1
|
Li L, Zhang Y, Tang Q, Wu C, Yang M, Hu Y, Gong Z, Shi L, Guo C, Zeng Z, Chen P, Xiong W. Mitochondria in tumor immune surveillance and tumor therapies targeting mitochondria. Cell Oncol (Dordr) 2024; 47:2031-2047. [PMID: 39373857 DOI: 10.1007/s13402-024-01000-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2024] [Indexed: 10/08/2024] Open
Abstract
Mitochondria play a central role in cellular energy production and metabolic regulation, and their function has been identified as a key factor influencing tumor immune responses. This review provides a comprehensive overview of the latest advancements in understanding the role of mitochondria in tumor immune surveillance, covering both innate and adaptive immune responses. Specifically, it outlines how mitochondria influence the function of the tumor immune system, underscoring their crucial role in modulating immune cell behavior to either promote or inhibit tumor development and progression. Additionally, this review highlights emerging drug interventions targeting mitochondria, including novel small molecules with significant potential in cancer therapy. Through an in-depth analysis, it explores how these innovative strategies could improve the efficacy and outlook of tumor treatment.
Collapse
Affiliation(s)
- Lvyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Yi Zhang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Qiling Tang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Chunyu Wu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Mei Yang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Yan Hu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410012, China
| | - Lei Shi
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Can Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Pan Chen
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China.
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China.
| |
Collapse
|
2
|
Glamočlija U, Mahmutović L, Bilajac E, Šoljić V, Vukojević K, Sezer A, Suljagić M. Single and Combinatorial Effects of Metformin and Thymoquinone in Diffuse Large B Cell Lymphoma Cells. Chem Biodivers 2024:e202401533. [PMID: 39479950 DOI: 10.1002/cbdv.202401533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/26/2024] [Accepted: 10/30/2024] [Indexed: 11/02/2024]
Abstract
Diffuse large B cell lymphoma (DLBCL) is classified into Germinal Center B-cell (GCB) and activated B-cell (ABC) subgroups originating from different stages of lymphoid differentiation. Cell of origin dictates the behavior and therapeutic response of DLBCL. This study aimed to evaluate single and combinatorial effects of metformin and thymoquinone (TQ) in two DLBCL cell lines belonging to GCB and ABC subtypes. Metformin and TQ caused dose-dependent responses in both ABC and GCB DLBCL subtypes. Metformin had a greater impact on the ABC subtype while TQ demonstrated more pronounced effects on the GCB subtype. Synergistic effects were observed in the DHL4 (GCB subtype) but not in the HBL1 (ABC subtype) cell line. This is the first study to compare the effects of metformin and TQ in ABC versus GCB subtype of DLBCL. It brings valuable results that could be utilized in further research aimed at reshaping treatments for subtype-specific lymphomas.
Collapse
Affiliation(s)
- Una Glamočlija
- Department of Pharmaceutical Biochemistry and Laboratory Diagnostics, University of Sarajevo - Faculty of Pharmacy, Zmaja od Bosne 8, Sarajevo, Bosnia and Herzegovina
| | - Lejla Mahmutović
- Genetics and Bioengineering Department, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnička cesta 15, Sarajevo, Bosnia and Herzegovina
| | - Esma Bilajac
- Genetics and Bioengineering Department, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnička cesta 15, Sarajevo, Bosnia and Herzegovina
| | - Violeta Šoljić
- Faculty of Health Studies, University of Mostar, Zrinskog Frankopana 34, Mostar, Bosnia and Herzegovina
| | - Katarina Vukojević
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Šoltanska 2A, Split, Croatia
| | - Abas Sezer
- Genetics and Bioengineering Department, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnička cesta 15, Sarajevo, Bosnia and Herzegovina
| | - Mirza Suljagić
- 3D BioLabs, FabLab Bosnia and Herzegovina, Zmaja od Bosne 8, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
3
|
Liu L, Shao M, Huang Y, Qian P, Huang H. Unraveling the roles and mechanisms of mitochondrial translation in normal and malignant hematopoiesis. J Hematol Oncol 2024; 17:95. [PMID: 39396039 PMCID: PMC11470598 DOI: 10.1186/s13045-024-01615-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/30/2024] [Indexed: 10/14/2024] Open
Abstract
Due to spatial and genomic independence, mitochondria possess a translational mechanism distinct from that of cytoplasmic translation. Several regulators participate in the modulation of mitochondrial translation. Mitochondrial translation is coordinated with cytoplasmic translation through stress responses. Importantly, the inhibition of mitochondrial translation leads to the inhibition of cytoplasmic translation and metabolic disruption. Therefore, defects in mitochondrial translation are closely related to the functions of hematopoietic cells and various immune cells. Finally, the inhibition of mitochondrial translation is a potential therapeutic target for treating multiple hematologic malignancies. Collectively, more in-depth insights into mitochondrial translation not only facilitate our understanding of its functions in hematopoiesis, but also provide a basis for the discovery of new treatments for hematological malignancies and the modulation of immune cell function.
Collapse
Affiliation(s)
- Lianxuan Liu
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Institute of Hematology Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Mi Shao
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Institute of Hematology Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Yue Huang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Institute of Hematology Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Pengxu Qian
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Institute of Hematology Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
| | - He Huang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Institute of Hematology Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Ramos-Acosta C, Huerta-Pantoja L, Salazar-Hidalgo ME, Mayol E, Jiménez-Vega S, García-Peña P, Jordi-Cruz J, Baquero C, Porras A, Íñigo-Rodríguez B, Benavente CM, López-Pastor AR, Gómez-Delgado I, Urcelay E, Candel FJ, Anguita E. Tigecycline Opposes Bortezomib Effect on Myeloma Cells Decreasing Mitochondrial Reactive Oxygen Species Production. Int J Mol Sci 2024; 25:4887. [PMID: 38732105 PMCID: PMC11084384 DOI: 10.3390/ijms25094887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
Multiple myeloma is an incurable plasma cell malignancy. Most patients end up relapsing and developing resistance to antineoplastic drugs, like bortezomib. Antibiotic tigecycline has activity against myeloma. This study analyzed tigecycline and bortezomib combination on cell lines and plasma cells from myeloma patients. Apoptosis, autophagic vesicles, mitochondrial mass, mitochondrial superoxide, cell cycle, and hydrogen peroxide were studied by flow cytometry. In addition, mitochondrial antioxidants and electron transport chain complexes were quantified by reverse transcription real-time PCR (RT-qPCR) or western blot. Cell metabolism and mitochondrial activity were characterized by Seahorse and RT-qPCR. We found that the addition of tigecycline to bortezomib reduces apoptosis in proportion to tigecycline concentration. Supporting this, the combination of both drugs counteracts bortezomib in vitro individual effects on the cell cycle, reduces autophagy and mitophagy markers, and reverts bortezomib-induced increase in mitochondrial superoxide. Changes in mitochondrial homeostasis and MYC upregulation may account for some of these findings. These data not only advise to avoid considering tigecycline and bortezomib combination for treating myeloma, but caution on the potential adverse impact of treating infections with this antibiotic in myeloma patients under bortezomib treatment.
Collapse
Affiliation(s)
- Carlos Ramos-Acosta
- Department of Medicine, Medical School, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain (E.M.); (S.J.-V.); (J.J.-C.); (C.M.B.); (F.J.C.)
- Hematology Department, IML, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Profesor Martín Lagos s/n, 28040 Madrid, Spain (B.Í.-R.)
| | - Laura Huerta-Pantoja
- Department of Medicine, Medical School, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain (E.M.); (S.J.-V.); (J.J.-C.); (C.M.B.); (F.J.C.)
- Hematology Department, IML, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Profesor Martín Lagos s/n, 28040 Madrid, Spain (B.Í.-R.)
| | - Milton Eduardo Salazar-Hidalgo
- Hematology Department, IML, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Profesor Martín Lagos s/n, 28040 Madrid, Spain (B.Í.-R.)
| | - Elsa Mayol
- Department of Medicine, Medical School, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain (E.M.); (S.J.-V.); (J.J.-C.); (C.M.B.); (F.J.C.)
- Hematology Department, IML, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Profesor Martín Lagos s/n, 28040 Madrid, Spain (B.Í.-R.)
| | - Selene Jiménez-Vega
- Department of Medicine, Medical School, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain (E.M.); (S.J.-V.); (J.J.-C.); (C.M.B.); (F.J.C.)
- Hematology Department, IML, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Profesor Martín Lagos s/n, 28040 Madrid, Spain (B.Í.-R.)
| | - Pablo García-Peña
- Department of Medicine, Medical School, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain (E.M.); (S.J.-V.); (J.J.-C.); (C.M.B.); (F.J.C.)
- Hematology Department, IML, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Profesor Martín Lagos s/n, 28040 Madrid, Spain (B.Í.-R.)
| | - Jenifeer Jordi-Cruz
- Department of Medicine, Medical School, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain (E.M.); (S.J.-V.); (J.J.-C.); (C.M.B.); (F.J.C.)
- Hematology Department, IML, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Profesor Martín Lagos s/n, 28040 Madrid, Spain (B.Í.-R.)
| | - Cristina Baquero
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (C.B.); (A.P.)
| | - Almudena Porras
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (C.B.); (A.P.)
| | - Belén Íñigo-Rodríguez
- Hematology Department, IML, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Profesor Martín Lagos s/n, 28040 Madrid, Spain (B.Í.-R.)
| | - Celina M. Benavente
- Department of Medicine, Medical School, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain (E.M.); (S.J.-V.); (J.J.-C.); (C.M.B.); (F.J.C.)
- Hematology Department, IML, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Profesor Martín Lagos s/n, 28040 Madrid, Spain (B.Í.-R.)
| | - Andrea R. López-Pastor
- Laboratory of Genetics and Molecular Bases of Complex Diseases, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (A.R.L.-P.); (I.G.-D.); (E.U.)
- Networks for Cooperative Research in Health Results (RICORS, REI), 28089 Madrid, Spain
| | - Irene Gómez-Delgado
- Laboratory of Genetics and Molecular Bases of Complex Diseases, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (A.R.L.-P.); (I.G.-D.); (E.U.)
- Networks for Cooperative Research in Health Results (RICORS, REI), 28089 Madrid, Spain
| | - Elena Urcelay
- Laboratory of Genetics and Molecular Bases of Complex Diseases, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (A.R.L.-P.); (I.G.-D.); (E.U.)
- Networks for Cooperative Research in Health Results (RICORS, REI), 28089 Madrid, Spain
| | - Francisco Javier Candel
- Department of Medicine, Medical School, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain (E.M.); (S.J.-V.); (J.J.-C.); (C.M.B.); (F.J.C.)
- Clinical Microbiology & Infectious Diseases, Transplant Coordination, IML, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, 28040 Madrid, Spain
| | - Eduardo Anguita
- Department of Medicine, Medical School, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain (E.M.); (S.J.-V.); (J.J.-C.); (C.M.B.); (F.J.C.)
- Hematology Department, IML, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Profesor Martín Lagos s/n, 28040 Madrid, Spain (B.Í.-R.)
| |
Collapse
|
5
|
Dawiec P, Leszczenko P, Nowakowska AM, Laskowska P, Szydłowski M, Juszczyński P, Baranska M, Mrówka P, Majzner K. Automatic subtyping of Diffuse Large B-cell Lymphomas (DLBCL): Raman-based genetic and metabolic classification. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123795. [PMID: 38184880 DOI: 10.1016/j.saa.2023.123795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/09/2024]
Abstract
Diffuse large B-cell lymphoma (DLBCL), the most common non-Hodgkin's lymphoma in adults, is a genetically and metabolically heterogeneous group of aggressive malignancies. The complexity of their molecular composition and the variability in clinical presentation make clinical diagnosis and treatment selection a serious challenge. The challenge is therefore to quickly and correctly classify DLBCL cells. In this work, we show that Raman imaging is a tool with high diagnostic potential, providing unique information about the biochemical components of tumor cells and their metabolism. We present models of classification of lymphoma cells based on their Raman spectra. The models automatically and efficiently identify DLBCL cells and assign them to a given cell-of-origin (COO) subtype (activated B cell-like (ABC) or germinal center B cell-like (GCB)) or, respectively, to a comprehensive cluster classification (CCC) subtype (OxPhos/non-OxPhos). In addition, we describe each lymphoma subtype by its unique spectral profile, linking it to biochemical, genetic, or metabolic features.
Collapse
Affiliation(s)
- Patrycja Dawiec
- Department of Chemical Physics, Faculty of Chemistry, Jagiellonian University, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Patrycja Leszczenko
- Department of Chemical Physics, Faculty of Chemistry, Jagiellonian University, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Anna M Nowakowska
- Department of Chemical Physics, Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Paulina Laskowska
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Maciej Szydłowski
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Przemysław Juszczyński
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Malgorzata Baranska
- Department of Chemical Physics, Faculty of Chemistry, Jagiellonian University, Krakow, Poland; Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Piotr Mrówka
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland; Department of Biophysics, Physiology and Pathophysiology, Medical University of Warsaw, Warsaw, Poland.
| | - Katarzyna Majzner
- Department of Chemical Physics, Faculty of Chemistry, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
6
|
You X, Huang L, Huang O, Deng Y, Shi X. A comprehensive analysis of SLC25A1 expression and its oncogenic role in pan-cancer. Discov Oncol 2023; 14:207. [PMID: 37981593 PMCID: PMC10657916 DOI: 10.1007/s12672-023-00830-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023] Open
Abstract
OBJECTIVE The solute carrier family 25 member 1 (SLC25A1) is currently the only known human transporter for citrate in the mitochondrial membrane. However, its role in cancer development remains to be elucidated. We aim to analyze the expression profile, prognostic value, potential immunological significance, and effect on tumor growth of SLC25A1 at a pan-cancer level. METHODS Herein, the role of SLC25A1 in tumorigenesis and progression was investigated based on the Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), Genotype-Tissue Expression (GTEx), Clinical Proteomic Tumor Analysis Consortium (CPTAC), GeneMANIA, STRING and Cancer Dependency Map Project (DepMap) database via online websites or the R software. The protein expression levels were validated in tissue microarrays, and the effects on tumor cell lines were accessed through MTS and colony formation assays. RESULTS The expression of SLC25A1 increased in most cancers, and the upregulation of SLC25A1 in colon adenocarcinoma and lung adenocarcinoma was further confirmed by immunohistochemistry. Meanwhile, SLC25A1 was linked to clinical outcomes across multiple tumor types, particularly in lung adenocarcinoma, where its high expression predicted poor prognosis. Moreover, SLC25A1 was positively associated with MSI, TMB, and CD276 and tightly correlated with tumor-infiltrating immune cells. Furthermore, the knockout of SLC25A1 demonstrated inhibitory effects in most cancer cell lines in the DepMap project. Cellular experiments showed that SLC25A1 knockdown significantly reduced the proliferation of lung adenocarcinoma cells. CONCLUSIONS Our findings suggest the potential of SLC25A1 as a prognostic biomarker for cancers and a therapeutic target for precise antitumor strategy and cancer immunotherapy.
