1
|
Kanarik M, Liiver K, Norden M, Teino I, Org T, Laugus K, Shimmo R, Karelson M, Saarma M, Harro J. RNA m 6A methyltransferase activator affects anxiety-related behaviours, monoamines and striatal gene expression in the rat. Acta Neuropsychiatr 2024:1-16. [PMID: 39380240 DOI: 10.1017/neu.2024.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Modification of mRNA by methylation is involved in post-transcriptional regulation of gene expression by affecting the splicing, transport, stability and translation of mRNA. Methylation of adenosine at N6 (m6A) is one of the most common and important cellular modification occurring in the mRNA of eukaryotes. Evidence that m6A mRNA methylation is involved in regulation of stress response and that its dysregulation may contribute to the pathogenesis of neuropsychiatric disorders is accumulating. We have examined the acute and subchronic (up to 18 days once per day intraperitoneally) effect of the first METTL3/METTL14 activator compound CHMA1004 (methyl-piperazine-2-carboxylate) at two doses (1 and 5 mg/kg) in male and female rats. CHMA1004 had a locomotor activating and anxiolytic-like profile in open field and elevated zero-maze tests. In female rats sucrose consumption and swimming in Porsolt's test were increased. Nevertheless, CHMA1004 did not exhibit strong psychostimulant-like properties: CHMA1004 had no effect on 50-kHz ultrasonic vocalizations except that it reduced the baseline difference between male and female animals, and acute drug treatment had no effect on extracellular dopamine levels in striatum. Subchronic CHMA1004 altered ex vivo catecholamine levels in several brain regions. RNA sequencing of female rat striata after subchronic CHMA1004 treatment revealed changes in the expression of a number of genes linked to dopamine neuron viability, neurodegeneration, depression, anxiety and stress response. Conclusively, the first-in-class METTL3/METTL14 activator compound CHMA1004 increased locomotor activity and elicited anxiolytic-like effects after systemic administration, demonstrating that pharmacological activation of RNA m6A methylation has potential for neuropsychiatric drug development.
Collapse
Affiliation(s)
- Margus Kanarik
- Division of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Tartu, Tartumaa, Estonia
| | - Kristi Liiver
- School of Natural Sciences and Health, Tallinn University, Tallinn, Harjumaa, Estonia
| | - Marianna Norden
- School of Natural Sciences and Health, Tallinn University, Tallinn, Harjumaa, Estonia
- Institute of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Indrek Teino
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Uusimaa, Finland
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Tartumaa, Estonia
| | - Tõnis Org
- Institute of Genomics, University of Tartu, Tartu, Tartumaa, Estonia
| | - Karita Laugus
- Division of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Tartu, Tartumaa, Estonia
| | - Ruth Shimmo
- School of Natural Sciences and Health, Tallinn University, Tallinn, Harjumaa, Estonia
| | - Mati Karelson
- Division of Molecular Technology, Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Mart Saarma
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Uusimaa, Finland
| | - Jaanus Harro
- Division of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Tartu, Tartumaa, Estonia
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Uusimaa, Finland
| |
Collapse
|
2
|
Brockway DF, Crowley NA. Emerging pharmacological targets for alcohol use disorder. Alcohol 2024; 121:103-114. [PMID: 39069210 DOI: 10.1016/j.alcohol.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/27/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Alcohol Use Disorder (AUD) remains a challenging condition with limited effective treatment options; however new technology in drug delivery and advancements in pharmacology have paved the way for discovery of novel therapeutic targets. This review explores emerging pharmacological targets that offer new options for the management of AUD, focusing on the potential of somatostatin (SST), vasoactive intestinal peptide (VIP), glucagon-like peptide-1 (GLP-1), nociceptin (NOP), and neuropeptide S (NPS). These targets have been selected based on recent advancements in preclinical and clinical research, which suggest their significant roles in modulating alcohol consumption and related behaviors. SST dampens cortical circuits, and targeting both the SST neurons and the SST peptide itself presents promise for treating AUD and various related comorbidities. VIP neurons are modulated by alcohol and targeting the VIP system presents an unexplored avenue for addressing alcohol exposure at various stages of development. GLP-1 interacts with the dopaminergic reward system and reduces alcohol intake. Nociceptin modulates mesolimbic circuitry and agonism and antagonism of nociceptin receptor offers a complex but promising approach to reducing alcohol consumption. NPS stands out for its anxiolytic-like effects, particularly relevant for the anxiety associated with AUD. This review aims to synthesize the current understanding of these targets, highlighting their potential in developing more effective and personalized AUD therapies, and underscores the importance of continued research in identifying and validating novel targets for treatment of AUD and comorbid conditions.
Collapse
Affiliation(s)
- Dakota F Brockway
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA; Penn State Neuroscience Institute, Penn State University, University Park, PA, 16802, USA.
| | - Nicole A Crowley
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA; Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA; Penn State Neuroscience Institute, Penn State University, University Park, PA, 16802, USA.
| |
Collapse
|
3
|
Zhang R, Huang D, Gasparini S, Geerling JC. Efferent projections of Nps-expressing neurons in the parabrachial region. J Comp Neurol 2024; 532:e25629. [PMID: 39031887 DOI: 10.1002/cne.25629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 07/22/2024]
Abstract
In the brain, connectivity determines function. Neurons in the parabrachial nucleus (PB) relay diverse information to widespread brain regions, but the connections and functions of PB neurons that express Nps (neuropeptide S, NPS) remain mysterious. Here, we use Cre-dependent anterograde tracing and whole-brain analysis to map their output connections. While many other PB neurons project ascending axons through the central tegmental tract, NPS axons reach the forebrain via distinct periventricular and ventral pathways. Along the periventricular pathway, NPS axons target the tectal longitudinal column and periaqueductal gray, then continue rostrally to target the paraventricular nucleus of the thalamus. Along the ventral pathway, NPS axons blanket much of the hypothalamus but avoid the ventromedial and mammillary nuclei. They also project prominently to the ventral bed nucleus of the stria terminalis, A13 cell group, and magnocellular subparafasciular nucleus. In the hindbrain, NPS axons have fewer descending projections, targeting primarily the superior salivatory nucleus, nucleus of the lateral lemniscus, and periolivary region. Combined with what is known already about NPS and its receptor, the output pattern of Nps-expressing neurons in the PB region predicts roles in threat response and circadian behavior.
Collapse
Affiliation(s)
- Richie Zhang
- Department of Neurology and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA
| | - Dake Huang
- Department of Neurology and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA
| | - Silvia Gasparini
- Department of Neurology and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA
| | - Joel C Geerling
- Department of Neurology and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
4
|
Shirsath KR, Patil VK, Awathale SN, Goyal SN, Nakhate KT. Pathophysiological and therapeutic implications of neuropeptide S system in neurological disorders. Peptides 2024; 175:171167. [PMID: 38325715 DOI: 10.1016/j.peptides.2024.171167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Neuropeptide S (NPS) is a 20 amino acids-containing neuroactive molecule discovered by the reverse pharmacology method. NPS is detected in specific brain regions like the brainstem, amygdala, and hypothalamus, while its receptor (NPSR) is ubiquitously expressed in the central nervous system (CNS). Besides CNS, NPS and NPSR are also expressed in the peripheral nervous system. NPSR is a G-protein coupled receptor that primarily uses Gq and Gs signaling pathways to mediate the actions of NPS. In animal models of Parkinsonism and Alzheimer's disease, NPS exerts neuroprotective effects. NPS suppresses oxidative stress, anxiety, food intake, and pain, and promotes arousal. NPSR facilitates reward, reinforcement, and addiction-related behaviors. Genetic variation and single nucleotide polymorphism in NPSR are associated with depression, schizophrenia, rheumatoid arthritis, and asthma. NPS interacts with several neurotransmitters including glutamate, noradrenaline, serotonin, corticotropin-releasing factor, and gamma-aminobutyric acid. It also modulates the immune system via augmenting pro-inflammatory cytokines and plays an important role in the pathogenesis of rheumatoid arthritis and asthma. In the present review, we discussed the distribution profile of NPS and NPSR, signaling pathways, and their importance in the pathophysiology of various neurological disorders. We have also proposed the areas where further investigations on the NPS system are warranted.
Collapse
Affiliation(s)
- Kamini R Shirsath
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Vaishnavi K Patil
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Sanjay N Awathale
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Sameer N Goyal
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Kartik T Nakhate
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India.
| |
Collapse
|
5
|
Inan SY, Yildirim S, Tanriover G, Ilhan B. P/Q type (Ca v2.1) Calcium Channel Blocker ω-Agatoxin IVA Alters Cleaved Caspase-3 and BDNF Expressions in the Rat Brain and Suppresses Seizure Activity. Mol Neurobiol 2024; 61:1861-1872. [PMID: 37798599 DOI: 10.1007/s12035-023-03678-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
High-voltage-gated calcium channels have pivot role in the cellular and molecular mechanisms of various neurological disorders, including epilepsy. Similar to other calcium channels, P/Q-type calcium channels (Cav2.1) are also responsible for vesicle release at synaptic terminals. Up to date, there are very limited reports showing the mechanisms of Cav2.1 in epileptogenesis. In the present study, we investigated the anticonvulsive and neuroprotective effects of ω-agatoxin IVA, a specific Cav2.1 blocker, in a chemical kindling model of epileptogenesis. Righting reflex and inclined plane tests were used to assess motor coordination. Electroencephalography was recorded for electrophysiological monitoring of seizure activity in freely moving rats. Immunohistochemical analyses were performed for brain-derived neurotrophic factor (BDNF) and cleaved caspase-3 expressions in the prefrontal cortex, striatum, hippocampus, and thalamic nucleus. ω-Agatoxin IVA injected into the right lateral ventricle significantly prolonged the onset of seizures in a dose-dependent manner. In addition, repeated intraperitoneal administrations of ω-agatoxin IVA significantly suppressed the development of kindling and epileptic discharges without altering motor coordination. In addition, ω-agatoxin IVA significantly increased BDNF expressions, and decreased cleaved caspase-3 expressions in the brain when compared to PTZ + saline group. Our current study emphasizes the significance of the inhibition of P/Q type calcium channels by ω-agatoxin IVA, which suppresses the development of epileptogenesis and provides a new potential pathway for epilepsy treatment.
Collapse
Affiliation(s)
- Salim Yalcin Inan
- Department of Medical Pharmacology, Meram Faculty of Medicine, University of Konya-NE, 42080 Akyokus, Meram, Konya, Turkey.
| | - Sendegul Yildirim
- Department of Histology and Embryology, Faculty of Medicine, University of Akdeniz, Antalya, Turkey
| | - Gamze Tanriover
- Department of Histology and Embryology, Faculty of Medicine, University of Akdeniz, Antalya, Turkey
- Department of Medical Biotechnology, University of Akdeniz, Antalya, Turkey
| | - Barkin Ilhan
- Department of Biophysics, Meram Faculty of Medicine, University of Konya-NE, Konya, Turkey
| |
Collapse
|
6
|
Angelakos CC, Girven KS, Liu Y, Gonzalez OC, Murphy KR, Jennings KJ, Giardino WJ, Zweifel LS, Suko A, Palmiter RD, Clark SD, Krasnow MA, Bruchas MR, de Lecea L. A cluster of neuropeptide S neurons regulates breathing and arousal. Curr Biol 2023; 33:5439-5455.e7. [PMID: 38056461 PMCID: PMC10842921 DOI: 10.1016/j.cub.2023.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/31/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
Neuropeptide S (NPS) is a highly conserved peptide found in all tetrapods that functions in the brain to promote heightened arousal; however, the subpopulations mediating these phenomena remain unknown. We generated mice expressing Cre recombinase from the Nps gene locus (NpsCre) and examined populations of NPS+ neurons in the lateral parabrachial area (LPBA), the peri-locus coeruleus (peri-LC) region of the pons, and the dorsomedial thalamus (DMT). We performed brain-wide mapping of input and output regions of NPS+ clusters and characterized expression patterns of the NPS receptor 1 (NPSR1). While the activity of all three NPS+ subpopulations tracked with vigilance state, only NPS+ neurons of the LPBA exhibited both increased activity prior to wakefulness and decreased activity during REM sleep, similar to the behavioral phenotype observed upon NPSR1 activation. Accordingly, we found that activation of the LPBA but not the peri-LC NPS+ neurons increased wake and reduced REM sleep. Furthermore, given the extended role of the LPBA in respiration and the link between behavioral arousal and breathing rate, we demonstrated that the LPBA but not the peri-LC NPS+ neuronal activation increased respiratory rate. Together, our data suggest that NPS+ neurons of the LPBA represent an unexplored subpopulation regulating breathing, and they are sufficient to recapitulate the sleep/wake phenotypes observed with broad NPS system activation.
