1
|
Yue L, Li N, Ye X, Xiu Y, Wang B. Polymethoxylated flavones for modulating signaling pathways in inflammation. Int Immunopharmacol 2024; 143:113522. [PMID: 39515044 DOI: 10.1016/j.intimp.2024.113522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/18/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Aberrant signaling pathways play a crucial role in the pathogenesis of various diseases, including inflammatory disorders and autoimmune conditions. Polymethoxylated flavones (PMFs), a class of natural compounds found in citrus fruits, have obtained increasing attention for their potential therapeutic effects in modulating inflammatory responses. Although significant progress has been made in the pharmacological research of PMFs, the mechanisms by which they modulate signaling pathways to treat inflammation have not been systematically reviewed or analyzed. To address this gap in the literature, this review explores the mechanisms underlying the anti-inflammatory properties of PMFs and their prospects as drugs for treating inflammatory diseases. We discuss the molecular targets and signaling pathways through which PMFs exert their anti-inflammatory effects, including NF-κB pathway, PI3K/Akt pathway, MAPK pathway, Nrf2 pathway, and regulation of inflammatory cytokine production. Furthermore, we highlight preclinical studies evaluating the efficacy of PMFs in various inflammatory conditions, such as rheumatoid arthritis (RA), inflammatory bowel disease (IBD), and osteoarthritis (OA). Despite promising findings, challenges remain in optimizing the pharmacokinetic properties and therapeutic efficacy of PMFs for clinical use. Future research directions include elucidating the structure-activity relationships of PMFs, developing novel delivery strategies, and conducting large-scale clinical trials to validate their efficacy and safety profiles. Overall, PMFs represent a promising class of natural compounds with potential applications as anti-inflammatory drugs, offering novel therapeutic opportunities for managing inflammatory diseases.
Collapse
Affiliation(s)
- Lixia Yue
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| | - Ning Li
- Shenzhen Research Institute, the Hong Kong University of Science and Technology, Shenzhen 518054, China
| | - Xianglu Ye
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yanfeng Xiu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Bing Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Pourmehran Y, Sadri F, Hosseini SF, Mohammadi Y, Rezaei Z. Exploring the influence of non-coding RNAs on NF-κB signaling pathway regulation in ulcerative colitis. Biomed Pharmacother 2024; 179:117390. [PMID: 39243424 DOI: 10.1016/j.biopha.2024.117390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024] Open
Abstract
The gastrointestinal tract is chronically inflamed in ulcerative colitis (UC), which has a complicated etiology involving immunological, environmental, and genetic factors. The inflammatory response that is typical of UC is significantly regulated via the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway. Latest research has displayed that NF-κB signaling is controlled by three main types of non-coding RNAs (ncRNAs): circular RNAs (circRNAs), long non-coding RNAs (lncRNAs), and microRNAs (miRNAs). These ncRNAs can change the expression of key genes within the NF-κB pathway by acting as molecular sponges, transcriptional regulators, and epigenetic modifiers. This review synthesizes current knowledge on the functions by which ncRNAs modulate NF-κB signaling in UC, discusses their potential as biomarkers for disease prognosis and diagnosis, and explores their therapeutic potential. Understanding the intricate interactions between ncRNAs and NF-κB signaling may provide novel insights into UC pathogenesis and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Yasaman Pourmehran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Farzad Sadri
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran; Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Seyede Fatemeh Hosseini
- Faculty member, Tabas School of Nursing, Birjand University of medical sciences, Birjand, Iran
| | - Yaser Mohammadi
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zohreh Rezaei
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran; Department of Biology, University of Sistan and Baluchestan, ZahedanIran.
| |
Collapse
|
3
|
Lu X, Ren K, Pan L, Liu X. Sheep ( Ovis aries) Milk Exosomal miRNAs Attenuate Dextran Sulfate Sodium-Induced Colitis in Mice via TLR4 and TRAF-1 Inhibition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21030-21040. [PMID: 39283309 DOI: 10.1021/acs.jafc.4c05524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Mammalian milk exosomal miRNAs play an important role in maintaining intestinal immune homeostasis and protecting epithelial barrier function, but the specific miRNAs and whether miRNA-mediated mechanisms are responsible for these benefits remain a matter of investigation. This study isolated sheep milk-derived exosomes (sheep MDEs), identifying the enriched miRNAs in sheep MDEs, oar-miR-148a, and oar-let-7b as key components targeting TLR4 and TRAF1, which was validated by a dual-luciferase reporter assay. In dextran sulfate sodium-induced colitis mice, administration of sheep MDEs alleviated colitis symptoms, reduced colonic inflammation, and systemic oxidative stress, as well as significantly increased colonic oar-miR-148a and oar-let-7b while reducing toll-like receptor 4 (TLR4) and TNF-receptor-associated factor 1 (TRAF1) level. Further characterization in TNF-α-challenged Caco-2 cells showed that overexpression of these miRNAs suppressed the TLR4/TRAF1-IκBα-p65 pathway and reduced IL-6 and IL-12 production. These findings indicate that sheep MDEs exert gastrointestinal anti-inflammatory effects through the miRNA-mediated modulation of TLR4 and TRAF1, highlighting their potential in managing colitis.
Collapse
Affiliation(s)
- Xi Lu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710000, China
| | - Ke Ren
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710000, China
| | - Lei Pan
- Tangdu Hospital, Air Force Military Medical University, Xi'an 710000, China
| | - Xiaocao Liu
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
4
|
Gholamhosseinzadeh E, Ghalehnoei H, Kazemi Veisari A, Jafari N, Goli HR. Evaluation of the Rock1 and microRNA-148a expression in biopsies collected from patients with Helicobacter pylori induced gastritis. BMC Gastroenterol 2024; 24:251. [PMID: 39112943 PMCID: PMC11308716 DOI: 10.1186/s12876-024-03347-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Helicobacter pylori infection is one of the most common chronic bacterial infections, especially in developing countries. MicroRNA-148a is involved in the regulation of various genes, including Rock1, which is altered in gastric cancer. Decreased expression of mir-148a leads to tumor metastasis and increased Rock1 gene expression in gastric cancer. This study aimed to investigate the expression of these genes in biopsies collected from patients with H. pylori induced gastritis. METHODS Informed consent forms were gotten from the studied patients with gastritis who needed endoscopy. Gastric biopsies were taken by a gastroenterologist from patients with inflammation. Rapid urease test, stool antigen detection, and histopathological staining were used to determine the H. pylori infected patients. Real time PCR was used to evaluate the miRNA and Rock1 expression levels. RESULTS The Rock1 expression level in biopsies that were positive for H. pylori was significantly increased compared to our control gastritis group that were H. pylori-negative, but the results were not statistically significant. Moreover, the mir-148a expression level in H. pylori-positive patients with gastritis was increased compared to our control group. However, the results were not statistically significant. We did not find a significant relation between the expression levels of Rock1 and mir-148a in samples with gastritis infected or uninfected by H. pylori. This result may be due to the small sample size. CONCLUSION We suggest that this test should be carried out with more samples, and the comparison should be done between biopsies with inflammation and no inflammation in a patient.
Collapse
Affiliation(s)
- Ebrahim Gholamhosseinzadeh
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Farah Abad blv, Khazar square, Sari, Mazandaran, Iran
| | - Hossein Ghalehnoei
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Arash Kazemi Veisari
- Gut and Liver Research Center, Non-communicable Disease Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Narjes Jafari
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamid Reza Goli
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Farah Abad blv, Khazar square, Sari, Mazandaran, Iran.
| |
Collapse
|
5
|
Xie Y, Liu F. The role of the gut microbiota in tumor, immunity, and immunotherapy. Front Immunol 2024; 15:1410928. [PMID: 38903520 PMCID: PMC11188355 DOI: 10.3389/fimmu.2024.1410928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
In recent years, with the deepening understanding of the gut microbiota, it has been recognized to play a significant role in the development and progression of diseases. Particularly in gastrointestinal tumors, the gut microbiota influences tumor growth by dysbiosis, release of bacterial toxins, and modulation of host signaling pathways and immune status. Immune checkpoint inhibitors (ICIs) have greatly improved cancer treatment efficacy by enhancing immune cell responses. Current clinical and preclinical studies have demonstrated that the gut microbiota and its metabolites can enhance the effectiveness of immunotherapy. Furthermore, certain gut microbiota can serve as biomarkers for predicting immunotherapy responses. Interventions targeting the gut microbiota for the treatment of gastrointestinal diseases, especially colorectal cancer (CRC), include fecal microbiota transplantation, probiotics, prebiotics, engineered bacteria, and dietary interventions. These approaches not only improve the efficacy of ICIs but also hold promise for enhancing immunotherapy outcomes. In this review, we primarily discuss the role of the gut microbiota and its metabolites in tumors, host immunity, and immunotherapy.
Collapse
Affiliation(s)
| | - Fang Liu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
6
|
Burgos-Molina AM, Téllez Santana T, Redondo M, Bravo Romero MJ. The Crucial Role of Inflammation and the Immune System in Colorectal Cancer Carcinogenesis: A Comprehensive Perspective. Int J Mol Sci 2024; 25:6188. [PMID: 38892375 PMCID: PMC11172443 DOI: 10.3390/ijms25116188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Chronic inflammation drives the growth of colorectal cancer through the dysregulation of molecular pathways within the immune system. Infiltration of immune cells, such as macrophages, into tumoral regions results in the release of proinflammatory cytokines (IL-6; IL-17; TNF-α), fostering tumor proliferation, survival, and invasion. Tumors employ various mechanisms to evade immune surveillance, effectively 'cloaking' themselves from detection and subsequent attack. A comprehensive understanding of these intricate molecular interactions is paramount for advancing novel strategies aimed at modulating the immune response against cancer.
Collapse
Affiliation(s)
- Antonio Manuel Burgos-Molina
- Surgery, Biochemistry and Immunology Department, School of Medicine, University of Malaga, 29010 Málaga, Spain; (A.M.B.-M.); (T.T.S.); (M.J.B.R.)
| | - Teresa Téllez Santana
- Surgery, Biochemistry and Immunology Department, School of Medicine, University of Malaga, 29010 Málaga, Spain; (A.M.B.-M.); (T.T.S.); (M.J.B.R.)
- Research Network on Chronic Diseases, Primary Care, and Health Promotion (RICAPPS), Carlos III Health Institute (Instituto de Salud Carlos III), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain
- Málaga Biomedical Research Institute (Instituto de Investigación Biomédica de Málaga, IBIMA), Calle Doctor Miguel Díaz Recio, 28, 29010 Málaga, Spain
| | - Maximino Redondo
- Surgery, Biochemistry and Immunology Department, School of Medicine, University of Malaga, 29010 Málaga, Spain; (A.M.B.-M.); (T.T.S.); (M.J.B.R.)
- Research Network on Chronic Diseases, Primary Care, and Health Promotion (RICAPPS), Carlos III Health Institute (Instituto de Salud Carlos III), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain
- Málaga Biomedical Research Institute (Instituto de Investigación Biomédica de Málaga, IBIMA), Calle Doctor Miguel Díaz Recio, 28, 29010 Málaga, Spain
- Research Unit, Hospital Costa del Sol, Autovía A-7, km 187, 29603 Marbella, Spain
| | - María José Bravo Romero
- Surgery, Biochemistry and Immunology Department, School of Medicine, University of Malaga, 29010 Málaga, Spain; (A.M.B.-M.); (T.T.S.); (M.J.B.R.)
| |
Collapse
|
7
|
Carvalho BF, Gomez GVB, Carron J, Macedo LT, Gonçalves GM, Vazquez VDL, Serrano SV, Lourenço GJ, Lima CSP. TNFRSF1B Gene Variants in Clinicopathological Aspects and Prognosis of Patients with Cutaneous Melanoma. Int J Mol Sci 2024; 25:2868. [PMID: 38474115 DOI: 10.3390/ijms25052868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Regulatory T lymphocytes play a critical role in immune regulation and are involved in the aberrant cell elimination by facilitating tumor necrosis factor connection to the TNFR2 receptor, encoded by the TNFRSF1B polymorphic gene. We aimed to examine the effects of single nucleotide variants TNFRSF1B c.587T>G, c.*188A>G, c.*215C>T, and c.*922C>T on the clinicopathological characteristics and survival of cutaneous melanoma (CM) patients. Patients were genotyped using RT-PCR. TNFRSF1B levels were measured using qPCR. Luciferase reporter assay evaluated the interaction of miR-96 and miR-1271 with the 3'-UTR of TNFRSF1B. The c.587TT genotype was more common in patients younger than 54 years old than in older patients. Patients with c.*922CT or TT, c.587TG or GG + c.*922CT or TT genotypes, as well as those with the haplotype TATT, presented a higher risk of tumor progression and death due to the disease effects. Individuals with the c.*922TT genotype had a higher TNFRSF1B expression than those with the CC genotype. miR-1271 had less efficient binding with the 3'-UTR of the T allele when compared with the C allele of the SNV c.*922C>T. Our findings, for the first time, demonstrate that TNFRSF1B c.587T>G and c.*922C>T variants can serve as independent prognostic factors in CM patients.
