1
|
Hong W, Tang H, Wang D, Qian D, Xu Y, Zheng Y, Li S, Zheng Q, Meng X, Liu X. Xihuang pill suppresses breast cancer malignancy by inhibiting TGF-β signaling and acquires chemotherapy benefits. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:119000. [PMID: 39490714 DOI: 10.1016/j.jep.2024.119000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 10/01/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Breast cancer (BC) has an extremely high global incidence rate. The Xihuang pill (XHP), a traditional Chinese formula, originates from Hongxu Wang's "Life-Saving Manual of Diagnosis and Treatment of External Diseases" written during the Qing Dynasty. In this book, XHP, was first suggested as an anticancer treatment for BC. However, the regulatory mechanism of XHP on BC requires further investigated. AIM OF THE STUDY To assess the effects of XHP on BC and elucidate the underlying associated signaling network. MATERIALS AND METHODS The influence of XHP on cellular viability, proliferation, and apoptosis of MDA-MB-231 and BT-549 cells were examined. The ability to metastasize was evaluated using Transwell invasion and wound healing tests. Western blotting was used to examine the epithelial-mesenchymal transition (EMT) markers expression. RNA sequencing and bioinformatic analysis were utilized to investigate the regulation mechanism of XHP. A subcutaneous tumor model was developed to study the tumor-inhibitory effects of XHP or/and Doxorubicin (Dox) on BALB/c nude mice, and the EMT marker levels in tumor tissues were determined using immunohistochemical labeling. RESULTS XHP demonstrated anticancer effects on BC cells by suppressing cell proliferation, inducing cellular apoptosis, and inhibiting EMT progression. XHP may regulate the EMT via the TGF-β axis, as shown by RNA sequencing and Western blotting analysis. Furthermore, the combination of XHP and Dox had a stronger therapeutic effect on BC cell proliferation, apoptosis, and metastasis in both cellular and animal models. CONCLUSIONS We were the first to reveal that XHP abrogated EMT progression via modulating the TGF-β axis. Furthermore, the combination therapy of XHP and Dox presents a promising novel therapeutic candidate for BC patients.
Collapse
Affiliation(s)
- Weimin Hong
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, China; Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310000, Zhejiang Province, China
| | - Hongchao Tang
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, China; Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310000, Zhejiang Province, China
| | - Danhong Wang
- Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310000, Zhejiang Province, China; College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang Province, China
| | - Da Qian
- Department of Burn and Plastic Surgery-Hand Surgery, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, Changshu, 215500, Jiangsu Province, China
| | - Yadan Xu
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, China; Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310000, Zhejiang Province, China
| | - Yiwen Zheng
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, China; Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310000, Zhejiang Province, China
| | - Shujin Li
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, China; Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310000, Zhejiang Province, China
| | - Qinghui Zheng
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, China; Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310000, Zhejiang Province, China
| | - Xuli Meng
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, China; Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310000, Zhejiang Province, China.
| | - Xiaozhen Liu
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, China; Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310000, Zhejiang Province, China.
| |
Collapse
|
2
|
Jiang N, Hu Z, Wang Q, Hao J, Yang R, Jiang J, Wang H. Fibroblast growth factor 2 enhances BMSC stemness through ITGA2-dependent PI3K/AKT pathway activation. J Cell Physiol 2024; 239:e31423. [PMID: 39188080 DOI: 10.1002/jcp.31423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
Bone marrow-derived mesenchymal stem cells (BMSC) are promising cellular reservoirs for treating degenerative diseases, tissue injuries, and immune system disorders. However, the stemness of BMSCs tends to decrease during in vitro cultivation, thereby restricting their efficacy in clinical applications. Consequently, investigating strategies that bolster the preservation of BMSC stemness and maximize therapeutic potential is necessary. Transcriptomic and single-cell sequencing methodologies were used to perform a comprehensive examination of BMSCs with the objective of substantiating the pivotal involvement of fibroblast growth factor 2 (FGF2) and integrin alpha 2 (ITGA2) in stemness regulation. To investigate the impact of these genes on the BMSC stemness in vitro, experimental approaches involving loss and gain of function were implemented. These approaches encompassed the modulation of FGF2 and ITGA2 expression levels via small interfering RNA and overexpression plasmids. Furthermore, we examined their influence on the proliferation and differentiation capacities of BMSCs, along with the expression of stemness markers, including octamer-binding transcription factor 4, Nanog homeobox, and sex determining region Y-box 2. Transcriptomic analyzes successfully identified FGF2 and ITGA2 as pivotal genes responsible for regulating the stemness of BMSCs. Subsequent single-cell sequencing revealed that elevated FGF2 and ITGA2 expression levels within specific stem cell subpopulations are closely associated with stemness maintenance. Moreover, additional in vitro experiments have convincingly demonstrated that FGF2 effectively enhances the BMSC stemness by upregulating ITGA2 expression, a process mediated by the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway. This conclusion was supported by the observed upregulation of stemness markers following the induction of FGF2 and ITGA2. Moreover, administration of the BEZ235 pathway inhibitor resulted in the repression of stemness transcription factors, suggesting the substantial involvement of the PI3K/AKT pathway in stemness preservation facilitated by FGF2 and ITGA2. This study elucidates the involvement of FGF2 in augmenting BMSC stemness by modulating ITGA2 and activating the PI3K/AKT pathway. These findings offer valuable contributions to stem cell biology and emphasize the potential of manipulating FGF2 and ITGA2 to optimize BMSCs for therapeutic purposes.
Collapse
Affiliation(s)
- Nizhou Jiang
- Department of Spine Surgery, Central Hospital of Dalian University of Technology, Dalian, China
- Department of Spine Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhenxin Hu
- Department of Spine Surgery, Peking University Fourth School of Clinical Medicine, Beijing Jishuitan Hospital, Beijing, China
| | - Quanxiang Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Jiayu Hao
- Department of Spine Surgery, Central Hospital of Dalian University of Technology, Dalian, China
| | - Rui Yang
- Department of Spine Surgery, Central Hospital of Dalian University of Technology, Dalian, China
| | - Jian Jiang
- Department of Spine Surgery, Central Hospital of Dalian University of Technology, Dalian, China
| | - Hong Wang
- Department of Spine Surgery, Central Hospital of Dalian University of Technology, Dalian, China
| |
Collapse
|
3
|
Ghosh S, Tanbir SE, Mitra T, Roy SS. Unveiling stem-like traits and chemoresistance mechanisms in ovarian cancer cells through the TGFβ1-PITX2A/B signaling axis. Biochem Cell Biol 2024; 102:394-409. [PMID: 38976906 DOI: 10.1139/bcb-2024-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Ovarian cancer (OC) is the deadliest gynecological malignancy, having a high mortality rate due to its asymptomatic nature, chemoresistance, and recurrence. However, the proper mechanistic knowledge behind these phenomena is still inadequate. Cancer recurrence is commonly observed due to cancer stem cells which also show chemoresistance. We aimed to decipher the molecular mechanism behind chemoresistance and stemness in OC. Earlier studies suggested that PITX2, a homeobox transcription factor and, its different isoforms are associated with OC progression upon regulating different signaling pathways. Moreover, they regulate the expression of drug efflux transporters in kidney and colon cancer, rendering chemoresistance properties in the tumor cell. Considering these backgrounds, we decided to look for the role of PITX2 isoforms in promoting stemness and chemoresistance in OC cells. In this study, PITX2A/B has been shown to promote stemness and to enhance the transcription of ABCB1. PITX2 has been discovered to augment ABCB1 gene expression by directly binding to its promoter. To further investigate the regulatory mechanism of PITX2 gene expression, we found that TGFβ signaling could augment the PITX2A/B expression through both SMAD and non-SMAD signaling pathways. Collectively, we conclude that TGFβ1-activated PITX2A/B induces stem-like features and chemoresistance properties in the OC cells.
Collapse
Affiliation(s)
- Sampurna Ghosh
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Sk Eashayan Tanbir
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Tulika Mitra
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Sib Sankar Roy
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Yang X, Bhowmick K, Rao S, Xiang X, Ohshiro K, Amdur RL, Hassan MI, Mohammad T, Crandall K, Cifani P, Shetty K, Lyons SK, Merrill JR, Vegesna AK, John S, Latham PS, Crawford JM, Mishra B, Dasarathy S, Wang XW, Yu H, Wang Z, Huang H, Krainer AR, Mishra L. Aldehydes alter TGF-β signaling and induce obesity and cancer. Cell Rep 2024; 43:114676. [PMID: 39217614 PMCID: PMC11560041 DOI: 10.1016/j.celrep.2024.114676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/24/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Obesity and fatty liver diseases-metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH)-affect over one-third of the global population and are exacerbated in individuals with reduced functional aldehyde dehydrogenase 2 (ALDH2), observed in approximately 560 million people. Current treatment to prevent disease progression to cancer remains inadequate, requiring innovative approaches. We observe that Aldh2-/- and Aldh2-/-Sptbn1+/- mice develop phenotypes of human metabolic syndrome (MetS) and MASH with accumulation of endogenous aldehydes such as 4-hydroxynonenal (4-HNE). Mechanistic studies demonstrate aberrant transforming growth factor β (TGF-β) signaling through 4-HNE modification of the SMAD3 adaptor SPTBN1 (β2-spectrin) to pro-fibrotic and pro-oncogenic phenotypes, which is restored to normal SMAD3 signaling by targeting SPTBN1 with small interfering RNA (siRNA). Significantly, therapeutic inhibition of SPTBN1 blocks MASH and fibrosis in a human model and, additionally, improves glucose handling in Aldh2-/- and Aldh2-/-Sptbn1+/- mice. This study identifies SPTBN1 as a critical regulator of the functional phenotype of toxic aldehyde-induced MASH and a potential therapeutic target.
Collapse
Affiliation(s)
- Xiaochun Yang
- Institute for Bioelectronic Medicine, Divisions of Gastroenterology and Hepatology, Department of Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Krishanu Bhowmick
- Institute for Bioelectronic Medicine, Divisions of Gastroenterology and Hepatology, Department of Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Shuyun Rao
- Department of Surgery, George Washington University, Washington, DC 20037, USA
| | - Xiyan Xiang
- Institute for Bioelectronic Medicine, Divisions of Gastroenterology and Hepatology, Department of Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Kazufumi Ohshiro
- Institute for Bioelectronic Medicine, Divisions of Gastroenterology and Hepatology, Department of Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Richard L Amdur
- Quantitative Intelligence Unit, The Institutes for Health Systems Science & Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Keith Crandall
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, George Washington University, Washington, DC 20037, USA
| | - Paolo Cifani
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Kirti Shetty
- Department of Gastroenterology and Hepatology, the University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | - Scott K Lyons
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Joseph R Merrill
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Anil K Vegesna
- Institute for Bioelectronic Medicine, Divisions of Gastroenterology and Hepatology, Department of Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Sahara John
- Institute for Bioelectronic Medicine, Divisions of Gastroenterology and Hepatology, Department of Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Patricia S Latham
- Department of Pathology, George Washington University, Washington, DC 20037, USA
| | - James M Crawford
- Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Hofstra, Northwell Health, Manhasset, NY 11030, USA
| | - Bibhuti Mishra
- Institute for Bioelectronic Medicine, Divisions of Gastroenterology and Hepatology, Department of Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; Department of Neurology, Northwell Health, Manhasset, NY 11030, USA
| | - Srinivasan Dasarathy
- Division of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Herbert Yu
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Zhanwei Wang
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Hai Huang
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Donald and Barbara Zucker School of Medicine at Hofstra, Northwell Health, Manhasset, NY 11030, USA
| | - Adrian R Krainer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Lopa Mishra
- Institute for Bioelectronic Medicine, Divisions of Gastroenterology and Hepatology, Department of Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Department of Surgery, George Washington University, Washington, DC 20037, USA.
| |
Collapse
|
5
|
Jaykumar AB, Plumber S, Binns D, Wichaidit C, Luby-Phelps K, Cobb MH. SMURF1/2 are novel regulators of WNK1 stability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.606092. [PMID: 39131382 PMCID: PMC11312594 DOI: 10.1101/2024.07.31.606092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Angiogenesis is essential for remodeling and repairing existing vessels, and this process requires signaling pathways including those controlled by transforming growth factor beta (TGF-β). We have previously reported crosstalk between TGF-β and the protein kinase With No lysine (K) 1 (WNK1). Homozygous disruption of the gene encoding WNK1 results in lethality in mice near embryonic day E12 due to impaired angiogenesis and this defect can be rescued by endothelial-specific expression of an activated form of the WNK1 substrate kinase Oxidative Stress-Responsive 1 (OSR1). However, molecular processes regulated via a collaboration between TGF-β and WNK1/OSR1 are not well understood. Here we show that WNK1 interacts with the E3 ubiquitin ligases SMURF1/2. In addition, we discovered that WNK1 regulates SMURF1/2 protein stability and vice versa. We also demonstrate that WNK1 activity regulates TGF-β receptor levels, in turn, controlling TGF-β signaling.