Collapse
Affiliation(s)
- Christopher Caleb Angelakos
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Kasey S Girven
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; University of Washington Center for the Neurobiology of Addiction, Pain, and Emotion, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Yin Liu
- Department of Biochemistry, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Oscar C Gonzalez
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Keith R Murphy
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Kim J Jennings
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - William J Giardino
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Larry S Zweifel
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Azra Suko
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; University of Washington Center for the Neurobiology of Addiction, Pain, and Emotion, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Richard D Palmiter
- Department of Biochemistry, Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Stewart D Clark
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Mark A Krasnow
- Department of Biochemistry, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Michael R Bruchas
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; University of Washington Center for the Neurobiology of Addiction, Pain, and Emotion, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
7
|
Zhang R, Huang D, Gasparini S, Geerling JC. Efferent projections of Nps-expressing neurons in the parabrachial region. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.13.553140. [PMID: 37645772 PMCID: PMC10462015 DOI: 10.1101/2023.08.13.553140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
In the brain, connectivity determines function. Neurons in the parabrachial nucleus (PB) relay diverse information to widespread brain regions, but the connections and functions of PB neurons that express Nps (neuropeptide S) remain mysterious. Here, we use Cre-dependent anterograde tracing and whole-brain analysis to map their output connections. While many other PB neurons project ascending axons through the central tegmental tract, NPS axons reach the forebrain via distinct periventricular and ventral pathways. Along the periventricular pathway, NPS axons target the tectal longitudinal column and periaqueductal gray then continue rostrally to target the paraventricular nucleus of the thalamus. Along the ventral pathway, NPS axons blanket much of the hypothalamus but avoid the ventromedial and mammillary nuclei. They also project prominently to the ventral bed nucleus of the stria terminalis, A13 cell group, and magnocellular subparafasciular nucleus. In the hindbrain, NPS axons have fewer descending projections, targeting primarily the superior salivatory nucleus, nucleus of the lateral lemniscus, and periolivary region. Combined with what is known about NPS and its receptor, the output pattern of Nps-expressing neurons in the PB region predicts a role in threat response and circadian behavior.
Collapse
Affiliation(s)
- Richie Zhang
- Department of Neurology and Iowa Neuroscience Institute, University of Iowa
| | - Dake Huang
- Department of Neurology and Iowa Neuroscience Institute, University of Iowa
| | - Silvia Gasparini
- Department of Neurology and Iowa Neuroscience Institute, University of Iowa
| | - Joel C. Geerling
- Department of Neurology and Iowa Neuroscience Institute, University of Iowa
| |
Collapse
|
8
|
Xiang G, Liu X, Wang J, Lu S, Yu M, Zhang Y, Sun B, Huang B, Lu XY, Li X, Zhang D. Peroxisome proliferator-activated receptor-α activation facilitates contextual fear extinction and modulates intrinsic excitability of dentate gyrus neurons. Transl Psychiatry 2023; 13:206. [PMID: 37322045 DOI: 10.1038/s41398-023-02496-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 05/06/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023] Open
Abstract
The dentate gyrus (DG) of the hippocampus encodes contextual information associated with fear, and cell activity in the DG is required for acquisition and extinction of contextual fear. However, the underlying molecular mechanisms are not fully understood. Here we show that mice deficient for peroxisome proliferator-activated receptor-α (PPARα) exhibited a slower rate of contextual fear extinction. Furthermore, selective deletion of PPARα in the DG attenuated, while activation of PPARα in the DG by local infusion of aspirin facilitated extinction of contextual fear. The intrinsic excitability of DG granule neurons was reduced by PPARα deficiency but increased by activation of PPARα with aspirin. Using RNA-Seq transcriptome we found that the transcription level of neuropeptide S receptor 1 (Npsr1) was tightly correlated with PPARα activation. Our results provide evidence that PPARα plays an important role in regulating DG neuronal excitability and contextual fear extinction.
Collapse
Affiliation(s)
- Guo Xiang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250012, China
| | - Xia Liu
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
| | - Jiangong Wang
- Institute of Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, 256600, China
| | - Shunshun Lu
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
| | - Meng Yu
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
| | - Yuhan Zhang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250012, China
| | - Bin Sun
- National Glycoengineering Research Center, Shandong University, Jinan, 250012, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250012, China
| | - Xin-Yun Lu
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250012, China
| | - Di Zhang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250012, China.
| |
Collapse
|
9
|
Neuropeptide S facilitates extinction of fear via modulation of mesolimbic dopaminergic circuitry. Neuropharmacology 2022; 221:109274. [DOI: 10.1016/j.neuropharm.2022.109274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/12/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022]
|
10
|
Fischler PV, Soyka M, Seifritz E, Mutschler J. Off-label and investigational drugs in the treatment of alcohol use disorder: A critical review. Front Pharmacol 2022; 13:927703. [PMID: 36263121 PMCID: PMC9574013 DOI: 10.3389/fphar.2022.927703] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Compounds known to be successful in the treatment of alcohol use disorder include the aversive agent, Disulfiram, the glutamatergic NMDA receptor antagonist, Acamprosate, and the opioid receptor antagonists, Naltrexone and Nalmefene. Although all four are effective in maintaining abstinence or reduction of alcohol consumption, only a small percentage of patients receive pharmacological treatment. In addition, many other medications have been investigated for their therapeutic potential in the treatment of alcohol use disorder. In this review we summarize and compare Baclofen, Gabapentin, Topiramate, Ondansetron, Varenicline, Aripiprazole, Quetiapine, Clozapine, Antidepressants, Lithium, Neuropeptide Y, Neuropeptide S, Corticotropin-releasing factor antagonists, Oxytocin, PF-05190457, Memantine, Ifenprodil, Samidorphan, Ondelopran, ABT-436, SSR149415, Mifepristone, Ibudilast, Citicoline, Rimonabant, Surinabant, AM4113 and Gamma-hydroxybutyrate While some have shown promising results in the treatment of alcohol use disorder, others have disappointed and should be excluded from further investigation. Here we discuss the most promising results and highlight medications that deserve further preclinical or clinical study. Effective, patient-tailored treatment will require greater understanding provided by many more preclinical and clinical studies.
Collapse
Affiliation(s)
- Pascal Valentin Fischler
- Department for Gynecology and Obstetrics, Women’s Clinic Lucerne, Cantonal Hospital of Lucerne, Lucerne, Switzerland
- *Correspondence: Pascal Valentin Fischler,
| | - Michael Soyka
- Psychiatric Hospital University of Munich, Munich, Germany
| | - Erich Seifritz
- Director of the Clinic for Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Clinic Zürich, Zürich, Switzerland
| | | |
Collapse
|
11
|
Li C, Wu XJ, Li W. Neuropeptide S promotes maintenance of newly formed dendritic spines and performance improvement after motor learning in mice. Peptides 2022; 156:170860. [PMID: 35970276 DOI: 10.1016/j.peptides.2022.170860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/18/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
Abstract
Neuropeptide S (NPS), an endogenous neuropeptide consisting of 20 amino acids, selectively binds and activates G protein-coupled receptor named neuropeptide S receptor (NPSR) to regulate a variety of physiological functions. NPS/NPSR system has been shown to play a pivotal role in regulating learning and memory in rodents. However, it remains unclear that how NPS/NPSR system affects neuronal functions and synaptic plasticity after learning. We found that intracerebroventricular (i.c.v.) injection of NPS promoted performance improvement and reduced sleep duration after motor learning, which could be blocked by pre-treatment with intraperitoneal (i.p.) injection of NPSR antagonist SHA 68. Using intravital two-photon imaging, we examined the effect of NPS on the postsynaptic dendritic spines of layer V pyramidal neurons in the mouse primary motor cortex after motor learning. We found that i.c.v. injection of NPS strengthened learning-induce new spines and facilitated their survival over time. Furthermore, i.c.v. injection of NPS increased calcium activity of apical dendrites and dendritic spines of layer V pyramidal neurons in the mouse primary motor cortex during the running period. These findings suggest that activation of NPSR by NPS increases synaptic calcium activity and learning-related synapse maintenance, thereby contributing to performance improvement after motor learning.
Collapse
Affiliation(s)
- Cong Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Xu-Jun Wu
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Wei Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
12
|
A Role for Neuropeptide S in Alcohol and Cocaine Seeking. Pharmaceuticals (Basel) 2022; 15:ph15070800. [PMID: 35890099 PMCID: PMC9317571 DOI: 10.3390/ph15070800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 01/25/2023] Open
Abstract
The neuropeptide S (NPS) is the endogenous ligand of the NPS receptor (NPSR). The NPSR is widely expressed in brain regions that process emotional and affective behavior. NPS possesses a unique physio-pharmacological profile, being anxiolytic and promoting arousal at the same time. Intracerebroventricular NPS decreased alcohol consumption in alcohol-preferring rats with no effect in non-preferring control animals. This outcome is most probably linked to the anxiolytic properties of NPS, since alcohol preference is often associated with high levels of basal anxiety and intense stress-reactivity. In addition, NPSR mRNA was overexpressed during ethanol withdrawal and the anxiolytic-like effects of NPS were increased in rodents with a history of alcohol dependence. In line with these preclinical findings, a polymorphism of the NPSR gene was associated with anxiety traits contributing to alcohol use disorders in humans. NPS also potentiated the reinstatement of cocaine and ethanol seeking induced by drug-paired environmental stimuli and the blockade of NPSR reduced reinstatement of cocaine-seeking. Altogether, the work conducted so far indicates the NPS/NPSR system as a potential target to develop new treatments for alcohol and cocaine abuse. An NPSR agonist would be indicated to help individuals to quit alcohol consumption and to alleviate withdrawal syndrome, while NPSR antagonists would be indicated to prevent relapse to alcohol- and cocaine-seeking behavior.
Collapse
|
13
|
Garau C, Liu X, Calo G, Schulz S, Reinscheid RK. Neuropeptide S Encodes Stimulus Salience in the Paraventricular Thalamus. Neuroscience 2022; 496:83-95. [PMID: 35710064 DOI: 10.1016/j.neuroscience.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/05/2022] [Accepted: 06/07/2022] [Indexed: 10/18/2022]
Abstract
Evaluation of stimulus salience is critical for any higher organism, as it allows for prioritizing of vital information, preparation of responses, and formation of valuable memory. The paraventricular nucleus of the thalamus (PVT) has recently been identified as an integrator of stimulus salience but the neurochemical basis and afferent input regarding salience signaling have remained elusive. Here we report that neuropeptide S (NPS) signaling in the PVT is necessary for stimulus salience encoding, including aversive, neutral and reinforcing sensory input. Taking advantage of a striking deficit of both NPS receptor (NPSR1) and NPS precursor knockout mice in fear extinction or novel object memory formation, we demonstrate that intra-PVT injections of NPS can rescue the phenotype in NPS precursor knockout mice by increasing the salience of otherwise low-intensity stimuli, while intra-PVT injections of NPSR1 antagonist in wild type mice partially replicates the knockout phenotype. The PVT appears to provide stimulus salience encoding in a dose- and NPS-dependent manner. PVT NPSR1 neurons recruit the nucleus accumbens shell and structures in the prefrontal cortex and amygdala, which were previously linked to the brain salience network. Overall, these results demonstrate that stimulus salience encoding is critically associated with NPS activity in the PVT.
Collapse
Affiliation(s)
- Celia Garau
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92617, USA
| | - Xiaobin Liu
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92617, USA
| | - Girolamo' Calo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Friedrich-Schiller University, Jena, Germany
| | - Rainer K Reinscheid
- Institute of Pharmacology and Toxicology, Friedrich-Schiller University, Jena, Germany.
| |
Collapse
|
14
|
Markiewicz-Gospodarek A, Kuszta P, Baj J, Dobrowolska B, Markiewicz R. Can Neuropeptide S Be an Indicator for Assessing Anxiety in Psychiatric Disorders? Front Public Health 2022; 10:872430. [PMID: 35558538 PMCID: PMC9087177 DOI: 10.3389/fpubh.2022.872430] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/29/2022] [Indexed: 12/01/2022] Open
Abstract
Neuropeptide S (NPS) is a neuropeptide primarily produced within three brainstem regions including locus coeruleus, trigeminal nerve nucleus, and lateral parabrachial nucleus. NPS is involved in the central regulation of stress, fear, and cognitive integration. NPS is a mediator of behavior, seeking food, and the proliferation of new adipocytes in the setting of obesity. So far, current research of NPS is only limited to animal models; data regarding its functions in humans is still scarce. Animal studies showed that anxiety and appetite might be suppressed by the action of NPS. The discovery of this neuromodulator peptide is effective considering its strong anxiolytic action, which has the potential to be an interesting therapeutic option in treating neuropsychiatric disorders. In this article, we aimed to analyze the pharmaceutical properties of NPS as well as its influence on several neurophysiological aspects-modulation of behavior, association with obesity, as well as its potential application in rehabilitation and treatment of psychiatric disorders.
