1
|
Vida H, Sahar M, Nikdouz A, Arezoo H. Chemokines in neurodegenerative diseases. Immunol Cell Biol 2024. [PMID: 39723647 DOI: 10.1111/imcb.12843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/09/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024]
Abstract
Neurodegeneration and neuroinflammation disorders are mainly the result of the deposition of various proteins, such as α-synuclein, amyloid-β and prions, which lead to the initiation and activation of inflammatory responses. Different chemokines are involved in the infiltration and movement of inflammatory leukocytes into the central nervous system (CNS) that express chemokine receptors. Dysregulation of several members of chemokines has been shown in the CNS, cerebrospinal fluid and peripheral blood of patients who have neurodegenerative disorders. Upon infiltration of various cells, they produce many inflammatory mediators such as cytokines. Besides them, some CNS-resident cells, such as neurons and astrocytes, are also involved in the pathogenesis of neurodegeneration by producing chemokines. In this review, we summarize the role of chemokines and their related receptors in the pathogenesis of neurodegeneration and neuroinflammation disorders, including multiple sclerosis, Parkinson's disease and Alzheimer's disease. Therapeutic strategies targeting chemokines or their related receptors are also discussed in this article.
Collapse
Affiliation(s)
- Hashemi Vida
- Medicinal Plants Research Center, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mehranfar Sahar
- Cellular and Molecular Medicine Research Institute, Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Immunology and Genetics, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Urmia University of Medical Sciences, Urmia, Iran
| | - Amin Nikdouz
- Department of Translational Medicine, Universita degli Studi del Piemonte Orientale Amedeo Avogadro, Vercelli, Italy
| | - Hosseini Arezoo
- Cellular and Molecular Medicine Research Institute, Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Immunology and Genetics, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
2
|
Weng W, Zhang B, Deng D. P16 INK4A drives RB1 degradation by UTP14A-catalyzed K810 ubiquitination. iScience 2024; 27:110882. [PMID: 39351198 PMCID: PMC11440251 DOI: 10.1016/j.isci.2024.110882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/31/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024] Open
Abstract
P16INK4A expression is inversely associated with RB1 expression in cancer cells, and P16INK4A inhibits CDK4-catalyzed RB1 phosphorylation. How P16INK4A and RB1 coordinately express and regulate the cell cycle remains to be studied. In the present study, we found that P16INK4A upregulated the E3 ligase UTP14A, which led to the ubiquitination of RB1 at K810 and RB1 degradation. P16INK4A loss consistently disrupted the UTP14A-mediated degradation of RB1 and caused RB1 accumulation. Functionally, P16INK4A loss inhibited RB1 ubiquitination in a cell cycle progression-independent fashion and inhibited proteome-scale ubiquitination in a cell cycle progression-dependent manner. Our findings indicate that there is a negative feedback loop between P16INK4A and RB1 expression and that disruption of this loop may partially rescue the biological outcomes of P16INK4A loss. We also revealed a hitherto unknown function for P16 INK4A in regulating proteome-scale ubiquitination by inhibiting cell proliferation, which may be useful for the development of anticancer drugs.
Collapse
Affiliation(s)
- Wenjie Weng
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing) Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Baozhen Zhang
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing) Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Dajun Deng
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing) Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| |
Collapse
|
3
|
Kahook MY, Rapuano CJ, Messmer EM, Radcliffe NM, Galor A, Baudouin C. Preservatives and ocular surface disease: A review. Ocul Surf 2024; 34:213-224. [PMID: 39098762 DOI: 10.1016/j.jtos.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/15/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Ocular surface disease (OSD) is a complex condition that can cause a range of symptoms (e.g, dryness, irritation, and pain) and can significantly impact the quality of life of affected individuals. Iatrogenic OSD, a common finding in patients with glaucoma who receive chronic therapy with topical ocular antihypertensive drugs containing preservatives such as benzalkonium chloride (BAK), has been linked to damage to the ocular surface barrier, corneal epithelial cells, nerves, conjunctival goblet cells, and trabecular meshwork. Chronic BAK exposure activates inflammatory pathways and worsens symptoms, compromising the success of subsequent filtration surgery in an exposure-dependent manner. In eyes being treated for glaucoma, symptomatic treatment of OSD may provide some relief, but addressing the root cause of the OSD often necessitates reducing or, ideally, eliminating BAK toxicity. Strategies to decrease BAK exposure in patients with glaucoma encompass the use of preservative-free formulations or drugs with alternative and less toxic preservatives such as SofZia®, Polyquad, potassium sorbate, or Purite®. Though the benefits of these alternative preservatives are largely unproven, they might be considered when financial constraints prevent the use of preservative-free versions. For patients receiving multiple topical preserved drugs, the best practice is to switch to nonpreserved equivalents wherever feasible, regardless of OSD severity. Furthermore, nonpharmacological approaches, including laser or incisional procedures, should be considered. This review explores the effects of BAK on the ocular surface and reviews strategies for minimizing or eliminating BAK exposure in patients with glaucoma in order to significantly improve their quality of life and prevent complications associated with chronic exposure to BAK.
Collapse
Affiliation(s)
- Malik Y Kahook
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado School of Medicine, Aurora, CO, United States.
| | | | - Elisabeth M Messmer
- Department of Ophthalmology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Nathan M Radcliffe
- New York Eye and Ear Infirmary of Mount Sinai, New York, NY, United States; New York Eye Surgery Center, The Bronx, New York, United States
| | - Anat Galor
- Ophthalmology, VA Miami Healthcare System, Miami, FL, United States; Ophthalmology, University of Miami Health System Bascom Palmer Eye Institute, Miami, FL, United States
| | - Christophe Baudouin
- Paris-Saclay, Versailles Saint Quentin University, Paris, Île-de-France, France; Centre Hospitalier National D'Ophtalmologie des Quinze-Vingts, IHU ForeSight, Paris, Île-de-France, France
| |
Collapse
|
4
|
Zhang Y, Jin Y, Li J, Yan Y, Wang T, Wang X, Li Z, Qin X. CXCL14 as a Key Regulator of Neuronal Development: Insights from Its Receptor and Multi-Omics Analysis. Int J Mol Sci 2024; 25:1651. [PMID: 38338930 PMCID: PMC10855946 DOI: 10.3390/ijms25031651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
CXCL14 is not only involved in the immune process but is also closely related to neurodevelopment according to its molecular evolution. However, what role it plays in neurodevelopment remains unclear. In the present research, we found that, by crossbreeding CXCL14+/- and CXCL14-/- mice, the number of CXCL14-/- mice in their offspring was lower than the Mendelian frequency; CXCL14-/- mice had significantly fewer neurons in the external pyramidal layer of cortex than CXCL14+/- mice; and CXCL14 may be involved in synaptic plasticity, neuron projection, and chemical synaptic transmission based on analysis of human clinical transcriptome data. The expression of CXCL14 was highest at day 14.5 in the embryonic phase and after birth in the mRNA and protein levels. Therefore, we hypothesized that CXCL14 promotes the development of neurons in the somatic layer of the pyramidal cells of mice cortex on embryonic day 14.5. In order to further explore its mechanism, CXCR4 and CXCR7 were suggested as receptors by Membrane-Anchored Ligand and Receptor Yeast Two-Hybrid technology. Through metabolomic techniques, we inferred that CXCL14 promotes the development of neurons by regulating fatty acid anabolism and glycerophospholipid anabolism.
Collapse
Affiliation(s)
- Yinjie Zhang
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, China (T.W.)
| | - Yue Jin
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, China (T.W.)
| | - Jingjing Li
- Engineering Research Center of Cell & Therapeutic Antibody, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Yan
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, China (T.W.)
| | - Ting Wang
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, China (T.W.)
| | - Xuanlin Wang
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, China (T.W.)
| | - Zhenyu Li
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, China (T.W.)
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, China (T.W.)
| |
Collapse
|
5
|
Tripathi R, Kumar P. Preliminary study to identify CXCR4 inhibitors as potential therapeutic agents for Alzheimer's and Parkinson's diseases. Integr Biol (Camb) 2023; 15:zyad012. [PMID: 37635325 DOI: 10.1093/intbio/zyad012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 07/10/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023]
Abstract
Neurodegenerative disorders (NDDs) are known to exhibit genetic overlap and shared pathophysiology. This study aims to find the shared genetic architecture of Alzheimer's disease (AD) and Parkinson's disease (PD), two major age-related progressive neurodegenerative disorders. The gene expression profiles of GSE67333 (containing samples from AD patients) and GSE114517 (containing samples from PD patients) were retrieved from the Gene Expression Omnibus (GEO) functional genomics database managed by the National Center for Biotechnology Information. The web application GREIN (GEO RNA-seq Experiments Interactive Navigator) was used to identify differentially expressed genes (DEGs). A total of 617 DEGs (239 upregulated and 379 downregulated) were identified from the GSE67333 dataset. Likewise, 723 DEGs (378 upregulated and 344 downregulated) were identified from the GSE114517 dataset. The protein-protein interaction networks of the DEGs were constructed, and the top 50 hub genes were identified from the network of the respective dataset. Of the four common hub genes between two datasets, C-X-C chemokine receptor type 4 (CXCR4) was selected due to its gene expression signature profile and the same direction of differential expression between the two datasets. Mavorixafor was chosen as the reference drug due to its known inhibitory activity against CXCR4 and its ability to cross the blood-brain barrier. Molecular docking and molecular dynamics simulation of 51 molecules having structural similarity with Mavorixafor was performed to find two novel molecules, ZINC49067615 and ZINC103242147. This preliminary study might help predict molecular targets and diagnostic markers for treating Alzheimer's and Parkinson's diseases. Insight Box Our research substantiates the therapeutic relevance of CXCR4 inhibitors for the treatment of Alzheimer's and Parkinson's diseases. We would like to disclose the following insights about this study. We found common signatures between Alzheimer's and Parkinson's diseases at transcriptional levels by analyzing mRNA sequencing data. These signatures were used to identify putative therapeutic agents for these diseases through computational analysis. Thus, we proposed two novel compounds, ZINC49067615 and ZINC103242147, that were stable, showed a strong affinity with CXCR4, and exhibited good pharmacokinetic properties. The interaction of these compounds with major residues of CXCR4 has also been described.
Collapse
Affiliation(s)
- Rahul Tripathi
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Pravir Kumar
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| |
Collapse
|
6
|
Jiang G, Li X, Liu M, Li H, Shen H, liao J, You W, Fang Q, Chen G. Remote ischemic postconditioning ameliorates stroke injury via the SDF-1α/CXCR4 signaling axis in rats. Brain Res Bull 2023; 197:31-41. [PMID: 36990325 DOI: 10.1016/j.brainresbull.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/14/2023] [Accepted: 03/26/2023] [Indexed: 03/29/2023]
Abstract
Remote Ischemic Postconditioning (RIPostC) has become a research hotspot due to its protective effect on the brain in clinical studies related to ischemic stroke. The purpose of this study is to investigate the protective effect of RIPostC after ischemic stroke in rats. The middle cerebral artery occlusion/reperfusion (MCAO/R) model was established by the wire embolization method. RIPostC was obtained by inducing temporary ischemia in the hind limbs of rats. First, based on the results of short-term behavioral measures and long-term neurological function experiments, RIPostC was found to have a protective effect on the MCAO/R model and to improve neurological recovery in rats. Compared to the sham group, RIPostC upregulated the expression levels of C-X-C motif chemokine receptor 4(CXCR4) in the brain and stromal cell-derived factor-1(SDF-1α) in peripheral blood. In addition, RIPostC upregulated CXCR4 expression on CD34+ stem cells in peripheral blood in flow cytometric assays. Meanwhile, according to the results of EdU/DCX co-staining and CD31 staining, it was found that the effect of RIPostC on ameliorating brain injury via SDF-1α/CXCR4 signaling axis may be associated with vascular neogenesis. Finally, after inhibiting the SDF-1α/CXCR4 signaling axis using AMD3100(Plerixafor), we found that the neuroprotective effect of RIPostC was diminished. Taken together, RIPostC can improve neurobehavioral damage induced by MCAO/R in rats, and its mechanism may be related to SDF-1α/CXCR4 signaling axis. Therefore, RIPostC can be used as an intervention strategy for stroke. SDF-1α/CXCR4 signaling axis can also be a potential target for intervention.
Collapse
|
7
|
Ma J, Dong L, Chang Q, Chen S, Zheng J, Li D, Wu S, Yang H, Li X. CXCR4 knockout induces neuropathological changes in the MPTP-lesioned model of Parkinson's disease. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166597. [PMID: 36368650 DOI: 10.1016/j.bbadis.2022.166597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 10/12/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022]
Abstract
C-X-C chemokine receptor type 4 (CXCR4) is highly expressed in Parkinson's disease (PD) mice's brains and is related to astrocyte signaling and microglial activation. This makes CXCR4 related to neuroinflammation and also makes CXCR4 considered to be the PD development mechanism and possible therapeutic targets. Therefore, it is worth studying the effect of CXCR4 on neuropathological changes and its potential therapeutic value for PD. This study aimed to investigate the effect of CXCR4 knockout on neuropathological changes in the mouse model of PD and its mechanism. In this study, CXCR4-WT and CXCR4+/- C57BL mice were used to make Parkinson's model. Behavioral experiments, dopaminergic neuron markers, neuroinflammation, and blood-brain barrier damage were detected to verify the effect of CXCR4 knockout on neuropathological changes. CXCR4 knockout improved the behavioral results and tyrosine hydroxylase (TH) expression of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned mice. In the substantia nigra (SN) area of the brain of PD mouse model, the number of Iba1-positive (p = 0.0004) and GFAP-positive cells (p = 0.0349) was significantly lower in CXCR4 knockout group than CXCR4-WT group. CXCR4 knockout reduced MPTP-induced infiltration of peripheral immune cells and the expression of pro-inflammatory cytokines. CXCR4 knockout also protected blood-brain barrier (BBB) from MPTP-induced damage. In conclusion, CXCR4 knockout inhibits the degeneration of dopamine neurons, microglial and astrocyte activation, neuroinflammation, and BBB damages in the MPTP-lesioned PD mice.