Collapse
Affiliation(s)
- Xin You
- Department of Oncology, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou, 350005, Fujian, China
- Molecular Oncology Research Institute, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou, 350005, Fujian, China
- Department of Oncology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Lingling Huang
- Department of Oncology, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou, 350005, Fujian, China
- Department of Oncology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Ouxiang Huang
- Department of Oncology, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou, 350005, Fujian, China
- Department of Oncology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Yujie Deng
- Department of Oncology, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou, 350005, Fujian, China
- Molecular Oncology Research Institute, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou, 350005, Fujian, China
- Department of Oncology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Xi Shi
- Department of Oncology, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou, 350005, Fujian, China.
- Molecular Oncology Research Institute, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou, 350005, Fujian, China.
- Department of Oncology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
| |
Collapse
|
7
|
Białopiotrowicz-Data E, Noyszewska-Kania M, Jabłońska E, Sewastianik T, Komar D, Dębek S, Garbicz F, Wojtas M, Szydłowski M, Polak A, Górniak P, Juszczyński P. SIRT1 and HSP90α feed-forward circuit safeguards chromosome segregation integrity in diffuse large B cell lymphomas. Cell Death Dis 2023; 14:667. [PMID: 37816710 PMCID: PMC10564908 DOI: 10.1038/s41419-023-06186-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 09/18/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common aggressive non-Hodgkin lymphoma in adults, exhibiting highly heterogenous clinical behavior and complex molecular background. In addition to the genetic complexity, different DLBCL subsets exhibit phenotypic features independent of the genetic background. For example, a subset of DLBCLs is distinguished by increased oxidative phosphorylation and unique transcriptional features, including overexpression of certain mitochondrial genes and a molecular chaperone, heat shock protein HSP90α (termed "OxPhos" DLBCLs). In this study, we identified a feed-forward pathogenetic circuit linking HSP90α and SIRT1 in OxPhos DLBCLs. The expression of the inducible HSP90α isoform remains under SIRT1-mediated regulation. SIRT1 knockdown or chemical inhibition reduced HSP90α expression in a mechanism involving HSF1 transcription factor, whereas HSP90 inhibition reduced SIRT1 protein stability, indicating that HSP90 chaperones SIRT1. SIRT1-HSP90α interaction in DLBCL cells was confirmed by co-immunoprecipitation and proximity ligation assay (PLA). The number of SIRT1-HSP90α complexes in PLA was significantly higher in OxPhos- dependent than -independent cells. Importantly, SIRT1-HSP90α interactions in OxPhos DLBCLs markedly increased in mitosis, suggesting a specific role of the complex during this cell cycle phase. RNAi-mediated and chemical inhibition of SIRT1 and/or HSP90 significantly increased the number of cells with chromosome segregation errors (multipolar spindle formation, anaphase bridges and lagging chromosomes). Finally, chemical SIRT1 inhibitors induced dose-dependent cytotoxicity in OxPhos-dependent DLBCL cell lines and synergized with the HSP90 inhibitor. Taken together, our findings define a new OxPhos-DLBCL-specific pathogenetic loop involving SIRT1 and HSP90α that regulates chromosome dynamics during mitosis and may be exploited therapeutically.
Collapse
Affiliation(s)
| | - Monika Noyszewska-Kania
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Ewa Jabłońska
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Tomasz Sewastianik
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Dorota Komar
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Sonia Dębek
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Filip Garbicz
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Magdalena Wojtas
- Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Maciej Szydłowski
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Anna Polak
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Patryk Górniak
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Przemysław Juszczyński
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland.
| |
Collapse
|
8
|
Masnikosa R, Pirić D, Post JM, Cvetković Z, Petrović S, Paunović M, Vučić V, Bindila L. Disturbed Plasma Lipidomic Profiles in Females with Diffuse Large B-Cell Lymphoma: A Pilot Study. Cancers (Basel) 2023; 15:3653. [PMID: 37509314 PMCID: PMC10377844 DOI: 10.3390/cancers15143653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/01/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Lipidome dysregulation is a hallmark of cancer and inflammation. The global plasma lipidome and sub-lipidome of inflammatory pathways have not been reported in diffuse large B-cell lymphoma (DLBCL). In a pilot study of plasma lipid variation in female DLBCL patients and BMI-matched disease-free controls, we performed targeted lipidomics using LC-MRM to quantify lipid mediators of inflammation and immunity, and those known or hypothesised to be involved in cancer progression: sphingolipids, resolvin D1, arachidonic acid (AA)-derived oxylipins, such as hydroxyeicosatetraenoic acids (HETEs) and dihydroxyeicosatrienoic acids, along with their membrane structural precursors. We report on the role of the eicosanoids in the separation of DLBCL from controls, along with lysophosphatidylinositol LPI 20:4, implying notable changes in lipid metabolic and/or signalling pathways, particularly pertaining to AA lipoxygenase pathway and glycerophospholipid remodelling in the cell membrane. We suggest here the set of S1P, SM 36:1, SM 34:1 and PI 34:1 as DLBCL lipid signatures which could serve as a basis for the prospective validation in larger DLBCL cohorts. Additionally, untargeted lipidomics indicates a substantial change in the overall lipid metabolism in DLBCL. The plasma lipid profiling of DLBCL patients helps to better understand the specific lipid dysregulations and pathways in this cancer.
Collapse
Affiliation(s)
- Romana Masnikosa
- Department of Physical Chemistry, Vinca Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia
| | - David Pirić
- Department of Physical Chemistry, Vinca Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia
| | - Julia Maria Post
- Clinical Lipidomics Unit, Institute of Physiological Chemistry, University Medical Centre of the J.G.U Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Zorica Cvetković
- Department of Haematology, Clinical Hospital Centre Zemun, Vukova 9, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Dr. Subotića 8, 11000 Belgrade, Serbia
| | - Snježana Petrović
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Tadeusa Koscuska 1, 11000 Belgrade, Serbia
| | - Marija Paunović
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Tadeusa Koscuska 1, 11000 Belgrade, Serbia
| | - Vesna Vučić
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Tadeusa Koscuska 1, 11000 Belgrade, Serbia
| | - Laura Bindila
- Clinical Lipidomics Unit, Institute of Physiological Chemistry, University Medical Centre of the J.G.U Mainz, Duesbergweg 6, 55128 Mainz, Germany
| |
Collapse
|
9
|
Li Z, Yin X, Lyu C, Wang T, Wang W, Zhang J, Wang J, Wang Z, Han C, Zhang R, Guo D, Xu R. Zinc oxide nanoparticles induce toxicity in diffuse large B-cell lymphoma cell line U2932 via activating PINK1/Parkin-mediated mitophagy. Biomed Pharmacother 2023; 164:114988. [PMID: 37307677 DOI: 10.1016/j.biopha.2023.114988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common type of lymphoma. Zinc oxide (ZnO) nanoparticles have excellent anti-tumor properties in the biomedical field. The present study aimed to explore the underlying mechanism by which ZnO nanoparticles induce toxicity in DLBCL cells (U2932) via the PINK1/Parkin-mediated mitophagy pathway. After U2932 cells were exposed to various concentrations of ZnO nanoparticles, the cell survival rate, reactive oxygen species (ROS) generation, cell cycle arrest, and changes in the expression of PINK1, Parkin, P62, and LC3 were monitored. Moreover, we investigated monodansylcadaverine (MDC) fluorescence intensity and autophagosome and further validated the results using the autophagy inhibitor 3-methyladenine (3-MA). The results showed that ZnO nanoparticles could effectively inhibit the proliferation of U2932 cells and induce cell cycle arrest at the G0/G1 phases. Moreover, ZnO nanoparticles significantly increased ROS production, MDC fluorescence intensity, autophagosome formation, and the expression of PINK1, Parkin, and LC3, and decreased the expression of P62 in U2932 cells. In contrast, the autophagy level was reduced after the intervention of the 3-MA. Overall, ZnO nanoparticles can trigger PINK1/Parkin-mediated mitophagy signaling in U2932 cells, which may be a potential therapeutic approach for DLBCL.
Collapse
Affiliation(s)
- Zonghong Li
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Xuewei Yin
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Chunyi Lyu
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Teng Wang
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Hematology, Health Commission of Shandong Province, Jinan 250014, China
| | - Wenhao Wang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Jiachen Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Jinxin Wang
- Department of Hematology, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369#, Jingshi Road, Jinan 250014, Shandong Province, China
| | - Zhenzhen Wang
- Department of Hematology, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369#, Jingshi Road, Jinan 250014, Shandong Province, China
| | - Chen Han
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Ruixue Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan, Shandong Province, China.
| | - Ruirong Xu
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Hematology, Health Commission of Shandong Province, Jinan 250014, China; Department of Hematology, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369#, Jingshi Road, Jinan 250014, Shandong Province, China; Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| |
Collapse
|
10
|
Pouliquen DL, Ortone G, Rumiano L, Boissard A, Henry C, Blandin S, Guette C, Riganti C, Kopecka J. Long-Chain Acyl Coenzyme A Dehydrogenase, a Key Player in Metabolic Rewiring/Invasiveness in Experimental Tumors and Human Mesothelioma Cell Lines. Cancers (Basel) 2023; 15:cancers15113044. [PMID: 37297007 DOI: 10.3390/cancers15113044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Cross-species investigations of cancer invasiveness are a new approach that has already identified new biomarkers which are potentially useful for improving tumor diagnosis and prognosis in clinical medicine and veterinary science. In this study, we combined proteomic analysis of four experimental rat malignant mesothelioma (MM) tumors with analysis of ten patient-derived cell lines to identify common features associated with mitochondrial proteome rewiring. A comparison of significant abundance changes between invasive and non-invasive rat tumors gave a list of 433 proteins, including 26 proteins reported to be exclusively located in mitochondria. Next, we analyzed the differential expression of genes encoding the mitochondrial proteins of interest in five primary epithelioid and five primary sarcomatoid human MM cell lines; the most impressive increase was observed in the expression of the long-chain acyl coenzyme A dehydrogenase (ACADL). To evaluate the role of this enzyme in migration/invasiveness, two epithelioid and two sarcomatoid human MM cell lines derived from patients with the highest and lowest overall survival were studied. Interestingly, sarcomatoid vs. epithelioid cell lines were characterized by higher migration and fatty oxidation rates, in agreement with ACADL findings. These results suggest that evaluating mitochondrial proteins in MM specimens might identify tumors with higher invasiveness.
Collapse
Affiliation(s)
- Daniel L Pouliquen
- Université d'Angers, Inserm, CNRS, Nantes Université, CRCI2NA, F-49000 Angers, France
| | - Giacomo Ortone
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy
| | - Letizia Rumiano
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy
| | - Alice Boissard
- Université d'Angers, ICO, Inserm, CNRS, Nantes Université, CRCI2NA, F-49000 Angers, France
| | - Cécile Henry
- Université d'Angers, ICO, Inserm, CNRS, Nantes Université, CRCI2NA, F-49000 Angers, France
| | - Stéphanie Blandin
- CHU Nantes, CNRS, Inserm, BioCore, US16, SFR Bonamy, Nantes Université, F-44000 Nantes, France
| | - Catherine Guette
- Université d'Angers, ICO, Inserm, CNRS, Nantes Université, CRCI2NA, F-49000 Angers, France
| | - Chiara Riganti
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy
| | - Joanna Kopecka
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy
| |
Collapse
|
11
|
Ngo J, Choi DW, Stanley IA, Stiles L, Molina AJA, Chen P, Lako A, Sung ICH, Goswami R, Kim M, Miller N, Baghdasarian S, Kim‐Vasquez D, Jones AE, Roach B, Gutierrez V, Erion K, Divakaruni AS, Liesa M, Danial NN, Shirihai OS. Mitochondrial morphology controls fatty acid utilization by changing CPT1 sensitivity to malonyl-CoA. EMBO J 2023; 42:e111901. [PMID: 36917141 PMCID: PMC10233380 DOI: 10.15252/embj.2022111901] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 01/17/2023] [Accepted: 02/02/2023] [Indexed: 03/16/2023] Open
Abstract
Changes in mitochondrial morphology are associated with nutrient utilization, but the precise causalities and the underlying mechanisms remain unknown. Here, using cellular models representing a wide variety of mitochondrial shapes, we show a strong linear correlation between mitochondrial fragmentation and increased fatty acid oxidation (FAO) rates. Forced mitochondrial elongation following MFN2 over-expression or DRP1 depletion diminishes FAO, while forced fragmentation upon knockdown or knockout of MFN2 augments FAO as evident from respirometry and metabolic tracing. Remarkably, the genetic induction of fragmentation phenocopies distinct cell type-specific biological functions of enhanced FAO. These include stimulation of gluconeogenesis in hepatocytes, induction of insulin secretion in islet β-cells exposed to fatty acids, and survival of FAO-dependent lymphoma subtypes. We find that fragmentation increases long-chain but not short-chain FAO, identifying carnitine O-palmitoyltransferase 1 (CPT1) as the downstream effector of mitochondrial morphology in regulation of FAO. Mechanistically, we determined that fragmentation reduces malonyl-CoA inhibition of CPT1, while elongation increases CPT1 sensitivity to malonyl-CoA inhibition. Overall, these findings underscore a physiologic role for fragmentation as a mechanism whereby cellular fuel preference and FAO capacity are determined.
