1
|
El Omari N, Khalid A, Makeen HA, Alhazmi HA, Albratty M, Mohan S, Tan CS, Ming LC, Chook JB, Bouyahya A. Stochasticity of anticancer mechanisms underlying clinical effectiveness of vorinostat. Heliyon 2024; 10:e33052. [PMID: 39021957 PMCID: PMC11253278 DOI: 10.1016/j.heliyon.2024.e33052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
The Food and Drug Administration (FDA) has approved vorinostat, also called Zolinza®, for its effectiveness in fighting cancer. This drug is a suberoyl-anilide hydroxamic acid belonging to the class of histone deacetylase inhibitors (HDACis). Its HDAC inhibitory potential allows it to accumulate acetylated histones. This, in turn, can restore normal gene expression in cancer cells and activate multiple signaling pathways. Experiments have proven that vorinostat induces histone acetylation and cytotoxicity in many cancer cell lines, increases the level of p21 cell cycle proteins, and enhances pro-apoptotic factors while decreasing anti-apoptotic factors. Additionally, it regulates the immune response by up-regulating programmed death-ligand 1 (PD-L1) and interferon gamma receptor 1 (IFN-γR1) expression, and can impact proteasome and/or aggresome degradation, endoplasmic reticulum function, cell cycle arrest, apoptosis, tumor microenvironment remodeling, and angiogenesis inhibition. In this study, we sought to elucidate the precise molecular mechanism by which Vorinostat inhibits HDACs. A deeper understanding of these mechanisms could improve our understanding of cancer cell abnormalities and provide new therapeutic possibilities for cancer treatment.
Collapse
Affiliation(s)
- Nasreddine El Omari
- High Institute of Nursing Professions and Health Techniques of Tetouan, Tetouan, Morocco
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box 114, Postal Code 45142, Jazan, Saudi Arabia
- Medicinal and Aromatic Plants Research Institute, National Center for Research, P.O. Box: 2424, Khartoum, 11111, Sudan
| | - Hafiz A. Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, Faculty of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A. Alhazmi
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box 114, Postal Code 45142, Jazan, Saudi Arabia
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Postal Code 45142, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Postal Code 45142, Jazan, Saudi Arabia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box 114, Postal Code 45142, Jazan, Saudi Arabia
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Ching Siang Tan
- School of Pharmacy, KPJ Healthcare University, Nilai, Malaysia
| | - Long Chiau Ming
- School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia
| | - Jack Bee Chook
- School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 10106, Morocco
| |
Collapse
|
2
|
Kowalewski A, Borowczak J, Maniewski M, Gostomczyk K, Grzanka D, Szylberg Ł. Targeting apoptosis in clear cell renal cell carcinoma. Biomed Pharmacother 2024; 175:116805. [PMID: 38781868 DOI: 10.1016/j.biopha.2024.116805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most prevalent subtype of renal cancer, accounting for approximately 80% of all renal cell cancers. Due to its exceptional inter- and intratumor heterogeneity, it is highly resistant to conventional systemic therapies. Targeting the evasion of cell death, one of cancer's hallmarks, is currently emerging as an alternative strategy for ccRCC. In this article, we review the current state of apoptosis-inducing therapies against ccRCC, including antisense oligonucleotides, BH3 mimetics, histone deacetylase inhibitors, cyclin-kinase inhibitors, inhibitors of apoptosis protein antagonists, and monoclonal antibodies. Although preclinical studies have shown encouraging results, these compounds fail to improve patients' outcomes significantly. Current evidence suggests that inducing apoptosis in ccRCC may promote tumor progression through apoptosis-induced proliferation, anastasis, and apoptosis-induced nuclear expulsion. Therefore, re-evaluating this approach is expected to enable successful preclinical-to-clinical translation.
Collapse
Affiliation(s)
- Adam Kowalewski
- Department of Tumor Pathology and Pathomorphology, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz 85-796, Poland; Center of Medical Sciences, University of Science and Technology, Bydgoszcz 85-796, Poland.
| | - Jędrzej Borowczak
- Clinical Department of Oncology, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz 85-796, Poland
| | - Mateusz Maniewski
- Department of Tumor Pathology and Pathomorphology, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz 85-796, Poland; Doctoral School of Medical and Health Sciences, Nicolaus Copernicus University in Torun, Bydgoszcz 85-094, Poland
| | - Karol Gostomczyk
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz 85-094, Poland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz 85-094, Poland
| | - Łukasz Szylberg
- Department of Tumor Pathology and Pathomorphology, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz 85-796, Poland; Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz 85-094, Poland
| |
Collapse
|
3
|
Fakhri S, Moradi SZ, Faraji F, Kooshki L, Webber K, Bishayee A. Modulation of hypoxia-inducible factor-1 signaling pathways in cancer angiogenesis, invasion, and metastasis by natural compounds: a comprehensive and critical review. Cancer Metastasis Rev 2024; 43:501-574. [PMID: 37792223 DOI: 10.1007/s10555-023-10136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023]
Abstract
Tumor cells employ multiple signaling mediators to escape the hypoxic condition and trigger angiogenesis and metastasis. As a critical orchestrate of tumorigenic conditions, hypoxia-inducible factor-1 (HIF-1) is responsible for stimulating several target genes and dysregulated pathways in tumor invasion and migration. Therefore, targeting HIF-1 pathway and cross-talked mediators seems to be a novel strategy in cancer prevention and treatment. In recent decades, tremendous efforts have been made to develop multi-targeted therapies to modulate several dysregulated pathways in cancer angiogenesis, invasion, and metastasis. In this line, natural compounds have shown a bright future in combating angiogenic and metastatic conditions. Among the natural secondary metabolites, we have evaluated the critical potential of phenolic compounds, terpenes/terpenoids, alkaloids, sulfur compounds, marine- and microbe-derived agents in the attenuation of HIF-1, and interconnected pathways in fighting tumor-associated angiogenesis and invasion. This is the first comprehensive review on natural constituents as potential regulators of HIF-1 and interconnected pathways against cancer angiogenesis and metastasis. This review aims to reshape the previous strategies in cancer prevention and treatment.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Farahnaz Faraji
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leila Kooshki
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 6714415153, Iran
| | - Kassidy Webber
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL, 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL, 34211, USA.
| |
Collapse
|
4
|
Xie D, Wang S, Jiang B, Li G, Wu G. The potential value of the Purinergic pathway in the prognostic assessment and clinical application of kidney renal clear cell carcinoma. Aging (Albany NY) 2024; 16:246-266. [PMID: 38180750 PMCID: PMC10817410 DOI: 10.18632/aging.205364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/16/2023] [Indexed: 01/06/2024]
Abstract
The Purinergic pathway is involved in a variety of important physiological processes in living organisms, and previous studies have shown that aberrant expression of the Purinergic pathway may contribute to the development of a variety of cancers, including kidney renal clear cell carcinoma (KIRC). The aim of this study was to delve into the Purinergic pathway in KIRC and to investigate its potential significance in prognostic assessment and clinical treatment. 33 genes associated with the Purinergic pathway were selected for pan-cancer analysis. Cluster analysis, targeted drug sensitivity analysis and immune cell infiltration analysis were applied to explore the mechanism of Purinergic pathway in KIRC. Using the machine learning process, we found that combining the Lasso+survivalSVM algorithm worked well for predicting survival accuracy in KIRC. We used LASSO regression to pinpoint nine Purinergic genes closely linked to KIRC, using them to create a survival model for KIRC. ROC survival curve was analyzed, and this survival model could effectively predict the survival rate of KIRC patients in the next 5, 7 and 10 years. Further univariate and multivariate Cox regression analyses revealed that age, grading, staging, and risk scores of KIRC patients were significantly associated with their prognostic survival and were identified as independent risk factors for prognosis. The nomogram tool developed through this study can help physicians accurately assess patient prognosis and provide guidance for developing treatment plans. The results of this study may bring new ideas for optimizing the prognostic assessment and therapeutic approaches for KIRC patients.
Collapse
Affiliation(s)
- Deqian Xie
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Shijin Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Bowen Jiang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Guandu Li
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| |
Collapse
|
5
|
Saliby RM, Saad E, Labaki C, Xu W, Braun DA, Viswanathan SR, Bakouny Z. Novel Targeted Therapies for Renal Cell Carcinoma: Building on the Successes of Vascular Endothelial Growth Factor and mTOR Inhibition. Hematol Oncol Clin North Am 2023; 37:1015-1026. [PMID: 37385938 DOI: 10.1016/j.hoc.2023.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Targeted therapies have revolutionized the treatment of renal cell carcinoma (RCC). The VHL/HIF pathway is responsible for the regulation of oxygen homeostasis and is frequently altered in RCC. Targeting this pathway as well as the mTOR pathway have yielded remarkable advances in the treatment of RCC. Here, we review the most promising novel targeted therapies for the treatment of RCC, including HIF2α, MET, metabolic targeting, and epigenomic reprogramming.
Collapse
Affiliation(s)
- Renée Maria Saliby
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, 300 George Street, Suite 6400, New Haven, CT 06510, USA
| | - Eddy Saad
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Chris Labaki
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Wenxin Xu
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Harvard Medical School, Boston, MA, USA
| | - David A Braun
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, 300 George Street, Suite 6400, New Haven, CT 06510, USA
| | - Srinivas R Viswanathan
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Harvard Medical School, Boston, MA, USA.
| | - Ziad Bakouny
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Harvard Medical School, Boston, MA, USA; Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
6
|
Liu Y, Zhang Z, Xi P, Chen R, Cheng X, Liu J, Zhu Q, Nie Y, Sun T, Gong B, Wang S. Systematic analysis of RNASET2 gene as a potential prognostic and immunological biomarker in clear cell renal cell carcinoma. BMC Cancer 2023; 23:837. [PMID: 37679715 PMCID: PMC10483861 DOI: 10.1186/s12885-023-11356-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 08/31/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND RNASET2 has been identified as an oncogene with anti-angiogenic and immunomodulatory effects in a variety of cancers, but its function in clear cell renal cell carcinoma (ccRCC) is still not well understood. METHODS The RNASET2 expression matrix was extracted from the The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets and analyzed for diagnostic and prognostic value. RNASET2 mRNA expression was detected by quantitative polymerase chain reaction (qPCR) in ccRCC patients and renal cancer cell lines. Wound healing assay, transwell assay, western blotting, and tube formation assays were used to evaluate the function of RNASET2 in renal cancer in vitro. In addition, transcriptome sequencing was performed on knockdown RNASET2 kidney cancer cells to analyze their potential signaling pathways. Moreover, the immune microenvironment and mutational status were evaluated to predict the potential mechanisms of RNASET2 involvement in renal cancer progression. Sensitivity to common chemotherapeutic and targeted agents was assessed according to the Genomics of Drug Sensitivity in Cancer (GDSC) database. RESULTS RNASET2 expression was significantly upregulated in ccRCC tissues and renal cancer cell lines, predicting poor prognosis for patients. In vitro experiments showed that silencing RNASET2 inhibited the migration and pro-angiogenic ability of renal cancer cells. Transcriptome sequencing suggested its possible involvement in the remodeling of the immune microenvironment in renal cell carcinoma. Furthermore, bioinformatics analysis and immunohistochemical staining showed that RNASET2 was positively correlated with the infiltration abundance of regulatory T cells. Finally, we mapped the mutational landscape of RNASET2 in ccRCC and found its predictive value for drug sensitivity. CONCLUSIONS Our results suggest that RNASET2 is a promising biomarker and therapeutic target in ccRCC.