Collapse
Affiliation(s)
- Bruna Fernandes Carvalho
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, Campinas 13083-888, SP, Brazil
| | - Gabriela Vilas Bôas Gomez
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, Campinas 13083-888, SP, Brazil
| | - Juliana Carron
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, Campinas 13083-888, SP, Brazil
| | - Ligia Traldi Macedo
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, Campinas 13083-888, SP, Brazil
- Department of Anesthesiology, Oncology, and Radiology, School of Medical Sciences, University of Campinas, Campinas 13083-888, SP, Brazil
| | - Gisele Melo Gonçalves
- Melanoma and Sarcoma Surgery Department, Barretos Cancer Hospital, Barretos 14784-400, SP, Brazil
| | - Vinicius de Lima Vazquez
- Melanoma and Sarcoma Surgery Department, Barretos Cancer Hospital, Barretos 14784-400, SP, Brazil
| | - Sergio Vicente Serrano
- Department of Medical Oncology, Barretos Cancer Hospital, Barretos 14784-400, SP, Brazil
| | - Gustavo Jacob Lourenço
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, Campinas 13083-888, SP, Brazil
| | - Carmen Silvia Passos Lima
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, Campinas 13083-888, SP, Brazil
- Department of Anesthesiology, Oncology, and Radiology, School of Medical Sciences, University of Campinas, Campinas 13083-888, SP, Brazil
| |
Collapse
|
8
|
Caparrós E, García-Martinez I, Pedro Zapater, Lucía Madero, Valverde ÁM, Ana Gutiérrez, Francés R. An altered expression of miR-376a-3p and miR-20a-5p in peripheral blood exosomes regulates the autophagy and inflammatory systemic substrates, and relates to the smoking habit and age in Crohn's disease. FASEB J 2024; 38:e23418. [PMID: 38226870 DOI: 10.1096/fj.202301761r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/11/2023] [Accepted: 12/27/2023] [Indexed: 01/17/2024]
Abstract
miRNAs are short single-stranded noncoding RNAs that participate as epigenetic regulators in inflammatory bowel disease. Most miRNAs detectable in serum are concentrated in exosomes, with relevant cargo for immunobiological processes. We set to evaluate the exosomes miRNAs content in the serum of patients with Crohn's disease (CD) and run a prospective observational study on CD patients on biological monotherapy and healthy controls. miRNA cargo was evaluated in peripheral blood-derived exosomes. Serum autophagy and inflammatory substrates were measured. Patients were followed for 6 months. Patients (n = 28) showed an overexpression of miR-376a-3p and a downregulation of miR-20a-5p compared to controls (n = 10), without significant differences between patients according to biologics. Serum autophagy substrates ATG4C (r = .57; p = .001) and ACRV1C (r = .66; p = .001) inversely correlated with miR-376a-3p expression, whereas IGF1R correlated with miR-20a-5p expression (r = .42; p = .02). Th1-related cytokines correlated with miR-376a-3p expression, whereas the Th17-associated cytokines inversely correlated with miR-20a-5p expression. Smoking (β = -2.301 CI 95% -3.790/-0.811, p = .004) remained as independent factor related to the overexpression of miR-376a-3p, whereas diagnosis before 16 years of age (β = 2.044 CI 95% 0.934/3.154, p = .001) and a younger age of patients (β = -.720 CI 95% -0.108/-0.035, p = .001) were related to decreased miR-20a-5p expression. Seven patients (25%) had a flare in the 6-month follow-up. Patients with overexpression of miR-376a-3p at the baseline showed an increased risk of flare during this period (OR 0.475 [0.237-0.950], p = .035). Finally, a comparative miRNA signature between biologic monotherapies was also explored. Targeting miR-376a-3p and miR-20a-5p epigenetic regulators may yield homeostatic effects on relevant biological processes related to disease progression in CD patients.
Collapse
Affiliation(s)
- Esther Caparrós
- Hepatic and Intestinal Immunobiology Group, Dpto. Medicina Clínica, Universidad Miguel Hernández, Alicante, Spain
- IIS ISABIAL, Hospital General Universitario Dr. Balmis, Alicante, Spain
| | - Irma García-Martinez
- Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC/UAM, Madrid, Spain
- CIBERdem, Instituto Salud Carlos III, Madrid, Spain
| | - Pedro Zapater
- Hepatic and Intestinal Immunobiology Group, Dpto. Medicina Clínica, Universidad Miguel Hernández, Alicante, Spain
- IIS ISABIAL, Hospital General Universitario Dr. Balmis, Alicante, Spain
- CIBERehd, Instituto Salud Carlos III, Madrid, Spain
- Instituto IDIBE, Universidad Miguel Hernández, Elche, Spain
| | - Lucía Madero
- IIS ISABIAL, Hospital General Universitario Dr. Balmis, Alicante, Spain
- Servicio Medicina Digestiva, Hospital General Universitario Dr. Balmis, Alicante, Spain
| | - Ángela M Valverde
- Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC/UAM, Madrid, Spain
- CIBERdem, Instituto Salud Carlos III, Madrid, Spain
| | - Ana Gutiérrez
- Hepatic and Intestinal Immunobiology Group, Dpto. Medicina Clínica, Universidad Miguel Hernández, Alicante, Spain
- IIS ISABIAL, Hospital General Universitario Dr. Balmis, Alicante, Spain
- CIBERehd, Instituto Salud Carlos III, Madrid, Spain
- Servicio Medicina Digestiva, Hospital General Universitario Dr. Balmis, Alicante, Spain
| | - Rubén Francés
- Hepatic and Intestinal Immunobiology Group, Dpto. Medicina Clínica, Universidad Miguel Hernández, Alicante, Spain
- IIS ISABIAL, Hospital General Universitario Dr. Balmis, Alicante, Spain
- CIBERehd, Instituto Salud Carlos III, Madrid, Spain
- Instituto IDIBE, Universidad Miguel Hernández, Elche, Spain
| |
Collapse
|
9
|
Housini M, Dariya B, Ahmed N, Stevens A, Fiadjoe H, Nagaraju GP, Basha R. Colorectal cancer: Genetic alterations, novel biomarkers, current therapeutic strategies and clinical trials. Gene 2024; 892:147857. [PMID: 37783294 DOI: 10.1016/j.gene.2023.147857] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023]
Abstract
Colorectal cancer (CRC) is the third most commonly detected cancer with a serious global health issue. The rates for incidence and mortality for CRC are alarming, especially since the prognosis is abysmal when the CRC is diagnosed at an advanced or metastatic stage. Both type of (modifiable/ non-modifiable) types of risk factors are established for CRC. Despite the advances in recent technology and sophisticated research, the survival rate is still meager due to delays in diagnosis. Therefore, there is urgently required to identify critical biomarkers aiming at early diagnosis and improving effective therapeutic strategies. Additionally, a complete understanding of the dysregulated pathways like PI3K/Akt, Notch, and Wnt associated with CRC progression and metastasis is very beneficial in designing a therapeutic regimen. This review article focused on the dysregulated signaling pathways, genetics and epigenetics alterations, and crucial biomarkers of CRC. This review also provided the list of clinical trials targeting signaling cascades and therapies involving small molecules. This review discusses up-to-date information on novel diagnostic and therapeutic strategies alongside specific clinical trials.
Collapse
Affiliation(s)
- Mohammad Housini
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Begum Dariya
- Center for Drug Design, University of Minnesota, Minneapolis, MN 5545, United States
| | - Nadia Ahmed
- Department of Diagnostic Radiology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Alyssa Stevens
- Missouri Southern State University, Joplin, MO 64801, United States
| | - Hope Fiadjoe
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Ganji Purnachandra Nagaraju
- Division of Hematology & Oncology, The University of Alabama at Birmingham, Birmingham, AL 35233, United States.
| | - Riyaz Basha
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, United States; Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, United States.
| |
Collapse
|
10
|
Zhang H, Shi Y, Lin C, He C, Wang S, Li Q, Sun Y, Li M. Overcoming cancer risk in inflammatory bowel disease: new insights into preventive strategies and pathogenesis mechanisms including interactions of immune cells, cancer signaling pathways, and gut microbiota. Front Immunol 2024; 14:1338918. [PMID: 38288125 PMCID: PMC10822953 DOI: 10.3389/fimmu.2023.1338918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/26/2023] [Indexed: 01/31/2024] Open
Abstract
Inflammatory bowel disease (IBD), characterized primarily by gastrointestinal inflammation, predominantly manifests as Crohn's disease (CD) and ulcerative colitis (UC). It is acknowledged that Inflammation plays a significant role in cancer development and patients with IBD have an increased risk of various cancers. The progression from inflammation to carcinogenesis in IBD is a result of the interplay between immune cells, gut microbiota, and carcinogenic signaling pathways in epithelial cells. Long-term chronic inflammation can lead to the accumulation of mutations in epithelial cells and the abnormal activation of carcinogenic signaling pathways. Furthermore, Immune cells play a pivotal role in both the acute and chronic phases of IBD, contributing to the transformation from inflammation to tumorigenesis. And patients with IBD frequently exhibit dysbiosis of the intestinal microbiome. Disruption of the gut microbiota and subsequent immune dysregulation are central to the pathogenesis of both IBD and colitis associated colorectal cancer (CAC). The proactive management of inflammation combined with regular endoscopic and tumor screenings represents the most direct and effective strategy to prevent the IBD-associated cancer.
Collapse
Affiliation(s)
- Haonan Zhang
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yulu Shi
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chanchan Lin
- Department of Gastroenterology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Chengcheng He
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shanping Wang
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qingyuan Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan Sun
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingsong Li
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
11
|
Datta N, Johnson C, Kao D, Gurnani P, Alexander C, Polytarchou C, Monaghan TM. MicroRNA-based therapeutics for inflammatory disorders of the microbiota-gut-brain axis. Pharmacol Res 2023; 194:106870. [PMID: 37499702 DOI: 10.1016/j.phrs.2023.106870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
An emerging but less explored shared pathophysiology across microbiota-gut-brain axis disorders is aberrant miRNA expression, which may represent novel therapeutic targets. miRNAs are small, endogenous non-coding RNAs that are important transcriptional repressors of gene expression. Most importantly, they regulate the integrity of the intestinal epithelial and blood-brain barriers and serve as an important communication channel between the gut microbiome and the host. A well-defined understanding of the mode of action, therapeutic strategies and delivery mechanisms of miRNAs is pivotal in translating the clinical applications of miRNA-based therapeutics. Accumulating evidence links disorders of the microbiota-gut-brain axis with a compromised gut-blood-brain-barrier, causing gut contents such as immune cells and microbiota to enter the bloodstream leading to low-grade systemic inflammation. This has the potential to affect all organs, including the brain, causing central inflammation and the development of neurodegenerative and neuropsychiatric diseases. In this review, we have examined in detail miRNA biogenesis, strategies for therapeutic application, delivery mechanisms, as well as their pathophysiology and clinical applications in inflammatory gut-brain disorders. The research data in this review was drawn from the following databases: PubMed, Google Scholar, and Clinicaltrials.gov. With increasing evidence of the pathophysiological importance for miRNAs in microbiota-gut-brain axis disorders, therapeutic targeting of cross-regulated miRNAs in these disorders displays potentially transformative and translational potential. Further preclinical research and human clinical trials are required to further advance this area of research.
Collapse
Affiliation(s)
- Neha Datta
- School of Medicine, University of Nottingham, Nottingham, UK
| | - Charlotte Johnson
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK; Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Dina Kao
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Pratik Gurnani
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Cameron Alexander
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Christos Polytarchou
- Department of Biosciences, John van Geest Cancer Research Centre, School of Science & Technology, Nottingham Trent University, Nottingham, UK.
| | - Tanya M Monaghan
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK; Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK.
| |
Collapse
|
12
|
Cheng T, Xu C, Shao J. Updated immunomodulatory roles of gut flora and microRNAs in inflammatory bowel diseases. Clin Exp Med 2023; 23:1015-1031. [PMID: 36385416 PMCID: PMC9668223 DOI: 10.1007/s10238-022-00935-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022]
Abstract
Inflammatory bowel disease is a heterogeneous intestinal inflammatory disorder, including ulcerative colitis (UC) and Crohn's disease (CD). Existing studies have shown that the pathogenesis of IBD is closely related to the host's genetic susceptibility, intestinal flora disturbance and mucosal immune abnormalities, etc. It is generally believed that there are complicated interactions between host immunity and intestinal microflora/microRNAs during the occurrence and progression of IBD. Intestinal flora is mainly composed of bacteria, fungi, viruses and helminths. These commensals are highly implicated in the maintenance of intestinal microenvironment homeostasis alone or in combination. MiRNA is an endogenous non-coding small RNA with a length of 20 to 22 nucleotides, which can perform a variety of biological functions by silencing or activating target genes through complementary pairing bonds. A large quantity of miRNAs are involved in intestinal inflammation, mucosal barrier integrity, autophagy, vesicle transportation and other small RNA alterations in IBD circumstance. In this review, the immunomodulatory roles of gut flora and microRNAs are updated in the occurrence and progression of IBD. Meanwhile, the gut flora and microRNA targeted therapeutic strategies as well as other immunomodulatory approaches including TNF-α monoclonal antibodies are also emphasized in the treatment of IBD.
Collapse
Affiliation(s)
- Ting Cheng
- Laboratory of Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 433 Room, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, People's Republic of China
| | - Chen Xu
- Laboratory of Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 433 Room, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, People's Republic of China
| | - Jing Shao
- Laboratory of Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 433 Room, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, People's Republic of China.
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, People's Republic of China.
| |
Collapse
|
13
|
Kolahi Z, Yaghoubi A, Rezaeian N, Khazaei M. Exercise Improves Clinical Symptoms, Pathological Changes and Oxidative/Antioxidative Balance in Animal Model of Colitis. Int J Prev Med 2023; 14:46. [PMID: 37351030 PMCID: PMC10284199 DOI: 10.4103/ijpvm.ijpvm_162_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/27/2022] [Indexed: 06/24/2023] Open
Abstract
Background Ulcerative colitis is one of the major phenotypic forms of inflammatory bowel diseases. The present study aimed to investigate the effect of force swimming exercise on clinical symptoms (disease activity index; DAI), colon histopathology, inflammation and fibrosis, and oxidant/antioxidant balance in dextran sulfate sodium (DSS)-induced colitis mice. Methods Male C57BL6 mice were randomly divided into five groups (n = 6 each): control, exercise, colitis, colitis + sulfasalazine, and colitis + exercise. Exercise was performed by forced swimming six weeks before and during the experiment. Colitis was induced by 1.5% DSS in drinking water. The animals were evaluated for body weight changes and DAI (including changes of body weight, stool consistency, rectal bleeding, and prolapse) during the induction of colitis and treatment. At the end of experiment, colons and spleens were evaluated by H and E and Masson Trichrome stainings. Oxidant (Malon dialdehyde; MDA), and antioxidant markers [total thiol groups, superoxide dismutase (SOD), and catalase activity] were also measured in colon tissue. Results Results indicated that exercise in colitis mice significantly improved DAI, colon length, spleen weight, and histological injury score and alleviated fibrotic changes in colon tissue that were comparable to sulfasalazine group. Exercise also restored the oxidant/antioxidant balance in colitis mice by reducing MDA and increasing antioxidative markers including total thiol groups, SOD, and catalase activity. Conclusions Taken together, aerobic exercise could improve clinical symptoms and colonic inflammation through, at least, the balancing the oxidative stress markers. Thus, it can be considered in management of colitis patients as effective method.