Collapse
Affiliation(s)
- Jennifer Ngo
- Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, Molecular Biology InstituteUCLACALos AngelesUSA
- Department of Molecular and Medical PharmacologyUCLACALos AngelesUSA
- Department of Chemistry & BiochemistryUCLACALos AngelesUSA
- Molecular Biology InstituteUCLACALos AngelesUSA
| | - Dong Wook Choi
- Department of Cancer Biology, Dana‐Farber Cancer InstituteHarvard Medical SchoolMABostonUSA
- Department of Biochemistry, College of Natural SciencesChungnam National UniversityDaejeonSouth Korea
| | - Illana A Stanley
- Department of Cancer Biology, Dana‐Farber Cancer InstituteHarvard Medical SchoolMABostonUSA
| | - Linsey Stiles
- Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, Molecular Biology InstituteUCLACALos AngelesUSA
- Department of Molecular and Medical PharmacologyUCLACALos AngelesUSA
| | - Anthony J A Molina
- Division of Geriatrics and GerontologyUCSD School of MedicineCALa JollaUSA
| | - Pei‐Hsuan Chen
- Department of Cancer Biology, Dana‐Farber Cancer InstituteHarvard Medical SchoolMABostonUSA
| | - Ana Lako
- Department of Cancer Biology, Dana‐Farber Cancer InstituteHarvard Medical SchoolMABostonUSA
| | - Isabelle Chiao Han Sung
- Department of Cancer Biology, Dana‐Farber Cancer InstituteHarvard Medical SchoolMABostonUSA
- Yale‐NUS CollegeUniversity Town, NUSSingapore
| | - Rishov Goswami
- Department of Cancer Biology, Dana‐Farber Cancer InstituteHarvard Medical SchoolMABostonUSA
| | - Min‐young Kim
- Department of Biochemistry, College of Natural SciencesChungnam National UniversityDaejeonSouth Korea
| | - Nathanael Miller
- Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, Molecular Biology InstituteUCLACALos AngelesUSA
- Obesity Research Center, Molecular MedicineBoston University School of MedicineMABostonUSA
| | - Siyouneh Baghdasarian
- Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, Molecular Biology InstituteUCLACALos AngelesUSA
| | - Doyeon Kim‐Vasquez
- Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, Molecular Biology InstituteUCLACALos AngelesUSA
| | - Anthony E Jones
- Department of Molecular and Medical PharmacologyUCLACALos AngelesUSA
| | - Brett Roach
- Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, Molecular Biology InstituteUCLACALos AngelesUSA
| | - Vincent Gutierrez
- Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, Molecular Biology InstituteUCLACALos AngelesUSA
| | - Karel Erion
- Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, Molecular Biology InstituteUCLACALos AngelesUSA
| | - Ajit S Divakaruni
- Department of Molecular and Medical PharmacologyUCLACALos AngelesUSA
| | - Marc Liesa
- Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, Molecular Biology InstituteUCLACALos AngelesUSA
- Department of Molecular and Medical PharmacologyUCLACALos AngelesUSA
- Molecular Biology InstituteUCLACALos AngelesUSA
- Molecular Biology Institute of BarcelonaIBMB‐CSICBarcelonaSpain
| | - Nika N Danial
- Department of Cancer Biology, Dana‐Farber Cancer InstituteHarvard Medical SchoolMABostonUSA
- Department of Medical Oncology, Dana‐Farber Cancer InstituteHarvard Medical SchoolMABostonUSA
- Department of MedicineHarvard Medical SchoolMABostonUSA
| | - Orian S Shirihai
- Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, Molecular Biology InstituteUCLACALos AngelesUSA
- Department of Molecular and Medical PharmacologyUCLACALos AngelesUSA
| |
Collapse
|
12
|
D'Achille G, Morroni G. Side effects of antibiotics and perturbations of mitochondria functions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 377:121-139. [PMID: 37268348 DOI: 10.1016/bs.ircmb.2023.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Antibiotics are one of the greatest discoveries of medicine of the past century. Despite their invaluable contribution to infectious disease, their administration could lead to side effects that in some cases are serious. The toxicity of some antibiotics is in part due to their interaction with mitochondria: these organelles derive from a bacterial ancestor and possess specific translation machinery that shares similarities with the bacterial counterpart. In other cases, the antibiotics could interfere with mitochondrial functions even if their main bacterial targets are not shared with the eukaryotic cells. The purpose of this review is to summarize the effects of antibiotics administration on mitochondrial homeostasis and the opportunity that some of these molecules could represent in cancer treatment. The importance of antimicrobial therapy is unquestionable, but the identification of interaction with eukaryotic cells and in particular with mitochondria is crucial to reduce the toxicity of these drugs and to explore other useful medical applications.
Collapse
Affiliation(s)
- Gloria D'Achille
- Microbiology Unit, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Gianluca Morroni
- Microbiology Unit, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy.
| |
Collapse
|
13
|
Pang Y, Lu T, Xu-Monette ZY, Young KH. Metabolic Reprogramming and Potential Therapeutic Targets in Lymphoma. Int J Mol Sci 2023; 24:5493. [PMID: 36982568 PMCID: PMC10052731 DOI: 10.3390/ijms24065493] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Lymphoma is a heterogeneous group of diseases that often require their metabolism program to fulfill the demand of cell proliferation. Features of metabolism in lymphoma cells include high glucose uptake, deregulated expression of enzymes related to glycolysis, dual capacity for glycolytic and oxidative metabolism, elevated glutamine metabolism, and fatty acid synthesis. These aberrant metabolic changes lead to tumorigenesis, disease progression, and resistance to lymphoma chemotherapy. This metabolic reprogramming, including glucose, nucleic acid, fatty acid, and amino acid metabolism, is a dynamic process caused not only by genetic and epigenetic changes, but also by changes in the microenvironment affected by viral infections. Notably, some critical metabolic enzymes and metabolites may play vital roles in lymphomagenesis and progression. Recent studies have uncovered that metabolic pathways might have clinical impacts on the diagnosis, characterization, and treatment of lymphoma subtypes. However, determining the clinical relevance of biomarkers and therapeutic targets related to lymphoma metabolism is still challenging. In this review, we systematically summarize current studies on metabolism reprogramming in lymphoma, and we mainly focus on disorders of glucose, amino acids, and lipid metabolisms, as well as dysregulation of molecules in metabolic pathways, oncometabolites, and potential metabolic biomarkers. We then discuss strategies directly or indirectly for those potential therapeutic targets. Finally, we prospect the future directions of lymphoma treatment on metabolic reprogramming.
Collapse
Affiliation(s)
- Yuyang Pang
- Division of Hematopathology, Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Hematology, Ninth People’s Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Tingxun Lu
- Division of Hematopathology, Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Cancer Institute, Durham, NC 27710, USA
| | - Zijun Y. Xu-Monette
- Division of Hematopathology, Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Cancer Institute, Durham, NC 27710, USA
| | - Ken H. Young
- Division of Hematopathology, Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Cancer Institute, Durham, NC 27710, USA
| |
Collapse
|
14
|
Zhou X, Zhu X, Zeng H. Fatty acid metabolism in adaptive immunity. FEBS J 2023; 290:584-599. [PMID: 34822226 PMCID: PMC9130345 DOI: 10.1111/febs.16296] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/12/2021] [Accepted: 11/24/2021] [Indexed: 02/06/2023]
Abstract
Fatty acids (FAs) not only are a key component of cellular membrane structure, but also have diverse functions in biological processes. Recent years have seen great advances in understanding of how FA metabolism contributes to adaptive immune response. Here, we review three key processes, FA biosynthesis, FA oxidation and FA uptake, and how they direct T and B cell functions during immune challenges. Then, we will focus on the relationship between microbiota derived FAs, short-chain FAs, and adaptive immunity. Along the way, we will also discuss the outstanding controversies and challenges in the field.
Collapse
Affiliation(s)
- Xian Zhou
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, Rochester, MN 55905, USA
| | - Xingxing Zhu
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, Rochester, MN 55905, USA
| | - Hu Zeng
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, Rochester, MN 55905, USA,Department of Immunology, Mayo Clinic Rochester, Rochester, MN 55905, USA
| |
Collapse
|
15
|
Meta-Analysis of MS-Based Proteomics Studies Indicates Interferon Regulatory Factor 4 and Nucleobindin1 as Potential Prognostic and Drug Resistance Biomarkers in Diffuse Large B Cell Lymphoma. Cells 2023; 12:cells12010196. [PMID: 36611989 PMCID: PMC9818977 DOI: 10.3390/cells12010196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 01/06/2023] Open
Abstract
The prognosis of diffuse large B cell lymphoma (DLBCL) is inaccurately predicted using clinical features and immunohistochemistry (IHC) algorithms. Nomination of a panel of molecules as the target for therapy and predicting prognosis in DLBCL is challenging because of the divergences in the results of molecular studies. Mass spectrometry (MS)-based proteomics in the clinic represents an analytical tool with the potential to improve DLBCL diagnosis and prognosis. Previous proteomics studies using MS-based proteomics identified a wide range of proteins. To achieve a consensus, we reviewed MS-based proteomics studies and extracted the most consistently significantly dysregulated proteins. These proteins were then further explored by analyzing data from other omics fields. Among all significantly regulated proteins, interferon regulatory factor 4 (IRF4) was identified as a potential target by proteomics, genomics, and IHC. Moreover, annexinA5 (ANXA5) and nucleobindin1 (NUCB1) were two of the most up-regulated proteins identified in MS studies. Functional enrichment analysis identified the light zone reactions of the germinal center (LZ-GC) together with cytoskeleton locomotion functions as enriched based on consistent, significantly dysregulated proteins. In this study, we suggest IRF4 and NUCB1 proteins as potential biomarkers that deserve further investigation in the field of DLBCL sub-classification and prognosis.
Collapse
|
16
|
Advances in Understanding of Metabolism of B-Cell Lymphoma: Implications for Therapy. Cancers (Basel) 2022; 14:cancers14225552. [PMID: 36428647 PMCID: PMC9688663 DOI: 10.3390/cancers14225552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
There have been significant recent advances in the understanding of the role of metabolism in normal and malignant B-cell biology. Previous research has focused on the role of MYC and mammalian target of rapamycin (mTOR) and how these interact with B-cell receptor signaling and hypoxia to regulate glycolysis, glutaminolysis, oxidative phosphorylation (OXPHOS) and related metabolic pathways in germinal centers. Many of the commonest forms of lymphoma arise from germinal center B-cells, reflecting the physiological attenuation of normal DNA damage checkpoints to facilitate somatic hypermutation of the immunoglobulin genes. As a result, these lymphomas can inherit the metabolic state of their cell-of-origin. There is increasing interest in the potential of targeting metabolic pathways for anti-cancer therapy. Some metabolic inhibitors such as methotrexate have been used to treat lymphoma for decades, with several new agents being recently licensed such as inhibitors of phosphoinositide-3-kinase. Several other inhibitors are in development including those blocking mTOR, glutaminase, OXPHOS and monocarboxylate transporters. In addition, recent work has highlighted the importance of the interaction between diet and cancer, with particular focus on dietary modifications that restrict carbohydrates and specific amino acids. This article will review the current state of this field and discuss future developments.
Collapse
|
17
|
Li H, Yu L, Zhang X, Shang J, Duan X. Exploring the molecular mechanisms and shared gene signatures between rheumatoid arthritis and diffuse large B cell lymphoma. Front Immunol 2022; 13:1036239. [PMID: 36389761 PMCID: PMC9659608 DOI: 10.3389/fimmu.2022.1036239] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/17/2022] [Indexed: 07/25/2023] Open
Abstract
The relationship between rheumatoid arthritis (RA) and diffuse large B-cell lymphoma (DLBCL) is well characterized, but the molecular mechanisms underlying this association have not been clearly investigated. Our study aimed to identify shared gene signatures and molecular mechanisms between RA and DLBCL. We selected multiple Gene Expression Omnibus (GEO) datasets (GSE93272, GSE83632, GSE12453, GSE1919) to obtain gene expression levels and clinical information about patients with RA and DLBCL. Weighted gene co-expression network analysis (WGCNA) was used to research co-expression networks associated with RA and DLBCL. Subsequently, we performed enrichment analysis of shared genes and screened the most significant core genes. We observed expression of the screened target gene, galectin 2 (LGALS2), in DLBCL patients and its impact on patient prognosis. Finally, we analyzed the molecular functional mechanism of LGALS2 and observed its relationship with the immune response in DLBCL using single-sample Gene Set Enrichment Analysis (ssGSEA). WGCNA recognized two major modules for RA and DLBCL, respectively. Shared genes (551) were identified for RA and DLBCL by observing the intersection. In addition, a critical shared gene, LGALS2, was acquired in the validation tests. Next, we found that the expression level of LGALS2 gradually decreased with tumor progression in DLBCL and that increased expression of LGALS2 predicted a better prognosis for DLBCL patients. ssGSEA revealed that LGALS2 is involved in immune-related pathways and has a significant regulatory effect on human immune responses. Additionally, we observed that LGALS2 is closely related to the sensitivity of multiple chemotherapeutic drugs. There is extremely little research on the molecular mechanism of correlation between RA and DLBCL. Our study identified that LGALS2 is a potential therapeutic target and an immune-related biomarker for patients with RA and DLBCL.
Collapse
|
18
|
Wei P, Bott AJ, Cluntun AA, Morgan JT, Cunningham CN, Schell JC, Ouyang Y, Ficarro SB, Marto JA, Danial NN, DeBerardinis RJ, Rutter J. Mitochondrial pyruvate supports lymphoma proliferation by fueling a glutamate pyruvate transaminase 2-dependent glutaminolysis pathway. SCIENCE ADVANCES 2022; 8:eabq0117. [PMID: 36179030 PMCID: PMC9524954 DOI: 10.1126/sciadv.abq0117] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/04/2022] [Indexed: 06/14/2023]
Abstract
The fate of pyruvate is a defining feature in many cell types. One major fate is mitochondrial entry via the mitochondrial pyruvate carrier (MPC). We found that diffuse large B cell lymphomas (DLBCLs) consume mitochondrial pyruvate via glutamate-pyruvate transaminase 2 to enable α-ketoglutarate production as part of glutaminolysis. This led us to discover that glutamine exceeds pyruvate as a carbon source for the tricarboxylic acid cycle in DLBCLs. As a result, MPC inhibition led to decreased glutaminolysis in DLBCLs, opposite to previous observations in other cell types. We also found that MPC inhibition or genetic depletion decreased DLBCL proliferation in an extracellular matrix (ECM)-like environment and xenografts, but not in a suspension environment. Moreover, the metabolic profile of DLBCL cells in ECM is markedly different from cells in a suspension environment. Thus, we conclude that the synergistic consumption and assimilation of glutamine and pyruvate enables DLBCL proliferation in an extracellular environment-dependent manner.
