1
|
Sousa JA, Callejas BE, Wang A, Higgins E, Herik A, Andonian N, Yousuf M, Colarusso P, Raman M, McKay DM. GPx1 deficiency confers increased susceptibility to ferroptosis in macrophages from individuals with active Crohn's disease. Cell Death Dis 2024; 15:903. [PMID: 39695083 DOI: 10.1038/s41419-024-07289-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024]
Abstract
Intestinal cell death is a defining feature of Crohn's disease (CD), a major form of inflammatory bowel disease. The focus on this aspect of enteric inflammation has mainly been on epithelial cells, while other cell types such as stromal and myeloid cells have received less attention. Hypothesising that decreased macrophage viability in an oxidative environment could be a contributing factor to the pathophysiology of CD, we found that monocyte-derived macrophages from individuals with active CD (but not those in clinical disease remission) have increased sensitivity to cell death induced by H2O2. Molecular biology and pharmacological studies ruled out apoptosis and necroptosis, while increased lipid peroxidation and surface expression of the transferrin receptor implicated ferroptosis as the mechanism of the H2O2-induced cell death: this was supported by suppression of H2O2-cytotoxicity by liproxstatin-1, a pharmacological inhibitor of ferroptosis. Selenoproteins are important antioxidants, and selenium deficiency can be a feature of CD. Despite normal dietary intake of selenium, monocyte-derived macrophages and intestinal macrophages in individuals with CD had decreased protein and/or mRNA expression of the selenoprotein, glutathione peroxidase (GPx)-1. Knockdown of GPx1 in macrophages from healthy volunteers resulted in increased H2O2-induced cell death reminiscent of that observed with macrophages from CD. In summary, monocyte-derived macrophages from individuals with CD have increased susceptibility to H2O2-induced ferroptosis cell death, that may be facilitated, at least in part, by reduced expression of the antioxidant GPx1. We suggest that reduced GPx1 in monocytes recruited to the gut and intestinal macrophages renders these cells vulnerable to reactive oxygen species-evoked ferroptosis cell death and that unraveling the participation of this pathway in Crohn's disease may reveal novel therapeutic approaches to this chronic condition.
Collapse
Affiliation(s)
- James A Sousa
- Gastrointestinal Research Group, Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Live Cell Imaging Laboratory, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Blanca E Callejas
- Gastrointestinal Research Group, Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Arthur Wang
- Gastrointestinal Research Group, Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Eve Higgins
- Gastrointestinal Research Group, Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Aydin Herik
- Gastrointestinal Research Group, Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Natalie Andonian
- Gastrointestinal Research Group, Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Munazza Yousuf
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Pina Colarusso
- Live Cell Imaging Laboratory, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Maitreyi Raman
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Department of Community Health Science, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Derek M McKay
- Gastrointestinal Research Group, Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
2
|
Shu J, Ge Y, Wu Y. Causal role of immune cells in IgA nephropathy: a mendelian randomization study. Ren Fail 2024; 46:2381593. [PMID: 39039855 PMCID: PMC11268262 DOI: 10.1080/0886022x.2024.2381593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/13/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND Previous observational studies have shown that immune cells play an important role in IgA nephropathy. However, the specific causal relationship between the two is inconsistent. METHODS We used a two-sample mendelian randomization(MR) analysis to investigate the causal association between 731 immune cell signatures and IgA nephropathy in this study. Based on published GWAS data, immune cells were characterized by four immune types absolute cell (AC) counts, median fluorescence intensity (MFI), morphological parameters (MP), relative cell (RC) counts. Meanwhile, heterogeneity test, horizontal pleiotropy and sensitivity test were used to evaluate the robustness and reliability of the results. RESULTS An important causal association was achieved for 14 RC traits/IgA nephropathy, 3 AC traits/IgA nephropathy, 10 MFI traits/IgA nephropathy, and 1 MP trait/IgA nephropathy. However, after false discovery rate (FDR) correction, only one immunophenotype was found to be protective against IgA nephropathy. The OR of herpesvirus entry mediator (HVEM) on terminally differentiated CD4+ T cell (maturation stages of T-cell panel) on IgA nephropathy risk was estimated to be 0.727 (95%CI: 0.624-0.847, p = 4.20e - 05, PFDR = 0.023) according to inverse variance weighting (IVW) method, and the weighted-median method yielded similar results (OR = 0.743, 95% CI: 0.596-0.927, p = 0.008). Although not statistically significant, the association was consistent with MR-Egger, simple mode and weighted mode. CONCLUSIONS Our study further confirmed that immune cells play a complex and important role in the pathogenesis of IgA nephropathy, providing evidence for clinical research.
Collapse
Affiliation(s)
- Jinlian Shu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Nephrology, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical Univerisity, Hefei, Anhui, China
| | - Yating Ge
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Nephrology, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical Univerisity, Hefei, Anhui, China
| | - Yonggui Wu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Center for Scientific Research of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
3
|
Zhang Y, Zhang C, Liu G, He P, Wan B. Gene prediction of the causal relationship between immune cells and IgA nephropathy: A bidirectional Mendelian randomization study. Medicine (Baltimore) 2024; 103:e40480. [PMID: 39560595 PMCID: PMC11575961 DOI: 10.1097/md.0000000000040480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/24/2024] [Indexed: 11/20/2024] Open
Abstract
IgA nephropathy is the most common primary glomerular disease worldwide, with inflammation and autoimmune response mechanisms permeating the entire disease development process. The advancement of genome-wide association studies has enabled deeper understanding of the disease mechanisms and genetic susceptibility. Therefore, this study aims to explore the causal relationship between 731 immune cell types and the disease through Mendelian randomization (MR) analysis. This 2-sample MR study investigated bidirectional causal relationships using summary statistics for immune cells characteristics from the Genome-Wide Association Study (GWAS) catalog and IgA nephropathy from the FinnGen dataset. The study primarily utilized the Inverse Variance Weighted method for its main outcome. Additionally, the robustness of the results is further enhanced by analyses of heterogeneity, pleiotropy, and multiple sensitivity tests. After adjusting for false discovery rate (FDR), the study results revealed a bidirectional causal relationship between CD8 on terminally differentiated CD8+ T cells (OR = 0.77, 95% CI = 0.67-0.88, P = .0001) and CD4 on CD28+ CD4+ T cells (OR = 0.75, 95% CI = 0.64-0.87, P = .0001) with the risk of IgA nephropathy. CD64 on CD14+ CD16+ monocytes (OR = 0.66, 95% CI = 0.51-0.85, P = .0013) is considered a protective factor, while the percentages of CD8+ and CD8dim T cells (1.38, 95% CI = 1.17-1.63, P = .0002) in leukocytes are viewed as risk factors. This study employed genetic variation as an instrumental variable to explore the genetic association between immune cells and IgA nephropathy, aiming to offer new insights into early prevention and personalized treatment of the disease.