Collapse
Affiliation(s)
| | - Piotr Kuszta
- Students Scientific Association at the Department of Human Anatomy, Medical University of Lublin, Lublin, Poland
| | - Jacek Baj
- Department of Human Anatomy, Medical University of Lublin, Lublin, Poland
| | - Beata Dobrowolska
- Department of Holistic Care and Management in Nursing, Medical University of Lublin, Lublin, Poland
| | - Renata Markiewicz
- Department of Neurology, Neurological and Psychiatric Nursing, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
15
|
Bülbül M, Sinen O. The influence of early-life and adulthood stressors on brain neuropeptide-S system. Neuropeptides 2022; 92:102223. [PMID: 34982971 DOI: 10.1016/j.npep.2021.102223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 12/07/2021] [Accepted: 12/25/2021] [Indexed: 11/18/2022]
Abstract
Central administered neuropeptide-S (NPS) was shown to reduce stress response in rodents. This study aimed to investigate the alterations in NPS system upon chronic exposure to early-life and adulthood stressors. Newborn pups underwent maternal separation (MS) from postnatal day 1 to 14 comprised of daily 3-h separations. In the adulthood, 90-min of restraint stress was loaded to males as an acute stress (AS) model. For chronic homotypic stress (CHS), same stressor was applied for 5 consecutive days. The changes in the expression and the release of NPS were monitored by immunohistochemistry and microdialysis, respectively. Throughout the CHS, heart rate variability (HRV) was analyzed on a daily basis. The immunoreactivity for NPS receptor (NPSR) was detected in basolateral amygdala (BLA) and hypothalamic paraventricular nucleus (PVN) by immunofluorescence staining. The NPS expression in the brainstem was increased upon AS which was more prominent following CHS, whereas these responses were found to be blunted in MS counterparts. Similar to histological data, the stress-induced release of NPS in BLA was attenuated in MS rats. CHS-induced elevations in sympatho-vagal balance were alleviated in control rats; which was not observed in MS rats. The expression of NPSR in BLA and PVN was down-regulated in MS rats. The brain NPS/NPSR system appears to be susceptible to the early-life stressors and the subsequent chronic stress exposure in adulthood which results in altered autonomic outflow.
Collapse
Affiliation(s)
- Mehmet Bülbül
- Department of Physiology, Akdeniz University, Faculty of Medicine, Antalya, Turkey.
| | - Osman Sinen
- Department of Physiology, Akdeniz University, Faculty of Medicine, Antalya, Turkey
| |
Collapse
|
16
|
Exploring the role of neuropeptides in depression and anxiety. Prog Neuropsychopharmacol Biol Psychiatry 2022; 114:110478. [PMID: 34801611 DOI: 10.1016/j.pnpbp.2021.110478] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/13/2021] [Accepted: 11/13/2021] [Indexed: 12/24/2022]
Abstract
Depression is one of the most prevalent forms of mental disorders and is the most common cause of disability in the Western world. Besides, the harmful effects of stress-related mood disorders on the patients themselves, they challenge the health care system with enormous social and economic impacts. Due to the high proportion of patients not responding to existing drugs, finding new treatment strategies has become an important topic in neurobiology, and there is much evidence that neuropeptides are not only involved in the physiology of stress but may also be clinically important. Based on preclinical trial data, new neuropharmaceutical candidates may target neuropeptides and their receptors and are expected to be essential and valuable tools in the treatment of psychiatric disorders. In the current article, we have summarized data obtained from animal models of depressive disorder and transgenic mouse models. We also focus on previously published research data of clinical studies on corticotropin-releasing hormone (CRH), galanin (GAL), neuropeptide Y (NPY), neuropeptide S (NPS), Oxytocin (OXT), vasopressin (VP), cholecystokinin (CCK), and melanin-concentrating hormone (MCH) stress research fields.
Collapse
|
17
|
Bülbül M, Sinen O. Centrally Administered Neuropeptide-S Alleviates Gastrointestinal Dysmotility Induced by Neonatal Maternal Separation. Neurogastroenterol Motil 2022; 34:e14269. [PMID: 34561917 DOI: 10.1111/nmo.14269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/18/2021] [Accepted: 08/31/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Neuropeptide-S (NPS) regulates autonomic outflow, stress response, and gastrointestinal (GI) motor functions. This study aimed to investigate the effects of NPS on GI dysmotility induced by neonatal maternal separation (MS). METHODS MS was conducted by isolating newborn pups from dams from postnatal day 1 to day 14. In adulthood, rats were also exposed to chronic homotypic stress (CHS). Visceral sensitivity was assessed by colorectal distension-induced abdominal contractions. Gastric emptying (GE) was measured following CHS, whereas fecal output was monitored daily. NPS or NPS receptor (NPSR) antagonist was centrally applied simultaneously with electrocardiography and gastric motility recording. Immunoreactivities for NPS, NPSR, corticotropin-releasing factor (CRF), choline acetyltransferase (ChAT), tyrosine hydroxylase (TH), and c-Fos were assessed by immunohistochemistry. KEY RESULTS NPS alleviated the MS-induced visceral hypersensitivity. Under basal conditions, central exogenous or endogenous NPS had no effect on GE and gastric motility. NPS restored CHS-induced gastric and colonic dysmotility in MS rats while increasing sympatho-vagal balance without affecting vagal outflow. NPSR expression was detected in CRF-producing cells of hypothalamic paraventricular nucleus, and central amygdala, but not in Barrington's nucleus. Moreover, NPSR was present in ChAT-expressing neurons in dorsal motor nucleus of the vagus (DMV), and nucleus ambiguus (NAmb) in addition to the TH-positive neurons in C1/A1, and locus coeruleus (LC). Neurons adjacent to the adrenergic cells in LC were found to produce NPS. NPS administration caused c-Fos expression in C1/A1 cells, while no immunoreactivity was detected in DMV or NAmb. CONCLUSIONS NPS/NPSR system might be a novel target for the treatment of stress-related GI dysmotility.
Collapse
Affiliation(s)
- Mehmet Bülbül
- Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Osman Sinen
- Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
18
|
İNAN S, AÇIKGÖZ Y. The antiepileptic and antidepressant-like effects of dexpanthenol in female Swiss albino mice. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2021. [DOI: 10.33808/clinexphealthsci.865421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Tobinski AM, Rappeneau V. Role of the Neuropeptide S System in Emotionality, Stress Responsiveness and Addiction-Like Behaviours in Rodents: Relevance to Stress-Related Disorders. Pharmaceuticals (Basel) 2021; 14:ph14080780. [PMID: 34451877 PMCID: PMC8400992 DOI: 10.3390/ph14080780] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 12/22/2022] Open
Abstract
The neuropeptide S (NPS) and its receptor (NPSR1) have been extensively studied over the last two decades for their roles in locomotion, arousal/wakefulness and anxiety-related and fear-related behaviours in rodents. However, the possible implications of the NPS/NPSR1 system, especially those of the single nucleotide polymorphism (SNP) rs324981, in stress-related disorders and substance abuse in humans remain unclear. This is possibly due to the fact that preclinical and clinical research studies have remained separated, and a comprehensive description of the role of the NPS/NPSR1 system in stress-relevant and reward-relevant endpoints in humans and rodents is lacking. In this review, we describe the role of the NPS/NPSR1 system in emotionality, stress responsiveness and addiction-like behaviour in rodents. We also summarize the alterations in the NPS/NPSR1 system in individuals with stress-related disorders, as well as the impact of the SNP rs324981 on emotion, stress responses and neural activation in healthy individuals. Moreover, we discuss the therapeutic potential and possible caveats of targeting the NPS/NPSR1 system for the treatment of stress-related disorders. The primary goal of this review is to highlight the importance of studying some rodent behavioural readouts modulated by the NPS/NPSR1 system and relevant to stress-related disorders.
Collapse
|
20
|
Holanda VAD, Didonet JJ, Costa MBB, do Nascimento Rangel AH, da Silva ED, Gavioli EC. Neuropeptide S Receptor as an Innovative Therapeutic Target for Parkinson Disease. Pharmaceuticals (Basel) 2021; 14:ph14080775. [PMID: 34451872 PMCID: PMC8401573 DOI: 10.3390/ph14080775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 11/17/2022] Open
Abstract
Parkinson disease (PD) is a neurodegenerative disease mainly characterized by the loss of nigral dopaminergic neurons in the substantia nigra pars compacta. Patients suffering from PD develop severe motor dysfunctions and a myriad of non-motor symptoms. The treatment mainly consists of increasing central dopaminergic neurotransmission and alleviating motor symptoms, thus promoting severe side effects without modifying the disease’s progress. A growing body of evidence suggests a close relationship between neuropeptide S (NPS) and its receptor (NPSR) system in PD: (i) double immunofluorescence labeling studies showed that NPSR is expressed in the nigral tyrosine hydroxylase (TH)-positive neurons; (ii) central administration of NPS increases spontaneous locomotion in naïve rodents; (iii) central administration of NPS ameliorates motor and nonmotor dysfunctions in animal models of PD; (iv) microdialysis studies showed that NPS stimulates dopamine release in naïve and parkinsonian rodents; (v) central injection of NPS decreases oxidative damage to proteins and lipids in the rodent brain; and, (vi) 7 days of central administration of NPS protects from the progressive loss of nigral TH-positive cells in parkinsonian rats. Taken together, the NPS/NPSR system seems to be an emerging therapeutic strategy for alleviating motor and non-motor dysfunctions of PD and, possibly, for slowing disease progress.
Collapse
Affiliation(s)
- Victor A. D. Holanda
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN 59078-900, Brazil; (V.A.D.H.); (J.J.D.); (M.B.B.C.); (E.D.d.S.J.)
| | - Julia J. Didonet
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN 59078-900, Brazil; (V.A.D.H.); (J.J.D.); (M.B.B.C.); (E.D.d.S.J.)
| | - Manara B. B. Costa
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN 59078-900, Brazil; (V.A.D.H.); (J.J.D.); (M.B.B.C.); (E.D.d.S.J.)
| | | | - Edilson D. da Silva
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN 59078-900, Brazil; (V.A.D.H.); (J.J.D.); (M.B.B.C.); (E.D.d.S.J.)
| | - Elaine C. Gavioli
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN 59078-900, Brazil; (V.A.D.H.); (J.J.D.); (M.B.B.C.); (E.D.d.S.J.)
- Correspondence:
| |
Collapse
|
21
|
Dissociative Effects of Neuropeptide S Receptor Deficiency and Nasal Neuropeptide S Administration on T-Maze Discrimination and Reversal Learning. Pharmaceuticals (Basel) 2021; 14:ph14070643. [PMID: 34358069 PMCID: PMC8308873 DOI: 10.3390/ph14070643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/04/2021] [Accepted: 06/21/2021] [Indexed: 11/17/2022] Open
Abstract
Cognitive flexibility refers to the ability to modify learned behavior in response to changes in the environment. In laboratory rodents, cognitive flexibility can be assessed in reversal learning, i.e., the change of contingencies, for example in T-maze discrimination learning. The present study investigated the role of the neuropeptide S (NPS) system in cognitive flexibility. In the first experiment, mice deficient of NPS receptors (NPSR) were tested in T-maze discrimination and reversal learning. In the second experiment, C57BL/6J mice were tested in the T-maze after nasal administration of NPS. Finally, the effect of nasal NPS on locomotor activity was evaluated. NPSR deficiency positively affected the acquisition of T-maze discrimination but had no effects on reversal learning. Nasal NPS administration facilitated reversal learning and supported an allocentric learning strategy without affecting acquisition of the task or locomotor activity. Taken together, the present data show that the NPS system is able to modulate both acquisition of T-maze discrimination and its reversal learning. However, NPSR deficiency only improved discrimination learning, while nasal NPS administration only improved reversal learning, i.e., cognitive flexibility. These effects, which at first glance appear to be contradictory, could be due to the different roles of the NPS system in the brain regions that are important for learning and cognitive flexibility.
Collapse
|
22
|
Effect of Neuropeptide S Administration on Ultrasonic Vocalizations and Behaviour in Rats with Low vs. High Exploratory Activity. Pharmaceuticals (Basel) 2021; 14:ph14060524. [PMID: 34070724 PMCID: PMC8229755 DOI: 10.3390/ph14060524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/20/2022] Open
Abstract
Neuropeptide S (NPS) is a peptide neurotransmitter that in animal studies promotes wakefulness and arousal with simultaneous anxiety reduction, in some inconsistency with results in humans. We examined the effect of NPS on rat ultrasonic vocalizations (USV) as an index of affective state and on behaviour in novel environments in rats with persistent inter-individual differences in exploratory activity. Adult male Wistar rats were categorised as of high (HE) or low (LE) exploratory activity and NPS was administered intracerebroventricularly (i.c.v.) at a dose of 1.0 nmol/5 µL, after which USVs were recorded in the home-cage and a novel standard housing cage, and behaviour evaluated in exploration/anxiety tests. NPS induced a massive production of long and short 22 kHz USVs in the home cage that continued later in the novel environment; no effect on 50 kHz USVs were found. In LE-rats, the long 22 kHz calls were emitted at lower frequencies and were louder. The effects of NPS on behaviour appeared novelty- and test-dependent. NPS had an anxiolytic-like effect in LE-rats only in the elevated zero-maze, whereas in HE-rats, locomotor activity in the zero-maze and in a novel standard cage was increased. Thus NPS appears as a psychostimulant peptide but with a complex effect on dimensions of affect.