Collapse
Affiliation(s)
- Peng Wei
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Alex J. Bott
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Ahmad A. Cluntun
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Jeffrey T. Morgan
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Corey N. Cunningham
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - John C. Schell
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Yeyun Ouyang
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Scott B. Ficarro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Blais Proteomics Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Jarrod A. Marto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Blais Proteomics Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Nika N. Danial
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Ralph J. DeBerardinis
- Children’s Medical Center Research Institute, University of Texas (UT) Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jared Rutter
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| |
Collapse
|
19
|
Richter Syndrome: From Molecular Pathogenesis to Druggable Targets. Cancers (Basel) 2022; 14:cancers14194644. [PMID: 36230566 PMCID: PMC9563287 DOI: 10.3390/cancers14194644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/07/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Richter syndrome (RS) represents the occurrence of an aggressive lymphoma, most commonly diffuse large B-cell lymphoma (DLBCL), in patients with chronic lymphocytic leukemia (CLL). Most cases of RS originate from the direct transformation of CLL, whereas 20% are de novo DLBCL arising as secondary malignancies. Multiple molecular mechanisms contribute to RS pathogenesis. B-cell receptor (BCR) overreactivity to multiple autoantigens is due to frequent stereotyped BCR configuration. Genetic lesions of TP53, CDKN2A, NOTCH1 and c-MYC deregulate DNA damage response, tumor suppression, apoptosis, cell cycle and proliferation. Hyperactivation of Akt and NOTCH1 signaling also plays a role. Altered expression of PD-1/PD-L1 and of other immune checkpoints leads to RS resistance to cytotoxicity exerted by T-cells. The molecular features of RS provide vulnerabilities for therapy. Targeting BCR signaling with noncovalent BTK inhibitors shows encouraging results, as does the combination of BCL2 inhibitors with chemoimmunotherapy. The association of immune checkpoint inhibitors with BCL2 inhibitors and anti-CD20 monoclonal antibodies is explored in early phase clinical trials with promising results. The development of patient-derived xenograft mice models reveals new molecular targets for RS, exemplified by ROR1. Although RS still represents an unmet medical need, understanding its biology is opening new avenues for precision medicine therapy.
Collapse
|
20
|
Fatty acid metabolism in aggressive B-cell lymphoma is inhibited by tetraspanin CD37. Nat Commun 2022; 13:5371. [PMID: 36100608 PMCID: PMC9470561 DOI: 10.1038/s41467-022-33138-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/30/2022] [Indexed: 11/09/2022] Open
Abstract
The importance of fatty acid (FA) metabolism in cancer is well-established, yet the mechanisms underlying metabolic reprogramming remain elusive. Here, we identify tetraspanin CD37, a prognostic marker for aggressive B-cell lymphoma, as essential membrane-localized inhibitor of FA metabolism. Deletion of CD37 on lymphoma cells results in increased FA oxidation shown by functional assays and metabolomics. Furthermore, CD37-negative lymphomas selectively deplete palmitate from serum in mouse studies. Mechanistically, CD37 inhibits the FA transporter FATP1 through molecular interaction. Consequently, deletion of CD37 induces uptake and processing of exogenous palmitate into energy and essential building blocks for proliferation, and inhibition of FATP1 reverses this phenotype. Large lipid deposits and intracellular lipid droplets are observed in CD37-negative lymphoma tissues of patients. Moreover, inhibition of carnitine palmitoyl transferase 1 A significantly compromises viability and proliferation of CD37-deficient lymphomas. Collectively, our results identify CD37 as a direct gatekeeper of the FA metabolic switch in aggressive B-cell lymphoma. Tetraspanin CD37 deficiency has been reported as a prognostic marker for aggressive B-cell lymphoma. Here, the authors show that CD37 interacts with the fatty acid transporter 1 to inhibit palmitate uptake and its deficiency leads to increased fatty acid metabolism which promotes tumorigenesis in B-cell lymphoma.
Collapse
|
21
|
Capece D, Verzella D, Flati I, Arboretto P, Cornice J, Franzoso G. NF-κB: blending metabolism, immunity, and inflammation. Trends Immunol 2022; 43:757-775. [PMID: 35965153 DOI: 10.1016/j.it.2022.07.004] [Citation(s) in RCA: 208] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023]
Abstract
The procurement and management of nutrients and ability to fight infections are fundamental requirements for survival. These defense responses are bioenergetically costly, requiring the immune system to balance protection against pathogens with the need to maintain metabolic homeostasis. NF-κB transcription factors are central regulators of immunity and inflammation. Over the last two decades, these factors have emerged as a pivotal node coordinating the immune and metabolic systems in physiology and the etiopathogenesis of major threats to human health, including cancer, autoimmunity, chronic inflammation, and others. In this review, we discuss recent advances in understanding how NF-κB-dependent metabolic programs control inflammation, metabolism, and immunity and how improved knowledge of them may lead to better diagnostics and therapeutics for widespread human diseases.
Collapse
Affiliation(s)
- Daria Capece
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, 67100 L'Aquila, Italy; Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK.
| | - Daniela Verzella
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, 67100 L'Aquila, Italy; Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Irene Flati
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, 67100 L'Aquila, Italy
| | - Paola Arboretto
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Jessica Cornice
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Guido Franzoso
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK.
| |
Collapse
|
22
|
Nadeu F, Royo R, Massoni-Badosa R, Playa-Albinyana H, Garcia-Torre B, Duran-Ferrer M, Dawson KJ, Kulis M, Diaz-Navarro A, Villamor N, Melero JL, Chapaprieta V, Dueso-Barroso A, Delgado J, Moia R, Ruiz-Gil S, Marchese D, Giró A, Verdaguer-Dot N, Romo M, Clot G, Rozman M, Frigola G, Rivas-Delgado A, Baumann T, Alcoceba M, González M, Climent F, Abrisqueta P, Castellví J, Bosch F, Aymerich M, Enjuanes A, Ruiz-Gaspà S, López-Guillermo A, Jares P, Beà S, Capella-Gutierrez S, Gelpí JL, López-Bigas N, Torrents D, Campbell PJ, Gut I, Rossi D, Gaidano G, Puente XS, Garcia-Roves PM, Colomer D, Heyn H, Maura F, Martín-Subero JI, Campo E. Detection of early seeding of Richter transformation in chronic lymphocytic leukemia. Nat Med 2022; 28:1662-1671. [PMID: 35953718 PMCID: PMC9388377 DOI: 10.1038/s41591-022-01927-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 07/01/2022] [Indexed: 02/06/2023]
Abstract
Richter transformation (RT) is a paradigmatic evolution of chronic lymphocytic leukemia (CLL) into a very aggressive large B cell lymphoma conferring a dismal prognosis. The mechanisms driving RT remain largely unknown. We characterized the whole genome, epigenome and transcriptome, combined with single-cell DNA/RNA-sequencing analyses and functional experiments, of 19 cases of CLL developing RT. Studying 54 longitudinal samples covering up to 19 years of disease course, we uncovered minute subclones carrying genomic, immunogenetic and transcriptomic features of RT cells already at CLL diagnosis, which were dormant for up to 19 years before transformation. We also identified new driver alterations, discovered a new mutational signature (SBS-RT), recognized an oxidative phosphorylation (OXPHOS)high–B cell receptor (BCR)low-signaling transcriptional axis in RT and showed that OXPHOS inhibition reduces the proliferation of RT cells. These findings demonstrate the early seeding of subclones driving advanced stages of cancer evolution and uncover potential therapeutic targets for RT. Single-cell genomic and transcriptomic analyses of longitudinal samples of patients with Richter syndrome reveal the presence and dynamics of clones driving transformation from chronic lymphocytic leukemia years before clinical manifestation
Collapse
Affiliation(s)
- Ferran Nadeu
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| | - Romina Royo
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Ramon Massoni-Badosa
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Heribert Playa-Albinyana
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Beatriz Garcia-Torre
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Martí Duran-Ferrer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | | | - Marta Kulis
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ander Diaz-Navarro
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo, Spain
| | - Neus Villamor
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Hospital Clínic of Barcelona, Barcelona, Spain
| | | | - Vicente Chapaprieta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Julio Delgado
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Hospital Clínic of Barcelona, Barcelona, Spain.,Universitat de Barcelona, Barcelona, Spain
| | - Riccardo Moia
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Sara Ruiz-Gil
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Domenica Marchese
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Ariadna Giró
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Núria Verdaguer-Dot
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mónica Romo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Guillem Clot
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Maria Rozman
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Hospital Clínic of Barcelona, Barcelona, Spain
| | | | - Alfredo Rivas-Delgado
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Hospital Clínic of Barcelona, Barcelona, Spain
| | - Tycho Baumann
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Hospital Clínic of Barcelona, Barcelona, Spain.,Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Miguel Alcoceba
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Biología Molecular e Histocompatibilidad, IBSAL-Hospital Universitario, Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Marcos González
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Biología Molecular e Histocompatibilidad, IBSAL-Hospital Universitario, Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Fina Climent
- Hospital Universitari de Bellvitge-Institut d'Investigació Biomédica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Pau Abrisqueta
- Department of Hematology, Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Josep Castellví
- Department of Hematology, Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Francesc Bosch
- Department of Hematology, Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Marta Aymerich
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Hospital Clínic of Barcelona, Barcelona, Spain
| | - Anna Enjuanes
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Sílvia Ruiz-Gaspà
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Armando López-Guillermo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Hospital Clínic of Barcelona, Barcelona, Spain.,Universitat de Barcelona, Barcelona, Spain
| | - Pedro Jares
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Hospital Clínic of Barcelona, Barcelona, Spain.,Universitat de Barcelona, Barcelona, Spain
| | - Sílvia Beà
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Hospital Clínic of Barcelona, Barcelona, Spain.,Universitat de Barcelona, Barcelona, Spain
| | | | - Josep Ll Gelpí
- Barcelona Supercomputing Center (BSC), Barcelona, Spain.,Universitat de Barcelona, Barcelona, Spain
| | - Núria López-Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - David Torrents
- Barcelona Supercomputing Center (BSC), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | | | - Ivo Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Davide Rossi
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Xose S Puente
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo, Spain
| | - Pablo M Garcia-Roves
- Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Dolors Colomer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Hospital Clínic of Barcelona, Barcelona, Spain.,Universitat de Barcelona, Barcelona, Spain
| | - Holger Heyn
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Francesco Maura
- Myeloma Service, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - José I Martín-Subero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Universitat de Barcelona, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Elías Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain. .,Hospital Clínic of Barcelona, Barcelona, Spain. .,Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
23
|
Jin P, Jiang J, Zhou L, Huang Z, Nice EC, Huang C, Fu L. Mitochondrial adaptation in cancer drug resistance: prevalence, mechanisms, and management. J Hematol Oncol 2022; 15:97. [PMID: 35851420 PMCID: PMC9290242 DOI: 10.1186/s13045-022-01313-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 02/08/2023] Open
Abstract
Drug resistance represents a major obstacle in cancer management, and the mechanisms underlying stress adaptation of cancer cells in response to therapy-induced hostile environment are largely unknown. As the central organelle for cellular energy supply, mitochondria can rapidly undergo dynamic changes and integrate cellular signaling pathways to provide bioenergetic and biosynthetic flexibility for cancer cells, which contributes to multiple aspects of tumor characteristics, including drug resistance. Therefore, targeting mitochondria for cancer therapy and overcoming drug resistance has attracted increasing attention for various types of cancer. Multiple mitochondrial adaptation processes, including mitochondrial dynamics, mitochondrial metabolism, and mitochondrial apoptotic regulatory machinery, have been demonstrated to be potential targets. However, recent increasing insights into mitochondria have revealed the complexity of mitochondrial structure and functions, the elusive functions of mitochondria in tumor biology, and the targeting inaccessibility of mitochondria, which have posed challenges for the clinical application of mitochondrial-based cancer therapeutic strategies. Therefore, discovery of both novel mitochondria-targeting agents and innovative mitochondria-targeting approaches is urgently required. Here, we review the most recent literature to summarize the molecular mechanisms underlying mitochondrial stress adaptation and their intricate connection with cancer drug resistance. In addition, an overview of the emerging strategies to target mitochondria for effectively overcoming chemoresistance is highlighted, with an emphasis on drug repositioning and mitochondrial drug delivery approaches, which may accelerate the application of mitochondria-targeting compounds for cancer therapy.
Collapse
Affiliation(s)
- Ping Jin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Jingwen Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China.
| | - Li Fu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518060, Guangdong, People's Republic of China.
| |
Collapse
|
24
|
A novel Gboxin analog induces OXPHOS inhibition and mitochondrial dysfunction-mediated apoptosis in diffuse large B-cell lymphoma. Bioorg Chem 2022; 127:106019. [PMID: 35849895 DOI: 10.1016/j.bioorg.2022.106019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/07/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is an aggressive B-cell non-Hodgkin's lymphoma. Currently, moderate efficacy and limitations of approved drugs still exist, and it is necessary to develop newer and more effective drugs. Gboxin is a promising inhibitor of OXPHOS, which specifically inhibits the growth of many kinds of cancer cell lines. In the present study, 21 Gboxin analogs incorporating amide and ester moieties were designed and synthesized. Preliminary screening results show that 5d also has specific selectivity for cancer cells, particularly on the DLBCL cells, which is weaker than that of Gboxin but still good. Thus, the effect and underlying mechanism of 5d on DLBCL cells were further studied. The results showed that 5d exhibits potent proliferation inhibition and cell cycle arrest effects, and its IC50 to DLBCL cells is below 1 µM. In addition, 5d induces apoptosis of DLBCL cells in a time- and dose-dependent manner, and this effect is stronger than that of Gboxin and VP16. Mechanistically, 5d plays its role mainly through the stimulation of metabolic stress in DLBCL cell lines, which induces OXPHOS inhibition, inflammation, DNA damage and mitochondrial dysfunction. These data suggest that 5d has potential as a candidate agent for DLBCL alternative drug development.