Collapse
Affiliation(s)
- Yifu Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, No.17, Yongwai Center Street, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Zhicheng Zhang
- Department of Urology, The First Affiliated Hospital of Nanchang University, No.17, Yongwai Center Street, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Ping Xi
- Department of Urology, The First Affiliated Hospital of Nanchang University, No.17, Yongwai Center Street, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Ru Chen
- Department of Urology, The First Affiliated Hospital of Nanchang University, No.17, Yongwai Center Street, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Xiaofeng Cheng
- Department of Urology, The First Affiliated Hospital of Nanchang University, No.17, Yongwai Center Street, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Ji Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, No.17, Yongwai Center Street, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Qiqi Zhu
- Department of Urology, The First Affiliated Hospital of Nanchang University, No.17, Yongwai Center Street, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Yechen Nie
- Department of Urology, The First Affiliated Hospital of Nanchang University, No.17, Yongwai Center Street, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Ting Sun
- Department of Urology, The First Affiliated Hospital of Nanchang University, No.17, Yongwai Center Street, Donghu District, Nanchang, 330006, Jiangxi, China.
| | - Binbin Gong
- Department of Urology, The First Affiliated Hospital of Nanchang University, No.17, Yongwai Center Street, Donghu District, Nanchang, 330006, Jiangxi, China.
| | - Siyuan Wang
- Department of Urology, Sichuan Cancer Hospital School of Medicine, University of Electronic Science and Technology of China, No. 55, Section 4, Renmin South Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
7
|
Joshi G, Basu A. Epigenetic control of cell signalling in cancer stem cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 383:67-88. [PMID: 38359971 DOI: 10.1016/bs.ircmb.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The self-renewing cancer stem cells (CSCs) represent one of the distinct cell populations occurring in a tumour that can differentiate into multiple lineages. This group of sparsely abundant cells play a vital role in tumour survival and resistance to different treatments during cancer. The lack of exclusive markers associated with CSCs makes diagnosis and prognosis in cancer patients extremely difficult. This calls for the identification of unique regulators and markers for CSCs. Various signalling pathways like the Wnt/β-catenin pathway, Hedgehog pathway, Notch pathway, and TGFβ/BMP play a major role in the regulation and maintenance of CSCs. Epigenetic regulatory mechanisms add another layer of complexity to control these signalling pathways. In this chapter, we discuss about the role of epigenetic mechanisms in regulating the cellular signalling pathways in CSCs. The epigenetic regulatory mechanisms such as DNA methylation, histone modification and microRNAs can modulate the diverse effectors of signalling pathways and consequently the growth, differentiation and tumorigenicity of CSCs. In the end, we briefly discuss the therapeutic potential of targeting these epigenetic regulators and their target genes in CSCs.
Collapse
Affiliation(s)
- Gaurav Joshi
- Institute of Molecular Biology (IMB), Mainz, Germany.
| | - Amitava Basu
- Institute of Molecular Biology (IMB), Mainz, Germany.
| |
Collapse
|
8
|
Yang Y, Chen S, Wang Q, Niu MM, Qu Y, Zhou Y. Identification of novel and potent dual-targeting HDAC1/SPOP inhibitors using structure-based virtual screening, molecular dynamics simulation and evaluation of in vitro and in vivo antitumor activity. Front Pharmacol 2023; 14:1208740. [PMID: 37492092 PMCID: PMC10363607 DOI: 10.3389/fphar.2023.1208740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/29/2023] [Indexed: 07/27/2023] Open
Abstract
Cancer is one of the important factors threatening human health. Hence, it is essential to create novel potent drugs to treat it. Due to the strong correlation among histone deacetylase1 (HDAC1), speckle-type POZ protein (SPOP) and cancers, dual inhibition of HDAC1 and SPOP may be a promising strategy for cancer treatment. In this study, we successfully identified four potential dual-targeting HDAC1/SPOP candidate compounds with structure-based virtual screening. In vitro inhibition experiments confirmed that the four compounds had dual inhibitory effects on HDAC1 and SPOP. Among them, compound HS-2 had a stronger inhibitory effect on HDAC1 and SPOP than the positive controls. Further molecular dynamics simulations indicated that HS-2 could stably bind to HDAC1 and SPOP. In addition, MTT assay indicated that HS-2 inhibited the growth of tumor cells in the micromolar range. In vivo evaluation showed that HS-2 could obviously inhibit the growth of tumor in nude mice without obvious toxicity. These findings suggest that HS-2 is a novel and potent dual-targeting HDAC1/SPOP inhibitor for cancer treatment.
Collapse
Affiliation(s)
- Yingxue Yang
- Department of Gastroenterology, The First People’s Hospital of Kunshan, Suzhou, China
| | - Shutong Chen
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Qinghua Wang
- Department of Gastroenterology, The First People’s Hospital of Kunshan, Suzhou, China
| | - Miao-Miao Niu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Yuanqian Qu
- Department of Pathology, Department of Gastrointestinal Surgery, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Yang Zhou
- Department of Pathology, Department of Gastrointestinal Surgery, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
9
|
Zhang D, Zhang X, Liu Z, Han T, Zhao K, Xu X, Zhang X, Ren X, Qin C. An integrative multi-omics analysis based on disulfidptosis-related prognostic signature and distinct subtypes of clear cell renal cell carcinoma. Front Oncol 2023; 13:1207068. [PMID: 37427103 PMCID: PMC10327293 DOI: 10.3389/fonc.2023.1207068] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/30/2023] [Indexed: 07/11/2023] Open
Abstract
Background The association between clear cell renal cell carcinoma (ccRCC) and disulfidoptosis remains to be thoroughly investigated. Methods We conducted multiple bioinformatics analyses, including prognostic analysis and cluster analysis, using R software. Additionally, we utilized Quantitative Real-time PCR to measure RNA levels of specific genes. The proliferation of ccRCC was assessed through CCK8 and colony formation assays, while the invasion and migration of ccRCC cells were evaluated using the transwell assay. Results In this study, utilizing data from multiple ccRCC cohorts, we identified molecules that contribute to disulfidoptosis. We conducted a comprehensive investigation into the prognostic and immunological roles of these molecules. Among the disulfidoptosis-related metabolism genes (DMGs), LRPPRC, OXSM, GYS1, and SLC7A11 exhibited significant correlations with ccRCC patient prognosis. Based on our signature, patients in different groups displayed varying levels of immune infiltration and different mutation profiles. Furthermore, we classified patients into two clusters and identified multiple functional pathways that play important roles in the occurrence and development of ccRCC. Given its critical role in disulfidoptosis, we conducted further analysis on SLC7A11. Our results demonstrated that ccRCC cells with high expression of SLC7A11 exhibited a malignant phenotype. Conclusions These findings enhanced our understanding of the underlying function of DMGs in ccRCC.
Collapse
|
10
|
Hydroxymethylation and Epigenetic Drugs: New Insights into the Diagnosis and Treatment in Epigenetics of Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2023; 2023:5449443. [PMID: 36816356 PMCID: PMC9934982 DOI: 10.1155/2023/5449443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/19/2022] [Accepted: 10/15/2022] [Indexed: 02/11/2023]
Abstract
Hepatocellular carcinoma (HCC) is a highly lethal and heterogeneous malignancy with multiple genetic alternations and complex signaling pathways. The complexity and multifactorial nature of HCC pose a tremendous challenge regarding its diagnosis and treatment. Emerging evidence has indicated an important regulatory role of epigenetic modifications in HCC initiation and progression. Epigenetic modifications are stably heritable gene expression traits caused by changing the accessibility of chromatin structure and genetic activity without alteration in the DNA sequence and have been gradually recognized as a hallmark of cancer. In addition, accumulating data suggest a potential value of altered hydroxymethylation in epigenetic modifications and therapeutics targeting the epigenetically mediated regulation. As such, probing the epigenetic field in the era of precision oncology is a valid avenue for promoting the accuracy of early diagnosis and improving the oncological prognosis of HCC patients. This review focuses on the diagnostic performance and clinical utility of 5-hydroxymethylated cytosine, the primary intermediate product of the demethylation process, for early HCC diagnosis and discusses the promising applications of epigenetic-based therapeutic regimens for HCC.
Collapse
|
11
|
Ren L, Yang Y, Li W, Yang H, Zhang Y, Ge B, Zhang S, Du G, Wang J. Recent advances in epigenetic anticancer therapeutics and future perspectives. Front Genet 2023; 13:1085391. [PMID: 36685834 PMCID: PMC9845602 DOI: 10.3389/fgene.2022.1085391] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Tumor development is frequently accompanied by abnormal expression of multiple genomic genes, which can be broadly viewed as decreased expression of tumor suppressor genes and upregulated expression of oncogenes. In this process, epigenetic regulation plays an essential role in the regulation of gene expression without alteration of DNA or RNA sequence, including DNA methylation, RNA methylation, histone modifications and non-coding RNAs. Therefore, drugs developed for the above epigenetic modulation have entered clinical use or preclinical and clinical research stages, contributing to the development of antitumor drugs greatly. Despite the efficacy of epigenetic drugs in hematologic caners, their therapeutic effects in solid tumors have been less favorable. A growing body of research suggests that epigenetic drugs can be applied in combination with other therapies to increase efficacy and overcome tumor resistance. In this review, the progress of epigenetics in tumor progression and oncology drug development is systematically summarized, as well as its synergy with other oncology therapies. The future directions of epigenetic drug development are described in detail.
Collapse
Affiliation(s)
- Liwen Ren
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yihui Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hong Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yizhi Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Binbin Ge
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Sen Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China,*Correspondence: Jinhua Wang,
| |
Collapse
|
12
|
Li W, Xu N, Meng X, Yuan H, Yu T, Miao Q, Yang H, Hai B, Xiao W, Zhang X. SLC17A9-PTHLH-EMT axis promotes proliferation and invasion of clear renal cell carcinoma. iScience 2022; 26:105764. [PMID: 36590170 PMCID: PMC9800294 DOI: 10.1016/j.isci.2022.105764] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/16/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
SLC17A9 is a vesicular ATP transport protein that plays an important role in determining cell functions and the onset and progression of different diseases. In this study, SLC17A9 was initially identified as a potential diagnostic and prognostic risk biomarker for clear cell renal cell carcinoma (ccRCC). Then, the aberrant expression levels of SLC17A9 were confirmed in both the cell lines and clinical tissues. Mechanistically, SLC17A9 could upregulate the expression of PTHLH, thus promoting epithelial-mesenchymal transition (EMT) in ccRCC. Functionally, SLC17A9 knockdown inhibited the proliferation, migration, and invasion activity of renal cancer cells, whereas its overexpression led to stronger cell viability and more malignant phenotype in vitro. The overexpression of SLC17A9 in vivo could significantly contribute to the growth of tumors. Finally, we found that SLC17A9 might be related to the drug resistance of vorinostat. Cumulatively, this study demonstrated that the SLC17A9-PTHLH-EMT axis could promote the progression of ccRCC.
Collapse
Affiliation(s)
- Weiquan Li
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China
| | - Ning Xu
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiangui Meng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China
| | - Hongwei Yuan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China
| | - Tiexi Yu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China
| | - Qi Miao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China
| | - Hongmei Yang
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bo Hai
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China,Corresponding author
| | - Wen Xiao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China,Corresponding author
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China,Corresponding author
| |
Collapse
|
13
|
Molina-Cerrillo J, Santoni M, Ruiz Á, Massari F, Pozas J, Ortego I, Gómez V, Grande E, Alonso-Gordoa T. Epigenetics in advanced renal cell carcinoma: Potential new targets. Crit Rev Oncol Hematol 2022; 180:103857. [DOI: 10.1016/j.critrevonc.2022.103857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
|
14
|
He Y, Zan X, Miao J, Wang B, Wu Y, Shen Y, Chen X, Gou H, Zheng S, Huang N, Cheng Y, Ju Y, Fu X, Qian Z, Zhou P, Liu J, Gao X. Enhanced anti-glioma efficacy of doxorubicin with BRD4 PROTAC degrader using targeted nanoparticles. Mater Today Bio 2022; 16:100423. [PMID: 36157053 PMCID: PMC9489811 DOI: 10.1016/j.mtbio.2022.100423] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 12/03/2022]
Abstract
Current treatment of glioma is hampered due to the physical blood-brain barrier (BBB) and the resistance to traditional chemotherapeutic agents. Herein, we proposed a combined treatment strategy based on Cyclo (Arg-Gly-Asp-d-Phe-Lys) (cRGDfk) peptides-modified nanoparticle named cRGD-P in a self-assembly method for the co-delivery of doxorubicin (DOX) and BRD4 PROTAC degrader ARV-825 (ARV). Molecular dynamics simulations showed that cRGD-P could change its conformation to provide interaction sites for perfectly co-loading DOX and ARV. The cRGD-P/ARV-DOX exhibited an average size of 39.95 nm and a zeta potential of −0.25 mV. Increased expression of BRD4 in glioma cells was observed after being stimulated by cRGD-P/DOX, confirming one of the possible mechanisms of DOX resistance and the synergistic tumor inhibition effect of BRD4 degrading ARV combined with DOX. In the study, the combination of DOX and ARV in the cRGD-P nanoparticle system exhibited synergistic suppression of tumor growth in glioma cells on account of cell cycle arrest in the G2/M phase and the activation of tumor cells apoptosis-related pathways including triggering caspase cascade and downregulating Bcl-2 as well as upregulating Bax. The cRGD-P/ARV-DOX system could effectively suppress the heterotopic and orthotopic growth of glioma by increasing tumor apoptosis, inhibiting tumor proliferation, and decreasing tumor angiogenesis in vivo. Therefore, the cRGD-modified nanoparticle to co-deliver DOX and ARV provides a potential platform for exploiting a more effective and safer combination therapy for glioma.