Collapse
Affiliation(s)
- Yukai Zhang
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Chenwei Zhang
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Gang Liu
- Department of Infection Control, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Peiyun He
- Department of Infection Control, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Binbin Wan
- Division of Planned Immunization, Yiwu Center for Disease Control and Prevention, Yiwu, China
| |
Collapse
|
4
|
Vrieling F, van der Zande HJP, Naus B, Smeehuijzen L, van Heck JIP, Ignacio BJ, Bonger KM, Van den Bossche J, Kersten S, Stienstra R. CENCAT enables immunometabolic profiling by measuring protein synthesis via bioorthogonal noncanonical amino acid tagging. CELL REPORTS METHODS 2024; 4:100883. [PMID: 39437716 PMCID: PMC11573747 DOI: 10.1016/j.crmeth.2024.100883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/07/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024]
Abstract
Cellular energy metabolism significantly contributes to immune cell function. To further advance immunometabolic research, novel methods to study the metabolism of immune cells in complex samples are required. Here, we introduce CENCAT (cellular energetics through noncanonical amino acid tagging). This technique utilizes click labeling of alkyne-bearing noncanonical amino acids to measure protein synthesis inhibition as a proxy for metabolic activity. CENCAT successfully reproduced known metabolic signatures of lipopolysaccharide (LPS)/interferon (IFN)γ and interleukin (IL)-4 activation in human primary macrophages. Application of CENCAT in peripheral blood mononuclear cells revealed diverse metabolic rewiring upon stimulation with different activators. Finally, CENCAT was used to analyze the cellular metabolism of murine tissue-resident immune cells from various organs. Tissue-specific clustering was observed based on metabolic profiles, likely driven by microenvironmental priming. In conclusion, CENCAT offers valuable insights into immune cell metabolic responses, presenting a powerful platform for studying cellular metabolism in complex samples and tissues in both humans and mice.
Collapse
Affiliation(s)
- Frank Vrieling
- Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands; Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Britta Naus
- Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Lisa Smeehuijzen
- Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Julia I P van Heck
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bob J Ignacio
- Department of Synthetic Organic Chemistry, Chemical Biology Lab, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Kimberly M Bonger
- Department of Synthetic Organic Chemistry, Chemical Biology Lab, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Jan Van den Bossche
- Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Sander Kersten
- Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Rinke Stienstra
- Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands; Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
5
|
Cao Y, Fan Y, Li F, Hao Y, Kong Y, Chen C, Hao X, Han D, Li G, Wang Z, Song C, Han J, Zeng H. Phenotypic and functional alterations of monocyte subsets with aging. Immun Ageing 2022; 19:63. [PMID: 36514074 PMCID: PMC9745938 DOI: 10.1186/s12979-022-00321-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND It has been widely accepted that monocytes are one of the central mediators contributing to inflammaging. However, it remains unclear whether aged monocytes, similar to aged T cells, have characteristics of hyperactivation and increased expression of co-inhibitory molecules. METHODS Peripheral blood mononuclear cells (PBMCs) were isolated from young (21-40 years old), middle-aged (41-60 years old), and older human subjects (> 60 years old). Flow cytometry was used to monitor changes in the expression of surface molecules of monocyte subsets and cytokine-producing capacity. RESULTS We observed increased tumor necrosis factor-α: TNF-α and decreased interleukin-6 (IL-6) production in monocytes from older adults compared with young and middle-aged adults. Older adults had a greater percentage of intermediate and non-classical monocyte subsets, along with increased levels of the immune activation markers human leukocyte antigen-DR (HLA-DR), and adhesion molecules cluster of differentiation molecule 11b (CD11b) and L-selectin (CD62L). Furthermore, we observed increased C-C motif chemokine receptor 2 (CCR2) expression on classical monocytes and decreased C-X3-C motif chemokine receptor 1 (CX3CR1) expression on non-classical monocytes in older adult subjects. The expression of co-inhibitory receptors was reduced on monocyte subsets in older adults. CONCLUSIONS Circulating monocytes in older adults exhibit increased expression of activation, adhesion, and migration markers, but decreased expression of co-inhibitory molecules.