Collapse
Affiliation(s)
- Zohreh Kolahi
- Department of Physical Education and Sport Science, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran
| | - Ali Yaghoubi
- Department of Physical Education and Sport Science, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran
| | - Najmeh Rezaeian
- Department of Physical Education and Sport Science, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran
| | - Majid Khazaei
- Department of Physiology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Wu Z, Pi G, Song W, Li Y. Investigation of the Expression Pattern and Functional Role of miR-10b in Intestinal Inflammation. Animals (Basel) 2023; 13:ani13071236. [PMID: 37048492 PMCID: PMC10093392 DOI: 10.3390/ani13071236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Implications of miRNAs for animal health management in livestock remain elusive. To identify suitable miRNAs as monitoring biomarkers, piglets were randomly selected for sampling on days 0, 1, 3, 7, and 14 post-weaning. The results show that miR-10b levels in the villus upper cells of the jejunum on days 3 and 7 were significantly lower than that on day 14 post-weaning and reduced by approximately 30% on day 3 and 55% on day 7 compared to day 0. In contrast, miR-10b in crypt cells decreased by approximately 82% on day 7 and 64% on day 14 compared with day 0. Next, miR-10 knockout mice and wild-type mice were subjected to dextran sulfate sodium (DSS) for 7 days. The findings demonstrate that mice lacking miR-10b were more susceptible to DSS administration, as demonstrated by worse survival, greater weight loss, more severe tissue damage, and increased intestinal permeability. Moreover, the increased disease severity was correlated with enhanced macrophage infiltration, coincident with significantly elevated pro-inflammatory mediators and immunoglobulins. Bioinformatic analysis further reveals that the enriched pathways were mainly involved in host immune responses, and Igtp was identified as a potential target of miR-10b. These findings may provide new strategies for future interventions for swine health and production.
Collapse
Affiliation(s)
- Zijuan Wu
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha 410081, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan Normal University, Changsha 410081, China
| | - Guolin Pi
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha 410081, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan Normal University, Changsha 410081, China
| | - Wenxin Song
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha 410081, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan Normal University, Changsha 410081, China
| | - Yali Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha 410081, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
15
|
Francavilla A, Ferrero G, Pardini B, Tarallo S, Zanatto L, Caviglia GP, Sieri S, Grioni S, Francescato G, Stalla F, Guiotto C, Crocella L, Astegiano M, Bruno M, Calvo PL, Vineis P, Ribaldone DG, Naccarati A. Gluten-free diet affects fecal small non-coding RNA profiles and microbiome composition in celiac disease supporting a host-gut microbiota crosstalk. Gut Microbes 2023; 15:2172955. [PMID: 36751856 PMCID: PMC9928459 DOI: 10.1080/19490976.2023.2172955] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Current treatment for celiac disease (CD) is adhering to a gluten-free diet (GFD), although its long-term molecular effects are still undescribed. New molecular features detectable in stool may improve and facilitate noninvasive clinical management of CD. For this purpose, fecal small non-coding RNAs (sncRNAs) and gut microbiome profiles were concomitantly explored in CD subjects in relation to strict (or not) GFD adherence over time. In this observational study, we performed small RNA and shotgun metagenomic sequencing in stool from 63 treated CD (tCD) and 3 untreated subjects as well as 66 sex- and age-matched healthy controls. tCD included 51 individuals on strict GFD and with negative transglutaminase (TG) serology (tCD-TG-) and 12 symptomatic with not strict/short-time of GFD adherence and positive TG serology (tCD-TG+). Samples from additional 40 healthy adult individuals and a cohort of 19 untreated pediatric CD subjects and 19 sex/age matched controls were analyzed to further test the outcomes. Several miRNA and microbial profiles were altered in tCD subjects (adj. p < .05). Findings were validated in the external group of adult controls. In tCD-TG-, GFD duration correlated with five miRNA levels (p < .05): for miR-4533-3p and miR-2681-3p, the longer the diet adherence, the less the expression differed from controls. tCD-TG+ and untreated pediatric CD patients showed a similar miRNA dysregulation. Immune-response, trans-membrane transport and cell death pathways were enriched in targets of identified miRNAs. Bifidobacterium longum, Ruminococcus bicirculans, and Haemophilus parainfluenzae abundances shifted (adj. p < .05) with a progressive reduction of denitrification pathways with GFD length. Integrative analysis highlighted 121 miRNA-bacterial relationships (adj. p < .05). Specific molecular patterns in stool characterize CD subjects, reflecting either the long-term GFD effects or the gut inflammatory status, in case of a not strict/short-time adherence. Our findings suggest novel host-microbial interplays and could help the discovery of biomarkers for GFD monitoring over time.
Collapse
Affiliation(s)
- Antonio Francavilla
- Molecular and Genetic Epidemiology, Italian Institute for Genomic Medicine (IIGM), Torino, Italy
| | - Giulio Ferrero
- Department of Computer Sciences, University of Torino, Torino, Italy,Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Barbara Pardini
- Molecular and Genetic Epidemiology, Italian Institute for Genomic Medicine (IIGM), Torino, Italy
| | - Sonia Tarallo
- Molecular and Genetic Epidemiology, Italian Institute for Genomic Medicine (IIGM), Torino, Italy
| | - Laura Zanatto
- Molecular and Genetic Epidemiology, Italian Institute for Genomic Medicine (IIGM), Torino, Italy,Institut d’Investigació Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Gian Paolo Caviglia
- Division of Gastroenterology, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Sabina Sieri
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy
| | - Sara Grioni
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy
| | - Giulia Francescato
- Molecular and Genetic Epidemiology, Italian Institute for Genomic Medicine (IIGM), Torino, Italy,Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Francesco Stalla
- Gastroenterology and Digestive Endoscopy Unit, “Città della Salute e della Scienza” Hospital, Torino, Italy
| | | | - Lucia Crocella
- Gastroenterology, Hospital Mauriziano Umberto I, Torino, Italy
| | - Marco Astegiano
- Gastroenterology and Digestive Endoscopy Unit, “Città della Salute e della Scienza” Hospital, Torino, Italy
| | - Mauro Bruno
- Gastroenterology and Digestive Endoscopy Unit, “Città della Salute e della Scienza” Hospital, Torino, Italy
| | - Pier Luigi Calvo
- Pediatric Gastroenterology Unit, Department of Pediatrics, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di, Torino, Italy
| | - Paolo Vineis
- School of Public Health, Imperial College London, London, UK
| | | | - Alessio Naccarati
- Molecular and Genetic Epidemiology, Italian Institute for Genomic Medicine (IIGM), Torino, Italy,CONTACT Alessio Naccarati Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, SP 142, Km 3.95, Candiolo, Torino10060, Italy
| |
Collapse
|
16
|
Deng Y, Xiao M, Wan AH, Li J, Sun L, Liang H, Wang QP, Yin S, Bu X, Wan G. RNA and RNA Derivatives: Light and Dark Sides in Cancer Immunotherapy. Antioxid Redox Signal 2022; 37:1266-1290. [PMID: 35369726 DOI: 10.1089/ars.2022.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: Immunotherapy, which utilizes the patient's immune system to fight tumor cells, has been approved for the treatment of some types of advanced cancer. Recent Advances: The complexity and diversity of tumor immunity are responsible for the varying response rates toward current immunotherapy strategies and highlight the importance of exploring regulators in tumor immunotherapy. Several genetic factors have proved to be critical regulators of tumor immunotherapy. RNAs, including messenger RNAs and non-coding RNAs, play vital and diverse roles in tumorigenesis, metastasis, drug resistance, and immunotherapy response. RNA modifications, including N6-methyladenosine methylation, are involved in tumor immunity. Critical Issues: A critical issue is the lack of summary of the regulatory RNA molecules and their derivatives in mediating immune activities in human cancers that could provide potential applications for tumor immunotherapeutic strategy. Future Directions: This review summarizes the dual roles (the light and dark sides) of RNA and its derivatives in tumor immunotherapy and discusses the development of RNA-based therapies as novel immunotherapeutic strategies for cancer treatment. Antioxid. Redox Signal. 37, 1266-1290.
Collapse
Affiliation(s)
- Yuan Deng
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Min Xiao
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Arabella H Wan
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiarui Li
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Lei Sun
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Heng Liang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Qiao-Ping Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Sheng Yin
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xianzhang Bu
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Guohui Wan
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
17
|
Kitai H, Kato N, Ogami K, Komatsu S, Watanabe Y, Yoshino S, Koshi E, Tsubota S, Funahashi Y, Maeda T, Furuhashi K, Ishimoto T, Kosugi T, Maruyama S, Kadomatsu K, Suzuki HI. Systematic characterization of seed overlap microRNA cotargeting associated with lupus pathogenesis. BMC Biol 2022; 20:248. [PMID: 36357926 PMCID: PMC9650897 DOI: 10.1186/s12915-022-01447-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 10/21/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Combinatorial gene regulation by multiple microRNAs (miRNAs) is widespread and closely spaced target sites often act cooperatively to achieve stronger repression ("neighborhood" miRNA cotargeting). While miRNA cotarget sites are suggested to be more conserved and implicated in developmental control, the pathological significance of miRNA cotargeting remains elusive. RESULTS Here, we report the pathogenic impacts of combinatorial miRNA regulation on inflammation in systemic lupus erythematosus (SLE). In the SLE mouse model, we identified the downregulation of two miRNAs, miR-128 and miR-148a, by TLR7 stimulation in plasmacytoid dendritic cells. Functional analyses using human cell lines demonstrated that miR-128 and miR-148a additively target KLF4 via extensively overlapping target sites ("seed overlap" miRNA cotargeting) and suppress the inflammatory responses. At the transcriptome level, "seed overlap" miRNA cotargeting increases susceptibility to downregulation by two miRNAs, consistent with additive but not cooperative recruitment of two miRNAs. Systematic characterization further revealed that extensive "seed overlap" is a prevalent feature among broadly conserved miRNAs. Highly conserved target sites of broadly conserved miRNAs are largely divided into two classes-those conserved among eutherian mammals and from human to Coelacanth, and the latter, including KLF4-cotargeting sites, has a stronger association with both "seed overlap" and "neighborhood" miRNA cotargeting. Furthermore, a deeply conserved miRNA target class has a higher probability of haplo-insufficient genes. CONCLUSIONS Our study collectively suggests the complexity of distinct modes of miRNA cotargeting and the importance of their perturbations in human diseases.
Collapse
Affiliation(s)
- Hiroki Kitai
- Department of Nephrology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
| | - Noritoshi Kato
- Department of Nephrology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
| | - Koichi Ogami
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
| | - Shintaro Komatsu
- Department of Nephrology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
| | - Yu Watanabe
- Department of Nephrology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
| | - Seiko Yoshino
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
| | - Eri Koshi
- Department of Nephrology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
| | - Shoma Tsubota
- Department of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
| | - Yoshio Funahashi
- Department of Nephrology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
- Present Address: Yoshio Funahashi, Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239 USA
| | - Takahiro Maeda
- Department of General Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, Nagasaki 852-8501 Japan
| | - Kazuhiro Furuhashi
- Department of Nephrology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
| | - Takuji Ishimoto
- Department of Nephrology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
- Present Address: Takuji Ishimoto, Department of Nephrology and Rheumatology, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195 Japan
| | - Tomoki Kosugi
- Department of Nephrology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
| | - Shoichi Maruyama
- Department of Nephrology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
| | - Kenji Kadomatsu
- Department of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601 Japan
| | - Hiroshi I. Suzuki
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601 Japan
| |
Collapse
|
18
|
Rotllan N, Zhang X, Canfrán-Duque A, Goedeke L, Griñán R, Ramírez CM, Suárez Y, Fernández-Hernando C. Antagonism of miR-148a attenuates atherosclerosis progression in APOB TGApobec -/-Ldlr +/- mice: A brief report. Biomed Pharmacother 2022; 153:113419. [PMID: 36076541 PMCID: PMC11140622 DOI: 10.1016/j.biopha.2022.113419] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE miR-148a-3p (miR-148a) is a hepatic and immune-enriched microRNA (miRNA) that regulates macrophage-related lipoprotein metabolism, cholesterol homeostasis, and inflammation. The contribution of miR-148a-3p to the progression of atherosclerosis is unknown. In this study, we determined whether miR-148a silencing mitigated atherogenesis in APOBTGApobec-/-Ldlr+/- mice. METHODS APOBTGApobec-/-Ldlr+/- mice were fed a typical Western-style diet for 22 weeks and injected with a nontargeting locked nucleic acid (LNA; LNA control) or miR-148a LNA (LNA 148a) for the last 10 weeks. At the end of the treatment, the mice were sacrificed, and circulating lipids, hepatic gene expression, and atherosclerotic lesions were analyzed. RESULTS Examination of atherosclerotic lesions revealed a significant reduction in plaque size, with marked remodeling of the lesions toward a more stable phenotype. Mechanistically, miR-148a levels influenced macrophage cholesterol efflux and the inflammatory response. Suppression of miR-148a in murine primary macrophages decreased mRNA levels of proinflammatory M1-like markers (Nos2, Il6, Cox2, and Tnf) and increased the expression of anti-inflammatory genes (Arg1, Retlna, and Mrc1). CONCLUSIONS Therapeutic silencing of miR148a mitigated the progression of atherosclerosis and promoted plaque stability. The antiatherogenic effect of miR-148a antisense therapy is likely mediated by the anti-inflammatory effects observed in macrophages treated with miR-148 LNA and independent of significant changes in circulating low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C).
