively). Additionally, higher risks of pancreatic and prostate cancers were noted in male relatives of BRCA2 carriers than non-carriers (RR = 4.34, P = 0.001 and RR = 4.86, P = 0.001, respectively). CONCLUSIONS Female relatives of BRCA1 and BRCA2 carriers are at increased risk for breast and ovarian cancers, and male relatives of BRCA2 carriers are at increased risk for pancreatic and prostate cancers.
Collapse
Affiliation(s)
- Jiaming Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Familial & Hereditary Cancer Center, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Lu Yao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Familial & Hereditary Cancer Center, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jie Sun
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Familial & Hereditary Cancer Center, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Li Hu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Familial & Hereditary Cancer Center, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jiuan Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Familial & Hereditary Cancer Center, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Juan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Familial & Hereditary Cancer Center, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Ye Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Familial & Hereditary Cancer Center, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yuntao Xie
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Familial & Hereditary Cancer Center, Peking University Cancer Hospital & Institute, Beijing 100142, China
- Correspondence to: Yuntao Xie, E-mail:
| |
Collapse
|
13
|
Nikolov I, Kostev K, Kalder M. Incidence of other cancer diagnoses in women with breast cancer: a retrospective cohort study with 42,248 women. Breast Cancer Res Treat 2022; 195:75-82. [PMID: 35829934 DOI: 10.1007/s10549-022-06666-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 06/21/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE The aim of the present study was to determine whether women diagnosed with breast cancer (BC) have an increased incidence of other cancers, e.g., gastric cancer, lung cancer, skin cancer, and so on, compared to healthy women without a breast cancer diagnosis. METHODS This retrospective cohort study was based on data from the Disease Analyzer database (IQVIA) and included adult women with an initial diagnosis of BC documented in one of 1,274 general practices in Germany between January 2000 and December 2018. Women with BC were matched to women without cancer by age, index year, yearly consultation frequency, and co-diagnoses. Univariate Cox regression models were used to study the association between BC and the incidence of other cancer diagnoses. RESULTS 21,124 women with BC and 21,124 women (mean age: 63 years) without cancer were included. Within 10 years of the index date, 14.3% of women with BC and 10.0% of women without cancer were diagnosed with cancer (p < 0.001). BC was significantly associated with the incidence of other cancer diagnoses (HR: 1.42, p < 0.001). The strongest association was observed for respiratory organ cancer (HR = 1.69, p < 0.001), followed by female genital organ cancer (HR = 1.61, p < 0.001) and cancer of lymphoid and hematopoietic tissue (HR: 1.59, p < 0.001). CONCLUSION The results of this study show that women with BC have an increased incidence of another cancer compared to women without cancer. Therefore, it is important to pay particular attention to the development of other malignancies during follow-up in patients with BC. This should be considered especially in patients with a proven genetic mutation.
Collapse
Affiliation(s)
- Ivan Nikolov
- Department of Gynecology, Herz Jesu Klinik, Fulda, Germany
| | - Karel Kostev
- Epidemiology, IQVIA, Unterschweinstiege 2-14, 60549, Frankfurt, Germany.
| | - Matthias Kalder
- Department of Gynecology and Obstetrics, Philipps-University, Marburg, Germany
| |
Collapse
|
14
|
Xiao L, Cao T, Ou J, Liang W. Clinical characteristics and prognostic analysis of multiple primary malignant neoplasms in female patients with breast cancer or genitalia malignancies. PeerJ 2022; 10:e13528. [PMID: 35769138 PMCID: PMC9235813 DOI: 10.7717/peerj.13528] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/11/2022] [Indexed: 01/17/2023] Open
Abstract
Background As public awareness of health has increased and diagnostic and treatment options have improved, the survival of patients with malignant tumors has continued to extend, and the population has been aging, the number of multiple primary malignant neoplasms has gradually increased in recent years. There are few reports concerning female patients with multiple primary malignant neoplasms of breast cancer or genitalia malignancies. In this study, we aimed to analyze the clinical characteristics and prognosis of multiple primary malignant neoplasms in female patients with breast cancer or genitalia malignancies, as well as further explore the factors that affect the survival. Methods We collected clinical data on 80 female patients diagnosed with multiple primary malignant neoplasms of the breast or genitalia, described their clinical features. Furthermore, we calculated the survival and prognostic factors for 52 participants. Results In our study, the prevalence rate of multiple primary malignant neoplasms was 0.66% (367/55404). Corresponding to female patients with multiple primary malignant neoplasms of breast cancer or genitalia malignancies, it was 1.4% (80/5707). the median age of diagnosis for the first tumor was 48 years, and the median age of diagnosis for the second tumor was 52 years. Regarding the interval, 67.57% (50/74) of patients were within five years. Most tumors were located in the breast (44.68%), followed by the uterus (20.21%), the ovary (17.02%), and the cervix (15.96%). The overall 12-, 36-and 60-month survival rates of the patients were 86.4%, 74.3%, and 69.8%. For the female patients, the stage (III-IV) (P = 0.046), non-radical surgery (P = 0.002), and types of the last tumor (breast cancer or genitalia malignancies) (P = 0.019) were associated with the poor prognosis. Conclusions Female patients with breast cancer or genital malignancies should pay attention to screening for the second tumor, especially within 4 years after the first tumor diagnosed. Furthermore, during tumor screening, it may be recommended for these patients to focus on colorectal cancer and lung cancer. Compared with previous studies, in addition to clinical staging and types of surgery, we found whether the last tumor was breast cancer or genitalia malignancies should also be considered a prognostic factor.
Collapse
Affiliation(s)
- Li Xiao
- Medical Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Tiantian Cao
- Intensive Care Unit, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiali Ou
- Medical Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Weijiang Liang
- Medical Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
15
|
Mekonnen N, Yang H, Shin YK. Homologous Recombination Deficiency in Ovarian, Breast, Colorectal, Pancreatic, Non-Small Cell Lung and Prostate Cancers, and the Mechanisms of Resistance to PARP Inhibitors. Front Oncol 2022; 12:880643. [PMID: 35785170 PMCID: PMC9247200 DOI: 10.3389/fonc.2022.880643] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/18/2022] [Indexed: 11/30/2022] Open
Abstract
Homologous recombination (HR) is a highly conserved DNA repair mechanism that protects cells from exogenous and endogenous DNA damage. Breast cancer 1 (BRCA1) and breast cancer 2 (BRCA2) play an important role in the HR repair pathway by interacting with other DNA repair proteins such as Fanconi anemia (FA) proteins, ATM, RAD51, PALB2, MRE11A, RAD50, and NBN. These pathways are frequently aberrant in cancer, leading to the accumulation of DNA damage and genomic instability known as homologous recombination deficiency (HRD). HRD can be caused by chromosomal and subchromosomal aberrations, as well as by epigenetic inactivation of tumor suppressor gene promoters. Deficiency in one or more HR genes increases the risk of many malignancies. Another conserved mechanism involved in the repair of DNA single-strand breaks (SSBs) is base excision repair, in which poly (ADP-ribose) polymerase (PARP) enzymes play an important role. PARP inhibitors (PARPIs) convert SSBs to more cytotoxic double-strand breaks, which are repaired in HR-proficient cells, but remain unrepaired in HRD. The blockade of both HR and base excision repair pathways is the basis of PARPI therapy. The use of PARPIs can be expanded to sporadic cancers displaying the “BRCAness” phenotype. Although PARPIs are effective in many cancers, their efficacy is limited by the development of resistance. In this review, we summarize the prevalence of HRD due to mutation, loss of heterozygosity, and promoter hypermethylation of 35 DNA repair genes in ovarian, breast, colorectal, pancreatic, non-small cell lung cancer, and prostate cancer. The underlying mechanisms and strategies to overcome PARPI resistance are also discussed.
Collapse
Affiliation(s)
- Negesse Mekonnen
- Department of Pharmacy, Research Institute of Pharmaceutical Science, Seoul National University College of Pharmacy, Seoul, South Korea
- Department of Veterinary Science, School of Animal Science and Veterinary Medicine, Bahir Dar University, Bahir Dar, Ethiopia
| | - Hobin Yang
- Department of Pharmacy, Research Institute of Pharmaceutical Science, Seoul National University College of Pharmacy, Seoul, South Korea
| | - Young Kee Shin
- Department of Pharmacy, Research Institute of Pharmaceutical Science, Seoul National University College of Pharmacy, Seoul, South Korea
- Bio-MAX/N-Bio, Seoul National University, Seoul, South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University Graduate School of Convergence Science and Technology, Seoul, South Korea
- LOGONE Bio Convergence Research Foundation, Center for Companion Diagnostics, Seoul, South Korea
- *Correspondence: Young Kee Shin,
| |
Collapse
|
16
|
Li S, Silvestri V, Leslie G, Rebbeck TR, Neuhausen SL, Hopper JL, Nielsen HR, Lee A, Yang X, McGuffog L, Parsons MT, Andrulis IL, Arnold N, Belotti M, Borg Å, Buecher B, Buys SS, Caputo SM, Chung WK, Colas C, Colonna SV, Cook J, Daly MB, de la Hoya M, de Pauw A, Delhomelle H, Eason J, Engel C, Evans DG, Faust U, Fehm TN, Fostira F, Fountzilas G, Frone M, Garcia-Barberan V, Garre P, Gauthier-Villars M, Gehrig A, Glendon G, Goldgar DE, Golmard L, Greene MH, Hahnen E, Hamann U, Hanson H, Hassan T, Hentschel J, Horvath J, Izatt L, Janavicius R, Jiao Y, John EM, Karlan BY, Kim SW, Konstantopoulou I, Kwong A, Laugé A, Lee JW, Lesueur F, Mebirouk N, Meindl A, Mouret-Fourme E, Musgrave H, Ngeow Yuen Yie J, Niederacher D, Park SK, Pedersen IS, Ramser J, Ramus SJ, Rantala J, Rashid MU, Reichl F, Ritter J, Rump A, Santamariña M, Saule C, Schmidt G, Schmutzler RK, Senter L, Shariff S, Singer CF, Southey MC, Stoppa-Lyonnet D, Sutter C, Tan Y, Teo SH, Terry MB, Thomassen M, Tischkowitz M, Toland AE, Torres D, Vega A, Wagner SA, Wang-Gohrke S, Wappenschmidt B, Weber BHF, Yannoukakos D, Spurdle AB, Easton DF, Chenevix-Trench G, Ottini L, Antoniou AC. Cancer Risks Associated With BRCA1 and BRCA2 Pathogenic Variants. J Clin Oncol 2022; 40:1529-1541. [PMID: 35077220 PMCID: PMC9084432 DOI: 10.1200/jco.21.02112] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/19/2021] [Accepted: 12/20/2021] [Indexed: 12/24/2022] Open
Abstract
PURPOSE To provide precise age-specific risk estimates of cancers other than female breast and ovarian cancers associated with pathogenic variants (PVs) in BRCA1 and BRCA2 for effective cancer risk management. METHODS We used data from 3,184 BRCA1 and 2,157 BRCA2 families in the Consortium of Investigators of Modifiers of BRCA1/2 to estimate age-specific relative (RR) and absolute risks for 22 first primary cancer types adjusting for family ascertainment. RESULTS BRCA1 PVs were associated with risks of male breast (RR = 4.30; 95% CI, 1.09 to 16.96), pancreatic (RR = 2.36; 95% CI, 1.51 to 3.68), and stomach (RR = 2.17; 95% CI, 1.25 to 3.77) cancers. Associations with colorectal and gallbladder cancers were also suggested. BRCA2 PVs were associated with risks of male breast (RR = 44.0; 95% CI, 21.3 to 90.9), stomach (RR = 3.69; 95% CI, 2.40 to 5.67), pancreatic (RR = 3.34; 95% CI, 2.21 to 5.06), and prostate (RR = 2.22; 95% CI, 1.63 to 3.03) cancers. The stomach cancer RR was higher for females than males (6.89 v 2.76; P = .04). The absolute risks to age 80 years ranged from 0.4% for male breast cancer to approximately 2.5% for pancreatic cancer for BRCA1 carriers and from approximately 2.5% for pancreatic cancer to 27% for prostate cancer for BRCA2 carriers. CONCLUSION In addition to female breast and ovarian cancers, BRCA1 and BRCA2 PVs are associated with increased risks of male breast, pancreatic, stomach, and prostate (only BRCA2 PVs) cancers, but not with the risks of other previously suggested cancers. The estimated age-specific risks will refine cancer risk management in men and women with BRCA1/2 PVs.