Collapse
Affiliation(s)
| | - Sakina Plumber
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, USA
| | - Derk Binns
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, USA
| | | | | | - Melanie H. Cobb
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, USA
| |
Collapse
|
6
|
Teng Y, Li J, Guo J, Yan C, Wang A, Xia X. Alginate oligosaccharide improves 5-fluorouracil-induced intestinal mucositis by enhancing intestinal barrier and modulating intestinal levels of butyrate and isovalerate. Int J Biol Macromol 2024; 276:133699. [PMID: 38972652 DOI: 10.1016/j.ijbiomac.2024.133699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Chemotherapy-induced mucositis (CIM) is the typical side effect of chemotherapy. This study investigates the potential of alginate oligosaccharide (AOS) in ameliorating CIM induced by 5-fluorouracil (5-FU) in a murine model and its underlying mechanisms. AOS effectively mitigated body weight loss and histopathological damage, modulated inflammatory cytokines and attenuated the oxidative stress. AOS restored intestinal barrier integrity through enhancing expression of tight junction proteins via MLCK signaling pathway. AOS alleviated intestinal mucosal damage by inhibiting TLR4/MyD88/NF-κB signaling pathway, downregulating the pro-apoptotic protein Bax and upregulating the anti-apoptotic protein Bcl-2. Moreover, AOS significantly enriched intestinal Akkermansiaceae and increased the production of short-chain fatty acids (SCFAs), most notably butyrate and isovalerate. Pre-treatment with butyrate and isovalerate also alleviated 5-FU-induced CIM. In conclusion, AOS effectively mitigated CIM through strenghthening intestinal barrier, attenuating inflammation, and modulating gut microbiota and intestianl levels of butyrate and isovalerate. These finding indicate that AOS could be potentially utilized as a supplemental strategy for prevention or mitigation of CIM.
Collapse
Affiliation(s)
- Yue Teng
- Dalian Jinshiwan Laboratory, Dalian, Liaoning 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Jiahui Li
- Dalian Jinshiwan Laboratory, Dalian, Liaoning 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Jian Guo
- Dalian Jinshiwan Laboratory, Dalian, Liaoning 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Chunhong Yan
- Dalian Jinshiwan Laboratory, Dalian, Liaoning 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Ailing Wang
- Dalian Jinshiwan Laboratory, Dalian, Liaoning 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Xiaodong Xia
- Dalian Jinshiwan Laboratory, Dalian, Liaoning 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| |
Collapse
|
7
|
Liu K, Tian F, Chen X, Liu B, Tian S, Hou Y, Wang L, Han M, Peng S, Tan Y, Pan Y, Chu Z, Li J, Che L, Chen D, Wen L, Qin Z, Li X, Xiang J, Bian X, Liu Q, Ye X, Wang T, Wang B. Stabilization of TGF-β Receptor 1 by a Receptor-Associated Adaptor Dictates Feedback Activation of the TGF-β Signaling Pathway to Maintain Liver Cancer Stemness and Drug Resistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402327. [PMID: 38981014 PMCID: PMC11425868 DOI: 10.1002/advs.202402327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/16/2024] [Indexed: 07/11/2024]
Abstract
Dysregulation of the transforming growth factor-β (TGF-β) signaling pathway regulates cancer stem cells (CSCs) and drug sensitivity, whereas it remains largely unknown how feedback regulatory mechanisms are hijacked to fuel drug-resistant CSCs. Through a genome-wide CRISPR activation screen utilizing stem-like drug-resistant properties as a readout, the TGF-β receptor-associated binding protein 1 (TGFBRAP1) is identified as a TGF-β-inducible positive feedback regulator that governs sensitivity to tyrosine kinase inhibitors (TKIs) and promotes liver cancer stemness. By interacting with and stabilizing the TGF-β receptor type 1 (TGFBR1), TGFBRAP1 plays an important role in potentiating TGF-β signaling. Mechanistically, TGFBRAP1 competes with E3 ubiquitin ligases Smurf1/2 for binding to TGFΒR1, leading to impaired receptor poly-ubiquitination and proteasomal degradation. Moreover, hyperactive TGF-β signaling in turn up-regulates TGFBRAP1 expression in drug-resistant CSC-like cells, thereby constituting a previously uncharacterized feedback mechanism to amplify TGF-β signaling. As such, TGFBRAP1 expression is correlated with TGFΒR1 levels and TGF-β signaling activity in hepatocellular carcinoma (HCC) tissues, as well as overall survival and disease recurrence in multiple HCC cohorts. Therapeutically, blocking TGFBRAP1-mediated stabilization of TGFBR1 by selective inhibitors alleviates Regorafenib resistance via reducing CSCs. Collectively, targeting feedback machinery of TGF-β signaling pathway may be an actionable approach to mitigate drug resistance and liver cancer stemness.
Collapse
Affiliation(s)
- Kewei Liu
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life SciencesSouthwest UniversityChongqing400715P. R. China
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Fanxuan Tian
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Xu Chen
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
- School of MedicineChongqing UniversityChongqing400044P. R. China
| | - Biyin Liu
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Shuoran Tian
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Yongying Hou
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
- Department of PathologyDaping Hospital, Army Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Lei Wang
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Mengyi Han
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Shiying Peng
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
- School of MedicineChongqing UniversityChongqing400044P. R. China
| | - Yuting Tan
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
- School of MedicineChongqing UniversityChongqing400044P. R. China
| | - Yuwei Pan
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
- School of MedicineChongqing UniversityChongqing400044P. R. China
| | - Zhaole Chu
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Jinyang Li
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Linrong Che
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Dongfeng Chen
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Liangzhi Wen
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Zhongyi Qin
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Xianfeng Li
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Junyu Xiang
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Xiu‐wu Bian
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest HospitalArmy Medical University (Third Military Medical University)Chongqing400038P. R. China
| | - Qin Liu
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
- School of MedicineChongqing UniversityChongqing400044P. R. China
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest HospitalArmy Medical University (Third Military Medical University)Chongqing400038P. R. China
| | - Xiaoli Ye
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life SciencesSouthwest UniversityChongqing400715P. R. China
| | - Tao Wang
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Bin Wang
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest HospitalArmy Medical University (Third Military Medical University)Chongqing400038P. R. China
- Jinfeng LaboratoryChongqing401329P. R. China
| |
Collapse
|
8
|
Vinod N, Hwang D, Fussell SC, Owens TC, Tofade OC, Benefield TS, Copling S, Ramsey JD, Rädler PD, Atkins HM, Livingston EE, Ezzell JA, Sokolsky‐Papkov M, Yuan H, Perou CM, Kabanov AV. Combination of polymeric micelle formulation of TGFβ receptor inhibitors and paclitaxel produces consistent response across different mouse models of Triple-negative breast cancer. Bioeng Transl Med 2024; 9:e10681. [PMID: 39553439 PMCID: PMC11561794 DOI: 10.1002/btm2.10681] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 11/19/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is notoriously difficult to treat due to the lack of targetable receptors and sometimes poor response to chemotherapy. The transforming growth factor beta (TGFβ) family of proteins and their receptors (TGFRs) are highly expressed in TNBC and implicated in chemotherapy-induced cancer stemness. Here, we evaluated combination treatments using experimental TGFR inhibitors (TGFβi), SB525334 (SB), and LY2109761 (LY) with paclitaxel (PTX) chemotherapy. These TGFβi target TGFR-I (SB) or both TGFR-I and TGFR-II (LY). Due to the poor water solubility of these drugs, we incorporated each of them in poly(2-oxazoline) (POx) high-capacity polymeric micelles (SB-POx and LY-POx). We assessed their anticancer effect as single agents and in combination with micellar PTX (PTX-POx) using multiple immunocompetent TNBC mouse models that mimic human subtypes (4T1, T11-Apobec and T11-UV). While either TGFβi or PTX showed a differential effect in each model as single agents, the combinations were consistently effective against all three models. Genetic profiling of the tumors revealed differences in the expression levels of genes associated with TGFβ, epithelial to mesenchymal transition (EMT), TLR-4, and Bcl2 signaling, alluding to the susceptibility to specific gene signatures to the treatment. Taken together, our study suggests that TGFβi and PTX combination therapy using high-capacity POx micelle delivery provides a robust antitumor response in multiple TNBC subtype mouse models.
Collapse
Affiliation(s)
- Natasha Vinod
- Division of Pharmacoengineering and Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Joint UNC/NC State Department of Biomedical EngineeringUniversity of North CarolinaChapel HillNorth CarolinaUSA
- Present address:
National Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Duhyeong Hwang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- College of PharmacyKeimyung UniversityDaeguRepublic of Korea
| | - Sloane Christian Fussell
- Department of Biology, Department of ChemistryUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Present address:
Vaccine Research Center, National Institute of Allergy and Infectious DiseaseNational Institutes of HealthBethesdaMarylandUSA
| | - Tyler Cannon Owens
- Division of Pharmacoengineering and Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Olaoluwa Christopher Tofade
- Division of Pharmacoengineering and Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Thad S. Benefield
- Department of RadiologyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Sage Copling
- Division of Pharmacoengineering and Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Jacob D. Ramsey
- Division of Pharmacoengineering and Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Patrick D. Rädler
- Lineberger Comprehensive Cancer CenterUniversity of North CarolinaChapel HillNorth CarolinaUSA
- Department of GeneticsUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Hannah M. Atkins
- Lineberger Comprehensive Cancer CenterUniversity of North CarolinaChapel HillNorth CarolinaUSA
- Pathology and Laboratory Medicine, School of MedicineUniversity of North CarolinaChapel HillNorth CarolinaUSA
- Department of Pathology and Laboratory Medicine, Division of Comparative MedicineUniversity of North CarolinaChapel HillNorth CarolinaUSA
- Center for Human Health and the EnvironmentNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Eric E. Livingston
- Department of Radiology, Biomedical Research Imaging Center, UNC Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - J. Ashley Ezzell
- Histology Research CoreUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Marina Sokolsky‐Papkov
- Division of Pharmacoengineering and Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Hong Yuan
- Department of Radiology, Biomedical Research Imaging Center, UNC Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Charles M. Perou
- Lineberger Comprehensive Cancer CenterUniversity of North CarolinaChapel HillNorth CarolinaUSA
- Department of GeneticsUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Alexander V. Kabanov
- Division of Pharmacoengineering and Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| |
Collapse
|
9
|
Zhang D, Sun B, Wang J, Chen SPR, Bobrin VA, Gu Y, Ng CK, Gu W, Monteiro MJ. RGD Density on Tadpole Nanostructures Regulates Cancer Stem Cell Proliferation and Stemness. Biomacromolecules 2024; 25:5260-5272. [PMID: 39056889 DOI: 10.1021/acs.biomac.4c00645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Cancer stem cells (CSCs) make up a small population of cancer cells, primarily responsible for tumor initiation, metastasis, and drug resistance. They overexpress Arg-Gly-Asp (RGD) binding integrin receptors that play crucial roles in cell proliferation and stemness through interaction with the extracellular matrix. Here, we showed that monodisperse polymeric tadpole nanoparticles covalently coupled with different RGD densities regulated colon CSC proliferation and stemness in a RGD density-dependent manner. These tadpoles penetrated deeply and evenly into tumor spheroids and specifically entered cells with cancer stem markers CD24 and CD133. Low RGD density tadpoles triggered integrin α5 expression that further activated TGF-β3 and TGF-β2 signaling pathways, confirmed by the increase of pERK and Bcl-2 protein levels. This process is associated with the RGD cluster presentation controlled by the RGD density on the tadpole surface.
Collapse
Affiliation(s)
- Dayong Zhang
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Bing Sun
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Jingyi Wang
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Sung-Po R Chen
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Valentin A Bobrin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Yushu Gu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Chun Ki Ng
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Wenyi Gu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Michael J Monteiro
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
10
|
Tao B, Yi C, Ma Y, Li Y, Zhang B, Geng Y, Chen Z, Ma X, Chen J. A Novel TGF-β-Related Signature for Predicting Prognosis, Tumor Microenvironment, and Therapeutic Response in Colorectal Cancer. Biochem Genet 2024; 62:2999-3029. [PMID: 38062276 DOI: 10.1007/s10528-023-10591-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/07/2023] [Indexed: 07/31/2024]
Abstract
The transforming growth factor beta (TGF-β) signaling plays a critical role in immune evasion and tumor progression. However, its modulatory influences on prognosis, tumor microenvironment (TME), and therapeutic efficacy remain unknown in colorectal cancer (CRC). We summarized TGF-β-related genes and comprehensively estimated their expression pattern in 2142 CRC samples from 9 datasets. Two distinct cluster patterns were divided and biological characteristics of each pattern were further analyzed. Then, to quantify the TGF-β cluster pattern of individual CRC patient, we generated the TGF-β score (TGFBscore) model based on TGF-β cluster pattern-relevant differentially expressed genes (DEGs). Subsequently, we conducted correlation analysis for TGFBscore and clinical prognosis, consensus molecular subtypes (CMSs), TME characteristics, liver metastasis, drug response, and immunotherapeutic efficacy in CRC. We illustrated transcriptional and genetic alterations of TGF-β-relevant genes, which were closely linked with carcinogenic pathways. We identified two different TGF-β cluster patterns, characterized by a high and a low TGFBscore. The TGFBscore-high group was significantly linked with worse patient survival, epithelial-mesenchymal transition (EMT) activation, liver metastasis tendency, and the infiltration of immunosuppressive cells (regulatory T cells [Tregs], M2 macrophages, cancer-associated fibroblasts [CAFs], and myeloid-derived suppressor cells [MDSCs]), while the TGFBscore-low group was linked with a survival advantage, epithelial phenotype, early CRC staging, and the infiltration of immune-activated cells (B cell, CD4 T cell, natural killer T [NKT] cell, and T helper 1 [Th1] cell). In terms of predicting drug response, TGFBscore negatively correlated (sensitive to TGFBscore-high group) with drugs targeting PI3K/mTOR, JNK and p38, RTK signaling pathways, and positively correlated (sensitive to TGFBscore-low group) with drugs targeting EGFR signaling pathway. Also, TGFBscore could predict the efficacy of different anti-tumor therapies. TGFBscore-low patients might benefit more from anti-PDL1 immunotherapy, adjuvant chemotherapy (ACT), and ERBB targeted therapy, whereas TGFBscore-high patients might benefit more from antiangiogenic targeted therapy. Our study constructed a novel TGF-β scoring model that could predict prognosis, liver metastasis tendency, and TME characteristics for CRC patients. More importantly, this work emphasizes the potential clinical utility of TGFBscore in evaluating the efficacy of chemotherapy, targeted therapy, and immunotherapy, guiding individualized precision treatment in CRC.