Collapse
Affiliation(s)
- Noemi Rotllan
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT, USA; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain.
| | - Xinbo Zhang
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Alberto Canfrán-Duque
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Leigh Goedeke
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Raquel Griñán
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma De Barcelona, Barcelona, Spain
| | - Cristina M Ramírez
- Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT, USA; IMDEA Research Institute of Food and Health Sciences, Madrid, Spain
| | - Yajaira Suárez
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
19
|
MicroRNAs in Inflammatory Bowel Disease and Its Complications. Int J Mol Sci 2022; 23:ijms23158751. [PMID: 35955886 PMCID: PMC9369281 DOI: 10.3390/ijms23158751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Inflammatory bowel disease (IBD), classified primarily between Crohn's disease and ulcerative colitis, is a collection of chronic gastrointestinal inflammatory conditions that cause multiple complications because of systemic alterations in the immune response. One major player is microRNA (miRNA), which is found to be associated with multiple pathways in mediating inflammation, especially those of a chronic nature in IBD, as well as irritable bowel syndrome. Although there have been studies linking miRNA alterations in IBD, even differentiating Crohn's disease and ulcerative colitis, this review focuses mainly on how miRNAs cause and mechanistically influence the pathologic complications of IBD. In addition to its role in the well-known progression towards colorectal cancer, we also emphasize how miRNA manifests the many extraintestinal complications in IBD such as cardiovascular diseases; neuropsychiatric conditions such as depression and anxiety disorders; and others, including various musculoskeletal, dermatologic, ocular, and hepatobiliary complications. We conclude through a description of its potential use in bettering diagnostics and the future treatment of IBD and its systemic symptoms.
Collapse
|
20
|
Babaker MA, Aljoud FA, Alkhilaiwi F, Algarni A, Ahmed A, Khan MI, Saadeldin IM, Alzahrani FA. The Therapeutic Potential of Milk Extracellular Vesicles on Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23126812. [PMID: 35743255 PMCID: PMC9224713 DOI: 10.3390/ijms23126812] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer remains one of the leading prevalent cancers in the world and is the fourth most common cause of death from cancer. Unfortunately, the currently utilized chemotherapies fail in selectively targeting cancer cells and cause harm to healthy cells, which results in profound side effects. Researchers are focused on developing anti-cancer targeted medications, which is essential to making them safer, more effective, and more selective and to maximizing their therapeutic benefits. Milk-derived extracellular vesicles (EVs) from camels and cows have attracted much attention as a natural substitute product that effectively suppresses a wide range of tumor cells. This review sheds light on the biogenesis, methods of isolation, characterization, and molecular composition of milk EVs as well as the therapeutic potentials of milk EVs on colorectal cancer.
Collapse
Affiliation(s)
- Manal A. Babaker
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Chemistry, Faculty of Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Fadwa A. Aljoud
- Regenerative Medicine Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (F.A.A.); (F.A.)
| | - Faris Alkhilaiwi
- Regenerative Medicine Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (F.A.A.); (F.A.)
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdulrahman Algarni
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Northern Border University, Arar 73221, Saudi Arabia;
| | - Asif Ahmed
- MirZyme Therapeutics, Innovation Birmingham Campus, Faraday Wharf, Birmingham B7 4BB, UK;
- School of Health Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Mohammad Imran Khan
- Centre of Artificial Intelligence in Precision Medicines (CAIPM), King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Islam M. Saadeldin
- Research Institute of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
- Correspondence: (I.M.S.); (F.A.A.)
| | - Faisal A. Alzahrani
- MirZyme Therapeutics, Innovation Birmingham Campus, Faraday Wharf, Birmingham B7 4BB, UK;
- Centre of Artificial Intelligence in Precision Medicines (CAIPM), King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Embryonic Stem Cells Unit, Department of Biochemistry, Faculty of Science, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (I.M.S.); (F.A.A.)
| |
Collapse
|
21
|
Wang Y, Liu X, Xia P, Li Z, FuChen X, Shen Y, Yu P, Zhang J. The Regulatory Role of MicroRNAs on Phagocytes: A Potential Therapeutic Target for Chronic Diseases. Front Immunol 2022; 13:901166. [PMID: 35634335 PMCID: PMC9130478 DOI: 10.3389/fimmu.2022.901166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/19/2022] [Indexed: 11/27/2022] Open
Abstract
An effective acute inflammatory response results in the elimination of infectious microorganisms, followed by a smooth transition to resolution and repair. During the inflammatory response, neutrophils play a crucial role in antimicrobial defense as the first cells to reach the site of infection damage. However, if the neutrophils that have performed the bactericidal effect are not removed in time, the inflammatory response will not be able to subside. Anti-inflammatory macrophages are the main scavengers of neutrophils and can promote inflammation towards resolution. MicroRNAs (miRNAs) have great potential as clinical targeted therapy and have attracted much attention in recent years. This paper summarizes the involvement of miRNAs in the process of chronic diseases such as atherosclerosis, rheumatoid arthritis and systemic lupus erythematosus by regulating lipid metabolism, cytokine secretion, inflammatory factor synthesis and tissue repair in two types of cells. This will provide a certain reference for miRNA-targeted treatment of chronic diseases.
Collapse
Affiliation(s)
- Yongbo Wang
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Xingyu Liu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Panpan Xia
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Zhangwang Li
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Xinxi FuChen
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Yunfeng Shen
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Peng Yu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| |
Collapse
|
22
|
Zhang Y, Zhang Y, Zhao Y, Wu W, Meng W, Zhou Y, Qiu Y, Li C. Protection against ulcerative colitis and colorectal cancer by evodiamine via anti‑inflammatory effects. Mol Med Rep 2022; 25:188. [PMID: 35362542 PMCID: PMC8985202 DOI: 10.3892/mmr.2022.12704] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/15/2022] [Indexed: 01/08/2023] Open
Abstract
Evodiamine (Evo) is an alkaloid that can be extracted from the berry fruit Evodia rutaecarpa and has been reported to exert various pharmacological effects, such as antidiarrheal, antiemetic and antiulcer effects. In vivo, the potential effects of Evo were investigated in a mouse model of dextran sodium sulfate (DSS)‑induced ulcerative colitis (UC) and in adenomatous polyposis coli (Apc)MinC/Gpt C57BL/6 mice with colorectal cancer (CRC), where the latter harbours a point‑mutation in the Apc gene. Evo suppressed the degree of weight loss and colon shortening induced by DSS, decreased the disease activity index value and ameliorated the pathological alterations in the colon of mice with UC as examined via H&E staining of colon tissues. In addition, Evo decreased the number and size of colonic tumors in ApcMinC/Gpt mice. Proteomics (colon tissues), ELISA (colon tissues and serum) and western blotting (colon tissues) results revealed that Evo inhibited NF‑κB to mediate the levels of various cytokines, including, in the DSS‑induced UC model, IL‑1β, IL‑2, IL‑6, IL‑8, TNF‑α, IFN‑γ (ELISA of colon tissues and serum), NF‑κB, IKKα+β, IκBα, S100a9, TLR4 and MyD88 (western blotting of colon tissues), and, in the colorectal cancer model, IL‑1β, IL‑2, IL‑6, IL‑15, IL‑17, IL‑22, TNF‑α (ELISA of colon tissues and serum), NF‑κB, IKKα+β, IκBα and S100a9 (western blotting of colon tissues), to achieve its anti‑inflammatory and antitumor effects. In vitro, Evo also reduced the viability of the colon cancer cell line SW480, inhibited mitochondrial membrane potential (MMP detection), caused G2/M‑phase arrest (cell cycle detection) and suppressed the translocation of phosphorylated‑NF‑κB from the cytoplasm into the nucleus (immunofluorescence of p‑NF‑κB). Theoretical evidence (MD simulations) suggest that Evo may bind to the ordered domain (α‑helix) of NF‑κB to influence this protein. The protein secondary structure changes were analyzed by the cpptraj module in Amber. In addition, these data provide experimental evidence that Evo may be an effective agent for treating UC and CRC.
Collapse
Affiliation(s)
- Yongfeng Zhang
- School of Life Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yaqin Zhang
- School of Life Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yang Zhao
- Department of Pharmacy, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wanyue Wu
- School of Life Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Weiqi Meng
- School of Life Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yulin Zhou
- School of Life Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ye Qiu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin 130119, P.R. China
| | - Chenliang Li
- School of Life Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
23
|
Koh MZ, Ho WY, Yeap SK, Ali NM, Yong CY, Boo L, Alitheen NB. Exosomal-microRNA transcriptome profiling of Parental and CSC-like MDA-MB-231 cells in response to cisplatin treatment. Pathol Res Pract 2022; 233:153854. [PMID: 35398617 DOI: 10.1016/j.prp.2022.153854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 11/24/2022]
Abstract
Triple negative breast cancer (TNBC) is the most aggressive breast cancer subtype with higher risk of metastasis and cancer reoccurrence. Cisplatin is one of the potential anticancer drugs for treating TNBC, where its effectiveness remains challenged by frequent occurrence of cisplatin resistance. Since acquirement of drug resistance often being associated with presence of cancer stem cells (CSCs), investigation has been conducted, suggesting CSC-like subpopulation to be more resistant to cisplatin than their parental counterpart. On the other hand, plethora evidences showed the transmission of exosomal-miRNAs are capable of promoting drug resistance in breast cancers. In this study, we aim to elucidate the differential expression of exosomal-microRNAs profile and reveal the potential target genes in correlation to cisplatin resistance associated with CSC-like subpopulation by using TNBC cell line (MDA-MB-231). Utilizing next generation sequencing and Nanostring techniques, cisplatin-induced dysregulation of exosomal-miRNAs were evaluated in maximal for CSC-like subpopulation as compared to parental cells. Intriguingly, more oncogenic exosomal-miRNAs profile was detected from treated CSC-like subpopulation, which may correlate to enhancement of drug resistance and maintenance of CSCs. In treated CSC-like subpopulation, unique clusters of exosomal-miRNAs namely miR-221-3p, miR-196a-5p, miR-17-5p and miR-126-3p were predicted to target on six genes (ATXN1, LATS1, GSK3β, ITGA6, JAG1 and MYC), aligned with previous finding which demonstrated dysregulation of these genes in treated CSC-like subpopulation. Our results highlight the potential correlation of exosomal-miRNAs and their target genes as well as novel perspectives of the corresponding pathways that may be essential to contribute to the attenuated cytotoxicity of cisplatin in CSC-like subpopulation.
Collapse
Affiliation(s)
- May Zie Koh
- Faculty of Sciences and Engineering, University of Nottingham Malaysia, Semenyih 43500, Malaysia.
| | - Wan Yong Ho
- Faculty of Sciences and Engineering, University of Nottingham Malaysia, Semenyih 43500, Malaysia.
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang 43900, Malaysia.
| | - Norlaily Mohd Ali
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Cheras 43000, Malaysia.
| | - Chean Yeah Yong
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Lily Boo
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Cheras 43000, Malaysia.
| | - Noorjahan Banu Alitheen
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia.
| |
Collapse
|
24
|
Chiba T, Kooka A, Kowatari K, Yoshizawa M, Chiba N, Takaguri A, Fukushi Y, Hongo F, Sato H, Wada S. Expression profiles of hsa-miR-148a-3p and hsa-miR-125b-5p in human breast milk and infant formulae. Int Breastfeed J 2022; 17:1. [PMID: 34980190 PMCID: PMC8725387 DOI: 10.1186/s13006-021-00436-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Background Milk-derived microRNAs (miRNAs), including hsa-miR-148a-3p (miR-148a) and hsa-miR-125b-5p (miR-125b), have been shown to be beneficial to the gastrointestinal function in infants. Here, we investigated their expression during lactation in humans and determined whether the infant formulae available in Japan contain these miRNAs. Methods Healthy Japanese women (n = 16) who gave birth vaginally or by cesarean section at the Teine Keijinkai Hospital between 1 September 2020, and 31 April 2021 were included in this study. Breast milk was collected by nurses on days 4 or 5 after delivery (hereinafter, transition milk) and on day 30 of postpartum (hereinafter, mature milk). The levels of miR-148a and miR-125b in breastmilk and six commercially available infant formulae were compared and evaluated using quantitative reverse transcription-polymerase chain reaction. Results In all participants, the miR-148a level in mature breastmilk was significantly lower than that in the transition milk. The changes in miR-125b expression during lactation showed similar trends to the changes in miR-148a expression. The miR-148a and miR-125b levels in all analyzed infant formulae were lower than 1/500th and 1/100th of those in mature breastmilk, respectively. Conclusions The levels of both miR-148a and miR-125b in human breast milk decreased on day 30 postpartum compared with those in the transition milk. Additionally, the expression of these miRNAs in infant formulae available in Japan was very low. Further studies with larger populations are required to understand precisely the lactational changes in the expression of miR148a and miR-125b in breast milk.
Collapse
Affiliation(s)
- Takeshi Chiba
- Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 15-4-1, Maeda 7-jo, Teine-ku, Sapporo-shi, Hokkaido, 006-8565, Japan. .,Creation Research Institute of Life Science in KITA-no-DAICHI, Hokkaido University of Science, Sapporo-shi, Hokkaido, Japan.
| | - Aya Kooka
- Department of Pharmacy, Teine Keijinkai Hospital, Sapporo-shi, Hokkaido, Japan
| | - Kiyoko Kowatari
- Department of Nursing, Teine Keijinkai Hospital, Sapporo-shi, Hokkaido, Japan
| | - Megumi Yoshizawa
- Department of Nursing, Teine Keijinkai Hospital, Sapporo-shi, Hokkaido, Japan
| | | | - Akira Takaguri
- Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 15-4-1, Maeda 7-jo, Teine-ku, Sapporo-shi, Hokkaido, 006-8565, Japan.,Creation Research Institute of Life Science in KITA-no-DAICHI, Hokkaido University of Science, Sapporo-shi, Hokkaido, Japan
| | - Yoshiyuki Fukushi
- Department of Obstetrics and Gynecology, Teine Keijinkai Hospital, Sapporo-shi, Hokkaido, Japan
| | - Fuminori Hongo
- Department of Pharmacy, Teine Keijinkai Hospital, Sapporo-shi, Hokkaido, Japan
| | - Hideki Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 15-4-1, Maeda 7-jo, Teine-ku, Sapporo-shi, Hokkaido, 006-8565, Japan
| | - Shinichiro Wada
- Department of Obstetrics and Gynecology, Teine Keijinkai Hospital, Sapporo-shi, Hokkaido, Japan
| |
Collapse
|
25
|
Peng X, Chen G, Lv B, Lv J. MicroRNA-148a/152 cluster restrains tumor stem cell phenotype of colon cancer via modulating CCT6A. Anticancer Drugs 2022; 33:e610-e621. [PMID: 34486532 DOI: 10.1097/cad.0000000000001198] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Accumulating evidence has presented that microRNA-148a/152 (miR-148a/152) acts as the tumor inhibitor in various cancers. In this article, we aimed to probe the inhibition of colon cancer stem cells by miR-148a/152 cluster via regulation of CCT6A. miR-148a/152 and CCT6A expression in colon cancer tissues and cells was detected. The relationship between miR-148a/152 expression and the clinicopathological features of patients with colon cancer was analyzed. Colon cancer stem cells (CD44+/CD133+) were selected and high/low expression of miR-148a/152 plasmids were synthesized to intervene CD44+/CD133+ colon cancer stem cells to investigate the function of miR-148a/152 in invasion, migration, proliferation, colony formation and apoptosis of cells. The growth status of nude mice was observed to verify the in-vitro results. The relationship between miR-148a/152 and CCT6A was analyzed. CCT6A upregulated and miR-148a/152 downregulated in colon cancer tissues. MiR-148a/152 expression was correlated with tumor node metastasis stage, lymph node metastasis and differentiation degree. Upregulated miR-148a/152 depressed CCT6A expression and restrained invasion and migration ability, colony formation and proliferation, induced cell apoptosis, depressed OCT4, Nanog and SOX2 mRNA expression of colon cancer stem cells, and descended tumor weight and volume in nude mice. CCT6A was a target gene of miR-148a/152. Overexpression of CCT6A protected colon cancer stem cells. Functional studies showed that upregulation of miR-148a/152 can suppress the migration, invasion and proliferation of CD44+/CD133+ colon cancer stem cells, advance its apoptosis via inhibition of CCT6A expression.