Collapse
Affiliation(s)
- Yihong He
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.,Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 610041, Chengdu, China
| | - Xin Zan
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Junming Miao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Bilan Wang
- West China Second University Hospital of Sichuan University, Chengdu, 610041, PR China
| | - Yin Wu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yangmei Shen
- West China Second University Hospital of Sichuan University, Chengdu, 610041, PR China
| | - Xinchuan Chen
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Hongfeng Gou
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Songping Zheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Ning Huang
- Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 610041, Chengdu, China
| | - Yongzhong Cheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yan Ju
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xianghui Fu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zhiyong Qian
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Peizhi Zhou
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jiagang Liu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| |
Collapse
|
15
|
Jo JH, Jung DE, Lee HS, Park SB, Chung MJ, Park JY, Bang S, Park SW, Cho S, Song SY. A phase I/II study of ivaltinostat combined with gemcitabine and erlotinib in patients with untreated locally advanced or metastatic pancreatic adenocarcinoma. Int J Cancer 2022; 151:1565-1577. [PMID: 35657348 PMCID: PMC9545559 DOI: 10.1002/ijc.34144] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/12/2022] [Accepted: 04/27/2022] [Indexed: 12/03/2022]
Abstract
This phase I/II study evaluated the safety and efficacy of a new histone deacetylase (HDAC) inhibitor, ivaltinostat, in combination with gemcitabine and erlotinib for advanced pancreatic ductal adenocarcinoma (PDAC). Patients diagnosed with unresectable, histologically confirmed PDAC who had not undergone previous therapy were eligible. Phase I had a 3 + 3 dose escalation design to determine the maximum tolerable dose (MTD) of ivaltinostat (intravenously on days 1, 8 and 15) with gemcitabine (1000 mg/m2 intravenously on days 1, 8 and 15) and erlotinib (100 mg/day, orally) for a 28-day cycle. In phase II, patients received a six-cycle treatment with the MTD of ivaltinostat determined in phase I. The primary endpoint was the objective response rate (ORR). Secondary endpoints included overall survival (OS), disease control rate (DCR) and progression-free survival (PFS). The MTD of ivaltinostat for the phase II trial was determined to be 250 mg/m2 . In phase II, 24 patients were enrolled. The median OS and PFS were 8.6 (95% confidence interval [CI]: 5.3-11.2) and 5.3 months (95% CI: 3.7-5.8). Of the 16 patients evaluated for response, ORR and DCR were 25.0% and 93.8% with a median OS/PFS of 10.8 (95% CI: 8.3-16.7)/5.8 (95% CI: 4.6-6.7) months. Correlative studies showed that mutation burden detected by cfDNA and specific blood markers such as TIMP1, pro-MMP10, PECAM1, proMMP-2 and IGFBP1 were associated with clinical outcomes. Although the result of a small study, a combination of ivaltinostat, gemcitabine and erlotinib appeared to be a potential treatment option for advanced PDAC.
Collapse
Affiliation(s)
- Jung Hyun Jo
- Division of Gastroenterology, Department of Internal MedicineYonsei University College of MedicineSeoulSouth Korea
| | - Dawoon E. Jung
- Division of Gastroenterology, Department of Internal MedicineYonsei University College of MedicineSeoulSouth Korea
| | - Hee Seung Lee
- Division of Gastroenterology, Department of Internal MedicineYonsei University College of MedicineSeoulSouth Korea
| | - Soo Been Park
- Division of Gastroenterology, Department of Internal MedicineYonsei University College of MedicineSeoulSouth Korea
| | - Moon Jae Chung
- Division of Gastroenterology, Department of Internal MedicineYonsei University College of MedicineSeoulSouth Korea
| | - Jeong Youp Park
- Division of Gastroenterology, Department of Internal MedicineYonsei University College of MedicineSeoulSouth Korea
| | - Seungmin Bang
- Division of Gastroenterology, Department of Internal MedicineYonsei University College of MedicineSeoulSouth Korea
| | - Seung Woo Park
- Division of Gastroenterology, Department of Internal MedicineYonsei University College of MedicineSeoulSouth Korea
| | - Sangsook Cho
- CG PharmaceuticalsOrindaCaliforniaUSA
- CrystalGenomicsSeongnamsi, GyeonggidoSouth Korea
| | - Si Young Song
- Division of Gastroenterology, Department of Internal MedicineYonsei University College of MedicineSeoulSouth Korea
| |
Collapse
|
16
|
Vento JA, Rini BI. Treatment of Refractory Metastatic Renal Cell Carcinoma. Cancers (Basel) 2022; 14:5005. [PMID: 36291789 PMCID: PMC9599552 DOI: 10.3390/cancers14205005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
First-line treatment for metastatic renal cell carcinoma (mRCC) rapidly shifted in recent years with the advent of combination therapies, including immune checkpoint inhibitor (ICI) doublets and combinations of an ICI with a vascular endothelial growth factor receptor (VEGFR) targeted tyrosine kinase inhibitor (TKI). Despite improvements in overall survival and many durable responses, there exists a significant number of patients who fail to respond to these agents, and many patients eventually progress. Given the rapid changes in the front-line setting, it is essential to understand treatment options in refractory mRCC. Here, we review the evidence behind current options for later-line therapies, often involving additional VEGFR-TKIs alone or in combination with mammalian target of rapamycin (mTOR) targeted agents, as well as situations where consideration of immunotherapy rechallenge may be appropriate. Additionally, we describe ongoing clinical trials examining concurrent ICI and TKI in the refractory setting, as well as those studying novel agents, such as targeted drug-antibody conjugates and hypoxia inducible factor 2α (HIF-2α) inhibitors. Finally, we review considerations for non-clear cell histologies in the refractory setting and mechanisms of resistance in mRCC.
Collapse
Affiliation(s)
| | - Brian I. Rini
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
17
|
Determining Front-Line Therapeutic Strategy for Metastatic Clear Cell Renal Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14194607. [PMID: 36230530 PMCID: PMC9559659 DOI: 10.3390/cancers14194607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
The therapeutic landscape for metastatic renal cell carcinoma has rapidly evolved over the years, and we are now in an era of combination therapy strategies employing immune checkpoint blockade and anti-angiogenesis targeted therapy. Since 2018, we have gained regulatory approval for four distinct combination therapies, all with survival benefits, and with guideline recommendation for use in the front-line setting. As such, treatment selection has become increasingly complex with a myriad of treatment choices but little high-level head-to-head data to guide treatment selection. Heterogeneity in tumor biology further complicates treatment selection as tumors vary in behavior and treatment responsiveness. Ongoing development of biomarkers will certainly assist in this setting, and validation of predictive markers represents an unmet need. In their absence, we highlight features of disease and nuances to datasets from landmark prospective clinical trials to help inform treatment selection. There is growing evidence to support deferring upfront systemic therapy in some patients, with opportunities for active surveillance or metastasis-directed therapy. In others, upfront systemic therapy is warranted and necessitates thoughtful consideration of multiple clinicopathologic parameters to inform optimal patient-centered decision making.
Collapse
|
18
|
Glycocalyx mechanotransduction mechanisms are involved in renal cancer metastasis. Matrix Biol Plus 2022; 13:100100. [PMID: 35106474 PMCID: PMC8789524 DOI: 10.1016/j.mbplus.2021.100100] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/26/2021] [Accepted: 12/31/2021] [Indexed: 12/21/2022] Open
|
19
|
Kim IH, Lee HJ. The Frontline Immunotherapy-Based Treatment of Advanced Clear Cell Renal Cell Carcinoma: Current Evidence and Clinical Perspective. Biomedicines 2022; 10:251. [PMID: 35203461 PMCID: PMC8869224 DOI: 10.3390/biomedicines10020251] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 01/20/2022] [Indexed: 12/24/2022] Open
Abstract
Approximately 400,000 patients are diagnosed with kidney cancer annually worldwide, leading to approximately 170,000 deaths. Renal cell carcinoma (RCC) accounts for more than 90% of kidney cancers. The most common histological subtype is clear cell RCC, which is found in approximately 85% of metastatic RCC cases. The VHL-HIF-VEGF axis is well known; therefore, targeting VEGF has been the mainstay for managing advanced clear cell RCC. Recently, the treatment landscape for advanced clear cell RCC has changed extensively. In particular, immune checkpoint inhibitor-based treatment showed promising results in front-line treatment and became the standard of care. Herein, we review the current evidence on front-line treatment options and discuss the clinical and future perspective.
Collapse
Affiliation(s)
- In-Ho Kim
- Department of Internal Medicine, Division of Medical Oncology, Seoul St. Mary’s Hospital, The Catholic University of Korea, College of Medicine, Seoul 06591, Korea;
| | - Hyo Jin Lee
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon 35015, Korea
| |
Collapse
|
20
|
Ruzic D, Djoković N, Srdić-Rajić T, Echeverria C, Nikolic K, Santibanez JF. Targeting Histone Deacetylases: Opportunities for Cancer Treatment and Chemoprevention. Pharmaceutics 2022; 14:pharmaceutics14010209. [PMID: 35057104 PMCID: PMC8778744 DOI: 10.3390/pharmaceutics14010209] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 02/06/2023] Open
Abstract
The dysregulation of gene expression is a critical event involved in all steps of tumorigenesis. Aberrant histone and non-histone acetylation modifications of gene expression due to the abnormal activation of histone deacetylases (HDAC) have been reported in hematologic and solid types of cancer. In this sense, the cancer-associated epigenetic alterations are promising targets for anticancer therapy and chemoprevention. HDAC inhibitors (HDACi) induce histone hyperacetylation within target proteins, altering cell cycle and proliferation, cell differentiation, and the regulation of cell death programs. Over the last three decades, an increasing number of synthetic and naturally derived compounds, such as dietary-derived products, have been demonstrated to act as HDACi and have provided biological and molecular insights with regard to the role of HDAC in cancer. The first part of this review is focused on the biological roles of the Zinc-dependent HDAC family in malignant diseases. Accordingly, the small-molecules and natural products such as HDACi are described in terms of cancer therapy and chemoprevention. Furthermore, structural considerations are included to improve the HDACi selectivity and combinatory potential with other specific targeting agents in bifunctional inhibitors and proteolysis targeting chimeras. Additionally, clinical trials that combine HDACi with current therapies are discussed, which may open new avenues in terms of the feasibility of HDACi’s future clinical applications in precision cancer therapies.
Collapse
Affiliation(s)
- Dusan Ruzic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.R.); (N.D.); (K.N.)
| | - Nemanja Djoković
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.R.); (N.D.); (K.N.)
| | - Tatjana Srdić-Rajić
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia;
| | - Cesar Echeverria
- Facultad de Medicina, Universidad de Atacama, Copayapu 485, Copiapo 1531772, Chile;
| | - Katarina Nikolic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.R.); (N.D.); (K.N.)
| | - Juan F. Santibanez
- Group for Molecular Oncology, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Dr. Subotica 4, POB 102, 11129 Belgrade, Serbia
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago 8370854, Chile
- Correspondence: ; Tel.: +381-11-2685-788; Fax: +381-11-2643-691
| |
Collapse
|
21
|
Wang X, Du ZW, Xu TM, Wang XJ, Li W, Gao JL, Li J, Zhu H. HIF-1α Is a Rational Target for Future Ovarian Cancer Therapies. Front Oncol 2022; 11:785111. [PMID: 35004308 PMCID: PMC8739787 DOI: 10.3389/fonc.2021.785111] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/06/2021] [Indexed: 01/17/2023] Open
Abstract
Ovarian cancer is the eighth most commonly diagnosed cancer among women worldwide. Even with the development of novel drugs, nearly one-half of the patients with ovarian cancer die within five years of diagnosis. These situations indicate the need for novel therapeutic agents for ovarian cancer. Increasing evidence has shown that hypoxia-inducible factor-1α(HIF-1α) plays an important role in promoting malignant cell chemoresistance, tumour metastasis, angiogenesis, immunosuppression and intercellular interactions. The unique microenvironment, crosstalk and/or interaction between cells and other characteristics of ovarian cancer can influence therapeutic efficiency or promote the disease progression. Inhibition of the expression or activity of HIF-1α can directly or indirectly enhance the therapeutic responsiveness of tumour cells. Therefore, it is reasonable to consider HIF-1α as a potential therapeutic target for ovarian cancer. In this paper, we summarize the latest research on the role of HIF-1α and molecules which can inhibit HIF-1α expression directly or indirectly in ovarian cancer, and drug clinical trials about the HIF-1α inhibitors in ovarian cancer or other solid malignant tumours.