Collapse
Affiliation(s)
- Yu Cao
- grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015 China ,grid.508381.70000 0004 0647 272XBeijing Institute of Infectious Diseases, Beijing, 100015 China ,grid.24696.3f0000 0004 0369 153XNational Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015 China
| | - Yang Fan
- grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015 China ,grid.508381.70000 0004 0647 272XBeijing Institute of Infectious Diseases, Beijing, 100015 China ,grid.24696.3f0000 0004 0369 153XNational Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015 China
| | - Fangyuan Li
- grid.414367.3Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038 China ,grid.414367.3Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038 China
| | - Yu Hao
- grid.414367.3Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038 China ,grid.414367.3Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038 China
| | - Yaxian Kong
- grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015 China ,grid.508381.70000 0004 0647 272XBeijing Institute of Infectious Diseases, Beijing, 100015 China ,grid.24696.3f0000 0004 0369 153XNational Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015 China
| | - Chen Chen
- grid.414367.3Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038 China ,grid.414367.3Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038 China
| | - Xing Hao
- grid.411606.40000 0004 1761 5917Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029 China
| | - Dannuo Han
- grid.411606.40000 0004 1761 5917Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029 China
| | - Guoli Li
- grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015 China ,grid.508381.70000 0004 0647 272XBeijing Institute of Infectious Diseases, Beijing, 100015 China ,grid.24696.3f0000 0004 0369 153XNational Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015 China
| | - Zengtao Wang
- grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015 China ,grid.508381.70000 0004 0647 272XBeijing Institute of Infectious Diseases, Beijing, 100015 China ,grid.24696.3f0000 0004 0369 153XNational Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015 China
| | - Chuan Song
- grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015 China ,grid.508381.70000 0004 0647 272XBeijing Institute of Infectious Diseases, Beijing, 100015 China ,grid.24696.3f0000 0004 0369 153XNational Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015 China
| | - Junyan Han
- grid.414367.3Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038 China ,grid.414367.3Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038 China
| | - Hui Zeng
- grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015 China ,grid.508381.70000 0004 0647 272XBeijing Institute of Infectious Diseases, Beijing, 100015 China ,grid.24696.3f0000 0004 0369 153XNational Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015 China ,grid.414367.3Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038 China ,grid.414367.3Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038 China
| |
Collapse
|
6
|
The CD14++CD16+ monocyte subset is expanded and controls Th1 cell development in Graves' disease. Clin Immunol 2022; 245:109160. [DOI: 10.1016/j.clim.2022.109160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/19/2022]
|
7
|
Ansari SA, Dantoft W, Ruiz-Orera J, Syed AP, Blachut S, van Heesch S, Hübner N, Uhlenhaut NH. Integrative analysis of macrophage ribo-Seq and RNA-Seq data define glucocorticoid receptor regulated inflammatory response genes into distinct regulatory classes. Comput Struct Biotechnol J 2022; 20:5622-5638. [PMID: 36284713 PMCID: PMC9582734 DOI: 10.1016/j.csbj.2022.09.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/03/2022] Open
Abstract
Glucocorticoids such as dexamethasone (Dex) are widely used to treat both acute and chronic inflammatory conditions. They regulate immune responses by dampening cell-mediated immunity in a glucocorticoid receptor (GR)-dependent manner, by suppressing the expression of pro-inflammatory cytokines and chemokines and by stimulating the expression of anti-inflammatory mediators. Despite its evident clinical benefit, the mechanistic underpinnings of the gene regulatory networks transcriptionally controlled by GR in a context-specific manner remain mysterious. Next generation sequencing methods such mRNA sequencing (RNA-seq) and Ribosome profiling (ribo-seq) provide tools to investigate the transcriptional and post-transcriptional mechanisms that govern gene expression. Here, we integrate matched RNA-seq data with ribo-seq data from human acute monocytic leukemia (THP-1) cells treated with the TLR4 ligand lipopolysaccharide (LPS) and with Dex, to investigate the global transcriptional and translational regulation (translational efficiency, ΔTE) of Dex-responsive genes. We find that the expression of most of the Dex-responsive genes are regulated at both the transcriptional and the post-transcriptional level, with the transcriptional changes intensified on the translational level. Overrepresentation pathway analysis combined with STRING protein network analysis and manual functional exploration, identified these genes to encode immune effectors and immunomodulators that contribute to macrophage-mediated immunity and to the maintenance of macrophage-mediated immune homeostasis. Further research into the translational regulatory network underlying the GR anti-inflammatory response could pave the way for the development of novel immunomodulatory therapeutic regimens with fewer undesirable side effects.
Collapse
Affiliation(s)
- Suhail A. Ansari
- Institute for Diabetes and Endocrinology (IDE), Helmholtz Center Munich (HMGU) and German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Widad Dantoft
- Institute for Diabetes and Endocrinology (IDE), Helmholtz Center Munich (HMGU) and German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Jorge Ruiz-Orera
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Afzal P. Syed
- Institute for Diabetes and Endocrinology (IDE), Helmholtz Center Munich (HMGU) and German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Susanne Blachut
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Sebastiaan van Heesch
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Norbert Hübner
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany,Charite-Universitätsmedizin Berlin, Berlin, Germany
| | - Nina Henriette Uhlenhaut
- Institute for Diabetes and Endocrinology (IDE), Helmholtz Center Munich (HMGU) and German Center for Diabetes Research (DZD), Neuherberg, Germany,Metabolic Programming, School of Life Sciences Weihenstephan, ZIEL – Institute for Food and Health, Technical University of Munich (TUM), Freising, Germany,Corresponding author.
| |
Collapse
|
8
|
van der Pan K, de Bruin-Versteeg S, Damasceno D, Hernández-Delgado A, van der Sluijs-Gelling AJ, van den Bossche WBL, de Laat IF, Díez P, Naber BAE, Diks AM, Berkowska MA, de Mooij B, Groenland RJ, de Bie FJ, Khatri I, Kassem S, de Jager AL, Louis A, Almeida J, van Gaans-van den Brink JAM, Barkoff AM, He Q, Ferwerda G, Versteegen P, Berbers GAM, Orfao A, van Dongen JJM, Teodosio C. Development of a standardized and validated flow cytometry approach for monitoring of innate myeloid immune cells in human blood. Front Immunol 2022; 13:935879. [PMID: 36189252 PMCID: PMC9519388 DOI: 10.3389/fimmu.2022.935879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Innate myeloid cell (IMC) populations form an essential part of innate immunity. Flow cytometric (FCM) monitoring of IMCs in peripheral blood (PB) has great clinical potential for disease monitoring due to their role in maintenance of tissue homeostasis and ability to sense micro-environmental changes, such as inflammatory processes and tissue damage. However, the lack of standardized and validated approaches has hampered broad clinical implementation. For accurate identification and separation of IMC populations, 62 antibodies against 44 different proteins were evaluated. In multiple rounds of EuroFlow-based design-testing-evaluation-redesign, finally 16 antibodies were selected for their non-redundancy and separation power. Accordingly, two antibody combinations were designed for fast, sensitive, and reproducible FCM monitoring of IMC populations in PB in clinical settings (11-color; 13 antibodies) and translational research (14-color; 16 antibodies). Performance of pre-analytical and analytical variables among different instruments, together with optimized post-analytical data analysis and reference values were assessed. Overall, 265 blood samples were used for design and validation of the antibody combinations and in vitro functional assays, as well as for assessing the impact of sample preparation procedures and conditions. The two (11- and 14-color) antibody combinations allowed for robust and sensitive detection of 19 and 23 IMC populations, respectively. Highly reproducible identification and enumeration of IMC populations was achieved, independently of anticoagulant, type of FCM instrument and center, particularly when database/software-guided automated (vs. manual “expert-based”) gating was used. Whereas no significant changes were observed in identification of IMC populations for up to 24h delayed sample processing, a significant impact was observed in their absolute counts after >12h delay. Therefore, accurate identification and quantitation of IMC populations requires sample processing on the same day. Significantly different counts were observed in PB for multiple IMC populations according to age and sex. Consequently, PB samples from 116 healthy donors (8-69 years) were used for collecting age and sex related reference values for all IMC populations. In summary, the two antibody combinations and FCM approach allow for rapid, standardized, automated and reproducible identification of 19 and 23 IMC populations in PB, suited for monitoring of innate immune responses in clinical and translational research settings.