Collapse
|
25
|
Fei F, Zheng M, Xu Z, Sun R, Chen X, Cao B, Li J. Plasma Metabolites Forecast Occurrence and Prognosis for Patients With Diffuse Large B-Cell Lymphoma. Front Oncol 2022; 12:894891. [PMID: 35734601 PMCID: PMC9207198 DOI: 10.3389/fonc.2022.894891] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/09/2022] [Indexed: 11/24/2022] Open
Abstract
Background Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin’s lymphoma with considerable heterogeneity and different clinical prognosis. However, plasma metabomics used to forecast occurrence and prognosis of DLBCL are rarely addressed. Method A total of 65 volunteers including 22 healthy controls (Ctrl), 25 DLBCL patients newly diagnosed (ND), and 18 DLBCL patients achieving complete remission (CR) were enrolled. A gas chromatography mass spectrometry-based untargeted plasma metabolomics analysis was performed. Results Multivariate statistical analysis displayed distinct metabolic features among Crtl, ND, and CR groups. Surprisingly, metabolic profiles of newly diagnosed DLBCL patients undergoing different prognosis showed clear and distinctive clustering. Based on the candidate metabolic biomarkers (glucose and aspartate) and clinical indicators (lymphocyte, red blood count, and hemoglobin), a distinct diagnostic equation was established showing improved diagnostic performance with an area under curve of 0.936. The enrichment of citric acid cycle, deficiency of branched chain amino acid, methionine, and cysteine in newly diagnosed DLBCL patients was closely associated with poor prognosis. In addition, we found that malate and 2-hydroxy-2-methylbutyric acid were positively correlated with the baseline tumor metabolic parameters (metabolically active tumor volume and total lesion glycolysis), and the higher abundance of plasma malate, the poorer survival. Conclusion Our preliminary data suggested plasma metabolomics study was informative to characterize the metabolic phenotypes and forecast occurrence and prognosis of DLBCL. Malate was identified as an unfavorable metabolic biomarker for prognosis-prediction of DLBCL, which provided a new insight on risk-stratification and therapeutic targets of DLBCL. More studies to confirm these associations and investigate potential mechanisms are in the process.
Collapse
Affiliation(s)
- Fei Fei
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Meihong Zheng
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhenzhen Xu
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Runbin Sun
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xin Chen
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Bei Cao
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Juan Li
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
26
|
Noble RA, Thomas H, Zhao Y, Herendi L, Howarth R, Dragoni I, Keun HC, Vellano CP, Marszalek JR, Wedge SR. Simultaneous targeting of glycolysis and oxidative phosphorylation as a therapeutic strategy to treat diffuse large B-cell lymphoma. Br J Cancer 2022; 127:937-947. [PMID: 35618788 PMCID: PMC9428179 DOI: 10.1038/s41416-022-01848-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 04/22/2022] [Accepted: 05/06/2022] [Indexed: 12/13/2022] Open
Abstract
Background We evaluated the therapeutic potential of combining the monocarboxylate transporter 1 (MCT1) inhibitor AZD3965 with the mitochondrial respiratory Complex I inhibitor IACS-010759, for the treatment of diffuse large B-cell lymphoma (DLBCL), a potential clinically actionable strategy to target tumour metabolism. Methods AZD3965 and IACS-010759 sensitivity were determined in DLBCL cell lines and tumour xenograft models. Lactate concentrations, oxygen consumption rate and metabolomics were examined as mechanistic endpoints. In vivo plasma concentrations of IACS-010759 in mice were determined by LC-MS to select a dose that reflected clinically attainable concentrations. Results In vitro, the combination of AZD3965 and IACS-010759 is synergistic and induces DLBCL cell death, whereas monotherapy treatments induce a cytostatic response. Significant anti-tumour activity was evident in Toledo and Farage models when the two inhibitors were administered concurrently despite limited or no effect on the growth of DLBCL xenografts as monotherapies. Conclusions This is the first study to examine a combination of two distinct approaches to targeting tumour metabolism in DLBCL xenografts. Whilst nanomolar concentrations of either AZD3965 or IACS-010759 monotherapy demonstrate anti-proliferative activity against DLBCL cell lines in vitro, appreciable clinical activity in DLBCL patients may only be realised through their combined use.
Collapse
Affiliation(s)
- Richard A Noble
- Cancer Research Horizons Therapeutic Innovation, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Huw Thomas
- Cancer Research Horizons Therapeutic Innovation, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Yan Zhao
- Cancer Research Horizons Therapeutic Innovation, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Lili Herendi
- Department of Surgery & Cancer and Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - Rachel Howarth
- Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
| | - Ilaria Dragoni
- Centre for Drug Development, Cancer Research UK, London, UK
| | - Hector C Keun
- Department of Surgery & Cancer and Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - Christopher P Vellano
- TRACTION Platform, Therapeutics Discovery Division, University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Joseph R Marszalek
- TRACTION Platform, Therapeutics Discovery Division, University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Stephen R Wedge
- Cancer Research Horizons Therapeutic Innovation, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
27
|
Sheng L, Fu D, Cao Y, Huo Y, Wang S, Shen R, Xu P, Cheng S, Wang L, Zhao W. Integrated Genomic and Transcriptomic Analyses of Diffuse Large B-Cell Lymphoma With Multiple Abnormal Immunologic Markers. Front Oncol 2022; 12:790720. [PMID: 35237512 PMCID: PMC8882913 DOI: 10.3389/fonc.2022.790720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/17/2022] [Indexed: 12/29/2022] Open
Abstract
Background Diffuse large B-cell lymphoma (DLBCL) is a highly aggressive subtype of lymphoma and related to autoimmune diseases (AIDs). Primary B-cell receptor-mediated AIDs are associated with poor clinical outcome of DLBCL. To further determine the role of immunological alterations on disease progression, our study integrated genomic and transcriptomic analyses on DLBCL with multiple abnormal immunologic markers. Methods The clinical data of 1,792 patients with newly diagnosed DLBCL were collected, with DNA- and RNA-sequencing conducted for 164 and 127 patients, respectively. Frequent gene mutations and the involved dysregulated pathways, along with gene expression pattern and tumor microenvironment alternations, were analyzed and compared based on the immune status of the patients. Results DLBCL with multiple abnormal immunologic markers demonstrated a variety of characteristics including elevated serum lactic dehydrogenase level, inferior prognosis, and dysregulated cell cycle and immune response, as well as activated oxidative phosphorylation pathway and increased Th1/Th2 and Th17/Treg ratios, which were highly similar as those that occur in AIDs. Conclusions We piloted the description of the clinical and genetic features of DLBCL with multiple abnormal immunologic markers, illustrated possible mechanisms of disease progression, and provided a clinical rationale of mechanism-based targeted therapy in this subset of DLBCL.
Collapse
|
28
|
Nuan-Aliman S, Bordereaux D, Thieblemont C, Baud V. The Alternative RelB NF-kB Subunit Exerts a Critical Survival Function upon Metabolic Stress in Diffuse Large B-Cell Lymphoma-Derived Cells. Biomedicines 2022; 10:biomedicines10020348. [PMID: 35203557 PMCID: PMC8961793 DOI: 10.3390/biomedicines10020348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/15/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma in adults and reveals distinct genetic and metabolic signatures. NF-κB transcription factor family is involved in diverse biological processes enabling tumor development and resistance to anticancer-therapy through activation of its two main pathways, the canonical and the alternative NF-κB pathways, the main actor of the latter being the RelB NF-kB subunit. RelB DNA binding activity is frequently activated in DLBCL patients and cell lines. RelB activation defines a new DLBCL subgroup with dismal outcome upon immunochemotherapy, and RelB confers DLBCL cell resistance to DNA damage. However, whether RelB can impact on DLBCL cell metabolism and survival upon metabolic stress is unknown. Here, we reveal that RelB controls DLBCL oxidative energetic metabolism. Accordingly, RelB inhibition reduce DLBCL mitochondrial ATP production, and sensitizes DLBCL cells to apoptosis induced by Metformin and L-asparaginase (®Kidrolase), two FDA approved antimetabolic drugs targeting mitochondrial metabolism. RelB also confers DLBCL cell resistance to glutamine deprivation, an essential amino acid that feeds the TCA cycle. Taken together, our findings uncover a new role for RelB in the regulation of DLBCL cell metabolism and DLBCL cell survival upon metabolic stress.
Collapse
Affiliation(s)
- Stéphanie Nuan-Aliman
- NF-kappaB, Différenciation et Cancer, Université de Paris, 75006 Paris, France; (S.N.-A.); (D.B.); (C.T.)
| | - Didier Bordereaux
- NF-kappaB, Différenciation et Cancer, Université de Paris, 75006 Paris, France; (S.N.-A.); (D.B.); (C.T.)
| | - Catherine Thieblemont
- NF-kappaB, Différenciation et Cancer, Université de Paris, 75006 Paris, France; (S.N.-A.); (D.B.); (C.T.)
- Hémato-Oncologie, APHP Hôpital Saint-Louis, 75010 Paris, France
| | - Véronique Baud
- NF-kappaB, Différenciation et Cancer, Université de Paris, 75006 Paris, France; (S.N.-A.); (D.B.); (C.T.)
- Correspondence:
| |
Collapse
|
29
|
Valentini S, Marchioretti C, Bisio A, Rossi A, Zaccara S, Romanel A, Inga A. TranSNPs: A class of functional SNPs affecting mRNA translation potential revealed by fraction-based allelic imbalance. iScience 2021; 24:103531. [PMID: 34917903 PMCID: PMC8666669 DOI: 10.1016/j.isci.2021.103531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/27/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022] Open
Abstract
Few studies have explored the association between SNPs and alterations in mRNA translation potential. We developed an approach to identify SNPs that can mark allele-specific protein expression levels and could represent sources of inter-individual variation in disease risk. Using MCF7 cells under different treatments, we performed polysomal profiling followed by RNA sequencing of total or polysome-associated mRNA fractions and designed a computational approach to identify SNPs showing a significant change in the allelic balance between total and polysomal mRNA fractions. We identified 147 SNPs, 39 of which located in UTRs. Allele-specific differences at the translation level were confirmed in transfected MCF7 cells by reporter assays. Exploiting breast cancer data from TCGA we identified UTR SNPs demonstrating distinct prognosis features and altering binding sites of RNA-binding proteins. Our approach produced a catalog of tranSNPs, a class of functional SNPs associated with allele-specific translation and potentially endowed with prognostic value for disease risk.
Collapse
Affiliation(s)
- Samuel Valentini
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Caterina Marchioretti
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
- Department of Biomedical Sciences (DBS), University of Padova, 35131 Padova, Italy
| | - Alessandra Bisio
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Annalisa Rossi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Sara Zaccara
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
- Weill Medical College, Cornell University, New York 10065, NY, USA
| | - Alessandro Romanel
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Alberto Inga
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| |
Collapse
|
30
|
Criscuolo D, Avolio R, Matassa DS, Esposito F. Targeting Mitochondrial Protein Expression as a Future Approach for Cancer Therapy. Front Oncol 2021; 11:797265. [PMID: 34888254 PMCID: PMC8650000 DOI: 10.3389/fonc.2021.797265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/03/2021] [Indexed: 12/20/2022] Open
Abstract
Extensive metabolic remodeling is a fundamental feature of cancer cells. Although early reports attributed such remodeling to a loss of mitochondrial functions, it is now clear that mitochondria play central roles in cancer development and progression, from energy production to synthesis of macromolecules, from redox modulation to regulation of cell death. Biosynthetic pathways are also heavily affected by the metabolic rewiring, with protein synthesis dysregulation at the hearth of cellular transformation. Accumulating evidence in multiple organisms shows that the metabolic functions of mitochondria are tightly connected to protein synthesis, being assembly and activity of respiratory complexes highly dependent on de novo synthesis of their components. In turn, protein synthesis within the organelle is tightly connected with the cytosolic process. This implies an entire network of interactions and fine-tuned regulations that build up a completely under-estimated level of complexity. We are now only preliminarily beginning to reconstitute such regulatory level in human cells, and to perceive its role in diseases. Indeed, disruption or alterations of these connections trigger conditions of proteotoxic and energetic stress that could be potentially exploited for therapeutic purposes. In this review, we summarize the available literature on the coordinated regulation of mitochondrial and cytosolic mRNA translation, and their effects on the integrity of the mitochondrial proteome and functions. Finally, we highlight the potential held by this topic for future research directions and for the development of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Daniela Criscuolo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Rosario Avolio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Danilo Swann Matassa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
31
|
Luo F, Wen Y, Zhao L, Su S, Zhao Y, Lei W, Li Z. Chlamydia trachomatis induces lncRNA MIAT upregulation to regulate mitochondria-mediated host cell apoptosis and chlamydial development. J Cell Mol Med 2021; 26:163-177. [PMID: 34859581 PMCID: PMC8742237 DOI: 10.1111/jcmm.17069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/27/2021] [Accepted: 11/11/2021] [Indexed: 01/12/2023] Open
Abstract
Chlamydia trachomatis persistent infection is the leading cause of male prostatitis and female genital tract diseases. Inhibition of host cell apoptosis is the key to maintaining Chlamydia survival in vivo, and long noncoding RNAs (lncRNAs) play important roles in its developmental cycle and pathogenesis. However, it is not clear how lncRNAs regulate persistent Chlamydia infection. Here, using a microarray method, we identified 1718 lncRNAs and 1741 mRNAs differentially expressed in IFN-γ-induced persistent C. trachomatis infection. Subsequently, 10 upregulated and 5 downregulated differentially expressed lncRNAs were verified by qRT-PCR to confirm the reliability of the chip data. The GO and KEGG analyses revealed that differentially regulated transcripts were predominantly involved in various signalling pathways related to host immunity and apoptosis response. Targeted silencing of three lncRNAs (MIAT, ZEB1-AS1 and IRF1) resulted in increased apoptosis rates. Furthermore, interference with lncRNA MIAT caused not only an obvious downregulation of the Bcl-2/Bax ratio but also a marked release of cytochrome c, resulting in a significantly elevated level of caspase-3 activation. Meanwhile, MIAT was involved in the regulation of chlamydial development during the persistent infection. Collectively, these observations shed light on the enormous complex lncRNA regulatory networks involved in mitochondria-mediated host cell apoptosis and the growth and development of C. trachomatis.