Collapse
Affiliation(s)
- Xin Wang
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, China
| | - Zhen-Wu Du
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, China.,Research Center, The Second Hospital of Jilin University, Changchun, China
| | - Tian-Min Xu
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, China
| | - Xiao-Jun Wang
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, China
| | - Wei Li
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, China
| | - Jia-Li Gao
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, China
| | - Jing Li
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, China
| | - He Zhu
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
22
|
The Role of Circulating Biomarkers in the Oncological Management of Metastatic Renal Cell Carcinoma: Where Do We Stand Now? Biomedicines 2021; 10:biomedicines10010090. [PMID: 35052770 PMCID: PMC8773056 DOI: 10.3390/biomedicines10010090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/25/2021] [Accepted: 12/29/2021] [Indexed: 01/08/2023] Open
Abstract
Renal cell carcinoma (RCC) is an increasingly common malignancy that can progress to metastatic renal cell carcinoma (mRCC) in approximately one-third of RCC patients. The 5-year survival rate for mRCC is abysmally low, and, at the present time, there are sparingly few if any effective treatments. Current surgical and pharmacological treatments can have a long-lasting impact on renal function, as well. Thus, there is a compelling unmet need to discover novel biomarkers and surveillance methods to improve patient outcomes with more targeted therapies earlier in the course of the disease. Circulating biomarkers, such as circulating tumor DNA, noncoding RNA, proteins, extracellular vesicles, or cancer cells themselves potentially represent a minimally invasive tool to fill this gap and accelerate both diagnosis and treatment. Here, we discuss the clinical relevance of different circulating biomarkers in metastatic renal cell carcinoma by clarifying their potential role as novel biomarkers of response or resistance to treatments but also by guiding clinicians in novel therapeutic approaches.
Collapse
|
23
|
Zhang L, Cao W. Histone deacetylase 3 (HDAC3) as an important epigenetic regulator of kidney diseases. J Mol Med (Berl) 2021; 100:43-51. [PMID: 34698870 DOI: 10.1007/s00109-021-02141-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/18/2021] [Accepted: 09/09/2021] [Indexed: 12/18/2022]
Abstract
Development and progression of many kidney diseases are substantially influenced by aberrant protein acetylation modifications of gene expression crucial for kidney functions. Histone deacetylase (HDAC) expression alterations are detected from renal samples of patients and animal models of various kidney diseases, and the administrations of HDAC inhibitors display impressive renal protective effects in vitro and in vivo. However, when the expression alterations of multiple HDACs occur, not all the HDACs causally affect the disease onset or progression. Identification of a single HDAC as a disease-causing factor will allow subtype-targeted intervention with less side effect. HDAC3 is a unique HDAC with distinct structural and subcellular distribution features and co-repressor dependency. HDAC3 is required for kidney development and its aberrations actively participate in many pathological processes, such as cancer, cardiovascular diseases, diabetes, and neurodegenerative disorders, and contribute significantly to the pathogenesis of kidney diseases. This review will discuss the recent studies that investigate the critical roles of HDAC3 aberrations in kidney development, renal aging, renal cell carcinoma, renal fibrosis, chronic kidney disease, polycystic kidney disease, glomerular podocyte injury, and diabetic nephropathy. These studies reveal the distinct characters of HDAC3 aberrations that act on different molecules/signaling pathways under various renal pathological conditions, which might shed lights into the epigenetic mechanisms of renal diseases and the potentially therapeutic strategies.
Collapse
Affiliation(s)
- Lijun Zhang
- Department of Nephrology, Northern Jiangsu People's Hospital, Nanjing University School of Medicine, Yangzhou, 225001, China
- Jiangsu Key Lab of Molecular Medicine, Nanjing University School of Medicine, Nanjing, 210093, China
| | - Wangsen Cao
- Department of Nephrology, Northern Jiangsu People's Hospital, Nanjing University School of Medicine, Yangzhou, 225001, China.
- Jiangsu Key Lab of Molecular Medicine, Nanjing University School of Medicine, Nanjing, 210093, China.
| |
Collapse
|
24
|
Roberts JL, Booth L, Poklepovic A, Dent P. Axitinib and HDAC Inhibitors Interact to Kill Sarcoma Cells. Front Oncol 2021; 11:723966. [PMID: 34604061 PMCID: PMC8483767 DOI: 10.3389/fonc.2021.723966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
We have extended our analyses of HDAC inhibitor biology in sarcoma. The multi-kinase inhibitor axitinib interacted with multiple HDAC inhibitors to kill sarcoma cells. Axitinib and HDAC inhibitors interacted in a greater than additive fashion to inactivate AKT, mTORC1 and mTORC2, and to increase Raptor S722/S792 phosphorylation. Individually, all drugs increased phosphorylation of ATM S1981, AMPKα T172, ULK1 S317 and ATG13 S318 and reduced ULK1 S757 phosphorylation; this correlated with enhanced autophagic flux. Increased phosphorylation of ULK1 S317 and of Raptor S722/S792 required ATM-AMPK signaling. ULK1 S757 is a recognized site for mTORC1 and knock down of either ATM or AMPKα reduced the drug-induced dephosphorylation of this site. Combined exposure of cells to axitinib and an HDAC inhibitor significantly reduced the expression of HDAC1, HDAC2, HDAC3, HDAC4, HDAC6 and HDAC7. No response was observed for HDACs 10 and 11. Knock down of ULK1, Beclin1 or ATG5 prevented the decline in HDAC expression, as did expression of a constitutively active mTOR protein. Axitinib combined with HDAC inhibitors enhanced expression of Class I MHCA and reduced expression of PD-L1 which was recapitulated via knock down studies, particularly of HDACs 1 and 3. In vivo, axitinib and the HDAC inhibitor entinostat interacted to significantly reduce tumor growth. Collectively our findings support the exploration of axitinib and HDAC inhibitors being developed as a novel sarcoma therapy.
Collapse
Affiliation(s)
- Jane L Roberts
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Laurence Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Andrew Poklepovic
- Department of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Paul Dent
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
25
|
Chung C. From oxygen sensing to angiogenesis: Targeting the hypoxia signaling pathway in metastatic kidney cancer. Am J Health Syst Pharm 2021; 77:2064-2073. [PMID: 33016992 DOI: 10.1093/ajhp/zxaa308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PURPOSE This article summarizes examples of current and emerging therapies that target the hypoxia and angiogenesis signaling pathways in the clear cell type of renal cell cancer (RCC), with an emphasis on the hypoxia signaling pathway. SUMMARY Mammalian cells transduce signals of decreased oxygen to hypoxia inducible factor (HIF), an intracellular heterodimer that mediates the adaptation of normal and tumor cells to oxygen deprivation. HIF is frequently overexpressed in cancer cells and is involved in the transcriptional activation of many genes essential for cell invasion, migration, survival, and angiogenesis (including vascular endothelial growth factor [VEGF]). Moreover, HIF confers resistance to cytotoxic chemotherapy and radiation therapy and is associated with poor prognosis in patients with cancer. Blocking the activity of HIF inhibits the expression of VEGF and oncogenic pathways, resulting in the inhibition of tumor growth. Interestingly, activation of oncogenes and/or inactivation of tumor suppressor genes (eg, the gene encoding von Hippel-Lindau [VHL] tumor suppressor protein) can activate tumorigenesis even with normal levels of oxygen, providing support for the notion that the HIF-VHL-VEGF axis is amenable to targeted therapies for the treatment of RCC. This article highlights the current understanding of the hypoxia signaling pathway and its relevance to RCC development. Pharmacologic agents targeting the hypoxia and angiogenesis signaling pathways are discussed. CONCLUSION Development of novel therapeutic agents that target the hypoxia and angiogenesis signaling pathways holds promise in the management of metastatic clear cell RCC.
Collapse
|
26
|
Chen J, Ren JJ, Cai J, Wang X. Efficacy and safety of HDACIs in the treatment of metastatic or unresectable renal cell carcinoma with a clear cell phenotype: A systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e26788. [PMID: 34397830 PMCID: PMC8341361 DOI: 10.1097/md.0000000000026788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/30/2021] [Accepted: 07/10/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND In this study, we evaluated the efficacy and safety of histone deacetylase inhibitors (HDACIs) in the treatment of renal cell carcinoma (RCC). METHODS PubMed, EMBASE, the Cochrane Library, CNKI, and the Wanfang database were searched to retrieve studies describing the use of HDACIs for the treatment of RCC published between January 1, 2009, and January 1, 2021. Relevant studies were selected, and data were extracted. Then, a meta-analysis was performed using R 3.5.2 software. RESULTS The results showed that the objective response rate (ORR) of HDACIs used to treat RCC was 26% [95% confidence interval (95% CI): 0.19∼0.34] and that the 1-year progression-free survival (PFS) rate was 29% (95% CI: 0.14∼0.59). The ORR and PFS rate of the combination group were better than those of the monotherapy group, and the ORR and PFS rate of the selective HDACI group were better than those of the pan-HDACI group. The incidences of neutropenia and thrombocytopenia were higher and the incidence of fatigue was lower in the selective HDACI group than in the pan-HDACI group. CONCLUSION This study initially confirmed the efficacy and safety of HDACIs for the treatment of RCC. Due to the limitations of the included studies, more high-quality studies are needed to validate the conclusions.
Collapse
Affiliation(s)
- Juan Chen
- Department of Pharmacy, Sanya Central Hospital, Sanya, Hainan, China
| | - Jia-Ju Ren
- School of Nursing, Beijing University of Chinese Medicine, Beijing, China
| | - Jiangxia Cai
- Department of Pharmacy, Bazhou People's Hospital, Korla, Xinjiang, China
| | - Xiaoli Wang
- Department of Pharmacy, Sanya Central Hospital, Sanya, Hainan, China
| |
Collapse
|
27
|
Karagiannis D, Rampias T. HDAC Inhibitors: Dissecting Mechanisms of Action to Counter Tumor Heterogeneity. Cancers (Basel) 2021; 13:3575. [PMID: 34298787 PMCID: PMC8307174 DOI: 10.3390/cancers13143575] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 12/17/2022] Open
Abstract
Intra-tumoral heterogeneity presents a major obstacle to cancer therapeutics, including conventional chemotherapy, immunotherapy, and targeted therapies. Stochastic events such as mutations, chromosomal aberrations, and epigenetic dysregulation, as well as micro-environmental selection pressures related to nutrient and oxygen availability, immune infiltration, and immunoediting processes can drive immense phenotypic variability in tumor cells. Here, we discuss how histone deacetylase inhibitors, a prominent class of epigenetic drugs, can be leveraged to counter tumor heterogeneity. We examine their effects on cellular processes that contribute to heterogeneity and provide insights on their mechanisms of action that could assist in the development of future therapeutic approaches.
Collapse
Affiliation(s)
- Dimitris Karagiannis
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Theodoros Rampias
- Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
28
|
Abstract
Renal cell carcinoma (RCC) is increasing in incidence and one third of newly diagnosed cases already are metastatic. The metastatic spread of solid tumors renders RCC incurable by surgical resection and consequently more difficult to treat. New molecular-targeted therapies have played a pivotal role in RCC treatment. Unfortunately, tumors frequently develop resistance to these targeted therapies by activating bypass pathways in which alternative signaling or biochemical pathways are activated in response to targeted inhibition of a signaling pathway, allowing cancer cells to continue to survive. Although the advent of immunotherapy with checkpoint inhibitors has led to significant changes in the treatment landscape for advanced RCC, many issues remain to be resolved. For these reasons, there is an urgent need to develop novel therapies and new treatment paradigms for patients with RCC. Much research has been performed thus far in identifying novel targets and treatment strategies in RCC and many of these currently are under investigation and/or in clinical trials. In this article, we discuss therapeutic options in the management of RCC with a focus on the new therapeutic approaches currently investigated in research and for use in the clinic. We divide these potential novel therapies into five groups: nonbiologics, small-molecule drugs, biologics, immunomodulatory therapies, and peptide drugs. We also present some therapeutics and treatment paradigms.