Collapse
Affiliation(s)
- Jianjun Ma
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, PR China; Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou 450003, PR China; Department of Neurology, Henan University People's Hospital, Zhengzhou 450003, PR China.
| | - Linrui Dong
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, PR China; Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou 450003, PR China
| | - Qingqing Chang
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, PR China; Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou 450003, PR China
| | - Siyuan Chen
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, PR China; Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou 450003, PR China; Department of Neurology, Henan University People's Hospital, Zhengzhou 450003, PR China
| | - Jinhua Zheng
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, PR China; Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou 450003, PR China; Department of Neurology, Henan University People's Hospital, Zhengzhou 450003, PR China
| | - Dongsheng Li
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, PR China; Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou 450003, PR China; Department of Neurology, Henan University People's Hospital, Zhengzhou 450003, PR China
| | - Shaopu Wu
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, PR China; Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou 450003, PR China; Department of Neurology, Henan University People's Hospital, Zhengzhou 450003, PR China
| | - Hongqi Yang
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, PR China; Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou 450003, PR China; Department of Neurology, Henan University People's Hospital, Zhengzhou 450003, PR China
| | - Xue Li
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, PR China; Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou 450003, PR China; Department of Neurology, Henan University People's Hospital, Zhengzhou 450003, PR China
| |
Collapse
|
8
|
Murray TE, Richards CM, Robert-Gostlin VN, Bernath AK, Lindhout IA, Klegeris A. Potential neurotoxic activity of diverse molecules released by astrocytes. Brain Res Bull 2022; 189:80-101. [PMID: 35988785 DOI: 10.1016/j.brainresbull.2022.08.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/04/2022] [Accepted: 08/14/2022] [Indexed: 11/02/2022]
Abstract
Astrocytes are the main support cells of the central nervous system. They also participate in neuroimmune reactions. In response to pathological and immune stimuli, astrocytes transform to reactive states characterized by increased release of inflammatory mediators. Some of these molecules are neuroprotective and inflammation resolving while others, including reactive oxygen species (ROS), nitric oxide (NO), matrix metalloproteinase (MMP)- 9, L-glutamate, and tumor necrosis factor α (TNF), are well-established toxins known to cause damage to surrounding cells and tissues. We hypothesized that similar to microglia, the brain immune cells, reactive astrocytes can release a broader set of diverse molecules that are potentially neurotoxic. A literature search was conducted to identify such molecules using the following two criteria: 1) evidence of their expression and secretion by astrocytes and 2) direct neurotoxic action. This review describes 14 structurally diverse molecules as less-established astrocyte neurotoxins, including C-X-C motif chemokine ligand (CXCL)10, CXCL12/CXCL12(5-67), FS-7-associated surface antigen ligand (FasL), macrophage inflammatory protein (MIP)- 2α, TNF-related apoptosis inducing ligand (TRAIL), pro-nerve growth factor (proNGF), pro-brain-derived neurotrophic factor (proBDNF), chondroitin sulfate proteoglycans (CSPGs), cathepsin (Cat)B, group IIA secretory phospholipase A2 (sPLA2-IIA), amyloid beta peptides (Aβ), high mobility group box (HMGB)1, ceramides, and lipocalin (LCN)2. For some of these molecules, further studies are required to establish either their direct neurotoxic effects or the full spectrum of stimuli that induce their release by astrocytes. Only limited studies with human-derived astrocytes and neurons are available for most of these potential neurotoxins, which is a knowledge gap that should be addressed in the future. We also summarize available evidence of the role these molecules play in select neuropathologies where reactive astrocytes are a key feature. A comprehensive understanding of the full spectrum of neurotoxins released by reactive astrocytes is key to understanding neuroinflammatory diseases characterized by the adverse activation of these cells and may guide the development of novel treatment strategies.
Collapse
Affiliation(s)
- Taryn E Murray
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Christy M Richards
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Victoria N Robert-Gostlin
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Anna K Bernath
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Ivan A Lindhout
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada.
| |
Collapse
|
9
|
Wang Y, Penna V, Williams RJ, Parish CL, Nisbet DR. A Hydrogel as a Bespoke Delivery Platform for Stromal Cell-Derived Factor-1. Gels 2022; 8:gels8040224. [PMID: 35448125 PMCID: PMC9025061 DOI: 10.3390/gels8040224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
The defined self-assembly of peptides (SAPs) into nanostructured bioactive hydrogels has great potential for repairing traumatic brain injuries, as they maintain a stable, homeostatic environment at an injury site, preventing further degeneration. They also present a bespoke platform to restore function via the naturalistic presentation of therapeutic proteins, such as stromal-cell-derived factor 1 (SDF-1), expressed by meningeal cells. A key challenge to the use of the SDF protein, however, is its rapid diffusion and degradation. Here, we engineered a homeostatic hydrogel produced by incorporating recombinant SDF-1 protein within a self-assembled peptide hydrogel to create a supportive milieu for transplanted cells. Our hydrogel can concomitantly deliver viable primary neural progenitor cells and sustained active SDF-1 to support the nascent graft, resulting in increased neuronal differentiation. Moreover, this homeostatic hydrogel can ensure a healthy and larger graft core without impeding neuronal fiber growth and innervation. These findings demonstrate the regenerative potential of these hydrogels to improve the integration of grafted cells to treat neural injuries and diseases.
Collapse
Affiliation(s)
- Yi Wang
- The Graeme Clark Institute, The University of Melbourne, Melbourne 3010, Australia;
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne 3010, Australia
| | - Vanessa Penna
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne 3052, Australia; (V.P.); (C.L.P.)
| | - Richard J. Williams
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Melbourne 3216, Australia;
| | - Clare L. Parish
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne 3052, Australia; (V.P.); (C.L.P.)
| | - David R. Nisbet
- The Graeme Clark Institute, The University of Melbourne, Melbourne 3010, Australia;
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne 3010, Australia
- Laboratory of Advanced Biomaterials, Research School of Chemistry and the John Curtin School of Medical Research, The Australian National University, Canberra 2601, Australia
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne 3010, Australia
- Correspondence:
| |
Collapse
|
10
|
Adewale Q, Khan AF, Carbonell F, Iturria-Medina Y. Integrated transcriptomic and neuroimaging brain model decodes biological mechanisms in aging and Alzheimer's disease. eLife 2021; 10:e62589. [PMID: 34002691 PMCID: PMC8131100 DOI: 10.7554/elife.62589] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
Both healthy aging and Alzheimer's disease (AD) are characterized by concurrent alterations in several biological factors. However, generative brain models of aging and AD are limited in incorporating the measures of these biological factors at different spatial resolutions. Here, we propose a personalized bottom-up spatiotemporal brain model that accounts for the direct interplay between hundreds of RNA transcripts and multiple macroscopic neuroimaging modalities (PET, MRI). In normal elderly and AD participants, the model identifies top genes modulating tau and amyloid-β burdens, vascular flow, glucose metabolism, functional activity, and atrophy to drive cognitive decline. The results also revealed that AD and healthy aging share specific biological mechanisms, even though AD is a separate entity with considerably more altered pathways. Overall, this personalized model offers novel insights into the multiscale alterations in the elderly brain, with important implications for identifying effective genetic targets for extending healthy aging and treating AD progression.
Collapse
Affiliation(s)
- Quadri Adewale
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill UniversityMontrealCanada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill UniversityMontrealCanada
- Ludmer Centre for Neuroinformatics and Mental Health, McGill UniversityMontrealCanada
| | - Ahmed F Khan
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill UniversityMontrealCanada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill UniversityMontrealCanada
- Ludmer Centre for Neuroinformatics and Mental Health, McGill UniversityMontrealCanada
| | | | - Yasser Iturria-Medina
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill UniversityMontrealCanada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill UniversityMontrealCanada
- Ludmer Centre for Neuroinformatics and Mental Health, McGill UniversityMontrealCanada
| | | |
Collapse
|
11
|
Nash B, Irollo E, Brandimarti R, Meucci O. Opioid Modulation of Neuronal Iron and Potential Contributions to NeuroHIV. Methods Mol Biol 2021; 2201:139-162. [PMID: 32975796 DOI: 10.1007/978-1-0716-0884-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Opioid use has substantially increased over recent years and remains a major driver of new HIV infections worldwide. Clinical studies indicate that opioids may exacerbate the symptoms of HIV-associated neurocognitive disorders (HAND), but the mechanisms underlying opioid-induced cognitive decline remain obscure. We recently reported that the μ-opioid agonist morphine increased neuronal iron levels and levels of ferritin proteins that store iron, suggesting that opioids modulate neuronal iron homeostasis. Additionally, increased iron and ferritin heavy chain protein were necessary for morphine's ability to reduce the density of thin and mushroom dendritic spines in cortical neurons, which are considered critical mediators of learning and memory, respectively. As altered iron homeostasis has been reported in HAND and related neurocognitive disorders like Alzheimer's, Parkinson's, and Huntington's disease, understanding how opioids regulate neuronal iron metabolism may help identify novel drug targets in HAND with potential relevance to these other neurocognitive disorders. Here, we review the known mechanisms of opioid-mediated regulation of neuronal iron and corresponding cellular responses and discuss the implications of these findings for patients with HAND. Furthermore, we discuss a new molecular approach that can be used to understand if opioid modulation of iron affects the expression and processing of amyloid precursor protein and the contributions of this pathway to HAND.
Collapse
Affiliation(s)
- Bradley Nash
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Elena Irollo
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Renato Brandimarti
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Olimpia Meucci
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA, USA.
- Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, PA, USA.
- Center for Neuroimmunology and CNS Therapeutics, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Baudouin C, Kolko M, Melik-Parsadaniantz S, Messmer EM. Inflammation in Glaucoma: From the back to the front of the eye, and beyond. Prog Retin Eye Res 2020; 83:100916. [PMID: 33075485 DOI: 10.1016/j.preteyeres.2020.100916] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 02/08/2023]
Abstract
The pathophysiology of glaucoma is complex, multifactorial and not completely understood. Elevated intraocular pressure (IOP) and/or impaired retinal blood flow may cause initial optic nerve damage. In addition, age-related oxidative stress in the retina concurrently with chronic mechanical and vascular stress is crucial for the initiation of retinal neurodegeneration. Oxidative stress is closely related to cell senescence, mitochondrial dysfunction, excitotoxicity, and neuroinflammation, which are involved in glaucoma progression. Accumulating evidence from animal glaucoma models and from human ocular samples suggests a dysfunction of the para-inflammation in the retinal ganglion cell layer and the optic nerve head. Moreover, quite similar mechanisms in the anterior chamber could explain the trabecular meshwork dysfunction and the elevated IOP in primary open-angle glaucoma. On the other hand, ocular surface disease due to topical interventions is the most prominent and visible consequence of inflammation in glaucoma, with a negative impact on filtering surgery failure, topical treatment efficacy, and possibly on inflammation in the anterior segment. Consequently, glaucoma appears as an outstanding eye disease where inflammatory changes may be present to various extents and consequences along the eye structure, from the ocular surface to the posterior segment, and the visual pathway. Here we reviewed the inflammatory processes in all ocular structures in glaucoma from the back to the front of the eye and beyond. Our approach was to explain how para-inflammation is necessary to maintain homoeostasis, and to describe abnormal inflammatory findings observed in glaucomatous patients or in animal glaucoma models, supporting the hypothesis of a dysregulation of the inflammatory balance toward a pro-inflammatory phenotype. Possible anti-inflammatory therapeutic approaches in glaucoma are also discussed.
Collapse
Affiliation(s)
- Christophe Baudouin
- Quinze-Vingts National Ophthalmology Hospital, INSERM-DGOS CIC 1423, IHU Foresight, Paris, France; Sorbonne Université, INSERM, CNRS, Institut de La Vision, Paris, France; Department of Ophthalmology, Ambroise Paré Hospital, APHP, Université de Versailles Saint-Quentin en Yvelines, Boulogne-Billancourt, France.
| | - Miriam Kolko
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark; Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet-Glostrup, Glostrup, Denmark
| | | | | |
Collapse
|
13
|
Guo K, Yao X, Wu W, Yu Z, Li Z, Ma Z, Liu D. HIF-1α/SDF-1/CXCR4 axis reduces neuronal apoptosis via enhancing the bone marrow-derived mesenchymal stromal cell migration in rats with traumatic brain injury. Exp Mol Pathol 2020; 114:104416. [PMID: 32165091 DOI: 10.1016/j.yexmp.2020.104416] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/21/2020] [Accepted: 03/07/2020] [Indexed: 12/11/2022]
Abstract
Mesenchymal stromal injection is a promising therapy for traumatic brain injury (TBI). The aim of this study was to explore the effects of the HIF-1α/SDF-1/CXCR4 axis on neuron repair in TBI rats through improving the bone marrow-derived mesenchymalstromal cells (BMSCs) migration. TBI rat models were established. The rats were treated with exogenous SDF-1, and then the neuronal apoptosis in TBI rats was measured. BMSCs from rats were collected, and the roles of NF-κB p65 expression in nuclei, overexpression of SDF-1 and HIF-1α, as well as downregulation of CXCR4 in BMSC migration were identified. HIF-1α- and SDF-1- treated BMSCs were transplanted into TBI rats, after which the neuronal apoptosis and activity of the HIF-1α/SDF-1/CXCR4 axis were detected. Consequently, we found SDF-1 elevated the HIF-1α/SDF-1/CXCR4 activity and presented protective roles in TBI rat hippocampal neurons with reduced neuronal apoptosis. SDF-1 promoted BMSC migration in vitro, and co-effects of SDF-1 and HIF-1α showed strong promotion, while CXCR4 inhibition suppressed BMSC migration. BMSC transplantation activated the HIF-1α/SDF-1/CXCR4 axis and reduced neuronal apoptosis in TBI rats. To conclude, our study demonstrated that the HIF-1α/SDF-1/CXCR4 axis could enhance BMSC migration and alleviate neuronal damage and apoptosis in TBI rats. This study provided novel options for TBI therapy.