Collapse
Affiliation(s)
- Baorui Tao
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, People's Republic of China
- Cancer Metastasis Institute, Fudan University, Shanghai, People's Republic of China
| | - Chenhe Yi
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, People's Republic of China
- Cancer Metastasis Institute, Fudan University, Shanghai, People's Republic of China
| | - Yue Ma
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, People's Republic of China
- Cancer Metastasis Institute, Fudan University, Shanghai, People's Republic of China
| | - Yitong Li
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, People's Republic of China
- Cancer Metastasis Institute, Fudan University, Shanghai, People's Republic of China
| | - Bo Zhang
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, People's Republic of China
- Cancer Metastasis Institute, Fudan University, Shanghai, People's Republic of China
| | - Yan Geng
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, People's Republic of China
- Cancer Metastasis Institute, Fudan University, Shanghai, People's Republic of China
| | - Zhenmei Chen
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, People's Republic of China
- Cancer Metastasis Institute, Fudan University, Shanghai, People's Republic of China
| | - Xiaochen Ma
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, People's Republic of China
- Cancer Metastasis Institute, Fudan University, Shanghai, People's Republic of China
| | - Jinhong Chen
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, People's Republic of China.
- Cancer Metastasis Institute, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
11
|
Sengupta P, Roy A, Roy L, Bose D, Halder S, Jana K, Mukherjee G, Chatterjee S. Long non-coding intergenic RNA, LINC00273 induces cancer metastasis and stemness via miRNA sponging in triple negative breast cancer. Int J Biol Macromol 2024; 274:132730. [PMID: 38857735 DOI: 10.1016/j.ijbiomac.2024.132730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 06/12/2024]
Abstract
LncRNAs and miRNAs, being the master regulators of gene expression, are crucial functional mediators in cancer. Our study unveils the critical regulatory role of the metastatic long non-coding RNA LINC00273 as the master regulator of oncogenes involved in cancer metastasis, stemness, and chemoresistance via its miRNA sponging mechanism. M2 (a salt of bis-Schiff base) mediated G quadruplex (G4) stabilization at the LINC00273 gene promoter remarkably inhibits LINC00273 transcription. Therefore, low-level LINC00273 transcripts are unable to efficiently sponge the miRNAs, which subsequently become available to bind and downregulate their target oncogenes. We have observed significantly different global transcriptomic scenarios in LINC00273 upregulated and downregulated circumstances in MDA-MB-231 triple-negative breast cancer model. Additionally, we have found the G4 sequence in the LINC00273 RNA to play a critical role in miRNA sequestration. miRNAs (miR-6789-5p, miR200b, miR-125b-5p, miR-4268, miR3978) have base pairing complementarity within the G4 region of LINC00273 RNA and the 3'-UTR (untranslated region) of MAPK12, TGF-β1, and SIX-1 transcripts. We have reported TGF-β1, SIX-1, and MAPK12 to be the direct downstream targets of LINC00273. The correlation between abnormal expression of lncRNA LINC00273 and TNBC aggressiveness strongly evidenced in our study shall accelerate the development of lncRNA-based anti-metastatic therapeutics.
Collapse
Affiliation(s)
- Pallabi Sengupta
- Department of Biophysics, Bose Institute (UAC campus), Kolkata, India
| | - Ananya Roy
- Department of Biophysics, Bose Institute (UAC campus), Kolkata, India
| | - Laboni Roy
- Department of Biophysics, Bose Institute (UAC campus), Kolkata, India
| | - Debopriya Bose
- Department of Biophysics, Bose Institute (UAC campus), Kolkata, India
| | - Satyajit Halder
- Department of Molecular Medicine, Bose Institute (Centenary campus), Kolkata, India
| | - Kuladip Jana
- Department of Molecular Medicine, Bose Institute (Centenary campus), Kolkata, India
| | | | | |
Collapse
|
12
|
Agar S, Mokhtari M, Yanik M, Akkurt B, Ulukaya E, Terzi R. De novo Antineoplastic Drug Design to Suppress Head, Neck and Oral Cancer using Theoretical Organic and Biochemistry via Comprehensive Molecular Docking and Dynamics. Asian Pac J Cancer Prev 2024; 25:2905-2909. [PMID: 39205589 PMCID: PMC11495462 DOI: 10.31557/apjcp.2024.25.8.2905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE A de novo antineoplastic drug was planned to suppress and modulate the Head, Neck, and Oral Cancer. METHODS Using the computational software tools including molecular docking, molecular dynamics (MD), and post-molecular dynamics bond contact analyses, it has been shown that the new drug called ''Innovative Head, Neck, and Oral Cancer Suppressor'', or simply abbreviated as "IHNOCS" is very effective in terms of suppressing and co-modulating TGF-β and KRTAP2-3 together. RESULT The drug suppresses the KRTAP2-3 protein activity while also holding onto TGF-β and modulating it to slow down and halt the metastasis. CONCLUSION We have effectively created a novel medication using principles of theoretical chemistry, biochemistry, pharmaceutical chemistry and organic chemistry and organic chemistry to inhibit Head, Neck, and Oral Cancer. This medication should further undergo experimental testing in various stages, including in vitro, in vivo, and human clinical phases. It exhibits significant effectiveness in inhibiting the progression of cancer by simultaneously targeting TGF-β and KRTAP2-3, thereby impeding metastasis and suppressing the disease.
Collapse
Affiliation(s)
- Soykan Agar
- Kocaeli Health and Technology University, Faculty of Pharmacy, Kocaeli 41275, Türkiye.
| | - Mohaddeseh Mokhtari
- Kocaeli Health and Technology University, Faculty of Pharmacy, Kocaeli 41275, Türkiye.
| | - Muhammed Yanik
- Graduate Software System Manager, Vocational School of Computer Programming, Ankara University, Ankara, Türkiye.
| | - Barbaros Akkurt
- Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, Istanbul, Türkiye.
| | - Engin Ulukaya
- Istinye University Medical Faculty, Clinical Biochemistry Department, Istanbul, Türkiye.
| | - Rabia Terzi
- Kocaeli Health and Technology University, Faculty of Health Sciences, Kocaeli 41275, Türkiye.
| |
Collapse
|
13
|
Fronk AD, Manzanares MA, Zheng P, Geier A, Anderson K, Stanton S, Zumrut H, Gera S, Munch R, Frederick V, Dhingra P, Arun G, Akerman M. Development and validation of AI/ML derived splice-switching oligonucleotides. Mol Syst Biol 2024; 20:676-701. [PMID: 38664594 PMCID: PMC11148135 DOI: 10.1038/s44320-024-00034-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 06/05/2024] Open
Abstract
Splice-switching oligonucleotides (SSOs) are antisense compounds that act directly on pre-mRNA to modulate alternative splicing (AS). This study demonstrates the value that artificial intelligence/machine learning (AI/ML) provides for the identification of functional, verifiable, and therapeutic SSOs. We trained XGboost tree models using splicing factor (SF) pre-mRNA binding profiles and spliceosome assembly information to identify modulatory SSO binding sites on pre-mRNA. Using Shapley and out-of-bag analyses we also predicted the identity of specific SFs whose binding to pre-mRNA is blocked by SSOs. This step adds considerable transparency to AI/ML-driven drug discovery and informs biological insights useful in further validation steps. We applied this approach to previously established functional SSOs to retrospectively identify the SFs likely to regulate those events. We then took a prospective validation approach using a novel target in triple negative breast cancer (TNBC), NEDD4L exon 13 (NEDD4Le13). Targeting NEDD4Le13 with an AI/ML-designed SSO decreased the proliferative and migratory behavior of TNBC cells via downregulation of the TGFβ pathway. Overall, this study illustrates the ability of AI/ML to extract actionable insights from RNA-seq data.
Collapse
Affiliation(s)
| | | | - Paulina Zheng
- Envisagenics, Inc., Long Island City, NY, 11101, USA
| | - Adam Geier
- Envisagenics, Inc., Long Island City, NY, 11101, USA
| | | | | | - Hasan Zumrut
- Envisagenics, Inc., Long Island City, NY, 11101, USA
| | - Sakshi Gera
- Envisagenics, Inc., Long Island City, NY, 11101, USA
| | - Robin Munch
- Envisagenics, Inc., Long Island City, NY, 11101, USA
| | | | | | - Gayatri Arun
- Envisagenics, Inc., Long Island City, NY, 11101, USA
| | | |
Collapse
|
14
|
Worley J, Noh H, You D, Turunen MM, Ding H, Paull E, Griffin AT, Grunn A, Zhang M, Guillan K, Bush EC, Brosius SJ, Hibshoosh H, Mundi PS, Sims P, Dalerba P, Dela Cruz FS, Kung AL, Califano A. Identification and Pharmacological Targeting of Treatment-Resistant, Stem-like Breast Cancer Cells for Combination Therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.08.562798. [PMID: 38798673 PMCID: PMC11118419 DOI: 10.1101/2023.11.08.562798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Tumors frequently harbor isogenic yet epigenetically distinct subpopulations of multi-potent cells with high tumor-initiating potential-often called Cancer Stem-Like Cells (CSLCs). These can display preferential resistance to standard-of-care chemotherapy. Single-cell analyses can help elucidate Master Regulator (MR) proteins responsible for governing the transcriptional state of these cells, thus revealing complementary dependencies that may be leveraged via combination therapy. Interrogation of single-cell RNA sequencing profiles from seven metastatic breast cancer patients, using perturbational profiles of clinically relevant drugs, identified drugs predicted to invert the activity of MR proteins governing the transcriptional state of chemoresistant CSLCs, which were then validated by CROP-seq assays. The top drug, the anthelmintic albendazole, depleted this subpopulation in vivo without noticeable cytotoxicity. Moreover, sequential cycles of albendazole and paclitaxel-a commonly used chemotherapeutic -displayed significant synergy in a patient-derived xenograft (PDX) from a TNBC patient, suggesting that network-based approaches can help develop mechanism-based combinatorial therapies targeting complementary subpopulations.
Collapse
Affiliation(s)
- Jeremy Worley
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- J.P. Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY USA 10032
| | - Heeju Noh
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Daoqi You
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mikko M Turunen
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Hongxu Ding
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Department of Pharmacy Practice & Science, College of Pharmacy, University of Arizona, Tucson, Arizona, USA 85721
| | - Evan Paull
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Aaron T Griffin
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Adina Grunn
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Mingxuan Zhang
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Kristina Guillan
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Erin C Bush
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Samantha J Brosius
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hanina Hibshoosh
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, USA 10032
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, USA 10032
| | - Prabhjot S Mundi
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, USA 10032
| | - Peter Sims
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Piero Dalerba
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, USA 10032
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, USA 10032
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, USA 10032
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Filemon S Dela Cruz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrew L Kung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrea Califano
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, USA 10032
- Department of Biochemistry & Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Department of Biomedical Informatics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- J.P. Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY USA 10032
| |
Collapse
|
15
|
Ullah A, Jiao W, Shen B. The role of proinflammatory cytokines and CXC chemokines (CXCL1-CXCL16) in the progression of prostate cancer: insights on their therapeutic management. Cell Mol Biol Lett 2024; 29:73. [PMID: 38745115 PMCID: PMC11094955 DOI: 10.1186/s11658-024-00591-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Reproductive cancers are malignancies that develop in the reproductive organs. One of the leading cancers affecting the male reproductive system on a global scale is prostate cancer (PCa). The negative consequences of PCa metastases endure and are severe, significantly affecting mortality and life quality for those who are affected. The association between inflammation and PCa has captured interest for a while. Inflammatory cells, cytokines, CXC chemokines, signaling pathways, and other elements make up the tumor microenvironment (TME), which is characterized by inflammation. Inflammatory cytokines and CXC chemokines are especially crucial for PCa development and prognosis. Cytokines (interleukins) and CXC chemokines such as IL-1, IL-6, IL-7, IL-17, TGF-β, TNF-α, CXCL1-CXCL6, and CXCL8-CXCL16 are thought to be responsible for the pleiotropic effects of PCa, which include inflammation, progression, angiogenesis, leukocyte infiltration in advanced PCa, and therapeutic resistance. The inflammatory cytokine and CXC chemokines systems are also promising candidates for PCa suppression and immunotherapy. Therefore, the purpose of this work is to provide insight on how the spectra of inflammatory cytokines and CXC chemokines evolve as PCa develops and spreads. We also discussed recent developments in our awareness of the diverse molecular signaling pathways of these circulating cytokines and CXC chemokines, as well as their associated receptors, which may one day serve as PCa-targeted therapies. Moreover, the current status and potential of theranostic PCa therapies based on cytokines, CXC chemokines, and CXC receptors (CXCRs) are examined.