Collapse
Affiliation(s)
- David C Yang
- Division of Nephrology, Department of Internal Medicine, University of California Davis, Davis, CA
| | - Ching-Hsien Chen
- Division of Nephrology, Department of Internal Medicine, University of California Davis, Davis, CA.
| |
Collapse
|
29
|
The Role of Epigenetics in the Progression of Clear Cell Renal Cell Carcinoma and the Basis for Future Epigenetic Treatments. Cancers (Basel) 2021; 13:cancers13092071. [PMID: 33922974 PMCID: PMC8123355 DOI: 10.3390/cancers13092071] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The accumulated evidence on the role of epigenetic markers of prognosis in clear cell renal cell carcinoma (ccRCC) is reviewed, as well as state of the art on epigenetic treatments for this malignancy. Several epigenetic markers are likely candidates for clinical use, but still have not passed the test of prospective validation. Development of epigenetic therapies, either alone or in combination with tyrosine-kinase inhibitors of immune-checkpoint inhibitors, are still in their infancy. Abstract Clear cell renal cell carcinoma (ccRCC) is curable when diagnosed at an early stage, but when disease is non-confined it is the urologic cancer with worst prognosis. Antiangiogenic treatment and immune checkpoint inhibition therapy constitute a very promising combined therapy for advanced and metastatic disease. Many exploratory studies have identified epigenetic markers based on DNA methylation, histone modification, and ncRNA expression that epigenetically regulate gene expression in ccRCC. Additionally, epigenetic modifiers genes have been proposed as promising biomarkers for ccRCC. We review and discuss the current understanding of how epigenetic changes determine the main molecular pathways of ccRCC initiation and progression, and also its clinical implications. Despite the extensive research performed, candidate epigenetic biomarkers are not used in clinical practice for several reasons. However, the accumulated body of evidence of developing epigenetically-based biomarkers will likely allow the identification of ccRCC at a higher risk of progression. That will facilitate the establishment of firmer therapeutic decisions in a changing landscape and also monitor active surveillance in the aging population. What is more, a better knowledge of the activities of chromatin modifiers may serve to develop new therapeutic opportunities. Interesting clinical trials on epigenetic treatments for ccRCC associated with well established antiangiogenic treatments and immune checkpoint inhibitors are revisited.
Collapse
|
30
|
Spisarová M, Melichar B, Vitásková D, Študentová H. Pembrolizumab plus axitinib for the treatment of advanced renal cell carcinoma. Expert Rev Anticancer Ther 2021; 21:693-703. [PMID: 33794744 DOI: 10.1080/14737140.2021.1903321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: The dominant paradigm of sequential therapy of metastatic renal cell carcinoma (mRCC) with single agents has recently been challenged by improved outcomes obtained with combined regimens with immune checkpoint inhibitors. These combined regimens include the combination of pembrolizumab plus axitinib.Areas covered: Here, we provide a brief overview of the current clinical data on the pembrolizumab plus axitinib combination including mechanism of action, pharmacokinetics, efficacy and safety profile.Expert opinion: Both agents targeting the vascular endothelial growth factor (VEGF) pathway and immune checkpoint inhibitors are active as single agents in mRCC. Improved outcomes have been demonstrated in phase 3 trials in comparison with sunitinib for the combinations of axitinib plus pembrolizumab, axitinib plus avelumab, bevacizumab plus atezolizumab, and ipilimumab plus nivolumab. Among these combinations, an OS benefit has, so far, demonstrated only for the combinations of axitinib with pembrolizumab and ipilimumab with nivolumab. Although there are currently no prospective data comparing the combination of ipilimumab and nivolumab with the combination of immune checkpoint inhibitors and VEGF inhibitors, currently available retrospective analyses indicate that these two approaches achieve comparable outcomes.
Collapse
Affiliation(s)
- Martina Spisarová
- Department of Oncology, Palacký University Medical School Teaching Hospital, Olomouc, Republic
| | - Bohuslav Melichar
- Department of Oncology, Palacký University Medical School Teaching Hospital, Olomouc, Republic.,Institute of Molecular and Translational Medicine, Palacký University Medical School Teaching Hospital, Olomouc, Czech Republic
| | - Denisa Vitásková
- Department of Oncology, Palacký University Medical School Teaching Hospital, Olomouc, Republic
| | - Hana Študentová
- Department of Oncology, Palacký University Medical School Teaching Hospital, Olomouc, Republic
| |
Collapse
|
31
|
Jenke R, Reßing N, Hansen FK, Aigner A, Büch T. Anticancer Therapy with HDAC Inhibitors: Mechanism-Based Combination Strategies and Future Perspectives. Cancers (Basel) 2021; 13:634. [PMID: 33562653 PMCID: PMC7915831 DOI: 10.3390/cancers13040634] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/26/2022] Open
Abstract
The increasing knowledge of molecular drivers of tumorigenesis has fueled targeted cancer therapies based on specific inhibitors. Beyond "classic" oncogene inhibitors, epigenetic therapy is an emerging field. Epigenetic alterations can occur at any time during cancer progression, altering the structure of the chromatin, the accessibility for transcription factors and thus the transcription of genes. They rely on post-translational histone modifications, particularly the acetylation of histone lysine residues, and are determined by the inverse action of histone acetyltransferases (HATs) and histone deacetylases (HDACs). Importantly, HDACs are often aberrantly overexpressed, predominantly leading to the transcriptional repression of tumor suppressor genes. Thus, histone deacetylase inhibitors (HDACis) are powerful drugs, with some already approved for certain hematological cancers. Albeit HDACis show activity in solid tumors as well, further refinement and the development of novel drugs are needed. This review describes the capability of HDACis to influence various pathways and, based on this knowledge, gives a comprehensive overview of various preclinical and clinical studies on solid tumors. A particular focus is placed on strategies for achieving higher efficacy by combination therapies, including phosphoinositide 3-kinase (PI3K)-EGFR inhibitors and hormone- or immunotherapy. This also includes new bifunctional inhibitors as well as novel approaches for HDAC degradation via PROteolysis-TArgeting Chimeras (PROTACs).
Collapse
Affiliation(s)
- Robert Jenke
- University Cancer Center Leipzig (UCCL), University Hospital Leipzig, D-04103 Leipzig, Germany
- Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Medical Faculty, University of Leipzig, D-04107 Leipzig, Germany;
| | - Nina Reßing
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, Rheinische Fried-rich-Wilhelms-Universität Bonn, D-53121 Bonn, Germany; (N.R.); (F.K.H.)
| | - Finn K. Hansen
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, Rheinische Fried-rich-Wilhelms-Universität Bonn, D-53121 Bonn, Germany; (N.R.); (F.K.H.)
| | - Achim Aigner
- Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Medical Faculty, University of Leipzig, D-04107 Leipzig, Germany;
| | - Thomas Büch
- Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Medical Faculty, University of Leipzig, D-04107 Leipzig, Germany;
| |
Collapse
|
32
|
Li Q, Zhang Z, Fan Y, Zhang Q. Epigenetic Alterations in Renal Cell Cancer With TKIs Resistance: From Mechanisms to Clinical Applications. Front Genet 2021; 11:562868. [PMID: 33510766 PMCID: PMC7835797 DOI: 10.3389/fgene.2020.562868] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022] Open
Abstract
The appearance of tyrosine kinase inhibitors (TKIs) has been a major breakthrough in renal cell carcinoma (RCC) therapy. Unfortunately, a portion of patients with TKIs resistance experience disease progression after TKIs therapy. Epigenetic alterations play an important role in the development of TKIs resistance. Current evidence suggests that epigenetic alterations occur frequently in RCC patients with poor response to TKIs therapy, and modulation of them could enhance the cytotoxic effect of antitumor therapy. In this review, we summarize the currently known epigenetic alterations relating to TKIs resistance in RCC, focusing on DNA methylation, non-coding RNAs (ncRNAs), histone modifications, and their interactions with TKIs treatment. In addition, we discuss application of epigenetic alteration analyses in the clinical setting to predict prognosis of patients with TKIs treatment, and the potential use of epigenetics-based therapies to surmount TKIs resistance.
Collapse
Affiliation(s)
- Qinhan Li
- Department of Urology, Peking University First Hospital, Institute of Urology, National Research Center for Genitourinary Oncology, Peking University, Beijing, China
| | - Zhenan Zhang
- Department of Urology, Peking University First Hospital, Institute of Urology, National Research Center for Genitourinary Oncology, Peking University, Beijing, China
| | - Yu Fan
- Department of Urology, Peking University First Hospital, Institute of Urology, National Research Center for Genitourinary Oncology, Peking University, Beijing, China
| | - Qian Zhang
- Department of Urology, Peking University First Hospital, Institute of Urology, National Research Center for Genitourinary Oncology, Peking University, Beijing, China
| |
Collapse
|
33
|
Liu H. The roles of histone deacetylases in kidney development and disease. Clin Exp Nephrol 2021; 25:215-223. [PMID: 33398599 PMCID: PMC7925501 DOI: 10.1007/s10157-020-01995-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 11/10/2020] [Indexed: 02/06/2023]
Abstract
Histone deacetylases (HDACs) are important epigenetic regulators that mediate deacetylation of both histone and non-histone proteins. HDACs, especially class I HDACs, are highly expressed in developing kidney and subject to developmental control. HDACs play an important role in kidney formation, especial nephron progenitor maintenance and differentiation. Several lines of evidence support the critical role of HDACs in the development and progression of various kidney diseases. HDAC inhibitors (HDACis) are very effective in the prevention and treatment of kidney diseases (including kidney cancer). A better understanting of the molecular mechanisms underlying the role(s) of HDACs in the pathogenesis and progression of renal disease are likely to be of great help in developing more effective and less toxic selective HDAC inhibitors and combinatorial therapeutics.
Collapse
Affiliation(s)
- Hongbing Liu
- Department of Pediatrics and The Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, SL-37, 1430 Tulane Avenue, New Orleans, LA, 70112, USA.
| |
Collapse
|
34
|
Ullah MF, Usmani S, Shah A, Abuduhier FM. Dietary molecules and experimental evidence of epigenetic influence in cancer chemoprevention: An insight. Semin Cancer Biol 2020; 83:319-334. [PMID: 33152485 DOI: 10.1016/j.semcancer.2020.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022]
Abstract
The world-wide rate of incidence of cancer disease has been only modestly contested by the past and current preventive and interventional strategies. Hence, the global effort towards novel ideas to contain the disease still continues. Constituents of human diets have in recent years emerged as key regulators of carcinogenesis, with studies reporting their inhibitory potential against all the three stages vis-a-vis initiation, promotion and progression. Unlike drugs which usually act on single targets, these dietary factors have an advantage of multi-targeted effects and pleiotropic action mechanisms, which are effective against cancer that manifest as a micro-evolutionary and multi-factorial disease. Since most of the cellular targets have been identified and their consumption considered relatively safe, these diet-derived agents often appear as molecules of interest in repurposing strategies. Currently, many of these molecules are being investigated for their ability to influence the aberrant alterations in cell's epigenome for epigenetic therapy against cancer. Targeting the epigenetic regulators is a new paradigm in cancer chemoprevention which acts to reverse the warped-up epigenetic alterations in a cancer cell, thereby directing it towards a normal phenotype. In this review, we discuss the significance of dietary factors and natural products as chemopreventive agents. Further, we corroborate the experimental evidence from existing literature, reflecting the ability of a series of such molecules to act as epigenetic modifiers in cancer cells, by interfering with molecular events that map the epigenetic imprints such as DNA methylation, histone acetylation and non-coding RNA mediated gene regulation.
Collapse
Affiliation(s)
- Mohammad Fahad Ullah
- Prince Fahad Research Chair, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, 71491, Saudi Arabia.
| | - Shazia Usmani
- Faculty of Pharmacy, Integral University, Lucknow, India
| | - Aaliya Shah
- Department of Biochemistry, SKIMS Medical College, Srinagar, India
| | - Faisel M Abuduhier
- Prince Fahad Research Chair, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, 71491, Saudi Arabia
| |
Collapse
|
35
|
Rausch M, Weiss A, Zoetemelk M, Piersma SR, Jimenez CR, van Beijnum JR, Nowak-Sliwinska P. Optimized Combination of HDACI and TKI Efficiently Inhibits Metabolic Activity in Renal Cell Carcinoma and Overcomes Sunitinib Resistance. Cancers (Basel) 2020; 12:E3172. [PMID: 33126775 PMCID: PMC7693411 DOI: 10.3390/cancers12113172] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/20/2020] [Accepted: 10/25/2020] [Indexed: 12/11/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is characterized by high histone deacetylase (HDAC) activity triggering both cell motility and the development of metastasis. Therefore, there is an unmet need to establish innovative strategies to advance the use of HDAC inhibitors (HDACIs). We selected a set of tyrosine kinase inhibitors (TKIs) and HDACIs to test them in combination, using the validated therapeutically guided multidrug optimization (TGMO) technique based on experimental testing and in silico data modeling. We determined a synergistic low-dose three-drug combination decreasing the cell metabolic activity in metastatic ccRCC cells, Caki-1, by over 80%. This drug combination induced apoptosis and showed anti-angiogenic activity, both in original Caki-1 and in sunitinib-resistant Caki-1 cells. Through phosphoproteomic analysis, we revealed additional targets to improve the translation of this combination in 3-D (co-)culture systems. Cell-cell and cell-environment interactions increased, reverting the invasive and metastatic phenotype of Caki-1 cells. Our data suggest that our optimized low-dose drug combination is highly effective in complex in vitro settings and promotes the activity of HDACIs.