Collapse
Affiliation(s)
- Shuai Li
- Center for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
- Center for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | | | - Goska Leslie
- Center for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Timothy R. Rebbeck
- Harvard T.H. Chan School of Public Health, Boston, MA
- Dana-Farber Cancer Institute, Boston, MA
| | - Susan L. Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA
| | - John L. Hopper
- Center for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Andrew Lee
- Center for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Xin Yang
- Center for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Lesley McGuffog
- Center for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Michael T. Parsons
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Irene L. Andrulis
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Norbert Arnold
- Department of Gynaecology and Obstetrics, University Hospital of Schleswig-Holstein, Campus Kiel, Christian-Albrechts University Kiel, Kiel, Germany
- Institute of Clinical Molecular Biology, University Hospital of Schleswig-Holstein, Campus Kiel, Christian-Albrechts University Kiel, Kiel, Germany
| | - Muriel Belotti
- Service de Génétique, Institut Curie, Paris, France
- Paris Sciences Lettres Research University, Paris, France
| | - Åke Borg
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Bruno Buecher
- Service de Génétique, Institut Curie, Paris, France
- Paris Sciences Lettres Research University, Paris, France
| | - Saundra S. Buys
- Department of Medicine and Huntsman Cancer Institute, University of Utah Health, Salt Lake City, UT
| | - Sandrine M. Caputo
- Service de Génétique, Institut Curie, Paris, France
- Paris Sciences Lettres Research University, Paris, France
| | - Wendy K. Chung
- Departments of Pediatrics and Medicine, Columbia University, New York, NY
| | - Chrystelle Colas
- Service de Génétique, Institut Curie, Paris, France
- Paris Sciences Lettres Research University, Paris, France
| | - Sarah V. Colonna
- Department of Medicine and Huntsman Cancer Institute, University of Utah Health, Salt Lake City, UT
| | - Jackie Cook
- Sheffield Clinical Genetics Service, Sheffield Children's Hospital, Sheffield, United Kingdom
| | - Mary B. Daly
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA
| | - Miguel de la Hoya
- Molecular Oncology Laboratory, CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clinico San Carlos), Madrid, Spain
| | - Antoine de Pauw
- Service de Génétique, Institut Curie, Paris, France
- Paris Sciences Lettres Research University, Paris, France
| | - Hélène Delhomelle
- Service de Génétique, Institut Curie, Paris, France
- Paris Sciences Lettres Research University, Paris, France
| | - Jacqueline Eason
- Nottingham Clinical Genetics Service, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Christoph Engel
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - D. Gareth Evans
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Center, Manchester, United Kingdom
- North West Genomics Laboratory Hub, Manchester Center for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Center, Manchester, United Kingdom
| | - Ulrike Faust
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Tanja N. Fehm
- Department of Gynecology and Obstetrics, University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Florentia Fostira
- Molecular Diagnostics Laboratory, INRASTES, National Center for Scientific Research “Demokritos”, Athens, Greece
| | - George Fountzilas
- Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
- Department of Medical Oncology, German Oncology Center, Limassol, Cyprus
| | - Megan Frone
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Vanesa Garcia-Barberan
- Molecular Oncology Laboratory, CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clinico San Carlos), Madrid, Spain
| | - Pilar Garre
- Molecular Oncology Laboratory, CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clinico San Carlos), Madrid, Spain
| | - Marion Gauthier-Villars
- Service de Génétique, Institut Curie, Paris, France
- Paris Sciences Lettres Research University, Paris, France
| | - Andrea Gehrig
- Department of Human Genetics, University Würzburg, Würzburg, Germany
| | - Gord Glendon
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, Canada
| | - David E. Goldgar
- Department of Dermatology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT
| | - Lisa Golmard
- Service de Génétique, Institut Curie, Paris, France
- Paris Sciences Lettres Research University, Paris, France
| | - Mark H. Greene
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Eric Hahnen
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Helen Hanson
- Southwest Thames Regional Genetics Service, St George's Hospital, London, United Kingdom
| | - Tiara Hassan
- Breast Cancer Research Programme, Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
| | - Julia Hentschel
- Institute of Human Genetics, University Hospital Leipzig, Leipzig, Germany
| | - Judit Horvath
- Institute of Human Genetics, University of Münster, Münster, Germany
| | - Louise Izatt
- Clinical Genetics Department, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Ramunas Janavicius
- Faculty of Medicine, Department of Human and Medical Genetics, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania
- State Research Institute Center for Innovative Medicine, Vilnius, Lithuania
| | - Yue Jiao
- Genetic Epidemiology of Cancer Team, Inserm U900, Paris, France
- Institut Curie, Paris, France
- Mines ParisTech, Fontainebleau, France
| | - Esther M. John
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Beth Y. Karlan
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA
| | - Sung-Won Kim
- Department of Surgery, Daerim Saint Mary's Hospital, Seoul, South Korea
| | - Irene Konstantopoulou
- Molecular Diagnostics Laboratory, INRASTES, National Center for Scientific Research “Demokritos”, Athens, Greece
| | - Ava Kwong
- Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong
- Department of Surgery, The University of Hong Kong, Hong Kong
- Department of Surgery and Cancer Genetics Center, Hong Kong Sanatorium and Hospital, Hong Kong
| | - Anthony Laugé
- Service de Génétique, Institut Curie, Paris, France
- Paris Sciences Lettres Research University, Paris, France
| | - Jong Won Lee
- Department of Surgery, Ulsan University College of Medicine and Asan Medical Center, Seoul, South Korea
| | - Fabienne Lesueur
- Genetic Epidemiology of Cancer Team, Inserm U900, Paris, France
- Institut Curie, Paris, France
- Mines ParisTech, Fontainebleau, France
| | - Noura Mebirouk
- Genetic Epidemiology of Cancer Team, Inserm U900, Paris, France
- Institut Curie, Paris, France
- Mines ParisTech, Fontainebleau, France
| | - Alfons Meindl
- Department of Gynecology and Obstetrics, University of Munich, Campus Großhadern, Munich, Germany
- Division of Gynaecology and Obstetrics, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Emmanuelle Mouret-Fourme
- Service de Génétique, Institut Curie, Paris, France
- Paris Sciences Lettres Research University, Paris, France
| | - Hannah Musgrave
- Yorkshire Regional Genetics Service, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Joanne Ngeow Yuen Yie
- Cancer Genetics Service, National Cancer Center, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Dieter Niederacher
- Department of Gynecology and Obstetrics, University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Sue K. Park
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Integrated Major in Innovative Medical Science, Seoul National University College of Medicine, Seoul, South Korea
- Cancer Research Institute, Seoul National University, Seoul, South Korea
| | - Inge Sokilde Pedersen
- Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Juliane Ramser
- Division of Gynaecology and Obstetrics, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Susan J. Ramus
- Faculty of Medicine, School of Women's and Children's Health, University of NSW Sydney, Sydney, New South Wales, Australia
- Adult Cancer Program, Lowy Cancer Research Center, University of NSW Sydney, Sydney, New South Wales, Australia
| | | | - Muhammad U. Rashid
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Basic Sciences, Shaukat Khanum Memorial Cancer Hospital and Research Center (SKMCH & RC), Lahore, Pakistan
| | - Florian Reichl
- Department of OB/GYN and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Julia Ritter
- Institute of Medical and Human Genetics, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Rump
- Faculty of Medicine Carl Gustav Carus, Institute for Clinical Genetics, TU Dresden, Dresden, Germany
| | - Marta Santamariña
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Fundación Pública Galega Medicina Xenómica, Santiago De Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago De Compostela, Spain
| | - Claire Saule
- Service de Génétique, Institut Curie, Paris, France
- Paris Sciences Lettres Research University, Paris, France
| | - Gunnar Schmidt
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Rita K. Schmutzler
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Faculty of Medicine, Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Leigha Senter
- Clinical Cancer Genetics Program, Division of Human Genetics, Department of Internal Medicine, The Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Saba Shariff
- West Midlands Regional Genetics Service, Birmingham Women's Hospital Healthcare NHS Trust, Birmingham, United Kingdom
| | - Christian F. Singer
- Department of OB/GYN and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Melissa C. Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Dominique Stoppa-Lyonnet
- Service de Génétique, Institut Curie, Paris, France
- Department of Tumour Biology, INSERM U830, Paris, France
- Université Paris Descartes, Paris, France
| | - Christian Sutter
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Yen Tan
- Department of OB/GYN and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Soo Hwang Teo
- Breast Cancer Research Programme, Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odence, Denmark
| | - Marc Tischkowitz
- Program in Cancer Genetics, Departments of Human Genetics and Oncology, McGill University, Montréal, QC, Canada
- Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Amanda E. Toland
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH
| | - Diana Torres
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Human Genetics, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Ana Vega
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Fundación Pública Galega Medicina Xenómica, Santiago De Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago De Compostela, Spain
| | - Sebastian A. Wagner
- Department of Medicine, Hematology/Oncology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Shan Wang-Gohrke
- Department of Gynaecology and Obstetrics, University Hospital Ulm, Ulm, Germany
| | - Barbara Wappenschmidt
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Bernhard H. F. Weber
- Institute of Human Genetics, University Regensburg, Regensburg, Germany
- Institute of Clinical Human Genetics, University Hospital Regensburg, Regensburg, Germany
| | - Drakoulis Yannoukakos
- Molecular Diagnostics Laboratory, INRASTES, National Center for Scientific Research “Demokritos”, Athens, Greece
| | - Amanda B. Spurdle
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Douglas F. Easton
- Center for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Laura Ottini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Antonis C. Antoniou
- Center for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
17
|
Guan B, Wang J, Li X, Lin L, Fang D, Kong W, Tian C, Li J, Yang K, Han G, Wu Y, He Y, Peng Y, Yu Y, He Q, He S, Gong Y, Zhou L, Tang Q. Identification of Germline Mutations in Upper Tract Urothelial Carcinoma With Suspected Lynch Syndrome. Front Oncol 2022; 12:774202. [PMID: 35372080 PMCID: PMC8966221 DOI: 10.3389/fonc.2022.774202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 02/18/2022] [Indexed: 11/21/2022] Open
Abstract
Objective Whole-exon sequencing (WES) is a commercially available tool for hereditary disease testing. However, little is known about hereditary upper-tract urothelial carcinoma (UTUC) in the Chinese population. This study aims to investigate the prevalence of Lynch syndrome (LS) in UTUC patients with high-risk features and identify the germline mutations of genetic predisposition gene mutations in those patients. Methods In total, 354 consecutive UTUC patients undergoing surgery were universally recruited, of whom 108 patients under 60 years old or with a personal/family history of cancer underwent universal immunohistochemistry staining to detect the expression of mismatch repair (MMR) proteins (MLH1, MSH2, MSH6 and PMS2). Patients with deficient or weak MMR protein staining or meeting the Amsterdam II criterion were defined as suspected LS patients, who further experienced microsatellite instability (MSI) (BAT25, BAT26, BAT40, D2S123, D5S346, D17S250) detection and performed WES analysis to explore germline pathogenic/likely pathogenic (P/LP) alterations. Results Of 108 patients, 90 (83.3%) cases were included due to younger than 60 years, and 18 cases due to personal/family history. IHC staining identified 21 patients with deficient MMR protein staining and 15 cases with weak MMR protein staining. Three cases met the Amsterdam II criterion but with proficient MMR protein staining. Finally, WES analysis was performed in 38 suspected LS patients and P/LP germline mutations were identified in 22 individuals. Genetic testing confirmed 5 LS cases, including 3 cases with novel mutations. MSI-harboring tumor was discovered in 4 LS cases, one of whom had weak MMR protein staining. Germline P/LP variants in DNA damage repair genes were found in 11 cases. In addition, we found that 11 patients had high- or moderate- penetrance P/LP mutations other than MMR genes. The common P/LP variants in high- or moderate-penetrance genes were 4 in ATM, 3 in MSH6 and KIT, and 2 in APC, NF1 and DICER. Conclusions We identified approximately 11% of UTUC cases as suspected LS and at least 1.4% patients with confirmed LS-associated UTUC. In addition, broader germline genetic testing could be considered to screen for cancer severity in hereditary UTUC patients.
Collapse
Affiliation(s)
- Bao Guan
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China
| | - Jie Wang
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China
| | - Xuesong Li
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China
| | - Lin Lin
- Department of Anorectal, Yantai Baishi Anorectal Hospital, Yantai, China
| | - Dong Fang
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China
| | - Wenwen Kong
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Chuangyu Tian
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Juan Li
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Kunlin Yang
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China
| | - Guanpeng Han
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China
| | - Yucai Wu
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China
| | - Yuhui He
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China
| | - Yiji Peng
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China
| | - Yanfei Yu
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China
| | - Qun He
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China
| | - Shiming He
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China
| | - Yanqing Gong
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China
| | - Liqun Zhou
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China
| | - Qi Tang
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China
| |
Collapse
|
18
|
Freire MV, Martin M, Thissen R, Van Marcke C, Segers K, Sépulchre E, Leroi N, Lété C, Fasquelle C, Radermacher J, Gokburun Y, Collignon J, Sacré A, Josse C, Palmeira L, Bours V. Case Report Series: Aggressive HR Deficient Colorectal Cancers Related to BRCA1 Pathogenic Germline Variants. Front Oncol 2022; 12:835581. [PMID: 35280729 PMCID: PMC8911702 DOI: 10.3389/fonc.2022.835581] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/01/2022] [Indexed: 12/31/2022] Open
Abstract
Objective The link between BRCA1 and homologous recombination deficiency (HRD) in cancer has gained importance with the emergence of new targeted cancer treatments, while the available data on the role of the gene in colorectal cancer (CRC) remain contradictory. The aim of this case series was to elucidate the role of known pathogenic BRCA1 variants in the development of early-onset CRC. Design Patients were evaluated using targeted next generation sequencing, exome sequencing and chromosomal microarray analysis of the paired germline and tumor samples. These results were used to calculate the HRD score and the frequency of mutational signatures in the tumors. Results Three patients with metastatic CRC were heterozygous for a previously known BRCA1 nonsense variant. All tumors showed remarkably high HRD scores, and the HRD-related signature 3 had the second highest contribution to the somatic pattern of variant accumulation in the samples (23% in 1 and 2, and 13% in sample 3). Conclusions A BRCA1 germline pathogenic variant can be involved in CRC development through HRD. Thus, BRCA1 testing should be considered in young patients with a personal history of microsatellite stable CRC as this could further allow a personalized treatment approach.