Collapse
Affiliation(s)
- Xin Peng
- Department of Anorectal Surgery, Xinxiang Central Hospital General Surgery III, Xinxiang City, Henan, China
| | | | | | | |
Collapse
|
26
|
Tang K, Wu Z, Sun M, Huang X, Sun J, Shi J, Wang X, Miao Z, Gao P, Song Y, Wang Z. Elevated MMP10/13 mediated barrier disruption and NF-κB activation aggravate colitis and colon tumorigenesis in both individual or full miR-148/152 family knockout mice. Cancer Lett 2022; 529:53-69. [PMID: 34979166 DOI: 10.1016/j.canlet.2021.12.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/07/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022]
Abstract
Dynamic miRNA alteration is known to occur in colitis-associated colon cancer (CAC), while the molecular mechanisms underpinning how miRNAs modulate the development from chronic inflammation to CAC is lacking. For the first time, we constructed knockout (KO) mice for individual miR-148/152 family members and entire miR-148/152 family. Based on these KO mice, we conduct the first comprehensive analysis of miR-148/152 family, demonstrating that deficiency of any member of miR-148/152 family aggravate colitis and CAC. Loss of individual miR-148/152 family members or full-family enhance MMP10 and MMP13 expression, causing disruption of intestinal barrier and cleaving pro-TNF-α into bioactive TNF-α fragments to activate NF-κB signaling, thereby aggravating colitis. Individual and full-family deletion also increase accumulation of IKKα and IKKβ, resulting in further hyperactivation of NF-κB signaling, exacerbating colitis and CAC. Moreover, blocking NF-κB signaling exerts a restorative effect on colitis and CAC models only in KO mice. Taken together, these findings demonstrate deleting the full miR-148/152 family or individual members exhibit similar effects in colitis and CAC. Mechanically, miR-148/152 family members deficiency in mice elevates MMP10 and MMP13 to accelerate colitis and CAC via disrupting intestinal barrier function and activating NF-κB signaling, suggesting a potential therapeutic strategy for colitis and CAC.
Collapse
Affiliation(s)
- Kaiwen Tang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Zhonghua Wu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Mingwei Sun
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Xuanzhang Huang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Jingxu Sun
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Jinxin Shi
- Department of Gastrointestinal Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Xin Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Zhifeng Miao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Peng Gao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Yongxi Song
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| |
Collapse
|
27
|
Zhu Y, Gu L, Lin X, Zhou X, Lu B, Liu C, Lei C, Zhou F, Zhao Q, Prochownik EV, Li Y. USP19 exacerbates lipogenesis and colorectal carcinogenesis by stabilizing ME1. Cell Rep 2021; 37:110174. [PMID: 34965422 DOI: 10.1016/j.celrep.2021.110174] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 08/24/2021] [Accepted: 12/03/2021] [Indexed: 12/14/2022] Open
Abstract
Lipogenesis plays a critical role in colorectal carcinogenesis, but precisely how remains unclear. Here, we show that ERK2 phosphorylates ME1 at T103, thereby inhibiting its polyubiquitination and proteasomal degradation and enhancing its interaction with USP19. USP19 antagonizes RNF1-mediated ME1 degradation by deubiquitination, which in turn promotes lipid metabolism and NADPH production and suppresses ROS. Meanwhile, ROS dramatically increases PD-L1 mRNA levels through accelerating expression of the transcription factor NRF2. Increased lipid metabolism is correlated with ERK2 activity and colorectal carcinogenesis in human patients. Therefore, the combination of ERK2 inhibitor and anti-PD-L1 antibody significantly inhibits spontaneous and chemically induced colorectal carcinogenesis. Collectively, the USP19-ME1 axis plays a vital role in colorectal carcinogenesis and may also provide a potential therapeutic target.
Collapse
Affiliation(s)
- Yahui Zhu
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Medical Research Institute, Wuhan University, Wuhan 430071, China.
| | - Li Gu
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Xi Lin
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Xinyi Zhou
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Bingjun Lu
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Cheng Liu
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Caoqi Lei
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Feng Zhou
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University School of Medicine, Wuhan 430071, China; Hubei Clinical Center and Key Laboratory for Intestinal and Colorectal Diseases, Wuhan 430071, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University School of Medicine, Wuhan 430071, China; Hubei Clinical Center and Key Laboratory for Intestinal and Colorectal Diseases, Wuhan 430071, China
| | - Edward V Prochownik
- Division of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC, The Department of Microbiology and Molecular Genetics, The Pittsburgh Liver Research Center and The Hillman Cancer Center of UPMC, The University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Youjun Li
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Medical Research Institute, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
28
|
Lu S, Ding X, Wang Y, Hu X, Sun T, Wei M, Wang X, Wu H. The Relationship Between the Network of Non-coding RNAs-Molecular Targets and N6-Methyladenosine Modification in Colorectal Cancer. Front Cell Dev Biol 2021; 9:772542. [PMID: 34938735 PMCID: PMC8685436 DOI: 10.3389/fcell.2021.772542] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/11/2021] [Indexed: 12/11/2022] Open
Abstract
Recent accumulating researches implicate that non-coding RNAs (ncRNAs) including microRNA (miRNA), circular RNA (circRNA), and long non-coding RNA (lncRNAs) play crucial roles in colorectal cancer (CRC) initiation and development. Notably, N6-methyladenosine (m6A) methylation, the critical posttranscriptional modulators, exerts various functions in ncRNA metabolism such as stability and degradation. However, the interaction regulation network among ncRNAs and the interplay with m6A-related regulators has not been well documented, particularly in CRC. Here, we summarize the interaction networks and sub-networks of ncRNAs in CRC based on a data-driven approach from the publications (IF > 6) in the last quinquennium (2016–2021). Further, we extend the regulatory pattern between the core m6A regulators and m6A-related ncRNAs in the context of CRC metastasis and progression. Thus, our review will highlight the clinical potential of ncRNAs and m6A modifiers as promising biomarkers and therapeutic targets for improving the diagnostic precision and treatment of CRC.
Collapse
Affiliation(s)
- Senxu Lu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Xiangyu Ding
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Yuanhe Wang
- Department of Medical Oncology, Cancer Hospital of China Medical University, Shenyang, China
| | - Xiaoyun Hu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Tong Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China.,Shenyang Kangwei Medical Laboratory Analysis Co. Ltd., Liaoning, China
| | - Xiaobin Wang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
29
|
Zhu Y, Gu L, Lin X, Zhang J, Tang Y, Zhou X, Lu B, Lin X, Liu C, Prochownik EV, Li Y. Ceramide-mediated gut dysbiosis enhances cholesterol esterification and promotes colorectal tumorigenesis in mice. JCI Insight 2021; 7:150607. [PMID: 34914638 PMCID: PMC8855812 DOI: 10.1172/jci.insight.150607] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 12/15/2021] [Indexed: 11/18/2022] Open
Abstract
Colorectal cancer (CRC) severely threatens human health and life span. An effective therapeutic strategy has not been established because we do not clearly know its pathogenesis. Here, we report that ceramide and sterol O-acyltransferase 1 (SOAT1) have roles in both spontaneous and chemical-induced intestinal cancers. We first found that miRNA-148a deficiency dramatically increased mouse gut dysbiosis through upregulating ceramide synthase 5 (Cers5) expression, which promoted ceramide synthesis afterward. The newly generated ceramide further promoted both azoxymethane/dextran sodium sulfate–induced (AOM/DSS-induced) and ApcMin/+ spontaneous intestinal tumorigenesis via increasing mouse gut dysbiosis. Meanwhile, increased level of ceramide correlated with the significant enhancements of both β-catenin activity and colorectal tumorigenesis in a TLR4-dependent fashion. Next, we found a direct binding of β-catenin to SOAT1 promoter to activate transcriptional expression of SOAT1, which further induced cholesterol esterification and colorectal tumorigenesis. In human patients with CRC, the same CERS5/TLR4/β-catenin/SOAT1 axis was also found to be dysregulated. Finally, the SOAT1 inhibitor (avasimibe) showed significant levels of therapeutic effects on both AOM/DSS-induced and ApcMin/+ spontaneous intestinal cancer. Our study clarified that ceramide promoted CRC development through increasing gut dysbiosis, further resulting in the increase of cholesterol esterification in a SOAT1-dependent way. Treatment with avasimibe to specifically decrease cholesterol esterification could be considered as a clinical strategy for effective CRC therapy in a future study.
Collapse
Affiliation(s)
- Yahui Zhu
- Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, China
| | - Li Gu
- Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xi Lin
- Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jinmiao Zhang
- Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yi Tang
- Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xinyi Zhou
- Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, China
| | - Bingjun Lu
- Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xingrong Lin
- Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, China
| | - Cheng Liu
- Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, China
| | - Edward V Prochownik
- Division of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, United States of America
| | - Youjun Li
- College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
30
|
Zhang M, Yang D, Yu H, Li Q. MicroRNA-497 inhibits inflammation in DSS-induced IBD model mice and lipopolysaccharide-induced RAW264.7 cells via Wnt/β-catenin pathway. Int Immunopharmacol 2021; 101:108318. [PMID: 34775365 DOI: 10.1016/j.intimp.2021.108318] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/14/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS MicroRNA (miR)-497 is downregulated in several inflammatory diseases, excluding inflammatory bowel disease (IBD). The aim of this study is to evaluate whether miR-497 inhibits gut inflammation both in vivo and in vitro. METHODS The 3% dextran sulphate sodium (DSS) was used to induce experimental colitis, while 1 μg/ml lipopolysaccharide (LPS) was for RAW264.7 cell damage.Colitis severity was evaluated by disease activity index (DAI), colon length, histopathologic injury, etc. The nuclear transcription factor NF-κB activity in colon tissues was also estimated by western blot. Then, the quantitative real-time polymerase chain reaction (qRT-PCR) was performed to evaluate the expression levels of miR-497, pro-inflammatory cytokines and chemokines in colon tissues and RAW264.7 cells. Furthermore, the activity of Wnt/β-catenin pathway was determined by western blot and TOP/FOP-flash reporter assays. RESULTS The level of miR-497 was reduced in inflamed mucosa from IBD patients, mice with colitis and LPS-treated RAW264.7 cells. miR-497 knockout (miR-497 KO) mice were more susceptible to DSS-induced colitis, with increased inflammatory response, compared with control mice. Furthermore, the overexpression of miR-497 reduced the release of pro-inflammatory cytokines and chemokines in LPS-treated RAW264.7 cells. Finally, we found that miR-497 inhibited inflammation through Wnt/β-catenin pathway both in vitro and in vivo. CONCLUSION Our data indicate that miR-497 inhibits inflammation in DSS-induced IBD model mice and LPS-induced RAW264.7 cells by inhibiting the activation of NF-κB pathway and the release of cytokines, indicating that miR-497 plays a key role in the progression of IBD. Thus, therapeutic regulation of miR-497 expression may be beneficial for the treatment of IBD.
Collapse
Affiliation(s)
- Mengjiao Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dongmei Yang
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Honggang Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Qing Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
31
|
Dougherty U, Mustafi R, Zhu H, Zhu X, Deb D, Meredith SC, Ayaloglu-Butun F, Fletcher M, Sanchez A, Pekow J, Deng Z, Amini N, Konda VJ, Rao VL, Sakuraba A, Kwesi A, Kupfer SS, Fichera A, Joseph L, Hart J, He F, He TC, West-Szymanski D, Li YC, Bissonnette M. Upregulation of polycistronic microRNA-143 and microRNA-145 in colonocytes suppresses colitis and inflammation-associated colon cancer. Epigenetics 2021; 16:1317-1334. [PMID: 33356812 PMCID: PMC8813074 DOI: 10.1080/15592294.2020.1863117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 11/08/2020] [Accepted: 12/07/2020] [Indexed: 12/25/2022] Open
Abstract
Because ADAM17 promotes colonic tumorigenesis, we investigated potential miRNAs regulating ADAM17; and examined effects of diet and tumorigenesis on these miRNAs. We also examined pre-miRNA processing and tumour suppressor roles of several of these miRNAs in experimental colon cancer. Using TargetScan, miR-145, miR-148a, and miR-152 were predicted to regulate ADAM17. miR-143 was also investigated as miR-143 and miR-145 are co-transcribed and associated with decreased tumour growth. HCT116 colon cancer cells (CCC) were co-transfected with predicted ADAM17-regulating miRNAs and luciferase reporters controlled by ADAM17-3'UTR. Separately, pre-miR-143 processing by colonic cells was measured. miRNAs were quantified by RT-PCR. Tumours were induced with AOM/DSS in WT and transgenic mice (Tg) expressing pre-miR-143/miR-145 under villin promoter. HCT116 transfection with miR-145, -148a or -152, but not scrambled miRNA inhibited ADAM17 expression and luciferase activity. The latter was suppressed by mutations in ADAM17-3'UTR. Lysates from colonocytes, but not CCC, processed pre-miR-143 and mixing experiments suggested CCC lacked a competency factor. Colonic miR-143, miR-145, miR-148a, and miR-152 were downregulated in tumours and more moderately by feeding mice a Western diet. Tg mice were resistant to DSS colitis and had significantly lower cancer incidence and tumour multiplicity. Tg expression blocked up-regulation of putative targets of miR-143 and miR-145, including ADAM17, K-Ras, XPO5, and SET. miR-145, miR-148a, and miR-152 directly suppress colonocyte ADAM17 and are down-regulated in colon cancer. This is the first direct demonstration of tumour suppressor roles for miR-143 and miR-145 in an in vivo model of colonic tumorigenesis.