Collapse
Affiliation(s)
- Fangzhen Luo
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China.,Hunan Polytechnic of Environment and Biology, Hengyang, China
| | - Yating Wen
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Lanhua Zhao
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Shengmei Su
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Yuqi Zhao
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Wenbo Lei
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Zhongyu Li
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| |
Collapse
|
32
|
Charwudzi A, Meng Y, Hu L, Ding C, Pu L, Li Q, Xu M, Zhai Z, Xiong S. Integrated bioinformatics analysis reveals dynamic candidate genes and signaling pathways involved in the progression and prognosis of diffuse large B-cell lymphoma. PeerJ 2021; 9:e12394. [PMID: 34760386 PMCID: PMC8570165 DOI: 10.7717/peerj.12394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/05/2021] [Indexed: 01/02/2023] Open
Abstract
Background Diffuse large B-cell lymphoma (DLBCL) is a highly heterogeneous malignancy with varied outcomes. However, the fundamental mechanisms remain to be fully defined. Aim We aimed to identify core differentially co-expressed hub genes and perturbed pathways relevant to the pathogenesis and prognosis of DLBCL. Methods We retrieved the raw gene expression profile and clinical information of GSE12453 from the Gene Expression Omnibus (GEO) database. We used integrated bioinformatics analysis to identify differentially co-expressed genes. The CIBERSORT analysis was also applied to predict tumor-infiltrating immune cells (TIICs) in the GSE12453 dataset. We performed survival and ssGSEA (single-sample Gene Set Enrichment Analysis) (for TIICs) analyses and validated the hub genes using GEPIA2 and an independent GSE31312 dataset. Results We identified 46 differentially co-expressed hub genes in the GSE12453 dataset. Gene expression levels and survival analysis found 15 differentially co-expressed core hub genes. The core genes prognostic values and expression levels were further validated in the GEPIA2 database and GSE31312 dataset to be reliable (p < 0.01). The core genes’ main KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichments were Ribosome and Coronavirus disease-COVID-19. High expressions of the 15 core hub genes had prognostic value in DLBCL. The core genes showed significant predictive accuracy in distinguishing DLBCL cases from non-tumor controls, with the area under the curve (AUC) ranging from 0.992 to 1.00. Finally, CIBERSORT analysis on GSE12453 revealed immune cells, including activated memory CD4+ T cells and M0, M1, and M2-macrophages as the infiltrates in the DLBCL microenvironment. Conclusion Our study found differentially co-expressed core hub genes and relevant pathways involved in ribosome and COVID-19 disease that may be potential targets for prognosis and novel therapeutic intervention in DLBCL.
Collapse
Affiliation(s)
- Alice Charwudzi
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ye Meng
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Linhui Hu
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Chen Ding
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lianfang Pu
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qian Li
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mengling Xu
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhimin Zhai
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Shudao Xiong
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
33
|
Donati G, Ravà M, Filipuzzi M, Nicoli P, Cassina L, Verrecchia A, Doni M, Rodighiero S, Parodi F, Boletta A, Vellano CP, Marszalek JR, Draetta GF, Amati B. Targeting mitochondrial respiration and the BCL2 family in high-grade MYC-associated B-cell lymphoma. Mol Oncol 2021; 16:1132-1152. [PMID: 34632715 PMCID: PMC8895457 DOI: 10.1002/1878-0261.13115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/27/2021] [Accepted: 10/08/2021] [Indexed: 01/02/2023] Open
Abstract
Multiple molecular features, such as activation of specific oncogenes (e.g., MYC, BCL2) or a variety of gene expression signatures, have been associated with disease course in diffuse large B‐cell lymphoma (DLBCL), although their relationships and implications for targeted therapy remain to be fully unraveled. We report that MYC activity is closely correlated with—and most likely a driver of—gene signatures related to oxidative phosphorylation (OxPhos) in DLBCL, pointing to OxPhos enzymes, in particular mitochondrial electron transport chain (ETC) complexes, as possible therapeutic targets in high‐grade MYC‐associated lymphomas. In our experiments, indeed, MYC sensitized B cells to the ETC complex I inhibitor IACS‐010759. Mechanistically, IACS‐010759 triggered the integrated stress response (ISR) pathway, driven by the transcription factors ATF4 and CHOP, which engaged the intrinsic apoptosis pathway and lowered the apoptotic threshold in MYC‐overexpressing cells. In line with these findings, the BCL2‐inhibitory compound venetoclax synergized with IACS‐010759 against double‐hit lymphoma (DHL), a high‐grade malignancy with concurrent activation of MYC and BCL2. In BCL2‐negative lymphoma cells, instead, killing by IACS‐010759 was potentiated by the Mcl‐1 inhibitor S63845. Thus, combining an OxPhos inhibitor with select BH3‐mimetic drugs provides a novel therapeutic principle against aggressive, MYC‐associated DLBCL variants.
Collapse
Affiliation(s)
- Giulio Donati
- European Institute of Oncology (IEO)-IRCCS, Milan, Italy
| | - Micol Ravà
- European Institute of Oncology (IEO)-IRCCS, Milan, Italy
| | | | - Paola Nicoli
- European Institute of Oncology (IEO)-IRCCS, Milan, Italy
| | - Laura Cassina
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Mirko Doni
- European Institute of Oncology (IEO)-IRCCS, Milan, Italy
| | | | | | | | - Christopher P Vellano
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION), Houston, TX, USA
| | - Joseph R Marszalek
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION), Houston, TX, USA
| | - Giulio F Draetta
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bruno Amati
- European Institute of Oncology (IEO)-IRCCS, Milan, Italy
| |
Collapse
|
34
|
Metabolic Swifts Govern Normal and Malignant B Cell Lymphopoiesis. Int J Mol Sci 2021; 22:ijms22158269. [PMID: 34361035 PMCID: PMC8347747 DOI: 10.3390/ijms22158269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/24/2021] [Accepted: 07/28/2021] [Indexed: 11/30/2022] Open
Abstract
B lymphocytes are an indispensable part of the human immune system. They are the effective mediators of adaptive immunity and memory. To accomplish specificity against an antigen, and to establish the related immunologic memory, B cells differentiate through a complicated and strenuous training program that is characterized by multiple drastic genomic modifications. In order to avoid malignant transformation, these events are tightly regulated by multiple checkpoints, the vast majority of them involving bioenergetic alterations. Despite this stringent control program, B cell malignancies are amongst the top ten most common worldwide. In an effort to better understand malignant pathobiology, in this review, we summarize the metabolic swifts that govern normal B cell lymphopoiesis. We also review the existent knowledge regarding malignant metabolism as a means to unravel new research goals and/or therapeutic targets.
Collapse
|
35
|
Repurposing of Antimicrobial Agents for Cancer Therapy: What Do We Know? Cancers (Basel) 2021; 13:cancers13133193. [PMID: 34206772 PMCID: PMC8269327 DOI: 10.3390/cancers13133193] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
The substantial costs of clinical trials, the lengthy timelines of new drug discovery and development, along the high attrition rates underscore the need for alternative strategies for finding quickly suitable therapeutics agents. Given that most approved drugs possess more than one target tightly linked to other diseases, it encourages promptly testing these drugs in patients. Over the past decades, this has led to considerable attention for drug repurposing, which relies on identifying new uses for approved or investigational drugs outside the scope of the original medical indication. The known safety of approved drugs minimizes the possibility of failure for adverse toxicology, making them attractive de-risked compounds for new applications with potentially lower overall development costs and shorter development timelines. This latter case is an exciting opportunity, specifically in oncology, due to increased resistance towards the current therapies. Indeed, a large body of evidence shows that a wealth of non-cancer drugs has beneficial effects against cancer. Interestingly, 335 drugs are currently being evaluated in different clinical trials for their potential activities against various cancers (Redo database). This review aims to provide an extensive discussion about the anti-cancer activities exerted by antimicrobial agents and presents information about their mechanism(s) of action and stage of development/evaluation.
Collapse
|
36
|
Wienand K, Chapuy B. Molecular classification of aggressive lymphomas-past, present, future. Hematol Oncol 2021; 39 Suppl 1:24-30. [PMID: 34105819 DOI: 10.1002/hon.2847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Indexed: 12/12/2022]
Abstract
Aggressive large B-cell lymphomas (LBCLs) represent a frequent but clinically and molecularly heterogeneous group of tumors. Technological advances over the last decades prompted the development of different classification schemas to either sharpen diagnoses, dissect molecular heterogeneity, predict outcome, or identify rational treatment targets. Despite increased diagnostic precision and a noticeably improved molecular understanding of these lymphomas, clinical perspectives of patients largely remain unchanged. Recently, finished comprehensive genomic studies discovered genetically defined LBCL subtypes that predict outcome, provide insight into lymphomagenesis, and suggest rational therapies with the hope of generating patient-tailored treatments with increased perspective for patients in greatest need. Current and future efforts integrate multiomics studies and/or leverage single-cell technologies and will provide us with an even more fine-grained picture of LBCL biology. Here, we highlight examples of how high-throughput technologies aided in a better molecular understanding of LBCLs and provide examples of how to select rationally designed targeted treatment approaches that might personalize LBCL treatment and eventually improve patients' perspective in the near future.
Collapse
Affiliation(s)
- Kirsty Wienand
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Björn Chapuy
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
37
|
Study of the antilymphoma activity of pracinostat reveals different sensitivities of DLBCL cells to HDAC inhibitors. Blood Adv 2021; 5:2467-2480. [PMID: 33999145 DOI: 10.1182/bloodadvances.2020003566] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/15/2021] [Indexed: 12/27/2022] Open
Abstract
Histone deacetylase inhibitors (HDACis) are antitumor agents with distinct efficacy in hematologic tumors. Pracinostat is a pan-HDACi with promising early clinical activity. However, similar to other HDACis, its activity as a single agent is limited. Diffuse large B-cell lymphoma (DLBCL) includes distinct molecular subsets or metabolically defined subtypes that rely in different ways on the B-cell receptor signaling pathway, oxidative phosphorylation, and glycolysis for their survival. The antitumor activity of pracinostat has not been determined in lymphomas. We performed preclinical in vitro activity screening of 60 lymphoma cell lines that included 25 DLBCLs. DLBCL cells belonging to distinct metabolic subtypes were treated with HDACis for 6 hours or 14 days followed by transcriptional profiling. DLBCL xenograft models enabled assessment of the in vivo antilymphoma activity of pracinostat. Combination treatments with pracinostat plus 10 other antilymphoma agents were performed. Western blot was used to assess acetylation levels of histone and nonhistone proteins after HDACi treatment. Robust antiproliferative activity was observed across all lymphoma histotypes represented. Focusing on DLBCL, we identified a low-sensitivity subset that almost exclusively consists of the oxidative phosphorylation (OxPhos)-DLBCL metabolic subtype. OxPhos-DLBCL cells also showed poorer sensitivity to other HDACis, including vorinostat. Transcriptomic analysis revealed fewer modulated transcripts but an enrichment of antioxidant pathway genes after HDACi treatment of OxPhos-DLBCLs compared with high-sensitivity B-cell receptor (BCR)-DLBCLs. Pharmacologic inhibition of antioxidant production rescued sensitivity of OxPhos-DLBCLs to pracinostat whereas BCR-DLBCLs were unaffected. Our study provides novel insights into the antilymphoma activity of pracinostat and identifies a differential response of DLBCL metabolic subtypes to HDACis.
Collapse
|
38
|
Ortiz-Ruiz A, Ruiz-Heredia Y, Morales ML, Aguilar-Garrido P, García-Ortiz A, Valeri A, Bárcena C, García-Martin RM, Garrido V, Moreno L, Gimenez A, Navarro-Aguadero MÁ, Velasco-Estevez M, Lospitao E, Cedena MT, Barrio S, Martínez-López J, Linares M, Gallardo M. Myc-Related Mitochondrial Activity as a Novel Target for Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13071662. [PMID: 33916196 PMCID: PMC8037116 DOI: 10.3390/cancers13071662] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are involved in the development and acquisition of a malignant phenotype in hematological cancers. Recently, their role in the pathogenesis of multiple myeloma (MM) has been suggested to be therapeutically explored. MYC is a master regulator of b-cell malignancies such as multiple myeloma, and its activation is known to deregulate mitochondrial function. We investigated the impact of mitochondrial activity on the distinct entities of the disease and tested the efficacy of the mitochondrial inhibitor, tigecycline, to overcome MM proliferation. COXII expression, COX activity, mitochondrial mass, and mitochondrial membrane potential demonstrated a progressive increase of mitochondrial features as the disease progresses. In vitro and in vivo therapeutic targeting using the mitochondrial inhibitor tigecycline showed promising efficacy and cytotoxicity in monotherapy and combination with the MM frontline treatment bortezomib. Overall, our findings demonstrate how mitochondrial activity emerges in MM transformation and disease progression and the efficacy of therapies targeting these novel vulnerabilities.