Collapse
Affiliation(s)
- Maria Valeria Freire
- Department of Human Genetics, GIGA Research Center - University of Liège and Centre Hospitalier Universitaire (CHU) Liège, Liège, Belgium
| | - Marie Martin
- Department of Human Genetics, GIGA Research Center - University of Liège and Centre Hospitalier Universitaire (CHU) Liège, Liège, Belgium
| | - Romain Thissen
- Department of Human Genetics, GIGA Research Center - University of Liège and Centre Hospitalier Universitaire (CHU) Liège, Liège, Belgium
| | - Cédric Van Marcke
- Institute for Experimental and Clinical Research (Institut de Recherche Expérimentale et Clinique (IREC), Pôle Molecular Imaging, Radiotherapy and Oncology (MIRO)), Université Catholique de Louvain (UCLouvain), Brussels, Belgium.,Department of Medical Oncology, Institut Roi Albert II, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Karin Segers
- Department of Human Genetics, GIGA Research Center - University of Liège and Centre Hospitalier Universitaire (CHU) Liège, Liège, Belgium
| | - Edith Sépulchre
- Department of Human Genetics, GIGA Research Center - University of Liège and Centre Hospitalier Universitaire (CHU) Liège, Liège, Belgium
| | - Natacha Leroi
- Department of Human Genetics, GIGA Research Center - University of Liège and Centre Hospitalier Universitaire (CHU) Liège, Liège, Belgium
| | - Céline Lété
- Department of Human Genetics, GIGA Research Center - University of Liège and Centre Hospitalier Universitaire (CHU) Liège, Liège, Belgium
| | - Corinne Fasquelle
- Department of Human Genetics, GIGA Research Center - University of Liège and Centre Hospitalier Universitaire (CHU) Liège, Liège, Belgium
| | - Jean Radermacher
- Department of Pathology, Institut de Pathologie et de Génétique, Charleroi, Belgium
| | - Yeter Gokburun
- Department of Gastroenterology, Centre Hospitalier Régional Sambre et Meuse, Namur, Belgium
| | - Joelle Collignon
- Department of Medical Oncology, GIGA Research Center - University of Liège and Centre Hospitalier Universitaire (CHU) Liège, Liège, Belgium
| | - Anne Sacré
- Onco-Hematology Department, Centre Hospitalier Régional (CHR) Verviers, Verviers, Belgium
| | - Claire Josse
- Department of Medical Oncology, GIGA Research Center - University of Liège and Centre Hospitalier Universitaire (CHU) Liège, Liège, Belgium
| | - Leonor Palmeira
- Department of Human Genetics, GIGA Research Center - University of Liège and Centre Hospitalier Universitaire (CHU) Liège, Liège, Belgium
| | - Vincent Bours
- Department of Human Genetics, GIGA Research Center - University of Liège and Centre Hospitalier Universitaire (CHU) Liège, Liège, Belgium
| |
Collapse
|
19
|
Catalano F, Borea R, Puglisi S, Boutros A, Gandini A, Cremante M, Martelli V, Sciallero S, Puccini A. Targeting the DNA Damage Response Pathway as a Novel Therapeutic Strategy in Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14061388. [PMID: 35326540 PMCID: PMC8946235 DOI: 10.3390/cancers14061388] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Defective DNA damage response (DDR) is a hallmark of cancer leading to genomic instability. Up to 15–20% of colorectal cancers carry alterations in DDR. However, the role of DDR alterations as a prognostic factor and as a therapeutic target must be elucidated. To date, disappointing results have been obtained in different clinical trials mainly due to poor molecular selection of patients. Several challenges must be overcome before these compounds may have an impact on colorectal cancer. For instance, although some preclinical evidence showed the vulnerability of a subset of CRCs to PARP inhibitors, no specific clinical or molecular biomarkers have been validated to select patients. Moreover, different DDR alterations may not equally confer platinum sensitivity in CRC patients. Further efforts are needed in both preclinical and clinical settings to exploit DDR alterations as therapeutic targets and to eventually discover PARP or other DDR inhibitors (e.g., Wee1) with clinical benefit on colorectal cancer patients. Abstract Major advances have been made in CRC treatment in recent years, especially in molecularly driven therapies and immunotherapy. Despite this, a large number of advanced colorectal cancer patients do not benefit from these treatments and their prognosis remains poor. The landscape of DNA damage response (DDR) alterations is emerging as a novel target for treatment in different cancer types. PARP inhibitors have been approved for the treatment of ovarian, breast, pancreatic, and prostate cancers carrying deleterious BRCA1/2 pathogenic variants or homologous recombination repair (HRR) deficiency (HRD). Recent research reported on the emerging role of HRD in CRC and showed that alterations in these genes, either germline or somatic, are carried by up to 15–20% of CRCs. However, the role of HRD is still widely unknown, and few data about their clinical impact are available, especially in CRC patients. In this review, we report preclinical and clinical data currently available on DDR inhibitors in CRC. We also emphasize the predictive role of DDR mutations in response to platinum-based chemotherapy and the potential clinical role of DDR inhibitors. More preclinical and clinical trials are required to better understand the impact of DDR alterations in CRC patients and the therapeutic opportunities with novel DDR inhibitors.
Collapse
Affiliation(s)
- Fabio Catalano
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.C.); (R.B.); (S.P.); (A.B.); (A.G.); (M.C.); (V.M.); (S.S.)
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, 16132 Genoa, Italy
| | - Roberto Borea
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.C.); (R.B.); (S.P.); (A.B.); (A.G.); (M.C.); (V.M.); (S.S.)
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, 16132 Genoa, Italy
| | - Silvia Puglisi
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.C.); (R.B.); (S.P.); (A.B.); (A.G.); (M.C.); (V.M.); (S.S.)
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, 16132 Genoa, Italy
| | - Andrea Boutros
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.C.); (R.B.); (S.P.); (A.B.); (A.G.); (M.C.); (V.M.); (S.S.)
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, 16132 Genoa, Italy
| | - Annalice Gandini
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.C.); (R.B.); (S.P.); (A.B.); (A.G.); (M.C.); (V.M.); (S.S.)
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, 16132 Genoa, Italy
| | - Malvina Cremante
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.C.); (R.B.); (S.P.); (A.B.); (A.G.); (M.C.); (V.M.); (S.S.)
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, 16132 Genoa, Italy
| | - Valentino Martelli
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.C.); (R.B.); (S.P.); (A.B.); (A.G.); (M.C.); (V.M.); (S.S.)
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, 16132 Genoa, Italy
| | - Stefania Sciallero
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.C.); (R.B.); (S.P.); (A.B.); (A.G.); (M.C.); (V.M.); (S.S.)
| | - Alberto Puccini
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.C.); (R.B.); (S.P.); (A.B.); (A.G.); (M.C.); (V.M.); (S.S.)
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, 16132 Genoa, Italy
- Correspondence: ; Tel.: +39-0105553301 (ext.3302); Fax: +39-0105555141
| |
Collapse
|
20
|
Parsa FG, Nobili S, Karimpour M, Aghdaei HA, Nazemalhosseini-Mojarad E, Mini E. Fanconi Anemia Pathway in Colorectal Cancer: A Novel Opportunity for Diagnosis, Prognosis and Therapy. J Pers Med 2022; 12:396. [PMID: 35330396 PMCID: PMC8950345 DOI: 10.3390/jpm12030396] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed malignancy and has the second highest mortality rate globally. Thanks to the advent of next-generation sequencing technologies, several novel candidate genes have been proposed for CRC susceptibility. Germline biallelic mutations in one or more of the 22 currently recognized Fanconi anemia (FA) genes have been associated with Fanconi anemia disease, while germline monoallelic mutations, somatic mutations, or the promoter hypermethylation of some FANC genes increases the risk of cancer development, including CRC. The FA pathway is a substantial part of the DNA damage response system that participates in the repair of DNA inter-strand crosslinks through homologous recombination (HR) and protects genome stability via replication fork stabilization, respectively. Recent studies revealed associations between FA gene/protein tumor expression levels (i.e., FANC genes) and CRC progression and drug resistance. Moreover, the FA pathway represents a potential target in the CRC treatment. In fact, FANC gene characteristics may contribute to chemosensitize tumor cells to DNA crosslinking agents such as oxaliplatin and cisplatin besides exploiting the synthetic lethal approach for selective targeting of tumor cells. Hence, this review summarizes the current knowledge on the function of the FA pathway in DNA repair and genomic integrity with a focus on the FANC genes as potential predisposition factors to CRC. We then introduce recent literature that highlights the importance of FANC genes in CRC as promising prognostic and predictive biomarkers for disease management and treatment. Finally, we represent a brief overview of the current knowledge around the FANC genes as synthetic lethal therapeutic targets for precision cancer medicine.
Collapse
Affiliation(s)
- Fatemeh Ghorbani Parsa
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 19857-17413, Iran; (F.G.P.); (H.A.A.)
| | - Stefania Nobili
- Department of Neurosciences, Imaging and Clinical Sciences, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy;
- Center for Advanced Studies and Technology (CAST), University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Mina Karimpour
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-154, Iran;
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 19857-17413, Iran; (F.G.P.); (H.A.A.)
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 19857-17413, Iran
| | - Enrico Mini
- Department of Health Sciences, University of Florence, 50139 Florence, Italy
- DENOTHE Excellence Center, University of Florence, 50139 Florence, Italy
| |
Collapse
|
21
|
Risk Factors of Young-Onset Colorectal Cancer: Analysis of a Large Population-Based Registry. Can J Gastroenterol Hepatol 2022; 2022:3582443. [PMID: 35223684 PMCID: PMC8866030 DOI: 10.1155/2022/3582443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/19/2022] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND As the third most common type of cancer in the United States, colorectal cancer (CRC) was previously thought to be rare in young populations. Despite a decrease in the overall incidence of CRC, the rate of new cases under 50 years old has been continuously increasing. AIM The purpose of our study was to analyze risk factors of young-onset CRC. METHODS Commercially available software platform, Explorys, was used to extract data from a collective healthcare database electronically. RESULTS In this database, 13,800 young adults (age 20-50) were diagnosed with primary colorectal malignancy. Compared to subjects with a previous family history of CRC who had an odds ratio of 17.78, those diagnosed with primary malignant neoplasm of breast and inflammatory bowel disease (ulcerative colitis and Crohn's) had odds ratios of 16.94, 4.4, and 3.7 for young-onset CRC, respectively. Patients with a history of alcohol abuse, smoking, obesity, diabetes mellitus, and hyperlipidemia had higher chances of developing young-onset CRC. In addition, the odds of CRC were lower in Hispanic ethnicity in comparison to Caucasians (OR: 0.54), with no statically significant differences between Caucasian, African American, and Asian populations. CONCLUSION Currently, this is an expansive study investigating the risk factors for early-onset CRC. The analysis showed factors such as family and individual history of IBD to have high association with early onset. Notably, an individual history of breast malignancy was strongly associated with early-onset CRC.
Collapse
|
22
|
Tripodi D, Cannistra' C, Gagliardi F, Casella G, Lauro A, De Luca A, Amabile MI, Palumbo P, Pironi D, Mascagni D, D'Andrea V, Vergine M, Sorrenti S. Coincidental or Causal? Concurrence of Colorectal Carcinoma with Primary Breast Cancer. Dig Dis Sci 2022; 67:437-444. [PMID: 34731362 DOI: 10.1007/s10620-021-07296-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/06/2021] [Indexed: 12/12/2022]
Abstract
Multiple primary malignant neoplasms (MPMN) represent the occurrence of a second malignancy in the same patient within 6 months after the detection of first primary (synchronous) tumor, or > 6 months after primary detection (metachronous). We present a case of a patient treated for carcinoma of the breast who developed a metachronous primary malignancy in the colorectal tract. These tumors were histologically different with distinct immune-histochemical parameters. The association between breast and colon cancer is well documented in the literature with several studies reporting the coexistence of common extrinsic and genetic predisposing factors. Although rare, MPMN are becoming more common due to the increased number of elderly cancer survivors, improved diagnosis and enhanced awareness. The association between colorectal and breast cancer should not be dismissed merely as metastasis since there is good precedent for the co-occurrence of these primary tumors.
Collapse
Affiliation(s)
- Domenico Tripodi
- Department of Surgical Sciences, Sapienza University, Rome, Italy.
| | - Claudio Cannistra'
- Department of General Surgery, Bichat C. B. University Hospital, Paris, France
| | | | - Giovanni Casella
- Department of Surgical Sciences, Sapienza University, Rome, Italy
| | - Augusto Lauro
- Department of Surgical Sciences, Sapienza University, Rome, Italy
| | | | | | | | - Daniele Pironi
- Department of Surgical Sciences, Sapienza University, Rome, Italy
| | | | - Vito D'Andrea
- Department of Surgical Sciences, Sapienza University, Rome, Italy
| | - Massimo Vergine
- Department of Surgical Sciences, Sapienza University, Rome, Italy
| | | |
Collapse
|
23
|
Mikaeel RR, Young JP, Li Y, Smith E, Horsnell M, Uylaki W, Tapia Rico G, Poplawski NK, Hardingham JE, Tomita Y, Townsend AR, Feng J, Zibat A, Kaulfuß S, Müller C, Yigit G, Wollnik B, Price TJ. Survey of germline variants in cancer-associated genes in young adults with colorectal cancer. Genes Chromosomes Cancer 2021; 61:105-113. [PMID: 34761457 DOI: 10.1002/gcc.23011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) incidence in young adults is rising. Identifying genetic risk factors is fundamental for the clinical management of patients and their families. This study aimed to identify clinically significant germline variants among young adults with CRC. Whole-exome sequencing data of blood-derived DNA from 133 unrelated young CRC patients (<55 years of age) underwent a comprehensive analysis of 133 cancer-predisposition/implicated genes. All patient tumors were evaluated for mismatch repair deficiency (dMMR). Among 133 patients (aged 16-54 years), 15% (20/133) had clinically actionable pathogenic or likely pathogenic (P/LP) variants in at least 1 well established cancer-predisposing gene: dMMR genes (6), MUTYH [bi-allelic (2), mono-allelic (3)], RNF43 (1), BMPR1A (1), BRCA2 (4), ATM (1), RAD51C (1), and BRIP1 (1). Five patients (4%) had variants in genes implicated in cancer but where the significance of germline variants in CRC risk is uncertain: GATA2 (1), ERCC2 (mono-allelic) (1), ERCC4 (mono-allelic) (1), CFTR (2). Fourteen (11%) had dMMR tumors. Eighteen (14%) reported a first-degree relative with CRC, but only three of these carried P/LP variants. Three patients with variants in polyposis-associated genes showed no polyposis (one each in MUTYH [bi-allelic], RNF43, and BMPR1A). Approximately one in five young adults in our series carried at least one P/LP variant in a cancer-predisposing/implicated gene; 80% of these variants are currently considered clinically actionable in a familial cancer setting. Family history and phenotype have limitations for genetic risk prediction; therefore multigene panel testing and genetic counseling are warranted for all young adults with CRC regardless of those two factors.