Collapse
Affiliation(s)
- Kai Guo
- Department of Neurosurgery, Xingtai People's Hospital, Xingtai 054031, Hebei, PR China
| | - Xinyu Yao
- Department of Anesthesia, Xingtai People's Hospital, Xingtai 054031, Hebei, PR China
| | - Weijing Wu
- Department of Neurosurgery, Xingtai People's Hospital, Xingtai 054031, Hebei, PR China
| | - Ziyi Yu
- Department of Intensive Care Unit,Tangshan Worker Hospital, Tangshan 063000, Hebei, PR China
| | - Zhenzhong Li
- Department of Neurosurgery, Xingtai People's Hospital, Xingtai 054031, Hebei, PR China
| | - Zenglu Ma
- Department of Neurosurgery, Xingtai People's Hospital, Xingtai 054031, Hebei, PR China
| | - Dengxiang Liu
- Department of Radiotherapy, Xingtai People's Hospital, Xingtai 054031, Hebei, PR China.
| |
Collapse
|
14
|
Nash B, Festa L, Lin C, Meucci O. Opioid and chemokine regulation of cortical synaptodendritic damage in HIV-associated neurocognitive disorders. Brain Res 2019; 1723:146409. [PMID: 31465771 PMCID: PMC6766413 DOI: 10.1016/j.brainres.2019.146409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/20/2019] [Accepted: 08/25/2019] [Indexed: 01/17/2023]
Abstract
Human immunodeficiency virus (HIV)-associated neurocognitive disorders (HAND) persist despite effective antiretroviral therapies (ART). Evidence suggests that modern HAND is driven by subtle synaptodendritic damage in select brain regions, as ART-treated patients do not display overt neuronal death in postmortem brain studies. HAND symptoms are also aggravated by drug abuse, particularly with injection opioids. Opioid use produces region-specific synaptodendritic damage in similar brain regions, suggesting a convergent mechanism that may enhance HAND progression in opioid-using patients. Importantly, studies indicate that synaptodendritic damage and cognitive impairment in HAND may be reversible. Activation of the homeostatic chemokine receptor CXCR4 by its natural ligand CXCL12 positively regulates neuronal survival and dendritic spine density in cortical neurons, reducing functional deficits. However, the molecular mechanisms that underlie CXCR4, as well as opioid-mediated regulation of dendritic spines are not completely defined. Here, we will consolidate studies that describe the region-specific synaptodendritic damage in the cerebral cortex of patients and animal models of HAND, describe the pathways by which opioids may contribute to cortical synaptodendritic damage, and discuss the prospects of using the CXCR4 signaling pathway to identify new approaches to reverse dendritic spine deficits. Additionally, we will discuss novel research questions that have emerged from recent studies of CXCR4 and µ-opioid actions in the cortex. Understanding the pathways that underlie synaptodendritic damage and rescue are necessary for developing novel, effective therapeutics for this growing patient population.
Collapse
Affiliation(s)
- Bradley Nash
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA.
| | - Lindsay Festa
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA.
| | - Chihyang Lin
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA.
| | - Olimpia Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA; Department of Microbiology and Immunology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA.
| |
Collapse
|
15
|
Falcucci RM, Wertz R, Green JL, Meucci O, Salvino J, Fontana ACK. Novel Positive Allosteric Modulators of Glutamate Transport Have Neuroprotective Properties in an in Vitro Excitotoxic Model. ACS Chem Neurosci 2019; 10:3437-3453. [PMID: 31257852 DOI: 10.1021/acschemneuro.9b00061] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dysfunction of excitatory amino acid transporters (EAATs) has been implicated in the pathogenesis of various neurological disorders, such as stroke, brain trauma, epilepsy, and several neurodegenerative disorders. EAAT2 is the main transporter subtype responsible for glutamate clearance in the brain, and plays a key role in regulating neurotransmission and preventing excitotoxicity. Therefore, compounds that increase the activity of EAAT2 have therapeutic potential for neuroprotection. In previous studies, we used virtual screening approaches to identify novel positive allosteric modulators (PAMs) of EAAT2. These compounds were shown to selectively increase the activity of EAAT2 and increase Vmax of transport, without changing substrate affinity. In this work, our major effort was to investigate whether increasing the activity of EAAT2 by allosteric modulation would translate to neuroprotection in in vitro primary culture models of excitotoxicity. To investigate potential neuroprotective effects of one EAAT2 PAM, GT949, we subjected cultures to acute and prolonged excitotoxic insults by exogenous application of glutamate, or oxidative stress by application of hydrogen peroxide. GT949 administration did not result in neuroprotection in the oxidative stress model, likely due to damage of the glutamate transporters. However, GT949 displayed neuroprotective properties after acute and prolonged glutamate-mediated excitotoxicity. We propose that this compound prevents excess glutamate signaling by increasing the rate of glutamate clearance by EAAT2, thereby preventing excitotoxic damage and cell death. This novel class of compounds is therefore an innovative approach for neuroprotection with potential for translation in in vivo animal models of excitotoxicity.
Collapse
Affiliation(s)
- Romulo Martelli Falcucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Ryan Wertz
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Jennifer Leigh Green
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Olimpia Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Joseph Salvino
- The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Andréia Cristina Karklin Fontana
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| |
Collapse
|
16
|
Trettel F, Di Castro MA, Limatola C. Chemokines: Key Molecules that Orchestrate Communication among Neurons, Microglia and Astrocytes to Preserve Brain Function. Neuroscience 2019; 439:230-240. [PMID: 31376422 DOI: 10.1016/j.neuroscience.2019.07.035] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/01/2019] [Accepted: 07/19/2019] [Indexed: 12/19/2022]
Abstract
In the CNS, chemokines and chemokine receptors are involved in pleiotropic physiological and pathological activities. Several evidences demonstrated that chemokine signaling in the CNS plays key homeostatic roles and, being expressed on neurons, glia and endothelial cells, chemokines mediate the bidirectional cross-talk among parenchymal cells. An efficient communication between neurons and glia is crucial to establish and maintain a healthy brain environment which ensures normal functionality. Glial cells behave as active sensors of environmental changes induced by neuronal activity or detrimental insults, supporting and exerting neuroprotective activities. In this review we summarize the evidence that chemokines (CXCL12, CX3CL1, CXCL16 and CCL2) modulate neuroprotective processes upon different noxious stimuli and participate to orchestrate neurons-microglia-astrocytes action to preserve and limit brain damage. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.
Collapse
Affiliation(s)
- Flavia Trettel
- Department of Physiology and Pharmacology, laboratory affiliated to Istituto Pasteur Italia, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Maria Amalia Di Castro
- Department of Physiology and Pharmacology, laboratory affiliated to Istituto Pasteur Italia, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Cristina Limatola
- Department of Physiology and Pharmacology, laboratory affiliated to Istituto Pasteur Italia, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy; IRCCS Neuromed, Via Atinense 19, 86077, Pozzilli, Italy
| |
Collapse
|
17
|
Nash B, Tarn K, Irollo E, Luchetta J, Festa L, Halcrow P, Datta G, Geiger JD, Meucci O. Morphine-Induced Modulation of Endolysosomal Iron Mediates Upregulation of Ferritin Heavy Chain in Cortical Neurons. eNeuro 2019; 6:ENEURO.0237-19.2019. [PMID: 31300544 PMCID: PMC6675873 DOI: 10.1523/eneuro.0237-19.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 07/01/2019] [Indexed: 01/01/2023] Open
Abstract
HIV-associated neurocognitive disorders (HAND) remain prevalent and are aggravated by µ-opioid use. We have previously shown that morphine and other µ-opioids may contribute to HAND by inhibiting the homeostatic and neuroprotective chemokine receptor CXCR4 in cortical neurons, and this novel mechanism depends on upregulation of the protein ferritin heavy chain (FHC). Here, we examined the cellular events and potential mechanisms involved in morphine-mediated FHC upregulation using rat cortical neurons of either sex in vitro and in vivo. Morphine dose dependently increased FHC protein levels in primary neurons through µ-opioid receptor (µOR) and Gαi-protein signaling. Cytoplasmic FHC levels were significantly elevated, but nuclear FHC levels and FHC gene expression were unchanged. Morphine-treated rats also displayed increased FHC levels in layer 2/3 neurons of the prefrontal cortex. Importantly, both in vitro and in vivo FHC upregulation was accompanied by loss of mature dendritic spines, which was also dependent on µOR and Gαi-protein signaling. Moreover, morphine upregulated ferritin light chain (FLC), a component of the ferritin iron storage complex, suggesting that morphine altered neuronal iron metabolism. Indeed, prior to FHC upregulation, morphine increased cytoplasmic labile iron levels as a function of decreased endolysosomal iron. In line with this, chelation of endolysosomal iron (but not extracellular iron) blocked morphine-induced FHC upregulation and dendritic spine reduction, whereas iron overloading mimicked the effect of morphine on FHC and dendritic spines. Overall, these data demonstrate that iron mediates morphine-induced FHC upregulation and consequent dendritic spine deficits and implicate endolysosomal iron efflux to the cytoplasm in these effects.
Collapse
Affiliation(s)
- Bradley Nash
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Kevin Tarn
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Elena Irollo
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Jared Luchetta
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Lindsay Festa
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Peter Halcrow
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203
| | - Gaurav Datta
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203
| | - Jonathan D Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203
| | - Olimpia Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102
| |
Collapse
|
18
|
Raffo-Romero A, Arab T, Van Camp C, Lemaire Q, Wisztorski M, Franck J, Aboulouard S, Le Marrec-Croq F, Sautiere PE, Vizioli J, Salzet M, Lefebvre C. ALK4/5-dependent TGF-β signaling contributes to the crosstalk between neurons and microglia following axonal lesion. Sci Rep 2019; 9:6896. [PMID: 31053759 PMCID: PMC6499822 DOI: 10.1038/s41598-019-43328-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 04/15/2019] [Indexed: 01/01/2023] Open
Abstract
Neuronal activity is closely influenced by glia, especially microglia which are the resident immune cells in the central nervous system (CNS). Microglia in medicinal leech are the only cells able to migrate to the injury site within the 24 hours post-lesion. The microglia-neuron interactions constitute an important mechanism as there is neither astrocyte nor oligodendrocyte in the leech CNS. Given that axonal sprouting is impaired when microglia recruitment is inhibited, the crosstalk between microglia and neurons plays a crucial role in neuroprotection. The present results show that neurons and microglia both use ALK4/5 (a type of TGF-β receptor) signaling in order to maintain mutual exchanges in an adult brain following an axonal injury. Indeed, a TGF-β family member (nGDF) is immediately released by injured axons contributing to the early recruitment of ALK4/5+ microglia to the lesion site. Surprisingly, within the following hours, nGDF from microglia activates ALK4/5+ neurons to maintain a later microglia accumulation in lesion. Taken together, the results demonstrate that ALK4/5 signaling is essential throughout the response to the lesion in the leech CNS and gives a new insight in the understanding of this pathway. This latter is an important signal contributing to a correct sequential mobilization over time of microglia recruitment leading to axon regeneration.
Collapse
Affiliation(s)
- Antonella Raffo-Romero
- University Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France
- EURON - European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Tanina Arab
- University Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France
- EURON - European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Christelle Van Camp
- University Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France
- EURON - European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Quentin Lemaire
- University Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France
- EURON - European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Maxence Wisztorski
- University Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France
- EURON - European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Julien Franck
- University Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France
- EURON - European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Soulaimane Aboulouard
- University Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France
- EURON - European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Francoise Le Marrec-Croq
- University Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France
- EURON - European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Pierre-Eric Sautiere
- University Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France
- EURON - European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Jacopo Vizioli
- University Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France
- EURON - European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Michel Salzet
- University Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France
- EURON - European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Christophe Lefebvre
- University Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France.