Collapse
Affiliation(s)
- Kyra van der Pan
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Daniela Damasceno
- Translational and Clinical Research Program, Cancer Research Center (IBMCC; University of Salamanca - CSIC), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Universidad de Salamanca, and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Alejandro Hernández-Delgado
- Translational and Clinical Research Program, Cancer Research Center (IBMCC; University of Salamanca - CSIC), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Universidad de Salamanca, and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | | | - Wouter B. L. van den Bossche
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
- Department of Immunology, Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Inge F. de Laat
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Paula Díez
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Annieck M. Diks
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Bas de Mooij
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Rick J. Groenland
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Fenna J. de Bie
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Indu Khatri
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Sara Kassem
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Anniek L. de Jager
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Alesha Louis
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Julia Almeida
- Translational and Clinical Research Program, Cancer Research Center (IBMCC; University of Salamanca - CSIC), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Universidad de Salamanca, and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | | | - Alex-Mikael Barkoff
- Institute of Biomedicine, Research Center for Infections and Immunity, University of Turku (UTU), Turku, Finland
| | - Qiushui He
- Institute of Biomedicine, Research Center for Infections and Immunity, University of Turku (UTU), Turku, Finland
| | - Gerben Ferwerda
- Section of Paediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
| | - Pauline Versteegen
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Guy A. M. Berbers
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Alberto Orfao
- Translational and Clinical Research Program, Cancer Research Center (IBMCC; University of Salamanca - CSIC), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Universidad de Salamanca, and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Jacques J. M. van Dongen
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
- Translational and Clinical Research Program, Cancer Research Center (IBMCC; University of Salamanca - CSIC), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Universidad de Salamanca, and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- *Correspondence: Jacques J. M. van Dongen,
| | - Cristina Teodosio
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
- Translational and Clinical Research Program, Cancer Research Center (IBMCC; University of Salamanca - CSIC), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Universidad de Salamanca, and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| |
Collapse
|
9
|
Richter S, Böttcher M, Völkl S, Mackensen A, Ullrich E, Jacobs B, Mougiakakos D. The metabolic profile of reconstituting T-cells, NK-cells, and monocytes following autologous stem cell transplantation and its impact on outcome. Sci Rep 2022; 12:11406. [PMID: 35794135 PMCID: PMC9259617 DOI: 10.1038/s41598-022-15136-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/20/2022] [Indexed: 12/20/2022] Open
Abstract
Previous studies indicated a role of the reconstituting immune system for disease outcome upon high-dose chemotherapy (HDCT) and autologous stem cell transplantation (auto-SCT) in multiple myeloma (MM) and lymphoma patients. Since immune cell metabolism and function are closely interconnected, we used flow-cytometry techniques to analyze key components and functions of the metabolic machinery in reconstituting immune cells upon HDCT/auto-SCT. We observed increased proliferative activity and an upregulation of the glycolytic and fatty acid oxidation (FAO) machinery in immune cells during engraftment. Metabolic activation was more pronounced in T-cells of advanced differentiation stages, in CD56bright NK-cells, and CD14++CD16+ intermediate monocytes. Next, we investigated a potential correlation between the immune cells’ metabolic profile and early progression or relapse in lymphoma patients within the first twelve months following auto-SCT. Here, persistently increased metabolic parameters correlated with a rather poor disease course. Taken together, reconstituting immune cells display an upregulated bioenergetic machinery following auto-SCT. Interestingly, a persistently enhanced metabolic immune cell phenotype correlated with reduced PFS. However, it remains to be elucidated, if the clinical data can be confirmed within a larger set of patients and if residual malignant cells not detected by conventional means possibly caused the metabolic activation.
Collapse
|
10
|
Xiang Y, Liang B, Zhang X, Qiu X, Deng Q, Yu L, Yu H, Lu Z, Zheng F. Atheroprotective mechanism by which folic acid regulates monocyte subsets and function through DNA methylation. Clin Epigenetics 2022; 14:32. [PMID: 35227297 PMCID: PMC8887029 DOI: 10.1186/s13148-022-01248-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/14/2022] [Indexed: 12/28/2022] Open
Abstract
Background Recent studies have suggested that folic acid can restore abnormal DNA methylation and monocyte subset shifts caused by hyperhomocysteinemia (HHcy) and hyperlipidemia (HL). However, the exact mechanism of action is still not fully understood. In this study, we further investigated the reversal effect and underlying mechanism of folic acid on the shift in monocyte subsets induced by aberrant lipids and Hcy metabolism via DNA methylation in vitro and in vivo. Results Our results showed that intermediate monocytes were significantly increased but had the lowest global 5-methylcytosine (5-mC) levels in coronary artery disease (CAD) patients, which might lead to a decrease in the global 5-mC levels of peripheral blood leukocytes (PBLs). We also discovered that ARID5B might mediate the increased proportion of intermediate monocytes, as this factor was related to the proportion of monocyte subsets and the expression of CCR2. The expression of ARID5B was inversely associated with the hypermethylated cg25953130 CpG site, which was induced by HL and HHcy. ARID5B could also regulate monocyte CCR2, MCP-1, and TNF-α expression, adhesion and migration, macrophage polarization, and monocyte/macrophage apoptosis, which might explain the regulatory effect of ARID5B on monocyte subset shifting. Folic acid reversed HL- and HHcy-mediated aberrant global and cg25953130 DNA methylation, reduced the proportion of intermediate monocytes, and inhibited the formation of atherosclerotic plaques. Conclusion Folic acid plays a protective role against atherosclerosis through the regulation of DNA methylation, ARID5B expression, and monocyte subsets. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-022-01248-0.