Collapse
|
23
|
Li S, Guo C, Zhang X, Liu X, Mu J, Liu C, Peng Y, Chang M. Self-assembling modified neuropeptide S enhances nose-to-brain penetration and exerts a prolonged anxiolytic-like effect. Biomater Sci 2021; 9:4765-4777. [PMID: 34037635 DOI: 10.1039/d1bm00380a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Anxiety disorders are the most common mental diseases and can greatly disrupt everyday life. Although there has been substantial research on anxiety disorders, novel therapeutics are needed. Neuropeptide S (NPS) is a potential therapeutic candidate owing to its strong anxiolytic activity; however, some disadvantages, such as its poor metabolic stability and inability to cross the blood-brain barrier (BBB), limit its use in the clinic. Herein, inspired by nose-to-brain drug delivery strategies, an endogenous 20-amino-acid-long mNPS peptide was modified by incorporating palmitic acid into its functional Lys12 side chain (M-3), which was expected to facilitate nose-to-brain penetration and exert a prolonged anxiolytic-like effect compared to mNPS. We found that M-3 assembled into nanofibers that retained the bioactivity of NPS and exhibited obvious improvements in metabolic stability. Notably, as expected, self-assembled M-3 was able to penetrate into the brain and exert anxiolytic effects. The elevated plus-maze (EPM) results further revealed that M-3 could produce prolonged anxiolytic-like effects in mice. In vivo imaging studies revealed that self-assembled M-3 could be efficiently transported from the nasal cavity to the brain. Furthermore, when intranasally administered, this molecule exhibited a significantly prolonged anxiolytic-like effect, which further illustrated that this molecule has a potent nose-to-brain penetration in vivo. Overall, this self-assembled nanofiber showed potent nose-to-brain penetration ability and prolonged bioactivity.
Collapse
Affiliation(s)
- Shu Li
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Chen Guo
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Xingjiao Zhang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Xiaojing Liu
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Jing Mu
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Chunxia Liu
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Yali Peng
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Min Chang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
24
|
Si W, Liu X, Pape HC, Reinscheid RK. Neuropeptide S-Mediated Modulation of Prepulse Inhibition Depends on Age, Gender, Stimulus-Timing, and Attention. Pharmaceuticals (Basel) 2021; 14:489. [PMID: 34065431 PMCID: PMC8160819 DOI: 10.3390/ph14050489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Conflicting reports about the role of neuropeptide S (NPS) in animal models of psychotic-like behavior and inconsistent results from human genetic studies seeking potential associations with schizophrenia prompted us to reevaluate the effects of NPS in the prepulse inhibition (PPI) paradigm in mice. Careful examination of NPS receptor (NPSR1) knockout mice at different ages revealed that PPI deficits are only expressed in young male knockout animals (<12 weeks of age), that can be replicated in NPS precursor knockout mice and appear strain-independent, but are absent in female mice. PPI deficits can be aggravated by MK-801 and alleviated by clozapine. Importantly, treatment of wildtype mice with a centrally-active NPSR1 antagonist was able to mimic PPI deficits. PPI impairment in young male NPSR1 and NPS knockout mice may be caused by attentional deficits that are enhanced by increasing interstimulus intervals. Our data reveal a substantial NPS-dependent developmental influence on PPI performance and confirm a significant role of attentional processes for sensory-motor gating. Through its influence on attention and arousal, NPS appears to positively modulate PPI in young animals, whereas compensatory mechanisms may alleviate NPS-dependent deficits in older mice.
Collapse
Affiliation(s)
- Wei Si
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA; (W.S.); (X.L.)
| | - Xiaobin Liu
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA; (W.S.); (X.L.)
| | - Hans-Christian Pape
- Institute of Physiology I, Westfälische-Wilhelms University, 48149 Münster, Germany;
| | - Rainer K. Reinscheid
- Institute of Physiology I, Westfälische-Wilhelms University, 48149 Münster, Germany;
- Institute of Pharmacology and Toxicology, Friedrich-Schiller University, 07747 Jena, Germany
| |
Collapse
|
25
|
Chou Y, Hor CC, Lee MT, Lee H, Guerrini R, Calo G, Chiou L. Stress induces reinstatement of extinguished cocaine conditioned place preference by a sequential signaling via neuropeptide S, orexin, and endocannabinoid. Addict Biol 2021; 26:e12971. [PMID: 33078457 DOI: 10.1111/adb.12971] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022]
Abstract
Neurons containing neuropeptide S (NPS) and orexins are activated during stress. Previously, we reported that orexins released during stress, via orexin OX1 receptors (OX1 Rs), contribute to the reinstatement of cocaine seeking through endocannabinoid/CB1 receptor (CB1 R)-mediated dopaminergic disinhibition in the ventral tegmental area (VTA). Here, we further demonstrated that NPS released during stress is an up-stream activator of this orexin-endocannabinoid cascade in the VTA, leading to the reinstatement of cocaine seeking. Mice were trained to acquire cocaine conditioned place preference (CPP) by context-pairing cocaine injections followed by the extinction training with context-pairing saline injections. Interestingly, the extinguished cocaine CPP in mice was significantly reinstated by intracerebroventricular injection (i.c.v.) of NPS (1 nmol) in a manner prevented by intraperitoneal injection (i.p.) of SHA68 (50 mg/kg), an NPS receptor antagonist. This NPS-induced cocaine reinstatement was prevented by either i.p. or intra-VTA microinjection (i.vta.) of SB-334867 (15 mg/kg, i.p. or 15 nmol, i.vta.) and AM 251 (1.1 mg/kg, i.p. or 30 nmol, i.vta.), antagonists of OX1 Rs and CB1 Rs, respectively. Besides, NPS (1 nmol, i.c.v.) increased the number of c-Fos-containing orexin neurons in the lateral hypothalamus (LH) and increased orexin-A level in the VTA. The latter effect was blocked by SHA68. Furthermore, a 30-min restraint stress in mice reinstated extinguished cocaine CPP and was prevented by SHA68. These results suggest that NPS is released upon stress and subsequently activates LH orexin neurons to release orexins in the VTA. The released orexins then reinstate extinguished cocaine CPP via an OX1 R- and endocannabinoid-CB1 R-mediated signaling in the VTA.
Collapse
Affiliation(s)
- Yu‐Hsien Chou
- Graduate Institute of Pharmacology, College of Medicine National Taiwan University Taipei Taiwan
| | - Chia Chun Hor
- Graduate Institute of Pharmacology, College of Medicine National Taiwan University Taipei Taiwan
| | - Ming Tatt Lee
- Graduate Institute of Pharmacology, College of Medicine National Taiwan University Taipei Taiwan
- Graduate Institute of Brain and Mind Sciences, College of Medicine National Taiwan University Taipei Taiwan
- Faculty of Pharmaceutical Sciences UCSI University Kuala Lumpur Malaysia
| | - Hsin‐Jung Lee
- Graduate Institute of Pharmacology, College of Medicine National Taiwan University Taipei Taiwan
| | - Remo Guerrini
- Department of Chemical and Pharmaceutical Sciences, Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA) University of Ferrara Ferrara Italy
| | - Girolamo Calo
- Section of Pharmacology, Department of Medical Sciences University of Ferrara Ferrara Italy
| | - Lih‐Chu Chiou
- Graduate Institute of Pharmacology, College of Medicine National Taiwan University Taipei Taiwan
- Graduate Institute of Brain and Mind Sciences, College of Medicine National Taiwan University Taipei Taiwan
- Graduate Institute of Acupuncture Sciences China Medical University Taichung Taiwan
| |
Collapse
|
26
|
Reinscheid RK, Ruzza C. Pharmacology, Physiology and Genetics of the Neuropeptide S System. Pharmaceuticals (Basel) 2021; 14:ph14050401. [PMID: 33922620 PMCID: PMC8146834 DOI: 10.3390/ph14050401] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 12/28/2022] Open
Abstract
The Neuropeptide S (NPS) system is a rather ‘young’ transmitter system that was discovered and functionally described less than 20 years ago. This review highlights the progress that has been made in elucidating its pharmacology, anatomical distribution, and functional involvement in a variety of physiological effects, including behavior and immune functions. Early on, genetic variations of the human NPS receptor (NPSR1) have attracted attention and we summarize current hypotheses of genetic linkage with disease and human behaviors. Finally, we review the therapeutic potential of future drugs modulating NPS signaling. This review serves as an introduction to the broad collection of original research papers and reviews from experts in the field that are presented in this Special Issue.
Collapse
Affiliation(s)
- Rainer K. Reinscheid
- Institute of Pharmacology & Toxicology, University Hospital Jena, Friedrich-Schiller University, 07747 Jena, Germany
- Institute of Physiology I, University Hospital Münster, Westfälische-Wilhelms University, 48149 Münster, Germany
- Correspondence: (R.K.R.); (C.R.)
| | - Chiara Ruzza
- Department of Neuroscience and Rehabilitation and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
- Correspondence: (R.K.R.); (C.R.)
| |
Collapse
|
27
|
Chao G, Wang Z, Zhang S. Research on Correlation Between Psychological Factors, Mast Cells, and PAR-2 Signal Pathway in Irritable Bowel syndrome. J Inflamm Res 2021; 14:1427-1436. [PMID: 33883919 PMCID: PMC8055357 DOI: 10.2147/jir.s300513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
PURPOSE The study aimed to explore the level of psychological stress factors, mast cell (MC), and neuropeptide in the occurrence of irritable bowel syndrome (IBS) and the correlation among them, and to identify representative and effective indicators for the pathogenesis and clinical medication development of IBS. SUBJECTS AND METHODS Twenty-eight patients (20-64 years old) with diarrhea-predominant IBS (IBS-D) were included in the IBS-D group and 8 healthy subjects (35-63 years old) were enrolled in the control group. All subjects accepted the colonoscopic biopsies, self-rating depression scale (SDS) and self-rating anxiety scale (SAS) assessment. MC degranulation, neuropeptide S (NPS), neuropeptide Y (NPY), NPY receptor 2 (NPY2R) and Protease-activated receptor 2 (PAR-2) in colon tissues were performed by Strept Avidin-Biot complex (SABC) immunohistochemistry. Enzyme-linked immunosorbent assay (ELISA) detection was used to test the expression of NPS and NPY in peripheral blood plasma and colon tissues. Western blot was applied to examine the level of NPY2R and PAR-2. RESULTS The level of anxiety and depression of patients with IBS-D was more serious than that in the control. The expression of NPS, NPY and NPY2R was down-regulated in the IBS-D. The total MC and tryptase-positive MC increased significantly in the colon tissue of IBS-D and the expression level of PAR-2 was significantly up-regulated. CONCLUSION There has been a close connection among those indicators that the activated MC may up-regulate the function of PAR-2, resulting in the change of neuropeptide (NPS and NPY), successively leading to clinical symptoms and psychological negative changes in the IBS.
Collapse
Affiliation(s)
- Guanqun Chao
- Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, People’s Republic of China
| | - Zhaojun Wang
- The First Clinical Medical College of Zhejiang Chinese Medicine University, Hangzhou, People’s Republic of China
| | - Shuo Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| |
Collapse
|
28
|
Reinscheid RK, Mafessoni F, Lüttjohann A, Jüngling K, Pape HC, Schulz S. Neandertal introgression and accumulation of hypomorphic mutations in the neuropeptide S (NPS) system promote attenuated functionality. Peptides 2021; 138:170506. [PMID: 33556445 DOI: 10.1016/j.peptides.2021.170506] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/14/2021] [Accepted: 02/03/2021] [Indexed: 12/21/2022]
Abstract
The neuropeptide S (NPS) system plays an important role in fear and fear memory processing but has also been associated with allergic and inflammatory diseases. Genes for NPS and its receptor NPSR1 are found in all tetrapods. Compared to non-human primates, several non-synonymous single-nucleotide polymorphisms (SNPs) occur in both human genes that collectively result in functional attenuation, suggesting adaptive mechanisms in a human context. To investigate historic and geographic origins of these hypomorphic mutations and explore genetic signs of selection, we analyzed ancient genomes and worldwide genotype frequencies of four prototypic SNPs in the NPS system. Neandertal and Denisovan genomes contain exclusively ancestral alleles for NPSR1 while all derived alleles occur in ancient genomes of anatomically modern humans, indicating that they arose in modern Homo sapiens. Worldwide genotype frequencies for three hypomorphic NPSR1 SNPs show significant regional homogeneity but follow a gradient towards increasing derived allele frequencies that supports an out-of-Africa scenario. Increased density of high-frequency polymorphisms around the three NPSR1 loci suggests weak or possibly balancing selection. A hypomorphic mutation in the NPS precursor, however, was detected at high frequency in Eurasian Neandertal genomes and shows genetic signatures indicating that it was introgressed into the human gene pool, particularly in Southern Europe, by interbreeding with Neandertals. We discuss potential evolutionary scenarios including behavior and immune-based natural selection.