Collapse
Affiliation(s)
- Reger R Mikaeel
- Department of Haematology and Oncology, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia.,SAHMRI Colorectal Node, Basil Hetzel Institute, Woodville South, South Australia, Australia.,Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia.,Biology Department, College of Science, University of Duhok, Duhok, Iraq
| | - Joanne P Young
- Department of Haematology and Oncology, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia.,SAHMRI Colorectal Node, Basil Hetzel Institute, Woodville South, South Australia, Australia.,Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Yun Li
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Eric Smith
- Department of Haematology and Oncology, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia.,Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Mehgan Horsnell
- Department of Haematology and Oncology, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Wendy Uylaki
- Department of Haematology and Oncology, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Gonzalo Tapia Rico
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia.,Medical Oncology, Icon Cancer Centre Adelaide, Kurralta Park, South Australia, Australia
| | - Nicola K Poplawski
- Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Discipline of Paediatrics, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Jennifer E Hardingham
- Department of Haematology and Oncology, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia.,SAHMRI Colorectal Node, Basil Hetzel Institute, Woodville South, South Australia, Australia.,Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Yoko Tomita
- Department of Haematology and Oncology, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Amanda R Townsend
- Department of Haematology and Oncology, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Jinghua Feng
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia.,ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| | - Arne Zibat
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Silke Kaulfuß
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Christian Müller
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Gökhan Yigit
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Bernd Wollnik
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Timothy J Price
- Department of Haematology and Oncology, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia.,Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
24
|
Zimmer K, Kocher F, Puccini A, Seeber A. Targeting BRCA and DNA Damage Repair Genes in GI Cancers: Pathophysiology and Clinical Perspectives. Front Oncol 2021; 11:662055. [PMID: 34707985 PMCID: PMC8542868 DOI: 10.3389/fonc.2021.662055] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 09/15/2021] [Indexed: 12/11/2022] Open
Abstract
Mutated germline alleles in the DNA damage repair (DDR) genes “breast cancer gene 1” (BRCA1) and BRCA2 have originally been identified as major susceptibility genes in breast and ovarian cancers. With the establishment and approval of more cost-effective gene sequencing methods, germline and somatic BRCA mutations have been detected in several cancers. Since the approval of poly (ADP)-ribose polymerase inhibitors (PARPi) for BRCA-mutated cancers, BRCA mutations gained rising therapeutic implications. The impact and significance of BRCA mutations have been evaluated extensively in the last decades. Moreover, other genes involved in the DDR pathway, such as ATM, ATR, or CHK1, have emerged as potential new treatment targets, as inhibitors of these proteins are currently under clinical investigation. This review gives a concise overview on the emerging clinical implications of mutations in the DDR genes in gastrointestinal cancers with a focus on BRCA mutations.
Collapse
Affiliation(s)
- Kai Zimmer
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Kocher
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Alberto Puccini
- Medical Oncology Unit 1, Ospedale Policlinico San Martino Istituto di ricovero e cura a carattere scientifico (IRCCS), University of Genoa, Genoa, Italy
| | - Andreas Seeber
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
25
|
Ip E, McNeil C, Grimison P, Scheinberg T, Tudini E, Ho G, Scott RJ, Brown C, Sandroussi C, Guitera P, Spurdle AB, Goodwin A. Catastrophic chemotherapy toxicity leading to diagnosis of Fanconi anaemia due to FANCD1/BRCA2 during adulthood: description of an emerging phenotype. J Med Genet 2021; 59:912-915. [PMID: 34697207 DOI: 10.1136/jmedgenet-2021-108072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/07/2021] [Indexed: 11/03/2022]
Abstract
Fanconi anaemia due to biallelic loss of BRCA2 (Fanconi anaemia subtype D1) is traditionally diagnosed during childhood with cancer rates historically reported as 97% by 5.2 years. This report describes an adult woman with a history of primary ovarian failure, who was diagnosed with gastrointestinal adenocarcinoma and BRCA2-associated Fanconi anaemia at 23 years of age, only after she suffered severe chemotherapy toxicity. The diagnostic challenges include atypical presentation, initial false-negative chromosome fragility testing and variant classification. It highlights gastrointestinal adenocarcinoma as a consideration for adults with biallelic BRCA2 pathogenic variants with implications for surveillance. After over 4 years, the patient has no evidence of gastrointestinal cancer recurrence although the tumour was initially considered only borderline resectable. The use of platinum-based chemotherapy, to which heterozygous BRCA2 carriers are known to respond, may have had a beneficial anticancer effect, but caution is advised given its extreme immediate toxicity at standard dosing. Fanconi anaemia should be considered as a cause for women with primary ovarian failure of unknown cause and referral to cancer genetic services recommended when there is a family history of cancer in the hereditary breast/ovarian cancer spectrum.
Collapse
Affiliation(s)
- Emilia Ip
- Cancer Genetics, Liverpool Hospital, Sydney, New South Wales, Australia
| | - Catriona McNeil
- Medical Oncology, Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia.,Department of Medicine, The University of Sydney, Sydney, New South Wales, Australia
| | - Peter Grimison
- Medical Oncology, Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia
| | - Tahlia Scheinberg
- Medical Oncology, Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia.,Department of Medicine, The University of Sydney, Sydney, New South Wales, Australia.,Clinical Prostate Cancer Group, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Emma Tudini
- Department of Genetics and Computational Biology, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Gladys Ho
- Western Sydney Genetics Program, Children's Hospital at Westmead, Westmead, New South Wales, Australia.,Discipline of Paediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| | - Rodney J Scott
- Division of Molecular Medicine, NSW Health Pathology, Newcastle, New South Wales, Australia.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - Christina Brown
- Haematology Unit, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Charbel Sandroussi
- Department of Hepatobiliary and Upper Gastrointestinal Surgery, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Pascale Guitera
- Department of Medicine, The University of Sydney, Sydney, New South Wales, Australia.,Melanoma Institute Australia, North Sydney, New South Wales, Australia.,Dermatology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Amanda B Spurdle
- Department of Genetics and Computational Biology, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Annabel Goodwin
- Cancer Genetics, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia .,Medical Oncology, Concord Repatriation General Hospital, Concord, New South Wales, Australia
| |
Collapse
|
26
|
Leaf S, Carlsen L, El-Deiry WS. Opposing effects of BRCA1 mRNA expression on patient survival in breast and colorectal cancer and variations among African American, Asian, and younger patients. Oncotarget 2021; 12:1992-2005. [PMID: 34611475 PMCID: PMC8487727 DOI: 10.18632/oncotarget.28082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/11/2022] Open
Abstract
Breast cancer (BC) and colorectal cancer (CRC) are common and show poor survival in advanced stages. Using The Cancer Genome Atlas (TCGA) computational tool cBioPortal, we evaluated overall patient survival in BRCA1 mRNA-low versus -high cohorts (<-1.29 versus >1.05 SD from mean BRCA1 expression, respectively). Analysis included 1082 BC patients with mRNA data (PanCancer Atlas), 382 CRCs (Firehose Legacy) and 592 CRCs (PanCancer Atlas). As previously reported, BRCA1 mRNA-low tumor expression positively correlated with BC patient survival but was negatively associated in CRC. We observed a correlation between BRCA1 mRNA-high and age <45 years at CRC diagnosis using a Fisher's exact test [Firehose Legacy database (p-value = 0.0091); CRC PanCancer Atlas (p-value = 0.0778)]. We correlated BRCA1 mRNA-low expression and basal BC (p-value = 0.0016) and BRCA1 mRNA-low tumors and frequency of African American patients (p-value = 0.0448) with BC. Other trends included higher frequency of advanced lymph node stage and mucinous adenocarcinoma among BRCA1 mRNA-low CRC and higher frequency of males in BRCA1 mRNA-high BC and CRC. African Americans more frequently had BRCA1 mRNA-low BC and BRCA1 mRNA-high CRC and the opposite was observed among Asians. Using a gene co-expression tool (cBioPortal), we observed TOP2A and ATAD5 levels correlate (Spearman's correlation>0.6) with BRCA1 in BC and CRC, whereas LMNB2 correlates with BRCA1 in CRC, suggesting tissue-specific BRCA1 interactions. Our results indicate potential for BRCA1 mRNA expression levels as a prognostic biomarker in BC and CRC, suggest tissue-specificity in BRCA1 molecular interactions, and point to BRCA1 mRNA-high levels as a characteristic of CRC tumors in younger versus older individuals.
Collapse
Affiliation(s)
- Sofia Leaf
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA.,The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, USA.,Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA.,Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA.,These authors contributed equally to this work
| | - Lindsey Carlsen
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA.,The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, USA.,Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA.,Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA.,Pathobiology Graduate Program, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA.,These authors contributed equally to this work
| | - Wafik S El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA.,The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, USA.,Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA.,Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA.,Pathobiology Graduate Program, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA.,Hematology-Oncology Division, Department of Medicine, Rhode Island Hospital and The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| |
Collapse
|
27
|
Advances and challenges in cancer treatment and nutraceutical prevention: the possible role of dietary phenols in BRCA regulation. PHYTOCHEMISTRY REVIEWS 2021. [DOI: 10.1007/s11101-021-09771-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AbstractOver the years, the attention towards the role of phytochemicals in dietary natural products in reducing the risk of developing cancer is rising. Cancer is the second primary cause of mortality worldwide. The current therapeutic options for cancer treatment are surgical excision, immunotherapy, chemotherapy, and radiotherapy. Unfortunately, in case of metastases or chemoresistance, the treatment options become very limited. Despite the advances in medical and pharmaceutical sciences, the impact of available treatments on survival is not satisfactory. Recently, natural products are a great deal of interest as potential anti-cancer agents. Among them, phenolic compounds have gained a great deal of interest, thanks to their anti-cancer activity. The present review focuses on the suppression of cancer by targeting BRCA gene expression using dietary polyphenols, as well as the clinical aspects of polyphenolic agents in cancer therapy. They regulate specific key processes involved in cancer progression and modulate the expression of oncogenic proteins, like p27, p21, and p53, which may lead to apoptosis, cell cycle arrest, inhibition of cell proliferation, and, consequently, cancer suppression. Thus, one of the mechanisms underlying the anti-cancer activity of phenolics involves the regulation of tumor suppressor genes. Among them, the BRCA genes, with the two forms (BRCA-1 and BRCA-2), play a pivotal role in cancer protection and prevention. BRCA germline mutations are associated with an increased risk of developing several types of cancers, including ovarian, breast, and prostate cancers. BRCA genes also play a key role in the sensitivity and response of cancer cells to specific pharmacological treatments. As the importance of BRCA-1 and BRCA-2 in reducing cancer invasiveness, repairing DNA damages, oncosoppression, and cell cycle checkpoint, their regulation by natural molecules has been examined.
Collapse
|
28
|
Lee YC, Lee YL, Li CY. BRCA Genes and Related Cancers: A Meta-Analysis from Epidemiological Cohort Studies. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:905. [PMID: 34577828 PMCID: PMC8464901 DOI: 10.3390/medicina57090905] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/10/2021] [Accepted: 08/27/2021] [Indexed: 12/24/2022]
Abstract
Background and Objectives:BRCA1 and BRCA2 are genes located in different chromosomes that are disproportionately associated with hereditary breast and ovarian cancer syndrome. Their association with other cancers remains to be explored. Materials and Methods: We systematically reviewed cohort studies to explore the association of BRCA 1 and BRCA2 with various cancers except lung cancer. We searched PubMed, Medline (EBSCOhost) and relevant articles published up to 10 May 2021. The odds ratio, standardised morbidity rate and cancer-specific standardised incidence ratio were pooled together as relative risk (RR) estimates. Results: Twelve studies were included for analysis. BRCA mutation increased pancreatic and uterine cancers by around 3-5- and 1.5-fold, respectively. BRCA mutation did not increase brain cancer; colorectal cancer; prostate, bladder and kidney cancer; cervical cancer; or malignant melanoma. BRCA2 increased gastric cancer with RR = 2.15 (1.98-2.33). Conclusion: The meta-analysis results can provide clinicians and relevant families with information regarding increased specific cancer risk in BRCA1 and BRCA2 mutation carriers.