Collapse
Affiliation(s)
- Yang Xiang
- Center for Gene Diagnosis, and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, China
| | - Bin Liang
- Center for Gene Diagnosis, and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, China
| | - Xiaokang Zhang
- Center for Gene Diagnosis, and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, China
| | - Xueping Qiu
- Center for Gene Diagnosis, and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, China
| | - Qianyun Deng
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Li Yu
- Center for Gene Diagnosis, and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, China
| | - Hong Yu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei, China
| | - Zhibing Lu
- Institute of Myocardial Injury and Repair, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, China
| | - Fang Zheng
- Center for Gene Diagnosis, and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, China.
| |
Collapse
|
11
|
Larson-Casey JL, Gu L, Davis D, Cai GQ, Ding Q, He C, Carter AB. Post-translational regulation of PGC-1α modulates fibrotic repair. FASEB J 2021; 35:e21675. [PMID: 34038004 PMCID: PMC8252570 DOI: 10.1096/fj.202100339r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/23/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease associated with mitochondrial oxidative stress. Mitochondrial reactive oxygen species (mtROS) are important for cell homeostasis by regulating mitochondrial dynamics. Here, we show that IPF BAL cells exhibited increased mitochondrial biogenesis that is, in part, due to increased nuclear expression of peroxisome proliferator-activated receptor-ɣ (PPARɣ) coactivator (PGC)-1α. Increased PPARGC1A mRNA expression directly correlated with reduced pulmonary function in IPF subjects. Oxidant-mediated activation of the p38 MAPK via Akt1 regulated PGC-1α activation to increase mitochondrial biogenesis in monocyte-derived macrophages. Demonstrating the importance of PGC-1α in fibrotic repair, mice harboring a conditional deletion of Ppargc1a in monocyte-derived macrophages or mice administered a chemical inhibitor of mitochondrial division had reduced biogenesis and increased apoptosis, and the mice were protected from pulmonary fibrosis. These observations suggest that Akt1-mediated regulation of PGC-1α maintains mitochondrial homeostasis in monocyte-derived macrophages to induce apoptosis resistance, which contributes to the pathogenesis of pulmonary fibrosis.
Collapse
Affiliation(s)
- Jennifer L Larson-Casey
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Linlin Gu
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dana Davis
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Guo-Qiang Cai
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Qiang Ding
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chao He
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - A Brent Carter
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.,Birmingham Veterans Administration Medical Center, Birmingham, AL, USA
| |
Collapse
|
12
|
Chakraborty S, Pramanik J, Mahata B. Revisiting steroidogenesis and its role in immune regulation with the advanced tools and technologies. Genes Immun 2021; 22:125-140. [PMID: 34127827 PMCID: PMC8277576 DOI: 10.1038/s41435-021-00139-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/03/2021] [Accepted: 05/21/2021] [Indexed: 12/19/2022]
Abstract
Historically tools and technologies facilitated scientific discoveries. Steroid hormone research is not an exception. Unfortunately, the dramatic advancement of the field faded this research area and flagged it as a solved topic. However, it should have been the opposite. The area should glitter with its strong foundation and attract next-generation scientists. Over the past century, a myriad of new facts on biochemistry, molecular biology, cell biology, physiology and pathology of the steroid hormones was discovered. Several innovations were made and translated into life-saving treatment strategies such as synthetic steroids, and inhibitors of steroidogenesis and steroid signaling. Steroid molecules exhibit their diverse effects on cell metabolism, salt and water balance, development and function of the reproductive system, pregnancy, and immune-cell function. Despite vigorous research, the molecular basis of the immunomodulatory effect of steroids is still mysterious. The recent excitement on local extra-glandular steroidogenesis in regulating inflammation and immunity is revitalizing the topic with a new perspective. Therefore, here we review the role of steroidogenesis in regulating inflammation and immunity, discuss the unresolved questions, and how this area can bring another golden age of steroid hormone research with the development of new tools and technologies and advancement of the scientific methods.
Collapse
Affiliation(s)
| | - Jhuma Pramanik
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Bidesh Mahata
- Department of Pathology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
13
|
Stec M, Seweryn M, Korkosz M, Guła Z, Szatanek R, Węglarczyk K, Rutkowska-Zapała M, Lenart M, Czepiel M, Czyż J, Baran J, Gruca A, Wojnar-Lasoń K, Wołkow P, Siedlar M. Expression of VEGFA-mRNA in classical and MSX2-mRNA in non-classical monocytes in patients with spondyloarthritis is associated with peripheral arthritis. Sci Rep 2021; 11:9693. [PMID: 33958655 PMCID: PMC8102490 DOI: 10.1038/s41598-021-89037-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 04/19/2021] [Indexed: 11/28/2022] Open
Abstract
Spondyloarthritis (SpA) is characterized by chronic inflammation and structural damage involving spine and peripheral joints. Monocytes, as part of innate immune system, following migration into affected tissue, may play a role in the pathogenesis of SpA. Here, potential associations between osteogenesis-linked gene expression profile in particular monocyte subpopulations and clinical signs of SpA were investigated. The 20 patients with axial and 16 with peripheral SpA were enrolled in the study. Monocyte subpopulations (classical—CD14++CD16−, intermediate—CD14++CD16+ and non-classical—CD14+CD16++) were isolated from blood using flow cytometry and gene expression analysis was performed using real-time PCR method and TaqMan Array, Human Osteogenesis, Fast 96-well plates. Next, the characteristic clinical features shared by axial and peripheral SpA were analyzed in the context of the expression of selected genes in the three subpopulations of monocytes. We demonstrated that expression of VEGFA in classical and MSX2 in non-classical monocytes were associated with the number of swollen and painful peripheral joints of SpA patients. We conclude that monocytes may contribute to the development of peripheral arthritis in SpA patients. This might be possible through subpopulation specific effects, linking number of inflamed joints with expression of VEGFA in classical monocytes and MSX2 in non-classical monocytes.
Collapse
Affiliation(s)
- Małgorzata Stec
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265 Str., 30-663, Kraków, Poland
| | - Michał Seweryn
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Kopernika 7c Str., 31-034, Kraków, Poland
| | - Mariusz Korkosz
- Department of Rheumatology and Balneology, Jagiellonian University Medical College, Jakubowskiego 2 Str., Kraków, Poland
| | - Zofia Guła
- Department of Rheumatology and Balneology, Jagiellonian University Medical College, Jakubowskiego 2 Str., Kraków, Poland
| | - Rafał Szatanek
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265 Str., 30-663, Kraków, Poland
| | - Kazimierz Węglarczyk
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265 Str., 30-663, Kraków, Poland
| | - Magdalena Rutkowska-Zapała
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265 Str., 30-663, Kraków, Poland
| | - Marzena Lenart
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265 Str., 30-663, Kraków, Poland
| | - Marcin Czepiel
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265 Str., 30-663, Kraków, Poland
| | - Jarosław Czyż
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7 Str., Kraków, Poland
| | - Jarosław Baran
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265 Str., 30-663, Kraków, Poland
| | - Anna Gruca
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265 Str., 30-663, Kraków, Poland
| | - Kamila Wojnar-Lasoń
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265 Str., 30-663, Kraków, Poland
| | - Paweł Wołkow
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Kopernika 7c Str., 31-034, Kraków, Poland.
