1
|
Zhang Y, Tu J, Wang J, Dai T, Zheng L, Sun S, Tu C, Li H, Qian L. NFKBIE is a predictive factor of survival and is correlated with immune infiltration and antigen processing and presentation in hepatocellular carcinoma. Oncol Lett 2024; 28:480. [PMID: 39161335 PMCID: PMC11332585 DOI: 10.3892/ol.2024.14613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 02/21/2024] [Indexed: 08/21/2024] Open
Abstract
The important role of the nuclear factor κB (NFκB) pathway in tumour development has long been recognized; however, the role of the NFκB inhibitor family in liver cancer has not been elucidated. Hepatocellular carcinoma (HCC) is a serious public health burden with a high incidence, poor prognosis, and early detection, especially in Asia, where hepatitis is prevalent. In the present study, the mRNA expression level of the NFκB inhibitor family was assessed in HCC and normal tissues using the Metabolic Gene Rapid Visualizer, University of Alabama at Birmingham Cancer Data Analysis Portal, and the Tumor Immune Estimation Resource database (TIMER). Survival curves of nuclear factor of κ light polypeptide gene enhancer in B-cells inhibitor (NFKBI)E were obtained using the Kaplan-Meier method. Genes co-expressed with NFKBIE in HCC samples were studied using data from the LinkedOmics and the Hepatocellular Carcinoma Databases. Protein-protein interaction networks, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment pathway analyses were used to assess the NFKBIE mechanism in HCC. Using the TIMER database, the association between immune infiltration and NFKBIE was determined. RNA-sequencing (RNA-seq) was used to evaluate the function of NFKBIE in HCC and its impact on proliferation and migration. Western blotting was used to confirm the expression of NFKBIE in HCC cell lines. In addition, NFKBIE overexpression in HCC was demonstrated using tissue microarrays encompassing 80 pairs of HCC and normal liver tissues. NFKBIE was the only NFκB inhibitor with high expression and an improved prognosis in HCC compared with other NFκB inhibitors. NFKBIE was correlated with clinical characteristics, such as tumour grade, tumour protein P53 mutation status and tumour stage. Data obtained from Gene Set Cancer Analysis suggested that NFKBIE may inhibit the PI3K/AKT, RAS/MAPK, RTK and TSC/mTOR pathways. In addition, NFKBIE was significantly associated with B-cell immune infiltration and the RNA-seq data demonstrated that knockdown of NFKBIE significantly affected 'Antigen processing and presentation' and 'hepatocellular carcinoma' pathways. Immunohistochemistry of microarrays of tissue samples revealed that NFKBIE was overexpressed in several stages of HCC. Finally, inhibition of NFKBIE decreased the proliferation and migration of HCC cells. In conclusion, due to its prognostic value and overexpression in HCC, NFKBIE distinguished itself from other NFκB inhibitors. As such, it may provide a novel prognostic indicator and immunotherapeutic target for HCC.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Comprehensive Surgery, The First Affiliated Hospital of University of Science and Technology of China West District, Hefei, Anhui 230031, P.R. China
| | - Jinqi Tu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui 241001, P.R. China
| | - Jian Wang
- Department of Comprehensive Surgery, The First Affiliated Hospital of University of Science and Technology of China West District, Hefei, Anhui 230031, P.R. China
| | - Tiancheng Dai
- Department of Medical Laboratory Technology, The First Clinical College of Anhui Medical University, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Lin Zheng
- Department of Comprehensive Surgery, The First Affiliated Hospital of University of Science and Technology of China West District, Hefei, Anhui 230031, P.R. China
| | - Sinan Sun
- Department of Radiation Oncology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230031, P.R. China
| | - Conyin Tu
- Department of Comprehensive Surgery, The First Affiliated Hospital of University of Science and Technology of China West District, Hefei, Anhui 230031, P.R. China
| | - Heng Li
- Department of Comprehensive Surgery, The First Affiliated Hospital of University of Science and Technology of China West District, Hefei, Anhui 230031, P.R. China
| | - Liting Qian
- Department of Radiation Oncology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230031, P.R. China
| |
Collapse
|
2
|
Luo R, Liu Q, Hu Z, Dai W, Huang S, Xie J, Wei S, Lin C. c-Rel is a Novel Oncogene in Lung Squamous Cell Carcinoma Regulating Cell Proliferation and Migration. J Cancer 2024; 15:2329-2339. [PMID: 38495491 PMCID: PMC10937284 DOI: 10.7150/jca.93766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/12/2024] [Indexed: 03/19/2024] Open
Abstract
Lung squamous cell carcinoma (LUSC) accounts for approximately 25% to 30% of lung cancers, but largely no targeted therapy is available against it, calling for identification of new oncogenes in LUSC growth for new therapeutic targets. In this study, REL was identified through a screening for oncogenes that are highly amplified in human LUSC. Its expression was associated with poor prognosis in LUSC patients. Furthermore, knockdown of c-Rel in LUSC cell lines lead to significant decrease in cell proliferation and migration. Mechanistically, c-Rel knockdown suppressed NFκB pathway by blocking phosphorylation of IκB. Consistently, pharmaceutic inhibition of c-Rel also. In orthotopic xenograft lung cancer mouse model, c-Rel knockdown inhibited the tumor growth. Cancer cell proliferation and epithelial-mesenchymal-transition (EMT) of the tumors were impaired by c-Rel knockdown. Finally, it's confirmed in precision-cut tumor slices of LUSC that deletion of c-Rel inhibits the NFκB pathway and cancer cell growth. Accordingly, we hypothesize that c-Rel promotes the activation of the NFκB pathway by promoting the phosphorylation of IκB in LUSC. Our study reveals REL as a novel LUSC oncogene and provides new insights into the molecular regulation of LUSC, which will provide new therapeutic targets for the treatment of squamous lung cancer.
Collapse
Affiliation(s)
- Renru Luo
- Department of histology and embryology, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Qiongyu Liu
- Department of histology and embryology, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Zheyu Hu
- Department of histology and embryology, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Wanqin Dai
- Department of histology and embryology, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Shuwei Huang
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianjiang Xie
- Department of Pulmonary and Critical Care Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Shuquan Wei
- Department of Pulmonary and Critical Care Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Chuwen Lin
- Department of histology and embryology, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Semenikhina M, Lysikova DV, Spires DR, Domondon M, Stadler K, Palygin O, Ilatovskaya DV. Transcriptomic changes in glomeruli in response to a high salt challenge in the Dahl SS rat. Physiol Genomics 2024; 56:98-111. [PMID: 37955135 PMCID: PMC11281811 DOI: 10.1152/physiolgenomics.00075.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023] Open
Abstract
Salt sensitivity impacts a significant portion of the population and is an important contributor to the development of chronic kidney disease. One of the significant early predictors of salt-induced damage is albuminuria, which reflects the deterioration of the renal filtration barrier: the glomerulus. Despite significant research efforts, there is still a gap in knowledge regarding the molecular mechanisms and signaling networks contributing to instigating and/or perpetuating salt-induced glomerular injury. To address this gap, we used 8-wk-old male Dahl salt-sensitive rats fed a normal-salt diet (0.4% NaCl) or challenged with a high-salt diet (4% NaCl) for 3 wk. At the end of the protocol, a pure fraction of renal glomeruli obtained by differential sieving was used for next-generation RNA sequencing and comprehensive semi-automatic transcriptomic data analyses, which revealed 149 differentially expressed genes (107 and 42 genes were downregulated and upregulated, respectively). Furthermore, a combination of predictive gene correlation networks and computational bioinformatic analyses revealed pathways impacted by a high salt dietary challenge, including renal metabolism, mitochondrial function, apoptotic signaling and fibrosis, cell cycle, inflammatory and immune responses, circadian clock, cytoskeletal organization, G protein-coupled receptor signaling, and calcium transport. In conclusion, we report here novel transcriptomic interactions and corresponding predicted pathways affecting glomeruli under salt-induced stress.NEW & NOTEWORTHY Our study demonstrated novel pathways affecting glomeruli under stress induced by dietary salt. Predictive gene correlation networks and bioinformatic semi-automatic analysis revealed changes in the pathways relevant to mitochondrial function, inflammatory, apoptotic/fibrotic processes, and cell calcium transport.
Collapse
Affiliation(s)
- Marharyta Semenikhina
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Daria V Lysikova
- Department of Physiology, Augusta University, Augusta, Georgia, United States
| | - Denisha R Spires
- Department of Physiology, Augusta University, Augusta, Georgia, United States
| | - Mark Domondon
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Krisztian Stadler
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Daria V Ilatovskaya
- Department of Physiology, Augusta University, Augusta, Georgia, United States
| |
Collapse
|
4
|
Liu X, Wei W, Wu YZ, Wang Y, Zhang WW, Wang YP, Dong XP, Shi Q. Emodin treatment of papillary thyroid cancer cell lines in vitro inhibits proliferation and enhances apoptosis via downregulation of NF‑κB and its upstream TLR4 signaling. Oncol Lett 2023; 26:514. [PMID: 37927413 PMCID: PMC10623093 DOI: 10.3892/ol.2023.14101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/15/2023] [Indexed: 11/07/2023] Open
Abstract
Thyroid cancer is one of the most common types of endocrine malignancy. In addition to surgical treatment, it is very important to find new treatment methods. The aim of the present study was to evaluate the effect of 1,3,8-trihydroxy-6-methylanthraquinone (emodin) on cellular NF-κB components and the upstream regulatory pathway of toll-like receptor 4 (TLR4) signaling, as well as the invasion and migration of papillary thyroid carcinoma (PTC) cells. The protein expression of NF-κB components p65 and p50 and their phosphorylated (p-) forms in the sections of PTC tissues was measured by individual immunohistochemical assays. PTC cell lines TPC-1 and IHH4 were exposed to 20 and 40 µM emodin for 24 h. The levels of the NF-κB components p65, p50, c-Rel, p-p65 and p-p50, elements in TLR4 signaling, including TLR4, MYD88 innate immune signal transduction adaptor (MyD88), interferon regulatory factor 3, AKT and MEK, and proliferative and apoptotic biomarkers, including c-Myc, cyclin D1, proliferating cell nuclear antigen, Bcl-2 and Bax, were evaluated by western blotting and immunofluorescent assays. The invasion and migration of PTC cell lines exposed to emodin were tested by plate colony and wound healing assay. Compared with hyperplasia tissue, the expression levels of NF-κB components p65 and p50, and p-p65 and p-p50 in PTC tissue were significantly increased. Treatment of PTC cell lines with emodin lead to significantly reduced levels of the aforementioned NF-κB components, accompanied by markedly downregulated TLR4 signaling. MYD 88-dependent and -independent pathways, are also significantly down-regulated. Downregulation of proliferative factors and activation of apoptotic factors were observed in the cell lines following treatment with emodin. Consequently, inhibition of the invasion and migration activities were observed in the emodin-treated PTC cells. Emodin could inhibit proliferation and promote apoptosis of PTC cells, which is dependent on the downregulation of cellular NF-κB and the TLR4 signaling pathway.