- EURON - European Graduate School of Neuroscience, Maastricht, The Netherlands.
| |
Collapse
|
19
|
Bonham LW, Karch CM, Fan CC, Tan C, Geier EG, Wang Y, Wen N, Broce IJ, Li Y, Barkovich MJ, Ferrari R, Hardy J, Momeni P, Höglinger G, Müller U, Hess CP, Sugrue LP, Dillon WP, Schellenberg GD, Miller BL, Andreassen OA, Dale AM, Barkovich AJ, Yokoyama JS, Desikan RS. CXCR4 involvement in neurodegenerative diseases. Transl Psychiatry 2018; 8:73. [PMID: 29636460 PMCID: PMC5893558 DOI: 10.1038/s41398-017-0049-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 09/13/2017] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative diseases likely share common underlying pathobiology. Although prior work has identified susceptibility loci associated with various dementias, few, if any, studies have systematically evaluated shared genetic risk across several neurodegenerative diseases. Using genome-wide association data from large studies (total n = 82,337 cases and controls), we utilized a previously validated approach to identify genetic overlap and reveal common pathways between progressive supranuclear palsy (PSP), frontotemporal dementia (FTD), Parkinson's disease (PD) and Alzheimer's disease (AD). In addition to the MAPT H1 haplotype, we identified a variant near the chemokine receptor CXCR4 that was jointly associated with increased risk for PSP and PD. Using bioinformatics tools, we found strong physical interactions between CXCR4 and four microglia related genes, namely CXCL12, TLR2, RALB, and CCR5. Evaluating gene expression from post-mortem brain tissue, we found that expression of CXCR4 and microglial genes functionally related to CXCR4 was dysregulated across a number of neurodegenerative diseases. Furthermore, in a mouse model of tauopathy, expression of CXCR4 and functionally associated genes was significantly altered in regions of the mouse brain that accumulate neurofibrillary tangles most robustly. Beyond MAPT, we show dysregulation of CXCR4 expression in PSP, PD, and FTD brains, and mouse models of tau pathology. Our multi-modal findings suggest that abnormal signaling across a 'network' of microglial genes may contribute to neurodegeneration and may have potential implications for clinical trials targeting immune dysfunction in patients with neurodegenerative diseases.
Collapse
Affiliation(s)
- Luke W. Bonham
- 0000 0001 2297 6811grid.266102.1Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA USA
| | - Celeste M. Karch
- 0000 0001 2355 7002grid.4367.6Department of Psychiatry, Washington University, St. Louis, MO USA
| | - Chun C. Fan
- 0000 0001 2107 4242grid.266100.3Department of Cognitive Sciences, University of California, San Diego, La Jolla, CA USA
| | - Chin Tan
- 0000 0001 2297 6811grid.266102.1Department of Radiology and Biomedical Imaging, Neuroradiology Section, University of California, San Francisco, San Francisco, CA USA
| | - Ethan G. Geier
- 0000 0001 2297 6811grid.266102.1Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA USA
| | - Yunpeng Wang
- 0000 0004 0389 8485grid.55325.34NORMENT; Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Natalie Wen
- 0000 0001 2355 7002grid.4367.6Department of Psychiatry, Washington University, St. Louis, MO USA
| | - Iris J. Broce
- 0000 0001 2297 6811grid.266102.1Department of Radiology and Biomedical Imaging, Neuroradiology Section, University of California, San Francisco, San Francisco, CA USA
| | - Yi Li
- 0000 0001 2297 6811grid.266102.1Department of Radiology and Biomedical Imaging, Neuroradiology Section, University of California, San Francisco, San Francisco, CA USA
| | - Matthew J. Barkovich
- 0000 0001 2297 6811grid.266102.1Department of Radiology and Biomedical Imaging, Neuroradiology Section, University of California, San Francisco, San Francisco, CA USA
| | - Raffaele Ferrari
- 0000000121901201grid.83440.3bDepartment of Molecular Neuroscience, Institute of Neurology, UCL, London, UK
| | - John Hardy
- 0000000121901201grid.83440.3bDepartment of Molecular Neuroscience, Institute of Neurology, UCL, London, UK
| | - Parastoo Momeni
- 0000 0001 2179 3554grid.416992.1Department of Internal Medicine, Laboratory of Neurogenetics, Texas Tech University Health Science Center, Lubbock, TX USA
| | - Günter Höglinger
- 0000 0004 0438 0426grid.424247.3Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,0000000123222966grid.6936.aDepartment of Neurology, Technical University of Munich; Munich Cluster for Systems Neurology SyNergy, Munich, Germany
| | - Ulrich Müller
- 0000 0001 2165 8627grid.8664.cInstitut for Humangenetik, Justus-Liebig-Universität, Giessen, Germany
| | - Christopher P. Hess
- 0000 0001 2297 6811grid.266102.1Department of Radiology and Biomedical Imaging, Neuroradiology Section, University of California, San Francisco, San Francisco, CA USA
| | - Leo P. Sugrue
- 0000 0001 2297 6811grid.266102.1Department of Radiology and Biomedical Imaging, Neuroradiology Section, University of California, San Francisco, San Francisco, CA USA
| | - William P. Dillon
- 0000 0001 2297 6811grid.266102.1Department of Radiology and Biomedical Imaging, Neuroradiology Section, University of California, San Francisco, San Francisco, CA USA
| | - Gerard D. Schellenberg
- 0000 0004 1936 8972grid.25879.31Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA
| | - Bruce L. Miller
- 0000 0001 2297 6811grid.266102.1Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA USA
| | - Ole A. Andreassen
- 0000 0004 0389 8485grid.55325.34NORMENT; Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Anders M. Dale
- 0000 0001 2107 4242grid.266100.3Department of Cognitive Sciences, University of California, San Diego, La Jolla, CA USA ,0000 0001 2107 4242grid.266100.3Department of Neurosciences and Radiology, University of California, San Diego, La Jolla, CA USA
| | - A. James Barkovich
- 0000 0001 2297 6811grid.266102.1Department of Radiology and Biomedical Imaging, Neuroradiology Section, University of California, San Francisco, San Francisco, CA USA
| | - Jennifer S. Yokoyama
- 0000 0001 2297 6811grid.266102.1Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA USA
| | - Rahul S. Desikan
- 0000 0001 2297 6811grid.266102.1Department of Radiology and Biomedical Imaging, Neuroradiology Section, University of California, San Francisco, San Francisco, CA USA
| | | | | | | |
Collapse
|
20
|
Abe P, Wüst HM, Arnold SJ, van de Pavert SA, Stumm R. CXCL12-mediated feedback from granule neurons regulates generation and positioning of new neurons in the dentate gyrus. Glia 2018. [PMID: 29537098 DOI: 10.1002/glia.23324] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adult hippocampal neurogenesis is implicated in learning and memory processing. It is tightly controlled at several levels including progenitor proliferation as well as migration, differentiation and integration of new neurons. Hippocampal progenitors and immature neurons reside in the subgranular zone (SGZ) and are equipped with the CXCL12-receptor CXCR4 which contributes to defining the SGZ as neurogenic niche. The atypical CXCL12-receptor CXCR7 functions primarily by sequestering extracellular CXCL12 but whether CXCR7 is involved in adult neurogenesis has not been assessed. We report that granule neurons (GN) upregulate CXCL12 and CXCR7 during dentate gyrus maturation in the second postnatal week. To test whether GN-derived CXCL12 regulates neurogenesis and if neuronal CXCR7 receptors influence this process, we conditionally deleted Cxcl12 and Cxcr7 from the granule cell layer. Cxcl12 deletion resulted in lower numbers, increased dispersion and abnormal dendritic growth of immature GN and reduced neurogenesis. Cxcr7 ablation caused an increase in progenitor proliferation and progenitor numbers and reduced dispersion of immature GN. Thus, we provide a new mechanism where CXCL12-signals from GN prevent dispersion and support maturation of newborn GN. CXCR7 receptors of GN modulate the CXCL12-mediated feedback from GN to the neurogenic niche.
Collapse
Affiliation(s)
- Philipp Abe
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, 07747, Germany
| | - Hannah M Wüst
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, 07747, Germany
| | - Sebastian J Arnold
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,BIOSS Centre of Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Serge A van de Pavert
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Ralf Stumm
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, 07747, Germany
| |
Collapse
|
21
|
Chalichem NSS, Sai Kiran PSS, Basavan D. Possible role of DPP4 inhibitors to promote hippocampal neurogenesis in Alzheimer’s disease. J Drug Target 2018; 26:670-675. [DOI: 10.1080/1061186x.2018.1433682] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nehru Sai Suresh Chalichem
- Department of Pharmacognosy and Phytopharmacy, JSS College of Pharmacy (Constituent College of JSS Academy of Higher Education and Research, Mysuru), Ooty, India
| | - Pindiprolu S. S. Sai Kiran
- Department of Pharmacology, JSS College of Pharmacy (Constituent College of JSS Academy of Higher Education and Research, Mysuru), Ooty, India
| | - Duraiswamy Basavan
- Department of Pharmacognosy and Phytopharmacy, JSS College of Pharmacy (Constituent College of JSS Academy of Higher Education and Research, Mysuru), Ooty, India
| |
Collapse
|
22
|
Bagheri V, Khorramdelazad H, Hassanshahi G, Moghadam-Ahmadi A, Vakilian A. CXCL12 and CXCR4 in the Peripheral Blood of Patients with Parkinson's Disease. Neuroimmunomodulation 2018; 25:201-205. [PMID: 30428473 DOI: 10.1159/000494435] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/09/2018] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The role of CXCL12 and its receptor CXCR4 has not been fully examined in Parkinson's disease (PD). The purpose of this study was to investigate the role of CXCL12/CXCR4 in the peripheral blood of patients with PD and healthy controls. METHODS CXCL12 serum levels and CXCR4 mRNA levels were measured in 30 PD patients and 40 controls using ELISA and real-time PCR, respectively. RESULTS CXCL12 serum levels were significantly higher in PD patients compared to controls (p < 0.0001). Moreover, CXCR4 expression in peripheral blood mononuclear cells (PBMC) of PD patients was significantly increased compared to controls (p < 0.0001). CONCLUSIONS Our findings provide new information on the expression of CXCL12/CXCR4 in PD. CXCR4 expression in PBMC or CXCL12 serum levels may be potential biomarkers of inflammation in PD patients.
Collapse
Affiliation(s)
- Vahid Bagheri
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hossein Khorramdelazad
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Gholamhossein Hassanshahi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Amir Moghadam-Ahmadi
- Non-Communicable Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Geriatric Care Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Alireza Vakilian
- Geriatric Care Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran,
- Department of Neurology, Ali-ebn-Abitaleb Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran,
| |
Collapse
|
23
|
Wang B, Shen J, Wang J. UNBS5162 inhibits proliferation of human retinoblastoma cells by promoting cell apoptosis. Onco Targets Ther 2017; 10:5303-5309. [PMID: 29158682 PMCID: PMC5683769 DOI: 10.2147/ott.s145518] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Human retinoblastomas are malignant intraocular tumors and have a high incidence in children. Chemotherapy combined with local therapy is the principal means of retinoblastoma treatment, the application of which has saved the eye of many children and avoided external irradiation. UNBS5162, a naphthalimide, has broad prospects as a tumor treatment, with fewer toxic side effects and higher cancer-suppression efficiency. However, the efficacy of UNBS5162 in human retinoblastomas is still not clear. In the present study, we investigated the specific mechanism of UNBS5162 in the human retinoblastoma cell lines WERIRb1 and Y79. Compared with a negative-control (NC) group, UNBS5162 treatment for 72 hours significantly decreased cell proliferation; meanwhile, more apoptotic cells were observed in the UNBS5162-treated group (27.1% in WERIRb1, 20.83% in Y79) than in the NC group (11.59% in WERIRb1, 12.89% in Y79). We also found caspase 3 p17 and Bax expression to be upregulated and Bcl2 downregulated significantly in UNBS5162-treated WERIRb1 and Y79 cells. The effects of UNBS5162 on human retinoblastoma cells may be regulated by the Akt–mTOR pathway. We found expression of the Akt pathway and key proliferation-related genes – those for p-Akt, p-mTOR, p70, and cyclin D1 – were downregulated significantly in the UNBS5162-treated group compared with the NC group in WERIRb1 and Y79. Therefore, for the first time, we demonstrated that UNBS5162 can inhibit proliferation and promote apoptosis of human retinoblastoma cells by regulating activity of the Akt–mTOR pathway in vitro, suggesting the potential value of UNBS5162 in treatment for human retinoblastoma.
Collapse
Affiliation(s)
- Bing Wang
- Department of Ophthalmology, The Provincial Hospital Affiliated To Shandong University, Jinan, China
| | - Jiaquan Shen
- Department of Ophthalmology, The Provincial Hospital Affiliated To Shandong University, Jinan, China
| | - Jue Wang
- Department of Ophthalmology, The Provincial Hospital Affiliated To Shandong University, Jinan, China
| |
Collapse
|
24
|
Cheng X, Wang H, Zhang X, Zhao S, Zhou Z, Mu X, Zhao C, Teng W. The Role of SDF-1/CXCR4/CXCR7 in Neuronal Regeneration after Cerebral Ischemia. Front Neurosci 2017; 11:590. [PMID: 29123467 PMCID: PMC5662889 DOI: 10.3389/fnins.2017.00590] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 10/09/2017] [Indexed: 01/06/2023] Open
Abstract
Stromal cell-derived factor-1 is a chemoattractant produced by bone marrow stromal cell lines. It is recognized as a critical factor in the immune and central nervous systems (CNSs) as well as exerting a role in cancer. SDF-1 activates two G protein-coupled receptors, CXCR4 and CXCR7; these are expressed in both developing and mature CNSs and participate in multiple physiological and pathological events, e.g., inflammatory response, neurogenesis, angiogenesis, hematopoiesis, cancer metastasis, and HIV infection. After an ischemic stroke, SDF-1 levels robustly increase in the penumbra regions and participate in adult neural functional repair. Here we will review recent findings about SDF-1 and its receptor, analyse their functions in neurogeneration after brain ischemic injury: i.e., how the system promotes the proliferation, differentiation and migration of neural precursor cells and mediates axonal elongation and branching.