Collapse
Affiliation(s)
- Magdalena Rausch
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland; (M.R.); (A.W.); (M.Z.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- Translational Research Center in Oncohaematology, 1211 Geneva, Switzerland
| | - Andrea Weiss
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland; (M.R.); (A.W.); (M.Z.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| | - Marloes Zoetemelk
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland; (M.R.); (A.W.); (M.Z.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- Translational Research Center in Oncohaematology, 1211 Geneva, Switzerland
| | - Sander R. Piersma
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan, 1117 Amsterdam, The Netherlands; (S.R.P.); (C.R.J.)
- OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1117 Amsterdam, The Netherlands
| | - Connie R. Jimenez
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan, 1117 Amsterdam, The Netherlands; (S.R.P.); (C.R.J.)
- OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1117 Amsterdam, The Netherlands
| | - Judy R. van Beijnum
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC-Location VUmc, VU University Amsterdam, 1117 Amsterdam, The Netherlands;
| | - Patrycja Nowak-Sliwinska
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland; (M.R.); (A.W.); (M.Z.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- Translational Research Center in Oncohaematology, 1211 Geneva, Switzerland
| |
Collapse
|
36
|
Chang TC, Matossian MD, Elliott S, Burks HE, Sabol RA, Ucar DA, Wathieu H, Zabaleta J, Valle LD, Gill S, Martin E, Riker AI, Miele L, Bunnell BA, Burow ME, Collins-Burow BM. Evaluation of deacetylase inhibition in metaplastic breast carcinoma using multiple derivations of preclinical models of a new patient-derived tumor. PLoS One 2020; 15:e0226464. [PMID: 33035223 PMCID: PMC7546483 DOI: 10.1371/journal.pone.0226464] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 09/15/2020] [Indexed: 12/11/2022] Open
Abstract
Metaplastic breast carcinoma (MBC) is a clinically aggressive and rare subtype of breast cancer, with similar features to basal-like breast cancers. Due to rapid growth rates and characteristic heterogeneity, MBC is often unresponsive to standard chemotherapies; and novel targeted therapeutic discovery is urgently needed. Histone deacetylase inhibitors (DACi) suppress tumor growth and metastasis through regulation of the epithelial-to-mesenchymal transition axis in various cancers, including basal-like breast cancers. We utilized a new MBC patient-derived xenograft (PDX) to examine the effect of DACi therapy on MBC. Cell morphology, cell cycle-associated gene expressions, transwell migration, and metastasis were evaluated in patient-derived cells and tumors after treatment with romidepsin and panobinostat. Derivations of our PDX model, including cells, spheres, organoids, explants, and in vivo implanted tumors were treated. Finally, we tested the effects of combining DACi with approved chemotherapeutics on relative cell biomass. DACi significantly suppressed the total number of lung metastasis in vivo using our PDX model, suggesting a role for DACi in preventing circulating tumor cells from seeding distal tissue sites. These data were supported by our findings that DACi reduced cell migration, populations, and expression of mesenchymal-associated genes. While DACi treatment did affect cell cycle-regulating genes in vitro, tumor growth was not affected compared to controls. Importantly, gene expression results varied depending on the cellular or tumor system used, emphasizing the importance of using multiple derivations of cancer models in preclinical therapeutic discovery research. Furthermore, DACi sensitized and produced a synergistic effect with approved oncology therapeutics on inherently resistant MBC. This study introduced a role for DACi in suppressing the migratory and mesenchymal phenotype of MBC cells through regulation of the epithelial-mesenchymal transition axis and suppression of the CTC population. Preliminary evidence that DACi treatment in combination with MEK1/2 inhibitors exerts a synergistic effect on MBC cells was also demonstrated.
Collapse
Affiliation(s)
- Tiffany C. Chang
- Department of Medicine, Section of Hematology/Oncology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
- * E-mail: (TCC); (BMCB)
| | - Margarite D. Matossian
- Department of Medicine, Section of Hematology/Oncology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Steven Elliott
- Department of Medicine, Section of Hematology/Oncology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Hope E. Burks
- Department of Medicine, Section of Hematology/Oncology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Rachel A. Sabol
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Deniz A. Ucar
- Department of Genetics, Louisiana State University School of Medicine, New Orleans, Louisiana, United States of America
| | - Henri Wathieu
- Department of Medicine, Section of Hematology/Oncology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Jovanny Zabaleta
- Department of Pediatrics, Louisiana State University School of Medicine, New Orleans, Louisiana, United States of America
| | - Luis De Valle
- Department of Pathology, Louisiana State University School of Medicine, New Orleans, Louisiana, United States of America
| | - Sukhmani Gill
- Department of Medicine, Section of Hematology/Oncology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Elizabeth Martin
- Department of Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Adam I. Riker
- Department of Surgery, Louisiana State University School of Medicine, New Orleans, Louisiana, United States of America
| | - Lucio Miele
- Department of Genetics, Louisiana State University School of Medicine, New Orleans, Louisiana, United States of America
| | - Bruce A. Bunnell
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Matthew E. Burow
- Department of Medicine, Section of Hematology/Oncology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Bridgette M. Collins-Burow
- Department of Medicine, Section of Hematology/Oncology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
- * E-mail: (TCC); (BMCB)
| |
Collapse
|
37
|
Kowalewski A, Jaworski D, Antosik P, Smolińska M, Ligmanowska J, Grzanka D, Szylberg Ł. TRIP13 predicts poor prognosis in clear cell renal cell carcinoma. Am J Cancer Res 2020; 10:2909-2918. [PMID: 33042625 PMCID: PMC7539765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023] Open
Abstract
What is the leading molecular mechanism that causes broad resistance to systemic therapies remains a key question in renal cancer related research. We explored associations of TRIP13 expression with the clinical course using the tissue microarray (TMA). The TMA contained specimens from 87 patients diagnosed with clear cell renal cell carcinoma (ccRCC). We performed immunohistochemistry to investigate TRIP13 protein expression levels. The overall survival (OS) was analyzed using the Kaplan-Meier method and log-rank statistics. Univariate and multivariate analyses were conducted using Cox proportional hazard models. Median follow up for the TMA cohort was 7.0 years. Tissues from 28.74% of patients demonstrated high TRIP13 expression. Mean TRIP13 expression in TRIP13-rich tumors was significantly higher comparing to adjacent normal tissues (P < 0.05). TRIP13 expression did not significantly correlate with stage nor tumor grade (P > 0.05). Elevated expression of TRIP13 served as an independent unfavorable prognostic indicator of survival in ccRCC (P < 0.05). TRIP13 overexpression predicts poor prognosis in ccRCC. Together with the emerging reports, this observation raises a suspicion that TRIP13 is a substantial driver of resistance to systemic therapies against kidney cancer.
Collapse
Affiliation(s)
- Adam Kowalewski
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in TorunPoland
| | - Damian Jaworski
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in TorunPoland
| | - Paulina Antosik
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in TorunPoland
| | - Marta Smolińska
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in TorunPoland
| | - Joanna Ligmanowska
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in TorunPoland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in TorunPoland
| | - Łukasz Szylberg
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in TorunPoland
- Department of Tumor Pathology and Pathomorphology, Oncology Centre-Prof. Franciszek Łukaszczyk Memorial HospitalBydgoszcz, Poland
| |
Collapse
|
38
|
|
39
|
Avallone A, Piccirillo MC, Di Gennaro E, Romano C, Calabrese F, Roca MS, Tatangelo F, Granata V, Cassata A, Cavalcanti E, Maurea N, Maiolino P, Silvestro L, De Stefano A, Giuliani F, Rosati G, Tamburini E, Aprea P, Vicario V, Nappi A, Vitagliano C, Casaretti R, Leone A, Petrillo A, Botti G, Delrio P, Izzo F, Perrone F, Budillon A. Randomized phase II study of valproic acid in combination with bevacizumab and oxaliplatin/fluoropyrimidine regimens in patients with RAS-mutated metastatic colorectal cancer: the REVOLUTION study protocol. Ther Adv Med Oncol 2020; 12:1758835920929589. [PMID: 32849914 PMCID: PMC7425244 DOI: 10.1177/1758835920929589] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/04/2020] [Indexed: 01/30/2023] Open
Abstract
Background Despite effective treatments, metastatic colorectal cancer (mCRC) prognosis is still poor, mostly in RAS-mutated tumors, thus suggesting the need for novel combinatorial therapies. Epigenetic alterations play an important role in initiation and progression of cancers, including CRC. Histone-deacetylase inhibitors (HDACi) have shown activity in combination with chemotherapy in the treatment of solid tumors. Owing to its HDACi activity and its safe use for epileptic disorders, valproic acid (VPA) is a good candidate for anticancer therapy that we have largely explored preclinically translating our findings in currently ongoing clinical studies. We have shown in CRC models that HDACi, including VPA, induces synergistic antitumor effects in combination with fluoropyrimidines. Furthermore, unpublished results from our group demonstrated that VPA induces differentiation and sensitization of CRC stem cells to oxaliplatin. Moreover, preclinical and clinical data suggest that HDACi may prevent/reverse anti-angiogenic resistance. Methods/Design A randomized, open-label, two-arm, multicenter phase-II study will be performed to explore whether the addition of VPA to first line bevacizumab/oxaliplatin/fluoropyrimidine regimens (mFOLFOX-6/mOXXEL) might improve progression-free survival (PFS) in RAS-mutated mCRC patients. A sample size of 200 patients was calculated under the hypothesis that the addition of VPA to chemotherapy/bevacizumab can improve PFS from 9 to 12 months, with one-sided alpha of 0.20 and a power of 0.80. Secondary endpoints are overall survival, objective response rate, metastases resection rate, toxicity, and quality of life. Moreover, the study will explore several prognostic and predictive biomarkers on blood samples, primary tumors, and on resected metastases. Discussion The "Revolution" study aims to improve the treatment efficacy of RAS-mutated mCRC through an attractive strategy evaluating the combination of VPA with standard cancer treatment. Correlative studies could identify novel biomarkers and could add new insight in the mechanism of interaction between VPA, fluoropyrimidine, oxaliplatin, and bevacizumab. Trial Registration EudraCT: 2018-001414-15; ClinicalTrials.gov identifier: NCT04310176.
Collapse
Affiliation(s)
- Antonio Avallone
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Via M. Semmola, Napoli, 80131, Italy
| | | | - Elena Di Gennaro
- Experimental Pharmacology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Carmela Romano
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Filomena Calabrese
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Maria Serena Roca
- Experimental Pharmacology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Fabiana Tatangelo
- Pathology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Vincenza Granata
- Radiology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Antonio Cassata
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Ernesta Cavalcanti
- Laboratory Medicine Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Nicola Maurea
- Cardiology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Piera Maiolino
- Pharmacy Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Lucrezia Silvestro
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Alfonso De Stefano
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | | | - Gerardo Rosati
- Medical Oncology Unit, S. Carlo Hospital, Potenza, Italy
| | - Emiliano Tamburini
- Dipartimento di Oncologia e Cure Palliative, Azienda Ospedaliera Cardinale G. Panico, Tricase-Lecce, Italy
| | - Pasquale Aprea
- Vascular Access Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Valeria Vicario
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Anna Nappi
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Carlo Vitagliano
- Experimental Pharmacology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Rossana Casaretti
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Alessandra Leone
- Experimental Pharmacology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Antonella Petrillo
- Radiology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Gerardo Botti
- Pathology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Paolo Delrio
- Colorectal Oncological Surgery, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Francesco Izzo
- Hepatobiliary Surgery Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Francesco Perrone
- Clinical Trials Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Alfredo Budillon
- Experimental Pharmacology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Via M. Semmola, Napoli, 80131, Italy
| |
Collapse
|
40
|
Outeiro-Pinho G, Barros-Silva D, Correia MP, Henrique R, Jerónimo C. Renal Cell Tumors: Uncovering the Biomarker Potential of ncRNAs. Cancers (Basel) 2020; 12:cancers12082214. [PMID: 32784737 PMCID: PMC7465320 DOI: 10.3390/cancers12082214] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/30/2020] [Accepted: 08/05/2020] [Indexed: 12/24/2022] Open
Abstract
Renal cell tumors (RCT) remain as one of the most common and lethal urological tumors worldwide. Discrimination between (1) benign and malignant disease, (2) indolent and aggressive tumors, and (3) patient responsiveness to a specific therapy is of major clinical importance, allowing for a more efficient patient management. Nonetheless, currently available tools provide limited information and novel strategies are needed. Over the years, a putative role of non-coding RNAs (ncRNAs) as disease biomarkers has gained relevance and is now one of the most prolific fields in biological sciences. Herein, we extensively sought the most significant reports on ncRNAs as potential RCTs' diagnostic, prognostic, predictive, and monitoring biomarkers. We could conclude that ncRNAs, either alone or in combination with currently used clinical and pathological parameters, might represent key elements to improve patient management, potentiating the implementation of precision medicine. Nevertheless, most ncRNA biomarkers require large-scale validation studies, prior to clinical implementation.