Collapse
Affiliation(s)
- Xin Liu
- Basic Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, P.R. China
- National Key-Laboratory of Intelligent Tracing and Forecasting for Infectious Disease, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Wei Wei
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Head and Neck Surgery, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Yue-Zhang Wu
- National Key-Laboratory of Intelligent Tracing and Forecasting for Infectious Disease, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Yuan Wang
- National Key-Laboratory of Intelligent Tracing and Forecasting for Infectious Disease, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
- Basic Medical College, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Wei-Wei Zhang
- National Key-Laboratory of Intelligent Tracing and Forecasting for Infectious Disease, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
- Basic Medical College, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Yong-Ping Wang
- Basic Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, P.R. China
| | - Xiao-Ping Dong
- National Key-Laboratory of Intelligent Tracing and Forecasting for Infectious Disease, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Qi Shi
- National Key-Laboratory of Intelligent Tracing and Forecasting for Infectious Disease, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| |
Collapse
|
5
|
Leslie J, Hunter JE, Collins A, Rushton A, Russell LG, Ramon‐Gil E, Laszczewska M, McCain M, Zaki MYW, Knox A, Seow Y, Sabater L, Geh D, Perkins ND, Reeves HL, Tiniakos D, Mann DA, Oakley F. c-Rel-dependent Chk2 signaling regulates the DNA damage response limiting hepatocarcinogenesis. Hepatology 2023; 78:1050-1063. [PMID: 36089330 PMCID: PMC10521790 DOI: 10.1002/hep.32781] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIMS Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death. The NF-κB transcription factor family subunit c-Rel is typically protumorigenic; however, it has recently been reported as a tumor suppressor. Here, we investigated the role of c-Rel in HCC. APPROACH AND RESULTS Histological and transcriptional studies confirmed expression of c-Rel in human patients with HCC, but low c-Rel expression correlated with increased tumor cell proliferation and mutational burden and was associated with advanced disease. In vivo , global ( Rel-/- ) and epithelial specific ( RelAlb ) c-Rel knockout mice develop more tumors, with a higher proliferative rate and increased DNA damage, than wild-type (WT) controls 30 weeks after N-diethylnitrosamine injury. However, tumor burden was comparable when c-Rel was deleted in hepatocytes once tumors were established, suggesting c-Rel signaling is important for preventing HCC initiation after genotoxic injury, rather than for HCC progression. In vitro , Rel-/- hepatocytes were more susceptible to genotoxic injury than WT controls. ATM-CHK2 DNA damage response pathway proteins were suppressed in Rel-/- hepatocytes following genotoxic injury, suggesting that c-Rel is required for effective DNA repair. To determine if c-Rel inhibition sensitizes cancer cells to chemotherapy, by preventing repair of chemotherapy-induced DNA damage, thus increasing tumor cell death, we administered single or combination doxorubicin and IT-603 (c-Rel inhibitor) therapy in an orthotopic HCC model. Indeed, combination therapy was more efficacious than doxorubicin alone. CONCLUSION Hepatocyte c-Rel signaling limits genotoxic injury and subsequent HCC burden. Inhibiting c-Rel as an adjuvant therapy increased the effectiveness of DNA damaging agents and reduced HCC growth.
Collapse
Affiliation(s)
- Jack Leslie
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
| | - Jill E. Hunter
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
| | - Amy Collins
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
| | - Amelia Rushton
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
| | - Lauren G. Russell
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
| | - Erik Ramon‐Gil
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
| | - Maja Laszczewska
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
| | - Misti McCain
- Newcastle University Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
| | - Marco Y. W. Zaki
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
- Biochemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Amber Knox
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
| | - Yixin Seow
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
| | - Laura Sabater
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
| | - Daniel Geh
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
- Department of Medicine, Freeman Hospital, Newcastle‐upon‐Tyne Hospitals NHS Foundation Trust, Newcastle‐upon‐Tyne, UK
| | - Neil D. Perkins
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
| | - Helen L. Reeves
- Newcastle University Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
- Department of Medicine, Freeman Hospital, Newcastle‐upon‐Tyne Hospitals NHS Foundation Trust, Newcastle‐upon‐Tyne, UK
| | - Dina Tiniakos
- Newcastle University Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
- Department of Pathology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Derek A. Mann
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
| | - Fiona Oakley
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
| |
Collapse
|
6
|
Nakashima M, Uchimaru K. CD30 Expression and Its Functions during the Disease Progression of Adult T-Cell Leukemia/Lymphoma. Int J Mol Sci 2023; 24:ijms24108731. [PMID: 37240076 DOI: 10.3390/ijms24108731] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
CD30, a member of the tumor necrosis factor receptor superfamily, plays roles in pro-survival signal induction and cell proliferation in peripheral T-cell lymphoma (PTCL) and adult T-cell leukemia/lymphoma (ATL). Previous studies have identified the functional roles of CD30 in CD30-expressing malignant lymphomas, not only PTCL and ATL, but also Hodgkin lymphoma (HL), anaplastic large cell lymphoma (ALCL), and a portion of diffuse large B-cell lymphoma (DLBCL). CD30 expression is often observed in virus-infected cells such as human T-cell leukemia virus type 1 (HTLV-1). HTLV-1 is capable of immortalizing lymphocytes and producing malignancy. Some ATL cases caused by HTLV-1 infection overexpress CD30. However, the molecular mechanism-based relationship between CD30 expression and HTLV-1 infection or ATL progression is unclear. Recent findings have revealed super-enhancer-mediated overexpression at the CD30 locus, CD30 signaling via trogocytosis, and CD30 signaling-induced lymphomagenesis in vivo. Successful anti-CD30 antibody-drug conjugate (ADC) therapy for HL, ALCL, and PTCL supports the biological significance of CD30 in these lymphomas. In this review, we discuss the roles of CD30 overexpression and its functions during ATL progression.
Collapse
Affiliation(s)
- Makoto Nakashima
- Laboratory of Tumor Cell Biology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo 1088639, Japan
| | - Kaoru Uchimaru
- Laboratory of Tumor Cell Biology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo 1088639, Japan
| |
Collapse
|
7
|
Placental Galectins in Cancer: Why We Should Pay More Attention. Cells 2023; 12:cells12030437. [PMID: 36766779 PMCID: PMC9914345 DOI: 10.3390/cells12030437] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/15/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
The first studies suggesting that abnormal expression of galectins is associated with cancer were published more than 30 years ago. Today, the role of galectins in cancer is relatively well established. We know that galectins play an active role in many types of cancer by regulating cell growth, conferring cell death resistance, or inducing local and systemic immunosuppression, allowing tumor cells to escape the host immune response. However, most of these studies have focused on very few galectins, most notably galectin-1 and galectin-3, and more recently, galectin-7 and galectin-9. Whether other galectins play a role in cancer remains unclear. This is particularly true for placental galectins, a subgroup that includes galectin-13, -14, and -16. The role of these galectins in placental development has been well described, and excellent reviews on their role during pregnancy have been published. At first sight, it was considered unlikely that placental galectins were involved in cancer. Yet, placentation and cancer progression share several cellular and molecular features, including cell invasion, immune tolerance and vascular remodeling. The development of new research tools and the concomitant increase in database repositories for high throughput gene expression data of normal and cancer tissues provide a new opportunity to examine the potential involvement of placental galectins in cancer. In this review, we discuss the possible roles of placental galectins in cancer progression and why they should be considered in cancer studies. We also address challenges associated with developing novel research tools to investigate their protumorigenic functions and design highly specific therapeutic drugs.
Collapse
|
8
|
Bressy C, Zemani A, Goyal S, Jishkariani D, Lee CN, Chen YH. Inhibition of c-Rel expression in myeloid and lymphoid cells with distearoyl -phosphatidylserine (DSPS) liposomal nanoparticles encapsulating therapeutic siRNA. PLoS One 2022; 17:e0276905. [PMID: 36520934 PMCID: PMC9754606 DOI: 10.1371/journal.pone.0276905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 10/14/2022] [Indexed: 12/23/2022] Open
Abstract
c-Rel, a member of the nuclear factor kappa B (NF-κB) family, is preferentially expressed by immune cells and is known to regulate inflammation, autoimmune diseases and cancer. However, there is a lack of therapeutic intervention to specifically inhibit c-Rel in immune cells. Recent success with Pfizer and Moderna mRNA lipid-encapsulated vaccines as well as FDA approved medicines based on siRNA prompted us to test a lipid nanoparticle-based strategy to silence c-Rel in immune cells. Specifically, we encapsulated c-Rel-targeting siRNA into distearoyl-phosphatidylserine (DSPS)-containing nanoparticles. DSPS is a saturated phospholipid that serves as the "eat-me" signal for professional phagocytes such as macrophages and neutrophils of the immune system. We demonstrated here that incorporation of DSPS in liposome nanoparticles (LNP) improved their uptake by immune cells. LNP containing high concentrations of DSPS were highly effective to transfect not only macrophages and neutrophils, but also lymphocytes, with limited toxicity to cells. However, LNP containing low concentrations of DSPS were more effective to transfect myeloid cells than lymphoid cells. Importantly, DSPS-LNP loaded with a c-Rel siRNA were highly effective to inhibit c-Rel expression in several professional phagocytes tested, which lasted for several days. Taken together, our results suggest that DSPS-LNP armed with c-Rel siRNA could be exploited to target immune cells to limit the development of inflammatory diseases or cancer caused by c-Rel upregulation. In addition, this newly developed DSPS-LNP system may be further tested to encapsulate and deliver other small molecule drugs to immune cells, especially macrophages, neutrophils, and lymphocytes for the treatment of diseases.
Collapse
Affiliation(s)
- Christian Bressy
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ali Zemani
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Shreya Goyal
- Department of Biological Sciences, University of North Carolina, Charlotte, North Carolina, United States of America
| | - Davit Jishkariani
- Chemical and Nanoparticle Synthesis Core (CNSC), The University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Chin Nien Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Youhai H. Chen
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Faculty of Pharmaceutical Sciences, CAS Shenzhen Institute of Advanced Technology, Shenzhen, China
| |
Collapse
|
9
|
Lin J, Liu G, Chen L, Kwok HF, Lin Y. Targeting lactate-related cell cycle activities for cancer therapy. Semin Cancer Biol 2022; 86:1231-1243. [PMID: 36328311 DOI: 10.1016/j.semcancer.2022.10.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
Lactate has long been considered as a metabolic by-product of aerobic glycolysis for cancer. However, more and more studies have shown that lactate can regulate cancer progression via multiple mechanisms such as cell cycle regulation, immune suppression, energy metabolism and so on. A recent discovery of lactylation attracted a lot of attention and is already a hot topic in the cancer field. In this review, we summarized the latest functions of lactate and its underlying mechanisms in cancer. We also included our analysis of protein lactylation in different rat organs and compared them with other published lactylation data. The unresolved challenges in this field were discussed, and the potential application of these new discoveries of lactate-related cell cycle activities for cancer target therapy was speculated.