Collapse
Affiliation(s)
- Xi Cheng
- Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Huibin Wang
- Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Xiuchun Zhang
- Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Shanshan Zhao
- Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Zhike Zhou
- Geriatrics, The First Hospital of China Medical University, Shenyang, China
| | - Xiaopeng Mu
- Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Chuansheng Zhao
- Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Weiyu Teng
- Neurology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
25
|
Abstract
Human immunodeficiency virus (HIV) infection induces neuronal injuries, with almost 50% of infected individuals developing HIV-associated neurocognitive disorders (HAND). Although highly activate antiretroviral therapy (HAART) has significantly reduced the incidence of severe dementia, the overall prevalence of HAND remains high. Synaptic degeneration is emerging as one of the most relevant neuropathologies associate with HAND. Previous studies have reported critical roles of viral proteins and inflammatory responses in this pathogenesis. Infected cells, including macrophages, microglia and astrocytes, may release viral proteins and other neurotoxins to stimulate neurons and cause excessive calcium influx, overproduction of free radicals and disruption of neurotransmitter hemostasis. The dysregulation of neural circuits likely leads to synaptic damage and loss. Identification of the specific mechanism of the synaptic degeneration may facilitate the development of effective therapeutic approaches to treat HAND.
Collapse
Affiliation(s)
- Wenjuan Ru
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Shao-Jun Tang
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
26
|
Shen J, Chen B, Zheng GR, Qiu SZ, Yin HM, Mao W, Wang HX, Gao JB. Detection of high serum concentration of CXC chemokine ligand-12 in acute intracerebral hemorrhage. Clin Chim Acta 2017; 471:55-61. [PMID: 28526531 DOI: 10.1016/j.cca.2017.05.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 05/11/2017] [Accepted: 05/15/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND CXC chemokine ligand-12 (CXCL12), a member of the CXC chemokine subfamily, is involved in both focal angiogenesis and inflammatory reactions. We examined serum CXCL12 concentration in intracerebral hemorrhage (ICH) patients and its correlation to stroke severity and outcome. METHODS The study was carried out on 105 ICH patients on 105 healthy controls. Serum samples were at admission obtained to measure CXCL12 concentrations. The National Institutes of Health Stroke Scale (NIHSS) and hematoma volume were recorded to assess stroke severity. RESULTS As compared to the controls, CXCL12 concentrations were significantly increased in the patients. Also, non-survivors within 6months and patients with an unfavorable outcome (modified Rankin Scale score>2) at 6months had higher CXCL12 concentrations than other remaining ones. CXCL12 concentrations had positive correlation with NIHSS scores and hematoma volume. Serum CXCL12 significantly discriminated patients at risk of 6-month mortality and 6-month unfavorable outcome under receiver operating characteristic curve. Moreover, serum CXCL12 was independently associated with the mortality, overall survival and unfavorable outcome. CONCLUSIONS Serum CXCL12 concentrations are enhanced after ICH and CXCL12 in serum has the potential to reflect severity and prognosis following hemorrhagic stroke.
Collapse
Affiliation(s)
- Jia Shen
- Department of Neurosurgery, The First People's Hospital of Fuyang District of Hangzhou City, 429 Beihuan Road, Fuyang District, Hangzhou 311400, China
| | - Bin Chen
- Department of Neurosurgery, The First People's Hospital of Fuyang District of Hangzhou City, 429 Beihuan Road, Fuyang District, Hangzhou 311400, China
| | - Guan-Rong Zheng
- Department of Neurosurgery, The First People's Hospital of Fuyang District of Hangzhou City, 429 Beihuan Road, Fuyang District, Hangzhou 311400, China
| | - Shen-Zhong Qiu
- Department of Neurosurgery, The First People's Hospital of Fuyang District of Hangzhou City, 429 Beihuan Road, Fuyang District, Hangzhou 311400, China.
| | - Huai-Ming Yin
- Department of Neurosurgery, The First People's Hospital of Fuyang District of Hangzhou City, 429 Beihuan Road, Fuyang District, Hangzhou 311400, China
| | - Wei Mao
- Department of Neurosurgery, The First People's Hospital of Fuyang District of Hangzhou City, 429 Beihuan Road, Fuyang District, Hangzhou 311400, China
| | - Hong-Xiang Wang
- Department of Neurology, The First People's Hospital of Fuyang District of Hangzhou City, 429 Beihuan Road, Fuyang District, Hangzhou 311400, China
| | - Jian-Bo Gao
- Department of Emergency Medicine, The First People's Hospital of Fuyang District of Hangzhou City, 429 Beihuan Road, Fuyang District, Hangzhou 311400, China
| |
Collapse
|
27
|
Merino JJ, Garcimartín A, López-Oliva ME, Benedí J, González MP. The Impact of CXCR4 Blockade on the Survival of Rat Brain Cortical Neurons. Int J Mol Sci 2016; 17:E2005. [PMID: 27916896 PMCID: PMC5187805 DOI: 10.3390/ijms17122005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Chemokine receptor type 4 (CXCR4) plays a role in neuronal survival/cell repair and also contributes to the progression of cancer and neurodegenerative diseases. Chemokine ligand 12 (CXCL12) binds to CXCR4. In this study, we have investigated whether CXCR4 blockade by AMD3100 (a CXCR4 antagonist, member of bicyclam family) may affect neuronal survival in the absence of insult. Thus, we have measured the mitochondrial membrane potential (MMP), Bax and Bcl-2 protein translocation, and cytochrome c release in AMD3100-treated brain cortical neurons at 7 DIV (days in vitro). METHODS For this aim, AMD3100 (200 nM) was added to cortical neurons for 24 h, and several biomarkers like cell viability, reactive oxygen species (ROS) generation, lactate dehydrogenase (LDH) release, caspase-3/9 activity, proteins Bax and Bcl-2 translocation, and cytochrome c release were analyzed by immunoblot. RESULTS CXCR4 blockade by AMD3100 (200 nM, 24 h) induces mitochondrial hyperpolarization and increases caspase-3/9 hyperpolarization without affecting LDH release as compared to untreated controls. AMD3100 also increases cytochrome c release and promotes Bax translocation to the mitochondria, whereas it raises cytosolic Bcl-2 levels in brain cortical neurons. CONCLUSION CXCR4 blockade induces cellular death via intrinsic apoptosis in rat brain cortical neurons in absence of insult.
Collapse
Affiliation(s)
- José Joaquín Merino
- Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense de Madrid (U.C.M.), Ciudad Universitaria, 28040 Madrid, Spain.
- Instituto de Investigación Neuroquímica (I.U.I.N.), Universidad Complutense de Madrid (U.C.M.), Ciudad Universitaria, 28040 Madrid, Spain.
| | - Alba Garcimartín
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid (U.C.M.), Ciudad Universitaria, 28040 Madrid, Spain.
| | - María Elvira López-Oliva
- Sección Departamental de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid (U.C.M.), Ciudad Universitaria, 28040 Madrid, Spain.
| | - Juana Benedí
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid (U.C.M.), Ciudad Universitaria, 28040 Madrid, Spain.
| | - María Pilar González
- Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense de Madrid (U.C.M.), Ciudad Universitaria, 28040 Madrid, Spain.
| |
Collapse
|
28
|
Sanchez AB, Medders KE, Maung R, Sánchez-Pavón P, Ojeda-Juárez D, Kaul M. CXCL12-induced neurotoxicity critically depends on NMDA receptor-gated and L-type Ca 2+ channels upstream of p38 MAPK. J Neuroinflammation 2016; 13:252. [PMID: 27664068 PMCID: PMC5035480 DOI: 10.1186/s12974-016-0724-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/16/2016] [Indexed: 11/25/2022] Open
Abstract
Background The chemokine receptor CXCR4 (CD184) and its natural ligand CXCL12 contribute to many physiological processes, including decisions about cell death and survival in the central nervous system. In addition, CXCR4 is a co-receptor for human immunodeficiency virus (HIV)-1 and mediates the neurotoxicity of the viral envelope protein gp120. However, we previously observed that CXCL12 also causes toxicity in cerebrocortical neurons but the cellular mechanism remained incompletely defined. Methods Primary neuronal-glial cerebrocortical cell cultures from rat were exposed to a neurotoxicity-inducing CXCL12 concentration for different times and the activity of the stress-associated mitogen-activated protein kinase p38 (p38 MAPK) was assessed using an in vitro kinase assay. Neurotoxicity of CXCL12 and cellular localization of p38 MAPK was analyzed by immunofluorescence microscopy. Pharmacological inhibition of NMDA-type glutamate receptor-gated ion channels (NMDAR) of l-type Ca2+ channels was employed during 12- and 24-h exposure to neurotoxic amounts of CXCL12 to study the effects on active p38 MAPK and neuronal survival by Western blotting and microscopy, respectively. Neurotoxicity of CXCL12 was also assessed during pharmacological inhibition of p38 MAPK. Results Here, we show that a neurotoxic amount of CXCL12 triggers a significant increase of endogenous p38 MAPK activity in cerebrocortical cells. Immunofluorescence and Western blotting experiments with mixed neuronal-glial and neuron-depleted glial cerebrocortical cells revealed that the majority of active/phosphorylated p38 MAPK was located in neurons. Blockade of NMDAR-gated ion channels or l-type Ca2+ channels both abrogated an increase of active p38 MAPK and toxicity of CXCL12 in cerebrocortical neurons. Inhibition of l-type Ca2+ channels with nimodipine kept the active kinase at levels not significantly different from baseline while blocking NMDAR with MK-801 strongly reduced phosphorylated p38 MAPK below baseline. Finally, we confirmed that directly blocking p38 MAPK also abrogated neurotoxicity of CXCL12. Conclusions Our findings link CXCL12-induced neuronal death to the regulation of NMDAR-gated ion channels and l-type Ca2+ channels upstream of p38 MAPK activation.
Collapse
Affiliation(s)
- Ana B Sanchez
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, Bldg. 10, La Jolla, CA, 92037, USA
| | - Kathryn E Medders
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, Bldg. 10, La Jolla, CA, 92037, USA.,Present address: UC San Diego Health, 200 W. Arbor Drive #8765, San Diego, CA, 92103, USA
| | - Ricky Maung
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, Bldg. 10, La Jolla, CA, 92037, USA
| | - Paloma Sánchez-Pavón
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, Bldg. 10, La Jolla, CA, 92037, USA
| | - Daniel Ojeda-Juárez
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, Bldg. 10, La Jolla, CA, 92037, USA
| | - Marcus Kaul
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, Bldg. 10, La Jolla, CA, 92037, USA. .,Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, San Diego, CA, 92093, USA.
| |
Collapse
|
29
|
Calinescu AA, Yadav VN, Carballo E, Kadiyala P, Tran D, Zamler DB, Doherty R, Srikanth M, Lowenstein PR, Castro MG. Survival and Proliferation of Neural Progenitor-Derived Glioblastomas Under Hypoxic Stress is Controlled by a CXCL12/CXCR4 Autocrine-Positive Feedback Mechanism. Clin Cancer Res 2016; 23:1250-1262. [PMID: 27542769 DOI: 10.1158/1078-0432.ccr-15-2888] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 07/15/2016] [Accepted: 08/01/2016] [Indexed: 12/31/2022]
Abstract
Purpose: One likely cause of treatment failure in glioblastoma is the persistence of glioma stem-like cells (GSLCs) which are highly resistant to therapies currently employed. We found that CXCL12 has highest expression in glioma cells derived from neural progenitor cells (NPC). The development and molecular signature of NPC-derived glioblastomas were analyzed and the therapeutic effect of blocking CXCL12 was tested.Experimental Design: Tumors were induced by injecting DNA into the lateral ventricle of neonatal mice, using the Sleeping Beauty transposase method. Histology and expression of GSLC markers were analyzed during disease progression. Survival upon treatment with pharmacologic (plerixafor) or genetic inhibition of CXCR4 was analyzed. Primary neurospheres were generated and analyzed for proliferation, apoptosis, and expression of proteins regulating survival and cell-cycle progression.Results: Tumors induced from NPCs display histologic features of human glioblastoma and express markers of GSLC. In vivo, inhibiting the CXCL12/CXCR4 signaling axis results in increased survival of tumor-bearing animals. In vitro, CXCR4 blockade induces apoptosis and inhibits cell-cycle progression, downregulates molecules regulating survival and proliferation, and also blocks the hypoxic induction of HIF-1α and CXCL12. Exogenous administration of CXCL12 rescues the drug-induced decrease in proliferation.Conclusions: This study demonstrates that the CXCL12/CXCR4 axis operates in glioblastoma cells under hypoxic stress via an autocrine-positive feedback mechanism, which promotes survival and cell-cycle progression. Our study brings new mechanistic insight and encourages further exploration of the use of drugs blocking CXCL12 as adjuvant agents to target hypoxia-induced glioblastoma progression, prevent resistance to treatment, and recurrence of the disease. Clin Cancer Res; 23(5); 1250-62. ©2016 AACR.