Collapse
Affiliation(s)
- Amin Ullah
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Wang Jiao
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
16
|
Guo Q, Zhou Y, Xie T, Yuan Y, Li H, Shi W, Zheng L, Li X, Zhang W. Tumor microenvironment of cancer stem cells: Perspectives on cancer stem cell targeting. Genes Dis 2024; 11:101043. [PMID: 38292177 PMCID: PMC10825311 DOI: 10.1016/j.gendis.2023.05.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/25/2023] [Indexed: 02/01/2024] Open
Abstract
There are few tumor cell subpopulations with stem cell characteristics in tumor tissue, defined as cancer stem cells (CSCs) or cancer stem-like cells (CSLCs), which can reconstruct neoplasms with malignant biological behaviors such as invasiveness via self-renewal and unlimited generation. The microenvironment that CSCs depend on consists of various cellular components and corresponding medium components. Among these factors existing at a variety of levels and forms, cytokine networks and numerous signal pathways play an important role in signaling transduction. These factors promote or maintain cancer cell stemness, and participate in cancer recurrence, metastasis, and resistance. This review aims to summarize the recent molecular data concerning the multilayered relationship between CSCs and CSC-favorable microenvironments. We also discuss the therapeutic implications of targeting this synergistic interplay, hoping to give an insight into targeting cancer cell stemness for tumor therapy and prognosis.
Collapse
Affiliation(s)
- Qianqian Guo
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450003, China
| | - Yi Zhou
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Tianyuan Xie
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yin Yuan
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Huilong Li
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Wanjin Shi
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450003, China
| |
Collapse
|
17
|
Røgenes H, Finne K, Winge I, Akslen LA, Östman A, Milosevic V. Development of 42 marker panel for in-depth study of cancer associated fibroblast niches in breast cancer using imaging mass cytometry. Front Immunol 2024; 15:1325191. [PMID: 38711512 PMCID: PMC11070582 DOI: 10.3389/fimmu.2024.1325191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/05/2024] [Indexed: 05/08/2024] Open
Abstract
Imaging Mass Cytometry (IMC) is a novel, and formidable high multiplexing imaging method emerging as a promising tool for in-depth studying of tissue architecture and intercellular communications. Several studies have reported various IMC antibody panels mainly focused on studying the immunological landscape of the tumor microenvironment (TME). With this paper, we wanted to address cancer associated fibroblasts (CAFs), a component of the TME very often underrepresented and not emphasized enough in present IMC studies. Therefore, we focused on the development of a comprehensive IMC panel that can be used for a thorough description of the CAF composition of breast cancer TME and for an in-depth study of different CAF niches in relation to both immune and breast cancer cell communication. We established and validated a 42 marker panel using a variety of control tissues and rigorous quantification methods. The final panel contained 6 CAF-associated markers (aSMA, FAP, PDGFRa, PDGFRb, YAP1, pSMAD2). Breast cancer tissues (4 cases of luminal, 5 cases of triple negative breast cancer) and a modified CELESTA pipeline were used to demonstrate the utility of our IMC panel for detailed profiling of different CAF, immune and cancer cell phenotypes.
Collapse
Affiliation(s)
- Hanna Røgenes
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Kenneth Finne
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Ingeborg Winge
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Lars A. Akslen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Arne Östman
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Oncology and Pathology, Karolinska Institutet, Solna, Sweden
| | - Vladan Milosevic
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
18
|
Rodrigues-Junior DM, Moustakas A. Unboxing the network among long non-coding RNAs and TGF-β signaling in cancer. Ups J Med Sci 2024; 129:10614. [PMID: 38571882 PMCID: PMC10989219 DOI: 10.48101/ujms.v129.10614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 02/24/2024] [Accepted: 02/24/2024] [Indexed: 04/05/2024] Open
Abstract
Deeper analysis of molecular mechanisms arising in tumor cells is an unmet need to provide new diagnostic and therapeutic strategies to prevent and treat tumors. The transforming growth factor β (TGF-β) signaling has been steadily featured in tumor biology and linked to poor prognosis of cancer patients. One pro-tumorigenic mechanism induced by TGF-β is the epithelial-to-mesenchymal transition (EMT), which can initiate cancer dissemination, enrich the tumor stem cell population, and increase chemoresistance. TGF-β signals via SMAD proteins, ubiquitin ligases, and protein kinases and modulates the expression of protein-coding and non-coding RNA genes, including those encoding larger than 500 nt transcripts, defined as long non-coding RNAs (lncRNAs). Several reports have shown lncRNAs regulating malignant phenotypes by directly affecting epigenetic processes, transcription, and post-transcriptional regulation. Thus, this review aims to update and summarize the impact of TGF-β signaling on the expression of lncRNAs and the function of such lncRNAs as regulators of TGF-β signaling, and how these networks might impact specific hallmarks of cancer.
Collapse
Affiliation(s)
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
19
|
Kim MW, Lee H, Lee S, Moon S, Kim Y, Kim JY, Kim SI, Kim JY. Drug-resistant profiles of extracellular vesicles predict therapeutic response in TNBC patients receiving neoadjuvant chemotherapy. BMC Cancer 2024; 24:185. [PMID: 38326737 PMCID: PMC10851537 DOI: 10.1186/s12885-024-11822-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 01/02/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Predicting tumor responses to neoadjuvant chemotherapy (NAC) is critical for evaluating prognosis and designing treatment strategies for patients with breast cancer; however, there are no reliable biomarkers that can effectively assess tumor responses. Therefore, we aimed to evaluate the clinical feasibility of using extracellular vesicles (EVs) to predict tumor response after NAC. METHODS Drug-resistant triple-negative breast cancer (TNBC) cell lines were successfully established, which developed specific morphologies and rapidly growing features. To detect resistance to chemotherapeutic drugs, EVs were isolated from cultured cells and plasma samples collected post-NAC from 36 patients with breast cancer. RESULTS Among the differentially expressed gene profiles between parental and drug-resistant cell lines, drug efflux transporters such as MDR1, MRP1, and BCRP were highly expressed in resistant cell lines. Drug efflux transporters have been identified not only in cell lines but also in EVs released from parental cells using immunoaffinity-based EV isolation. The expression of drug resistance markers in EVs was relatively high in patients with residual disease compared to those with a pathological complete response. CONCLUSIONS The optimal combination of drug-resistant EV markers was significantly efficient in predicting resistance to NAC with 81.82% sensitivity and 92.86% specificity.
Collapse
Affiliation(s)
- Min Woo Kim
- Department of Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea
| | - Hyojung Lee
- Department of Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea
| | - Suji Lee
- Department of Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea
| | - Sol Moon
- Department of Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea
| | - Young Kim
- Department of Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea
| | - Joon Ye Kim
- Department of Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea
| | - Seung Il Kim
- Department of Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea.
| | - Jee Ye Kim
- Department of Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea.
| |
Collapse
|
20
|
Shen X, Pan D, Gong Q, Gu Z, Luo K. Enhancing drug penetration in solid tumors via nanomedicine: Evaluation models, strategies and perspectives. Bioact Mater 2024; 32:445-472. [PMID: 37965242 PMCID: PMC10641097 DOI: 10.1016/j.bioactmat.2023.10.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 11/16/2023] Open
Abstract
Effective tumor treatment depends on optimizing drug penetration and accumulation in tumor tissue while minimizing systemic toxicity. Nanomedicine has emerged as a key solution that addresses the rapid clearance of free drugs, but achieving deep drug penetration into solid tumors remains elusive. This review discusses various strategies to enhance drug penetration, including manipulation of the tumor microenvironment, exploitation of both external and internal stimuli, pioneering nanocarrier surface engineering, and development of innovative tactics for active tumor penetration. One outstanding strategy is organelle-affinitive transfer, which exploits the unique properties of specific tumor cell organelles and heralds a potentially transformative approach to active transcellular transfer for deep tumor penetration. Rigorous models are essential to evaluate the efficacy of these strategies. The patient-derived xenograft (PDX) model is gaining traction as a bridge between laboratory discovery and clinical application. However, the journey from bench to bedside for nanomedicines is fraught with challenges. Future efforts should prioritize deepening our understanding of nanoparticle-tumor interactions, re-evaluating the EPR effect, and exploring novel nanoparticle transport mechanisms.
Collapse
Affiliation(s)
- Xiaoding Shen
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu, 610041, China
| | - Dayi Pan
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu, 610041, China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, 361021, China
| | - Zhongwei Gu
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu, 610041, China
| | - Kui Luo
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
21
|
Jin Y, Wang C, Zhang B, Sun Y, Ji J, Cai Q, Jiang J, Zhang Z, Zhao L, Yu B, Zhang J. Blocking EGR1/TGF-β1 and CD44s/STAT3 Crosstalk Inhibits Peritoneal Metastasis of Gastric Cancer. Int J Biol Sci 2024; 20:1314-1331. [PMID: 38385088 PMCID: PMC10878142 DOI: 10.7150/ijbs.90598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024] Open
Abstract
Peritoneal metastasis (PM) continues to limit the clinical efficacy of gastric cancer (GC). Early growth response 1 (EGR1) plays an important role in tumor cell proliferation, angiogenesis and invasion. However, the role of EGR1 derived from the tumor microenvironment in reshaping the phenotypes of GC cells and its specific molecular mechanisms in increasing the potential for PM are still unclear. In this study, we reported that EGR1 was significantly up-regulated in mesothelial cells from GC peritoneal metastases, leading to enhanced epithelial-mesenchymal transformation (EMT) and stemness phenotypes of GC cells under co-culture conditions. These phenotypes were achieved through the transcription and secretion of TGF-β1 by EGR1 in mesothelial cells, which could regulate the expression and internalization of CD44s. After being internalized into the cytoplasm, CD44s interacted with STAT3 to promote STAT3 phosphorylation and activation, and induced EMT and stemness gene transcription, thus positively regulating the metastasis of GC cells. Moreover, TGF-β1 secretion in the PM microenvironment was significantly increased compared with the matched primary tumor. The blocking effect of SHR-1701 on TGF-β1 was verified by inhibiting peritoneal metastases in xenografts. Collectively, the interplay of EGR1/TGF-β1/CD44s/STAT3 signaling between mesothelial cells and GC cells induces EMT and stemness phenotypes, offering potential as a therapeutic target for PM of GC.
Collapse
Affiliation(s)
- Yangbing Jin
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chao Wang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Benyan Zhang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ying Sun
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jun Ji
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qu Cai
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jinling Jiang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhihao Zhang
- Clinical Research and Development, Jiangsu Hengrui Pharmaceuticals Co. Ltd, Shanghai, 201203, China
| | - Liqin Zhao
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Beiqin Yu
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jun Zhang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Oncology, Wuxi Branch of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No 197 Zhixian Road, Xinwu District, Wuxi, 214028, China
| |
Collapse
|
22
|
Golán-Cancela I, Caja L. The TGF-β Family in Glioblastoma. Int J Mol Sci 2024; 25:1067. [PMID: 38256140 PMCID: PMC10816220 DOI: 10.3390/ijms25021067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Members of the transforming growth factor β (TGF-β) family have been implicated in the biology of several cancers. In this review, we focus on the role of TGFβ and bone morphogenetic protein (BMP) signaling in glioblastoma. Glioblastoma (GBM) is the most common malignant brain tumor in adults; it presents at a median age of 64 years, but can occur at any age, including childhood. Unfortunately, there is no cure, and even patients undergoing current treatments (surgical resection, radiotherapy, and chemotherapy) have a median survival of 15 months. There is a great need to identify new therapeutic targets to improve the treatment of GBM patients. TGF-βs signaling promotes tumorigenesis in glioblastoma, while BMPs suppress tumorigenic potential by inducing tumor cell differentiation. In this review, we discuss the actions of TGF-βs and BMPs on cancer cells as well as in the tumor microenvironment, and their use in potential therapeutic intervention.
Collapse
Affiliation(s)
| | - Laia Caja
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, SE-75123 Uppsala, Sweden;
| |
Collapse
|
23
|
Boudreault J, Wang N, Ghozlan M, Lebrun JJ. Transforming Growth Factor-β/Smad Signaling Inhibits Melanoma Cancer Stem Cell Self-Renewal, Tumor Formation and Metastasis. Cancers (Basel) 2024; 16:224. [PMID: 38201651 PMCID: PMC10778361 DOI: 10.3390/cancers16010224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/20/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
The secreted protein transforming growth factor-beta (TGFβ) plays essential roles, ranging from cell growth regulation and cell differentiation in both normal and cancer cells. In melanoma, TGFβ acts as a potent tumor suppressor in melanoma by blocking cell cycle progression and inducing apoptosis. In the present study, we found TGFβ to regulate cancer stemness in melanoma through the Smad signaling pathway. We discovered that TGFβ/Smad signaling inhibits melanosphere formation in multiple melanoma cell lines and reduces expression of the CD133+ cancer stem cell subpopulation in a Smad3-dependent manner. Using preclinical models of melanoma, we further showed that preventing Smad3/4 signaling, by means of CRISPR knockouts, promoted both tumorigenesis and lung metastasis in vivo. Collectively, our results define new functions for the TGFβ/Smad signaling axis in melanoma stem-cell maintenance and open avenues for new therapeutic approaches to this disease.