Collapse
Affiliation(s)
- Jia Lin
- Central Laboratory at the Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Collaborative Innovation Center for Rehabilitation Technology, the Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, China; Collaborative Innovation Center for Rehabilitation Technology, the Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, China
| | - Geng Liu
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, UK
| | - Lidian Chen
- Collaborative Innovation Center for Rehabilitation Technology, the Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, China.
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR; MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macau SAR; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR.
| | - Yao Lin
- Central Laboratory at the Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Collaborative Innovation Center for Rehabilitation Technology, the Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, China; Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, China.
| |
Collapse
|
10
|
Rezadoost MH, Kumleh HH, Farhadpour M, Ghasempour A, Surup F. In vitro antiproliferative activity of Parrotia persica exclusive gallotannin. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02985-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
11
|
Devanaboyina M, Kaur J, Whiteley E, Lin L, Einloth K, Morand S, Stanbery L, Hamouda D, Nemunaitis J. NF-κB Signaling in Tumor Pathways Focusing on Breast and Ovarian Cancer. Oncol Rev 2022; 16:10568. [PMID: 36531159 PMCID: PMC9756851 DOI: 10.3389/or.2022.10568] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/02/2022] [Indexed: 08/30/2023] Open
Abstract
Immune disorders and cancer share a common pathway involving NF-κb signaling. Through involvement with GM-CSF, NF-κB can contribute to proliferation and activation of T- and B- cells as well as immune cell migration to sites of inflammation. In breast cancer, this signaling pathway has been linked to resistance with endocrine and chemotherapies. Similarly, in ovarian cancer, NF-κB influences angiogenesis and inflammation pathways. Further, BRCA1 signaling common to both breast and ovarian cancer also has the capability to induce NF-κB activity. Immunotherapy involving NF-κB can also be implemented to combat chemoresistance. The complex signaling pathways of NF-κB can be harnessed for developing cancer therapeutics to promote immunotherapy for improving patient outcomes.
Collapse
Affiliation(s)
- Monika Devanaboyina
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Jasskiran Kaur
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Emma Whiteley
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Leslie Lin
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Katelyn Einloth
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Susan Morand
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | | | - Danae Hamouda
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | | |
Collapse
|
12
|
Characterization of High-Risk HPV/EBV Co-Presence in Pre-Malignant Cervical Lesions and Squamous Cell Carcinomas. Microorganisms 2022; 10:microorganisms10050888. [PMID: 35630333 PMCID: PMC9144326 DOI: 10.3390/microorganisms10050888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 02/05/2023] Open
Abstract
High-risk human papillomaviruses (HR-HPVs) are the etiological agents of cervical cancer. However, a low proportion of HR-HPV-infected women finally develop this cancer, which suggests the involvement of additional cofactors. Epstein−Barr virus (EBV) has been detected in cervical squamous cell carcinomas (SCCs) as well as in low- (LSIL) and high-grade (HSIL) squamous intraepithelial lesions, although its role is unknown. In this study, we characterized HR-HPV/EBV co-presence and viral gene expression in LSIL (n = 22), HSIL (n = 52), and SCC (n = 19) from Chilean women. Additionally, phenotypic changes were evaluated in cervical cancer cells ectopically expressing BamHI-A Rightward Frame 1 (BARF1). BARF1 is a lytic gene also expressed in EBV-positive epithelial tumors during the EBV latency program. HPV was detected in 6/22 (27.3%) LSIL, 38/52 (73.1%) HSIL, and 15/19 (78.9%) SCC cases (p < 0.001). On the other hand, EBV was detected in 16/22 (72.7%) LSIL, 27/52 (51.9%) HSIL, and 13/19 (68.4%) SCC cases (p = 0.177). HR-HPV/EBV co-presence was detected in 3/22 (13.6%) LSIL, 17/52 (32.7%) HSIL, and 11/19 (57.9%) SCC cases (p = 0.020). Additionally, BARF1 transcripts were detected in 37/55 (67.3%) of EBV positive cases and in 19/30 (63.3%) of HR-HPV/EBV positive cases. Increased proliferation, migration, and epithelial-mesenchymal transition (EMT) was observed in cervical cancer cells expressing BARF1. Thus, both EBV and BARF1 transcripts are detected in low- and high-grade cervical lesions as well as in cervical carcinomas. In addition, BARF1 can modulate the tumor behavior in cervical cancer cells, suggesting a role in increasing tumor aggressiveness.
Collapse
|
13
|
Li H, Qu L, Yang Y, Zhang H, Li X, Zhang X. Single-cell Transcriptomic Architecture Unraveling the Complexity of Tumor Heterogeneity in Distal Cholangiocarcinoma. Cell Mol Gastroenterol Hepatol 2022; 13:1592-1609.e9. [PMID: 35219893 PMCID: PMC9043309 DOI: 10.1016/j.jcmgh.2022.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND & AIMS Distal cholangiocarcinoma (dCCA) are a group of epithelial cell malignancies that occurs at the distal common bile duct, and account for approximately 40% of all cholangiocarcinoma cases. dCCA remains a highly lethal disease as it typically features remarkable cellular heterogeneity. A comprehensive exploration of cellular diversity and the tumor microenvironment is essential to depict the mechanisms driving dCCA progression. METHODS Single-cell RNA sequencing was used here to dissect the heterogeneity landscape and tumor microenvironment composition of human dCCAs. Seven human dCCAs and adjacent normal bile duct samples were included in the current study for single-cell RNA sequencing and subsequent validation approaches. Additionally, the results of the analyses were compared with bulk transcriptomic datasets from extrahepatic cholangiocarcinoma and single-cell RNA data from intrahepatic cholangiocarcinoma. RESULTS We sequenced a total of 49,717 single cells derived from human dCCAs and adjacent tissues, identifying 11 distinct cell types. Malignant cells displayed remarkable inter- and intra-tumor heterogeneity with 5 distinct subsets were defined in tumor samples. The malignant cells displayed variable degree of aneuploidy, which can be classified into low- and high-copy number variation groups based on either amplification or deletion of chr17q12 - chr17q21.2. Additionally, we identified 4 distinct T lymphocytes subsets, of which cytotoxic CD8+ T cells predominated as effectors in tumor tissues, whereas tumor infiltrating FOXP3+ CD4+ regulatory T cells exhibited highly immunosuppressive characteristics. CONCLUSION Our single-cell transcriptomic dataset depicts the inter- and intra-tumor heterogeneity of human dCCAs at the expression level.
Collapse
Affiliation(s)
- Hongguang Li
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lingxin Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yongheng Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Haibin Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xuexin Li
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Xiaolu Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,Correspondence Address correspondence to: Xiaolu Zhang, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China. tel: (+86) 17862933917; fax: (+86) 53188565657.
| |
Collapse
|
14
|
Ren W, Li Y, Chen X, Hu S, Cheng W, Cao Y, Gao J, Chen X, Xiong D, Li H, Wang P. RYR2 mutation in non-small cell lung cancer prolongs survival via down-regulation of DKK1 and up-regulation of GS1-115G20.1: A weighted gene Co-expression network analysis and risk prognostic models. IET Syst Biol 2021; 16:43-58. [PMID: 34877784 PMCID: PMC8965387 DOI: 10.1049/syb2.12038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/18/2021] [Accepted: 11/04/2021] [Indexed: 12/24/2022] Open
Abstract
RYR2 mutation is clinically frequent in non-small cell lung cancer (NSCLC) with its function being elusive. We downloaded lung squamous cell carcinoma and lung adenocarcinoma samples from the TCGA database, split the samples into RYR2 mutant group (n = 337) and RYR2 wild group (n = 634), and established Kaplan-Meier curves. The results showed that RYR2 mutant group lived longer than the wild group (p = 0.027). Weighted gene co-expression network analysis (WGCNA) of differentially expressed genes (DEGs) yielded prognosis-related genes. Five mRNAs and 10 lncRNAs were selected to build survival prognostic models with other clinical features. The AUCs of 2 models are 0.622 and 0.565 for predicting survival at 3 years. Among these genes, the AUCs of DKK1 and GS1-115G20.1 expression levels were 0.607 and 0.560, respectively, which predicted the 3-year survival rate of NSCLC sufferers. GSEA identified an association of high DKK1 expression with TP53, MTOR, and VEGF expression. Several target miRNAs interacting with GS1-115G20.1 were observed to show the relationship with the phenotype, treatment, and survival of NSCLC. NSCLC patients with RYR2 mutation may obtain better prognosis by down-regulating DKK1 and up-regulating GS1-115G20.1.
Collapse
Affiliation(s)
- Wenjun Ren
- Department of Thoracic Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China.,Kunming Medical University, Kunming, Yunnan, China.,Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Kunming, China.,Department of Cardiovascular Surgery, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Yongwu Li
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Kunming, China.,Department of Cardiovascular Surgery, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Xi Chen
- Kunming Medical University, Kunming, Yunnan, China.,First Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Sheng Hu
- Kunming Medical University, Kunming, Yunnan, China.,Second Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wanli Cheng
- Department of Thoracic Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China.,Kunming Medical University, Kunming, Yunnan, China
| | - Yu Cao
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Kunming, China.,Department of Cardiovascular Surgery, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Jingcheng Gao
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Kunming, China.,Department of Cardiovascular Surgery, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Xia Chen
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Kunming, China.,Department of Cardiovascular Surgery, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Da Xiong
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Kunming, China.,Department of Cardiovascular Surgery, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Hongrong Li
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Kunming, China.,Department of Cardiovascular Surgery, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Ping Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China.,Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
15
|
Liu AR, Ramakrishnan P. Regulation of Nuclear Factor-kappaB Function by O-GlcNAcylation in Inflammation and Cancer. Front Cell Dev Biol 2021; 9:751761. [PMID: 34722537 PMCID: PMC8555427 DOI: 10.3389/fcell.2021.751761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/23/2021] [Indexed: 12/30/2022] Open
Abstract
Nuclear factor-kappaB (NF-κB) is a pleiotropic, evolutionarily conserved transcription factor family that plays a central role in regulating immune responses, inflammation, cell survival, and apoptosis. Great strides have been made in the past three decades to understand the role of NF-κB in physiological and pathological conditions. Carcinogenesis is associated with constitutive activation of NF-κB that promotes tumor cell proliferation, angiogenesis, and apoptosis evasion. NF-κB is ubiquitously expressed, however, its activity is under tight regulation by inhibitors of the pathway and through multiple posttranslational modifications. O-GlcNAcylation is a dynamic posttranslational modification that controls NF-κB-dependent transactivation. O-GlcNAcylation acts as a nutrient-dependent rheostat of cellular signaling. Increased uptake of glucose and glutamine by cancer cells enhances NF-κB O-GlcNAcylation. Growing evidence indicates that O-GlcNAcylation of NF-κB is a key molecular mechanism that regulates cancer cell proliferation, survival and metastasis and acts as link between inflammation and cancer. In this review, we are attempting to summarize the current understanding of the cohesive role of NF-κB O-GlcNAcylation in inflammation and cancer.