Collapse
Affiliation(s)
- Yen-Chien Lee
- Department of Oncology, Tainan Hospital, Ministry of Health and Welfare, Executive Yuan, Tainan 700, Taiwan;
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, Tainan 700, Taiwan
| | - Yen-Ling Lee
- Department of Oncology, Tainan Hospital, Ministry of Health and Welfare, Executive Yuan, Tainan 700, Taiwan;
| | - Chung-Yi Li
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan 700, Taiwan;
- Department of Public Health, College of Health, China Medical University, Taichung 406, Taiwan
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung 413, Taiwan
| |
Collapse
|
29
|
Maccaroni E, Giampieri R, Lenci E, Scortichini L, Bianchi F, Belvederesi L, Brugiati C, Pagliaretta S, Ambrosini E, Berardi R. BRCA mutations and gastrointestinal cancers: When to expect the unexpected? World J Clin Oncol 2021; 12:565-580. [PMID: 34367929 PMCID: PMC8317649 DOI: 10.5306/wjco.v12.i7.565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/17/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
BRCA1/2 pathogenic variants are widely known as major risk factors mainly for breast and ovarian cancer, while their role in gastrointestinal (GI) malignancies such as colorectal cancer (CRC), gastric cancer and oesophageal cancer (OeC) is still not well established. The main objective of this review is to summarise the available evidence on this matter. The studies included in the review were selected from PubMed/GoogleScholar/ScienceDirect databases to identify published articles where BRCA1/2 pathogenic variants were assessed either as a risk factor or a prognostic/predictive factor in these malignancies. Our review suggests that BRCA1/2 might have a role as a risk factor for colorectal, gastric and OeC, albeit with differences among these diseases: In particular BRCA1 seems to be much more frequently mutated in CRC whereas BRCA2 appears to be much more closely associated with gastric and OeC. Early-onset cancer seems to be also associated with BRCA1/2 mutations and a few studies suggest a positive prognostic role of these mutations. The assessment of a potentially predictive role of these mutations is hampered by the fact that most patients with these diseases have been treated with platinum compounds, where it is expected that a higher probability of response should be seen. A few clinical trials focused on poly (ADP-ribose) polymerase inhibitors use in GI cancers are currently ongoing.
Collapse
Affiliation(s)
- Elena Maccaroni
- Department of Oncology, Azienda Ospedaliero-Universitaria Ospedali Riuniti di Ancona, Ancona 60126, Italy
| | - Riccardo Giampieri
- Department of Oncology, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti di Ancona, Ancona 60126, Italy
| | - Edoardo Lenci
- Department of Oncology, Università Politecnica delle Marche, Ancona 60126, Italy
| | - Laura Scortichini
- Department of Oncology, Università Politecnica delle Marche, Ancona 60126, Italy
| | - Francesca Bianchi
- Molecular and Clinical Science Department, Università Politecnica delle Marche, Ancona 60126, Italy
| | - Laura Belvederesi
- Molecular and Clinical Science Department, Università Politecnica delle Marche, Ancona 60126, Italy
| | - Cristiana Brugiati
- Molecular and Clinical Science Department, Università Politecnica delle Marche, Ancona 60126, Italy
| | - Silvia Pagliaretta
- Molecular and Clinical Science Department, Università Politecnica delle Marche, Ancona 60126, Italy
| | - Elisa Ambrosini
- Molecular and Clinical Science Department, Università Politecnica delle Marche, Ancona 60126, Italy
| | - Rossana Berardi
- Department of Oncology, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti di Ancona, Ancona 60126, Italy
| |
Collapse
|
30
|
Double heterozygotes of BRCA1/BRCA2 and mismatch repair gene pathogenic variants: case series and clinical implications. Breast Cancer Res Treat 2021; 188:685-694. [PMID: 34086170 DOI: 10.1007/s10549-021-06258-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Hereditary breast and ovarian cancer syndrome (HBOC) and Lynch syndrome (LS), the most common inherited cancer syndromes, are attributed to a single heterozygous pathogenic variant (PV) in BRCA1/2 or in a DNA MMR gene, respectively. Little is known about the phenotype in double heterozygotes who carry PVs in both genes. METHODS Carriers of double-PVs in any DNA MMR gene and BRCA1/2 attending one of three tertiary oncogenetic clinics between 1/2005 and 1/2020 were identified by database search, and their relevant data were retrieved and analyzed. RESULTS Eleven double carriers from four seemingly unrelated Ashkenazi Jewish families were evaluated. All carried an Ashkenazi Jewish founder BRCA PV, BRCA2 c.5946delT/c.6174delT (n = 10) or BRCA1 c.185delAG (n = 1). Four carried the MSH2 c.1906G > C founder PV, and 3, the MSH6 c.3984_3987dupGTCA founder PV; 3 patients had the MSH6 c.3956_3957dup PV. Eight double carriers (73%) had cancer: breast cancer (5 cases, 2 bilateral), melanoma (2 cases), urothelial cancer (2 cases), and colon, endometrial, prostate, cutaneous squamous cell cancer, glioblastoma, gastric stromal tumor, and lymphoma (1 case each). Six carriers had 1-2 tumors, one had 3 tumors, and one had 5 primary tumors. Age at diagnosis of the first tumor was 36-76 years. All carriers met NCCN BRCA1/2 testing criteria, and 3 met the revised Bethesda guidelines. CONCLUSIONS This case series, supported by the literature, suggests that the phenotype of double MSH2/6 and BRCA1/2 carriers is not associated with early disease onset or a more severe phenotype. The findings have implications for improved genetic testing guidelines and treatment strategies.
Collapse
|
31
|
Heald B, Hampel H, Church J, Dudley B, Hall MJ, Mork ME, Singh A, Stoffel E, Stoll J, You YN, Yurgelun MB, Kupfer SS. Collaborative Group of the Americas on Inherited Gastrointestinal Cancer Position statement on multigene panel testing for patients with colorectal cancer and/or polyposis. Fam Cancer 2021; 19:223-239. [PMID: 32172433 DOI: 10.1007/s10689-020-00170-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multigene panel tests for hereditary cancer syndromes are increasingly utilized in the care of colorectal cancer (CRC) and polyposis patients. However, widespread availability of panels raises a number of questions including which patients should undergo testing, which genes should be included on panels, and the settings in which panels should be ordered and interpreted. To address this knowledge gap, key questions regarding the major issues encountered in clinical evaluation of hereditary CRC and polyposis were designed by the Collaborative Group of the Americas on Inherited Gastrointestinal Cancer Position Statement Committee and leadership. A literature search was conducted to address these questions. Recommendations were based on the best available evidence and expert opinion. This position statement addresses which genes should be included on a multigene panel for a patient with a suspected hereditary CRC or polyposis syndrome, proposes updated genetic testing criteria, discusses testing approaches for patients with mismatch repair proficient or deficient CRC, and outlines the essential elements for ordering and disclosing multigene panel test results. We acknowledge that critical gaps in access, insurance coverage, resources, and education remain barriers to high-quality, equitable care for individuals and their families at increased risk of hereditary CRC.
Collapse
Affiliation(s)
- Brandie Heald
- Sanford R Weiss, MD, Center for Hereditary Colorectal Neoplasia, Cleveland Clinic, Cleveland, OH, USA.
| | - Heather Hampel
- Division of Human Genetics, Department of Internal Medicine and the Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - James Church
- Sanford R Weiss, MD, Center for Hereditary Colorectal Neoplasia, Cleveland Clinic, Cleveland, OH, USA
| | - Beth Dudley
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael J Hall
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Maureen E Mork
- Department of Clinical Cancer Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aparajita Singh
- Department of Medicine, Division of Gastroenterology, University of California San Francisco, San Francisco, CA, USA
| | - Elena Stoffel
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jessica Stoll
- Gastrointestinal Cancer Risk and Prevention Clinic, University of Chicago, Chicago, IL, USA
| | - Y Nancy You
- Department of Clinical Cancer Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matthew B Yurgelun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sonia S Kupfer
- Gastrointestinal Cancer Risk and Prevention Clinic, University of Chicago, Chicago, IL, USA
| | | |
Collapse
|
32
|
Helgadottir HT, Thutkawkorapin J, Rohlin A, Nordling M, Lagerstedt-Robinson K, Lindblom A. Identification of known and novel familial cancer genes in Swedish colorectal cancer families. Int J Cancer 2021; 149:627-634. [PMID: 33729574 DOI: 10.1002/ijc.33567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/17/2021] [Accepted: 02/26/2021] [Indexed: 11/10/2022]
Abstract
Identifying new candidate colorectal cancer (CRC) genes and mutations are important for clinical cancer prevention as well as in cancer care. Genetic counseling is already implemented for known high-risk variants; however, the majority of CRC are of unknown causes. In our study, 110 CRC patients in 55 Swedish families with a strong history of CRC but unknown genetic causes were analyzed with the aim of identifying novel candidate CRC predisposing genes. Exome sequencing was used to identify rare and high-impact variants enriched in the families. No clear pathogenic variants were found in known CRC predisposing genes; however, potential pathogenic variants in novel CRC predisposing genes were identified. Over 3000 variants with minor allele frequency (MAF) <0.01 and Combined Annotation Dependent Depletion (CADD) > 20 were seen aggregating in the CRC families. Of those, 27 variants with MAF < 0.001 and CADD>25 were considered high-risk mutations. Interestingly, more than half of the high-risk variants were detected in three families, suggesting cumulating contribution of several variants to CRC. In summary, our study shows that despite a strong history of CRC within families, identifying pathogenic variants is challenging. In a small number of families, few rare mutations were shared by affected family members. This could indicate that in the absence of known CRC predisposing genes, a cumulating contribution of mutations leads to CRC observed in these families.
Collapse
Affiliation(s)
- Hafdis T Helgadottir
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | | | - Anna Rohlin
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Margareta Nordling
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Kristina Lagerstedt-Robinson
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
33
|
Huang W, Bian J, Qian X, Shao L, Li H, Zhang L, Wang L. Case Report: Coinheritance of Germline Mutations in APC and BRCA1 in Colorectal Cancer. Front Oncol 2021; 11:658389. [PMID: 33842374 PMCID: PMC8030582 DOI: 10.3389/fonc.2021.658389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/10/2021] [Indexed: 12/24/2022] Open
Abstract
Deleterious mutations in APC gene cause the autosomal dominant familial adenomatous polyposis (FAP) which is typically characterized by the occurrence of hundreds to thousands of colorectal adenomas that eventually lead to colorectal cancers (CRCs). BRCA1/2 are the two major susceptibility genes for breast and ovarian cancers. Here, we reported a coinheritance of mutations in APC and BRCA1 genes in a 20-year-old CRC patient with typical clinical features for FAP. Multiple relatives in the family of the patient were affected by colorectal and other cancers. Next-generation sequencing analysis using a panel consisting of 53 hereditary cancer related genes revealed a maternally inherited APC (exon15cn_del) mutation and a paternally inherited BRAC1 (p.lle1824AspfsX3) mutation. This is the first coexistence of APC and BRCA1 mutations in a CRC patient with the mutation inheritance pattern comprehensively characterized in the family. The patient underwent a colonoscopy and a subtotal colectomy and was subsequently diagnosed with colonic adenocarcinomas accompanied with hundreds of tubulovillous adenomas. The case reveals the scenario where two disease-causing mutations of different hereditary tumor syndromes coexist, and illustrates the importance of evaluating detailed family history and performing a multiple-gene panel test in patients with hereditary cancer.
Collapse
Affiliation(s)
- Wei Huang
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin Bian
- Department of Oncology, Nanjing Jinling Hospital, Nanjing, China
| | - Xiaoping Qian
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lin Shao
- Department of Medicine, Burning Rock Biotech, Guangzhou, China
| | - Haiyan Li
- Department of Medicine, Burning Rock Biotech, Guangzhou, China
| | - Lu Zhang
- Department of Medicine, Burning Rock Biotech, Guangzhou, China
| | - Lin Wang
- Department of Oncology, Nanjing Tongren Hospital, Nanjing, China
| |
Collapse
|
34
|
Du C, Peng Y, He Y, Chen G, Chen H. Low levels of BRCA1 protein expression predict a worse prognosis in stage I-II colon cancer. Int J Biol Markers 2021; 36:47-53. [PMID: 33583275 DOI: 10.1177/1724600820986572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND BRCA1 and BRCA2 have been well studied for their roles in tumorigeneis, plus cancer diagnosis and treatment, but their prognostic value in colon cancer, especially for early-stage cancer, has not been fully illuminated. This study examined the expression levels of BRCA1 and BRCA2 proteins in sporadic colon cancer cases and investigated their value in prognosis. METHODS The expression levels of BRCA1 and BRCA2 in 275 colon cancer patients who underwent radical surgeries were assayed by immunohistochemical staining in dissected tumor samples. Also, its correlation with clinicopathological characteristics, disease-free survival, and overall survival was investigated. RESULTS Tumors with low expression levels of BRCA1, BRCA2, and both were 19.6%, 17.8%, and 6.5%, respectively. The levels of BRCA1/2 expression were not associated with clinicopathological parameters (gender, age, histological differentiation, and tumor node metastasis stage). Patients with low-levels of BRCA1 protein in their tumors demonstrated a lower chance of 5-year disease-free survival (55.6% vs. 69.7%, P=0.046), which was more obvious in the patients with stage I-II tumors without chemotherapy (52.6% vs. 82.6%, P=0.006). Neither BRCA1 nor BRCA2 affected overall survival in this cohort. Multivariate analysis revealed that pathologic stage and the level of BRCA1 protein were independent factors of long-term disease-free survival. CONCLUSION This study highlights BRCA1 as an independent prognosticator of early-stage colon cancer.