Collapse
Affiliation(s)
| | | | | | - Jean-Jacques Lebrun
- Cancer Research Program, Department of Medicine, Research Institute of McGill University Health Center, Montreal, QU H4A 3J1, Canada; (J.B.); (N.W.); (M.G.)
| |
Collapse
|
24
|
Abou-Shanab AM, Gaser OA, Salah RA, El-Badri N. Application of the Human Amniotic Membrane as an Adjuvant Therapy for the Treatment of Hepatocellular Carcinoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1470:129-146. [PMID: 38036871 DOI: 10.1007/5584_2023_792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related morbidity and mortality worldwide. Current therapeutic approaches suffer significant side effects and lack of clear understanding of their molecular targets. Recent studies reported the anticancer effects, immunomodulatory properties, and antiangiogenic effects of the human amniotic membrane (hAM). hAM is a transparent protective membrane that surrounds the fetus. Preclinical studies showed pro-apoptotic and antiproliferative properties of hAM treatment on cancer cells. Herein, we present the latest findings of the application of the hAM in combating HCC tumorigenesis and the underlying molecular pathogenies and the role of transforming growth factor-beta (TGFβ), P53, WNT/beta-catenin, and PI3K/AKT pathways. The emerging clinical applications of hAM in cancer therapy provide evidence for its diverse and unique features and suitability for the management of a wide range of pathological conditions.
Collapse
Affiliation(s)
- Ahmed M Abou-Shanab
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt
| | - Ola A Gaser
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt
| | - Radwa Ayman Salah
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt.
| |
Collapse
|
25
|
Peng TJ, Wu YC, Tang SJ, Sun GH, Sun KH. TGFβ1 induces CXCL1 to promote stemness features in lung cancer. Exp Biol Med (Maywood) 2023; 248:2249-2261. [PMID: 38158808 PMCID: PMC10903253 DOI: 10.1177/15353702231220662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/23/2023] [Indexed: 01/03/2024] Open
Abstract
Chemokines critically orchestrate the tumorigenesis, metastasis, and stemness features of cancer cells that lead to poor outcomes. High plasma levels of transforming growth factor-β1 (TGFβ1) correlate with poor prognostic features in advanced lung cancer patients, thus suggesting the importance of TGFβ1 in the lung tumor microenvironment. However, the role of chemokines in TGFβ1-induced tumor stemness features remains unclear. Here, we clarify the previously undocumented role of CXCL1 in TGFβ1-induced lung cancer stemness features. CXCL1 and its receptor CXCR2 were significantly upregulated in TGFβ1-induced lung cancer stem cells (CSCs). CXCL1 silencing (shCXCL1) suppressed stemness gene expression, tumorsphere formation, colony formation, drug resistance, and in vivo tumorigenicity in TGFβ1-induced lung tumorspheres. Immunohistochemistry staining showed that patients with stage II/III lung cancer had higher expression levels of CXCL1. The levels of CXCL1 were positively associated with lymph node metastasis and correlated with the expression of the CSC transcription factor Oct-4. Furthermore, online database analysis revealed that CXCL1 expression was negatively correlated with lung cancer survival in patients. Patients with high TGFβ1/CXCL1/CD44 co-expression had a worse survival rate. We suggest that CXCL1 serves as a crucial factor in TGFβ1-induced stemness features of lung cancer.
Collapse
Affiliation(s)
- Ta-Jung Peng
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112304
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 112304
| | - Yi-Ching Wu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112304
| | - Shye-Jye Tang
- Institute of Marine Biotechnology, National Taiwan Ocean University, Keelung 202301
| | - Guang-Huan Sun
- Division of Urology, Department of Surgery, Tri-Service General Hospital and National Defense Medical Center, Taipei 114202
| | - Kuang-Hui Sun
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112304
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 112304
- Department of Education and Research, Taipei City Hospital, Taipei 103212
| |
Collapse
|
26
|
Wang Z, Fu Y, Seno A, Bi Z, Pawar AS, Ji H, Almutairy BS, Qiu Y, Zhang W, Thakur C, Chen F. Tumor suppressive activity of AHR in environmental arsenic-induced carcinogenesis. Toxicol Appl Pharmacol 2023; 480:116747. [PMID: 37935250 DOI: 10.1016/j.taap.2023.116747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023]
Abstract
The aryl hydrocarbon receptor (AHR) is a highly conserved pleiotropic transcription factor that senses environmental pollutants, microbial products, and endogenous ligands. The transcriptional targets of AHR include phase I and phase II detoxification enzymes, as well as numerous signaling molecules that affect a wide spectrum of biological and biochemical processes in a manner of cellular context-dependent. In this review, we systematically assess the latest discoveries of AHR in carcinogenesis with an emphasis on its tumor suppressor-like property that represses the expression of genes in oncogenic signaling pathways. Additionally, we outline recent progress in our studies on the interaction among AHR, TGFb and NRF2 in cellular responses to arsenic and malignant transformation. Our findings indicate that AHR antagonized TGFb and NRF2, suggesting that AHR could serve as a potential tumor suppressor in arsenic-induced carcinogenesis. Notably, while AHR can exhibit both oncogenic and tumor-suppressive properties in cancer development and the generation of the cancer stem-like cells (CSCs), the tumor suppressor-like effect of AHR warrants further extensive exploration for the prevention and clinical treatment of cancers.
Collapse
Affiliation(s)
- Ziwei Wang
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA.
| | - Yao Fu
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA
| | - Akimasa Seno
- R&D Center, Katayama Chemicals Ind., Co. Ltd, Ina, Minoh, Osaka 562-0015, Japan
| | - Zhuoyue Bi
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA
| | - Aashna S Pawar
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA
| | - Haoyan Ji
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA
| | - Bandar Saeed Almutairy
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Yiran Qiu
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA
| | - Wenxuan Zhang
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA
| | - Chitra Thakur
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA
| | - Fei Chen
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA.
| |
Collapse
|
27
|
Nuñez-Rios JD, Ulrich H, Díaz-Muñoz M, Lameu C, Vázquez-Cuevas FG. Purinergic system in cancer stem cells. Purinergic Signal 2023:10.1007/s11302-023-09976-5. [PMID: 37966629 DOI: 10.1007/s11302-023-09976-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023] Open
Abstract
Accumulating evidence supports the idea that cancer stem cells (CSCs) are those with the capacity to initiate tumors, generate phenotypical diversity, sustain growth, confer drug resistance, and orchestrate the spread of tumor cells. It is still controversial whether CSCs originate from normal stem cells residing in the tissue or cancer cells from the tumor bulk that have dedifferentiated to acquire stem-like characteristics. Although CSCs have been pointed out as key drivers in cancer, knowledge regarding their physiology is still blurry; thus, research focusing on CSCs is essential to designing novel and more effective therapeutics. The purinergic system has emerged as an important autocrine-paracrine messenger system with a prominent role at multiple levels of the tumor microenvironment, where it regulates cellular aspects of the tumors themselves and the stromal and immune systems. Recent findings have shown that purinergic signaling also participates in regulating the CSC phenotype. Here, we discuss updated information regarding CSCs in the purinergic system and present evidence supporting the idea that elements of the purinergic system expressed by this subpopulation of the tumor represent attractive pharmacological targets for proposing innovative anti-cancer therapies.
Collapse
Affiliation(s)
- J D Nuñez-Rios
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Juriquilla Querétaro, Querétaro, CP 76230, México
| | - H Ulrich
- Department of Biochemistry, Chemistry Institute, University of São Paulo (USP), São Paulo, Brazil
| | - M Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Juriquilla Querétaro, Querétaro, CP 76230, México
| | - C Lameu
- Department of Biochemistry, Chemistry Institute, University of São Paulo (USP), São Paulo, Brazil
| | - F G Vázquez-Cuevas
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Juriquilla Querétaro, Querétaro, CP 76230, México.
| |
Collapse
|
28
|
Wu Y, Liang H, Luo A, Li Y, Liu Z, Li X, Li W, Liang K, Li J, Liu Z, Du Y. Gelatin-based 3D biomimetic scaffolds platform potentiates culture of cancer stem cells in esophageal squamous cell carcinoma. Biomaterials 2023; 302:122323. [PMID: 37717405 DOI: 10.1016/j.biomaterials.2023.122323] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/02/2023] [Accepted: 09/09/2023] [Indexed: 09/19/2023]
Abstract
Cancer stem cells (CSCs) are crucial for tumorigenesis, metastasis, and therapy resistance in esophageal squamous cell carcinoma (ESCC). To further elucidate the mechanism underlying characteristics of CSCs and develop CSCs-targeted therapy, an efficient culture system that could expand and maintain CSCs is needed. CSCs reside in a complex tumor microenvironment, and three-dimensional (3D) culture systems of biomimetic scaffolds are expected to better support the growth of CSCs by recapitulating the biophysical properties of the extracellular matrix (ECM). Here, we established gelatin-based 3D biomimetic scaffolds mimicking the stiffness and collagen content of ESCC, which could enrich ESCC CSCs efficiently. Biological changes of ESCC cells laden in scaffolds with three different viscoelasticity emulating physiological stiffness of esophageal tissues were thoroughly investigated in varied aspects such as cell morphology, viability, cell phenotype markers, and transcriptomic profiling. The results demonstrated the priming effects of viscoelasticity on the stemness of ESCC. The highly viscous scaffolds (G': 6-403 Pa; G'': 2-75 Pa) better supported the enrichment of ESCC CSCs, and the TGF-beta signaling pathway might be involved in regulating the stemness of ESCC cells. Compared to two-dimensional (2D) cultures, highly viscous scaffolds significantly promoted the clonal expansion of ESCC cells in vitro and tumor formation ability in vivo. Our findings highlight the crucial role of biomaterials' viscoelasticity for the 3D culture of ESCC CSCs in vitro, and this newly-established culture system represents a valuable platform to support their growth, which could facilitate the CSCs-targeted therapy in the future.
Collapse
Affiliation(s)
- Yenan Wu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Haiwei Liang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Aiping Luo
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yong Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhiqiang Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xin Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wenxin Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Kaini Liang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Junyang Li
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
29
|
Clos-Sansalvador M, Monguió-Tortajada M, Grau-Leal F, Ruiz de Porras V, Garcia SG, Sanroque-Muñoz M, Font-Morón M, Franquesa M, Borràs FE. Agarose spot migration assay to measure the chemoattractant potential of extracellular vesicles: applications in regenerative medicine and cancer metastasis. BMC Biol 2023; 21:236. [PMID: 37884994 PMCID: PMC10605981 DOI: 10.1186/s12915-023-01729-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND The recruitment of effector cells is one of the novel functions described for extracellular vesicles (EVs) that needs further study. For instance, cell recruitment by mesenchymal stromal cell derived-EVs (MSC-EVs) is one of the features by which MSC-EVs may induce regeneration and ameliorate tissue injury. On the other hand, increasing evidence suggests that cancer EVs play an important role in the preparation of the pre-metastatic niche (PMN) by recruiting their primary tumour cells. Understanding and measuring the potential of MSC-EVs or cancer-EVs to induce cell migration and recruitment is essential for cell-free therapeutic approaches and/or for a better knowledge of cancer metastasis, respectively. In this context, classical in vitro migration assays do not completely mimic the potential situation by which EVs exert their chemotactic capacity. RESULTS We adapted an agarose spot migration assay as an in vitro system to evaluate the cell recruitment capacity of locally delivered or localized EVs. Cell migration was tracked for 12 h or 48 h, respectively. Thereafter, endpoint migration images and time-lapse videos were analysed to quantify several parameters aiming to determine the migration of cells to either MSC-EV or pro-metastatic EV. The number of cells contained inside the agarose spots, the migration distance, the area occupied by cells, the directionality of the cell movement, and the Euclidean distance were measured. This multi-parametric evaluation revealed the potential of different MSC-EV preparations to recruit endothelial cells and to detect an enhanced recruitment capacity of highly metastatic PC3-derived EVs (PC3-EVs) compared to low-metastatic LNCaP-EVs in a tumour cell-specific manner. CONCLUSIONS Overall, this agarose spot migration assay may offer a diversity of measurements and migration settings not provided by classical migration assays and reveal its potential use in the EV field in two different contexts with recruitment in common: regeneration and cancer metastasis.
Collapse
Affiliation(s)
- Marta Clos-Sansalvador
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona, Barcelona, Catalonia, 08916, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Marta Monguió-Tortajada
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona, Barcelona, Catalonia, 08916, Spain
- ICREC Research Program, Germans Trias i Pujol Research Institute (IGTP) & Cardiology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona, Catalonia, Spain
| | - Ferran Grau-Leal
- RCPB Group, CARE Program, Germans Trias i Pujol Research Institute (IGTP); ProCURE Program, Catalan Institute of Oncology, Carretera de Can Ruti, Camí de Les Escoles S/N, Badalona, 08916, Spain
| | - Vicenç Ruiz de Porras
- CARE Program, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Badalona, Spain
| | - Sergio G Garcia
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona, Barcelona, Catalonia, 08916, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Marta Sanroque-Muñoz
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona, Barcelona, Catalonia, 08916, Spain
| | - Miriam Font-Morón
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona, Barcelona, Catalonia, 08916, Spain
| | - Marcella Franquesa
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona, Barcelona, Catalonia, 08916, Spain.
| | - Francesc E Borràs
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona, Barcelona, Catalonia, 08916, Spain.
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona (UB), Barcelona, Spain.
| |
Collapse
|
30
|
Hosseini R, Hosseinzadeh N, Asef-Kabiri L, Akbari A, Ghezelbash B, Sarvnaz H, Akbari ME. Small extracellular vesicle TGF-β in cancer progression and immune evasion. Cancer Gene Ther 2023; 30:1309-1322. [PMID: 37344681 DOI: 10.1038/s41417-023-00638-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/24/2023] [Accepted: 06/12/2023] [Indexed: 06/23/2023]
Abstract
Transforming growth factor-β (TGF-β) is a well-known cytokine that controls various processes in normal physiology and disease context. Strong preclinical and clinical literature supports the crucial roles of the TGF-β in several aspects of cancer biology. Recently emerging evidence reveals that the release of TGF-β from tumor/immune/stromal cells in small extracellular vesicles (sEVs) plays an important part in tumor development and immune evasion. Hence, this review aims to address the packaging, release, and signaling pathways of TGF-β carried in sEVs (sEV-TGF-β) in cancer, and to explore its underpinning roles in tumor development, growth, progression, metastasis, etc. We also highlight key progresses in deciphering the roles of sEV-TGF-β in subverting anti-tumor immune responses. The paper ends with a focus on the clinical significance of TGF-β carried in sEVs and draws attention to its diagnostic, therapeutic, and prognostic importance.