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265 Str., 30-663, Kraków, Poland.
| |
Collapse
|
14
|
Muglia Amancio A, Mittereder L, Carletti A, Tosh KW, Green D, Antonelli LR, Gazzinelli RT, Sher A, Jankovic D. IFNs Reset the Differential Capacity of Human Monocyte Subsets to Produce IL-12 in Response to Microbial Stimulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:1642-1652. [PMID: 33627376 PMCID: PMC8034562 DOI: 10.4049/jimmunol.2001194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/28/2021] [Indexed: 12/24/2022]
Abstract
Human primary monocytes are composed of a minor, more mature CD16+(CD14low/neg) population and a major CD16neg(CD14+) subset. The specific functions of CD16+ versus CD16neg monocytes in steady state or inflammation remain poorly understood. In previous work, we found that IL-12 is selectively produced by the CD16+ subset in response to the protozoan pathogen, Toxoplasma gondii In this study, we demonstrated that this differential responsiveness correlates with the presence of an IFN-induced transcriptional signature in CD16+ monocytes already at baseline. Consistent with this observation, we found that in vitro IFN-γ priming overcomes the defect in the IL-12 response of the CD16neg subset. In contrast, pretreatment with IFN-γ had only a minor effect on IL-12p40 secretion by the CD16+ population. Moreover, inhibition of the mTOR pathway also selectively increased the IL-12 response in CD16neg but not in CD16+ monocytes. We further demonstrate that in contrast to IFN-γ, IFN-α fails to promote IL-12 production by the CD16neg subset and blocks the effect of IFN-γ priming. Based on these observations, we propose that the acquisition of IL-12 responsiveness by peripheral blood monocyte subsets depends on extrinsic signals experienced during their developmental progression in vivo. This process can be overridden during inflammation by the opposing regulatory effects of type I and II IFN as well as the mTOR inhibition.
Collapse
Affiliation(s)
- Alice Muglia Amancio
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Lara Mittereder
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Alexie Carletti
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Kevin W Tosh
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Daniel Green
- Women's Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Lis R Antonelli
- Instituto de Pesquisas Rene Rachou, FIOCRUZ, Belo Horizonte, Minas Gerais 30190-002, Brazil
| | - Ricardo T Gazzinelli
- Instituto de Pesquisas Rene Rachou, FIOCRUZ, Belo Horizonte, Minas Gerais 30190-002, Brazil
- Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605; and
- Plataforma de Medicina Translacional, FIOCRUZ, Ribeirão Preto, São Paulo 14040-030, Brazil
| | - Alan Sher
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Dragana Jankovic
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
15
|
Kelesidis T, Tran E, Arastoo S, Lakhani K, Heymans R, Gornbein J, Middlekauff HR. Elevated Cellular Oxidative Stress in Circulating Immune Cells in Otherwise Healthy Young People Who Use Electronic Cigarettes in a Cross-Sectional Single-Center Study: Implications for Future Cardiovascular Risk. J Am Heart Assoc 2020; 9:e016983. [PMID: 32896211 PMCID: PMC7726977 DOI: 10.1161/jaha.120.016983] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background Tobacco cigarettes (TCs) increase oxidative stress and inflammation, both instigators of atherosclerotic cardiac disease. It is unknown if electronic cigarettes (ECs) also increase immune cell oxidative stress. We hypothesized an ordered, “dose‐response” relationship, with tobacco‐product type as “dose” (lowest in nonsmokers, intermediate in EC vapers, and highest in TC smokers), and the “response” being cellular oxidative stress (COS) in immune cell subtypes, in otherwise, healthy young people. Methods and Results Using flow cytometry and fluorescent probes, COS was determined in immune cell subtypes in 33 otherwise healthy young people: nonsmokers (n=12), EC vapers (n=12), and TC smokers (n=9). Study groups had similar baseline characteristics, including age, sex, race, and education level. A dose‐response increase in proinflammatory monocytes and lymphocytes, and their COS content among the 3 study groups was found: lowest in nonsmokers, intermediate in EC vapers, and highest in TC smokers. These findings were most striking in CD14dimCD16+ and CD14++CD16+ proinflammatory monocytes and were reproduced with 2 independent fluorescent probes of COS. Conclusions These findings portend the development of premature cardiovascular disease in otherwise healthy young people who chronically vape ECs. On the other hand, that the COS is lower in EC vapers compared with TC smokers warrants additional investigation to determine if switching to ECs may form part of a harm‐reduction strategy. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT03823885.