Collapse
Affiliation(s)
- Changzheng Du
- School of Medicine, the Southern University of Science and Technology, Shenzhen, Guangdong, People's Republic of China.,Southern University of Science and Technology Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Yifan Peng
- Gastrointestinal Cancer Center, Beijing Cancer Hospital, Beijing, People's Republic of China
| | - Yiping He
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA.,Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Guoan Chen
- School of Medicine, the Southern University of Science and Technology, Shenzhen, Guangdong, People's Republic of China
| | - Hao Chen
- School of Medicine, the Southern University of Science and Technology, Shenzhen, Guangdong, People's Republic of China
| |
Collapse
|
35
|
Jiang W, Li L, Ke CF, Wang W, Xiao BY, Kong LH, Tang JH, Li Y, Wu XD, Hu Y, Guo WH, Wang SZ, Wan DS, Xu RH, Pan ZZ, Ding PR. Universal germline testing among patients with colorectal cancer: clinical actionability and optimised panel. J Med Genet 2021; 59:370-376. [PMID: 33563768 DOI: 10.1136/jmedgenet-2020-107230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 12/30/2022]
Abstract
PURPOSE Universal germline testing in patients with colorectal cancer (CRC) with a multigene panel can detect various hereditary cancer syndromes. This study was performed to understand how to choose a testing panel and whether the result would affect clinical management. METHODS We prospectively enrolled 486 eligible patients with CRC, including all patients with CRC diagnosed under age 70 years and patients with CRC diagnosed over 70 years with hereditary risk features between November 2017 and January 2018. All participants received germline testing for various hereditary cancer syndromes. RESULTS The prevalence of germline pathogenic variants (PVs) in cancer susceptibility genes was 7.8% (38/486), including 25 PVs in genes with high-risk CRC susceptibility (the minimal testing set) and 13 PVs in genes with moderate-risk CRC susceptibility or increased cancer risk other than CRC (the additional testing set). All the clinically relevant PVs were found in patients diagnosed under age 70 years. Among them, 11 patients would not have been diagnosed if testing reserved to present guidelines. Most (36/38) of the patients with PVs benefited from enhanced surveillance and tailored treatment. PVs in genes from the minimal testing set were found in all age groups, while patients carried PVs in genes from the additional testing set were older than 40 years. CONCLUSION Universal germline testing for cancer susceptibility genes should be recommended among all patients with CRC diagnosed under age 70 years. A broad panel including genes from the additional testing set might be considered for patients with CRC older than 40 years to clarify inheritance risks. TRIAL REGISTRATION NUMBER NCT03365986.
Collapse
Affiliation(s)
- Wu Jiang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lin Li
- Genetron Health (Beijing) Technology, Co. Ltd, Beijing, China
| | - Chuan-Feng Ke
- Department of General Surgery, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Wang
- Department of Gastrointestinal Surgery, Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Bin-Yi Xiao
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ling-Heng Kong
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jing-Hua Tang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yuan Li
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Dan Wu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ying Hu
- Genetron Health (Beijing) Technology, Co. Ltd, Beijing, China
| | - Wei-Hua Guo
- Genetron Health (Beijing) Technology, Co. Ltd, Beijing, China
| | - Si-Zhen Wang
- Genetron Health (Beijing) Technology, Co. Ltd, Beijing, China
| | - De-Sen Wan
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Rui-Hua Xu
- Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhi-Zhong Pan
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Pei-Rong Ding
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
36
|
Kwong A, Ho CYS, Shin VY, Au CH, Chan TL, Ma ESK. A Case Report of Germline Compound Heterozygous Mutations in the BRCA1 Gene of an Ovarian and Breast Cancer Patient. Int J Mol Sci 2021; 22:E889. [PMID: 33477375 PMCID: PMC7830606 DOI: 10.3390/ijms22020889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/29/2020] [Accepted: 01/14/2021] [Indexed: 12/24/2022] Open
Abstract
The germline carrier of the BRCA1 pathogenic mutation has been well proven to confer an increased risk of breast and ovarian cancer. Despite BRCA1 biallelic pathogenic mutations being extremely rare, they have been reported to be embryonically lethal or to cause Fanconi anemia (FA). Here we describe a patient who was a 48-year-old female identified with biallelic pathogenic mutations of the BRCA1 gene, with no or very subtle FA-features. She was diagnosed with ovarian cancer and breast cancer at the ages of 43 and 44 and had a strong family history of breast and gynecological cancers.
Collapse
Affiliation(s)
- Ava Kwong
- Department of Surgery, The University of Hong Kong and University of Hong Kong-Shenzhen Hospital, Hong Kong, China;
- Department of Surgery, Hong Kong Sanatorium & Hospital, Hong Kong, China
- Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong, China; (T.L.C.); (E.S.K.M.)
| | - Cecilia Y. S. Ho
- Department of Molecular Pathology, Hong Kong Sanatorium & Hospital, Hong Kong, China; (C.Y.S.H.); (C.H.A.)
| | - Vivian Y. Shin
- Department of Surgery, The University of Hong Kong and University of Hong Kong-Shenzhen Hospital, Hong Kong, China;
| | - Chun Hang Au
- Department of Molecular Pathology, Hong Kong Sanatorium & Hospital, Hong Kong, China; (C.Y.S.H.); (C.H.A.)
| | - Tsun Leung Chan
- Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong, China; (T.L.C.); (E.S.K.M.)
- Department of Molecular Pathology, Hong Kong Sanatorium & Hospital, Hong Kong, China; (C.Y.S.H.); (C.H.A.)
| | - Edmond S. K. Ma
- Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong, China; (T.L.C.); (E.S.K.M.)
- Department of Molecular Pathology, Hong Kong Sanatorium & Hospital, Hong Kong, China; (C.Y.S.H.); (C.H.A.)
| |
Collapse
|
37
|
Pathogenic Germline Mutations of DNA Repair Pathway Components in Early-Onset Sporadic Colorectal Polyp and Cancer Patients. Cancers (Basel) 2020; 12:cancers12123560. [PMID: 33260537 PMCID: PMC7761471 DOI: 10.3390/cancers12123560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Colorectal cancer (CRC) screening by immuno-fecal occult blood tests (iFOBTs) begins at age 50 in average-risk persons. However, the incidence of early-onset CRC has risen; of the cases, at least half are sporadic CRC without a family history. The authors of this study found a high percentage of de novo germline mutation in young sporadic CRC patients, as well as in sporadic colorectal polyp and control groups. All the mutated genes contribute to various DNA-repair pathways, hinting that a loss of genomic integrity play a crucial role in the development of CRC. The early identification of cancer-susceptible individuals by multigene panels in younger individuals who may be missed under current iFOBT screening could contribute to preventing CRC. Abstract Given recent increases in the proportion of early-onset colorectal cancer (CRC), researchers are urgently working to establish a multi-gene screening test for both inherited and sporadic cancer-susceptible individuals. However, the incidence and spectrum of germline mutations in young sporadic CRC patients in East Asian countries and, especially, in sporadic polyp carriers and normal individuals are unknown. Peripheral blood samples were collected from 43 colonoscopy-proved normal controls and from 50 polyp patients and 49 CRC patients with no self-reported family history of cancer. All participants were under 50 years old. Next-generation sequencing with a panel of 30 CRC-associated susceptibility genes was employed to detect pathogenic germline mutations. The germline mutation carrier rates were 2.3%, 4.0%, and 12.2% in the normal, polyp, and cancer groups, respectively. A total of seven different mutations in six DNA repair pathway-related genes (MLH1, BRCA1, BRCA2, CHEK2, BLM, and NTHL1) were detected in nine participants. One frameshift mutation in BRCA2 and one frameshift mutation in the CHEK2 gene were found in a normal control and two colorectal polyp patients, respectively. One young sporadic CRC patient carried two heterozygous mutations, one in MLH1 and one in BRCA1. Three mutations (MLH1 p.Arg265Cys, MLH1 p.Tyr343Ter and CHEK2 p.Ile158TyrfsTer10) were each found in two independent patients and were considered “founder” mutations. This is the first report to demonstrate high percentage of germline mutations in young sporadic colorectal polyp, CRC, and general populations. A multi-gene screening test is warranted for the proactive identification of cancer-predisposed individuals.
Collapse
|
38
|
Molinaro E, Andrikou K, Casadei-Gardini A, Rovesti G. BRCA in Gastrointestinal Cancers: Current Treatments and Future Perspectives. Cancers (Basel) 2020; 12:E3346. [PMID: 33198203 PMCID: PMC7697442 DOI: 10.3390/cancers12113346] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/26/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
A strong association between pancreatic cancer and BRCA1 and BRCA2 mutations is documented. Based on promising results of breast and ovarian cancers, several clinical trials with poly (ADP-ribose) polymerase inhibitors (PARPi) are ongoing for gastrointestinal (GI) malignancies, especially for pancreatic cancer. Indeed, the POLO trial results provide promising and awaited changes for the pancreatic cancer therapeutic landscape. Contrariwise, for other gastrointestinal tumors, the rationale is currently only alleged. The role of BRCA mutation in gastrointestinal cancers is the subject of this review. In particular, we aim to provide the latest updates about novel therapeutic strategies that, exploiting DNA repair defects, promise to shape the future therapeutic scenario of GI cancers.
Collapse
Affiliation(s)
| | | | - Andrea Casadei-Gardini
- Department of Oncology and Hematology, Division of Oncology, University of Modena and Reggio Emilia, 41121 Modena, Italy; (E.M.); (K.A.); (G.R.)
| | | |
Collapse
|
39
|
Dhooge M, Baert-Desurmont S, Corsini C, Caron O, Andrieu N, Berthet P, Bonadona V, Cohen-Haguenauer O, De Pauw A, Delnatte C, Dussart S, Lasset C, Leroux D, Maugard C, Moretta-Serra J, Popovici C, Buecher B, Colas C, Noguès C. National recommendations of the French Genetics and Cancer Group - Unicancer on the modalities of multi-genes panel analyses in hereditary predispositions to tumors of the digestive tract. Eur J Med Genet 2020; 63:104080. [PMID: 33039684 DOI: 10.1016/j.ejmg.2020.104080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022]
Abstract
In case of suspected hereditary predisposition to digestive cancers, next-generation sequencing can analyze simultaneously several genes associated with an increased risk of developing these tumors. Thus, "Gastro Intestinal" (GI) gene panels are commonly used in French molecular genetic laboratories. Lack of international recommendations led to disparities in the composition of these panels and in the management of patients. To harmonize practices, the Genetics and Cancer Group (GGC)-Unicancer set up a working group who carried out a review of the literature for 31 genes of interest in this context and established a list of genes for which the estimated risks associated with pathogenic variant seemed sufficiently reliable and high for clinical use. Pancreatic cancer susceptibility genes have been excluded. This expertise defined a panel of 14 genes of confirmed clinical interest and relevant for genetic counseling: APC, BMPR1A, CDH1, EPCAM, MLH1, MSH2, MSH6, MUTYH, PMS2, POLD1, POLE, PTEN, SMAD4 and STK11. The reasons for the exclusion of the others 23 genes have been discussed. The paucity of estimates of the associated tumor risks led to the exclusion of genes, in particular CTNNA1, MSH3 and NTHL1, despite their implication in the molecular pathways involved in the pathophysiology of GI cancers. A regular update of the literature is planned to up-grade this panel of genes in case of new data on candidate genes. Genetic and epidemiological studies and international collaborations are needed to better estimate the risks associated with the pathogenic variants of these genes either selected or not in the current panel.
Collapse
Affiliation(s)
- Marion Dhooge
- APHP.Centre (Cochin Hospital), Paris University, Paris, France.
| | - Stéphanie Baert-Desurmont
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Carole Corsini
- Arnaud de Villeneuve University Hospital, Montpellier, France
| | - Olivier Caron
- Gustave-Roussy University Hospital, Villejuif, France
| | - Nadine Andrieu
- Institut Curie, PSL Research University, Department of Tumor Biology, Paris, France; Unité Inserm, Institut Curie, Paris, France
| | | | | | | | - Antoine De Pauw
- Institut Curie, PSL Research University, Department of Tumor Biology, Paris, France
| | | | | | | | - Dominique Leroux
- Grenoble University Hospital, Couple-Enfant Hospital, Grenoble, France
| | | | - Jessica Moretta-Serra
- Institut Paoli-Calmettes, Department of Clinical Cancer Genetics, Aix Marseille Univ, INSERM, IRD, SESSTIM, Marseille, France
| | - Cornel Popovici
- Institut Paoli-Calmettes, Department of Clinical Cancer Genetics, Aix Marseille Univ, INSERM, IRD, SESSTIM, Marseille, France
| | - Bruno Buecher
- Institut Curie, PSL Research University, Department of Tumor Biology, Paris, France
| | - Chrystelle Colas
- Institut Curie, PSL Research University, Department of Tumor Biology, Paris, France
| | - Catherine Noguès
- Institut Paoli-Calmettes, Department of Clinical Cancer Genetics, Aix Marseille Univ, INSERM, IRD, SESSTIM, Marseille, France
| | | |
Collapse
|
40
|
Kupfer SS, Gupta S, Weitzel JN, Samadder J. AGA Clinical Practice Update on Colorectal and Pancreatic Cancer Risk and Screening in BRCA1 and BRCA2 Carriers: Commentary. Gastroenterology 2020; 159:760-764. [PMID: 32335146 PMCID: PMC7483595 DOI: 10.1053/j.gastro.2020.03.086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/18/2020] [Accepted: 03/30/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Sonia S. Kupfer
- Section of Gastroenterology, Hepatology and Nutrition, University of Chicago, Chicago, IL
| | - Samir Gupta
- VA San Diego Healthcare System; University of California San Diego, San Diego, CA
| | | | | |
Collapse
|
41
|
The Effects of Genetic and Epigenetic Alterations of BARD1 on the Development of Non-Breast and Non-Gynecological Cancers. Genes (Basel) 2020; 11:genes11070829. [PMID: 32708251 PMCID: PMC7396976 DOI: 10.3390/genes11070829] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023] Open
Abstract
Breast Cancer 1 (BRCA1) gene is a well-characterized tumor suppressor gene, mutations of which are primarily found in women with breast and ovarian cancers. BRCA1-associated RING domain 1 (BARD1) gene has also been identified as an important tumor suppressor gene in breast, ovarian, and uterine cancers. Underscoring the functional significance of the BRCA1 and BARD1 interactions, prevalent mutations in the BRCA1 gene are found in its RING domain, through which it binds the RING domain of BARD1. BARD1-BRCA1 heterodimer plays a crucial role in a variety of DNA damage response (DDR) pathways, including DNA damage checkpoint and homologous recombination (HR). However, many mutations in both BARD1 and BRCA1 also exist in other domains that significantly affect their biological functions. Intriguingly, recent genome-wide studies have identified various single nucleotide polymorphisms (SNPs), genetic alterations, and epigenetic modifications in or near the BARD1 gene that manifested profound effects on tumorigenesis in a variety of non-breast and non-gynecological cancers. In this review, we will briefly discuss the molecular functions of BARD1, including its BRCA1-dependent as well as BRCA1-independent functions. We will then focus on evaluating the common BARD1 related SNPs as well as genetic and epigenetic changes that occur in the non-BRCA1-dominant cancers, including neuroblastoma, lung, and gastrointestinal cancers. Furthermore, the pro- and anti-tumorigenic functions of different SNPs and BARD1 variants will also be discussed.