Collapse
Affiliation(s)
| | - Reba Mustafi
- Department of Medicine, University of Chicago, Chicago IL, USA
| | - Hongyan Zhu
- Department of Medicine, University of Chicago, Chicago IL, USA
| | - Xiaorong Zhu
- Department of Medicine, University of Chicago, Chicago IL, USA
| | - Dilip Deb
- Department of Medicine, University of Chicago, Chicago IL, USA
| | | | | | | | - Arantxa Sanchez
- Department of Medicine, University of Chicago, Chicago IL, USA
| | - Joel Pekow
- Department of Medicine, University of Chicago, Chicago IL, USA
| | - Zifeng Deng
- Department of Medicine, University of Chicago, Chicago IL, USA
| | - Nader Amini
- Department of Medicine, University of Chicago, Chicago IL, USA
| | - Vani J Konda
- Department of Medicine, Baylor University, Dallas, TX, USA
| | - Vijaya L. Rao
- Department of Medicine, University of Chicago, Chicago IL, USA
| | | | - Akushika Kwesi
- Department of Medicine, University of Chicago, Chicago IL, USA
| | - Sonia S Kupfer
- Department of Medicine, University of Chicago, Chicago IL, USA
| | | | - Loren Joseph
- Departments of Pathology, Beth Israel, Harvard Medical School, Boston, MA, USA
| | - John Hart
- Departments of Pathology, University of Chicago, Chicago IL, USA
| | - Fang He
- Departments of Orthopedics, The University of Chicago, Chicago, IL, USA
| | - Tong-Chuan He
- Departments of Orthopedics, The University of Chicago, Chicago, IL, USA
| | | | - Yan Chun Li
- Department of Medicine, University of Chicago, Chicago IL, USA
| | | |
Collapse
|
32
|
Long noncoding RNA KIF9-AS1 promotes cell apoptosis by targeting the microRNA-148a-3p/suppressor of cytokine signaling axis in inflammatory bowel disease. Eur J Gastroenterol Hepatol 2021; 33:e922-e932. [PMID: 34750325 PMCID: PMC8734634 DOI: 10.1097/meg.0000000000002309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Inflammatory bowel disease (IBD) is a chronic intestinal disease. This study was attempted to investigate the effects of long noncoding RNA KIF9-AS1 (KIF9-AS1) on the development of IBD and its underlying mechanism of action. METHODS Quantitative real time PCR (qRT-PCR) was implemented to examine the expression of KIF9-AS1 and microRNA-148a-3p (miR-148a-3p). The IBD mouse model was induced by dextran sulfate sodium (DSS). The body weight, disease activity index (DAI) score, colon length and histological injury were used to evaluate the colon injury. The levels of proinflammatory cytokines were measured by ELISA. In vitro, IBD was simulated by DSS treatment in colonic cells. Then the apoptosis of colonic cells was detected by flow cytometry assay. Furthermore, a dual-luciferase reporter assay was used to demonstrate the interactions among KIF9-AS1, miR-148a-3p and suppressor of cytokine signaling (SOCS3). RESULTS KIF9-AS1 expression was upregulated in IBD patients, DSS-induced IBD mice and DSS-induced colonic cells, whereas miR-148a-3p expression was downregulated. KIF9-AS1 silencing attenuated the apoptosis of DSS-induced colonic cells in vitro and alleviated colon injury and inflammation in DSS-induced IBD mice in vivo. Additionally, the mechanical experiment confirmed that KIF9-AS1 and SOCS3 were both targeted by miR-148a-3p with the complementary binding sites at 3'UTR. Moreover, miR-148a-3p inhibition or SOCS3 overexpression reversed the suppressive effect of KIF9-AS1 silencing on the apoptosis of DSS-induced colonic cells. CONCLUSION KIF9-AS1 silencing hampered the colon injury and inflammation in DSS-induced IBD mice in vivo, and restrained the apoptosis of DSS-induced colonic cells by regulating the miR-148a-3p/SOCS3 axis in vitro, providing a new therapeutic target for IBD.
Collapse
|
33
|
Zhao S, Zhu L, Feng W, Zhang L, Chen DD, Hu YC, Shen H. MicroRNA-602 prevents the development of inflammatory bowel diseases in a microbiota-dependent manner. Exp Ther Med 2021; 22:1373. [PMID: 34659519 PMCID: PMC8515559 DOI: 10.3892/etm.2021.10808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 03/10/2020] [Indexed: 11/29/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are a group of chronic disorders occurring in the intestinal tract. Previous studies demonstrated that genetics and microbiota play critical roles in the pathogenesis of IBD. Discoveries of genes that may regulate the homeostasis of gut microbiota and pathogenesis of IBD have the potential to provide new therapeutic targets for IBD treatment. The results suggested that the expression level of microRNA (miR)-602 is negatively related to the development of IBD, and that miR-602 overexpression in mice may prevent inflammation and intestinal barrier injuries in dextran sulfate sodium (DSS)-induced IBD mice. It was also found that the microbiota is important for miR-602-mediated prevention of IBD, as the inhibitory effect of miR-602 was lost when the microbiota was depleted using antibiotics. Furthermore, co-housing or adoptive transfer of microbiota from miR-602 could attenuate the pathogenesis of IBD. In addition, it was demonstrated that miR-602 could target tumor necrosis factor receptor-associated factor 6 (TRAF6) in intestinal epithelial cells. Collectively, the present results suggest that miR-602 plays a protective role in DSS-induced IBD by targeting TRAF6 in a microbiota-dependent manner.
Collapse
Affiliation(s)
- Song Zhao
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Lei Zhu
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Wan Feng
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Lu Zhang
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Dan-Dan Chen
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Yu-Cui Hu
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Hong Shen
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
34
|
Mahala S, Rai S, Singh A, Mehrotra A, Pandey HO, Kumar A. Perspectives of bovine and human milk exosomics as health biomarkers for advancing systemic therapeutic potential. FOOD BIOTECHNOL 2021. [DOI: 10.1080/08905436.2021.1979033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Sudarshan Mahala
- Animal Genetics Division, Indian Council of Agricultural Research (ICAR)-indian Veterinary Research Institute, Bareilly, India
| | - Sweta Rai
- Department of Food Science and Technology, College of Agriculture, Gbpuat, Pantnagar US Nagar, Uttarakhand, India
| | - Akansha Singh
- Animal Genetics Division, Indian Council of Agricultural Research (ICAR)-indian Veterinary Research Institute, Bareilly, India
| | - Arnav Mehrotra
- Animal Genetics Division, Indian Council of Agricultural Research (ICAR)-indian Veterinary Research Institute, Bareilly, India
| | - Hari Om Pandey
- Scientist, Livestock Production and Management, Indian Council of Agricultural Research (ICAR)-indian Veterinary Research Institute, Bareilly, India
| | - Amit Kumar
- Animal Genetics Division, Indian Council of Agricultural Research (ICAR)-indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
35
|
Tong L, Hao H, Zhang Z, Lv Y, Liang X, Liu Q, Liu T, Gong P, Zhang L, Cao F, Pastorin G, Lee CN, Chen X, Wang JW, Yi H. Milk-derived extracellular vesicles alleviate ulcerative colitis by regulating the gut immunity and reshaping the gut microbiota. Theranostics 2021; 11:8570-8586. [PMID: 34373759 PMCID: PMC8344018 DOI: 10.7150/thno.62046] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022] Open
Abstract
Rationale: Bovine milk constitutes an essential part of human diet, especially for children, due to its enrichment of various nutrients. We recently developed an effective protocol for the isolation of extracellular vesicles from milk (mEVs) and discovered that mEVs contained large amounts of immune-active proteins and modulated the gut immunity and microbiota in healthy mice. Here, we aimed to explore the therapeutic effects of mEVs on inflammatory bowel disease. Methods: MicroRNAs and protein content in mEVs were analyzed by RNA sequencing and proteomics, respectively, followed by functional annotation. Ulcerative colitis (UC) was induced by feeding mice with dextran sulfate sodium. Intestinal immune cell populations were phenotyped by flow cytometry, and the gut microbiota was analyzed via 16S rRNA sequencing. Results: We showed that abundant proteins and microRNAs in mEVs were involved in the regulation of immune and inflammatory pathways and that oral administration of mEVs prevented colon shortening, reduced intestinal epithelium disruption, inhibited infiltration of inflammatory cells and tissue fibrosis in a mouse UC model. Mechanistically, mEVs attenuated inflammatory response via inhibiting TLR4-NF-κB signaling pathway and NLRP3 inflammasome activation. Furthermore, mEVs were able to correct cytokine production disorder and restore the balance between T helper type 17 (Th17) cells and interleukin-10+Foxp3+ regulatory T (Treg) cells in the inflamed colon. The disturbed gut microbiota in UC was also partially recovered upon treatment with mEVs. The correlation between the gut microbiota and cytokines suggests that mEVs may modulate intestinal immunity via influencing the gut microbiota. Conclusions: These findings reveal that mEVs alleviate colitis by regulating intestinal immune homeostasis via inhibiting TLR4-NF-κB and NLRP3 signaling pathways, restoring Treg/Th17 cell balance, and reshaping the gut microbiota.
Collapse
Affiliation(s)
- Lingjun Tong
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, P. R. China
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117609, Singapore
| | - Haining Hao
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, P. R. China
| | - Zhe Zhang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, P. R. China
| | - Youyou Lv
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, P. R. China
| | - Xi Liang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, P. R. China
| | - Qiqi Liu
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, P. R. China
| | - Tongjie Liu
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, P. R. China
| | - Pimin Gong
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, P. R. China
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, P. R. China
| | - Fangfang Cao
- Departments of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
| | - Giorgia Pastorin
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Chuen Neng Lee
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117609, Singapore
| | - Xiaoyuan Chen
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117609, Singapore
- Departments of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
- Department of Chemical and Biomolecular Engineering, and Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117575, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117609, Singapore
- Cardiovascular Research Institute (CVRI), National University Heart Centre Singapore (NUHCS), 14 Medical Drive, Singapore 117599, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, Singapore 117593, Singapore
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, P. R. China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| |
Collapse
|
36
|
Zhou H, Jia X, Yang F, Shi P. miR-148a-3p suppresses the progression of acute myeloid leukemia via targeting cyclin-dependent kinase 6 (CDK6). Bioengineered 2021; 12:4508-4519. [PMID: 34308752 PMCID: PMC8806774 DOI: 10.1080/21655979.2021.1956400] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
To study the regulation of miR-148a-3p on CDK6 and its mechanism in the progress of acute myeloid leukemia (AML), differential miRNAs were analyzed by bioinformatics, and the miR-148a-3p levels in AML cell lines were detected. Results showed that miR-148a-3p played a crucial role in AML, and the level was lower in AML cells, especially in J111 and KG-1a cells. In J111 and KG-1a cells, the up-regulation of miR-148a-3p mimics blocked the cell growth by arresting cell cycle at G2/M and enhancing cell apoptosis. Transwell and EMT markers detection indicated that miR-148a-3p reduced the cell migration and invasion. Afterward, through bioinformatics analysis, it showed that the CDK6 is one of the direct target genes of miR-148a-3p. DLR assay confirmed the target regulation. CDK6 overexpression reversed the effects of miR-148a-3p on AML cells. Collectively, miR-148a-3p inhibited the process of AML cells through disturbing the CDK-6 expression, implying that the trageting miR-148a-3p might be regarded as effective therapy of AML.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Hematology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaofeng Jia
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Fan Yang
- Department of Hematology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Pengfei Shi
- Department of Hematology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
37
|
Zhou J, Liu J, Gao Y, Shen L, Li S, Chen S. miRNA-Based Potential Biomarkers and New Molecular Insights in Ulcerative Colitis. Front Pharmacol 2021; 12:707776. [PMID: 34305614 PMCID: PMC8298863 DOI: 10.3389/fphar.2021.707776] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic non-specific inflammatory bowel disease, which usually manifests as abdominal pain, diarrhea and hematochezia. The disease often recurs and is difficult to cure. At present, the pathogenesis is not clear, but it is believed that the disease is caused by a complex interaction among immunity, heredity, environment and intestinal microflora disorders. MicroRNA (miRNA) is endogenous single-stranded non-coding RNA of 17–25 nucleotides (nts). They target the 3'Untranslated Region of a target gene and inhibit or degrade the target gene according to the extent of complementary bases. As important gene expression regulators, miRNAs are involved in regulating the expression of most human genes, and play an important role in the pathogenesis of many autoimmune diseases including UC. Studies in recent years have illustrated that abnormal expression of miRNA occurs very early in disease pathogenesis. Moreover, this abnormal expression is highly related to disease activity of UC and colitis-associated cancer, and involves virtually all key UC-related mechanisms, such as immunity and intestinal microbiota dysregulation. Recently, it was discovered that miRNA is highly stable outside the cell in the form of microvesicles, exosomes or apoptotic vesicles, which raises the possibility that miRNA may serve as a novel diagnostic marker for UC. In this review, we summarize the biosynthetic pathway and the function of miRNA, and summarize the usefulness of miRNA for diagnosis, monitoring and prognosis of UC. Then, we described four types of miRNAs involved in regulating the mechanisms of UC occurrence and development: 1) miRNAs are involved in regulating immune cells; 2) affect the intestinal epithelial cells barrier; 3) regulate the homeostasis between gut microbiota and the host; and 4) participate in the formation of tumor in UC. Altogether, we aim to emphasize the close relationship between miRNA and UC as well as to propose that the field has value for developing potential biomarkers as well as therapeutic targets for UC.