Collapse
Affiliation(s)
- Reza Hosseini
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Nashmin Hosseinzadeh
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Asef-Kabiri
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Akbari
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behrooz Ghezelbash
- Laboratory Hematology and Blood Banking, School of Allied Medical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamzeh Sarvnaz
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
31
|
Xiao L, Zhang T, Zheng K, Xiao Q, Zhang W, Zhang D, Wu D, He C, Zhou Y, Liu Y. Knockdown of Secernin 1 inhibit cell invasion and migration by activating the TGF-β/Smad3 pathway in oral squamous cell carcinomas. Sci Rep 2023; 13:14922. [PMID: 37691034 PMCID: PMC10493221 DOI: 10.1038/s41598-023-41504-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023] Open
Abstract
Secernin-1 (SCRN1) is a regulator of exocytosis in mast cells. Recently, SCRN1 was reported to be correlated with the prognosis of colorectal cancer and gastric cancer, but its functional effects on oral squamous cell carcinoma (OSCC) remain unclear. Our aim was to explore the expression pattern and the migration and invasion effects of the newly identified SCRN1 in OSCC. Western blotting (WB) was performed to measure SCRN1 expression in human OSCC tissue samples and OSCC cell lines. The effects of SCRN1 on OSCC cell proliferation, invasion and migration were analyzed by cell counting kit-8 and Transwell assays. The expression levels of TGF-β, Smad3 and phosphorylated Smad3 (p-Smad3) were measured by WB. The secretion of matrix metalloproteinase (MMP)-2 and MMP-9 was determined by the enzyme-linked immunosorbent assay. The expression of SCRN1 was significantly elevated in OSCC tissues and cell lines. SCRN1 knockdown reduced the expression of TGF-β and p-Smad3 in OSCC cells. TGF-β stimulation promoted proliferation, invasion and migration and enhanced the expression of p-Smad3 and the secretion of MMP9 in SCRN1-knockdown OSCC cell lines. Our study demonstrated that SCRN1 is upregulated in OSCC. Further analyses demonstrated that SCRN1 promotes the proliferation, invasion and migration of OSCC cells via TGF-β/Smad3 signaling.
Collapse
Affiliation(s)
- Li Xiao
- Affiliated Hospital of North Sichuan Medical College, Department of Stomatology, North Sichuan Medical College, Nanchong, China
- Department of Stomatology, Nan Chong Central Hospital, Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
| | - Ting Zhang
- Affiliated Hospital of North Sichuan Medical College, Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Kaiyue Zheng
- Affiliated Hospital of North Sichuan Medical College, Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Qian Xiao
- Affiliated Hospital of North Sichuan Medical College, Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Weifang Zhang
- Affiliated Hospital of North Sichuan Medical College, Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Dandan Zhang
- Affiliated Hospital of North Sichuan Medical College, Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Dengxun Wu
- Affiliated Hospital of North Sichuan Medical College, Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Chanjuan He
- Affiliated Hospital of North Sichuan Medical College, Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Yifei Zhou
- Department of Stomatology, Lang Zhong People's Hospital, Langzhong, China.
| | - Ying Liu
- Affiliated Hospital of North Sichuan Medical College, Department of Stomatology, North Sichuan Medical College, Nanchong, China.
| |
Collapse
|
32
|
Dalir Abdolahinia E, Han X. The Three-Dimensional In Vitro Cell Culture Models in the Study of Oral Cancer Immune Microenvironment. Cancers (Basel) 2023; 15:4266. [PMID: 37686542 PMCID: PMC10487272 DOI: 10.3390/cancers15174266] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The onset and progression of oral cancer are accompanied by a dynamic interaction with the host immune system, and the immune cells within the tumor microenvironment play a pivotal role in the development of the tumor. By exploring the cellular immunity of oral cancer, we can gain insight into the contribution of both tumor cells and immune cells to tumorigenesis. This understanding is crucial for developing effective immunotherapeutic strategies to combat oral cancer. Studies of cancer immunology present unique challenges in terms of modeling due to the extraordinary complexity of the immune system. With its multitude of cellular components, each with distinct subtypes and various activation states, the immune system interacts with cancer cells and other components of the tumor, ultimately shaping the course of the disease. Conventional two-dimensional (2D) culture methods fall short of capturing these intricate cellular interactions. Mouse models enable us to learn about tumor biology in complicated and dynamic physiological systems but have limitations as the murine immune system differs significantly from that of humans. In light of these challenges, three-dimensional (3D) culture systems offer an alternative approach to studying cancer immunology and filling the existing gaps in available models. These 3D culture models provide a means to investigate complex cellular interactions that are difficult to replicate in 2D cultures. The direct study of the interaction between immune cells and cancer cells of human origin offers a more relevant and representative platform compared to mouse models, enabling advancements in our understanding of cancer immunology. This review explores commonly used 3D culture models and highlights their significant contributions to expanding our knowledge of cancer immunology. By harnessing the power of 3D culture systems, we can unlock new insights that pave the way for improved strategies in the battle against oral cancer.
Collapse
Affiliation(s)
| | - Xiaozhe Han
- Department of Oral Science and Translation Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| |
Collapse
|
33
|
Joshi G, Basu A. Epigenetic control of cell signalling in cancer stem cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 383:67-88. [PMID: 38359971 DOI: 10.1016/bs.ircmb.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The self-renewing cancer stem cells (CSCs) represent one of the distinct cell populations occurring in a tumour that can differentiate into multiple lineages. This group of sparsely abundant cells play a vital role in tumour survival and resistance to different treatments during cancer. The lack of exclusive markers associated with CSCs makes diagnosis and prognosis in cancer patients extremely difficult. This calls for the identification of unique regulators and markers for CSCs. Various signalling pathways like the Wnt/β-catenin pathway, Hedgehog pathway, Notch pathway, and TGFβ/BMP play a major role in the regulation and maintenance of CSCs. Epigenetic regulatory mechanisms add another layer of complexity to control these signalling pathways. In this chapter, we discuss about the role of epigenetic mechanisms in regulating the cellular signalling pathways in CSCs. The epigenetic regulatory mechanisms such as DNA methylation, histone modification and microRNAs can modulate the diverse effectors of signalling pathways and consequently the growth, differentiation and tumorigenicity of CSCs. In the end, we briefly discuss the therapeutic potential of targeting these epigenetic regulators and their target genes in CSCs.
Collapse
Affiliation(s)
- Gaurav Joshi
- Institute of Molecular Biology (IMB), Mainz, Germany.
| | - Amitava Basu
- Institute of Molecular Biology (IMB), Mainz, Germany.
| |
Collapse
|
34
|
Lučić I, Kurtović M, Mlinarić M, Piteša N, Čipak Gašparović A, Sabol M, Milković L. Deciphering Common Traits of Breast and Ovarian Cancer Stem Cells and Possible Therapeutic Approaches. Int J Mol Sci 2023; 24:10683. [PMID: 37445860 DOI: 10.3390/ijms241310683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Breast cancer (BC) and ovarian cancer (OC) are among the most common and deadly cancers affecting women worldwide. Both are complex diseases with marked heterogeneity. Despite the induction of screening programs that increase the frequency of earlier diagnosis of BC, at a stage when the cancer is more likely to respond to therapy, which does not exist for OC, more than 50% of both cancers are diagnosed at an advanced stage. Initial therapy can put the cancer into remission. However, recurrences occur frequently in both BC and OC, which are highly cancer-subtype dependent. Therapy resistance is mainly attributed to a rare subpopulation of cells, named cancer stem cells (CSC) or tumor-initiating cells, as they are capable of self-renewal, tumor initiation, and regrowth of tumor bulk. In this review, we will discuss the distinctive markers and signaling pathways that characterize CSC, their interactions with the tumor microenvironment, and the strategies they employ to evade immune surveillance. Our focus will be on identifying the common features of breast cancer stem cells (BCSC) and ovarian cancer stem cells (OCSC) and suggesting potential therapeutic approaches.
Collapse
Affiliation(s)
- Ivan Lučić
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Matea Kurtović
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Monika Mlinarić
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Nikolina Piteša
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Ana Čipak Gašparović
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Maja Sabol
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Lidija Milković
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
35
|
Vinod N, Hwang D, Fussell SC, Owens TC, Tofade OC, Copling S, Ramsey JD, Rädler PD, Atkins HM, Livingston EE, Ezzell JA, Sokolsky-Papkov M, Yuan H, Perou CM, Kabanov AV. Combination of Polymeric Micelle Formulation of TGFβ Receptor Inhibitors and Paclitaxel Produce Consistent Response Across Different Mouse Models of TNBC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.544381. [PMID: 37398150 PMCID: PMC10312717 DOI: 10.1101/2023.06.14.544381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Triple-negative breast cancer (TNBC) is notoriously difficult to treat due to the lack of targetable receptors and sometimes poor response to chemotherapy. The transforming growth factor-beta (TGFβ) family of proteins and their receptors (TGFR) are highly expressed in TNBC and implicated in chemotherapy-induced cancer stemness. Here we evaluated combination treatments using experimental TGFR inhibitors (TGFβi), SB525334 (SB), and LY2109761 (LY) with Paclitaxel (PTX) chemotherapy. These TGFβi target TGFR-I (SB) or both TGFR-I&II (LY). Due to the poor water solubility of these drugs, we incorporated each of them in poly(2-oxazoline) (POx) high-capacity polymeric micelles (SB-POx and LY-POx). We assessed their anti-cancer effect as single agents and in combination with micellar Paclitaxel (PTX-POx) using multiple immunocompetent TNBC mouse models that mimic human subtypes (4T1, T11-Apobec and T11-UV). While either TGFβi or PTX showed a differential effect in each model as single agents, the combinations were consistently effective against all three models. Genetic profiling of the tumors revealed differences in the expression levels of genes associated with TGFβ, EMT, TLR-4, and Bcl2 signaling, alluding to the susceptibility to specific gene signatures to the treatment. Taken together, our study suggests that TGFβi and PTX combination therapy using high-capacity POx micelle delivery provides a robust anti-tumor response in multiple TNBC subtype mouse models.
Collapse
Affiliation(s)
- Natasha Vinod
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, United States
- Joint UNC/NC State Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Duhyeong Hwang
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, United States
| | - Sloane Christian Fussell
- Department of Biology, Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Tyler Cannon Owens
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, United States
| | - Olaoluwa Christopher Tofade
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, United States
| | - Sage Copling
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, United States
| | - Jacob D. Ramsey
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, United States
| | - Patrick D. Rädler
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, United States
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27514, United States
| | - Hannah M. Atkins
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, United States
- Pathology and Laboratory Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, United States
- Department of Pathology and Laboratory Medicine, Division of Comparative Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA
| | - Eric E. Livingston
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - J. Ashley Ezzell
- Histology Research Core, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Marina Sokolsky-Papkov
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, United States
| | - Hong Yuan
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Charles M. Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, United States
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27514, United States
| | - Alexander V. Kabanov
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, United States
| |
Collapse
|
36
|
Borlongan MC, Wang H. Profiling and targeting cancer stem cell signaling pathways for cancer therapeutics. Front Cell Dev Biol 2023; 11:1125174. [PMID: 37305676 PMCID: PMC10247984 DOI: 10.3389/fcell.2023.1125174] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/15/2023] [Indexed: 06/13/2023] Open
Abstract
Tumorigenic cancer stem cells (CSCs) represent a subpopulation of cells within the tumor that express genetic and phenotypic profiles and signaling pathways distinct from the other tumor cells. CSCs have eluded many conventional anti-oncogenic treatments, resulting in metastases and relapses of cancers. Effectively targeting CSCs' unique self-renewal and differentiation properties would be a breakthrough in cancer therapy. A better characterization of the CSCs' unique signaling mechanisms will improve our understanding of the pathology and treatment of cancer. In this paper, we will discuss CSC origin, followed by an in-depth review of CSC-associated signaling pathways. Particular emphasis is given on CSC signaling pathways' ligand-receptor engagement, upstream and downstream mechanisms, and associated genes, and molecules. Signaling pathways associated with regulation of CSC development stand as potential targets of CSC therapy, which include Wnt, TGFβ (transforming growth factor-β)/SMAD, Notch, JAK-STAT (Janus kinase-signal transducers and activators of transcription), Hedgehog (Hh), and vascular endothelial growth factor (VEGF). Lastly, we will also discuss milestone discoveries in CSC-based therapies, including pre-clinical and clinical studies featuring novel CSC signaling pathway cancer therapeutics. This review aims at generating innovative views on CSCs toward a better understanding of cancer pathology and treatment.