Collapse
|
42
|
Schubert SA, Morreau H, de Miranda NFCC, van Wezel T. The missing heritability of familial colorectal cancer. Mutagenesis 2020; 35:221-231. [PMID: 31605533 PMCID: PMC7352099 DOI: 10.1093/mutage/gez027] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/05/2019] [Indexed: 02/06/2023] Open
Abstract
Pinpointing heritability factors is fundamental for the prevention and early detection of cancer. Up to one-quarter of colorectal cancers (CRCs) occur in the context of familial aggregation of this disease, suggesting a strong genetic component. Currently, only less than half of the heritability of CRC can be attributed to hereditary syndromes or common risk loci. Part of the missing heritability of this disease may be explained by the inheritance of elusive high-risk variants, polygenic inheritance, somatic mosaicism, as well as shared environmental factors, among others. A great deal of the missing heritability in CRC is expected to be addressed in the coming years with the increased application of cutting-edge next-generation sequencing technologies, routine multigene panel testing and tumour-focussed germline predisposition screening approaches. On the other hand, it will be important to define the contribution of environmental factors to familial aggregation of CRC incidence. This review provides an overview of the known genetic causes of familial CRC and aims at providing clues that explain the missing heritability of this disease.
Collapse
Affiliation(s)
- Stephanie A Schubert
- Department of Pathology, Leiden University Medical Center, Leiden University, Leiden, The Netherlands
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, Leiden University, Leiden, The Netherlands
| | - Noel F C C de Miranda
- Department of Pathology, Leiden University Medical Center, Leiden University, Leiden, The Netherlands
| | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, Leiden University, Leiden, The Netherlands
| |
Collapse
|
43
|
Sevic I, Spinelli FM, Vitale DL, Icardi A, Romano L, Brandone A, Giannoni P, Cristina C, Bolontrade MF, Alaniz L. Hyaluronan Metabolism is Associated with DNA Repair Genes in Breast and Colorectal Cancer. Screening of Potential Progression Markers Using qPCR. Biomedicines 2020; 8:E183. [PMID: 32610620 PMCID: PMC7400093 DOI: 10.3390/biomedicines8070183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 12/21/2022] Open
Abstract
In this work, we compared mRNA levels of Hyaluronan (HA) metabolism members and BRCA genes, known to be involved in the tumoral process, between tumor and non-tumor adjacent tissue and its correlation with previously proposed biomarkers (ER, PR, HER2 and KI67) in order to assess their value as a progression biomarkers. We show alteration in HA metabolism in colorectal but not breast cancer. However, we found a decrease in Hyaluronidase 1 HYAL1 levels in the breast but not colorectal cancer. We also show lower HA levels in tumor compared with normal tissue that could indicate a possible influence of tumor on its surrounding "normal" tissue. In both breast and colorectal cancer, CD44 and BRCA2 showed a strong positive correlation. Besides, our results show first indicators that qPCR of the analyzed genes could be used as an easy and low cost procedure for the evaluation of molecular markers we propose here.
Collapse
Affiliation(s)
- Ina Sevic
- Laboratorio de Microambiente Tumoral; Centro de Investigaciones Básicas y Aplicadas (CIBA), CIT NOBA, Universidad Nacional del Noroeste de la Pcia. de Bs. As. Consejo Nacional de Investigaciones Científicas y Técnicas (UNNOBA-CONICET), Junín B6000, Argentina; (I.S.); (F.M.S.); (D.L.V.); (A.I.)
| | - Fiorella Mercedes Spinelli
- Laboratorio de Microambiente Tumoral; Centro de Investigaciones Básicas y Aplicadas (CIBA), CIT NOBA, Universidad Nacional del Noroeste de la Pcia. de Bs. As. Consejo Nacional de Investigaciones Científicas y Técnicas (UNNOBA-CONICET), Junín B6000, Argentina; (I.S.); (F.M.S.); (D.L.V.); (A.I.)
| | - Daiana Lujan Vitale
- Laboratorio de Microambiente Tumoral; Centro de Investigaciones Básicas y Aplicadas (CIBA), CIT NOBA, Universidad Nacional del Noroeste de la Pcia. de Bs. As. Consejo Nacional de Investigaciones Científicas y Técnicas (UNNOBA-CONICET), Junín B6000, Argentina; (I.S.); (F.M.S.); (D.L.V.); (A.I.)
| | - Antonella Icardi
- Laboratorio de Microambiente Tumoral; Centro de Investigaciones Básicas y Aplicadas (CIBA), CIT NOBA, Universidad Nacional del Noroeste de la Pcia. de Bs. As. Consejo Nacional de Investigaciones Científicas y Técnicas (UNNOBA-CONICET), Junín B6000, Argentina; (I.S.); (F.M.S.); (D.L.V.); (A.I.)
| | - Lucia Romano
- Laboratorio de Fisiopatología de la Hipófisis; Centro de Investigaciones Básicas y Aplicadas (CIBA), CIT NOBA, Universidad Nacional del Noroeste de la Pcia. de Bs. As. Consejo Nacional de Investigaciones Científicas y Técnicas (UNNOBA-CONICET), Junín B6000, Argentina; (L.R.); (C.C.)
| | - Alejandra Brandone
- Hospital Interzonal General de Agudos Dr. Abraham F. Piñeyro, Junín B6000, Argentina;
| | | | - Carolina Cristina
- Laboratorio de Fisiopatología de la Hipófisis; Centro de Investigaciones Básicas y Aplicadas (CIBA), CIT NOBA, Universidad Nacional del Noroeste de la Pcia. de Bs. As. Consejo Nacional de Investigaciones Científicas y Técnicas (UNNOBA-CONICET), Junín B6000, Argentina; (L.R.); (C.C.)
| | - Marcela Fabiana Bolontrade
- Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB)-CONICET-Instituto Universitario del Hospital Italiano-Hospital Italiano Buenos Aires (HIBA), Buenos Aires C1199ACL, Argentina;
| | - Laura Alaniz
- Laboratorio de Microambiente Tumoral; Centro de Investigaciones Básicas y Aplicadas (CIBA), CIT NOBA, Universidad Nacional del Noroeste de la Pcia. de Bs. As. Consejo Nacional de Investigaciones Científicas y Técnicas (UNNOBA-CONICET), Junín B6000, Argentina; (I.S.); (F.M.S.); (D.L.V.); (A.I.)
| |
Collapse
|
44
|
Terradas M, Capellá G, Valle L. Dominantly Inherited Hereditary Nonpolyposis Colorectal Cancer Not Caused by MMR Genes. J Clin Med 2020; 9:jcm9061954. [PMID: 32585810 PMCID: PMC7355797 DOI: 10.3390/jcm9061954] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 12/30/2022] Open
Abstract
In the past two decades, multiple studies have been undertaken to elucidate the genetic cause of the predisposition to mismatch repair (MMR)-proficient nonpolyposis colorectal cancer (CRC). Here, we present the proposed candidate genes according to their involvement in specific pathways considered relevant in hereditary CRC and/or colorectal carcinogenesis. To date, only pathogenic variants in RPS20 may be convincedly linked to hereditary CRC. Nevertheless, accumulated evidence supports the involvement in the CRC predisposition of other genes, including MRE11, BARD1, POT1, BUB1B, POLE2, BRF1, IL12RB1, PTPN12, or the epigenetic alteration of PTPRJ. The contribution of the identified candidate genes to familial/early onset MMR-proficient nonpolyposis CRC, if any, is extremely small, suggesting that other factors, such as the accumulation of low risk CRC alleles, shared environmental exposures, and/or gene-environmental interactions, may explain the missing heritability in CRC.
Collapse
Affiliation(s)
- Mariona Terradas
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain; (M.T.); (G.C.)
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Gabriel Capellá
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain; (M.T.); (G.C.)
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain; (M.T.); (G.C.)
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-93-260-7145
| |
Collapse
|
45
|
Dullens B, de Putter R, Lambertini M, Toss A, Han S, Van Nieuwenhuysen E, Van Gorp T, Vanderstichele A, Van Ongeval C, Keupers M, Prevos R, Celis V, Dekervel J, Everaerts W, Wildiers H, Nevelsteen I, Neven P, Timmerman D, Smeets A, Denayer E, Van Buggenhout G, Legius E, Punie K. Cancer Surveillance in Healthy Carriers of Germline Pathogenic Variants in BRCA1/2: A Review of Secondary Prevention Guidelines. JOURNAL OF ONCOLOGY 2020; 2020:9873954. [PMID: 32655641 PMCID: PMC7322604 DOI: 10.1155/2020/9873954] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/30/2020] [Indexed: 02/06/2023]
Abstract
Germline pathogenic alterations in the breast cancer susceptibility genes 1 (BRCA1) and 2 (BRCA2) are the most prevalent causes of hereditary breast and ovarian cancer. The increasing trend in proportion of cancer patients undergoing genetic testing, followed by predictive testing in families of new index patients, results in a significant increase of healthy germline BRCA1/2 mutation carriers who are at increased risk for breast, ovarian, and other BRCA-related cancers. This review aims to give an overview of available screening guidelines for female and male carriers of pathogenic or likely pathogenic germline BRCA1/2 variants per cancer type, incorporating malignancies that are more or less recently well correlated with BRCA1/2. We selected guidelines from national/international organizations and/or professional associations that were published or updated between January 1, 2015, and February 1, 2020. In total, 12 guidelines were included. This review reveals several significant discordances between the different guidelines. Optimal surveillance strategies depend on accurate age-specific cancer risk estimates, which are not reliably available for all BRCA-related cancers. Up-to-date national or international consensus guidelines are of utmost importance to harmonize counseling and proposed surveillance strategies for BRCA1/2 carriers.