Collapse
Affiliation(s)
- Angela Rose Liu
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Parameswaran Ramakrishnan
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
- The Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
16
|
Russi M, Marson D, Fermeglia A, Aulic S, Fermeglia M, Laurini E, Pricl S. The fellowship of the RING: BRCA1, its partner BARD1 and their liaison in DNA repair and cancer. Pharmacol Ther 2021; 232:108009. [PMID: 34619284 DOI: 10.1016/j.pharmthera.2021.108009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 08/22/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
The breast cancer type 1 susceptibility protein (BRCA1) and its partner - the BRCA1-associated RING domain protein 1 (BARD1) - are key players in a plethora of fundamental biological functions including, among others, DNA repair, replication fork protection, cell cycle progression, telomere maintenance, chromatin remodeling, apoptosis and tumor suppression. However, mutations in their encoding genes transform them into dangerous threats, and substantially increase the risk of developing cancer and other malignancies during the lifetime of the affected individuals. Understanding how BRCA1 and BARD1 perform their biological activities therefore not only provides a powerful mean to prevent such fatal occurrences but can also pave the way to the development of new targeted therapeutics. Thus, through this review work we aim at presenting the major efforts focused on the functional characterization and structural insights of BRCA1 and BARD1, per se and in combination with all their principal mediators and regulators, and on the multifaceted roles these proteins play in the maintenance of human genome integrity.
Collapse
Affiliation(s)
- Maria Russi
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Alice Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Suzana Aulic
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Maurizio Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy; Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| |
Collapse
|
17
|
Silke J, O’Reilly LA. NF-κB and Pancreatic Cancer; Chapter and Verse. Cancers (Basel) 2021; 13:4510. [PMID: 34572737 PMCID: PMC8469693 DOI: 10.3390/cancers13184510] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is one of the world's most lethal cancers. An increase in occurrence, coupled with, presently limited treatment options, necessitates the pursuit of new therapeutic approaches. Many human cancers, including PDAC are initiated by unresolved inflammation. The transcription factor NF-κB coordinates many signals that drive cellular activation and proliferation during immunity but also those involved in inflammation and autophagy which may instigate tumorigenesis. It is not surprising therefore, that activation of canonical and non-canonical NF-κB pathways is increasingly recognized as an important driver of pancreatic injury, progression to tumorigenesis and drug resistance. Paradoxically, NF-κB dysregulation has also been shown to inhibit pancreatic inflammation and pancreatic cancer, depending on the context. A pro-oncogenic or pro-suppressive role for individual components of the NF-κB pathway appears to be cell type, microenvironment and even stage dependent. This review provides an outline of NF-κB signaling, focusing on the role of the various NF-κB family members in the evolving inflammatory PDAC microenvironment. Finally, we discuss pharmacological control of NF-κB to curb inflammation, focussing on novel anti-cancer agents which reinstate the process of cancer cell death, the Smac mimetics and their pre-clinical and early clinical trials.
Collapse
Affiliation(s)
- John Silke
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research (WEHI), Parkville, VIC 3052, Australia;
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Lorraine Ann O’Reilly
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research (WEHI), Parkville, VIC 3052, Australia;
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
18
|
Kanapeckaitė A, Beaurivage C, Jančorienė L, Mažeikienė A. In silico drug discovery for a complex immunotherapeutic target - human c-Rel protein. Biophys Chem 2021; 276:106593. [PMID: 34087524 DOI: 10.1016/j.bpc.2021.106593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/28/2021] [Accepted: 04/12/2021] [Indexed: 12/22/2022]
Abstract
Target evaluation and rational drug design rely on identifying and characterising small-molecule binding sites on therapeutically relevant target proteins. Immunotherapeutics development is especially challenging because of complex disease etiology and heterogenous nature of targets. c-Rel protein, a promising target in many human inflammatory and cancer pathologies, was selected as a case study for an effective in silico screening platform development since this transcription factor currently has no successful therapeutic inhibitors or modulators. This study introduces a novel in silico screening approach to probe binding sites using structural validation sets, molecular modelling and describes a method of a computer-aided drug design when a crystal structure is not available for the target of interest. In addition, we showed that binding sites can be analysed with the machine learning as well as molecular simulation approaches to help assess and systematically analyse how drug candidates can exert their mode of action. Finally, this cutting-edge approach was subjected to a high through-put virtual screen of selected 34 M drug-like compounds filtered from a library of 659 M compounds by identifying the most promising structures and proposing potential action mechanisms for the future development of highly selective human c-Rel inhibitors and/or modulators.
Collapse
Affiliation(s)
| | | | - Ligita Jančorienė
- Vilnius University Medical Faculty InsTtute of Clinical Medicine, Clinic of InfecTous Diseases and Dermatovenerology, Santariškių str. 14, 08406 Vilnius, Lithuania
| | - Asta Mažeikienė
- Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, M. K. Čiurlionio g. 21, LT-03101, Vilnius, Lithuania
| |
Collapse
|
19
|
Liu QQ, Liu YW, Xie YK, Zhang JH, Song CX, Wang JZ, Xie BH. Amplification of DDR2 mediates sorafenib resistance through NF-κB/c-Rel signaling in hepatocellular carcinoma. Cell Biol Int 2021; 45:1906-1916. [PMID: 33969575 DOI: 10.1002/cbin.11625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/24/2021] [Accepted: 05/01/2021] [Indexed: 12/24/2022]
Abstract
Sorafenib was the first systemic therapy approved by the Food and Drug Administration to treat advanced hepatocellular carcinoma (HCC). However, sorafenib therapy is frequently accompanied by drug resistance. We aimed to explore the mechanisms of sorafenib resistance and provide feasible solutions to increase the response to sorafenib in patients with advanced HCC. The expression profile of discoidin domain receptor 2 (DDR2) in HCC tissues and cells was detected using quantitative real-time PCR (qPCR) and western blotting assays. The effects of DDR2 on sorafenib resistance were examined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, colony formation, TdT-mediated dUTP nick end labeling, and flow cytometry assays. The effect of DDR2 on the nuclear factor kappa B (NF-κB) signaling pathway was evaluated by luciferase reporter, immunofluorescence, qPCR and flow cytometry assays. We demonstrated that DDR2 expression was dramatically upregulated in sorafenib-resistant HCC tissues relative to sensitive tissues. Downregulation of DDR2 sensitized HCC cell lines to sorafenib cytotoxicity. Further analysis showed that DDR2 could increase the nuclear location of REL proto-oncogene, a NF-κB subunit, to mediate NF-κB signaling. Blocking NF-κB signaling using the NF-κB signaling inhibitor, bardoxolone methyl, increased the response of HCC cells to sorafenib. Further analysis showed that DNA amplification of DDR2 is an important mechanism leading to DDR2 overexpression in HCC. Our results demonstrated that DDR2 is a potential therapeutic target in patients with HCC, and targeting DDR2 represents a promising approach to increase sorafenib sensitivity in patients with HCC.
Collapse
Affiliation(s)
- Qing-Quan Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yu-Wen Liu
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yuan-Kang Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jian-Hong Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Cai-Xin Song
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jian-Zhong Wang
- Department of General Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Bin-Hui Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
20
|
He J, Zhou M, Yin J, Wan J, Chu J, Jia J, Sheng J, Wang C, Yin H, He F. METTL3 restrains papillary thyroid cancer progression via m 6A/c-Rel/IL-8-mediated neutrophil infiltration. Mol Ther 2021; 29:1821-1837. [PMID: 33484966 PMCID: PMC8116572 DOI: 10.1016/j.ymthe.2021.01.019] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 12/15/2020] [Accepted: 01/12/2021] [Indexed: 02/07/2023] Open
Abstract
Growing evidence indicates that N6-methyladenosine (m6A) is the most pervasive RNA modification in eukaryotic cells. However, the specific role of METTL3 in papillary thyroid carcinoma (PTC) initiation and development remains elusive. Here we found that downregulation of METTL3 was correlated with malignant progression and poor prognosis in PTC. A variety of gain- and loss-of-function studies clarified the effect of METTL3 on regulation of growth and metastasis of PTC cells in vitro and in vivo. By combining RNA sequencing (RNA-seq) and methylated RNA immunoprecipitation sequencing (meRIP-seq), our mechanistic studies pinpointed c-Rel and RelA as downstream m6A targets of METTL3. Disruption of METTL3 elicited secretion of interleukin-8 (IL-8), and elevated concentrations of IL-8 promoted recruitment of tumor-associated neutrophils (TANs) in chemotaxis assays and mouse models. Administration of the IL-8 antagonist SB225002 substantially retarded tumor growth and abolished TAN accumulation in immunodeficient mice. Our findings revealed that METTL3 played a pivotal tumor-suppressor role in PTC carcinogenesis through c-Rel and RelA inactivation of the nuclear factor κB (NF-κB) pathway by cooperating with YTHDF2 and altered TAN infiltration to regulate tumor growth, which extends our understanding of the relationship between m6A modification and plasticity of the tumor microenvironment.
Collapse
Affiliation(s)
- Jing He
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Mingxia Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jie Yin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Junhu Wan
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jie Chu
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jinlin Jia
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jinxiu Sheng
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Chang Wang
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Huiqing Yin
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Fucheng He
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
21
|
Liaño-Pons J, Lafita-Navarro MC, García-Gaipo L, Colomer C, Rodríguez J, von Kriegsheim A, Hurlin PJ, Ourique F, Delgado MD, Bigas A, Espinosa L, León J. A novel role of MNT as a negative regulator of REL and the NF-κB pathway. Oncogenesis 2021; 10:5. [PMID: 33419981 PMCID: PMC7794610 DOI: 10.1038/s41389-020-00298-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 11/20/2020] [Accepted: 12/02/2020] [Indexed: 01/29/2023] Open
Abstract
MNT, a transcription factor of the MXD family, is an important modulator of the oncoprotein MYC. Both MNT and MYC are basic-helix-loop-helix proteins that heterodimerize with MAX in a mutually exclusive manner, and bind to E-boxes within regulatory regions of their target genes. While MYC generally activates transcription, MNT represses it. However, the molecular interactions involving MNT as a transcriptional regulator beyond the binding to MAX remain unexplored. Here we demonstrate a novel MAX-independent protein interaction between MNT and REL, the oncogenic member of the NF-κB family. REL participates in important biological processes and it is altered in a variety of tumors. REL is a transcription factor that remains inactive in the cytoplasm in an inhibitory complex with IκB and translocates to the nucleus when the NF-κB pathway is activated. In the present manuscript, we show that MNT knockdown triggers REL translocation into the nucleus and thus the activation of the NF-κB pathway. Meanwhile, MNT overexpression results in the repression of IκBα, a bona fide REL target. Both MNT and REL bind to the IκBα gene on the first exon, suggesting its regulation as an MNT-REL complex. Altogether our data indicate that MNT acts as a repressor of the NF-κB pathway by two mechanisms: (1) retention of REL in the cytoplasm by MNT interaction, and (2) MNT-driven repression of REL-target genes through an MNT-REL complex. These results widen our knowledge about MNT biological roles and reveal a novel connection between the MYC/MXD and NF-κB pathways, two of the most prominent pathways in cancer.