Collapse
Affiliation(s)
- Gonçalo Outeiro-Pinho
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.O.-P.); (D.B.-S.); (M.P.C.); (R.H.)
| | - Daniela Barros-Silva
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.O.-P.); (D.B.-S.); (M.P.C.); (R.H.)
| | - Margareta P. Correia
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.O.-P.); (D.B.-S.); (M.P.C.); (R.H.)
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.O.-P.); (D.B.-S.); (M.P.C.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.O.-P.); (D.B.-S.); (M.P.C.); (R.H.)
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal
- Correspondence: ; Tel.: +351-225084000; Fax: +351-225084199
| |
Collapse
|
41
|
Sultana F, Manasa KL, Shaik SP, Bonam SR, Kamal A. Zinc Dependent Histone Deacetylase Inhibitors in Cancer Therapeutics: Recent Update. Curr Med Chem 2020; 26:7212-7280. [PMID: 29852860 DOI: 10.2174/0929867325666180530094120] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/12/2018] [Accepted: 05/22/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Histone deacetylases (HDAC) are an important class of enzymes that play a pivotal role in epigenetic regulation of gene expression that modifies the terminal of core histones leading to remodelling of chromatin topology and thereby controlling gene expression. HDAC inhibitors (HDACi) counter this action and can result in hyperacetylation of histones, thereby inducing an array of cellular consequences such as activation of apoptotic pathways, generation of reactive oxygen species (ROS), cell cycle arrest and autophagy. Hence, there is a growing interest in the potential clinical use of HDAC inhibitors as a new class of targeted cancer therapeutics. Methodology and Result: Several research articles spanning between 2016 and 2017 were reviewed in this article and presently offer critical insights into the important strategies such as structure-based rational drug design, multi-parameter lead optimization methodologies, relevant SAR studies and biology of various class of HDAC inhibitors, such as hydroxamic acids, benzamides, cyclic peptides, aliphatic acids, summarising the clinical trials and results of various combination drug therapy till date. CONCLUSION This review will provide a platform to the synthetic chemists and biologists to cater the needs of both molecular targeted therapy and combination drug therapy to design and synthesize safe and selective HDAC inhibitors in cancer therapeutics.
Collapse
Affiliation(s)
- Faria Sultana
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad-500007, India
| | - Kesari Lakshmi Manasa
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad-500007, India.,Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Siddiq Pasha Shaik
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad-500007, India.,Academy of Scientific and Innovative Research, New Delhi, 110 025, India
| | - Srinivasa Reddy Bonam
- Vaccine Immunology Laboratory, Natural Product Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Ahmed Kamal
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad-500007, India.,Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India.,Academy of Scientific and Innovative Research, New Delhi, 110 025, India.,School of Pharmaceutical Education and Research (SPER), Jamia Hamdard University, New Delhi, 110062, India
| |
Collapse
|
42
|
Molina AM, van der Mijn JC, Christos P, Wright J, Thomas C, Dutcher JP, Nanus DM, Tagawa ST, Gudas LJ. NCI 6896: a phase I trial of vorinostat (SAHA) and isotretinoin (13-cis retinoic acid) in the treatment of patients with advanced renal cell carcinoma. Invest New Drugs 2020; 38:1383-1389. [PMID: 31898184 DOI: 10.1007/s10637-019-00880-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/14/2019] [Indexed: 01/08/2023]
Abstract
Preclinical studies suggest that histone deacetylase (HDAC) inhibitors may restore tumor sensitivity to retinoids and have synergistic anti-tumor activity when combined. We performed a Phase I clinical trial to evaluate the safety and preliminary efficacy of combining the oral HDAC inhibitor vorinostat and isotretinoin in patients with advanced renal cell carcinoma (RCC). Vorinostat was administered at 300 mg orally twice daily in combination with escalating doses of isotretinoin for 3 consecutive days per week. A standard 3 + 3 dose escalation design was used. Dose limiting toxicities (DLT) were assess during the first cycle to determine the maximum tolerated dose (MTD). Fourteen patients enrolled on the trial of which 12 were evaluable for toxicity (6 cohort 1; 3 cohort 2; 3 cohort 3) and 11 for tumor response. One patient in cohort 1 experienced a DLT (grade 3 depression). Common grade 1-2 toxicities included fatigue and GI effects (nausea, diarrhea, anorexia). MTD was established as vorinostat 300 mg with isoretinoin 0.5 mg/kg twice daily 3 days per week. Best responses in evaluable patients included 1 partial response and 9 stable disease, lasting a median of 3.7 months (range 1.8-10.4 months). The combination of vorinostat and isotretinoin is safe, tolerable and associated with responses in patients with refractory metastatic RCC.
Collapse
Affiliation(s)
- Ana M Molina
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, 520 East 70th Street, New York, NY, 10021, USA.
| | - Johannes C van der Mijn
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA.,Department of Medical Oncology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Paul Christos
- Department of Biostatistics and Epidemiology, Weill Cornell Medicine, New York, NY, USA
| | - John Wright
- Division of Cancer Treatment & Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Charlene Thomas
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, 520 East 70th Street, New York, NY, 10021, USA
| | - Janice P Dutcher
- Our Lady of Mercy Cancer Center, Bronx, NY, USA.,Cancer Research Foundation of NY, Chappaqua, NY, USA
| | - David M Nanus
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, 520 East 70th Street, New York, NY, 10021, USA
| | - Scott T Tagawa
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, 520 East 70th Street, New York, NY, 10021, USA
| | - Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
43
|
van Tilburg CM, Milde T, Witt R, Ecker J, Hielscher T, Seitz A, Schenk JP, Buhl JL, Riehl D, Frühwald MC, Pekrun A, Rossig C, Wieland R, Flotho C, Kordes U, Gruhn B, Simon T, Linderkamp C, Sahm F, Taylor L, Freitag A, Burhenne J, Foerster KI, Meid AD, Pfister SM, Karapanagiotou-Schenkel I, Witt O. Phase I/II intra-patient dose escalation study of vorinostat in children with relapsed solid tumor, lymphoma, or leukemia. Clin Epigenetics 2019; 11:188. [PMID: 31823832 PMCID: PMC6902473 DOI: 10.1186/s13148-019-0775-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/03/2019] [Indexed: 12/26/2022] Open
Abstract
Background Until today, adult and pediatric clinical trials investigating single-agent or combinatorial HDAC inhibitors including vorinostat in solid tumors have largely failed to demonstrate efficacy. These results may in part be explained by data from preclinical models showing significant activity only at higher concentrations compared to those achieved with current dosing regimens. In the current pediatric trial, we applied an intra-patient dose escalation design. The purpose of this trial was to determine a safe dose recommendation (SDR) of single-agent vorinostat for intra-patient dose escalation, pharmacokinetic analyses (PK), and activity evaluation in children (3–18 years) with relapsed or therapy-refractory malignancies. Results A phase I intra-patient dose (de)escalation was performed until individual maximum tolerated dose (MTD). The starting dose was 180 mg/m2/day with weekly dose escalations of 50 mg/m2 until DLT/maximum dose. After MTD determination, patients seamlessly continued in phase II with disease assessments every 3 months. PK and plasma cytokine profiles were determined. Fifty of 52 patients received treatment. n = 27/50 (54%) completed the intra-patient (de)escalation and entered phase II. An SDR of 130 mg/m2/day was determined (maximum, 580 mg/m2/day). n = 46/50 (92%) patients experienced treatment-related AEs which were mostly reversible and included thrombocytopenia, fatigue, nausea, diarrhea, anemia, and vomiting. n = 6/50 (12%) had treatment-related SAEs. No treatment-related deaths occurred. Higher dose levels resulted in higher Cmax. Five patients achieved prolonged disease control (> 12 months) and showed a higher Cmax (> 270 ng/mL) and MTDs. Best overall response (combining PR and SD, no CR observed) rate in phase II was 6/27 (22%) with a median PFS and OS of 5.3 and 22.4 months. Low levels of baseline cytokine expression were significantly correlated with favorable outcome. Conclusion An SDR of 130 mg/m2/day for individual dose escalation was determined. Higher drug exposure was associated with responses and long-term disease stabilization with manageable toxicity. Patients with low expression of plasma cytokine levels at baseline were able to tolerate higher doses of vorinostat and benefited from treatment. Baseline cytokine profile is a promising potential predictive biomarker. Trial registration ClinicalTrials.gov, NCT01422499. Registered 24 August 2011,
Collapse
Affiliation(s)
- Cornelis M van Tilburg
- KiTZ Clinical Trial Unit, Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.,Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Till Milde
- KiTZ Clinical Trial Unit, Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.,Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Ruth Witt
- KiTZ Clinical Trial Unit, Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Jonas Ecker
- KiTZ Clinical Trial Unit, Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.,Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Thomas Hielscher
- Division of Biostatistics, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Angelika Seitz
- Division of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jens-Peter Schenk
- Division of Pediatric Radiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Juliane L Buhl
- KiTZ Clinical Trial Unit, Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Dennis Riehl
- DKTK Immune Monitoring Unit, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Michael C Frühwald
- Swabian Children's Cancer Center, University Children's Hospital Augsburg, Augsburg, Germany
| | | | - Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Regina Wieland
- Department of Pediatric Oncology and Hematology, Essen University Hospital, Essen, Germany
| | - Christian Flotho
- Division of Pediatric Oncology and Hematology, Freiburg University Hospital, Freiburg, Germany
| | - Uwe Kordes
- Department of Pediatric Hematology and Oncology, University Medical Center Eppendorf, Hamburg, Germany
| | - Bernd Gruhn
- Department of Pediatrics, Jena University Hospital, Jena, Germany
| | - Thorsten Simon
- Department of Pediatric Oncology and Hematology, Cologne University Hospital, Cologne, Germany
| | - Christin Linderkamp
- Department of Pediatric Oncology and Hematology, Hannover University Hospital, Hanover, Germany
| | - Felix Sahm
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.,Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Lenka Taylor
- Pharmacy Department, Heidelberg University Hospital, Heidelberg, Germany
| | - Angelika Freitag
- NCT Trial Center, National Center for Tumor Diseases, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Burhenne
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Kathrin I Foerster
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas D Meid
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan M Pfister
- KiTZ Clinical Trial Unit, Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.,Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | | | - Olaf Witt
- KiTZ Clinical Trial Unit, Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany. .,Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany. .,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.
| |
Collapse
|
44
|
Miranda Furtado CL, Dos Santos Luciano MC, Silva Santos RD, Furtado GP, Moraes MO, Pessoa C. Epidrugs: targeting epigenetic marks in cancer treatment. Epigenetics 2019; 14:1164-1176. [PMID: 31282279 PMCID: PMC6791710 DOI: 10.1080/15592294.2019.1640546] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/22/2019] [Accepted: 06/28/2019] [Indexed: 12/14/2022] Open
Abstract
Growing evidence suggests that aberrant epigenetic regulation of gene function is strongly related to the genesis of cancer. Unlike genetic mutations, the ability to reprogram the epigenetic landscape in the cancer epigenome is one of the most promising target therapies in both treatment and reversibility of drug resistance. Epigenetic alterations in cancer development and progression may be the basis for the individual variation in drug response. Thus, this review focuses on the emerging area of pharmaco(epi)genomics, specifically highlighting epigenetic reprogramming during tumorigenesis and how epigenetic markers are targeted as a therapy (epidrugs) and the clinical implications of this for cancer treatment.
Collapse
Affiliation(s)
| | | | - Renan Da Silva Santos
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceara, Fortaleza, Brazil
| | | | - Manoel Odorico Moraes
- Department of Surgery, Drug Research and Development Center, Federal University of Ceara, Fortaleza, Brazil
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceara, Fortaleza, Brazil
| | - Claudia Pessoa
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceara, Fortaleza, Brazil
| |
Collapse
|
45
|
Abstract
Over the past decade, the treatment landscape for patients with metastatic renal cell carcinoma (RCC) has evolved dramatically. The therapeutic options available have expanded and now include immune-checkpoint inhibitors, novel targeted agents and combination strategies, and thus optimal patient selection and treatment sequencing are increasingly pertinent for optimizing clinical outcomes. A better understanding of the underlying biology of the tumour and its microenvironment continues to drive the inception of new diagnostic and therapeutic approaches. Furthermore, many biomarkers robustly associated with treatment and disease-specific outcomes have been identified, and their integration into clinical decision-making for patients with advanced-stage disease will soon become a reality. Herein, we review relevant aspects of the molecular biology of metastatic RCC, with an emphasis on predictive and prognostic biomarkers, and suggest tailored algorithms to individualize and guide treatment approaches for specific subgroups of patients.