Collapse
Affiliation(s)
- Mia C. Borlongan
- Master Program of Pharmaceutical Science College of Graduate Studies, Elk Grove, CA, United States
| | - Hongbin Wang
- Master Program of Pharmaceutical Science College of Graduate Studies, Elk Grove, CA, United States
- Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, Elk Grove, CA, United States
- Department of Basic Science College of Medicine, California Northstate University, Elk Grove, CA, United States
| |
Collapse
|
37
|
Shih KC, Chan HW, Wu CY, Chuang HY. Curcumin Enhances the Abscopal Effect in Mice with Colorectal Cancer by Acting as an Immunomodulator. Pharmaceutics 2023; 15:pharmaceutics15051519. [PMID: 37242761 DOI: 10.3390/pharmaceutics15051519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Radiotherapy (RT) is an effective cancer treatment. The abscopal effect, referring to the unexpected shrinkage observed in non-irradiated tumors after radiation therapy, is thought to be mediated by systemic immune activation. However, it has low incidence and is unpredictable. Here, RT was combined with curcumin to investigate how curcumin affects RT-induced abscopal effects in mice with bilateral CT26 colorectal tumors. Indium 111-labeled DOTA-anti-OX40 mAb was synthesized to detect the activated T cell accumulations in primary and secondary tumors correlating with the changes in protein expressions and tumor growth to understand the overall effects of the combination of RT and curcumin. The combination treatment caused the most significant tumor suppression in both primary and secondary tumors, accompanied by the highest 111In-DOTA-OX40 mAb tumor accumulations. The combination treatment elevated expressions of proapoptotic proteins (Bax and cleaved caspase-3) and proinflammatory proteins (granzyme B, IL-6, and IL-1β) in both primary and secondary tumors. Based on the biodistribution of 111In-DOTA-OX40 mAb, tumor growth inhibition, and anti-tumor protein expression, our findings suggest that curcumin could act as an immune booster to augment RT-induced anti-tumor and abscopal effects effectively.
Collapse
Affiliation(s)
- Kuang-Chung Shih
- Division of Endocrinology and Metabolism, Department of Medicine, Cheng-Hsin General Hospital, Taipei 11220, Taiwan
- Division of Endocrinology & Metabolism, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
- School of Medicine, National Defense Medical Center, Taipei 11490, Taiwan
| | - Hui-Wen Chan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Chun-Yi Wu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Hui-Yen Chuang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| |
Collapse
|
38
|
Preclinical and Clinical Trials of New Treatment Strategies Targeting Cancer Stem Cells in Subtypes of Breast Cancer. Cells 2023; 12:cells12050720. [PMID: 36899854 PMCID: PMC10001180 DOI: 10.3390/cells12050720] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 02/26/2023] Open
Abstract
Breast cancer (BC) can be classified into various histological subtypes, each associated with different prognoses and treatment options, including surgery, radiation, chemotherapy, and endocrine therapy. Despite advances in this area, many patients still face treatment failure, the risk of metastasis, and disease recurrence, which can ultimately lead to death. Mammary tumors, like other solid tumors, contain a population of small cells known as cancer stem-like cells (CSCs) that have high tumorigenic potential and are involved in cancer initiation, progression, metastasis, tumor recurrence, and resistance to therapy. Therefore, designing therapies specifically targeting at CSCs could help to control the growth of this cell population, leading to increased survival rates for BC patients. In this review, we discuss the characteristics of CSCs, their surface biomarkers, and the active signaling pathways associated with the acquisition of stemness in BC. We also cover preclinical and clinical studies that focus on evaluating new therapy systems targeted at CSCs in BC through various combinations of treatments, targeted delivery systems, and potential new drugs that inhibit the properties that allow these cells to survive and proliferate.
Collapse
|
39
|
Luteolin inhibits the TGF-β signaling pathway to overcome bortezomib resistance in multiple myeloma. Cancer Lett 2023; 554:216019. [PMID: 36442773 DOI: 10.1016/j.canlet.2022.216019] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Multiple myeloma (MM) is an incurable condition and the second most common hematological malignancy. Over the past few years, there has been progress in the treatment of MM, but most patients still relapse. Multiple myeloma stem-like cells (MMSCs) are believed to be the main reason for drug resistance and eventual relapse. Currently, there are not enough therapeutic agents that have been identified for eradication of MMSCs, and thus, identification of the same may alleviate the issue of relapse in patients. In the present study, we showed that luteolin (LUT), a natural compound obtained from different plants, such as vegetables, medicinal herbs, and fruits, effectively inhibits the proliferation of MM cells and overcomes bortezomib (BTZ) resistance in them in vitro and in vivo, mainly by decreasing the proportion of ALDH1+ cells. Furthermore, RNA sequencing after LUT treatment of MM cell lines and an MM xenograft mouse model revealed that the effects of the compound are mediated through inhibition of transforming growth factor-β signaling. Similarly, we found that LUT also significantly reduced the proportion of ALDH1+ cells in primary CD138+ plasma cells. In addition, LUT could overcome the BTZ treatment-induced increase in the proportion of ALDH1+ cells, and the combination of LUT and BTZ had a synergistic effect against myeloma cells. Collectively, our findings suggested that LUT is a promising agent that manifests MMSCs to overcome BTZ resistance, alone or in combination with BTZ, and thus, is a potential therapeutic drug for the treatment of MM.
Collapse
|
40
|
Ait-Ahmed Y, Lafdil F. Novel insights into the impact of liver inflammatory responses on primary liver cancer development. LIVER RESEARCH 2023. [DOI: 10.1016/j.livres.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
|
41
|
Sarkar M, Nguyen T, Gundre E, Ogunlusi O, El-Sobky M, Giri B, Sarkar TR. Cancer-associated fibroblasts: The chief architect in the tumor microenvironment. Front Cell Dev Biol 2023; 11:1089068. [PMID: 36793444 PMCID: PMC9923123 DOI: 10.3389/fcell.2023.1089068] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/12/2023] [Indexed: 01/31/2023] Open
Abstract
Stromal heterogeneity of tumor microenvironment (TME) plays a crucial role in malignancy and therapeutic resistance. Cancer-associated fibroblasts (CAFs) are one of the major players in tumor stroma. The heterogeneous sources of origin and subsequent impacts of crosstalk with breast cancer cells flaunt serious challenges before current therapies to cure triple-negative breast cancer (TNBC) and other cancers. The positive and reciprocal feedback of CAFs to induce cancer cells dictates their mutual synergy in establishing malignancy. Their substantial role in creating a tumor-promoting niche has reduced the efficacy of several anti-cancer treatments, including radiation, chemotherapy, immunotherapy, and endocrine therapy. Over the years, there has been an emphasis on understanding CAF-induced therapeutic resistance in order to enhance cancer therapy results. CAFs, in the majority of cases, employ crosstalk, stromal management, and other strategies to generate resilience in surrounding tumor cells. This emphasizes the significance of developing novel strategies that target particular tumor-promoting CAF subpopulations, which will improve treatment sensitivity and impede tumor growth. In this review, we discuss the current understanding of the origin and heterogeneity of CAFs, their role in tumor progression, and altering the tumor response to therapeutic agents in breast cancer. In addition, we also discuss the potential and possible approaches for CAF-mediated therapies.
Collapse
Affiliation(s)
- Mrinmoy Sarkar
- Department of Biology, Texas A&M University, College Station, TX, United States
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Tristan Nguyen
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Esheksha Gundre
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Olajumoke Ogunlusi
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Mohanad El-Sobky
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Biplab Giri
- Department of Physiology, University of Gour Banga, English Bazar, India
| | - Tapasree Roy Sarkar
- Department of Biology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
42
|
Cancer Stem Cell Formation Induced and Regulated by Extracellular ATP and Stanniocalcin-1 in Human Lung Cancer Cells and Tumors. Int J Mol Sci 2022; 23:ijms232314770. [PMID: 36499099 PMCID: PMC9740946 DOI: 10.3390/ijms232314770] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer stem cells (CSCs) are closely associated with metastasis and epithelial mesenchymal transition (EMT). We previously reported that extracellular ATP (eATP) induces and regulates EMT in cancer cells. We recently found that the gene stanniocalcin 1 (STC1) is significantly upregulated by eATP in human non-small lung cancer (NSCLC) A549 cells; however, the relationships among eATP, CSCs, and STC1 were largely unknown. In this study, we performed gene knockdown and knockout, and a wide variety of functional assays to determine if and how eATP and STC1 induce CSCs in NSCLC A549 and H1299 cells. Our data show that, in both cultured cells and tumors, eATP increased the number of CSCs in the cancer cell population and upregulated CSC-related genes and protein markers. STC1 deletion led to drastically slower cell and tumor growth, reduced intracellular ATP levels and CSC markers, and metabolically shifted STC1-deficient cells from an energetic state to a quiescent state. These findings indicate that eATP induces and regulates CSCs at transcriptional, translational, and metabolic levels, and these activities are mediated through STC1 via mitochondria-associated ATP synthesis. These novel findings offer insights into eATP-induced CSCs and identify new targets for inhibiting CSCs.
Collapse
|
43
|
Heidary Z, Haghjooy Javanmard S, Izadi I, Zare N, Ghaisari J. Multiscale modeling of collective cell migration elucidates the mechanism underlying tumor-stromal interactions in different spatiotemporal scales. Sci Rep 2022; 12:16242. [PMID: 36171274 PMCID: PMC9519582 DOI: 10.1038/s41598-022-20634-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/15/2022] [Indexed: 11/09/2022] Open
Abstract
Metastasis is the pathogenic spread of cancer cells from a primary tumor to a secondary site which happens at the late stages of cancer. It is caused by a variety of biological, chemical, and physical processes, such as molecular interactions, intercellular communications, and tissue-level activities. Complex interactions of cancer cells with their microenvironment components such as cancer associated fibroblasts (CAFs) and extracellular matrix (ECM) cause them to adopt an invasive phenotype that promotes tumor growth and migration. This paper presents a multiscale model for integrating a wide range of time and space interactions at the molecular, cellular, and tissue levels in a three-dimensional domain. The modeling procedure starts with presenting nonlinear dynamics of cancer cells and CAFs using ordinary differential equations based on TGFβ, CXCL12, and LIF signaling pathways. Unknown kinetic parameters in these models are estimated using hybrid unscented Kalman filter and the models are validated using experimental data. Then, the principal role of CAFs on metastasis is revealed by spatial-temporal modeling of circulating signals throughout the TME. At this stage, the model has evolved into a coupled ODE-PDE system that is capable of determining cancer cells' status in one of the quiescent, proliferating or migratory conditions due to certain metastasis factors and ECM characteristics. At the tissue level, we consider a force-based framework to model the cancer cell proliferation and migration as the final step towards cancer cell metastasis. The ability of the multiscale model to depict cancer cells' behavior in different levels of modeling is confirmed by comparing its outputs with the results of RT PCR and wound scratch assay techniques. Performance evaluation of the model indicates that the proposed multiscale model can pave the way for improving the efficiency of therapeutic methods in metastasis prevention.
Collapse
Affiliation(s)
- Zarifeh Heidary
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Shaghayegh Haghjooy Javanmard
- Department of Physiology, Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| | - Iman Izadi
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Nasrin Zare
- School of Medicine, Najafabad Branch, Islamic Azad University, Isfahan, Iran
| | - Jafar Ghaisari
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| |
Collapse
|
44
|
Takahashi K, Podyma-Inoue KA, Saito M, Sakakitani S, Sugauchi A, Iida K, Iwabuchi S, Koinuma D, Kurioka K, Konishi T, Tanaka S, Kaida A, Miura M, Hashimoto S, Okada M, Uchihashi T, Miyazono K, Watabe T. TGF-β generates a population of cancer cells residing in G1 phase with high motility and metastatic potential via KRTAP2-3. Cell Rep 2022; 40:111411. [PMID: 36170816 DOI: 10.1016/j.celrep.2022.111411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/17/2022] [Accepted: 09/02/2022] [Indexed: 11/19/2022] Open
Abstract
Transforming growth factor β (TGF-β) increases epithelial cancer cell migration and metastasis by inducing epithelial-mesenchymal transition (EMT). TGF-β also inhibits cell proliferation by inducing G1 phase cell-cycle arrest. However, the correlation between these tumor-promoting and -suppressing effects remains unclear. Here, we show that TGF-β confers higher motility and metastatic ability to oral cancer cells in G1 phase. Mechanistically, keratin-associated protein 2-3 (KRTAP2-3) is a regulator of these dual effects of TGF-β, and its expression is correlated with tumor progression in patients with head and neck cancer and migratory and metastatic potentials of oral cancer cells. Furthermore, single-cell RNA sequencing reveals that TGF-β generates two populations of mesenchymal cancer cells with differential cell-cycle status through two distinctive EMT pathways mediated by Slug/HMGA2 and KRTAP2-3. Thus, TGF-β-induced KRTAP2-3 orchestrates cancer cell proliferation and migration by inducing EMT, suggesting motile cancer cells arrested in G1 phase as a target to suppress metastasis.