Collapse
Affiliation(s)
- Judit Liaño-Pons
- Departmento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, Santander, Spain
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum B7, Karolinska Institutet, Stockholm, Sweden
| | - M Carmen Lafita-Navarro
- Departmento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, Santander, Spain
- Department of Cell Biology UT Southwestern Medical Center, Dallas, TX, USA
| | - Lorena García-Gaipo
- Departmento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, Santander, Spain
| | - Carlota Colomer
- Cancer Research Program, Institut Hospital del Mar d'Investigacions Mèdiques, CIBERONC, Hospital del Mar, Barcelona, Spain
| | - Javier Rodríguez
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Alex von Kriegsheim
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
- Edinburgh Cancer Research Center, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Peter J Hurlin
- Shriners Hospitals for Children Research Center, Department of Cell, Developmental and Cancer Biology and Department of Orthopaedics and Rehabilitation, Oregon Health and Science University, Portland, OR, USA
| | - Fabiana Ourique
- Departmento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, Santander, Spain
- Dept. of Biochemistry, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - M Dolores Delgado
- Departmento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, Santander, Spain
| | - Anna Bigas
- Cancer Research Program, Institut Hospital del Mar d'Investigacions Mèdiques, CIBERONC, Hospital del Mar, Barcelona, Spain
| | - Lluis Espinosa
- Cancer Research Program, Institut Hospital del Mar d'Investigacions Mèdiques, CIBERONC, Hospital del Mar, Barcelona, Spain
| | - Javier León
- Departmento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, Santander, Spain.
| |
Collapse
|
22
|
Leslie J, Macia MG, Luli S, Worrell JC, Reilly WJ, Paish HL, Knox A, Barksby BS, Gee LM, Zaki MYW, Collins AL, Burgoyne RA, Cameron R, Bragg C, Xu X, Chung GW, Brown CDA, Blanchard AD, Nanthakumar CB, Karsdal M, Robinson SM, Manas DM, Sen G, French J, White SA, Murphy S, Trost M, Zakrzewski JL, Klein U, Schwabe RF, Mederacke I, Nixon C, Bird T, Teuwen LA, Schoonjans L, Carmeliet P, Mann J, Fisher AJ, Sheerin NS, Borthwick LA, Mann DA, Oakley F. c-Rel orchestrates energy-dependent epithelial and macrophage reprogramming in fibrosis. Nat Metab 2020; 2:1350-1367. [PMID: 33168981 PMCID: PMC7116435 DOI: 10.1038/s42255-020-00306-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/30/2020] [Indexed: 02/07/2023]
Abstract
Fibrosis is a common pathological feature of chronic disease. Deletion of the NF-κB subunit c-Rel limits fibrosis in multiple organs, although the mechanistic nature of this protection is unresolved. Using cell-specific gene-targeting manipulations in mice undergoing liver damage, we elucidate a critical role for c-Rel in controlling metabolic changes required for inflammatory and fibrogenic activities of hepatocytes and macrophages and identify Pfkfb3 as the key downstream metabolic mediator of this response. Independent deletions of Rel in hepatocytes or macrophages suppressed liver fibrosis induced by carbon tetrachloride, while combined deletion had an additive anti-fibrogenic effect. In transforming growth factor-β1-induced hepatocytes, c-Rel regulates expression of a pro-fibrogenic secretome comprising inflammatory molecules and connective tissue growth factor, the latter promoting collagen secretion from HMs. Macrophages lacking c-Rel fail to polarize to M1 or M2 states, explaining reduced fibrosis in RelΔLysM mice. Pharmacological inhibition of c-Rel attenuated multi-organ fibrosis in both murine and human fibrosis. In conclusion, activation of c-Rel/Pfkfb3 in damaged tissue instigates a paracrine signalling network among epithelial, myeloid and mesenchymal cells to stimulate fibrogenesis. Targeting the c-Rel-Pfkfb3 axis has potential for therapeutic applications in fibrotic disease.
Collapse
Affiliation(s)
- Jack Leslie
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| | - Marina García Macia
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Saimir Luli
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Julie C Worrell
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - William J Reilly
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Hannah L Paish
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Amber Knox
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Ben S Barksby
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Lucy M Gee
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Marco Y W Zaki
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Biochemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Amy L Collins
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Rachel A Burgoyne
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Rainie Cameron
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Charlotte Bragg
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Xin Xu
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Git W Chung
- Newcells Biotech, The Biosphere, Newcastle Helix, Newcastle upon Tyne, UK
| | - Colin D A Brown
- Newcells Biotech, The Biosphere, Newcastle Helix, Newcastle upon Tyne, UK
| | - Andrew D Blanchard
- Fibrosis Discovery Performance Unit, Respiratory Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Stevenage, UK
| | - Carmel B Nanthakumar
- Fibrosis Discovery Performance Unit, Respiratory Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Stevenage, UK
| | - Morten Karsdal
- Nordic Bioscience A/S, Biomarkers & Research, Herlev, Denmark
| | - Stuart M Robinson
- Department of Hepatobiliary Surgery, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Derek M Manas
- Department of Hepatobiliary Surgery, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Gourab Sen
- Department of Hepatobiliary Surgery, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Jeremy French
- Department of Hepatobiliary Surgery, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Steven A White
- Department of Hepatobiliary Surgery, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Sandra Murphy
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Matthias Trost
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Johannes L Zakrzewski
- Center for Discovery and Innovation and John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Ulf Klein
- Division of Haematology & Immunology, Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, UK
| | | | - Ingmar Mederacke
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Colin Nixon
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| | - Tom Bird
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, UK
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Laure-Anne Teuwen
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Luc Schoonjans
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Jelena Mann
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Fibrofind, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew J Fisher
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Institute of Transplantation, The Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Neil S Sheerin
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Lee A Borthwick
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Fibrofind, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Derek A Mann
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Fibrofind, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Fiona Oakley
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
- Fibrofind, Medical School, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
23
|
Shendy NAM, Raghu D, Roy S, Perry CH, Safi A, Branco MR, Homayouni R, Abell AN. Coordinated regulation of Rel expression by MAP3K4, CBP, and HDAC6 controls phenotypic switching. Commun Biol 2020; 3:475. [PMID: 32859943 PMCID: PMC7455715 DOI: 10.1038/s42003-020-01200-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
Coordinated gene expression is required for phenotypic switching between epithelial and mesenchymal phenotypes during normal development and in disease states. Trophoblast stem (TS) cells undergo epithelial-mesenchymal transition (EMT) during implantation and placentation. Mechanisms coordinating gene expression during these processes are poorly understood. We have previously demonstrated that MAP3K4-regulated chromatin modifiers CBP and HDAC6 each regulate thousands of genes during EMT in TS cells. Here we show that CBP and HDAC6 coordinate expression of only 183 genes predicted to be critical regulators of phenotypic switching. The highest-ranking co-regulated gene is the NF-κB family member Rel. Although NF-κB is primarily regulated post-transcriptionally, CBP and HDAC6 control Rel transcript levels by binding Rel regulatory regions and controlling histone acetylation. REL re-expression in mesenchymal-like TS cells induces a mesenchymal-epithelial transition. Importantly, REL forms a feedback loop, blocking HDAC6 expression and nuclear localization. Together, our work defines a developmental program coordinating phenotypic switching. Noha Shendy et al. study the role of CBP and HDAC6 in phenotypic switching using trophoblast stem cells. They identify Rel, an NF-kB family member, to be transcriptionally coregulated by CBP and HDAC6. Surprisingly, Rel induces mesenchymal-epithelial transition and itself regulated Hdac6 expression and nuclear localization.
Collapse
Affiliation(s)
- Noha Ahmed Mohammed Shendy
- Department of Biological Sciences, University of Memphis, Memphis, TN, 38152, USA.,Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Deepthi Raghu
- Department of Biological Sciences, University of Memphis, Memphis, TN, 38152, USA
| | - Sujoy Roy
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, 48309-4482, USA
| | | | - Adiba Safi
- Department of Biological Sciences, University of Memphis, Memphis, TN, 38152, USA
| | - Miguel Ramos Branco
- Centre for Genomics and Child Health, Blizard Institute, Queen Mary University of London, London, E1 2AT, UK
| | - Ramin Homayouni
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, 48309-4482, USA
| | - Amy Noel Abell
- Department of Biological Sciences, University of Memphis, Memphis, TN, 38152, USA.
| |
Collapse
|
24
|
Dimitrakopoulos FID, Kottorou AE, Kalofonou M, Kalofonos HP. The Fire Within: NF-κB Involvement in Non-Small Cell Lung Cancer. Cancer Res 2020; 80:4025-4036. [PMID: 32616502 DOI: 10.1158/0008-5472.can-19-3578] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/01/2020] [Accepted: 06/29/2020] [Indexed: 11/16/2022]
Abstract
Thirty-four years since its discovery, NF-κB remains a transcription factor with great potential for cancer therapy. However, NF-κB-targeted therapies have yet to find a way to be clinically translatable. Here, we focus exclusively on the role of NF-κB in non-small cell lung cancer (NSCLC) and discuss its contributing effect on cancer hallmarks such as inflammation, proliferation, survival, apoptosis, angiogenesis, epithelial-mesenchymal transition, metastasis, stemness, metabolism, and therapy resistance. In addition, we present our current knowledge of the clinical significance of NF-κB and its involvement in the treatment of patients with NSCLC with chemotherapy, targeted therapies, and immunotherapy.
Collapse
Affiliation(s)
- Foteinos-Ioannis D Dimitrakopoulos
- Clinical and Molecular Oncology Laboratory, Division of Oncology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Anastasia E Kottorou
- Clinical and Molecular Oncology Laboratory, Division of Oncology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Melpomeni Kalofonou
- Institute of Biomedical Engineering, Imperial College London, London, United Kingdom
| | - Haralabos P Kalofonos
- Clinical and Molecular Oncology Laboratory, Division of Oncology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece.
| |
Collapse
|
25
|
Functional interplay of Epstein-Barr virus oncoproteins in a mouse model of B cell lymphomagenesis. Proc Natl Acad Sci U S A 2020; 117:14421-14432. [PMID: 32522871 DOI: 10.1073/pnas.1921139117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Epstein-Barr virus (EBV) is a B cell transforming virus that causes B cell malignancies under conditions of immune suppression. EBV orchestrates B cell transformation through its latent membrane proteins (LMPs) and Epstein-Barr nuclear antigens (EBNAs). We here identify secondary mutations in mouse B cell lymphomas induced by LMP1, to predict and identify key functions of other EBV genes during transformation. We find aberrant activation of early B cell factor 1 (EBF1) to promote transformation of LMP1-expressing B cells by inhibiting their differentiation to plasma cells. EBV EBNA3A phenocopies EBF1 activities in LMP1-expressing B cells, promoting transformation while inhibiting differentiation. In cells expressing LMP1 together with LMP2A, EBNA3A only promotes lymphomagenesis when the EBNA2 target Myc is also overexpressed. Collectively, our data support a model where proproliferative activities of LMP1, LMP2A, and EBNA2 in combination with EBNA3A-mediated inhibition of terminal plasma cell differentiation critically control EBV-mediated B cell lymphomagenesis.