Collapse
Affiliation(s)
- Alejandra Ortiz-Ruiz
- H12O-CNIO Hematological Malignancies Clinical Research Unit, CNIO, 28029 Madrid, Spain
- Hematology Department, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Yanira Ruiz-Heredia
- H12O-CNIO Hematological Malignancies Clinical Research Unit, CNIO, 28029 Madrid, Spain
- Hematology Department, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - María Luz Morales
- H12O-CNIO Hematological Malignancies Clinical Research Unit, CNIO, 28029 Madrid, Spain
- Hematology Department, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Pedro Aguilar-Garrido
- H12O-CNIO Hematological Malignancies Clinical Research Unit, CNIO, 28029 Madrid, Spain
- Hematology Department, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Almudena García-Ortiz
- H12O-CNIO Hematological Malignancies Clinical Research Unit, CNIO, 28029 Madrid, Spain
- Hematology Department, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Antonio Valeri
- H12O-CNIO Hematological Malignancies Clinical Research Unit, CNIO, 28029 Madrid, Spain
- Hematology Department, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Carmen Bárcena
- Pathology Department, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | | | - Vanesa Garrido
- H12O-CNIO Hematological Malignancies Clinical Research Unit, CNIO, 28029 Madrid, Spain
- Hematology Department, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Laura Moreno
- H12O-CNIO Hematological Malignancies Clinical Research Unit, CNIO, 28029 Madrid, Spain
- Hematology Department, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Alicia Gimenez
- H12O-CNIO Hematological Malignancies Clinical Research Unit, CNIO, 28029 Madrid, Spain
- Hematology Department, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | | | - María Velasco-Estevez
- H12O-CNIO Hematological Malignancies Clinical Research Unit, CNIO, 28029 Madrid, Spain
| | - Eva Lospitao
- CNIO-Lilly Cell Signalling and Immunometabolism Section, CNIO, 28029 Madrid, Spain
| | - María Teresa Cedena
- Hematology Department, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Santiago Barrio
- H12O-CNIO Hematological Malignancies Clinical Research Unit, CNIO, 28029 Madrid, Spain
- Hematology Department, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Joaquín Martínez-López
- H12O-CNIO Hematological Malignancies Clinical Research Unit, CNIO, 28029 Madrid, Spain
- Hematology Department, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - María Linares
- H12O-CNIO Hematological Malignancies Clinical Research Unit, CNIO, 28029 Madrid, Spain
- Hematology Department, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Biochemistry and Molecular Biology Department, Pharmacy School, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Miguel Gallardo
- H12O-CNIO Hematological Malignancies Clinical Research Unit, CNIO, 28029 Madrid, Spain
- Hematology Department, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| |
Collapse
|
39
|
Olivas-Aguirre M, Torres-López L, Pottosin I, Dobrovinskaya O. Overcoming Glucocorticoid Resistance in Acute Lymphoblastic Leukemia: Repurposed Drugs Can Improve the Protocol. Front Oncol 2021; 11:617937. [PMID: 33777761 PMCID: PMC7991804 DOI: 10.3389/fonc.2021.617937] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/16/2021] [Indexed: 12/11/2022] Open
Abstract
Glucocorticoids (GCs) are a central component of multi-drug treatment protocols against T and B acute lymphoblastic leukemia (ALL), which are used intensively during the remission induction to rapidly eliminate the leukemic blasts. The primary response to GCs predicts the overall response to treatment and clinical outcome. In this review, we have critically analyzed the available data on the effects of GCs on sensitive and resistant leukemic cells, in order to reveal the mechanisms of GC resistance and how these mechanisms may determine a poor outcome in ALL. Apart of the GC resistance, associated with a decreased expression of receptors to GCs, there are several additional mechanisms, triggered by alterations of different signaling pathways, which cause the metabolic reprogramming, with an enhanced level of glycolysis and oxidative phosphorylation, apoptosis resistance, and multidrug resistance. Due to all this, the GC-resistant ALL show a poor sensitivity to conventional chemotherapeutic protocols. We propose pharmacological strategies that can trigger alternative intracellular pathways to revert or overcome GC resistance. Specifically, we focused our search on drugs, which are already approved for treatment of other diseases and demonstrated anti-ALL effects in experimental pre-clinical models. Among them are some “truly” re-purposed drugs, which have different targets in ALL as compared to other diseases: cannabidiol, which targets mitochondria and causes the mitochondrial permeability transition-driven necrosis, tamoxifen, which induces autophagy and cell death, and reverts GC resistance through the mechanisms independent of nuclear estrogen receptors (“off-target effects”), antibiotic tigecycline, which inhibits mitochondrial respiration, causing energy crisis and cell death, and some anthelmintic drugs. Additionally, we have listed compounds that show a classical mechanism of action in ALL but are not used still in treatment protocols: the BH3 mimetic venetoclax, which inhibits the anti-apoptotic protein Bcl-2, the hypomethylating agent 5-azacytidine, which restores the expression of the pro-apoptotic BIM, and compounds targeting the PI3K-Akt-mTOR axis. Accordingly, these drugs may be considered for the inclusion into chemotherapeutic protocols for GC-resistant ALL treatments.
Collapse
Affiliation(s)
- Miguel Olivas-Aguirre
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima, Mexico
| | - Liliana Torres-López
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima, Mexico
| | - Igor Pottosin
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima, Mexico
| | - Oxana Dobrovinskaya
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima, Mexico
| |
Collapse
|
40
|
Singh A, Faccenda D, Campanella M. Pharmacological advances in mitochondrial therapy. EBioMedicine 2021; 65:103244. [PMID: 33647769 PMCID: PMC7920826 DOI: 10.1016/j.ebiom.2021.103244] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/21/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondria play a vital role in cellular metabolism and are central mediator of intracellular signalling, cell differentiation, morphogenesis and demise. An increasingly higher number of pathologies is linked with mitochondrial dysfunction, which can arise from either genetic defects affecting core mitochondrial components or malfunctioning pathways impairing mitochondrial homeostasis. As such, mitochondria are considered an important target in several pathologies spanning from neoplastic to neurodegenerative diseases as well as metabolic syndromes. In this review we provide an overview of the state-of-the-art in mitochondrial pharmacology, focusing on the novel compounds that have been generated in the bid to correct mitochondrial aberrations. Our work aims to serve the scientific community working on translational medical science by highlighting the most promising pharmacological approaches to target mitochondrial dysfunction in disease.
Collapse
Affiliation(s)
- Aarti Singh
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, 4 Royal College Street, NW1 0TU, London, United Kingdom
| | - Danilo Faccenda
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, 4 Royal College Street, NW1 0TU, London, United Kingdom
| | - Michelangelo Campanella
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, 4 Royal College Street, NW1 0TU, London, United Kingdom; Consortium for Mitochondrial Research (CfMR), University College London, Gower Street, WC1E 6BT, London, United Kingdom; Department of Biology, University of Rome TorVergata, Via della Ricerca Scientifica, Rome, 00133, Italy.
| |
Collapse
|
41
|
Barbato A, Scandura G, Puglisi F, Cambria D, La Spina E, Palumbo GA, Lazzarino G, Tibullo D, Di Raimondo F, Giallongo C, Romano A. Mitochondrial Bioenergetics at the Onset of Drug Resistance in Hematological Malignancies: An Overview. Front Oncol 2020; 10:604143. [PMID: 33409153 PMCID: PMC7779674 DOI: 10.3389/fonc.2020.604143] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022] Open
Abstract
The combined derangements in mitochondria network, function and dynamics can affect metabolism and ATP production, redox homeostasis and apoptosis triggering, contributing to cancer development in many different complex ways. In hematological malignancies, there is a strong relationship between cellular metabolism, mitochondrial bioenergetics, interconnections with supportive microenvironment and drug resistance. Lymphoma and chronic lymphocytic leukemia cells, e.g., adapt to intrinsic oxidative stress by increasing mitochondrial biogenesis. In other hematological disorders such as myeloma, on the contrary, bioenergetics changes, associated to increased mitochondrial fitness, derive from the adaptive response to drug-induced stress. In the bone marrow niche, a reverse Warburg effect has been recently described, consisting in metabolic changes occurring in stromal cells in the attempt to metabolically support adjacent cancer cells. Moreover, a physiological dynamic, based on mitochondria transfer, between tumor cells and their supporting stromal microenvironment has been described to sustain oxidative stress associated to proteostasis maintenance in multiple myeloma and leukemia. Increased mitochondrial biogenesis of tumor cells associated to acquisition of new mitochondria transferred by mesenchymal stromal cells results in augmented ATP production through increased oxidative phosphorylation (OX-PHOS), higher drug resistance, and resurgence after treatment. Accordingly, targeting mitochondrial biogenesis, electron transfer, mitochondrial DNA replication, or mitochondrial fatty acid transport increases therapy efficacy. In this review, we summarize selected examples of the mitochondrial derangements in hematological malignancies, which provide metabolic adaptation and apoptosis resistance, also supported by the crosstalk with tumor microenvironment. This field promises a rational design to improve target-therapy including the metabolic phenotype.
Collapse
Affiliation(s)
- Alessandro Barbato
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Grazia Scandura
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Fabrizio Puglisi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Daniela Cambria
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Enrico La Spina
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Giuseppe Alberto Palumbo
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, Catania, Italy
| | - Giacomo Lazzarino
- Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Daniele Tibullo
- Department of Biotechnological and Biomedical Sciences, University of Catania, Catania, Italy
| | - Francesco Di Raimondo
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Cesarina Giallongo
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, Catania, Italy
| | - Alessandra Romano
- Department of Surgery and Medical Specialties, University of Catania, Catania, Italy
| |
Collapse
|
42
|
Fontana D, Mauri M, Renso R, Docci M, Crespiatico I, Røst LM, Jang M, Niro A, D'Aliberti D, Massimino L, Bertagna M, Zambrotta G, Bossi M, Citterio S, Crescenzi B, Fanelli F, Cassina V, Corti R, Salerno D, Nardo L, Chinello C, Mantegazza F, Mecucci C, Magni F, Cavaletti G, Bruheim P, Rea D, Larsen S, Gambacorti-Passerini C, Piazza R. ETNK1 mutations induce a mutator phenotype that can be reverted with phosphoethanolamine. Nat Commun 2020; 11:5938. [PMID: 33230096 PMCID: PMC7684297 DOI: 10.1038/s41467-020-19721-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/27/2020] [Indexed: 11/09/2022] Open
Abstract
Recurrent somatic mutations in ETNK1 (Ethanolamine-Kinase-1) were identified in several myeloid malignancies and are responsible for a reduced enzymatic activity. Here, we demonstrate in primary leukemic cells and in cell lines that mutated ETNK1 causes a significant increase in mitochondrial activity, ROS production, and Histone H2AX phosphorylation, ultimately driving the increased accumulation of new mutations. We also show that phosphoethanolamine, the metabolic product of ETNK1, negatively controls mitochondrial activity through a direct competition with succinate at mitochondrial complex II. Hence, reduced intracellular phosphoethanolamine causes mitochondria hyperactivation, ROS production, and DNA damage. Treatment with phosphoethanolamine is able to counteract complex II hyperactivation and to restore a normal phenotype.
Collapse
Affiliation(s)
- Diletta Fontana
- Department of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - Mario Mauri
- Department of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - Rossella Renso
- Department of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - Mattia Docci
- Department of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - Ilaria Crespiatico
- Department of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - Lisa M Røst
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Mi Jang
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Antonio Niro
- Department of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - Deborah D'Aliberti
- Department of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - Luca Massimino
- Department of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - Mayla Bertagna
- Department of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - Giovanni Zambrotta
- Department of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - Mario Bossi
- Department of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - Stefania Citterio
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Milano, Italy
| | - Barbara Crescenzi
- Centro Ricerche Emato-Oncologiche, University of Perugia, Perugia, Italy
| | - Francesca Fanelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Valeria Cassina
- Department of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - Roberta Corti
- Department of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - Domenico Salerno
- Department of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - Luca Nardo
- Department of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - Clizia Chinello
- Department of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - Francesco Mantegazza
- Department of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - Cristina Mecucci
- Centro Ricerche Emato-Oncologiche, University of Perugia, Perugia, Italy
| | - Fulvio Magni
- Department of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - Guido Cavaletti
- Department of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - Per Bruheim
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Delphine Rea
- Service d'Hématologie adulte, Hôpital Saint-Louis, Paris, France
| | - Steen Larsen
- X-lab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Carlo Gambacorti-Passerini
- Department of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy.,Hematology and Clinical Research Unit, San Gerardo Hospital, Monza, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy. .,Hematology and Clinical Research Unit, San Gerardo Hospital, Monza, Italy. .,Bicocca Bioinformatics, Biostatistics and Bioimaging Centre (B4), University of Milano - Bicocca, Milan, Italy.
| |
Collapse
|
43
|
Molecular Classification of Large B-Cell Non-Hodgkin Lymphoma. ACTA ACUST UNITED AC 2020; 26:357-361. [PMID: 32732680 DOI: 10.1097/ppo.0000000000000464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Large B-cell lymphomas (LBCLs) represent a frequent but clinically and morphologically heterogeneous group of tumors. Technological advances over the last 2 decades prompted the development of new classification schemas to sharpen diagnoses, dissect molecular heterogeneity, and identify rational treatment targets. Despite increased molecular understanding of these lymphomas, the clinical perspectives of patients largely remain unchanged. Recently finished comprehensive genomic studies discovered genetically defined LBCL subtypes that predict outcome, provide insight into lymphomagenesis, and suggest rational therapies with the hope of generating patient-tailored treatments with increased perspective for patients in greatest need. Here, we summarize notable examples of how high-throughput technologies aided in better molecular understanding of LBCLs and provided examples of rationally designed targeted treatments.
Collapse
|
44
|
Zhou Z, Ma D, Li P, Wang P, Liu P, Wei D, Wang J, Qin Z, Fang Q, Wang J. Sirt1 gene confers Adriamycin resistance in DLBCL via activating the PCG-1α mitochondrial metabolic pathway. Aging (Albany NY) 2020; 12:11364-11385. [PMID: 32570218 PMCID: PMC7343448 DOI: 10.18632/aging.103174] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 04/13/2020] [Indexed: 04/19/2023]
Abstract
Sirt1 is closely related to cells aging, and Sirt1 also plays an important role in diffuse large B-cell lymphoma (DLBCL). However, its mechanism remains unclear. Therefore, we investigated the mechanism of Sirt1 mediated drug-resistance in DLBCL, while the recombinant lentivirus was used to regulate Sirt1 gene expression in DLBCL cell lines. Subsequently, the effect of Sirt1 on DLBCL resistance to Adriamycin was analyzed in vitro. The results show that Sirt1 overexpression confers Adriamycin resistance in DLBCL cell lines. However, inhibition of Sirt1 sensitized DLBCL cell lines to Adriamycin cytotoxicity. Additionally, tumor-bearing mice were used to verify that Sirt1 overexpression confers Adriamycin resistance in vivo after chemotherapy. In addition, we used second-generation sequencing technology and bioinformatics analysis to find that Sirt1 mediated drug-resistance is related to the Peroxisome proliferator-activated receptor (PPAR) signaling pathway, especially to PGC-1α. Interestingly, the mitochondrial energy inhibitor, tigecycline, combined with Adriamycin reversed the cellular resistance caused by Sirt1 overexpression in vivo. Moreover, western blotting and CO-IP assay reconfirmed that Sirt1-mediated drug-resistance is associated with the increased expression of PGC1-α, which induce mitochondrial biogenesis. In summary, this study confirms that Sirt1 is a potential target for DLBCL treatment.