Collapse
Affiliation(s)
- Jing Zhou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jialing Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yangyang Gao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liwei Shen
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sheng Li
- Center for Health Policy & Drug Affairs Operation Management, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Simin Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
38
|
Melnik BC, Stremmel W, Weiskirchen R, John SM, Schmitz G. Exosome-Derived MicroRNAs of Human Milk and Their Effects on Infant Health and Development. Biomolecules 2021; 11:biom11060851. [PMID: 34200323 PMCID: PMC8228670 DOI: 10.3390/biom11060851] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022] Open
Abstract
Multiple biologically active components of human milk support infant growth, health and development. Milk provides a wide spectrum of mammary epithelial cell-derived extracellular vesicles (MEVs) for the infant. Although the whole spectrum of MEVs appears to be of functional importance for the growing infant, the majority of recent studies report on the MEV subfraction of milk exosomes (MEX) and their miRNA cargo, which are in the focus of this review. MEX and the dominant miRNA-148a play a key role in intestinal maturation, barrier function and suppression of nuclear factor-κB (NF-κB) signaling and may thus be helpful for the prevention and treatment of necrotizing enterocolitis. MEX and their miRNAs reach the systemic circulation and may impact epigenetic programming of various organs including the liver, thymus, brain, pancreatic islets, beige, brown and white adipose tissue as well as bones. Translational evidence indicates that MEX and their miRNAs control the expression of global cellular regulators such as DNA methyltransferase 1-which is important for the up-regulation of developmental genes including insulin, insulin-like growth factor-1, α-synuclein and forkhead box P3-and receptor-interacting protein 140, which is important for the regulation of multiple nuclear receptors. MEX-derived miRNA-148a and miRNA-30b may stimulate the expression of uncoupling protein 1, the key inducer of thermogenesis converting white into beige/brown adipose tissue. MEX have to be considered as signalosomes derived from the maternal lactation genome emitted to promote growth, maturation, immunological and metabolic programming of the offspring. Deeper insights into milk's molecular biology allow the conclusion that infants are both "breast-fed" and "breast-programmed". In this regard, MEX miRNA-deficient artificial formula is not an adequate substitute for breastfeeding, the birthright of all mammals.
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany;
- Correspondence: ; Tel.: +49-5241-988060
| | - Wolfgang Stremmel
- Private Praxis for Internal Medicine, Beethovenstraße 2, D-76530 Baden-Baden, Germany;
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany;
| | - Swen Malte John
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany;
- Institute for Interdisciplinary Dermatological Prevention and Rehabilitation (iDerm), University of Osnabrück, D-49076 Osnabrück, Germany
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, University of Regensburg, D-93053 Regensburg, Germany;
| |
Collapse
|
39
|
Hammad A, Zheng ZH, Namani A, Elshaer M, Wang XJ, Tang X. Transcriptome analysis of potential candidate genes and molecular pathways in colitis-associated colorectal cancer of Mkp-1-deficient mice. BMC Cancer 2021; 21:607. [PMID: 34034704 PMCID: PMC8152130 DOI: 10.1186/s12885-021-08200-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The nuclear phosphatase mitogen-activate protein kinase phosphatase-1 (MKP-1) is a key negative regulator of the innate immune response through the regulation of the biosynthesis of proinflammatory cytokines. In colorectal cancer (CRC), which is induced mainly by chronic inflammation, Mkp-1 overexpression was found in addition to disturbances in Mkp-1 functions, which may play a role in cancer development in different types of tumors. However, the potential molecular mechanisms by which Mkp-1 influences CRC development is not clear. Here, we performed global gene expression profiling of Mkp-1 KO mice using RNA sequencing (RNA-seq) to explore the role of Mkp-1 in CRC progression using transcriptome analysis. METHODS Azoxymethane/dextran sodium sulfate (AOM/DSS) mouse models were used to examine the most dramatic molecular and signaling changes that occur during different phases of CRC development in wild-type mice and Mkp-1 KO mice. Comprehensive bioinformatics analyses were used to elucidate the molecular processes regulated by Mkp-1. Differentially expressed genes (DEGs) were identified and functionally analyzed by Gene Ontology (GO), Kyoto Enrichment of Genes and Genomes (KEGG). Then, protein-protein interaction (PPI) network analysis was conducted using the STRING database and Cytoscape software. RESULTS Persistent DEGs were different in adenoma and carcinoma stage (238 & 251, respectively) and in WT and MKp-1 KO mice (221& 196, respectively). Mkp-1 KO modulated key molecular processes typically activated in cancer, in particular, cell adhesion, ion transport, extracellular matrix organization, response to drug, response to hypoxia, and response to toxic substance. It was obvious that these pathways are closely associated with cancer development and metastasis. From the PPI network analyses, nine hub genes associated with CRC were identified. CONCLUSION These findings suggest that MKp-1 and its hub genes may play a critical role in cancer development, prognosis, and determining treatment outcomes. We provide clues to build a potential link between Mkp-1 and colitis-associated tumorigenesis and identify areas requiring further investigation.
Collapse
Affiliation(s)
- Ahmed Hammad
- Department of Biochemistry and Department of Thoracic Surgery of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Zhao-Hong Zheng
- Department of Pharmacology, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Akhileshwar Namani
- Department of Biochemistry and Department of Thoracic Surgery of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China.,Present address: Department of Biotechnology, Institute of Science, GITAM, Visakhapatnam, 530045, India
| | - Mohamed Elshaer
- Department of Biochemistry and Department of Thoracic Surgery of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Xiu Jun Wang
- Department of Pharmacology, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Xiuwen Tang
- Department of Biochemistry and Department of Thoracic Surgery of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China.
| |
Collapse
|
40
|
MicroRNA: Could It Play a Role in Bovine Endometritis? Inflammation 2021; 44:1683-1695. [PMID: 33907916 DOI: 10.1007/s10753-021-01458-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/15/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Endometritis in dairy cows is a major economic problem worldwide; without advances in lifestyle management and drug treatment, it causes high morbidity and death. Micro ribonucleic acid (miRNAs) these days is seen as an important part of gene control networks. It is a class of small nucleotides 20-25, single-stranded RNA molecules. In endometritis, the inflammatory response caused by the gram-negative bacteria Escherichia coli (E. coli) alters the expression of miRNA which can regulate the innate immune system. This manuscript reviews (1) the interaction of miRNAs with the signaling of NF-κB and dysregulation of miRNAs and NF-κB activity in endometritis and (2) the activity of miR-let-7c, miR-148a, and miR-488 in NF-κB activation and their effect on endometritis. Cows with reduced immunity are more vulnerable to transition diseases, such as endometritis. During post-partum, cows undergo stress, metabolic disorders, hormonal imbalance, negative energy balance, and changes in diet. One of the many categories of regulatory molecules, which explain its natural function and pathological impact on NF-κB dysregulation, is important to inform the complexity of the immune system and to develop treatments for endometritis. It shows that miRNAs could have multiple applications in veterinary medicine. Nevertheless, a comprehensive study of is essential which should be aimed at exploring the role of microRNA at physiological level and its effect due to dysfunction and dysregulation.
Collapse
|
41
|
Forsythoside A protects against lipopolysaccharide-induced acute lung injury through up-regulating microRNA-124. Clin Sci (Lond) 2021; 134:2549-2563. [PMID: 32975280 DOI: 10.1042/cs20200598] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 12/22/2022]
Abstract
Acute lung injury (ALI) is a life-threatening disease without effective pharmacotherapies, so far. Forsythia suspensa is frequently used in the treatment of lung infection in traditional Chinese medicine. In search for natural anti-inflammatory components, the activity and the underlying mechanism of Forsythoside A (FA) from Forsythia suspensa were explored. In the present paper, BALB/c mice and murine RAW 264.7 cells were stimulated by LPS to establish inflammation models. Data showed that FA inhibited the production of TNF-α and IL-6 and the activation of STAT3 in LPS-stimulated RAW 264.7 cells. Additionally, FA increased the expression level of microRNA-124 (miR-124). Furthermore, the inhibitory effect of FA on STAT3 was counteracted by the treatment of miR-124 inhibitor. Critically, FA ameliorated LPS-induced ALI pathological damage, the increase in lung water content and inflammatory cytokine, cells infiltration and activation of the STAT3 signaling pathway in BALB/c mice. Meanwhile, FA up-regulated the expression of miR-124 in lungs, while administration with miR-124 inhibitor attenuated the protective effects of FA. Our results indicated that FA alleviates LPS-induced inflammation through up-regulating miR-124 in vitro and in vivo. These findings indicate the potential of FA and miR-124 in the treatment of ALI.
Collapse
|
42
|
Huang W, Huang F, Zhang R, Luo H. LncRNA Neat1 expedites the progression of liver fibrosis in mice through targeting miR-148a-3p and miR-22-3p to upregulate Cyth3. Cell Cycle 2021; 20:490-507. [PMID: 33550894 DOI: 10.1080/15384101.2021.1875665] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Liver fibrosis is a common response to chronic liver injury, ultimately leading to cirrhosis. The activation of hepatic stellate cells (HSCs) plays a dominant role in liver fibrosis. The regulatory roles of long noncoding RNAs (lncRNAs) in multiple human diseases have been observed. This study was dedicated to investigating the regulatory effects of the lncRNA nuclear paraspeckle assembly transcript 1 (Neat1) on liver fibrosis and HSC activation. Upregulation of Neat1 and cytohesin 3 (Cyth3) and downregulation of miR-148a-3p and miR-22-3p were observed in mouse fibrotic liver tissues. Knockdown of Neat1 or Cyth3 attenuated liver fibrosis and collagen deposition in vivo and the activation of HSCs in vitro. An miR-148a-3p and miR-22-3p inhibitor facilitated HSC activation and collagen fiber expression. Neat1 directly targeted miR-148a-3p and miR-22-3p to modulate Cyth3 expression. Knockdown of Neat1 inhibited Cyth3 expression via the competing endogenous RNA (ceRNA) mechanism of sponging miR-148a-3p and miR-22-3p to regulate liver fibrosis and HSC activation. The ceRNA regulatory network may promote a better understanding of liver fibrogenesis, contribute to an original agreement of liver fibrosis etiopathogenesis and provide insights into the development of a novel domain of lncRNA-directed therapy against liver fibrosis.
Collapse
Affiliation(s)
- Wei Huang
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Feizhou Huang
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Rui Zhang
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hongwu Luo
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
43
|
Li C, Xu X, Wei S, Jiang P, Xue L, Wang J. Tumor-associated macrophages: potential therapeutic strategies and future prospects in cancer. J Immunother Cancer 2021; 9:jitc-2020-001341. [PMID: 33504575 PMCID: PMC8728363 DOI: 10.1136/jitc-2020-001341] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2020] [Indexed: 12/11/2022] Open
Abstract
Macrophages are the most important phagocytes in vivo. However, the tumor microenvironment can affect the function and polarization of macrophages and form tumor-associated macrophages (TAMs). Usually, the abundance of TAMs in tumors is closely associated with poor prognosis. Preclinical studies have identified important pathways regulating the infiltration and polarization of TAMs during tumor progression. Furthermore, potential therapeutic strategies targeting TAMs in tumors have been studied, including inhibition of macrophage recruitment to tumors, functional repolarization of TAMs toward an antitumor phenotype, and other therapeutic strategies that elicit macrophage-mediated extracellular phagocytosis and intracellular destruction of cancer cells. Therefore, with the increasing impact of tumor immunotherapy, new antitumor strategies to target TAMs are now being discussed.
Collapse
Affiliation(s)
- Chunxiao Li
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Xiaofei Xu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Shuhua Wei
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Ping Jiang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Lixiang Xue
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | | | | |
Collapse
|
44
|
Gebremedhn S, Ali A, Hossain M, Hoelker M, Salilew-Wondim D, Anthony RV, Tesfaye D. MicroRNA-Mediated Gene Regulatory Mechanisms in Mammalian Female Reproductive Health. Int J Mol Sci 2021; 22:938. [PMID: 33477832 PMCID: PMC7832875 DOI: 10.3390/ijms22020938] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 12/12/2022] Open
Abstract
Mammalian reproductive health affects the entire reproductive cycle starting with the ovarian function through implantation and fetal growth. Various environmental and physiological factors contribute to disturbed reproductive health status leading to infertility problems in mammalian species. In the last couple of decades a significant number of studies have been conducted to investigate the transcriptome of reproductive tissues and organs in relation to the various reproductive health issues including endometritis, polycystic ovarian syndrome (PCOS), intrauterine growth restriction (IUGR), preeclampsia, and various age-associated reproductive disorders. Among others, the post-transcriptional regulation of genes by small noncoding miRNAs contributes to the observed transcriptome dysregulation associated with reproductive pathophysiological conditions. MicroRNAs as a class of non-coding RNAs are also known to be involved in various pathophysiological conditions either in cellular cytoplasm or they can be released to the extracellular fluid via membrane-bounded extracellular vesicles and proteins. The present review summarizes the cellular and extracellular miRNAs and their association with the etiology of major reproductive pathologies including PCOS, endometritis, IUGR and age-associated disorders in various mammalian species.