Collapse
|
26
|
Regulation of B-cell function by NF-kappaB c-Rel in health and disease. Cell Mol Life Sci 2020; 77:3325-3340. [PMID: 32130429 DOI: 10.1007/s00018-020-03488-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/03/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023]
Abstract
B cells mediate humoral immune response and contribute to the regulation of cellular immune response. Members of the Nuclear Factor kappaB (NF-κB) family of transcription factors play a major role in regulating B-cell functions. NF-κB subunit c-Rel is predominantly expressed in lymphocytes, and in B cells, it is required for survival, proliferation, and antibody production. Dysregulation of c-Rel expression and activation alters B-cell homeostasis and is associated with B-cell lymphomas and autoimmune pathologies. Based on its essential roles, c-Rel may serve as a potential prognostic and therapeutic target. This review summarizes the current understanding of the multifaceted role of c-Rel in B cells and B-cell diseases.
Collapse
|
27
|
Ghoneum A, Abdulfattah AY, Said N. Targeting the PI3K/AKT/mTOR/NFκB Axis in Ovarian Cancer. JOURNAL OF CELLULAR IMMUNOLOGY 2020; 2:68-73. [PMID: 32395722 PMCID: PMC7213295 DOI: 10.33696/immunology.1.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ovarian cancer stands as the most lethal gynecologic malignancy and remains the fifth most common gynecologic cancer. Poor prognosis and low five-year survival rate are attributed to nonspecific symptoms at early phases along with a lack of effective treatment at advanced stages. It is thus paramount, that ovarian carcinoma be viewed through several lenses in order to gain a thorough comprehension of its molecular pathogenesis, epidemiology, histological subtypes, hereditary factors, diagnostic approaches, and methods of treatment. Above all, it is crucial to dissect the role that the unique peritoneal tumor microenvironment plays in ovarian cancer progression and metastasis. This short communication seeks to underscore several important aspects of the PI3K/AKT/mTOR/NFκB pathway in the context of ovarian cancer and discuss recent advances in targeting this pathway.
Collapse
Affiliation(s)
- Alia Ghoneum
- Department of Cancer Biology, Wake Forest University School of Medicine, and Comprehensive Cancer Center, Winston Salem, NC 27157, USA
| | - Ammar Yasser Abdulfattah
- Department of Cancer Biology, Wake Forest University School of Medicine, and Comprehensive Cancer Center, Winston Salem, NC 27157, USA
| | - Neveen Said
- Department of Cancer Biology, Wake Forest University School of Medicine, and Comprehensive Cancer Center, Winston Salem, NC 27157, USA
- Department of Pathology, Wake Forest University School of Medicine, and Comprehensive Cancer Center, Winston Salem, NC 27157, USA
- Department of Urology, Wake Forest University School of Medicine, and Comprehensive Cancer Center, Winston Salem, NC 27157, USA
- Wake Forest Baptist Health Sciences, Winston Salem, NC 27157, USA
| |
Collapse
|
28
|
Domińska K, Kowalska K, Habrowska-Górczyńska DE, Urbanek KA, Ochędalski T, Piastowska-Ciesielska AW. The opposite effects of angiotensin 1-9 and angiotensin 3-7 in prostate epithelial cells. Biochem Biophys Res Commun 2019; 519:868-873. [PMID: 31563322 DOI: 10.1016/j.bbrc.2019.09.079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 09/20/2019] [Indexed: 02/07/2023]
Abstract
There is growing evidence that renin-angiotensin system (RAS) components have been involved in the development of various types of cancers, including prostate cancer. This article for the first time reports the impact of Ang1-9 and Ang3-7 on viability and proliferation, migration and invasion of epithelial prostate cells. The results of this study clearly show that Ang1-9 and Ang3-7 exert different/opposite effects on in vitro biological properties of prostate cells. It appears that Ang1-9 has pro-cancer activities via the ability to induce cell divisions, enhance cell motility and stimulate the expression of such genes as vascular endothelial growth factor (VEGF), hypoxia-inducible factors (HIF-1), vimentin (VIM) and REL proto-oncogene, NF-kB subunit (REL). On the contrary, Ang3-7 did not show any mitogenic activity. Furthermore, this peptide hormone limited the migration of PNT1A cells probably by downregulation of VEGF and VIM expression. Finally, it is worth noting that both angiotensins have the ability to modulate gene expression for angiotensin receptors. Unfortunately, we could not unequivocally identify the type of angiotensin receptor responsible for signal transduction pathway involved in PNT1A cell survival and proliferation. Undoubtedly, further research and testing in this area are necessary.
Collapse
Affiliation(s)
- Kamila Domińska
- Department of Comparative Endocrinology, Medical University of Lodz, Lodz, 90-752, Poland.
| | - Karolina Kowalska
- Department of Laboratory of Cell Cultures and Genomic Analysis, Medical University of Lodz, Lodz, 90-752, Poland
| | | | - Kinga Anna Urbanek
- Department of Comparative Endocrinology, Medical University of Lodz, Lodz, 90-752, Poland; Department of Laboratory of Cell Cultures and Genomic Analysis, Medical University of Lodz, Lodz, 90-752, Poland
| | - Tomasz Ochędalski
- Department of Comparative Endocrinology, Medical University of Lodz, Lodz, 90-752, Poland
| | - Agnieszka Wanda Piastowska-Ciesielska
- Department of Comparative Endocrinology, Medical University of Lodz, Lodz, 90-752, Poland; Department of Laboratory of Cell Cultures and Genomic Analysis, Medical University of Lodz, Lodz, 90-752, Poland
| |
Collapse
|
29
|
King KE, George AL, Sakakibara N, Mahmood K, Moses MA, Weinberg WC. Intersection of the p63 and NF-κB pathways in epithelial homeostasis and disease. Mol Carcinog 2019; 58:1571-1580. [PMID: 31286584 DOI: 10.1002/mc.23081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/12/2022]
Abstract
Overexpression of ΔNp63α, a member of the p53/p63/p73 family of transcription factors, is a molecular attribute of human squamous cancers of the head and neck, lung and skin. The TP63 gene plays important roles in epidermal morphogenesis and homeostasis, regulating diverse biological processes including epidermal fate decisions and keratinocyte proliferation and survival. When overexpressed experimentally in primary mouse keratinocytes, ΔNp63α maintains a basal cell phenotype including the loss of normal calcium-mediated growth arrest, at least in part through the activation and enhanced nuclear accumulation of the c-rel subunit of NF-κB (Nuclear Factor-kappa B). Initially identified for its role in the immune system and hematopoietic cancers, c-Rel has increasingly been associated with solid tumors and other pathologies. ΔNp63α and c-Rel have been shown to be associated in the nuclei of ΔNp63α overexpressing human squamous carcinoma cells. Together, these transcription factors cooperate in the transcription of genes regulating intrinsic keratinocyte functions, as well as the elaboration of factors that influence the tumor microenvironment (TME). This review provides an overview of the roles of ΔNp63α and c-Rel in normal epidermal homeostasis and elaborates on how these pathways may intersect in pathological conditions such as cancer and the associated TME.
Collapse
Affiliation(s)
- Kathryn E King
- Laboratory of M olecular Oncology, Division of Biotechnology Review and Research 1, Office of Biotechnology Products, FDA Center for Drug Evaluation and Research, Silver Spring, Maryland
| | - Andrea L George
- Laboratory of M olecular Oncology, Division of Biotechnology Review and Research 1, Office of Biotechnology Products, FDA Center for Drug Evaluation and Research, Silver Spring, Maryland
| | - Nozomi Sakakibara
- Laboratory of M olecular Oncology, Division of Biotechnology Review and Research 1, Office of Biotechnology Products, FDA Center for Drug Evaluation and Research, Silver Spring, Maryland
| | - Kanwal Mahmood
- Laboratory of M olecular Oncology, Division of Biotechnology Review and Research 1, Office of Biotechnology Products, FDA Center for Drug Evaluation and Research, Silver Spring, Maryland
| | - Michael A Moses
- Laboratory of M olecular Oncology, Division of Biotechnology Review and Research 1, Office of Biotechnology Products, FDA Center for Drug Evaluation and Research, Silver Spring, Maryland
| | - Wendy C Weinberg
- Laboratory of M olecular Oncology, Division of Biotechnology Review and Research 1, Office of Biotechnology Products, FDA Center for Drug Evaluation and Research, Silver Spring, Maryland
| |
Collapse
|
30
|
PI3K-AKT-mTOR and NFκB Pathways in Ovarian Cancer: Implications for Targeted Therapeutics. Cancers (Basel) 2019; 11:cancers11070949. [PMID: 31284467 PMCID: PMC6679095 DOI: 10.3390/cancers11070949] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/10/2019] [Accepted: 06/30/2019] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer is the most lethal gynecologic malignancy in the United States, with an estimated 22,530 new cases and 13,980 deaths in 2019. Recent studies have indicated that the phosphoinositol 3 kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR), as well as the nuclear factor-κ light chain enhancer of activated B cells (NFκB) pathways are highly mutated and/or hyper-activated in a majority of ovarian cancer patients, and are associated with advanced grade and stage disease and poor prognosis. In this review, we will investigate PI3K/AKT/mTOR and their interconnection with NFκB pathway in ovarian cancer cells.
Collapse
|
31
|
Kabacaoglu D, Ruess DA, Ai J, Algül H. NF-κB/Rel Transcription Factors in Pancreatic Cancer: Focusing on RelA, c-Rel, and RelB. Cancers (Basel) 2019; 11:E937. [PMID: 31277415 PMCID: PMC6679104 DOI: 10.3390/cancers11070937] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023] Open
Abstract
Regulation of Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)/Rel transcription factors (TFs) is extremely cell-type-specific owing to their ability to act disparately in the context of cellular homeostasis driven by cellular fate and the microenvironment. This is also valid for tumor cells in which every single component shows heterogenic effects. Whereas many studies highlighted a per se oncogenic function for NF-κB/Rel TFs across cancers, recent advances in the field revealed their additional tumor-suppressive nature. Specifically, pancreatic ductal adenocarcinoma (PDAC), as one of the deadliest malignant diseases, shows aberrant canonical-noncanonical NF-κB signaling activity. Although decades of work suggest a prominent oncogenic activity of NF-κB signaling in PDAC, emerging evidence points to the opposite including anti-tumor effects. Considering the dual nature of NF-κB signaling and how it is closely linked to many other cancer related signaling pathways, it is essential to dissect the roles of individual Rel TFs in pancreatic carcinogenesis and tumor persistency and progression. Here, we discuss recent knowledge highlighting the role of Rel TFs RelA, RelB, and c-Rel in PDAC development and maintenance. Next to providing rationales for therapeutically harnessing Rel TF function in PDAC, we compile strategies currently in (pre-)clinical evaluation.