Collapse
Affiliation(s)
- Rainer K Reinscheid
- Institute of Pharmacology & Toxicology, Friedrich-Schiller-University, Jena, Germany; Institute of Physiology I, Westfälische-Wilhelms-University, Münster, Germany.
| | | | - Annika Lüttjohann
- Institute of Physiology I, Westfälische-Wilhelms-University, Münster, Germany
| | - Kay Jüngling
- Institute of Physiology I, Westfälische-Wilhelms-University, Münster, Germany
| | - Hans-Christian Pape
- Institute of Physiology I, Westfälische-Wilhelms-University, Münster, Germany
| | - Stefan Schulz
- Institute of Pharmacology & Toxicology, Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
29
|
The Neural Network of Neuropeptide S (NPS): Implications in Food Intake and Gastrointestinal Functions. Pharmaceuticals (Basel) 2021; 14:ph14040293. [PMID: 33810221 PMCID: PMC8065993 DOI: 10.3390/ph14040293] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
The Neuropeptide S (NPS), a 20 amino acids peptide, is recognized as the endogenous ligand of a previously orphan G protein-coupled receptor, now termed NPS receptor (NPSR). The limited distribution of the NPS-expressing neurons in few regions of the brainstem is in contrast with the extensive expression of NPSR in the rodent central nervous system, suggesting the involvement of this receptor in several brain functions. In particular, NPS promotes locomotor activity, behavioral arousal, wakefulness, and unexpectedly, at the same time, it exerts anxiolytic-like properties. Intriguingly, the NPS system is implicated in the rewarding properties of drugs of abuse and in the regulation of food intake. Here, we focus on the anorexigenic effect of NPS, centrally injected in different brain areas, in both sated and fasted animals, fed with standard or palatable food, and, in addition, on its influence in the gastrointestinal tract. Further investigations, regarding the role of the NPS/NPSR system and its potential interaction with other neurotransmitters could be useful to understand the mechanisms underlying its action and to develop novel pharmacological tools for the treatment of aberrant feeding patterns and obesity.
Collapse
|
30
|
Webster AN, Cao C, Chowdhury VS, Gilbert ER, Cline MA. The hypothalamic mechanism of neuropeptide S-induced satiety in Japanese quail (Coturnix japonica) involves the paraventricular nucleus and corticotropin-releasing factor. Gen Comp Endocrinol 2020; 299:113558. [PMID: 32707241 DOI: 10.1016/j.ygcen.2020.113558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 01/10/2023]
Abstract
Neuropeptide S (NPS), a 20-amino acid neuropeptide, is produced in the brain and is associated with appetite suppression.Our group was the first to report this anorexigenic effect in birds using chicken as a model, although a hypothalamic molecular mechanism remains to be elucidated. Thus, we designed the present study using Japanese quail(Coturnix japonica).In Experiment 1, quail intracerebroventricularly injected with NPS reduced both food and water intake. In Experiment 2, food-restricted quail injected with NPS displayed a reduction in water intake.In Experiment 3, NPS-injected quail reduced their feeding and exploratory pecks.In Experiment 4, we quantified the number of cells expressing the early intermediate gene product c-Fos (as a marker of neuronal activation) in appetite associated hypothalamic nuclei and found that immunoreactivity was increased in the paraventricular nucleus (PVN). In Experiment 5, we utilized real-time PCR to screen for neuropeptide changes within the PVN of NPS-injected quail. Mesotocin and corticotropin-releasing factor (CRF) mRNAs increased in response to NPS injection. In Experiment 6, co-injection of astressin, a CRF receptor antagonist, was sufficient to block the food intake-suppressive effects of NPS, but in Experiment 7, co-injection of an oxytocin receptor antagonist was not sufficient to block the food intake-suppressive effects of NPS. Collectively, results support that NPS induces an anorexigenic response in Japanese quail that is mediated within the PVN and is associated with CRF.
Collapse
Affiliation(s)
- Addison N Webster
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Chang Cao
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Vishwajit S Chowdhury
- Division for Experimental Natural Science, Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Elizabeth R Gilbert
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Mark A Cline
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
31
|
de Santana Souza L, de Siqueira PA, Fernandes A, Silva Martins R, Cussa Kubrusly RC, Paes-de-Carvalho R, Cunha RA, Dos Santos-Rodrigues A, Pandolfo P. Role of Neuropeptide S on Behavioural and Neurochemical Changes of an Animal Model of Attention-Deficit/Hyperactivity Disorder. Neuroscience 2020; 448:140-148. [PMID: 32976984 DOI: 10.1016/j.neuroscience.2020.09.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 09/06/2020] [Accepted: 09/10/2020] [Indexed: 10/23/2022]
Abstract
Neuropeptide S (NPS) is a recently discovered peptide signalling through its receptor NPSR, which is expressed throughout the brain. Since NPSR activation increases dopaminergic transmission, we now tested if NPSR modulates behavioural and neurochemical alterations displayed by an animal model of attention-deficit/hyperactivity disorder (ADHD), Spontaneous Hypertensive Rats (SHR), compared to its control strain, Wistar Kyoto rats (WKY). NPS (0.1 and 1 nmol, intracerebroventricularly (icv)) did not modify the performance in the open field test in both strains; however, NPSR antagonism with [tBu-d-Gly5]NPS (3 nmol, icv) increased, per se, the total distance travelled by WKY. In the elevated plus-maze, NPS (1 nmol, icv) increased the percentage of entries in the open arms (%EO) only in WKY, an effect prevented by pretreatment with [tBu-d-Gly5]NPS (3 nmol, icv), which decreased per se the %EO in WKY and increased their number of entries in the closed arms. Immunoblotting of frontal cortical extracts showed no differences of NPSR density, although SHR had a lower NPS content than WKY. SHR showed higher activity of dopamine uptake than WKY, and NPS (1 nmol, icv) did not change this profile. Overall, the present work shows that the pattern of functioning of the NPS system is distinct in WKY and SHR, suggesting that this system may contribute to the pathophysiology of ADHD.
Collapse
Affiliation(s)
| | | | - Arlete Fernandes
- Department of Physiology and Pharmacology, Universidade Federal Fluminense, Niterói, Brazil
| | - Robertta Silva Martins
- Department of Physiology and Pharmacology, Universidade Federal Fluminense, Niterói, Brazil
| | | | | | - Rodrigo A Cunha
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | | | - Pablo Pandolfo
- Department of Neurobiology, Universidade Federal Fluminense, Niterói, Brazil.
| |
Collapse
|
32
|
Siminski N, Böhme S, Zeller JBM, Becker MPI, Bruchmann M, Hofmann D, Breuer F, Mühlberger A, Schiele MA, Weber H, Schartner C, Deckert J, Pauli P, Reif A, Domschke K, Straube T, Herrmann MJ. BNST and amygdala activation to threat: Effects of temporal predictability and threat mode. Behav Brain Res 2020; 396:112883. [PMID: 32860830 DOI: 10.1016/j.bbr.2020.112883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/14/2020] [Accepted: 08/21/2020] [Indexed: 12/28/2022]
Abstract
Recent animal and human studies highlight the uncertainty about the onset of an aversive event as a crucial factor for the involvement of the centromedial amygdala (CM) and bed nucleus of the stria terminalis (BNST) activity. However, studies investigating temporally predictable or unpredictable threat anticipation and confrontation processes are rare. Furthermore, the few existing fMRI studies analyzing temporally predictable and unpredictable threat processes used small sample sizes or limited fMRI paradigms. Therefore, we measured functional brain activity in 109 predominantly female healthy participants during a temporally predictable-unpredictable threat paradigm, which aimed to solve limited aspects of recent studies. Results showed higher BNST activity compared to the CM during the cue indicating that the upcoming confrontation is aversive relative to the cue indicating an upcoming neutral confrontation. Both the CM and BNST showed higher activity during the confrontation with unpredictable and aversive stimuli, but the reaction to aversive confrontation relative to neutral confrontation was stronger in the CM compared to the BNST. Additional modulation analyses by NPSR1 rs324981 genotype revealed higher BNST activity relative to the CM in unpredictable anticipation relative to predictable anticipation in T-carriers compared to AA carriers. Our results indicate that during the confrontation with aversive or neutral stimuli, temporal unpredictability modulates CM and BNST activity. Further, there is a differential activity concerning threat processing, as BNST is more involved when focussing on fear-related anticipation processes and CM is more involved when focussing on threat confrontation.
Collapse
Affiliation(s)
- N Siminski
- Center of Mental Health, Dept. of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - S Böhme
- Department of Clinical Psychology and Psychotherapy, Institute of Psychology, University of Regensburg, Regensburg, Germany; Department of Clinical Psychology and Psychotherapy, University of Erlangen, Erlangen, Germany
| | - J B M Zeller
- Center of Mental Health, Dept. of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - M P I Becker
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Muenster, Germany
| | - M Bruchmann
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Muenster, Germany
| | - D Hofmann
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Muenster, Germany
| | - F Breuer
- Fraunhofer Institute for Integrated Circuits (IIS), Development Center for X-ray Technology (EZRT), Wuerzburg, Germany
| | - A Mühlberger
- Department of Clinical Psychology and Psychotherapy, Institute of Psychology, University of Regensburg, Regensburg, Germany
| | - M A Schiele
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - H Weber
- Center of Mental Health, Dept. of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - C Schartner
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - J Deckert
- Center of Mental Health, Dept. of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - P Pauli
- Department of Psychology (Biological Psychology, Clinical Psychology, and Psychotherapy), University of Wuerzburg, Wuerzburg, Germany
| | - A Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - K Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Basics in Neuro Modulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - T Straube
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Muenster, Germany
| | - M J Herrmann
- Center of Mental Health, Dept. of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
33
|
Chauveau F, Claverie D, Lardant E, Varin C, Hardy E, Walter A, Canini F, Rouach N, Rancillac A. Neuropeptide S promotes wakefulness through the inhibition of sleep-promoting ventrolateral preoptic nucleus neurons. Sleep 2020; 43:5547657. [PMID: 31403694 DOI: 10.1093/sleep/zsz189] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 06/26/2019] [Indexed: 12/22/2022] Open
Abstract
STUDY OBJECTIVES The regulation of sleep-wake cycles is crucial for the brain's health and cognitive skills. Among the various substances known to control behavioral states, intraventricular injection of neuropeptide S (NPS) has already been shown to promote wakefulness. However, the NPS signaling pathway remains elusive. In this study, we characterized the effects of NPS in the ventrolateral preoptic nucleus (VLPO) of the hypothalamus, one of the major brain structures regulating non-rapid eye movement (NREM) sleep. METHODS We combined polysomnographic recordings, vascular reactivity, and patch-clamp recordings in mice VLPO to determine the NPS mode of action. RESULTS We demonstrated that a local infusion of NPS bilaterally into the anterior hypothalamus (which includes the VLPO) significantly increases awakening and specifically decreases NREM sleep. Furthermore, we established that NPS application on acute brain slices induces strong and reversible tetrodotoxin (TTX)-sensitive constriction of blood vessels in the VLPO. This effect strongly suggests that the local neuronal network is downregulated in the presence of NPS. At the cellular level, we revealed by electrophysiological recordings and in situ hybridization that NPSR mRNAs are only expressed by non-Gal local GABAergic neurons, which are depolarized by the application of NPS. Simultaneously, we showed that NPS hyperpolarizes sleep-promoting neurons, which is associated with an increased frequency in their spontaneous IPSC inputs. CONCLUSION Altogether, our data reveal that NPS controls local neuronal activity in the VLPO. Following the depolarization of local GABAergic neurons, NPS indirectly provokes feed-forward inhibition onto sleep-promoting neurons, which translates into a decrease in NREM sleep to favor arousal.