Collapse
Affiliation(s)
- Kazuki Takahashi
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo 113-8549, Japan
| | - Katarzyna A Podyma-Inoue
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo 113-8549, Japan
| | - Maki Saito
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo 113-8549, Japan
| | - Shintaro Sakakitani
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo 113-8549, Japan; Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo 113-8549, Japan
| | - Akinari Sugauchi
- The First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Keita Iida
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Sadahiro Iwabuchi
- Department of Molecular Pathophysiology, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Daizo Koinuma
- Department of Molecular Pathology, Graduate School of Medicine, the University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kyoko Kurioka
- The First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Toru Konishi
- Department of Molecular Pathology, Graduate School of Medicine, the University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Susumu Tanaka
- The First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Atsushi Kaida
- Department of Oral Radiation Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo 113-8549, Japan
| | - Masahiko Miura
- Department of Oral Radiation Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo 113-8549, Japan
| | - Shinichi Hashimoto
- Department of Molecular Pathophysiology, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Mariko Okada
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Toshihiro Uchihashi
- The First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan; Unit of Dentistry, Osaka University Hospital, Suita, Osaka 565-0871, Japan
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, the University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo 113-8549, Japan.
| |
Collapse
|
45
|
OCT4-mediated transcription confers oncogenic advantage for a subset of gastric tumors with poor clinical outcome. Funct Integr Genomics 2022; 22:1345-1360. [DOI: 10.1007/s10142-022-00894-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/26/2022]
|
46
|
Kang E, Kim K, Jeon SY, Jung JG, Kim HK, Lee HB, Han W. Targeting CLK4 inhibits the metastasis and progression of breast cancer by inactivating TGF-β pathway. Cancer Gene Ther 2022; 29:1168-1180. [PMID: 35046528 DOI: 10.1038/s41417-021-00419-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 11/21/2021] [Accepted: 12/15/2021] [Indexed: 01/10/2023]
Abstract
Triple-negative breast cancer (TNBC) represents the most aggressive subtype of breast cancer that is highly resistant to current therapeutic options. According to the public databases Oncomine and KM plotter, the CLK4 expression is correlated with poor patient survival in TNBC, especially in mesenchymal-like TNBC (MES-TNBC) that has strong metastatic potential. Therefore, we investigated the potential involvement of CLK4 in the metastasis and progression of MES-TNBC. In the MES-TNBC cell lines, the CLK4 expression was elevated. Notably, the RNAi-mediated silencing of CLK4 reduced the expression of multiple epithelial-mesenchymal transition (EMT) genes that mediate metastasis. Furthermore, CLK4 silencing reduced both the invasive behaviors of the cultured cells and tumor metastasis in the mouse xenograft model. It is also noteworthy that CLK4 silencing repressed the invasive and cancer stem cell (CSC) properties that are induced by the TGF-β signaling. Importantly, the pharmacological inhibition of CLK4 potently repressed the invasion and proliferation of MES-TNBC cell lines and patient-derived cells, which demonstrates its clinical applicability. Collectively, our results suggest that CLK4 plays a crucial role in invasion and proliferation of MES-TNBC, especially in the processes that are induced by TGF-β. Also, this study characterizes CLK4 as a novel therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Eunji Kang
- Cancer Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, Republic of Korea
| | - Kanggeon Kim
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Sook Young Jeon
- Department of Surgery, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, Republic of Korea
| | - Ji Gwang Jung
- Department of Surgery, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, Republic of Korea
| | - Hong-Kyu Kim
- Department of Surgery, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, Republic of Korea
| | - Han-Byoel Lee
- Cancer Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, Republic of Korea.,Department of Surgery, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, Republic of Korea.,Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, Republic of Korea
| | - Wonshik Han
- Cancer Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, Republic of Korea. .,Department of Surgery, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, Republic of Korea. .,Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, Republic of Korea.
| |
Collapse
|
47
|
Hersh AM, Gaitsch H, Alomari S, Lubelski D, Tyler BM. Molecular Pathways and Genomic Landscape of Glioblastoma Stem Cells: Opportunities for Targeted Therapy. Cancers (Basel) 2022; 14:3743. [PMID: 35954407 PMCID: PMC9367289 DOI: 10.3390/cancers14153743] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive tumor of the central nervous system categorized by the World Health Organization as a Grade 4 astrocytoma. Despite treatment with surgical resection, adjuvant chemotherapy, and radiation therapy, outcomes remain poor, with a median survival of only 14-16 months. Although tumor regression is often observed initially after treatment, long-term recurrence or progression invariably occurs. Tumor growth, invasion, and recurrence is mediated by a unique population of glioblastoma stem cells (GSCs). Their high mutation rate and dysregulated transcriptional landscape augment their resistance to conventional chemotherapy and radiation therapy, explaining the poor outcomes observed in patients. Consequently, GSCs have emerged as targets of interest in new treatment paradigms. Here, we review the unique properties of GSCs, including their interactions with the hypoxic microenvironment that drives their proliferation. We discuss vital signaling pathways in GSCs that mediate stemness, self-renewal, proliferation, and invasion, including the Notch, epidermal growth factor receptor, phosphatidylinositol 3-kinase/Akt, sonic hedgehog, transforming growth factor beta, Wnt, signal transducer and activator of transcription 3, and inhibitors of differentiation pathways. We also review epigenomic changes in GSCs that influence their transcriptional state, including DNA methylation, histone methylation and acetylation, and miRNA expression. The constituent molecular components of the signaling pathways and epigenomic regulators represent potential sites for targeted therapy, and representative examples of inhibitory molecules and pharmaceuticals are discussed. Continued investigation into the molecular pathways of GSCs and candidate therapeutics is needed to discover new effective treatments for GBM and improve survival.
Collapse
Affiliation(s)
- Andrew M. Hersh
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.M.H.); (H.G.); (S.A.); (D.L.)
| | - Hallie Gaitsch
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.M.H.); (H.G.); (S.A.); (D.L.)
- NIH Oxford-Cambridge Scholars Program, Wellcome—MRC Cambridge Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 1TN, UK
| | - Safwan Alomari
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.M.H.); (H.G.); (S.A.); (D.L.)
| | - Daniel Lubelski
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.M.H.); (H.G.); (S.A.); (D.L.)
| | - Betty M. Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.M.H.); (H.G.); (S.A.); (D.L.)
| |
Collapse
|
48
|
WNK1 collaborates with TGF-β in endothelial cell junction turnover and angiogenesis. Proc Natl Acad Sci U S A 2022; 119:e2203743119. [PMID: 35867836 PMCID: PMC9335306 DOI: 10.1073/pnas.2203743119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Angiogenesis is essential for growth of new blood vessels, remodeling existing vessels, and repair of damaged vessels, and these require reorganization of endothelial cell-cell junctions through a partial endothelial-mesenchymal transition. Homozygous disruption of the gene encoding the protein kinase WNK1 results in lethality in mice near embryonic day (E) 12 due to impaired angiogenesis. This angiogenesis defect can be rescued by endothelial-specific expression of an activated form of the WNK1 substrate kinase OSR1. We show that inhibition of WNK1 kinase activity not only prevents sprouting of endothelial cells from aortic slices but also vessel extension in inhibitor-treated embryos ex vivo. Mutations affecting TGF-β signaling also result in abnormal vascular development beginning by E10 and, ultimately, embryonic lethality. Previously, we demonstrated cross-talk of WNK1 with TGF-β-regulated SMAD signaling, and OSR1 was identified as a component of the TGF-β interactome. However, molecular events jointly regulated by TGF-β and WNK1/OSR1 have not been delineated. Here, we show that inhibition of WNK1 promotes TGF-β-dependent degradation of the tyrosine kinase receptor AXL, which is involved in TGF-β-mediated cell migration and angiogenesis. We also show that interaction between OSR1 and occludin, a protein associated with endothelial tight junctions, is an essential step to enable tight junction turnover. Furthermore, we show that these phenomena are WNK1 dependent, and sensitive to TGF-β. These findings demonstrate intimate connections between WNK1/OSR1 and multiple TGF-β-sensitive molecules controlling angiogenesis and suggest that WNK1 may modulate many TGF-β-regulated functions.
Collapse
|
49
|
Zhang Z, Xu Y. FZD7 accelerates hepatic metastases in pancreatic cancer by strengthening EMT and stemness associated with TGF-β/SMAD3 signaling. Mol Med 2022; 28:82. [PMID: 35854234 PMCID: PMC9295360 DOI: 10.1186/s10020-022-00509-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/07/2022] [Indexed: 11/26/2022] Open
Abstract
Background Metastasis of malignant tumors accelerates systemic failure and hastens the deaths of pancreatic cancer patients. During the metastatic process, the physical translocation of cancer cells from the primary lesion to distant organs and is crucial. CSCs properties, such as self-renewal and multiple-direction differentiation capacity are essential for colonization in the microenvironment of distant organs and metastatic lesion formation. It is widely believed that EMT can cause cancer cells to penetrate blood vessels by undergoing phenotypic and cytoskeletal changes, so that they can infiltrate surrounding tissue and disseminate from the primary tumor to the blood circulation, where they are termed circulating tumor cells (CTCs), while CTCs often exhibit stemness properties. Accumulating evidence demonstrates that some EMT-related transcription factors are essential for CSCs self-renewal, so cancer cells that have undergone EMT typically acquire increased stemness properties. Abnormal activation of the WNT signaling pathway can drive a series of gene transcripts to promote EMT in multiple types of cancer, and among different Frizzled receptors of WNT signaling pathway, FZD7 expression is associated with distant organ metastasis, advanced clinical stages, and poor clinical prognosis. Objective of this study is to demonstrate that high FZD7 expression in pancreatic cancer can accelerate hepatic metastases and elucidate the related molecular mechanisms. Methods The expression of Frrizled receptor 7 (FZD7) in pancreatic ductal adenocarcinoma (PDAC) and relating survival rate were analyzed by bioinformatics, histochemistry assay and follow-up study. In vitro, FZD7 expression was silenced by lentiviral vectors carrying short hair RNA (shRNA) or upregulated by overexpression plasmid. Then, Wound-healing and Transwell experiment was used to analyze the abilities of migration and invasion; the levels of epithelial-to-mesenchymal transition (EMT) relating phenotype proteins, stemness relating phenotype proteins, and signaling molecular proteins were measured by Western-blot; cell stemness was evaluated by sphere forming ability of cells in suspension culture and detecting the proportion of CD24+CD44+ cells with flow cytometry. TGF-β1 was used to induce EMT, and observe the effect of shRNA silencing FZD7 on which. Results High level of FZD7 expression in pancreatic cancer samples was associated with earlier hepatic metastasis. In vitro upregulation FZD7 can enable pancreatic cancer cells to obtain stronger migration and invasion ability and higher mesenchymal phenotype, and vice versa; the proportion of cancer stem cell (CSC) was also positively correlated with the level of FZD7; cells forming spheres in suspension culture showed stronger migration and invasion ability and higher level of mesenchymal phenotype than normal adherent cultured cells; the level of FZD7 was positively correlated with the level of activated β-catenin. Silencing FZD7 expression can attenuate EMT induced by TGF-β1 stimulating, and TGF-β1 stimulating can also upregulate stemness phenotype expression, such as ABCG2, CD24, and CD44 by mediating of FZD7. Conclusions High FZD7 expression in pancreatic cancer can accelerates hepatic metastases by promoting EMT and strengthening cell stemness, and FZD7 can work through the canonical Wingless-type (WNT) signaling pathway and participate in TGF-β/SMAD3 signaling pathway also.
Collapse
Affiliation(s)
- Zhongbo Zhang
- Department of Pancreatic and Biliary Surgery, The First Hospital of China Medical University, 155 Nanjing North Street, Heping, Shenyang, 110001, Liaoning, People's Republic of China
| | - Yuanhong Xu
- Department of Pancreatic and Biliary Surgery, The First Hospital of China Medical University, 155 Nanjing North Street, Heping, Shenyang, 110001, Liaoning, People's Republic of China.
| |
Collapse
|
50
|
Nalla LV, Gondaliya P, Kalia K, Khairnar A. Targeting specificity protein 1 with miR-128-3p overcomes TGF-β1 mediated epithelial-mesenchymal transition in breast cancer: An in vitro study. Mol Biol Rep 2022; 49:6987-6996. [PMID: 35486287 DOI: 10.1007/s11033-022-07466-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/08/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Specificity protein 1 (SP1) was found to play a critical role in the regulation of TGF-β1 driven epithelial-mesenchymal transition (EMT). Recent clinical findings demonstrated a significant drop in the expression of miR-128-3p with the cancer progression in breast cancer patients. However, the impact of miR-128-3p on the SP1 expression in breast cancer remains unknown. Herein, we evaluated the role of miR-128-3p mimics in suppressing EMT of breast cancer cell lines by regulating the TGF-β1/SP1 axis. METHODS miR-128-3p interaction with SP1 was detected by in silico tools and dual-luciferase reporter assay. qPCR, western blot, and immunocytochemistry experiments were conducted for determining the expression levels of miR-128-3p and EMT markers with and without the treatment of miR-128-3p mimics. Further, to understand the effect of miR-128-3p mimics on cancer progression, experiments such as wound healing assay, transwell assay, adhesion assay, and cell cycle analysis were performed. RESULTS A significant inverse relation between SP1 and miR-128-3p levels was found in MCF-7 and MDA-MB-231 cell lines. miR-128-3p overexpression impeded the SP1 mediated EMT markers in TGF-β1 stimulated cells by inhibiting the SP1 nuclear function. Further, treatment with miR-128-3p mimics significantly reduced the migration, invasion and spreading capability of TGF-β1 stimulated cells. Flow cytometry results showed the impeding role of miR-128-3p on the cell cycle progression. CONCLUSIONS Upregulated miR-128-3p inhibited SP1, thereby limiting the TGF-β1 induced EMT in MCF-7 and MDA-MB-231 cell lines for the first time. This study may pave the path to explore novel miRNA therapeutics for eradicating advanced breast cancer cases.
Collapse
Affiliation(s)
- Lakshmi Vineela Nalla
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Palaj, Gandhinagar, Gujarat, 382355, India
| | - Piyush Gondaliya
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Gandhinagar, Gujarat, 382355, India
| | - Kiran Kalia
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Gandhinagar, Gujarat, 382355, India
| | - Amit Khairnar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Palaj, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|