Collapse
Affiliation(s)
- Theodoros Kelesidis
- Division of Infectious Disease Department of Medicine David Geffen School of Medicine at UCLA Los Angeles CA
| | - Elizabeth Tran
- Division of Cardiology Department of Medicine David Geffen School of Medicine at UCLA Los Angeles CA
| | - Sara Arastoo
- Division of Cardiology Department of Medicine David Geffen School of Medicine at UCLA Los Angeles CA
| | - Karishma Lakhani
- Division of Cardiology Department of Medicine David Geffen School of Medicine at UCLA Los Angeles CA
| | - Rachel Heymans
- Division of Infectious Disease Department of Medicine David Geffen School of Medicine at UCLA Los Angeles CA
| | - Jeffrey Gornbein
- Department of Medicine David Geffen School of Medicine at UCLA Los Angeles CA.,Department of Computational Medicine David Geffen School of Medicine at UCLA Los Angeles CA
| | - Holly R Middlekauff
- Division of Cardiology Department of Medicine David Geffen School of Medicine at UCLA Los Angeles CA
| |
Collapse
|
16
|
Böttcher C, Fernández-Zapata C, Schlickeiser S, Kunkel D, Schulz AR, Mei HE, Weidinger C, Gieß RM, Asseyer S, Siegmund B, Paul F, Ruprecht K, Priller J. Multi-parameter immune profiling of peripheral blood mononuclear cells by multiplexed single-cell mass cytometry in patients with early multiple sclerosis. Sci Rep 2019; 9:19471. [PMID: 31857644 PMCID: PMC6923404 DOI: 10.1038/s41598-019-55852-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 12/03/2019] [Indexed: 12/15/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating and neurodegenerative disease of the central nervous system (CNS). Studies in rodent models demonstrated an association of CNS-infiltrating monocyte-derived macrophages with disease severity. However, little is known about humans. Here, we performed an exploratory analysis of peripheral blood mononuclear cells (PBMCs) isolated from healthy controls and drug-naïve patients with early MS using multiplexed single-cell mass cytometry and algorithm-based data analysis. Two antibody panels comprising a total of 64 antibodies were designed to comprehensively analyse diverse immune cell populations, with particular emphasis on monocytes. PBMC composition and marker expression were overall similar between the groups. However, an increased abundance of CCR7+ and IL-6+ T cells was detected in early MS-PBMCs, whereas NFAT1hiT-bethiCD4+ T cells were decreased. Similarly, we detected changes in the subset composition of the CCR7+ and MIPβhi HLA-DR+ lymphocyte compartment. Only mild alterations were detected in monocytes/myeloid cells of patients with early MS, namely a decreased abundance of CD141hiIRF8hiCXCR3+CD68- dendritic cells. Unlike in Crohn's disease, no significant differences were found in the monocyte fraction of patients with early MS compared to healthy controls. This study provides a valuable resource for future studies designed to characterise and target diverse PBMC subsets in MS.
Collapse
Affiliation(s)
- Chotima Böttcher
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Berlin, Germany.
| | - Camila Fernández-Zapata
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Berlin, Germany
| | - Stephan Schlickeiser
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Desiree Kunkel
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health, Berlin, 10178, Germany
| | - Axel R Schulz
- German Rheumatism Research Center (DRFZ), Berlin, Germany
| | - Henrik E Mei
- German Rheumatism Research Center (DRFZ), Berlin, Germany
| | - Carl Weidinger
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Division of Gastroenterology, Infectiology and Rheumatology, Medical Department for Gastroenterology, Berlin, Germany
| | - René M Gieß
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Neurology and Clinical and Experimental Multiple Sclerosis Research Center, Berlin, Germany
- NeuroCure Clinical Research Center (NCRC), Berlin, Germany
| | - Susanna Asseyer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- NeuroCure Clinical Research Center (NCRC), Berlin, Germany
| | - Britta Siegmund
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Division of Gastroenterology, Infectiology and Rheumatology, Medical Department for Gastroenterology, Berlin, Germany
| | - Friedemann Paul
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Neurology and Clinical and Experimental Multiple Sclerosis Research Center, Berlin, Germany
- NeuroCure Clinical Research Center (NCRC), Berlin, Germany
- Berlin Institute of Health, Berlin, 10178, Germany
- Experimental and Clinical Research Center (ECRC), Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Klemens Ruprecht
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Neurology and Clinical and Experimental Multiple Sclerosis Research Center, Berlin, Germany
| | - Josef Priller
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Berlin, Germany.
- Berlin Institute of Health, Berlin, 10178, Germany.
- DZNE, Berlin Germany, University of Edinburgh and UK Dementia Research Institute, Edinburgh, UK.
| |
Collapse
|
17
|
Changes in monocyte subsets are associated with clinical outcomes in severe malarial anaemia and cerebral malaria. Sci Rep 2019; 9:17545. [PMID: 31772386 PMCID: PMC6879635 DOI: 10.1038/s41598-019-52579-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 10/18/2019] [Indexed: 01/17/2023] Open
Abstract
Monocytes are plastic heterogeneous immune cells involved in host-parasite interactions critical for malaria pathogenesis. Human monocytes have been subdivided into three populations based on surface expression of CD14 and CD16. We hypothesised that proportions and phenotypes of circulating monocyte subsets can be markers of severity or fatality in children with malaria. To address this question, we compared monocytes sampled in children with uncomplicated malaria, severe malarial anaemia, or cerebral malaria. Flow cytometry was used to distinguish and phenotype monocyte subsets through CD14, CD16, CD36 and TLR2 expression. Data were first analysed by univariate analysis to evaluate their link to severity and death. Second, multinomial logistic regression was used to measure the specific effect of monocyte proportions and phenotypes on severity and death, after adjustments for other variables unrelated to monocytes. Multivariate analysis demonstrated that decreased percentages of non-classical monocytes were associated with death, suggesting that this monocyte subset has a role in resolving malaria. Using univariate analysis, we also showed that the role of non-classical monocytes involves a mostly anti-inflammatory profile and the expression of CD16. Further studies are needed to decipher the functions of this sub-population during severe malaria episodes, and understand the underlying mechanisms.
Collapse
|
18
|
Hofer TP, van de Loosdrecht AA, Stahl-Hennig C, Cassatella MA, Ziegler-Heitbrock L. 6-Sulfo LacNAc (Slan) as a Marker for Non-classical Monocytes. Front Immunol 2019; 10:2052. [PMID: 31572354 PMCID: PMC6753898 DOI: 10.3389/fimmu.2019.02052] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/14/2019] [Indexed: 12/20/2022] Open
Abstract
Monocytes are subdivided into three subsets, which have different phenotypic and functional characteristics and different roles in inflammation and malignancy. When in man CD14 and CD16 monoclonal antibodies are used to define these subsets, then the distinction of non-classical CD14low and intermediate CD14high monocytes requires setting a gate in what is a gradually changing level of CD14 expression. In the search for an additional marker to better dissect the two subsets we have explored the marker 6-sulfo LacNAc (slan). Slan is a carbohydrate residue originally described to be expressed on the cell surface of a type of dendritic cell in human blood. We elaborate herein that the features of slan+ cells are congruent with the features of CD16+ non-classical monocytes and that slan is a candidate marker for definition of non-classical monocytes. The use of this marker may help in studying the role of non-classical monocytes in health and in diagnosis and monitoring of disease.