Collapse
Affiliation(s)
- Frédéric Chauveau
- IRBA (Armed Biomedical Research Institute), Brétigny-sur-Orge, France
| | - Damien Claverie
- IRBA (Armed Biomedical Research Institute), Brétigny-sur-Orge, France
| | - Emma Lardant
- IRBA (Armed Biomedical Research Institute), Brétigny-sur-Orge, France
| | - Christophe Varin
- Brain Plasticity Unit, CNRS, UMR 8249, ESPCI-ParisTech, PSL Research University, Paris, France.,Laboratory of Neurophysiology, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Eléonore Hardy
- Neuroglial Interactions in Cerebral Physiopathology, CIRB, Collège de France, CNRS UMR 7241/Inserm U1050, Labex Memolife, PSL Research University, Paris, France
| | - Augustin Walter
- Neuroglial Interactions in Cerebral Physiopathology, CIRB, Collège de France, CNRS UMR 7241/Inserm U1050, Labex Memolife, PSL Research University, Paris, France
| | - Frédéric Canini
- IRBA (Armed Biomedical Research Institute), Brétigny-sur-Orge, France.,Ecole du Val de Grâce, Laveran, Paris
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiopathology, CIRB, Collège de France, CNRS UMR 7241/Inserm U1050, Labex Memolife, PSL Research University, Paris, France
| | - Armelle Rancillac
- Brain Plasticity Unit, CNRS, UMR 8249, ESPCI-ParisTech, PSL Research University, Paris, France.,Neuroglial Interactions in Cerebral Physiopathology, CIRB, Collège de France, CNRS UMR 7241/Inserm U1050, Labex Memolife, PSL Research University, Paris, France
| |
Collapse
|
34
|
Du J, Fang J, Xu Z, Xiang X, Wang S, Sun H, Shao X, Jiang Y, Liu B, Fang J. Electroacupuncture suppresses the pain and pain-related anxiety of chronic inflammation in rats by increasing the expression of the NPS/NPSR system in the ACC. Brain Res 2020; 1733:146719. [PMID: 32044336 DOI: 10.1016/j.brainres.2020.146719] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 01/30/2020] [Accepted: 02/07/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND The neuropeptide S/Neuropeptide S receptor (NPS/NPSR) system is involved in the regulation of anxiety in rodents. Chronic inflammation can induce anxiety. Our lab has observed that electroacupuncture (EA) has a beneficial effect on chronic inflammatory pain and pain-related anxiety; however, the mechanism should be further clarified. In the present study, we used an inflammatory pain model to investigate the role of the NPS/NPSR system in the anterior cingulate cortex (ACC) in the analgesic and antianxiety effects of EA. RESULTS In an inflammatory pain model, the paw withdrawal thresholds (PWTs) were decreased, pain-related anxiety-like behaviors were induced, and the ipsilateral protein expression of NPS and NPSR was decreased in the ACC. EA stimulation increased the PWTs, reduced pain-related anxiety-like behavior, and enhanced the ipsilateral protein expression of NPS and NPSR in the ACC. NPS microinjection increased the PWTs and decreased pain-related anxiety-like behaviors. Furthermore, an NPSR inhibitor combined with EA reversed the effect of EA on the PWTs and pain-related anxiety-like behaviors. CONCLUSIONS Our results suggest that EA suppresses pain and pain-related anxiety-like behavior of chronic inflammation in rats by increasing the expression of the NPS/NPSR system in the ACC.
Collapse
Affiliation(s)
- Junying Du
- Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Junfan Fang
- Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Zitong Xu
- Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Xuaner Xiang
- Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Sisi Wang
- Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Haiju Sun
- Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Xiaomei Shao
- Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Yongliang Jiang
- Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Boyi Liu
- Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Jianqiao Fang
- Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China.
| |
Collapse
|
35
|
Lee MT, Chiu YT, Chiu YC, Hor CC, Lee HJ, Guerrini R, Calo G, Chiou LC. Neuropeptide S-initiated sequential cascade mediated by OX 1, NK 1, mGlu 5 and CB 1 receptors: a pivotal role in stress-induced analgesia. J Biomed Sci 2020; 27:7. [PMID: 31915019 PMCID: PMC6950992 DOI: 10.1186/s12929-019-0590-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/18/2019] [Indexed: 02/03/2023] Open
Abstract
Background Stress-induced analgesia (SIA) is an evolutionarily conserved phenomenon during stress. Neuropeptide S (NPS), orexins, substance P, glutamate and endocannabinoids are known to be involved in stress and/or SIA, however their causal links remain unclear. Here, we reveal an unprecedented sequential cascade involving these mediators in the lateral hypothalamus (LH) and ventrolateral periaqueductal gray (vlPAG) using a restraint stress-induced SIA model. Methods Male C57BL/6 mice of 8–12 week-old were subjected to intra-cerebroventricular (i.c.v.) and/or intra-vlPAG (i.pag.) microinjection of NPS, orexin-A or substance P alone or in combination with selective antagonists of NPS receptors (NPSRs), OX1 receptors (OX1Rs), NK1 receptors (NK1Rs), mGlu5 receptors (mGlu5Rs) and CB1 receptors (CB1Rs), respectively. Antinociceptive effects of these mediators were evaluated via the hot-plate test. SIA in mice was induced by a 30-min restraint stress. NPS levels in the LH and substance P levels in vlPAG homogenates were compared in restrained and unrestrained mice. Results NPS (i.c.v., but not i.pag.) induced antinociception. This effect was prevented by i.c.v. blockade of NPSRs. Substance P (i.pag.) and orexin-A (i.pag.) also induced antinociception. Substance P (i.pag.)-induced antinociception was prevented by i.pag. Blockade of NK1Rs, mGlu5Rs or CB1Rs. Orexin-A (i.pag.)-induced antinociception has been shown previously to be prevented by i.pag. blockade of OX1Rs or CB1Rs, and here was prevented by NK1R or mGlu5R antagonist (i.pag.). NPS (i.c.v.)-induced antinociception was prevented by i.pag. blockade of OX1Rs, NK1Rs, mGlu5Rs or CB1Rs. SIA has been previously shown to be prevented by i.pag. blockade of OX1Rs or CB1Rs. Here, we found that SIA was also prevented by i.c.v. blockade of NPSRs or i.pag. blockade of NK1Rs or mGlu5Rs. Restrained mice had higher levels of NPS in the LH and substance P in the vlPAG than unrestrained mice. Conclusions These results suggest that, during stress, NPS is released and activates LH orexin neurons via NPSRs, releasing orexins in the vlPAG. Orexins then activate OX1Rs on substance P-containing neurons in the vlPAG to release substance P that subsequently. Activates NK1Rs on glutamatergic neurons to release glutamate. Glutamate then activates perisynaptic mGlu5Rs to initiate the endocannabinoid retrograde inhibition of GABAergic transmission in the vlPAG, leading to analgesia.
Collapse
Affiliation(s)
- Ming Tatt Lee
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan.,Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan.,Faculty of Pharmaceutical Sciences, UCSI University, 56000, Kuala Lumpur, Malaysia
| | - Yu-Ting Chiu
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Yu-Chun Chiu
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Chia Chun Hor
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Hsin-Jung Lee
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Remo Guerrini
- Department of Chemical and Pharmaceutical Sciences, Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), Ferrara, Italy
| | - Girolamo Calo
- Department of Medical Sciences and National Institute of Neurosciences, Section of Pharmacology, University of Ferrara, 44121, Ferrara, Italy
| | - Lih-Chu Chiou
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan. .,Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan. .,Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan. .,Graduate Institute of Acupuncture Science, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
36
|
Kreutzmann JC, Khalil R, Köhler JC, Mayer D, Florido A, Nadal R, Andero R, Fendt M. Neuropeptide‐S‐receptor deficiency affects sex‐specific modulation of safety learning by pre‐exposure to electric stimuli. GENES BRAIN AND BEHAVIOR 2020; 19:e12621. [DOI: 10.1111/gbb.12621] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/28/2019] [Accepted: 10/22/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Judith C. Kreutzmann
- Institute for Pharmacology & ToxicologyOtto‐von‐Guericke University Magdeburg Magdeburg Germany
- Department of Systems Physiology of LearningLeibniz Institute for Neurobiology Magdeburg Germany
| | - Radwa Khalil
- Institute for Pharmacology & ToxicologyOtto‐von‐Guericke University Magdeburg Magdeburg Germany
| | - Jana C. Köhler
- Institute of PhysiologyOtto‐von‐Guericke University Magdeburg Magdeburg Germany
- Center of Behavioral Brain SciencesOtto‐von‐Guericke University Magdeburg Magdeburg Germany
| | - Dana Mayer
- Institute for Pharmacology & ToxicologyOtto‐von‐Guericke University Magdeburg Magdeburg Germany
| | - Antonio Florido
- Institut de NeurocièncesUniversitat Autònoma de Barcelona Bellaterra Spain
| | - Roser Nadal
- Institut de NeurocièncesUniversitat Autònoma de Barcelona Bellaterra Spain
- CIBERSAMInstituto de Salud Carlos III, Universitat Autònoma de Barcelona Bellaterra Spain
- Department of Psychobiology and Methodology in Health SciencesUniversitat Autònoma de Barcelona Bellaterra Spain
| | - Raül Andero
- Institut de NeurocièncesUniversitat Autònoma de Barcelona Bellaterra Spain
- CIBERSAMInstituto de Salud Carlos III, Universitat Autònoma de Barcelona Bellaterra Spain
- Department of Psychobiology and Methodology in Health SciencesUniversitat Autònoma de Barcelona Bellaterra Spain
| | - Markus Fendt
- Institute for Pharmacology & ToxicologyOtto‐von‐Guericke University Magdeburg Magdeburg Germany
- Center of Behavioral Brain SciencesOtto‐von‐Guericke University Magdeburg Magdeburg Germany
| |
Collapse
|
37
|
Tillmann S, Skibdal HE, Christiansen SH, Gøtzsche CR, Hassan M, Mathé AA, Wegener G, Woldbye DPD. Sustained overexpression of neuropeptide S in the amygdala reduces anxiety-like behavior in rats. Behav Brain Res 2019; 367:28-34. [PMID: 30914309 DOI: 10.1016/j.bbr.2019.03.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 10/27/2022]
Abstract
Neuropeptide S (NPS) has shown anxiolytic-like effects in rodents after acute administration, but its long-term effects remain unknown. Gene therapy enables the targeted delivery of DNA to cell nuclei, and recombinant adeno-associated viral (rAAV) vectors have been identified as suitable tools for stable overexpression. Thus, to explore the effects of long-term expression of NPS, the present study examined anxiety- and depressive-like effects after rAAV-mediated NPS overexpression in the rat amygdala. Compared to rats injected with an empty control vector (rAAV-Empty), rAAV-NPS treatment was associated with reduced anxiety-like behavior in the elevated plus maze and light-dark box, but did not affect depressive-like behavior in the forced swim test. Importantly, rAAV-NPS did not cause confounding effects on locomotion or bodyweight as opposed to currently used anxiolytic drugs. Immunohistochemical stainings revealed NPS-positive cells in the central and basolateral region of the amygdala in rAAV-NPS but not rAAV-Empty rats, indicating successful transduction. Our study provides novel evidence for sustained anxiolytic-like properties of NPS by transgenic overexpression. These data suggest that rAAV-NPS application deserves further attention as a potential treatment strategy for anxiety in humans.
Collapse
Affiliation(s)
- Sandra Tillmann
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Heidi E Skibdal
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Laboratory of Neural Plasticity, Institute of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Søren H Christiansen
- Laboratory of Neural Plasticity, Institute of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Casper R Gøtzsche
- Laboratory of Neural Plasticity, Institute of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Moustapha Hassan
- Department of Laboratory Medicine (LABMED), Karolinska Institutet, Huddinge, Sweden
| | - Aleksander A Mathé
- Section of Psychiatry, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Clinical Medicine, AUGUST Centre, Aarhus University, Risskov, Denmark.
| | - David P D Woldbye
- Laboratory of Neural Plasticity, Institute of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
38
|
Bülbül M, Sinen O, Özkan A, Aslan MA, Ağar A. Central neuropeptide-S treatment improves neurofunctions of 6-OHDA-induced Parkinsonian rats. Exp Neurol 2019; 317:78-86. [PMID: 30825442 DOI: 10.1016/j.expneurol.2019.02.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/12/2019] [Accepted: 02/26/2019] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is characterized by degeneration of the dopaminergic neurons in substantia nigra (SN). The motor symptoms of PD include tremor, rigidity, bradykinesia and postural impairment. In rodents, central administration of neuropeptide-S (NPS) has been shown to induce locomotor activity, dopamine release and neuronal survival by decreasing lipid peroxidation, additionally, the NPS receptor (NPSR) was detected in SN. Accumulating findings suggest that central NPS may ameliorate the parkinsonian symptoms, however, this has been explored incompletely due to the scarcity of experimental studies. Therefore, the present study was designed to test whether central NPS treatment exerts protective and/or alleviative effects on 6-OHDA-induced rat experimental PD model. Adult male Wistar rats received acute (alleviate; 10 nmol, icv) or chronic (protective; 1 nmol, icv for 7 days) NPS treatment following the central injection of 6-OHDA in medial forebrain bundle. Motor performance tests and in vivo nigral microdialysis were performed before and 7 days after the central 6-OHDA injection. The immunoreactivities for tyrosine hydroxylase (TH), NPSR, 4-hydroxynonenal (4-HNE) and c-Fos were detected by immunohistochemistry in frozen SN sections. Our double immunofluorescence labeling studies demonstrated that NPSR is present in the nigral TH-positive neurons. Central NPS injection caused a remarkable c-Fos expression in SN; whereas, no change was observed following vehicle injection. In both chronic and acute treatment groups, the 6-OHDA-induced motor dysfunction and impaired nigral dopamine release were improved significantly. However, only chronic, but not acute treatment restored the loss of nigral TH-positive cells, while decreasing the 4-HNE immunoreactivity in SN. Our findings demonstrate that central NPS treatment not only exerts a neuroprotective action on nigral dopaminergic neurons, it also improves the striatal dopaminergic signaling. Therefore, the present study candidates the NPSR agonism as a novel therapeutic approach for PD treatment.