Collapse
Affiliation(s)
| | - Viveka Nand Yadav
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Erica Carballo
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Padma Kadiyala
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Dustin Tran
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Daniel B Zamler
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Robert Doherty
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Maithreyi Srikanth
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Pedro Ricardo Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Maria Graciela Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan. .,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
30
|
A High-Throughput Cell-Based Screen Identified a 2-[(E)-2-Phenylvinyl]-8-Quinolinol Core Structure That Activates p53. PLoS One 2016; 11:e0154125. [PMID: 27124407 PMCID: PMC4849654 DOI: 10.1371/journal.pone.0154125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 04/09/2016] [Indexed: 02/07/2023] Open
Abstract
p53 function is frequently inhibited in cancer either through mutations or by increased degradation via MDM2 and/or E6AP E3-ubiquitin ligases. Most agents that restore p53 expression act by binding MDM2 or E6AP to prevent p53 degradation. However, fewer compounds directly bind to and activate p53. Here, we identified compounds that shared a core structure that bound p53, caused nuclear localization of p53 and caused cell death. To identify these compounds, we developed a novel cell-based screen to redirect p53 degradation to the Skip-Cullin-F-box (SCF) ubiquitin ligase complex in cells expressing high levels of p53. In a multiplexed assay, we coupled p53 targeted degradation with Rb1 targeted degradation in order to identify compounds that prevented p53 degradation while not inhibiting degradation through the SCF complex or other proteolytic machinery. High-throughput screening identified several leads that shared a common 2-[(E)-2-phenylvinyl]-8-quinolinol core structure that stabilized p53. Surface plasmon resonance analysis indicated that these compounds bound p53 with a KD of 200 ± 52 nM. Furthermore, these compounds increased p53 nuclear localization and transcription of the p53 target genes PUMA, BAX, p21 and FAS in cancer cells. Although p53-null cells had a 2.5±0.5-fold greater viability compared to p53 wild type cells after treatment with core compounds, loss of p53 did not completely rescue cell viability suggesting that compounds may target both p53-dependent and p53-independent pathways to inhibit cell proliferation. Thus, we present a novel, cell-based high-throughput screen to identify a 2-[(E)-2-phenylvinyl]-8-quinolinol core structure that bound to p53 and increased p53 activity in cancer cells. These compounds may serve as anti-neoplastic agents in part by targeting p53 as well as other potential pathways.
Collapse
|
31
|
Elevation of serum CXC chemokine ligand-12 levels predicts poor outcome after aneurysmal subarachnoid hemorrhage. J Neurol Sci 2016; 362:53-8. [DOI: 10.1016/j.jns.2016.01.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/10/2016] [Accepted: 01/14/2016] [Indexed: 11/23/2022]
|
32
|
Chen TJ, Wu WQ, Ying GR, Fu QY, Xiong K. Serum CXCL12 concentration in patients with severe traumatic brain injury are associated with mortality. Clin Chim Acta 2016; 454:6-9. [DOI: 10.1016/j.cca.2015.12.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 12/22/2015] [Accepted: 12/22/2015] [Indexed: 02/06/2023]
|
33
|
Zilkha-Falb R, Kaushansky N, Kawakami N, Ben-Nun A. Post-CNS-inflammation expression of CXCL12 promotes the endogenous myelin/neuronal repair capacity following spontaneous recovery from multiple sclerosis-like disease. J Neuroinflammation 2016; 13:7. [PMID: 26747276 PMCID: PMC4706716 DOI: 10.1186/s12974-015-0468-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 12/26/2015] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Demyelination and axonal degeneration, hallmarks of multiple sclerosis (MS), are associated with the central nervous system (CNS) inflammation facilitated by C-X-C motif chemokine 12 (CXCL12) chemokine. Both in MS and in experimental autoimmune encephalomyelitis (EAE), the deleterious CNS inflammation has been associated with upregulation of CXCL12 expression in the CNS. We investigated the expression dynamics of CXCL12 in the CNS with progression of clinical EAE and following spontaneous recovery, with a focus on CXCL12 expression in the hippocampal neurogenic dentate gyrus (DG) and in the corpus callosum (CC) of spontaneously recovered mice, and its potential role in promoting the endogenous myelin/neuronal repair capacity. METHODS CNS tissue sections from mice with different clinical EAE phases or following spontaneous recovery and in vitro differentiated adult neural stem cell cultures were analyzed by immunofluorescent staining and confocal imaging for detecting and enumerating neuronal progenitor cells (NPCs) and oligodendrocyte precursor cells (OPCs) and for expression of CXCL12. RESULTS Our expression dynamics analysis of CXCL12 in the CNS with EAE progression revealed elevated CXCL12 expression in the DG and CC, which persistently increases following spontaneous recovery even though CNS inflammation has subsided. Correspondingly, the numbers of NPCs and OPCs in the DG and CC, respectively, of EAE-recovered mice increased compared to that of naïve mice (NPCs, p < 0.0001; OPCs, p < 0.00001) or mice with active disease (OPCs, p < 0.0005). Notably, about 30 % of the NPCs and unexpectedly also OPCs (~50 %) express CXCL12, and their numbers in DG and CC, respectively, are higher in EAE-recovered mice compared with naïve mice and also compared with mice with ongoing clinical EAE (CXCL12(+) NPCs, p < 0.005; CXCL12(+) OPCs, p < 0.0005). Moreover, a significant proportion (>20 %) of the CXCL12(+) NPCs and OPCs co-express the CXCL12 receptor, CXCR4, and their numbers significantly increase with recovery from EAE not only relative to naïve mice (p < 0.0002) but also to mice with ongoing EAE (p < 0.004). CONCLUSIONS These data link CXCL12 expression in the DG and CC of EAE-recovering mice to the promotion of neuro/oligodendrogenesis generating CXCR4(+) CXCL12(+) neuronal and oligodendrocyte progenitor cells endowed with intrinsic neuro/oligondendroglial differentiation potential. These findings highlight the post-CNS-inflammation role of CXCL12 in augmenting the endogenous myelin/neuronal repair capacity in MS-like disease, likely via CXCL12/CXCR4 autocrine signaling.
Collapse
Affiliation(s)
- Rina Zilkha-Falb
- Present address: Multiple Sclerosis Center, Neurogenomics Laboratory, Sheba Medical Center, Tel-Hashomer, Israel.
| | - Nathali Kaushansky
- Department of Immunology, The Weizmann Institute of Science, 234 Herzl Street, Rehovot, 7610001, Israel
| | - Naoto Kawakami
- Institute of Clinical Neuroimmunology, Ludwig-Maximilians-University, 81377, Munich, Germany.
| | - Avraham Ben-Nun
- Department of Immunology, The Weizmann Institute of Science, 234 Herzl Street, Rehovot, 7610001, Israel.
| |
Collapse
|
34
|
Khorramdelazad H, Bagheri V, Hassanshahi G, Zeinali M, Vakilian A. New insights into the role of stromal cell-derived factor 1 (SDF-1/CXCL12) in the pathophysiology of multiple sclerosis. J Neuroimmunol 2016; 290:70-5. [PMID: 26711573 DOI: 10.1016/j.jneuroim.2015.11.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/16/2015] [Accepted: 11/23/2015] [Indexed: 12/28/2022]
|
35
|
Induction of Interleukin-1β by Human Immunodeficiency Virus-1 Viral Proteins Leads to Increased Levels of Neuronal Ferritin Heavy Chain, Synaptic Injury, and Deficits in Flexible Attention. J Neurosci 2015. [PMID: 26203149 DOI: 10.1523/jneurosci.4403-14.2015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Synaptodendritic pruning and alterations in neurotransmission are the main underlying causes of HIV-associated neurocognitive disorders (HAND). Our studies in humans and nonhuman primates indicated that the protein ferritin heavy chain (FHC) is a critical player in neuronal changes and ensuing cognitive deficit observed in these patients. Here we focus on the effect of HIV proteins and inflammatory cytokines implicated in HAND on neuronal FHC levels, dendritic changes, and neurocognitive behavior. In two well characterized models of HAND (HIV transgenic and gp120-treated rats), we report reductions in spine density and dendritic branches in prefrontal cortex pyramidal neurons compared with age-matched controls. FHC brain levels are elevated in these animals, which also show deficits in reversal learning. Moreover, IL-1β, TNF-α, and HIV gp120 upregulate FHC in rat cortical neurons. However, although the inflammatory cytokines directly altered neuronal FHC, gp120 only caused significant FHC upregulation in neuronal/glial cocultures, suggesting that glia are necessary for sustained elevation of neuronal FHC by the viral protein. Although the envelope protein induced secretion of IL-1β and TNF-α in cocultures, TNF-α blockade did not affect gp120-mediated induction of FHC. Conversely, studies with an IL-1β neutralizing antibody or specific IL-1 receptor antagonist revealed the primary involvement of IL-1β in gp120-induced FHC changes. Furthermore, silencing of neuronal FHC abrogates the effect of gp120 on spines, and spine density correlates negatively with FHC levels or cognitive deficit. These results demonstrate that viral and host components of HIV infection increase brain expression of FHC, leading to cellular and functional changes, and point to IL-1β-targeted strategies for prevention of these alterations. Significance statement: This work demonstrates the key role of the cytokine IL-1β in the regulation of a novel intracellular mediator [i.e., the protein ferritin heavy chain (FHC)] of HIV-induced dendritic damage and the resulting neurocognitive impairment. This is also the first study that systematically investigates dendritic damage in layer II/III prefrontal cortex neurons of two different non-infectious models of HIV-associated neurocognitive disorders (HAND) and reveals a precise correlation of these structural changes with specific biochemical and functional alterations also reported in HIV patients. Overall, these data suggest that targeting the IL-1β-dependent FHC increase may represent a valid strategy for neuroprotective adjuvant therapies in HAND.
Collapse
|
36
|
Toyoda H, Miyagawa T, Koike A, Kanbayashi T, Imanishi A, Sagawa Y, Kotorii N, Kotorii T, Hashizume Y, Ogi K, Hiejima H, Kamei Y, Hida A, Miyamoto M, Imai M, Fujimura Y, Tamura Y, Ikegami A, Wada Y, Moriya S, Furuya H, Takeuchi M, Kirino Y, Meguro A, Remmers EF, Kawamura Y, Otowa T, Miyashita A, Kashiwase K, Khor SS, Yamasaki M, Kuwano R, Sasaki T, Ishigooka J, Kuroda K, Kume K, Chiba S, Yamada N, Okawa M, Hirata K, Mizuki N, Uchimura N, Shimizu T, Inoue Y, Honda Y, Mishima K, Honda M, Tokunaga K. A polymorphism in CCR1/CCR3 is associated with narcolepsy. Brain Behav Immun 2015; 49:148-55. [PMID: 25986216 DOI: 10.1016/j.bbi.2015.05.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/01/2015] [Accepted: 05/08/2015] [Indexed: 11/28/2022] Open
Abstract
Etiology of narcolepsy-cataplexy involves multiple genetic and environmental factors. While the human leukocyte antigen (HLA)-DRB1*15:01-DQB1*06:02 haplotype is strongly associated with narcolepsy, it is not sufficient for disease development. To identify additional, non-HLA susceptibility genes, we conducted a genome-wide association study (GWAS) using Japanese samples. An initial sample set comprising 409 cases and 1562 controls was used for the GWAS of 525,196 single nucleotide polymorphisms (SNPs) located outside the HLA region. An independent sample set comprising 240 cases and 869 controls was then genotyped at 37 SNPs identified in the GWAS. We found that narcolepsy was associated with a SNP in the promoter region of chemokine (C-C motif) receptor 1 (CCR1) (rs3181077, P=1.6×10(-5), odds ratio [OR]=1.86). This rs3181077 association was replicated with the independent sample set (P=0.032, OR=1.36). We measured mRNA levels of candidate genes in peripheral blood samples of 38 cases and 37 controls. CCR1 and CCR3 mRNA levels were significantly lower in patients than in healthy controls, and CCR1 mRNA levels were associated with rs3181077 genotypes. In vitro chemotaxis assays were also performed to measure monocyte migration. We observed that monocytes from carriers of the rs3181077 risk allele had lower migration indices with a CCR1 ligand. CCR1 and CCR3 are newly discovered susceptibility genes for narcolepsy. These results highlight the potential role of CCR genes in narcolepsy and support the hypothesis that patients with narcolepsy have impaired immune function.