Collapse
Affiliation(s)
- Samuel Gebremedhn
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, 3051 Rampart Rd, Fort Collins, CO 80523, USA; (S.G.); (A.A.); (R.V.A.)
| | - Asghar Ali
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, 3051 Rampart Rd, Fort Collins, CO 80523, USA; (S.G.); (A.A.); (R.V.A.)
| | - Munir Hossain
- Department of Animal Breeding and Genetics, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Michael Hoelker
- Institute of Animal Sciences, Department of Animal Breeding and Husbandry, University of Bonn, 53115 Bonn, Germany; (M.H.); (D.S.-W.)
| | - Dessie Salilew-Wondim
- Institute of Animal Sciences, Department of Animal Breeding and Husbandry, University of Bonn, 53115 Bonn, Germany; (M.H.); (D.S.-W.)
| | - Russell V. Anthony
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, 3051 Rampart Rd, Fort Collins, CO 80523, USA; (S.G.); (A.A.); (R.V.A.)
| | - Dawit Tesfaye
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, 3051 Rampart Rd, Fort Collins, CO 80523, USA; (S.G.); (A.A.); (R.V.A.)
| |
Collapse
|
45
|
Beversdorf DQ, Sohl K, Levitskiy D, Tennant P, Goin-Kochel RP, Shaffer RC, Confair A, Middleton FA, Hicks SD. Saliva RNA Biomarkers of Gastrointestinal Dysfunction in Children With Autism and Neurodevelopmental Disorders: Potential Implications for Precision Medicine. Front Psychiatry 2021; 12:824933. [PMID: 35126215 PMCID: PMC8811462 DOI: 10.3389/fpsyt.2021.824933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/24/2021] [Indexed: 01/01/2023] Open
Abstract
Gastrointestinal (GI) disorders are common in children with neurodevelopmental disorders such as autism spectrum disorder (ASD). A limited understanding of the biologic factors that predispose this population to GI disorders has prevented development of individualized therapies to address this important medical issue. The goal of the current study was to determine if elements of the salivary micro-transcriptome could provide insight into the biologic perturbations unique to children with ASD-related GI disturbance. This cohort study included 898 children (ages 18-73 months) with ASD, non-ASD developmental delay (DD), or typical development (TD). The saliva micro-transcriptome of each child was assessed with RNA-seq. Outputs were aligned to microbial and human databases. A Kruskal Wallis analysis of variance (ANOVA) was used to compare levels of 1821 micro-transcriptome features across neurodevelopmental status (ASD, DD, or TD) and GI presence or absence. An ANOVA was also used to compare micro-transcriptome levels among GI sub-groups (constipation, reflux, food intolerance, other GI condition, no GI condition), and to identify RNAs that differed among children taking three common GI medications (probiotics, reflux medication, or laxatives). Relationships between features identified in ANOVA testing were examined for associations with scores on the Autism Diagnostic Observation Schedule, 2nd Edition (ADOS-2) and the Vineland Adaptive Behavior Scales. GI disturbance rates were higher among children with ASD than peers with TD but were similar to those with DD. Five piwi-interacting RNAs and three microbial RNAs displayed an interaction between developmental status and GI disturbance. Fifty-seven salivary RNAs differed between GI sub-groups-with microRNA differences between food intolerance and reflux groups being most common. Twelve microRNAs displayed an effect of GI disturbance and showed association with GI medication uses and measures of behavior. These 12 microRNAs displayed enrichment for 13 physiologic pathways, including metabolism/digestion long-term depression, and neurobiology of addiction. This study identifies salivary micro-transcriptome features with differential expression among children with ASD-related GI disturbance. A subset of the RNAs displays relationships with treatment modality and are associated with autistic behaviors. The pathobiologic targets of the micro-transcriptome markers may serve as targets for individualized therapeutic interventions aimed at easing pain and behavioral difficulties seen in ASD-related GI disturbance.
Collapse
Affiliation(s)
| | - Kristin Sohl
- University of Missouri, Columbia, MO, United States
| | | | | | - Robin P Goin-Kochel
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States.,Meyer Center for Developmental Pediatrics and Autism, Texas Children's Hospital, Houston, TX, United States
| | - Rebecca C Shaffer
- Cincinnati Children's Hospital, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Alexandra Confair
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, United States
| | - Frank A Middleton
- Department of Neuroscience and Physiology, The State University of New York, Upstate Medical University, Syracuse, NY, United States
| | - Steven D Hicks
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
46
|
Liu XH, Wu XR, Lan N, Zheng XB, Zhou C, Hu T, Chen YF, Cai ZR, Chen ZX, Lan P, Wu XJ. CD73 promotes colitis-associated tumorigenesis in mice. Oncol Lett 2020; 20:1221-1230. [PMID: 32724362 PMCID: PMC7377052 DOI: 10.3892/ol.2020.11670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 04/29/2020] [Indexed: 12/26/2022] Open
Abstract
Patients with inflammatory bowel disease (IBD) are at a higher risk of developing colitis-associated colorectal cancer. The aim of the present study was to investigate the role of CD73 in IBD-associated tumorigenesis. A mouse model of colitis-associated tumorigenesis (CAT) induced by azoxymethane and dextran sulfate sodium was successfully constructed. Model mice were injected with CD73 inhibitor or adenosine receptor agonist. Colon length, body weight loss and tumor formation were assessed macroscopically. Inflammatory cytokine measurement and RNA sequencing on colon tissues were performed. Inhibition of CD73 by adenosine 5′-(α,β-methylene) diphosphate (APCP) suppressed the severity of CAT with attenuated weight loss, longer colons, lower tumor number and smaller tumor size compared with the model group. Activation of adenosine receptors using 1-(6-amino-9H-purin-9-yl)-1-deoxy-N-ethyl-β-D-ribofuranuronamide (NECA) exacerbated CAT. Histological assessment indicated that inhibition of CD73 reduced, while activation of adenosine receptors exacerbated, the histological damage of the colon. Increased expression of pro-inflammatory cytokines (tumor necrosis factor-α and interleukin-6) in colonic tissue was detected in the NECA group. According to RNA sequencing results, potential oncogenes such as arachidonate 15-lipoxygenase (ALOX15), Bcl-2-like protein 15 (Bcl2l15) and N-acetylaspartate synthetase (Nat8l) were downregulated in the APCP group and upregulated in the NECA group compared with the model group. Therefore, inhibition of CD73 attenuated IBD-associated tumorigenesis, while activation of adenosine receptors exacerbated tumorigenesis in a C57BL/6J mouse model. This effect may be associated with the expression of pro-inflammatory cytokines and the regulation of ALOX15, Bcl2l15 and Nat8l.
Collapse
Affiliation(s)
- Xuan-Hui Liu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China.,Department of Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Xian-Rui Wu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China.,Department of Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, Guangdong 510655, P.R. China
| | - Nan Lan
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China.,Department of Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Xiao-Bin Zheng
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China.,Department of Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Chi Zhou
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China.,Department of Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Tuo Hu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China.,Department of Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Yu-Feng Chen
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China.,Department of Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Ze-Rong Cai
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China.,Department of Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Ze-Xian Chen
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China.,Department of Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Ping Lan
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China.,Department of Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Xiao-Jian Wu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China.,Department of Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| |
Collapse
|
47
|
Gurbuz V, Kiliccioglu I, Dikmen AU, Bilen CY, Sozen S, Konac E. Comparative analysis of epi-miRNA expression levels in local/locally advanced and metastatic prostate cancer patients. Gene 2020; 758:144963. [PMID: 32683077 DOI: 10.1016/j.gene.2020.144963] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/10/2020] [Accepted: 07/13/2020] [Indexed: 12/24/2022]
Abstract
Abnormal expression of enzymes involved in epigenetic mechanisms, such as DNA methyl transferases, can trigger large chaos in cellular gene expression networks and eventually lead to cancer progression. In our study, which is a pioneer in the literature that clinicopathologically evaluates the expression of 30 epi-miRNAs in prostate cancer (PCa), we investigated which of the new miRNA class epi-miRNAs could be an effective biomarker in the diagnosis and progression of PCa. In this study, the expression levels of 30 epi-miRNAs in whole blood samples from 25 control, 25 PCa and 40 metastatic PCa patients were investigated by the Quantitative Real-Time PCR method. Then, promoter methylation levels of 11 epi-miRNAs, whose expression levels were found to be significantly higher, were examined by methylation-specific qPCR method. The correlations between miRNA expression levels and clinicopathological parameters (Gleason Score (GS), PSA levels, TNM Staging) in different stages of PCa groups as well as disease-specific expression levels were examined. We found a hypomethylation in the promoter regions of miRNAs that showed a direct proportional increase with PSA levels (miR-34b/c, miR-148a, miR-152), GS's (miR-34a-5p, miR-34b/c, miR-101-2, miR-126, miR-148a, miR- 152, miR-185-5p) and T staging (miR-34a-5p, miR-34b/c, miR-101-2, miR-126, miR-140, miR-148a, miR-152, miR-185-5p) (p < 0.05). When miR-200a/b was evaluated according to clinicopathological parameters, it acted as an onco-miR in local/local advanced PCa and as a tumor-suppressor-miR in metastatic stage. This study is novel in the sense that our findings draw attention to the important role of miRNAs as diagnostic and prognostic biomarkers in PCa.
Collapse
Affiliation(s)
- Venhar Gurbuz
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Besevler 06510, Ankara, Turkey
| | - Ilker Kiliccioglu
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Besevler 06510, Ankara, Turkey; Department of Medical Biology, Faculty of Medicine, Duzce University, 81620 Duzce, Turkey
| | - Asiye Ugras Dikmen
- Department of Public Health, Faculty of Medicine, Gazi University, Besevler 06510, Ankara, Turkey
| | - Cenk Y Bilen
- Department of Urology, Faculty of Medicine, Hacettepe University, Sıhhiye 06100, Ankara, Turkey
| | - Sinan Sozen
- Department of Urology, Faculty of Medicine, Gazi University, Besevler 06510, Ankara, Turkey
| | - Ece Konac
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Besevler 06510, Ankara, Turkey.
| |
Collapse
|
48
|
Meng Y, Li J, Ye Z, Yin Z, Sun Q, Liao Z, Li G, Deng J, Liu L, Yu Y, Wu L, Zhou H, Shen N. MicroRNA-148a facilitates inflammatory dendritic cell differentiation and autoimmunity by targeting MAFB. JCI Insight 2020; 5:133721. [PMID: 32213710 DOI: 10.1172/jci.insight.133721] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/18/2020] [Indexed: 01/11/2023] Open
Abstract
Monocyte-derived DCs (moDCs) have been implicated in the pathogenesis of autoimmunity, but the molecular pathways determining the differentiation potential of these cells remain unclear. Here, we report that microRNA-148a (miR-148a) serves as a critical regulator for moDC differentiation. First, miR-148a deficiency impaired the moDC development in vitro and in vivo. A mechanism study showed that MAFB, a transcription factor that hampers moDC differentiation, was a direct target of miR-148a. In addition, a promoter study identified that miR-148a could be transcriptionally induced by PU.1, which is crucial for moDC generation. miR-148a ablation eliminated the inhibition of PU.1 on MAFB. Furthermore, we found that miR-148a increased in monocytes from patients with psoriasis, and miR-148a deficiency or intradermal injection of antagomir-148a immensely alleviated the development of psoriasis-like symptoms in a psoriasis-like mouse model. Therefore, these results identify a pivotal role for the PU.1-miR-148a-MAFB circuit in moDC differentiation and suggest a potential therapeutic avenue for autoimmunity.
Collapse
Affiliation(s)
- Yao Meng
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Jun Li
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Zhizhong Ye
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Zhihua Yin
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Qing Sun
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Zhuojun Liao
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Guanhua Li
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Jun Deng
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Lu Liu
- Institute of Dermatology and Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Yuqing Yu
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Li Wu
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University School of Medicine, Beijing, China
| | - Haibo Zhou
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China.,Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Nan Shen
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China.,Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China.,Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, SJTUSM, Shanghai, China
| |
Collapse
|
49
|
Gu L, Zhu Y, Lin X, Tan X, Lu B, Li Y. Stabilization of FASN by ACAT1-mediated GNPAT acetylation promotes lipid metabolism and hepatocarcinogenesis. Oncogene 2020; 39:2437-2449. [PMID: 31974474 DOI: 10.1038/s41388-020-1156-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 12/24/2019] [Accepted: 01/10/2020] [Indexed: 11/09/2022]
Abstract
Metabolic alteration for adaptation of the local environment has been recognized as a hallmark of cancer. GNPAT dysregulation has been implicated in hepatocellular carcinoma (HCC). However, the precise posttranslational regulation of GNPAT is still undiscovered. Here we show that ACAT1 is upregulated in response to extra palmitic acid (PA). ACAT1 acetylates GNPAT at K128, which represses TRIM21-mediated GNPAT ubiquitination and degradation. Conversely, GNPAT deacetylation by SIRT4 antagonizes ACAT1's function. GNPAT represses TRIM21-mediated FASN degradation and promotes lipid metabolism. Furthermore, shRNA-mediated ACAT1 ablation and acetylation deficiency of GNPAT repress lipid metabolism and tumor progression in xenograft and DEN/CCl4-induced HCC. Otherwise, ACAT1 inhibitor combination with sorafenib enormously retards tumor formation in mice. Collectively, we demonstrate that stabilization of FASN by ACAT1-mediated GNPAT acetylation plays a critical role in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Li Gu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China. .,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China.
| | - Yahui Zhu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Xi Lin
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Xingyu Tan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Bingjun Lu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Youjun Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China. .,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
50
|
Ewing LE, Miousse IR, Pathak R, Skinner CM, Boerma M, Hauer-Jensen M, Koturbash I. NZO/HlLtJ as a novel model for the studies on the role of metabolic syndrome in acute radiation toxicity. Int J Radiat Biol 2020; 96:93-99. [PMID: 30561233 PMCID: PMC6581619 DOI: 10.1080/09553002.2018.1547437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/22/2022]
Abstract
Purpose: Growing rates of metabolic syndrome and associated obesity warrant the development of appropriate animal models for better understanding of how those conditions may affect sensitivity to IR exposure.Materials and methods: We subjected male NZO/HlLtJ mice, a strain prone to spontaneous obesity and diabetes, to 0, 5.5, 6.37, 7.4 or 8.5 Gy (137Cs) of total body irradiation (TBI). Mice were monitored for 30 days, after which proximal jejunum and colon tissues were collected for further histological and molecular analysis.Results: Obese NZO/HlLtJ male mice are characterized by their lower sensitivity to IR at doses of 6.37 Gy and under, compared to other strains. Further escalation of the dose, however, results in a steep survival curve, reaching LD100/30 values at a dose of 8.5 Gy. Alterations in the expression of various tight junction-related proteins coupled with activation of inflammatory responses and cell death were the main contributors to the gastrointestinal syndrome.Conclusions: We demonstrate that metabolic syndrome with exhibited hyperglycemia but without alterations to the microvasculature is not a pre-requisite of the increased sensitivity to TBI at high doses. Our studies indicate the potential of NZO/HlLtJ mice for the studies on the role of metabolic syndrome in acute radiation toxicity.
Collapse
Affiliation(s)
- Laura E. Ewing
- Department of Environmental and Occupational Health, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, United States of America
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, United States of America
| | - Isabelle R. Miousse
- Department of Environmental and Occupational Health, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, United States of America
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, United States of America
| | - Rupak Pathak
- Division of Radiation Health, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, United States of America
| | - Charles M. Skinner
- Department of Environmental and Occupational Health, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, United States of America
| | - Marjan Boerma
- Division of Radiation Health, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, United States of America
| | - Martin Hauer-Jensen
- Division of Radiation Health, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, United States of America
| | - Igor Koturbash
- Department of Environmental and Occupational Health, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, United States of America
| |
Collapse
|