Collapse
Affiliation(s)
- Mehmet Bülbül
- Faculty of Medicine, Department of Physiology, Akdeniz University, Antalya, Turkey
| | - Osman Sinen
- Faculty of Medicine, Department of Physiology, Akdeniz University, Antalya, Turkey
| | - Ayşe Özkan
- Faculty of Medicine, Department of Physiology, Akdeniz University, Antalya, Turkey
| | - Mutay Aydın Aslan
- Faculty of Medicine, Department of Medical Biochemistry, Akdeniz University, Antalya, Turkey
| | - Aysel Ağar
- Faculty of Medicine, Department of Physiology, Akdeniz University, Antalya, Turkey.
| |
Collapse
|
39
|
Walia V, Garg C, Garg M. Nitrergic signaling modulation by ascorbic acid treatment is responsible for anxiolysis in mouse model of anxiety. Behav Brain Res 2019; 364:85-98. [PMID: 30738102 DOI: 10.1016/j.bbr.2019.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/16/2019] [Accepted: 02/04/2019] [Indexed: 10/27/2022]
Abstract
The present study was designed to investigate the effect of ascorbic acid (AA) treatment on the anxiety related behavioral and neurochemical alterations. AA (50, 100 and 200 mg/kg, i.p.) was administered to the mice and anxiety related behavior and levels of glutamate and nitrite in the brain of mice were determined. The results obtained revealed that the administration of AA (100 mg/kg, i.p.) significantly reduced the anxiety related behavior and the levels of nitrite in the brain of mice. Nitrergic interactions were further determined by the pretreatment of mice with nitric oxide (NO) modulator and AA treatment followed by behavioral and neurochemical measurements. The results obtained suggested that NO inhibition potentiated the anxiolytic like activity of AA in mice. It was also observed that the glutamate and nitrite level in the brain of mice were significantly reduced by the NO inhibitor pretreatment. Thus, the present study demonstrated the possible nitrergic pathways modulation in the anxiolytic like activity of AA in mice.
Collapse
Affiliation(s)
- Vaibhav Walia
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak-124001, Haryana, India.
| | - Chanchal Garg
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak-124001, Haryana, India.
| | - Munish Garg
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak-124001, Haryana, India.
| |
Collapse
|
40
|
Zhang ZR, Tao YX. Physiology, pharmacology, and pathophysiology of neuropeptide S receptor. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 161:125-148. [PMID: 30711025 DOI: 10.1016/bs.pmbts.2018.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Neuropeptide S receptor 1 (NPSR1), originally named G protein-coupled receptor 154 (GPR154), was deorphanized in 2002 with neuropeptide S identified as the endogenous ligand. NPSR1 is primarily expressed in bronchus, brain as well as immune cells. It regulates multiple physiological processes, including immunoregulation, locomotor activity, anxiety, arousal, learning and memory, and food intake and energy balance. SNPs of NPSR1 are significantly associated with several diseases, including asthma, anxiolytic and arousal disorders, and rheumatoid arthritis. This chapter will summarize studies on NPSR1, including its molecular structure, tissue distribution, physiology, pharmacology, and pathophysiology.
Collapse
Affiliation(s)
- Zheng-Rui Zhang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States; Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States; Center for Neuroscience Initiative, Auburn University, Auburn, AL, United States.
| |
Collapse
|
41
|
Blough B, Namjoshi O. Small Molecule Neuropeptide S and Melanocortin 4 Receptor Ligands as Potential Treatments for Substance Use Disorders. Handb Exp Pharmacol 2019; 258:61-87. [PMID: 31628605 DOI: 10.1007/164_2019_313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There is a vital need for novel approaches and biological targets for drug discovery and development. Treatment strategies for substance use disorders (SUDs) to date have been mostly ineffective other than substitution-like therapeutics. Two such targets are the peptide G-protein-coupled receptors neuropeptide S (NPS) and melanocortin 4 (MC4). Preclinical evidence suggests that antagonists, inverse agonists, or negative allosteric modulators of these receptors might be novel therapeutics for SUDs. NPS is a relatively unexplored receptor with high potential for treating SUD. MC4 has a strong link to early-onset obesity, and emerging evidence suggests significant overlap between food-maintained and drug-maintained behaviors making MC4 an intriguing target for SUD. This chapter provides an overview of the literature in relation to the roles of NPS and MC4 in drug-seeking behaviors and then provides a medicinal chemistry-based survey of the small molecule ligands for each receptor.
Collapse
Affiliation(s)
- Bruce Blough
- Center for Drug Discovery, RTI International, Research Triangle Park, NC, USA.
| | - Ojas Namjoshi
- Center for Drug Discovery, RTI International, Research Triangle Park, NC, USA
| |
Collapse
|
42
|
Greenwald MK. Anti-stress neuropharmacological mechanisms and targets for addiction treatment: A translational framework. Neurobiol Stress 2018; 9:84-104. [PMID: 30238023 PMCID: PMC6138948 DOI: 10.1016/j.ynstr.2018.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/30/2018] [Accepted: 08/10/2018] [Indexed: 12/18/2022] Open
Abstract
Stress-related substance use is a major challenge for treating substance use disorders. This selective review focuses on emerging pharmacotherapies with potential for reducing stress-potentiated seeking and consumption of nicotine, alcohol, marijuana, cocaine, and opioids (i.e., key phenotypes for the most commonly abused substances). I evaluate neuropharmacological mechanisms in experimental models of drug-maintenance and relapse, which translate more readily to individuals presenting for treatment (who have initiated and progressed). An affective/motivational systems model (three dimensions: valence, arousal, control) is mapped onto a systems biology of addiction approach for addressing this problem. Based on quality of evidence to date, promising first-tier neurochemical receptor targets include: noradrenergic (α1 and β antagonist, α2 agonist), kappa-opioid antagonist, nociceptin antagonist, orexin-1 antagonist, and endocannabinoid modulation (e.g., cannabidiol, FAAH inhibition); second-tier candidates may include corticotropin releasing factor-1 antagonists, serotonergic agents (e.g., 5-HT reuptake inhibitors, 5-HT3 antagonists), glutamatergic agents (e.g., mGluR2/3 agonist/positive allosteric modulator, mGluR5 antagonist/negative allosteric modulator), GABA-promoters (e.g., pregabalin, tiagabine), vasopressin 1b antagonist, NK-1 antagonist, and PPAR-γ agonist (e.g., pioglitazone). To address affective/motivational mechanisms of stress-related substance use, it may be advisable to combine agents with actions at complementary targets for greater efficacy but systematic studies are lacking except for interactions with the noradrenergic system. I note clinically-relevant factors that could mediate/moderate the efficacy of anti-stress therapeutics and identify research gaps that should be pursued. Finally, progress in developing anti-stress medications will depend on use of reliable CNS biomarkers to validate exposure-response relationships.
Collapse
Affiliation(s)
- Mark K. Greenwald
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| |
Collapse
|
43
|
He Q, Shen Z, Ren L, Wang X, Qian M, Zhu J, Shen X. Association of NPSR1 rs324981 polymorphism and treatment response to antidepressants in Chinese Han population with generalized anxiety disorder. Biochem Biophys Res Commun 2018; 504:137-142. [PMID: 30190127 DOI: 10.1016/j.bbrc.2018.08.145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 08/24/2018] [Indexed: 11/16/2022]
Abstract
In previous studies, neuropeptide S (NPS) and its cognate receptor (NPSR) have been involved in the pathogenesis of anxiety disorders in previous studies. Here, we aimed to investigate the association of NPSR1 polymorphism with generalized anxiety disorder (GAD) and its treatment response in Chinese Han population. Three hundred and thirty seven patients and one hundred and seventy seven healthy controls were involved in our study for 8 weeks. Further, Hamilton Anxiety Scale (HAMA) was used to assess anxiety symptom at baseline and the 1st, 2nd, 4th, 8th week. And all participants were genotyped for NPSR1 (rs324981) variants by polymerase chain reaction. Using Repeated-measures analysis, it showed significant reduction on HAMA scores in patients treated with escitalopram (F = 1.03, P = 0.362) and venlafaxine (F = 0.27, P = 0.763) respectively through 8 weeks treatment. Additionally, patients with AA and TT homozygous genotypes treated with venlafaxine XR had a higher reduction of HAMA scores compared to AT heterozygotic carriers (F = 4.18, P = 0.004), while no significant differences were found in patients treated with escitalopram (F = 1.05, P = 0.383). Thus, our study provides preliminary evidence that NPSR1 AA and TT homozygous genotypes have better treatment responses to venlafaxine XR in Chinese GAD patients, but not to escitalopram. Further studies are needed to verify the observation.
Collapse
Affiliation(s)
- Qianqian He
- Department of Neurosis and Psychosomatic Diseases, Huzhou 3rd Hospital, Huzhou, Zhejiang, 313000, PR China.
| | - Zhongxia Shen
- Department of Neurosis and Psychosomatic Diseases, Huzhou 3rd Hospital, Huzhou, Zhejiang, 313000, PR China.
| | - Lie Ren
- Department of Neurosis and Psychosomatic Diseases, Huzhou 3rd Hospital, Huzhou, Zhejiang, 313000, PR China.
| | - Xing Wang
- Department of Neurosis and Psychosomatic Diseases, Huzhou 3rd Hospital, Huzhou, Zhejiang, 313000, PR China.
| | - Mincai Qian
- Department of Neurosis and Psychosomatic Diseases, Huzhou 3rd Hospital, Huzhou, Zhejiang, 313000, PR China.
| | - Jianying Zhu
- Department of Radiology, Huzhou 3rd Hospital, Huzhou, 313000, PR China.
| | - Xinhua Shen
- Department of Neurosis and Psychosomatic Diseases, Huzhou 3rd Hospital, Huzhou, Zhejiang, 313000, PR China.
| |
Collapse
|
44
|
Grund T, Neumann ID. Brain neuropeptide S: via GPCR activation to a powerful neuromodulator of socio-emotional behaviors. Cell Tissue Res 2018; 375:123-132. [PMID: 30112573 DOI: 10.1007/s00441-018-2902-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/21/2018] [Indexed: 12/19/2022]
Abstract
Neuropeptide S (NPS) has attracted the attention of the scientific community due to its potent anxiolytic-like and fear-attenuating effects studied in rodents. Therefore, NPS might represent a treatment option for neuropsychiatric disorders, such as anxiety disorders, even more so as single nucleotide polymorphisms in the human NPS receptor gene have been associated with increased anxiety traits that contribute to the pathogenesis of fear- and anxiety-related disorders. However, the signaling mechanisms underlying the behavioral effects of NPS and the interaction with other brain neuropeptides are still rather unknown. To illuminate how NPS modulates the expression of selected emotional and social behaviors, the present review focuses on neuroanatomical and electrophysiological studies, as well as intracellular signaling mechanisms following NPS receptor stimulation in rodents. We will also discuss interactions of the NPS system with two well-described neuropeptides, namely corticotropin-releasing factor and oxytocin, which may contribute to the fear- and anxiety-reducing effects.
Collapse
Affiliation(s)
- Thomas Grund
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, 93040, Regensburg, Germany
| | - Inga D Neumann
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, 93040, Regensburg, Germany.
| |
Collapse
|
45
|
Grund T, Neumann ID. Neuropeptide S Induces Acute Anxiolysis by Phospholipase C-Dependent Signaling within the Medial Amygdala. Neuropsychopharmacology 2018; 43:1156-1163. [PMID: 28805209 PMCID: PMC5854792 DOI: 10.1038/npp.2017.169] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 08/04/2017] [Accepted: 08/07/2017] [Indexed: 12/11/2022]
Abstract
Neuropeptide S (NPS) is an important anxiolytic substance of the brain. However, the signaling pathways downstream of NPS receptor (NPSR) activation, underlying the behavioral effect of NPS, remain largely unknown. Here, we show that bilateral microinfusion of NPS (0.2 nmol/0.5 μl) into the medial amygdala (MeA) of male adult Wistar rats reduced anxiety-related behavior on both the elevated plus-maze and the open field. Moreover, as shown in amygdala tissue micropunches intracerebroventricular infusion of NPS (1 nmol/5 μl) (1) evoked phosphorylation and synthesis of CaMKIIα in relation to reference protein β-tubulin representing Ca2+ influx, and (2) induced phosphorylation of mitogen-activated protein kinase ERK1/2. The NPS-induced anxiolysis was prevented by local inhibition of phospholipase C signaling using U73122 (0.5 nmol/0.5 μl) in the MeA, indicating the behavioral relevance of this pathway. Conversely, local pharmacological blockade of adenylyl cyclase signaling using 2',5'-dideoxyadenosine (12.5 nmol/0.5 μl) failed to inhibit the anxiolytic effect of NPS infused into the MeA. Hence, NPS promotes acute anxiolysis within the MeA dependent on NPSR-mediated phospholipase C signaling. Taken together, our study extends the knowledge about the intracellular signaling mechanisms underlying the potent anxiolytic profile of NPS.