Collapse
|
46
|
HDAC5-mediated deacetylation and nuclear localisation of SOX9 is critical for tamoxifen resistance in breast cancer. Br J Cancer 2019; 121:1039-1049. [PMID: 31690832 PMCID: PMC6964674 DOI: 10.1038/s41416-019-0625-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 09/25/2019] [Accepted: 10/17/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Tamoxifen resistance remains a significant clinical challenge for the therapy of ER-positive breast cancer. It has been reported that the upregulation of transcription factor SOX9 in ER+ recurrent cancer is sufficient for tamoxifen resistance. However, the mechanisms underlying the regulation of SOX9 remain largely unknown. METHODS The acetylation level of SOX9 was detected by immunoprecipitation and western blotting. The expressions of HDACs and SIRTs were evaluated by qRT-PCR. Cell growth was measured by performing MTT assay. ALDH-positive breast cancer stem cells were evaluated by flow cytometry. Interaction between HDAC5 and SOX9 was determined by immunoprecipitation assay. RESULTS Deacetylation is required for SOX9 nuclear translocation in tamoxifen-resistant breast cancer cells. Furthermore, HDAC5 is the key deacetylase responsible for SOX9 deacetylation and subsequent nuclear translocation. In addition, the transcription factor C-MYC directly promotes the expression of HDAC5 in tamoxifen resistant breast cancer cells. For clinical relevance, high SOX9 and HDAC5 expression are associated with lower survival rates in breast cancer patients treated with tamoxifen. CONCLUSIONS This study reveals that HDAC5 regulated by C-MYC is essential for SOX9 deacetylation and nuclear localisation, which is critical for tamoxifen resistance. These results indicate a potential therapy strategy for ER+ breast cancer by targeting C-MYC/HDAC5/SOX9 axis.
Collapse
|
47
|
Wood A, George S, Adra N, Chintala S, Damayanti N, Pili R. Phase I study of the mTOR inhibitor everolimus in combination with the histone deacetylase inhibitor panobinostat in patients with advanced clear cell renal cell carcinoma. Invest New Drugs 2019; 38:1108-1116. [PMID: 31654285 DOI: 10.1007/s10637-019-00864-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/09/2019] [Indexed: 12/15/2022]
Abstract
Background Preclinical studies suggested synergistic anti-tumor activity when pairing mTOR inhibitors with histone deacetylase (HDAC) inhibitors. We completed a phase I, dose-finding trial for the mTOR inhibitor everolimus combined with the HDAC inhibitor panobinostat in advanced clear cell renal cell carcinoma (ccRCC) patients. We additionally investigated expression of microRNA 605 (miR-605) in serum samples obtained from trial participants. Patients and Methods Twenty-one patients completed our single institution, non-randomized, open-label, dose-escalation phase 1 trial. miR-605 levels were measured at cycle 1/day 1 (C1D1) and C2D1. Delta Ct method was utilized to evaluate miR-605 expression using U6B as an endogenous control. Results There were 3 dosing-limiting toxicities (DLTs): grade 4 thrombocytopenia (n = 1), grade 3 thrombocytopenia (n = 1), and grade 3 neutropenia (n = 1). Everolimus 5 mg PO daily and panobinostat 10 mg PO 3 times weekly (weeks 1 and 2) given in 21-day cycles was the recommended phase II dosing based on their maximum tolerated dose. The 6-month progression-free survival was 31% with a median of 4.1 months (95% confidence internal; 2.0-7.1). There was higher baseline expression of miR-605 in patients with progressive disease (PD) vs those with stable disease (SD) (p = 0.0112). PD patients' miR-605 levels decreased after the 1st cycle (p = 0.0245), whereas SD patients' miR-605 levels increased (p = 0.0179). Conclusion A safe and tolerable dosing regimen was established for combination everolimus/panobinostat therapy with myelosuppression as the major DLT. This therapeutic pairing did not appear to improve clinical outcomes in our group of patients with advanced ccRCC. There was differential expression of miR-605 that correlated with treatment response. Clinical trial information: NCT01582009.
Collapse
Affiliation(s)
- Anthony Wood
- Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, 535 Barnhill Drive, RT 400, Indianapolis, IN, 46202, USA
| | - Saby George
- Roswell Park Comprehensive Cancer Center, 665 Elm St, Buffalo, NY, 14203, USA
| | - Nabil Adra
- Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, 535 Barnhill Drive, RT 400, Indianapolis, IN, 46202, USA
| | - Sreenivasulu Chintala
- Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, 535 Barnhill Drive, RT 400, Indianapolis, IN, 46202, USA
| | - Nur Damayanti
- Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, 535 Barnhill Drive, RT 400, Indianapolis, IN, 46202, USA
| | - Roberto Pili
- Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, 535 Barnhill Drive, RT 400, Indianapolis, IN, 46202, USA.
| |
Collapse
|
48
|
Steinemann G, Dittmer A, Schmidt J, Josuttis D, Fähling M, Biersack B, Beindorff N, Jolante Koziolek E, Schobert R, Brenner W, Müller T, Nitzsche B, Höpfner M. Antitumor and antiangiogenic activity of the novel chimeric inhibitor animacroxam in testicular germ cell cancer. Mol Oncol 2019; 13:2679-2696. [PMID: 31583820 PMCID: PMC6887589 DOI: 10.1002/1878-0261.12582] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/12/2019] [Accepted: 10/01/2019] [Indexed: 12/16/2022] Open
Abstract
Chimeric inhibitors, which merge two drug pharmacophores in a single molecule have become a prominent approach for the design of novel anticancer compounds. Here, we examined animacroxam, which combines histone deacetylase (HDAC) inhibitory and cytoskeleton‐interfering pharmacophores, in testicular germ cell tumors (TGCT). The effectiveness of animacroxam was compared to that of the commonly applied chemotherapeutic cisplatin as well as the clinically approved HDAC inhibitor vorinostat. The antineoplastic and antiangiogenic effects of animacroxam on TGCT in vivo were assessed through exploratory animal studies and a modified chorioallantoic membrane assay, revealing that animacroxam has significant antitumor activity in TGCT. A novel positron emission tomography/MR‐imaging approach was applied to determine tumor volume and glucose [2‐fluoro‐2‐deoxy‐d‐glucose (18F‐FDG)] uptake in TGCT tumors, revealing reduced glucose uptake in animacroxam‐treated TGCTs and showing a dose‐dependent suppression of glycolytic enzymes, which led to a breakdown in glycolytic energy production. Furthermore, the observed antiangiogenic effects of animacroxam were related to its ability to inhibit endothelial cell–cell communication, as the expression of gap junction‐forming connexin 43 was strongly suppressed, and gap‐junctional intercellular mass transport was reduced. Our data suggest that the chimeric HDAC inhibitor animacroxam may become a promising candidate for the treatment of solid cancers and may serve as an interesting alternative to platinum‐based therapies.
Collapse
Affiliation(s)
- Gustav Steinemann
- Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Institute of Physiology, Humboldt-Universität zu Berlin, Charité - Universitätsmedizin Berlin, Germany
| | - Alexandra Dittmer
- Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Institute of Physiology, Humboldt-Universität zu Berlin, Charité - Universitätsmedizin Berlin, Germany
| | - Jacob Schmidt
- Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Institute of Physiology, Humboldt-Universität zu Berlin, Charité - Universitätsmedizin Berlin, Germany
| | - David Josuttis
- Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Institute of Physiology, Humboldt-Universität zu Berlin, Charité - Universitätsmedizin Berlin, Germany
| | - Michael Fähling
- Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Institute of Vegetative Physiology, Humboldt-Universität zu Berlin, Charité - Universitätsmedizin Berlin, Germany
| | | | - Nicola Beindorff
- Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Berlin Experimental Radionuclide Imaging Center (BERIC), Humboldt-Universität zu Berlin, Charité - Universitätsmedizin Berlin, Germany
| | - Eva Jolante Koziolek
- Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Berlin Experimental Radionuclide Imaging Center (BERIC), Humboldt-Universität zu Berlin, Charité - Universitätsmedizin Berlin, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Berlin, Germany
| | - Rainer Schobert
- Department of Organic Chemistry, University of Bayreuth, Germany
| | - Winfried Brenner
- Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Berlin Experimental Radionuclide Imaging Center (BERIC), Humboldt-Universität zu Berlin, Charité - Universitätsmedizin Berlin, Germany.,German Cancer Consortium (DKTK), Berlin, Germany
| | - Thomas Müller
- Clinic of Internal Medicine IV - Hematology and Oncology Division, Universitätsklinikum Halle (Saale), Germany
| | - Bianca Nitzsche
- Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Institute of Physiology, Humboldt-Universität zu Berlin, Charité - Universitätsmedizin Berlin, Germany
| | - Michael Höpfner
- Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Institute of Physiology, Humboldt-Universität zu Berlin, Charité - Universitätsmedizin Berlin, Germany
| |
Collapse
|
49
|
Autin P, Blanquart C, Fradin D. Epigenetic Drugs for Cancer and microRNAs: A Focus on Histone Deacetylase Inhibitors. Cancers (Basel) 2019; 11:E1530. [PMID: 31658720 PMCID: PMC6827107 DOI: 10.3390/cancers11101530] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/09/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023] Open
Abstract
Over recent decades, it has become clear that epigenetic abnormalities are involved in the hallmarks of cancer. Histone modifications, such as acetylation, play a crucial role in cancer development and progression, by regulating gene expression, such as for oncogenes or tumor suppressor genes. Therefore, histone deacetylase inhibitors (HDACi) have recently shown efficacy against both hematological and solid cancers. Designed to target histone deacetylases (HDAC), these drugs can modify the expression pattern of numerous genes including those coding for micro-RNAs (miRNA). miRNAs are small non-coding RNAs that regulate gene expression by targeting messenger RNA. Current research has found that miRNAs from a tumor can be investigated in the tumor itself, as well as in patient body fluids. In this review, we summarized current knowledge about HDAC and HDACi in several cancers, and described their impact on miRNA expression. We discuss briefly how circulating miRNAs may be used as biomarkers of HDACi response and used to investigate response to treatment.
Collapse
Affiliation(s)
- Pierre Autin
- CRCINA, INSERM, Université d'Angers, Université de Nantes, 44007 Nantes, France.
| | - Christophe Blanquart
- CRCINA, INSERM, Université d'Angers, Université de Nantes, 44007 Nantes, France.
| | - Delphine Fradin
- CRCINA, INSERM, Université d'Angers, Université de Nantes, 44007 Nantes, France.
| |
Collapse
|
50
|
Morel D, Jeffery D, Aspeslagh S, Almouzni G, Postel-Vinay S. Combining epigenetic drugs with other therapies for solid tumours - past lessons and future promise. Nat Rev Clin Oncol 2019; 17:91-107. [PMID: 31570827 DOI: 10.1038/s41571-019-0267-4] [Citation(s) in RCA: 256] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2019] [Indexed: 12/16/2022]
Abstract
Epigenetic dysregulation has long been recognized as a key factor contributing to tumorigenesis and tumour maintenance that can influence all of the recognized hallmarks of cancer. Despite regulatory approvals for the treatment of certain haematological malignancies, the efficacy of the first generation of epigenetic drugs (epi-drugs) in patients with solid tumours has been disappointing; however, successes have now been achieved in selected solid tumour subtypes, thanks to the development of novel compounds and a better understanding of cancer biology that have enabled precision medicine approaches. Several lines of evidence support that, beyond their potential as monotherapies, epigenetic drugs could have important roles in synergy with other anticancer therapies or in reversing acquired therapy resistance. Herein, we review the mechanisms by which epi-drugs can modulate the sensitivity of cancer cells to other forms of anticancer therapy, including chemotherapy, radiation therapy, hormone therapy, molecularly targeted therapy and immunotherapy. We provide a critical appraisal of the preclinical rationale, completed clinical studies and ongoing clinical trials relating to combination therapies incorporating epi-drugs. Finally, we propose and discuss rational clinical trial designs and drug development strategies, considering key factors including patient selection, tumour biomarker evaluation, drug scheduling and response assessment and study end points, with the aim of optimizing the development of such combinations.
Collapse
Affiliation(s)
- Daphné Morel
- ATIP-Avenir Group, UMR981, INSERM (French National Institute of Health and Medical Research), Gustave Roussy Cancer Campus, Villejuif, France
| | - Daniel Jeffery
- Nuclear Dynamics Unit - UMR3664, National Centre for Scientific Research, Institut Curie, Paris, France
| | | | - Geneviève Almouzni
- Nuclear Dynamics Unit - UMR3664, National Centre for Scientific Research, Institut Curie, Paris, France.
| | - Sophie Postel-Vinay
- ATIP-Avenir Group, UMR981, INSERM (French National Institute of Health and Medical Research), Gustave Roussy Cancer Campus, Villejuif, France. .,Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Paris-Saclay University, Villejuif, France.
| |
Collapse
|