Collapse
Affiliation(s)
- Hiromi Toyoda
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Taku Miyagawa
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Asako Koike
- Research & Development Group, Hitachi, Ltd., Japan
| | - Takashi Kanbayashi
- Department of Neuropsychiatry, Akita University School of Medicine, Akita, Japan
| | - Aya Imanishi
- Department of Neuropsychiatry, Akita University School of Medicine, Akita, Japan
| | - Yohei Sagawa
- Department of Neuropsychiatry, Akita University School of Medicine, Akita, Japan
| | - Nozomu Kotorii
- Department of Neuropsychiatry, Kurume University School of Medicine, Fukuoka, Japan; Kotorii Isahaya Hospital, Nagasaki, Japan
| | | | - Yuji Hashizume
- Department of Neuropsychiatry, Kurume University School of Medicine, Fukuoka, Japan
| | - Kimihiro Ogi
- Department of Neuropsychiatry, Kurume University School of Medicine, Fukuoka, Japan
| | - Hiroshi Hiejima
- Department of Neuropsychiatry, Kurume University School of Medicine, Fukuoka, Japan
| | - Yuichi Kamei
- Sleep Disorder Center, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Akiko Hida
- Department of Psychophysiology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | | | - Makoto Imai
- Department of Psychiatry, Shiga University of Medical Science, Shiga, Japan
| | - Yota Fujimura
- Department of Psychiatry and Neurology, Asahikawa Medical University, Hokkaido, Japan
| | - Yoshiyuki Tamura
- Department of Psychiatry and Neurology, Asahikawa Medical University, Hokkaido, Japan
| | | | - Yamato Wada
- Department of Psychiatry, Hannan Hospital, Osaka, Japan
| | - Shunpei Moriya
- Department of Psychiatry, Tokyo Women's Medical University, School of Medicine, Tokyo, Japan
| | - Hirokazu Furuya
- Department of Neurology, Neuro-Muscular Center, National Omuta Hospital, Fukuoka, Japan
| | - Masaki Takeuchi
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Kanagawa, Japan; Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yohei Kirino
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA; Department of Internal Medicine and Clinical Immunology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Akira Meguro
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Elaine F Remmers
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yoshiya Kawamura
- Department of Psychiatry, Sakae Seijinkai Hospital, Kanagawa, Japan
| | - Takeshi Otowa
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akinori Miyashita
- Department of Molecular Genetics, Center for Bioresources, Brain Research Institute, Niigata University, Niigata, Japan
| | - Koichi Kashiwase
- Department of HLA Laboratory, Japanese Red Cross Kanto-Koshinetsu Block Blood Center, Tokyo, Japan
| | - Seik-Soon Khor
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Maria Yamasaki
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryozo Kuwano
- Department of Molecular Genetics, Center for Bioresources, Brain Research Institute, Niigata University, Niigata, Japan
| | - Tsukasa Sasaki
- Laboratory of Health Education, Graduate School of Education, The University of Tokyo, Tokyo, Japan
| | - Jun Ishigooka
- Department of Psychiatry, Tokyo Women's Medical University, School of Medicine, Tokyo, Japan
| | - Kenji Kuroda
- Department of Psychiatry, Hannan Hospital, Osaka, Japan
| | - Kazuhiko Kume
- Sleep Center, Kuwamizu Hospital, Kumamoto, Japan; Department of Stem Cell Biology, Institute of Molecular Genetics and Embryology, Kumamoto University, Kumamoto, Japan; Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Aichi, Japan
| | - Shigeru Chiba
- Department of Psychiatry and Neurology, Asahikawa Medical University, Hokkaido, Japan
| | - Naoto Yamada
- Department of Psychiatry, Shiga University of Medical Science, Shiga, Japan
| | - Masako Okawa
- Department of Sleep Medicine, Shiga University of Medical Science, Shiga, Japan; Japan Foundation for Neuroscience and Mental Health, Tokyo, Japan; Department of Somnology, Tokyo Medical University, Tokyo, Japan
| | - Koichi Hirata
- Department of Neurology, Dokkyo Medical University, Tochigi, Japan
| | - Nobuhisa Mizuki
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Naohisa Uchimura
- Department of Neuropsychiatry, Kurume University School of Medicine, Fukuoka, Japan
| | - Tetsuo Shimizu
- Department of Neuropsychiatry, Akita University School of Medicine, Akita, Japan
| | - Yuichi Inoue
- Japan Somnology Center, Neuropsychiatric Research Institute, Tokyo, Japan; Department of Somnology, Tokyo Medical University, Tokyo, Japan
| | - Yutaka Honda
- Japan Somnology Center, Neuropsychiatric Research Institute, Tokyo, Japan
| | - Kazuo Mishima
- Department of Psychophysiology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Makoto Honda
- Japan Somnology Center, Neuropsychiatric Research Institute, Tokyo, Japan; Sleep Disorders Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Katsushi Tokunaga
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
37
|
Merino JJ, Bellver-Landete V, Oset-Gasque MJ, Cubelos B. CXCR4/CXCR7 Molecular Involvement in Neuronal and Neural Progenitor Migration: Focus in CNS Repair. J Cell Physiol 2014; 230:27-42. [DOI: 10.1002/jcp.24695] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 06/03/2014] [Indexed: 12/13/2022]
Affiliation(s)
- José Joaquín Merino
- Biochemistry and Molecular Biology Dept II; Universidad Complutense de Madrid (UCM); Madrid Spain
- Instituto de Investigación; Neuroquímica (IUIN), UCM; Madrid Spain
| | - Victor Bellver-Landete
- Biochemistry and Molecular Biology Dept II; Universidad Complutense de Madrid (UCM); Madrid Spain
| | - María Jesús Oset-Gasque
- Biochemistry and Molecular Biology Dept II; Universidad Complutense de Madrid (UCM); Madrid Spain
- Instituto de Investigación; Neuroquímica (IUIN), UCM; Madrid Spain
| | - Beatriz Cubelos
- Departamento de Biología Molecular; Centro de Biología Molecular Severo Ochoa (CBMSO); Universidad Autónoma de Madrid; Madrid Spain
| |
Collapse
|
38
|
Yao NW, Chen CCV, Yen CT, Chang C. Promoted Growth of Brain Tumor by the Transplantation of Neural Stem/Progenitor Cells Facilitated by CXCL12. Transl Oncol 2014; 7:S1936-5233(14)00042-4. [PMID: 24862537 PMCID: PMC4145393 DOI: 10.1016/j.tranon.2014.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 04/10/2014] [Accepted: 04/14/2014] [Indexed: 12/17/2022] Open
Abstract
The targeted migration of neural stem/progenitor cells (NSPCs) is a prerequisite for the use of stem cell therapy in the treatment of pathologies. This migration is regulated mainly by C-X-C motif chemokine 12 (CXCL12). Therefore, promotion of the migratory responses of grafted cells by upregulating CXCL12 signaling has been proposed as a strategy for improving the efficacy of such cell therapies. However, the effects of this strategy on brain tumors have not yet been examined in vivo. The aim of the present study was thus to elucidate the effects of grafted rat green fluorescent protein (GFP)-labeled NSPCs (GFP-NSPCs) with CXCL12 enhancement on a model of spontaneous rat brain tumor induced by N-ethyl-N-nitrosourea. T2-weighted magnetic resonance imaging was applied to determine the changes in tumor volume and morphology over time. Postmortem histology was performed to confirm the tumor pathology, expression levels of CXCL12 and C-X-C chemokine receptor type 4, and the fate of GFP-NSPCs. The results showed that the tumor volume and hypointense areas of T2-weighted images were both significantly increased in animals treated with combined NSPC transplantation and CXCL12 induction, but not in control animals or in those with tumors that received only one of the treatments. GFP-NSPCs appear to migrate toward tumors with CXCL12 enhancement and differentiate uniquely into a neuronal lineage. These findings suggest that CXCL12 is an effective chemoattractant that facilitates exogenous NSPC migration toward brain tumors and that CXCL12 and NSPC can act synergistically to promote tumor progression with severe hemorrhage.
Collapse
Affiliation(s)
- Nai-Wei Yao
- Department of Life Science, National Taiwan University, Taipei, Taiwan; Institute of Biomedical Sciences, Academic Sinica, Taipei, Taiwan
| | - Chiao-Chi V Chen
- Institute of Biomedical Sciences, Academic Sinica, Taipei, Taiwan
| | - Chen-Tung Yen
- Department of Life Science, National Taiwan University, Taipei, Taiwan.
| | - Chen Chang
- Institute of Biomedical Sciences, Academic Sinica, Taipei, Taiwan.
| |
Collapse
|
39
|
Guyon A. CXCL12 chemokine and its receptors as major players in the interactions between immune and nervous systems. Front Cell Neurosci 2014; 8:65. [PMID: 24639628 PMCID: PMC3944789 DOI: 10.3389/fncel.2014.00065] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/13/2014] [Indexed: 11/13/2022] Open
Abstract
The chemokine CXCL12/stromal cell-derived factor 1 alpha has first been described in the immune system where it functions include chemotaxis for lymphocytes and macrophages, migration of hematopoietic cells from fetal liver to bone marrow and the formation of large blood vessels. Among other chemokines, CXCL12 has recently attracted much attention in the brain as it has been shown that it can be produced not only by glial cells but also by neurons. In addition, its receptors CXCR4 and CXCR7, which are belonging to the G protein-coupled receptors family, are abundantly expressed in diverse brain area, CXCR4 being a major co-receptor for human immunodeficiency virus 1 entry. This chemokine system has been shown to play important roles in brain plasticity processes occurring during development but also in the physiology of the brain in normal and pathological conditions. For example, in neurons, CXCR4 stimulation has been shown regulate the synaptic release of glutamate and γ-aminobutyric acid (GABA). It can also act post-synaptically by activating a G protein activated inward rectifier K+ (GIRK), a voltage-gated K channel Kv2.1 associated to neuronal survival, and by increasing high voltage activated Ca2+ currents. In addition, it has been recently evidenced that there are several cross-talks between the CXCL12/CXCR4–7 system and other neurotransmitter systems in the brain (such as GABA, glutamate, opioids, and cannabinoids). Overall, this chemokine system could be one of the key players of the neuro-immune interface that participates in shaping the brain in response to changes in the environment.
Collapse
Affiliation(s)
- Alice Guyon
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275 Centre National de la Recherche Scientifique/Université Nice Sophia Antipolis Valbonne, France
| |
Collapse
|
40
|
Pitcher J, Abt A, Myers J, Han R, Snyder M, Graziano A, Festa L, Kutzler M, Garcia F, Gao WJ, Fischer-Smith T, Rappaport J, Meucci O. Neuronal ferritin heavy chain and drug abuse affect HIV-associated cognitive dysfunction. J Clin Invest 2014; 124:656-69. [PMID: 24401274 DOI: 10.1172/jci70090] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 10/24/2013] [Indexed: 11/17/2022] Open
Abstract
Interaction of the chemokine CXCL12 with its receptor CXCR4 promotes neuronal function and survival during embryonic development and throughout adulthood. Previous studies indicated that μ-opioid agonists specifically elevate neuronal levels of the protein ferritin heavy chain (FHC), which negatively regulates CXCR4 signaling and affects the neuroprotective function of the CXCL12/CXCR4 axis. Here, we determined that CXCL12/CXCR4 activity increased dendritic spine density, and also examined FHC expression and CXCR4 status in opiate abusers and patients with HIV-associated neurocognitive disorders (HAND), which is typically exacerbated by illicit drug use. Drug abusers and HIV patients with HAND had increased levels of FHC, which correlated with reduced CXCR4 activation, within cortical neurons. We confirmed these findings in a nonhuman primate model of SIV infection with morphine administration. Transfection of a CXCR4-expressing human cell line with an iron-deficient FHC mutant confirmed that increased FHC expression deregulated CXCR4 signaling and that this function of FHC was independent of iron binding. Furthermore, examination of morphine-treated rodents and isolated neurons expressing FHC shRNA revealed that FHC contributed to morphine-induced dendritic spine loss. Together, these data implicate FHC-dependent deregulation of CXCL12/CXCR4 as a contributing factor to cognitive dysfunction in neuroAIDS.
Collapse
|
41
|
Nash B, Meucci O. Functions of the chemokine receptor CXCR4 in the central nervous system and its regulation by μ-opioid receptors. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 118:105-28. [PMID: 25175863 PMCID: PMC4369781 DOI: 10.1016/b978-0-12-801284-0.00005-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Activation of the G protein-coupled receptor CXCR4 by its chemokine ligand CXCL12 regulates a number of physiopathological functions in the central nervous system, during development as well as later in life. In addition to the more classical roles of the CXCL12/CXCR4 axis in the recruitment of immune cells or migration and proliferation of neural precursor cells, recent studies suggest that CXCR4 signaling also modulates synaptic function and neuronal survival in the mature brain, through direct and indirect effects on neurons and glia. These effects, which include regulation of glutamate receptors and uptake, and of dendritic spine density, can significantly alter the ability of neurons to face excitotoxic insults. Therefore, they are particularly relevant to neurodegenerative diseases featuring alterations of glutamate neurotransmission, such as HIV-associated neurocognitive disorders. Importantly, CXCR4 signaling can be dysregulated by HIV viral proteins, host HIV-induced factors, and opioids. Potential mechanisms of opioid regulation of CXCR4 include heterologous desensitization, transcriptional regulation and changes in receptor expression levels, opioid-chemokine receptor dimer or heteromer formation, and the newly described modulation by the protein ferritin heavy chain-all leading to inhibition of CXCR4 signaling. After reviewing major effects of chemokines and opioids in the CNS, this chapter discusses chemokine-opioid interactions in neuronal and immune cells, focusing on their potential contribution to HIV-associated neurocognitive disorders.
Collapse
Affiliation(s)
- Bradley Nash
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Olimpia Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA; Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
42
|
The peculiarities of the SDF-1/CXCL12 system: in some cells, CXCR4 and CXCR7 sing solos, in others, they sing duets. Cell Tissue Res 2013; 355:239-53. [DOI: 10.1007/s00441-013-1747-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 10/17/2013] [Indexed: 12/26/2022]
|
43
|
Mao W, Yi X, Qin J, Tian M, Jin G. CXCL12 inhibits cortical neuron apoptosis by increasing the ratio of Bcl-2/Bax after traumatic brain injury. Int J Neurosci 2013; 124:281-90. [PMID: 23984821 DOI: 10.3109/00207454.2013.838236] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
CXCL12 and its physiologic receptor CXCR4 are involved in controlling cell survival, proliferation and migration in adult tissues. This study aimed to investigate the effects of CXCL12 on cortical neuron apoptosis in rats after traumatic brain injury (TBI) and the potential mechanisms involved. At 3 days after TBI, in situ terminal transferase d-UTP nick-end labeling assay (TUNEL) showed that the apoptotic index (AI) deceased significantly in the CXCL12 treatment group compared with the control group (p < 0.05). Immunofluorescence double-labeled staining revealed that most of the TUNEL positive cells were NeuN positive neurons. The change trends of active caspase-3 expression were similar as those of the AI. The Bcl-2:Bax ratio was upregulated in the CXCL12 group compared with the control group. However, the effect of CXCL12 could be partially reverted by the additional use of AMD3100 (a kind of antagonist of CXCR4) (p < 0.05). Our results indicated that after TBI in rats CXCL12 combing CXCR4 receptors could inhibit the caspase-3 pathway by upregulating Bcl-2:Bax ratio, which protect neurons from apoptosis.