Collapse
Affiliation(s)
- Thomas Grund
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | - Inga D Neumann
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany,Department of Behavioural and Molecular Neurobiology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany, Tel: +49 941 943 3053, Fax: +49 941 943 3052, E-mail:
| |
Collapse
|
46
|
Jiang JH, Peng YL, Zhang PJ, Xue HX, He Z, Liang XY, Chang M. The ventromedial hypothalamic nucleus plays an important role in anxiolytic-like effect of neuropeptide S. Neuropeptides 2018; 67:36-44. [PMID: 29195839 DOI: 10.1016/j.npep.2017.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 02/08/2023]
Abstract
Neuropeptide S (NPS), the endogenous neuropeptide ligand of NPSR, has been reported to regulate anxiety-related behavior involved in multiple brain regions, including amygdale, locus coeruleus and Barrington's nucleus. However, little research has been conducted on the anxiolytic-like behaviors of NPS on the hypothalamus, which was an important area in defensive behavior. Here, we investigated a role of hypothalamus in anxiolytic-like behaviors of NPS. We found that NPSR protein of mouse distributed mainly in the ventromedial hypothalamus (VMH). And in the single prolonged stress model (SPS), the results showed that NPS mRNA of the mice exposed to SPS was significantly higher than control, while NPSR mRNA was remarkable lower than control in hypothalamus. Further studies found that NPS intra-VMH infusion dose-dependently (1, 10 and 100pmol) induced anxiolytic effects, using elevated plus maze and open field tests. These anxiolytic effects could be blocked by NPSR antagonist (SHA68), but not by picrotoxin (a GABAA receptor antagonist) and sacolfen (a GABAB receptor antagonist). Meanwhile, our data showed that the expression of c-Fos was significantly increased in VMH after NPS delivered into the lateral ventricles. These results cast a new light on the hypothalamic nucleus in the anxiolytic-like effect of NPS system.
Collapse
Affiliation(s)
- Jin Hong Jiang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Ya Li Peng
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Pei Jiang Zhang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Hong Xiang Xue
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Zhen He
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Xue Ya Liang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - M Chang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
47
|
Domschke K, Akhrif A, Romanos M, Bajer C, Mainusch M, Winkelmann J, Zimmer C, Neufang S. Neuropeptide S Receptor Gene Variation Differentially Modulates Fronto-Limbic Effective Connectivity in Childhood and Adolescence. Cereb Cortex 2018; 27:554-566. [PMID: 26503268 DOI: 10.1093/cercor/bhv259] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The neuropeptide S (NPS) system contributes to the pathogenesis of anxiety. The more active T allele of the functional rs324981 variant in the neuropeptide S receptor gene (NPSR1) is associated with panic disorder (PD) and distorted cortico-limbic activity during emotion processing in healthy adults and PD patients. This study investigated the influence of NPSR1 genotype on fronto-limbic effective connectivity within the developing brain. Sixty healthy subjects (8-21 years) were examined using an emotional go-nogo task and fMRI. Fronto-limbic connectivity was determined using Dynamic Causal Modeling. In A allele carriers, connectivity between the right middle frontal gyrus (MFG) and the right amygdala was higher in older (≥14 years) than that in younger (<14 years) probands, whereas TT homozygotes ≥14 years showed a reduction of fronto-limbic connectivity between the MFG and both the amygdala and the insula. Fronto-limbic connectivity varied between NPSR1 genotypes in the developing brain suggesting a risk-increasing effect of the NPSR1T allele for anxiety-related traits via impaired top-down control of limbic structures emerging during adolescence. Provided robust replication in longitudinal studies, these findings may constitute valuable biomarkers for early targeted prevention of anxiety disorders.
Collapse
Affiliation(s)
| | - Atae Akhrif
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Marcel Romanos
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Christina Bajer
- Department of Diagnostical and Interventional Neuroradiology.,Department of Neurology and
| | - Margrit Mainusch
- Department of Diagnostical and Interventional Neuroradiology.,Department of Neurology and
| | - Juliane Winkelmann
- Institute of Human Genetics, Technical University Munich, Munich, Germany.,Institute of Human Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Claus Zimmer
- Department of Diagnostical and Interventional Neuroradiology
| | - Susanne Neufang
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
48
|
Cohen H, Vainer E, Zeev K, Zohar J, Mathé AA. Neuropeptide S in the basolateral amygdala mediates an adaptive behavioral stress response in a rat model of posttraumatic stress disorder by increasing the expression of BDNF and the neuropeptide YY1 receptor. Eur Neuropsychopharmacol 2018; 28:159-170. [PMID: 29157796 DOI: 10.1016/j.euroneuro.2017.11.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/17/2017] [Accepted: 11/03/2017] [Indexed: 01/19/2023]
Abstract
Neuropeptide S (NPS) is a regulatory peptide that has anxiolytic and arousal-promoting effects in rodents. We used an animal model of posttraumatic stress disorder (PTSD) to assess long-term behavioral effects of a single dose of NPS, microinjected into the basolateral amygdala (BLA) 1h following exposure to predator-scent stress (PSS). To elucidate the molecular mechanism by which NPS attenuates behavioral stress responses, expression levels of neuropeptide Y (NPY), NPY-Y1 receptor (NPY-Y1R), and brain-derived neurotrophic factor (BDNF) were evaluated in the hippocampus. The behavioral and molecular effects of NPS receptor antagonist (NPS-RA), NPY-Y1R antagonist (NPY-Y1RA), or both administered centrally were evaluated in the same manner. Circulating corticosterone levels were measured at different time points following PSS-exposure. Immediate post-exposure treatment with NPS had a marked protective effect; BLA microinfusion of NPS completely abolished the extreme behavioral response to PSS, restored the decreased expression of BDNF and, unexpectedly, PY-Y1R, but didn't affect the decreased expression of NPY. BLA microinfusion of both NPY-Y1RA and NPS-RA together had an additive effect, which completely prevented the anxiolytic effects of NPS in rats exposed to PSS and disrupted the expression of NPY-Y1R in the hippocampus following NPS infusion. It may therefore be hypothesized that NPS acts, directly or indirectly, on both the NPY-Y1R and NPS receptors and that the cross-talk between NPS and NPY-Y1R may be necessary for the anxiolytic effects of NPS post-exposure. The NPS system might thus contribute to a potential endogenous mechanism underlying the shift towards adaptive behavioral response and thereby might be relevant as a pharmacological target for attenuating stress-related sequelae.
Collapse
Affiliation(s)
- Hagit Cohen
- Ministry of Health Beer-Sheva Mental Health Center, Anxiety and Stress Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 4600, Beer-Sheva 84170, Israel.
| | - Ella Vainer
- Ministry of Health Beer-Sheva Mental Health Center, Anxiety and Stress Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 4600, Beer-Sheva 84170, Israel
| | - Kaplan Zeev
- Ministry of Health Beer-Sheva Mental Health Center, Anxiety and Stress Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 4600, Beer-Sheva 84170, Israel
| | - Joseph Zohar
- Division of Psychiatry, The State of Israel Ministry of Health, The Chaim Sheba Medical Center, Ramat-Gan, Israel, Sackler Medical School, Tel-Aviv University, Israel
| | - Aleksander A Mathé
- Karolinska Institutet, Department of Clinical Neuroscience, Karolinska Institutet, Sankt Görans Hospital, SE-11281 Stockholm, Sweden.
| |
Collapse
|
49
|
Tinoco AB, Semmens DC, Patching EC, Gunner EF, Egertová M, Elphick MR. Characterization of NGFFYamide Signaling in Starfish Reveals Roles in Regulation of Feeding Behavior and Locomotory Systems. Front Endocrinol (Lausanne) 2018; 9:507. [PMID: 30283399 PMCID: PMC6156427 DOI: 10.3389/fendo.2018.00507] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/14/2018] [Indexed: 12/12/2022] Open
Abstract
Neuropeptides in deuterostomian invertebrates that have an Asn-Gly motif (NG peptides) have been identified as orthologs of vertebrate neuropeptide-S (NPS)-type peptides and protostomian crustacean cardioactive peptide (CCAP)-type neuropeptides. To obtain new insights into the physiological roles of NG peptides in deuterostomian invertebrates, here we have characterized the NG peptide signaling system in an echinoderm-the starfish Asterias rubens. The neuropeptide NGFFYamide was identified as the ligand for an A. rubens NPS/CCAP-type receptor, providing further confirmation that NG peptides are orthologs of NPS/CCAP-type neuropeptides. Using mRNA in situ hybridization, cells expressing the NGFFYamide precursor transcript were revealed in the radial nerve cords, circumoral nerve ring, coelomic epithelium, apical muscle, body wall, stomach, and tube feet of A. rubens, indicating that NGFFYamide may have a variety of physiological roles in starfish. One of the most remarkable aspects of starfish biology is their feeding behavior, where the stomach is everted out of the mouth over the soft tissue of prey. Previously, we reported that NGFFYamide triggers retraction of the everted stomach in A. rubens and here we show that in vivo injection of NGFFYamide causes a significant delay in the onset of feeding on prey. To investigate roles in regulating other aspects of starfish physiology, we examined the in vitro effects of NGFFYamide and found that it causes relaxation of acetylcholine-contracted apical muscle preparations and induction of tonic and phasic contraction of tube feet. Furthermore, analysis of the effects of in vivo injection of NGFFYamide on starfish locomotor activity revealed that it causes a significant reduction in mean velocity and distance traveled. Interestingly, experimental studies on mammals have revealed that NPS is an anxiolytic that suppresses appetite and induces hyperactivity in mammals. Our characterization of the actions of NGFFYamide in starfish indicates that NPS/NG peptide/CCAP-type signaling is an evolutionarily ancient regulator of feeding and locomotion.
Collapse
|
50
|
Thomasson J, Canini F, Poly-Thomasson B, Trousselard M, Granon S, Chauveau F. Neuropeptide S overcomes short term memory deficit induced by sleep restriction by increasing prefrontal cortex activity. Eur Neuropsychopharmacol 2017; 27:1308-1318. [PMID: 28941995 DOI: 10.1016/j.euroneuro.2017.08.431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 07/27/2017] [Accepted: 08/21/2017] [Indexed: 02/06/2023]
Abstract
Sleep restriction (SR) impairs short term memory (STM) that might be related to different processes. Neuropeptide S (NPS), an endogenous neuropeptide that improves short term memory, activates arousal and decreases anxiety is likely to counteract the SR-induced impairment of STM. The objective of the present study was to find common cerebral pathways in sleep restriction and NPS action in order to ultimately antagonize SR effect on memory. The STM was assessed using a spontaneous spatial alternation task in a T-maze. C57-Bl/6J male mice were distributed in 4 groups according to treatment (0.1nmol of NPS or vehicle intracerebroventricular injection) and to 20h-SR. Immediately after behavioural testing, regional c-fos immunohistochemistry was performed and used as a neural activation marker for spatial short term memory (prefrontal cortex, dorsal hippocampus) and emotional reactivity (basolateral amygdala and ventral hippocampus). Anxiety-like behaviour was assessed using elevated-plus maze task. Results showed that SR impaired short term memory performance and decreased neuronal activation in cingular cortex.NPS injection overcame SR-induced STM deficits and increased neuronal activation in infralimbic cortex. SR spared anxiety-like behavior in the elevated-plus maze. Neural activation in basolateral nucleus of amygdala and ventral hippocampus were not changed after SR.In conclusion, the present study shows that NPS overcomes SR-induced STM deficits by increasing prefrontal cortex activation independently of anxiety-like behaviour.
Collapse
Affiliation(s)
- Julien Thomasson
- Institut de Recherche Biomédicale des Armées Brétigny-sur-Orge, France
| | - Frédéric Canini
- Institut de Recherche Biomédicale des Armées Brétigny-sur-Orge, France; Ecole du Val de Grâce, 1 Place Laveran, Paris, France
| | | | - Marion Trousselard
- Institut de Recherche Biomédicale des Armées Brétigny-sur-Orge, France; Ecole du Val de Grâce, 1 Place Laveran, Paris, France
| | - Sylvie Granon
- Institut des Neurosciences Paris-Saclay (Neuro-PSI), CNRS UMR 9197, Université Paris-Saclay, Orsay, France
| | - Frédéric Chauveau
- Institut de Recherche Biomédicale des Armées Brétigny-sur-Orge, France.
| |
Collapse
|