Collapse
Affiliation(s)
- Derya Kabacaoglu
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Dietrich A Ruess
- Department of Surgery, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Jiaoyu Ai
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Hana Algül
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany.
| |
Collapse
|
32
|
A transcriptional signature associated with non-Hodgkin lymphoma in the blood of patients with Q fever. PLoS One 2019; 14:e0217542. [PMID: 31181104 PMCID: PMC6557487 DOI: 10.1371/journal.pone.0217542] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 05/14/2019] [Indexed: 12/14/2022] Open
Abstract
Coxiella burnetii, the agent causing Q fever, has been associated with B-cell non-Hodgkin lymphoma (NHL). To better clarify this link, we analysed the genetic transcriptomic profile of peripheral blood leukocytes from patients with C. burnetii infection to identify possible links to lymphoma. Microarray analyses revealed that 1189 genes were expressed differently (p <.001 and fold change ≥4) in whole blood of patients with C. burnetii infection compared to controls. In addition, 95 genes expressed in patients with non-Hodgkin lymphoma (NHL) and in patients with C. burnetii persistent infection have allowed us to establish the 'C. burnetii-associated NHL signature'. Among these, 33 genes previously found modulated in C. burnetii-associated -NHL by the microarray analysis were selected and their mRNA expression levels were measured in distinct C. burnetii-induced pathologies, namely, acute Q fever, focalized persistent infection, lymphadenitis and C.burnetii-associated NHL. Specific genes involved in anti-apoptotic process were found highly expressed in leukocytes from patients with C. burnetii associated-NHL: MIR17HG, REL and SP100. This signature differed from that found for NHL-control group. Patients with C. burnetii lymphadenitis presented significant elevated levels of BCL2 and ETS1 mRNAs. Altogether, we identified a specific transcriptionnal signature for NHL during C. burnetii infection reflecting the up-regulation of anti-apoptotic processes and the fact that lymphadenitis might constitute a critical step towards lymphomagenesis.
Collapse
|
33
|
MicroRNA-365a-3p inhibits c-Rel-mediated NF-κB signaling and the progression of pancreatic cancer. Cancer Lett 2019; 452:203-212. [DOI: 10.1016/j.canlet.2019.03.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 01/08/2023]
|
34
|
A Role for NF-κB in Organ Specific Cancer and Cancer Stem Cells. Cancers (Basel) 2019; 11:cancers11050655. [PMID: 31083587 PMCID: PMC6563002 DOI: 10.3390/cancers11050655] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/02/2019] [Accepted: 05/08/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) account for tumor initiation, invasiveness, metastasis, and recurrence in a broad range of human cancers. Although being a key player in cancer development and progression by stimulating proliferation and metastasis and preventing apoptosis, the role of the transcription factor NF-κB in cancer stem cells is still underestimated. In the present review, we will evaluate the role of NF-κB in CSCs of glioblastoma multiforme, ovarian cancer, multiple myeloma, lung cancer, colon cancer, prostate cancer, as well as cancer of the bone. Next to summarizing current knowledge regarding the presence and contribution of CSCs to the respective types of cancer, we will emphasize NF-κB-mediated signaling pathways directly involved in maintaining characteristics of cancer stem cells associated to tumor progression. Here, we will also focus on the status of NF-κB-activity predominantly in CSC populations and the tumor mass. Genetic alterations leading to NF-κB activity in glioblastoma, ependymoma, and multiple myeloma will be discussed.
Collapse
|
35
|
Pan-Cancer analysis of the expression and regulation of matrisome genes across 32 tumor types. Matrix Biol Plus 2019; 1:100004. [PMID: 33543003 PMCID: PMC7852311 DOI: 10.1016/j.mbplus.2019.04.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 12/28/2022] Open
Abstract
The microenvironment plays a central role in cancer, and neoplastic cells actively shape it to their needs by complex arrays of extracellular matrix (ECM) proteins, enzymes, cytokines and growth factors collectively referred to as the matrisome. Studies on the cancer matrisome have been performed for single or few neoplasms, but a more systematic analysis is still missing. Here we present a Pan-Cancer study of matrisome gene expression in 10,487 patients across 32 tumor types, supplemented with transcription factors (TFs) and driver genes/pathways regulating each tumor's matrisome. We report on 919 TF-target pairs, either used specifically or shared across tumor types, and their prognostic significance, 40 master regulators, 31 overarching regulatory pathways and the potential for druggability with FDA-approved cancer drugs. These results provide a comprehensive transcriptional architecture of the cancer matrisome and suggest the need for development of specific matrisome-targeting approaches for future therapies. In-depth characterization of matrisome gene expression and regulation in 10,487 patients across 32 human tumor types. Identification of transcription factor (TF) and “master regulators” governing each cancer’s matrisome. Analysis unveils therapeutic possibilities and suggests new treatments by repurposing of FDA-approved cancer drugs.
Collapse
|
36
|
Spel L, Nieuwenhuis J, Haarsma R, Stickel E, Bleijerveld OB, Altelaar M, Boelens JJ, Brummelkamp TR, Nierkens S, Boes M. Nedd4-Binding Protein 1 and TNFAIP3-Interacting Protein 1 Control MHC-1 Display in Neuroblastoma. Cancer Res 2018; 78:6621-6631. [DOI: 10.1158/0008-5472.can-18-0545] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 06/20/2018] [Accepted: 09/10/2018] [Indexed: 11/16/2022]
|
37
|
Staal J, Beyaert R. Inflammation and NF-κB Signaling in Prostate Cancer: Mechanisms and Clinical Implications. Cells 2018; 7:E122. [PMID: 30158439 PMCID: PMC6162478 DOI: 10.3390/cells7090122] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 12/26/2022] Open
Abstract
Prostate cancer is a highly prevalent form of cancer that is usually slow-developing and benign. Due to its high prevalence, it is, however, still the second most common cause of death by cancer in men in the West. The higher prevalence of prostate cancer in the West might be due to elevated inflammation from metabolic syndrome or associated comorbidities. NF-κB activation and many other signals associated with inflammation are known to contribute to prostate cancer malignancy. Inflammatory signals have also been associated with the development of castration resistance and resistance against other androgen depletion strategies, which is a major therapeutic challenge. Here, we review the role of inflammation and its link with androgen signaling in prostate cancer. We further describe the role of NF-κB in prostate cancer cell survival and proliferation, major NF-κB signaling pathways in prostate cancer, and the crosstalk between NF-κB and androgen receptor signaling. Several NF-κB-induced risk factors in prostate cancer and their potential for therapeutic targeting in the clinic are described. A better understanding of the inflammatory mechanisms that control the development of prostate cancer and resistance to androgen-deprivation therapy will eventually lead to novel treatment options for patients.
Collapse
Affiliation(s)
- Jens Staal
- VIB-UGent Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, 9052 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Rudi Beyaert
- VIB-UGent Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, 9052 Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
38
|
Roles of NF-κB Signaling in the Regulation of miRNAs Impacting on Inflammation in Cancer. Biomedicines 2018; 6:biomedicines6020040. [PMID: 29601548 PMCID: PMC6027290 DOI: 10.3390/biomedicines6020040] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 12/16/2022] Open
Abstract
The NF-κB family of transcription factors regulate the expression of genes encoding proteins and microRNAs (miRNA, miR) precursors that may either positively or negatively regulate a variety of biological processes such as cell cycle progression, cell survival, and cell differentiation. The NF-κB-miRNA transcriptional regulatory network has been implicated in the regulation of proinflammatory, immune, and stress-like responses. Gene regulation by miRNAs has emerged as an additional epigenetic mechanism at the post-transcriptional level. The expression of miRNAs can be regulated by specific transcription factors (TFs), including the NF-κB TF family, and vice versa. The interplay between TFs and miRNAs creates positive or negative feedback loops and also regulatory networks, which can control cell fate. In the current review, we discuss the impact of NF-κB-miRNA interplay and feedback loops and networks impacting on inflammation in cancer. We provide several paradigms of specific NF-κB-miRNA networks that can regulate inflammation linked to cancer. For example, the NF-κB-miR-146 and NF-κB-miR-155 networks fine-tune the activity, intensity, and duration of inflammation, while the NF-κB-miR-21 and NF-κB-miR-181b-1 amplifying loops link inflammation to cancer; and p53- or NF-κB-regulated miRNAs interconnect these pathways and may shift the balance to cancer development or tumor suppression. The availability of genomic data may be useful to verify and find novel interactions, and provide a catalogue of 162 miRNAs targeting and 40 miRNAs possibly regulated by NF-κB. We propose that studying active TF-miRNA transcriptional regulatory networks such as NF-κB-miRNA networks in specific cancer types can contribute to our further understanding of the regulatory interplay between inflammation and cancer, and also perhaps lead to the development of pharmacologically novel therapeutic approaches to combat cancer.
Collapse
|
39
|
Mohammadi SM, Mohammadnejad D, Hosseinpour Feizi AA, Movassaghpour AA, Montazersaheb S, Nozad Charoudeh H. Inhibition of c-REL using siRNA increased apoptosis and decreased proliferation in pre-B ALL blasts: Therapeutic implications. Leuk Res 2017; 61:53-61. [PMID: 28892661 DOI: 10.1016/j.leukres.2017.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 01/03/2023]
Abstract
The c-Rel transcription factor is a unique member of the NF-kB family that has a role in apoptosis, proliferation and cell survival. Overexpression of c-Rel is detected in many human B cell tumors, including B-cell leukemia and several cancers. The study aimed to investigate the effects of c-Rel siRNA on the proliferation and apoptosis of relapsed pre-B acute leukemia cells. The c-Rel siRNA was transfected into Leukemia cells using an Amaxa cell line Nucleofector kit L (Lonza). Quantitative real-time RT-PCR (qRT-PCR) and western blot were done to measure the expression levels of mRNA and protein, respectively. The flow cytometry was used to analyze the effect of c-Rel siRNA on the apoptosis and proliferation of Leukemia cells. Observed c-Rel expression in the 5 pre-B Acute lymphoblastic leukemia (ALL) patients were higher than the normal cells. The c-Rel siRNA transfection significantly blocked the expression of c-Rel mRNA in a time-dependent manner, leading to a strong growth inhibition and enhanced apoptosis (P<0.05). Our results demonstrated that c-Rel plays a fundamental role in the survival. Therefore, c-Rel can be considered as an attractive target for gene therapy in ALL patients. Also siRNA-mediated silencing of this gene may be a novel strategy in ALL treatment.