Collapse
Affiliation(s)
- Boudewijn Dullens
- Department of General Medical Oncology, University Hospitals Leuven, Leuven, Belgium
- Multidisciplinary Breast Centre, UZ-KU Leuven Cancer Institute (LKI), University Hospitals Leuven, Leuven, Belgium
| | - Robin de Putter
- Department of Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Matteo Lambertini
- Department of Medical Oncology, U.O.C Clinica di Oncologia Médica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genova, Italy
| | - Angela Toss
- Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - Sileny Han
- Multidisciplinary Breast Centre, UZ-KU Leuven Cancer Institute (LKI), University Hospitals Leuven, Leuven, Belgium
- Department of Gynecology and Obstetrics, University Hospitals Leuven, Leuven, Belgium
| | - Els Van Nieuwenhuysen
- Multidisciplinary Breast Centre, UZ-KU Leuven Cancer Institute (LKI), University Hospitals Leuven, Leuven, Belgium
- Department of Gynecology and Obstetrics, University Hospitals Leuven, Leuven, Belgium
| | - Toon Van Gorp
- Multidisciplinary Breast Centre, UZ-KU Leuven Cancer Institute (LKI), University Hospitals Leuven, Leuven, Belgium
- Department of Gynecology and Obstetrics, University Hospitals Leuven, Leuven, Belgium
| | - Adriaan Vanderstichele
- Multidisciplinary Breast Centre, UZ-KU Leuven Cancer Institute (LKI), University Hospitals Leuven, Leuven, Belgium
- Department of Gynecology and Obstetrics, University Hospitals Leuven, Leuven, Belgium
| | - Chantal Van Ongeval
- Multidisciplinary Breast Centre, UZ-KU Leuven Cancer Institute (LKI), University Hospitals Leuven, Leuven, Belgium
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium
| | - Machteld Keupers
- Multidisciplinary Breast Centre, UZ-KU Leuven Cancer Institute (LKI), University Hospitals Leuven, Leuven, Belgium
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium
| | - Renate Prevos
- Multidisciplinary Breast Centre, UZ-KU Leuven Cancer Institute (LKI), University Hospitals Leuven, Leuven, Belgium
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium
| | - Valerie Celis
- Multidisciplinary Breast Centre, UZ-KU Leuven Cancer Institute (LKI), University Hospitals Leuven, Leuven, Belgium
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium
| | - Jeroen Dekervel
- Digestive Oncology, Department of Gastroenterology, University Hospitals Leuven, Leuven, Belgium
| | - Wouter Everaerts
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
| | - Hans Wildiers
- Department of General Medical Oncology, University Hospitals Leuven, Leuven, Belgium
- Multidisciplinary Breast Centre, UZ-KU Leuven Cancer Institute (LKI), University Hospitals Leuven, Leuven, Belgium
| | - Ines Nevelsteen
- Multidisciplinary Breast Centre, UZ-KU Leuven Cancer Institute (LKI), University Hospitals Leuven, Leuven, Belgium
- Department of Surgical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Patrick Neven
- Multidisciplinary Breast Centre, UZ-KU Leuven Cancer Institute (LKI), University Hospitals Leuven, Leuven, Belgium
- Department of Gynecology and Obstetrics, University Hospitals Leuven, Leuven, Belgium
| | - Dirk Timmerman
- Department of Gynecology and Obstetrics, University Hospitals Leuven, Leuven, Belgium
| | - Ann Smeets
- Multidisciplinary Breast Centre, UZ-KU Leuven Cancer Institute (LKI), University Hospitals Leuven, Leuven, Belgium
- Department of Surgical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Ellen Denayer
- Multidisciplinary Breast Centre, UZ-KU Leuven Cancer Institute (LKI), University Hospitals Leuven, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Griet Van Buggenhout
- Multidisciplinary Breast Centre, UZ-KU Leuven Cancer Institute (LKI), University Hospitals Leuven, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Eric Legius
- Multidisciplinary Breast Centre, UZ-KU Leuven Cancer Institute (LKI), University Hospitals Leuven, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Kevin Punie
- Department of General Medical Oncology, University Hospitals Leuven, Leuven, Belgium
- Multidisciplinary Breast Centre, UZ-KU Leuven Cancer Institute (LKI), University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
46
|
Xu Y, Li C, Wang Z, Liu F, Xu Y. Comparison of suspected Lynch syndrome patients carrying BRCA and BRCA-like variants with Lynch syndrome probands: Phenotypic characteristics and pedigree analyses. Mol Genet Genomic Med 2020; 8:e1359. [PMID: 32548945 PMCID: PMC7434599 DOI: 10.1002/mgg3.1359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Background Colorectal cancer (CRC) patients diagnosed with Lynch syndrome (LS) are recommended genetic testing. Increasing numbers of germline variants involved in homologous recombination have been identified in suspected LS patients. This study compared phenotypic the characteristics of suspected LS patients carrying BRCA and BRCA‐like variants with those of LS patients. Methods Forty‐two patients carrying pathogenic variants of DNA mismatch repair (MMR) genes (MMR group), 9 carrying BRCA variants, and 11 carrying BRCA‐like variants (BRCA/BRCA‐like group) who met LS clinical criteria were enrolled in this study. Clinical characteristics, pedigrees, and survival rates were compared and BRCA variants were analyzed. Results The earliest CRC‐onset age and tumor differentiation were higher in the BRCA/BRCA‐like group than in the MMR group. Metachronous CRCs were more numerous in the MMR group, resulting in a higher progression‐free survival rate in the BRCA/BRCA‐like group. Extra‐colorectal cancers were more frequently observed in the BRCA/BRCA‐like group. BRCA2 and BRCA1 variants were clustered in exons 11 and 4/7, respectively. Conclusion BRCA and BRCA‐like variants in CRC patients with LS showed moderate penetrance. BRCA/BRCA‐like variant carriers had a higher risk for extra‐colorectal cancers. Surveillance of susceptible organs other than the intestine should be performed for probands and affected family members.
Collapse
Affiliation(s)
- Yun Xu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cong Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhimin Wang
- Department of Genetics, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center and Shanghai Academy of Science & Technology, Shanghai, China
| | - Fangqi Liu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ye Xu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
47
|
Cullinane CM, Creavin B, O'Connell EP, Kelly L, O'Sullivan MJ, Corrigan MA, Redmond HP. Risk of colorectal cancer associated with BRCA1 and/or BRCA2 mutation carriers: systematic review and meta-analysis. Br J Surg 2020; 107:951-959. [PMID: 32297664 DOI: 10.1002/bjs.11603] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Carriers of the BRCA1 and/or BRCA2 mutation incur a lifetime risk of up to 85 per cent for breast cancer, and between 20 and 40 per cent for ovarian cancer. Efforts to estimate the lifetime risk of developing colorectal cancer for BRCA mutation carriers have produced conflicting results. Consequently, there are no formal guidelines regarding the need for bowel screening for individuals with BRCA1 and/or BRCA2 mutations. This systematic review and meta-analysis determined the risk of colorectal cancer associated with BRCA carrier mutations. METHODS The primary outcome was incidence of colorectal cancer in BRCA mutation carriers. Secondary outcomes were the incidence in BRCA1 and BRCA2 carriers, Ashkenazi Jews, and age- and sex-matched cohorts. RESULTS Eleven studies were included in the review, with an overall population of 14 252 and 4831 colorectal cancers identified. Nine studies were included in the meta-analysis. There was no increase in colorectal cancer among patients carrying a BRCA mutation (odds ratio 1·03, 95 per cent c.i. 0·80 to 1·32; P = 0·82). After adjustment for Ashkenazi heritage, and age and sex estimates, there was no increased odds of developing colorectal cancer (with no heterogeneity, I2 = 0 per cent). CONCLUSION BRCA1 and/or BRCA2 mutation carriers are not at a higher risk of colorectal cancer.
Collapse
Affiliation(s)
- C M Cullinane
- Department of Breast Surgery, Cork University Hospital, Cork, Ireland
| | - B Creavin
- Department of General Surgery, University Hospital Kerry, Tralee, Ireland
| | - E P O'Connell
- Department of General Surgery, University Hospital Kerry, Tralee, Ireland
| | - L Kelly
- Department of Breast Surgery, Cork University Hospital, Cork, Ireland
| | - M J O'Sullivan
- Department of Breast Surgery, Cork University Hospital, Cork, Ireland
| | - M A Corrigan
- Department of Breast Surgery, Cork University Hospital, Cork, Ireland
| | - H P Redmond
- Department of Breast Surgery, Cork University Hospital, Cork, Ireland
| |
Collapse
|
48
|
Oh M, McBride A, Yun S, Bhattacharjee S, Slack M, Martin JR, Jeter J, Abraham I. Response to Yang, Shi, Wang et al. J Natl Cancer Inst 2020; 112:428. [PMID: 31424546 DOI: 10.1093/jnci/djz163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 08/14/2019] [Indexed: 11/12/2022] Open
Affiliation(s)
- Mok Oh
- Center for Health Outcomes and PharmacoEconomic Research, Tucson, AZ
| | - Ali McBride
- University of Arizona Cancer Center, Tucson, AZ.,University of Arizona, Tucson, AZ; Banner University Medical Center, University of Arizona Cancer Center, Tucson, AZ
| | - Seongseok Yun
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | | | - Marion Slack
- Department of Pharmacy Practice and Science, Tucson, AZ
| | - Jennifer R Martin
- Arizona Health Sciences Library, Tucson, AZ.,Department of Pharmacy Practice and Science, Tucson, AZ
| | - Joanne Jeter
- Departments of Human Genetics and Medical Oncology, College of Medicine, The Ohio State University, Columbus, OH
| | - Ivo Abraham
- Center for Health Outcomes and PharmacoEconomic Research, Tucson, AZ.,Department of Pharmacy Practice and Science, Tucson, AZ.,University of Arizona Cancer Center, Tucson, AZ.,College of Pharmacy, and Department of Family and Community Medicine, College of Medicine-Tucson, Tucson, AZ
| |
Collapse
|
49
|
Sheu MJ, Chou CL, Yang CC, Lee SW, Tian YF, Lin CY, Hsiao SY, Chen SH, Huang WT. Low BRCA2 expression predicts poor prognoses in patients with rectal cancer receiving chemoradiotherapy. Pathol Res Pract 2020; 216:152922. [PMID: 32249003 DOI: 10.1016/j.prp.2020.152922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/20/2020] [Accepted: 03/14/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Neoadjuvant concurrent chemoradiotherapy (CCRT) followed by surgery is now the standard care for patients with advanced rectal cancer. Because a certain proportion of these patients have poor response to CCRT, the risk stratification of survival outcomes needs to be investigated. DNA repair responses in tumor cells can regulate malignant potential and therapy resistance. In this study, we analyzed the clinical significance of principal DNA repair effectors in patients with rectal cancer. METHODS We applied data mining for DNA repair pathways in a published transcriptome for rectal cancer cases, and identified that tumors with BRCA2 downregulation correlated with poor response to CCRT. We next examined BRCA2 expression by using immunohistochemistry staining in tumor tissues of 172 patients with rectal cancer. The correlation between BRCA2 expression levels and clinical variables was further analyzed in this rectal cancer cohort. RESULTS Among clinical and pathological factors, low BRCA2-expression was significantly correlated with higher pre-treatment (Tx) tumor status (P = .013), post-Tx tumor (P < .001) and nodal status (P = .044), vascular invasion (P = .008), and poor tumor regression grades (P < .001). In analyses of survival outcomes, patients with low BRCA2-expression were associated with shorter local recurrence-free survival (LRFS; P = .0005) and disease-specific survival (P = .0269). Multivariate analyses confirmed the independent prognostic value of low BRCA2-expression for shorter LRFS (P = .045, hazard ratio = 4.695). CONCLUSION Low BRCA2-expression is a significant predictor for tumors in advanced stages, poor response to CCRT, and shorter survivals in patients with rectal cancer. Poly (adenosine diphosphate-ribose) polymerase inhibitors targeting DNA repair response in cells have demonstrated clinical efficacy in BRCA2-mutated patients with cancer. Further studies evaluating the efficacy of CCRT combined with these inhibitors in low BRCA2-expressing rectal cancers are encouraged.
Collapse
Affiliation(s)
- Ming-Jen Sheu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan; Department of Medicinal Chemistry, Chia Nan University, Tainan, Taiwan
| | - Chia-Lin Chou
- Division of Colon & Rectal Surgery, Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan; Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ching-Chieh Yang
- Department of Radiation Oncology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Sung-Wei Lee
- Department of Radiation Oncology, Chi-Mei Medical Center, Liouying, Tainan, Taiwan
| | - Yu-Feng Tian
- Division of Colon & Rectal Surgery, Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan
| | - Chen-Yi Lin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Sheng-Yen Hsiao
- Division of Hematology-Oncology, Department of Internal Medicine, Chi Mei Medical Center, Liouying, Tainan, Taiwan
| | - Shang-Hung Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan; Division of Hematology and Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Tsung Huang
- Division of Hematology-Oncology, Department of Internal Medicine, Chi Mei Medical Center, Liouying, Tainan, Taiwan.
| |
Collapse
|
50
|
LaDuca H, Polley EC, Yussuf A, Hoang L, Gutierrez S, Hart SN, Yadav S, Hu C, Na J, Goldgar DE, Fulk K, Smith LP, Horton C, Profato J, Pesaran T, Gau CL, Pronold M, Davis BT, Chao EC, Couch FJ, Dolinsky JS. A clinical guide to hereditary cancer panel testing: evaluation of gene-specific cancer associations and sensitivity of genetic testing criteria in a cohort of 165,000 high-risk patients. Genet Med 2020; 22:407-415. [PMID: 31406321 PMCID: PMC7000322 DOI: 10.1038/s41436-019-0633-8] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 07/26/2019] [Indexed: 01/11/2023] Open
Abstract
PURPOSE Despite the rapid uptake of multigene panel testing (MGPT) for hereditary cancer predisposition, there is limited guidance surrounding indications for testing and genes to include. METHODS To inform the clinical approach to hereditary cancer MGPT, we comprehensively evaluated 32 cancer predisposition genes by assessing phenotype-specific pathogenic variant (PV) frequencies, cancer risk associations, and performance of genetic testing criteria in a cohort of 165,000 patients referred for MGPT. RESULTS We identified extensive genetic heterogeneity surrounding predisposition to cancer types commonly referred for germline testing (breast, ovarian, colorectal, uterine/endometrial, pancreatic, and melanoma). PV frequencies were highest among patients with ovarian cancer (13.8%) and lowest among patients with melanoma (8.1%). Fewer than half of PVs identified in patients meeting testing criteria for only BRCA1/2 or only Lynch syndrome occurred in the respective genes (33.1% and 46.2%). In addition, 5.8% of patients with PVs in BRCA1/2 and 26.9% of patients with PVs in Lynch syndrome genes did not meet respective testing criteria. CONCLUSION Opportunities to improve upon identification of patients at risk for hereditary cancer predisposition include revising BRCA1/2 and Lynch syndrome testing criteria to include additional clinically actionable genes with overlapping phenotypes and relaxing testing criteria for associated cancers.
Collapse
Affiliation(s)
| | - Eric C Polley
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Steven N Hart
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | | | - Chunling Hu
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Jie Na
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - David E Goldgar
- Department of Dermatology, University of Utah, Salt Lake City, UT, USA
| | | | | | | | | | | | | | | | | | - Elizabeth C Chao
- Ambry Genetics, Aliso Viejo, CA, USA
- Department of Pediatrics, Division of Genetic and Genomic Medicine, University of California-Irvine, Irvine, CA, USA
| | - Fergus J Couch
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|