Collapse
Affiliation(s)
- Weifeng Mao
- 1Department of Anatomy and Cytoneurobiology, Medical College of Soochow University , People's Republic of China
| | | | | | | | | |
Collapse
|
44
|
Dalet FGE, Guadalupe TFJ, María del Carmen CH, Humberto GAC, Antonio SUM. Insights into the structural biology of G-protein coupled receptors impacts drug design for central nervous system neurodegenerative processes. Neural Regen Res 2013; 8:2290-302. [PMID: 25206539 PMCID: PMC4146033 DOI: 10.3969/j.issn.1673-5374.2013.24.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 06/25/2013] [Indexed: 02/05/2023] Open
Abstract
In the last few years, there have been important new insights into the structural biology of G-protein coupled receptors. It is now known that allosteric binding sites are involved in the affinity and selectivity of ligands for G-protein coupled receptors, and that signaling by these receptors involves both G-protein dependent and independent pathways. The present review outlines the physiological and pharmacological implications of this perspective for the design of new drugs to treat disorders of the central nervous system. Specifically, new possibilities are explored in relation to allosteric and orthosteric binding sites on dopamine receptors for the treatment of Parkinson's disease, and on muscarinic receptors for Alzheimer's disease. Future research can seek to identify ligands that can bind to more than one site on the same receptor, or simultaneously bind to two receptors and form a dimer. For example, the design of bivalent drugs that can reach homo/hetero-dimers of D2 dopamine receptor holds promise as a relevant therapeutic strategy for Parkinson's disease. Regarding the treatment of Alzheimer's disease, the design of dualsteric ligands for mono-oligomeric rinic receptors could increase therapeutic effectiveness by generating potent compounds that could activate more than one signaling pathway.
Collapse
Affiliation(s)
- Farfán-García Eunice Dalet
- Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Del. Benito Juárez, Mexico City 11340, Mexico
| | - Trujillo-Ferrara José Guadalupe
- Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Del. Benito Juárez, Mexico City 11340, Mexico
| | - Castillo-Hernández María del Carmen
- Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Del. Benito Juárez, Mexico City 11340, Mexico
| | - Guerra-Araiza Christian Humberto
- Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Del. Benito Juárez, Mexico City 11340, Mexico
| | - Soriano-Ursúa Marvin Antonio
- Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Del. Benito Juárez, Mexico City 11340, Mexico
- Corresponding author: Soriano-Ursúa Marvin Antonio, Professor/Researcher, Departamento de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Del. Benito Juárez, Mexico City 11340, Mexico, , (N201304028)
| |
Collapse
|
45
|
Agrelo R, Kishimoto H, Novatchkova M, Peraza V, Paolino M, Souabni A, Wutz A. SATB1 collaborates with loss of p16 in cellular transformation. Oncogene 2013; 32:5492-500. [PMID: 23686316 PMCID: PMC3898308 DOI: 10.1038/onc.2013.158] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 03/11/2013] [Accepted: 03/11/2013] [Indexed: 02/07/2023]
Abstract
Tumor progression is associated with invasiveness and metastatic potential. The special AT-rich binding protein 1 (SATB1) has been identified as a key factor in the progression of breast cancer cells to a malignant phenotype and is associated with progression of human tumors. In normal development, SATB1 coordinates gene expression of progenitor cells by functioning as a genome organizer. In contrast to progenitor and tumor cells, SATB1 expression in nontransformed cells is not compatible with proliferation. Here we show that SATB1 expression in mouse embryonic fibroblasts induces cell cycle arrest and senescence that is associated with elevated p16 protein levels. Deletion of p16 overcomes the SATB1-induced senescence. We further provide evidence for an interaction of SATB1 with the retinoblastoma (RB)/E2F pathway downstream of p16. A combined deletion of the RB proteins, RB, p107 and p130 (triple-mutant; TM), prevents SATB1-induced G1 arrest, which is restored upon the reintroduction of RB into SATB1-expressing TM fibroblasts. SATB1 interacts with the E2F/RB complex and regulates the cyclin E promoter in an E2F-dependent manner. These findings demonstrate that p16 and the RB/E2F pathway are critical for SATB1-induced cell cycle arrest. In the absence of p16, SATB1 causes anchorage-independent growth and invasive phenotype in fibroblasts. Our data illustrate that p16 mutations collaborate with the oncogenic activity of SATB1. Consistent with our finding, a literature survey shows that deletion of p16 is generally associated with SATB1 expressing human cell lines and tumors.
Collapse
Affiliation(s)
- R Agrelo
- 1] Institut Pasteur de Montevideo, Epigenetics of Cancer and Aging Laboratory, Montevideo, Uruguay [2] Research Institute of Molecular Pathology, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
46
|
Distinct modifications in Kv2.1 channel via chemokine receptor CXCR4 regulate neuronal survival-death dynamics. J Neurosci 2013; 32:17725-39. [PMID: 23223293 DOI: 10.1523/jneurosci.3029-12.2012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The chemokine stromal cell-derived factor-1α (SDF-1α) has multiple effects on neuronal activity, survival, and death under conditions that generate a proinflammatory microenvironment within the brain, via signaling through C-X-C-type chemokine receptor 4 (CXCR4), although the underlying cellular/molecular mechanisms are unclear. Using rat hippocampal neurons, we investigated distinct modifications in the voltage-gated K⁺ (Kv) channel Kv2.1 in response to short- and long-term SDF-1α/CXCR4-mediated signaling as an underlying mechanism for CXCR4-dependent regulation of neuronal survival and death. Acute exposure of neurons to SDF-1α led to dynamic dephosphorylation and altered localization of Kv2.1 channel, resulting in enhanced voltage-dependent activation of Kv2.1-based delayed-rectifier Kv currents (I(DR)). These changes were dependent on CXCR4- and/or NMDA receptor-mediated activation of calcineurin and provide neuroprotection. However, prolonged SDF-1α treatment leads to CXCR4-mediated activation of p38 mitogen-activated protein kinase, resulting in phosphorylation of Kv2.1 at S800 and enhanced surface trafficking of the channel protein, resulting in increased I(DR)/Kv2.1 current density. This, in combination with sustained dephosphorylation-induced enhancement of the voltage-dependent activation of I(DR)/Kv2.1, predisposed neurons to excessive K⁺ efflux, a vital step for the neuronal apoptotic program. Such apoptotic death was dependent on CXCR4 and Kv2.1 function and was absent in cells expressing the Kv2.1-S800A mutant channel. Furthermore, similar modifications in Kv2.1 and CXCR4/Kv2.1-dependent apoptosis were observed following treatment of neurons with the human immunodeficiency virus-1 (HIV-1) glycoprotein gp120. Therefore, distinct modifications in Kv2.1 in response to short- and long-term CXCR4-mediated signaling could provide a basis for neuroprotection or apoptosis in neuropathologies, such as neuroinflammation, stroke, brain tumors, and HIV-associated neurodegeneration.
Collapse
|
47
|
Réaux-Le Goazigo A, Van Steenwinckel J, Rostène W, Mélik Parsadaniantz S. Current status of chemokines in the adult CNS. Prog Neurobiol 2013; 104:67-92. [PMID: 23454481 DOI: 10.1016/j.pneurobio.2013.02.001] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 02/01/2013] [Accepted: 02/03/2013] [Indexed: 12/13/2022]
Abstract
Chemokines - chemotactic cytokines - are small secreted proteins that attract and activate immune and non-immune cells in vitro and in vivo. It has been suggested that chemokines and their receptors play a role in the central nervous system (CNS), in addition to their well established role in the immune system. We focus here on three chemokines-CXCL12 (C-X-C motif ligand 12), CCL2 (C-C motif ligand 2), and CX3CL1 (C-X-3C motif ligand 1) - and their principal receptors - CXCR4 (C-X-C motif receptor 4), CCR2 (C-C motif receptor 2) and CX3CR1 (C-X-3C motif receptor 1), respectively. We first introduce the classification of chemokines and their G-protein coupled receptors and the main signaling pathways triggered by receptor activation. We then discuss the cellular distribution of CXCL12/CXCR4, CCL2/CCR2 and CX3CL1/CX3CR1 in adult brain and the neurotransmission and neuromodulation effects controlled by these chemokines in the adult CNS. Changes in the expression of CXCL12, CCL2 and CX3CL1 and their respective receptors are also increasingly being implicated in the pathogenesis of CNS disorders, such as Alzheimer's disease, Parkinson's disease, HIV-associated encephalopathy, stroke and multiple sclerosis, and are therefore plausible targets for future pharmacological intervention. The final section thus discusses the role of these chemokines in these pathophysiological states. In conclusion, the role of these chemokines in cellular communication may make it possible: (i) to identify new pathways of neuron-neuron, glia-glia or neuron-glia communications relevant to both normal brain function and neuroinflammatory and neurodegenerative diseases; (ii) to develop new therapeutic approaches for currently untreatable brain diseases.
Collapse
|
48
|
Liu W, Liu X, Yang H, Zhu X, Yi H, Zhu X, Zhang J. Phosphorylated retinoblastoma protein (p-Rb) is involved in neuronal apoptosis after traumatic brain injury in adult rats. J Mol Histol 2013; 44:147-58. [PMID: 23371354 DOI: 10.1007/s10735-013-9481-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 01/02/2013] [Indexed: 10/27/2022]
Abstract
Phosphorylated retinoblastoma protein (p-Rb), a well identified cell cycle related protein, is involved in regulating the biological functions of various cell types including neurons. One attractive biological function of p-Rb is releasing E2F transcription factor to induce S-phase entry and cellular proliferation of mitotic cells. However, some studies point out that the role of p-Rb in post-mitotic cells such as mature neurons is unique; it may induce cellular apoptosis rather than proliferation via regulating cell cycle reactivation. Up to now, the knowledge of p-Rb function in CNS is still limited. To investigate whether p-Rb is involved in CNS injury and repair, we performed a traumatic brain injury model in adult rats. Up-regulation of p-Rb was observed in the injured brain cortex by western blot analysis and immunohistochemistry staining. Terminal deoxynucleotidyl transferase deoxy-UTP-nick end labeling (TUNEL) and 4',6-diamidino-2-phenylindole (DAPI) staining suggested that p-Rb was relevant to neuronal apoptosis after brain injury. In addition, glutamate excitotoxic model of primary cortex neurons was introduced to further investigate the role of p-Rb in neuronal apoptosis; the result implied p-Rb was associated with cell cycle activation in the apoptotic neurons. Based on our data, we suggested that p-Rb might play an important role in neuronal apoptosis after traumatic brain injury in rat; which might also provide a basis for the further study on its role in regulating cell cycle re-entry in apoptotic neurons, and might gain a novel strategy for the clinical therapy for traumatic brain injury.
Collapse
Affiliation(s)
- Wei Liu
- Department of Orthopaedics, Second Affiliated Hospital of Nantong University, Nantong 226002, Jiangsu, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
49
|
Baudouin C, Denoyer A, Desbenoit N, Hamm G, Grise A. In vitro and in vivo experimental studies on trabecular meshwork degeneration induced by benzalkonium chloride (an American Ophthalmological Society thesis). TRANSACTIONS OF THE AMERICAN OPHTHALMOLOGICAL SOCIETY 2012; 110:40-63. [PMID: 23818734 PMCID: PMC3671366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
PURPOSE Long-term antiglaucomatous drug administration may cause irritation, dry eye, allergy, subconjunctival fibrosis, or increased risk of glaucoma surgery failure, potentially due to the preservative benzalkonium chloride (BAK), whose toxic, proinflammatory, and detergent effects have extensively been shown experimentally. We hypothesize that BAK also influences trabecular meshwork (TM) degeneration. METHODS Trabecular specimens were examined using immunohistology and reverse transcriptase-polymerase chain reaction. A trabecular cell line was stimulated by BAK and examined for apoptosis, oxidative stress, fractalkine and SDF-1 expression, and modulation of their receptors. An experimental model was developed with BAK subconjunctival injections to induce TM degeneration. Mass spectrometry (MS) imaging assessed BAK penetration after repeated instillations in rabbit eyes. RESULTS Trabecular specimens showed extremely low densities of trabecular cells and presence of cells expressing fractalkine and fractalkine receptor and their respective mRNAs. Benzalkonium in vitro induced apoptosis, oxidative stress, and fractalkine expression and inhibited the protective chemokine SDF-1 and Bcl2, also inducing a sustained intraocular pressure (IOP) increase, with dramatic apoptosis of trabecular cells and reduction of aqueous outflow. MS imaging showed that BAK could access the TM at measurable levels after repeated instillations. CONCLUSION BAK enhances all characteristics of TM degeneration typical of glaucoma-trabecular apoptosis, oxidative stress, induction of inflammatory chemokines-and causes degeneration in acute experimental conditions, potentially mimicking long-term accumulation. BAK was also shown to access the TM after repeated instillations. These findings support the hypothesis that antiglaucoma medications, through toxicity of their preservative, may cause further long-term trabecular degeneration and therefore enhance outflow resistance, reducing the impact of IOP-lowering agents.
Collapse
Affiliation(s)
- Christophe Baudouin
- Department of Ophthalmology III, Quinze-Vingts National Ophthalmology Hospital, Paris, France
| | | | | | | | | |
Collapse
|
50
|
Zendedel A, Nobakht M, Bakhtiyari M, Beyer C, Kipp M, Baazm M, Joghataie MT. Stromal cell-derived factor-1 alpha (SDF-1α) improves neural recovery after spinal cord contusion in rats. Brain Res 2012; 1473:214-26. [DOI: 10.1016/j.brainres.2012.07.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 07/03/2012] [Accepted: 07/19/2012] [Indexed: 12/25/2022]
|