Collapse
Affiliation(s)
| | - Daryosh Mohammadnejad
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Anatomical Sciences Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | | | |
Collapse
|
40
|
Velmurugan KR, Varghese RT, Fonville NC, Garner HR. High-depth, high-accuracy microsatellite genotyping enables precision lung cancer risk classification. Oncogene 2017; 36:6383-6390. [PMID: 28759038 PMCID: PMC5701090 DOI: 10.1038/onc.2017.256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 06/01/2017] [Accepted: 06/13/2017] [Indexed: 12/23/2022]
Abstract
There remains a large discrepancy between the known genetic contributions to cancer and that which can be explained by genomic variants, both inherited and somatic. Recently, understudied repetitive DNA regions called microsatellites have been identified as genetic risk markers for a number of diseases including various cancers (breast, ovarian and brain). In this study, we demonstrate an integrated process for identifying and further evaluating microsatellite-based risk markers for lung cancer using data from the cancer genome atlas and the 1000 genomes project. Comparing whole-exome germline sequencing data from 488 TCGA lung cancer samples to germline exome data from 390 control samples from the 1000 genomes project, we identified 119 potentially informative microsatellite loci. These loci were found to be able to distinguish between cancer and control samples with sensitivity and specificity ratios over 0.8. Then these loci, supplemented with additional loci from other cancers and controls, were evaluated using a target enrichment kit and sample-multiplexed nextgen sequencing. Thirteen of the 119 risk markers were found to be informative in a well powered study (>0.99 for a 0.95 confidence interval) using high-depth (579x±315) nextgen sequencing of 30 lung cancer and 89 control samples, resulting in sensitivity and specificity ratios of 0.90 and 0.94, respectively. When 8 loci harvested from the bioinformatic analysis of other cancers are added to the classifier, then the sensitivity and specificity rise to 0.93 and 0.97, respectively. Analysis of the genes harboring these loci revealed two genes (ARID1B and REL) and two significantly enriched pathways (chromatin organization and cellular stress response) suggesting that the process of lung carcinogenesis is linked to chromatin remodeling, inflammation, and tumor microenvironment restructuring. We illustrate that high-depth sequencing enables a high-precision microsatellite-based risk classifier analysis approach. This microsatellite-based platform confirms the potential to create clinically actionable diagnostics for lung cancer.
Collapse
Affiliation(s)
- K R Velmurugan
- Department of Biological Sciences, Center for Bioinformatics and Genetics and the Primary Care Research Network, Edward Via College of Osteopathic Medicine, Blacksburg, VA, USA.,Department of Biological Sciences, Gibbs Cancer Center and Research Institute, Spartanburg, SC, USA
| | - R T Varghese
- Department of Biological Sciences, Center for Bioinformatics and Genetics and the Primary Care Research Network, Edward Via College of Osteopathic Medicine, Blacksburg, VA, USA.,Department of Biological Sciences, Gibbs Cancer Center and Research Institute, Spartanburg, SC, USA
| | - N C Fonville
- Department of Biological Sciences, Riverside Law, LLP Glenhardie Corporate Center, Wayne, PA, USA
| | - H R Garner
- Department of Biological Sciences, Center for Bioinformatics and Genetics and the Primary Care Research Network, Edward Via College of Osteopathic Medicine, Blacksburg, VA, USA.,Department of Biological Sciences, Gibbs Cancer Center and Research Institute, Spartanburg, SC, USA
| |
Collapse
|
41
|
Abstract
Primary sclerosing cholangitis (PSC) is a chronic disease leading to fibrotic scarring of the intrahepatic and extrahepatic bile ducts, causing considerable morbidity and mortality via the development of cholestatic liver cirrhosis, concurrent IBD and a high risk of bile duct cancer. Expectations have been high that genetic studies would determine key factors in PSC pathogenesis to support the development of effective medical therapies. Through the application of genome-wide association studies, a large number of disease susceptibility genes have been identified. The overall genetic architecture of PSC shares features with both autoimmune diseases and IBD. Strong human leukocyte antigen gene associations, along with several susceptibility genes that are critically involved in T-cell function, support the involvement of adaptive immune responses in disease pathogenesis, and position PSC as an autoimmune disease. In this Review, we survey the developments that have led to these gene discoveries. We also elaborate relevant interpretations of individual gene findings in the context of established disease models in PSC, and propose relevant translational research efforts to pursue novel insights.
Collapse
|
42
|
Domińska K, Kowalska K, Matysiak ZE, Płuciennik E, Ochędalski T, Piastowska-Ciesielska AW. Regulation of mRNA gene expression of members of the NF-κB transcription factor gene family by angiotensin II and relaxin 2 in normal and cancer prostate cell lines. Mol Med Rep 2017; 15:4352-4359. [PMID: 28487955 DOI: 10.3892/mmr.2017.6514] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 02/24/2017] [Indexed: 11/06/2022] Open
Abstract
An increasing number of researchers are focusing on the influence of local peptide hormones such as angiotensin II (Ang II) and relaxin 2 (RLN2) in the regulation of inflammation and carcinogenesis. The interaction between the renin‑angiotensin system (RAS) and relaxin family peptide system (RFPS) is known to influence the proliferation, adhesion and migration of normal and cancer prostate cell lines. The aim of the present study was to evaluate changes in the expression of nuclear factor‑κB subunit 1 (NFKB1), nuclear factor‑κB subunit 2 (NFKB2), REL proto‑oncogene nuclear factor‑κB p65 subunit (REL), RELA proto‑oncogene nuclear factor‑κB subunit (RELA) and RELB proto‑oncogene nuclear factor‑κB subunit (RELB) mRNA caused by Ang II and RLN2. The members of NF‑kB family are involved in many processes associated with cancer development and metastasis. Reverse transcription‑quantitative polymerase chain reaction analysis identified that both peptide hormones have an influence on the relative expression of nuclear factor‑κB. Following treatment with either peptide, NFKB1 expression was downregulated in all prostate cancer cell lines (LNCaP, DU‑145 and PC3), but not in normal epithelial cells (PNT1A). Conversely, RELB mRNA was enhanced only in non‑cancerous prostate cells. RELA expression was strongly stimulated in the most aggressive cell line, whereas REL mRNA was unchanged. In many cases, the effect was strictly dependent on the cell line and/or the type of peptide: Ang II increased expression of both RELA and REL genes in the androgen‑dependent cell line while RLN2 enhanced NFKB2 and RELA mRNA in androgen‑independent cells (DU‑145). Further research is needed to understand the regulation of NF‑κB family members by key renin‑angiotensin system and RFPS peptides in prostate cancer cells; however, prostate carcinogenesis appears to be influenced by the balance between the cross‑regulation of nuclear factor‑κB (NF‑κB) and androgen receptor pathways by Ang II and relaxin 2.
Collapse
Affiliation(s)
- Kamila Domińska
- Department of Comparative Endocrinology, Medical University of Lodz, Lodz 90‑752, Poland
| | - Karolina Kowalska
- Department of Comparative Endocrinology, Medical University of Lodz, Lodz 90‑752, Poland
| | | | - Elżbieta Płuciennik
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz 90‑752, Poland
| | - Tomasz Ochędalski
- Department of Comparative Endocrinology, Medical University of Lodz, Lodz 90‑752, Poland
| | | |
Collapse
|
43
|
Yao Y, Vasoya D, Kgosana L, Smith LP, Gao Y, Wang X, Watson M, Nair V. Activation of gga-miR-155 by reticuloendotheliosis virus T strain and its contribution to transformation. J Gen Virol 2017; 98:810-820. [PMID: 28113043 PMCID: PMC5657028 DOI: 10.1099/jgv.0.000718] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The v-rel oncoprotein encoded by reticuloendotheliosis virus T strain (Rev-T) is a member of the rel/NF-κB family of transcription factors capable of transformation of primary chicken spleen and bone marrow cells. Rapid transformation of avian haematopoietic cells by v-rel occurs through a process of deregulation of multiple protein-encoding genes through its direct effect on their promoters. More recently, upregulation of oncogenic miR-155 and its precursor pre-miR-155 was demonstrated in both Rev-T-infected chicken embryo fibroblast cultures and Rev-T-induced B-cell lymphomas. Through electrophoresis mobility shift assay and reporter analysis on the gga-miR-155 promoter, we showed that the v-rel-induced miR-155 overexpression occurred by the direct binding to one of the putative NF-κB binding sites. Using the v-rel-induced transformation model on chicken embryonic splenocyte cultures, we could demonstrate a dynamic increase in miR-155 levels during the transformation. Transcriptome profiles of lymphoid cells transformed by v-rel showed upregulation of miR-155 accompanied by downregulation of a number of putative miR-155 targets such as Pu.1 and CEBPβ. We also showed that v-rel could rescue the suppression of miR-155 expression observed in Marek's disease virus (MDV)-transformed cell lines, where its functional viral homologue MDV-miR-M4 is overexpressed. Demonstration of gene expression changes affecting major molecular pathways, including organismal injury and cancer in avian macrophages transfected with synthetic mature miR-155, underlines its potential direct role in transformation. Our study suggests that v-rel-induced transformation involves a complex set of events mediated by the direct activation of NF-κB targets, together with inhibitory effects on microRNA targets.
Collapse
Affiliation(s)
- Yongxiu Yao
- Avian Viral Disease Programme & UK-China Centre of Excellence on Avian Disease Research, The Pirbright Institute, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK
| | - Deepali Vasoya
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush EH25 9RG, UK
| | - Lydia Kgosana
- Avian Viral Disease Programme & UK-China Centre of Excellence on Avian Disease Research, The Pirbright Institute, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK
| | - Lorraine P Smith
- Avian Viral Disease Programme & UK-China Centre of Excellence on Avian Disease Research, The Pirbright Institute, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK
| | - Yulong Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Xiaomei Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Mick Watson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush EH25 9RG, UK
| | - Venugopal Nair
- Avian Viral Disease Programme & UK-China Centre of Excellence on Avian Disease Research, The Pirbright Institute, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK
| |
Collapse
|
44
|
Sekiya Y, Yamamoto E, Niimi K, Nishino K, Nakamura K, Kotani T, Kajiyama H, Shibata K, Kikkawa F. c-Rel Promotes Invasion of Choriocarcinoma Cells via PI3K/AKT Signaling. Oncology 2017; 92:299-310. [DOI: 10.1159/000458529] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 01/30/2017] [Indexed: 01/04/2023]
|
45
|
Fallahi S, Mohammadi SM, Tayefi Nasrabadi H, Alihemmati A, Samadi N, Gholami S, Shanehbandi D, Nozad Charoudeh H. Impact of C-rel inhibition of cord blood-derived B-, T-, and NK cells. J Immunotoxicol 2017; 14:15-22. [DOI: 10.1080/1547691x.2016.1250849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Shirin Fallahi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyede Momeneh Mohammadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Tayefi Nasrabadi
- Tissue Engineering Research Group, Advanced Research School, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Alihemmati
- Tissue Engineering Research Group, Advanced Research School, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naser Samadi
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanaz Gholami
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
46
|
Durand JK, Baldwin AS. Targeting IKK and NF-κB for Therapy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 107:77-115. [PMID: 28215229 DOI: 10.1016/bs.apcsb.2016.11.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In addition to regulating immune responses, the NF-κB family of transcription factors also promotes cellular proliferation and survival. NF-κB and its activating kinase, IKK, have become appealing therapeutic targets because of their critical roles in the progression of many diseases including chronic inflammation and cancer. Here, we discuss the conditions that lead to pathway activation, the effects of constitutive activation, and some of the strategies used to inhibit NF-κB signaling.
Collapse
Affiliation(s)
- J K Durand
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, United States; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States
| | - A S Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States.
| |
Collapse
|