Collapse
MESH Headings
- Acetylation
- Adult
- Aged
- Aged, 80 and over
- Animals
- Cell Line, Tumor
- Doxorubicin/pharmacology
- Doxorubicin/therapeutic use
- Drug Resistance, Neoplasm/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Kaplan-Meier Estimate
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/mortality
- Lymphoma, Large B-Cell, Diffuse/pathology
- Male
- Membrane Potential, Mitochondrial/drug effects
- Membrane Potential, Mitochondrial/genetics
- Metabolic Networks and Pathways/drug effects
- Metabolic Networks and Pathways/genetics
- Mice
- Middle Aged
- Mitochondria/drug effects
- Mitochondria/metabolism
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
- RNA-Seq
- Sirtuin 1/genetics
- Sirtuin 1/metabolism
- Up-Regulation
- Xenograft Model Antitumor Assays
- Young Adult
Collapse
Affiliation(s)
- Zhen Zhou
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
- Department of Pharmacy, Affiliated Baiyun Hospital of Guizhou Medical University, Guiyang 550004, China
- Key Laboratory of Hematological Disease Diagnostic and Treat Centre of Guizhou Province, Guiyang 550004, China
| | - Dan Ma
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
- Key Laboratory of Hematological Disease Diagnostic and Treat Centre of Guizhou Province, Guiyang 550004, China
- Department of Hematology, Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Center, Guiyang 550004, China
| | - Peifan Li
- Department of Psychiatry, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Ping Wang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
- Key Laboratory of Hematological Disease Diagnostic and Treat Centre of Guizhou Province, Guiyang 550004, China
- Department of Hematology, Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Center, Guiyang 550004, China
| | - Ping Liu
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
- Key Laboratory of Hematological Disease Diagnostic and Treat Centre of Guizhou Province, Guiyang 550004, China
- Department of Hematology, Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Center, Guiyang 550004, China
| | - Danna Wei
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
- Key Laboratory of Hematological Disease Diagnostic and Treat Centre of Guizhou Province, Guiyang 550004, China
- Department of Hematology, Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Center, Guiyang 550004, China
| | - Jun Wang
- Department of Clinical Research Center, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Zhong Qin
- Department of Clinical Research Center, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Qin Fang
- Department of Pharmacy, Affiliated Baiyun Hospital of Guizhou Medical University, Guiyang 550004, China
- Department of Pharmacy, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Jishi Wang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
- Key Laboratory of Hematological Disease Diagnostic and Treat Centre of Guizhou Province, Guiyang 550004, China
- Department of Hematology, Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Center, Guiyang 550004, China
| |
Collapse
|
45
|
Yang J, Dong Z, Ren A, Fu G, Zhang K, Li C, Wang X, Cui H. Antibiotic tigecycline inhibits cell proliferation, migration and invasion via down-regulating CCNE2 in pancreatic ductal adenocarcinoma. J Cell Mol Med 2020; 24:4245-4260. [PMID: 32141702 PMCID: PMC7171345 DOI: 10.1111/jcmm.15086] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/17/2019] [Accepted: 01/15/2020] [Indexed: 12/17/2022] Open
Abstract
Recently, many researches have reported that antibiotic tigecycline has significant effect on cancer treatment. However, biomedical functions and molecular mechanisms of tigecycline in human pancreatic ductal adenocarcinoma (PDAC) remain unclear. In the current study, we tried to assess the effect of tigecycline in PDAC cells. AsPC‐1 and HPAC cells were treated with indicated concentrations of tigecycline for indicated time, and then, MTT, BrdU and soft agar assay were used to test cell proliferation. The effect of tigecycline on cell cycle and cellular apoptosis was tested by cytometry. Migration and invasion were detected by wound healing assay and transwell migration/invasion assay. Expressions of cell cycle‐related and migration/invasion‐related protein were determined by using Western blot. The results revealed that tigecycline observably suppressed cell proliferation by inducing cell cycle arrest at G0/G1 phase and blocked cell migration/invasion via holding back the epithelial‐mesenchymal transition (EMT) process in PDAC. In addition, tigecycline also remarkably blocked tumorigenecity in vivo. Furthermore, the effects of tigecycline alone or combined with gemcitabine in vitro or on PDAC xenografts were also performed. The results showed that tigecycline enhanced the chemosensitivity of PDAC cells to gemcitabine. Interestingly, we found CCNE2 expression was declined distinctly after tigecycline treatment. Then, CCNE2 was overexpressed to rescue tigecycline‐induced effect. The results showed that CCNE2 overexpression significantly rescued tigecycline‐inhibited cell proliferation and migration/invasion. Collectively, we showed that tigecycline inhibits cell proliferation, migration and invasion via down‐regulating CCNE2, and tigecycline might be used as a potential drug for PDAC treatment alone or combined with gemcitabine.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing, China.,Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing, China.,Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Aishu Ren
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Gang Fu
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Kui Zhang
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing, China.,Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Changhong Li
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing, China.,Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Xiangwei Wang
- Department of Urology, Carson International Cancer Center, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing, China.,Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| |
Collapse
|
46
|
Aminzadeh-Gohari S, Weber DD, Vidali S, Catalano L, Kofler B, Feichtinger RG. From old to new - Repurposing drugs to target mitochondrial energy metabolism in cancer. Semin Cell Dev Biol 2020; 98:211-223. [PMID: 31145995 PMCID: PMC7613924 DOI: 10.1016/j.semcdb.2019.05.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 12/15/2022]
Abstract
Although we have entered the era of personalized medicine and tailored therapies, drugs that target a large variety of cancers regardless of individual patient differences would be a major advance nonetheless. This review article summarizes current concepts and therapeutic opportunities in the area of targeting aerobic mitochondrial energy metabolism in cancer. Old drugs previously used for diseases other than cancer, such as antibiotics and antidiabetics, have the potential to inhibit the growth of various tumor entities. Many drugs are reported to influence mitochondrial metabolism. However, here we consider only those drugs which predominantly inhibit oxidative phosphorylation.
Collapse
Affiliation(s)
- Sepideh Aminzadeh-Gohari
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Daniela D. Weber
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Silvia Vidali
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria,Institute of Human Genetics, Helmholtz Zentrum München, Technical University of Munich, Munich, Germany
| | - Luca Catalano
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria,Corresponding author at: Research Program for Receptor Biochemistry and Tumor Metabolism, University Hospital Salzburg, Paracelsus Medical University, Muellner-Hauptstrasse 48, 5020 Salzburg, Austria. (B. Kofler)
| | - René G. Feichtinger
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
47
|
Harkins RA, Chang A, Patel SP, Lee MJ, Goldstein JS, Merdan S, Flowers CR, Koff JL. Remaining challenges in predicting patient outcomes for diffuse large B-cell lymphoma. Expert Rev Hematol 2019; 12:959-973. [PMID: 31513757 PMCID: PMC6821591 DOI: 10.1080/17474086.2019.1660159] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/22/2019] [Indexed: 12/28/2022]
Abstract
Introduction: Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma and is an aggressive malignancy with heterogeneous outcomes. Diverse methods for DLBCL outcomes assessment ranging from clinical to genomic have been developed with variable predictive and prognostic success.Areas covered: The authors provide an overview of the various methods currently used to estimate prognosis in DLBCL patients. Models incorporating cell of origin, genomic features, sociodemographic factors, treatment effectiveness measures, and machine learning are described.Expert opinion: The clinical and genetic heterogeneity of DLBCL presents distinct challenges in predicting response to therapy and overall prognosis. Successful integration of predictive and prognostic tools in clinical trials and in a standard clinical workflow for DLBCL will likely require a combination of methods incorporating clinical, sociodemographic, and molecular factors with the aid of machine learning and high-dimensional data analysis.
Collapse
Affiliation(s)
- R. Andrew Harkins
- Emory University School of Medicine, Atlanta, Georgia 30322-1007, USA
| | - Andres Chang
- Winship Cancer Institute of Emory University, Atlanta, Georgia 30322-1007, USA
| | | | - Michelle J. Lee
- Emory University School of Medicine, Atlanta, Georgia 30322-1007, USA
| | | | - Selin Merdan
- Winship Cancer Institute of Emory University, Atlanta, Georgia 30322-1007, USA
- Georgia Institute of Technology, Atlanta, Georgia 30332-0002, USA
| | | | - Jean L. Koff
- Winship Cancer Institute of Emory University, Atlanta, Georgia 30322-1007, USA
| |
Collapse
|
48
|
Dong Z, Abbas MN, Kausar S, Yang J, Li L, Tan L, Cui H. Biological Functions and Molecular Mechanisms of Antibiotic Tigecycline in the Treatment of Cancers. Int J Mol Sci 2019; 20:ijms20143577. [PMID: 31336613 PMCID: PMC6678986 DOI: 10.3390/ijms20143577] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 12/14/2022] Open
Abstract
As an FDA-approved drug, glycylcycline tigecycline has been used to treat complicated microbial infections. However, recent studies in multiple hematologic and malignant solid tumors reveal that tigecycline treatment induces cell cycle arrest, apoptosis, autophagy and oxidative stress. In addition, tigecycline also inhibits mitochondrial oxidative phosphorylation, cell proliferation, migration, invasion and angiogenesis. Importantly, combinations of tigecycline with chemotherapeutic or targeted drugs such as venetoclax, doxorubicin, vincristine, paclitaxel, cisplatin, and imatinib, have shown to be promising strategies for cancer treatment. Mechanism of action studies reveal that tigecycline leads to the inhibition of mitochondrial translation possibly through interacting with mitochondrial ribosome. Meanwhile, this drug also interferes with several other cell pathways/targets including MYC, HIFs, PI3K/AKT or AMPK-mediated mTOR, cytoplasmic p21 CIP1/Waf1, and Wnt/β-catenin signaling. These evidences indicate that antibiotic tigecycline is a promising drug for cancer treatment alone or in combination with other anticancer drugs. This review summarizes the biological function of tigecycline in the treatment of tumors and comprehensively discusses its mode of action.
Collapse
Affiliation(s)
- Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing 400716, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400716, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing 400716, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400716, China
| | - Saima Kausar
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing 400716, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400716, China
| | - Jie Yang
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing 400716, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400716, China
| | - Lin Li
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing 400716, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400716, China
| | - Li Tan
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing 400716, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400716, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing 400716, China.
- Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing 400716, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing 400716, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400716, China.
| |
Collapse
|
49
|
GAPDH Expression Predicts the Response to R-CHOP, the Tumor Metabolic Status, and the Response of DLBCL Patients to Metabolic Inhibitors. Cell Metab 2019; 29:1243-1257.e10. [PMID: 30827861 DOI: 10.1016/j.cmet.2019.02.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/21/2018] [Accepted: 02/06/2019] [Indexed: 02/06/2023]
Abstract
Diffuse large B cell lymphoma (DLBCL) is a heterogeneous disease treated with anti-CD20-based immuno-chemotherapy (R-CHOP). We identified that low levels of GAPDH predict a poor response to R-CHOP treatment. Importantly, we demonstrated that GAPDHlow lymphomas use OxPhos metabolism and rely on mTORC1 signaling and glutaminolysis. Consistently, disruptors of OxPhos metabolism (phenformin) or glutaminolysis (L-asparaginase) induce cytotoxic responses in GAPDHlow B cells and improve GAPDHlow B cell-lymphoma-bearing mice survival, while they are low or not efficient on GAPDHhigh B cell lymphomas. Ultimately, we selected four GAPDHlow DLBCL patients, who were refractory to all anti-CD20-based therapies, and targeted DLBCL metabolism using L-asparaginase (K), mTOR inhibitor (T), and metformin (M) (called KTM therapy). Three out of the four patients presented a complete response upon one cycle of KTM. These findings establish that the GAPDH expression level predicts DLBCL patients' response to R-CHOP treatment and their sensitivity to specific metabolic inhibitors.
Collapse
|
50
|
Xu X, Huang A, Cui X, Han K, Hou X, Wang Q, Cui L, Yang Y. Ubiquitin specific peptidase 5 regulates colorectal cancer cell growth by stabilizing Tu translation elongation factor. Theranostics 2019; 9:4208-4220. [PMID: 31281542 PMCID: PMC6592179 DOI: 10.7150/thno.33803] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 05/08/2019] [Indexed: 12/18/2022] Open
Abstract
Ubiquitin specific peptidase 5 (USP5) is a ubiquitous expressed deubiquitinating enzyme (DUB). It has been shown involved in DNA repair, apoptosis, inflammation, and tumor cell growth. However, the function and molecular mechanism of USP5 in colorectal cancer (CRC) are still unclear. In the present study, we asked how it affected the growth of colorectal cancer cells. Methods: A shRNA-based high-content screening was performed to identify DUBs affecting the growth of CRC cells. CCK-8 assay and xenografts were used to assess CRC cell growth, survival and tumorigenesis. RT-qPCR, immunoblotting and immunohistochemistry were carried out to quantitate USP5 expression in CRC tissues and cell lines. Immunoprecipitation and mass spectrometry analysis were performed to identify USP5-interacting proteins. Cycloheximide chase was performed to assess Tu translation elongation factor (TUFM) stability. Dual luciferase reporter assay was utilized for USP5 promoter analysis. Results: We found that USP5 was highly expressed in a group of primary CRC tissues, and the increased USP5 was correlated with clinical stages and shorter overall survival. While USP5 knockdown effectively inhibited CRC cell growth, overexpressed USP5 promoted the growth of CRC cells and made them more resistant to doxorubicin (DOX). TUFM was discovered as a substrate of USP5. USP5 deubiquitinated TUFM and increased its level in CRC cells. Enforced expression of TUFM was able to alleviate the growth inhibition induced by USP5 knockdown. Further analyses showed that EBF transcription factor 1 (EBF1) was a major regulator for USP5 transcription, and DOX inhibited EBF1-USP5-TUFM axis in CRC cells. Conclusions: USP5 was required for CRC cells and promoted their growth and resistance to chemotherapeutics. TUFM was a USP5 deubiquitinating substrate that mediated the cellular effects of USP5. The transcription of USP5 was regulated by EBF1. Thus, targeting EBF1-USP5-TUFM axis is a potential novel strategy for CRC treatment.
Collapse
|