Collapse
Affiliation(s)
- Thomas P Hofer
- Immunoanalytics Core Facility and RG Tissue Control of Immunocytes, Helmholtz Centre Munich, Munich, Germany
| | | | | | - Marco A Cassatella
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | | |
Collapse
|
19
|
Pletinckx K, Vaßen S, Schlusche I, Nordhoff S, Bahrenberg G, Dunkern TR. Inhibiting the immunoproteasome's β5i catalytic activity affects human peripheral blood-derived immune cell viability. Pharmacol Res Perspect 2019; 7:e00482. [PMID: 31236277 PMCID: PMC6581949 DOI: 10.1002/prp2.482] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/01/2018] [Accepted: 04/05/2019] [Indexed: 01/03/2023] Open
Abstract
Small molecule inhibitors selectively targeting the immunoproteasome subunit β5i are currently being developed for the treatment of autoimmune disorders. However, patients carrying loss-of-function mutations in the gene encoding β5i (Psmb8) suffer from the proteasome-associated autoinflammatory syndromes (PRAAS) emphasizing the need to study pharmacological inhibition of immunoproteasome function in human cells. Here, we characterized the immunomodulatory potential of the selective β5i inhibitor ONX 0914 and Bortezomib, a pan-proteasome inhibitor, in human peripheral blood mononuclear cells (PBMCs). Both compounds efficiently blocked pro-inflammatory cytokine secretion in human whole blood and PBMC cultures stimulated with toll-like receptor (TLR) agonists. Furthermore, the compounds inhibited T cell cytokine production induced by recall antigen CMVpp65 or by polyclonal stimulation. The viability of PBMCs, however, was rapidly decreased in the presence of ONX 0914 and Bortezomib demonstrated by decreased residual cytosolic ATP and increased Annexin V surface binding. Interestingly, HLA-DR + monocytes were rapidly depleted from the cultures in the presence of ONX 0914 as a β5i-selective inhibitor and Bortezomib. In conclusion, the anti-inflammatory potential of β5i-selective inhibitors is correlating with a cytotoxicity increase in human PBMC subsets ex vivo. Our results provide important insights into the anti-inflammatory mechanism of action of β5i-inhibitors which currently hold the promise as a novel therapy for autoinflammatory diseases.
Collapse
|
20
|
Carlström KE, Ewing E, Granqvist M, Gyllenberg A, Aeinehband S, Enoksson SL, Checa A, Badam TVS, Huang J, Gomez-Cabrero D, Gustafsson M, Al Nimer F, Wheelock CE, Kockum I, Olsson T, Jagodic M, Piehl F. Therapeutic efficacy of dimethyl fumarate in relapsing-remitting multiple sclerosis associates with ROS pathway in monocytes. Nat Commun 2019; 10:3081. [PMID: 31300673 PMCID: PMC6626021 DOI: 10.1038/s41467-019-11139-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 06/25/2019] [Indexed: 12/15/2022] Open
Abstract
Dimethyl fumarate (DMF) is a first-line-treatment for relapsing-remitting multiple sclerosis (RRMS). The redox master regulator Nrf2, essential for redox balance, is a target of DMF, but its precise therapeutic mechanisms of action remain elusive. Here we show impact of DMF on circulating monocytes and T cells in a prospective longitudinal RRMS patient cohort. DMF increases the level of oxidized isoprostanes in peripheral blood. Other observed changes, including methylome and transcriptome profiles, occur in monocytes prior to T cells. Importantly, monocyte counts and monocytic ROS increase following DMF and distinguish patients with beneficial treatment-response from non-responders. A single nucleotide polymorphism in the ROS-generating NOX3 gene is associated with beneficial DMF treatment-response. Our data implicate monocyte-derived oxidative processes in autoimmune diseases and their treatment, and identify NOX3 genetic variant, monocyte counts and redox state as parameters potentially useful to inform clinical decisions on DMF therapy of RRMS.
Collapse
Affiliation(s)
- Karl E Carlström
- Department of Clinical Neurosciences, Section of Neurology, Karolinska Institutet, Stockholm, Sweden.
| | - Ewoud Ewing
- Department of Clinical Neurosciences, Section of Neurology, Karolinska Institutet, Stockholm, Sweden
| | - Mathias Granqvist
- Department of Clinical Neurosciences, Section of Neurology, Karolinska Institutet, Stockholm, Sweden
| | - Alexandra Gyllenberg
- Department of Clinical Neurosciences, Section of Neurology, Karolinska Institutet, Stockholm, Sweden
| | - Shahin Aeinehband
- Department of Clinical Neurosciences, Section of Neurology, Karolinska Institutet, Stockholm, Sweden
| | - Sara Lind Enoksson
- Department of Clinical Immunology Karolinska University Hospital, Stockholm, Sweden
| | - Antonio Checa
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Tejaswi V S Badam
- Department of Bioinformatics, School of Bioscience, University of Skövde, Skövde, Sweden.,Department of Physics, Chemistry & Biology (IFM), Bioinformatics, Linköping University, Linköping, Sweden
| | - Jesse Huang
- Department of Clinical Neurosciences, Section of Neurology, Karolinska Institutet, Stockholm, Sweden
| | - David Gomez-Cabrero
- Translational Bioinformatics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Publica de Nevarra (UPNA), IdiSNA, Pamplona, Spain
| | - Mika Gustafsson
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Faiez Al Nimer
- Department of Clinical Neurosciences, Section of Neurology, Karolinska Institutet, Stockholm, Sweden
| | - Craig E Wheelock
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ingrid Kockum
- Department of Clinical Neurosciences, Section of Neurology, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Olsson
- Department of Clinical Neurosciences, Section of Neurology, Karolinska Institutet, Stockholm, Sweden
| | - Maja Jagodic
- Department of Clinical Neurosciences, Section of Neurology, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Piehl
- Department of Clinical Neurosciences, Section of Neurology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
21
|
McGinnis CS, Murrow LM, Gartner ZJ. DoubletFinder: Doublet Detection in Single-Cell RNA Sequencing Data Using Artificial Nearest Neighbors. Cell Syst 2019; 8:329-337.e4. [PMID: 30954475 PMCID: PMC6853612 DOI: 10.1016/j.cels.2019.03.003] [Citation(s) in RCA: 1799] [Impact Index Per Article: 299.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 11/15/2018] [Accepted: 03/06/2019] [Indexed: 02/06/2023]
Abstract
Single-cell RNA sequencing (scRNA-seq) data are commonly affected by technical artifacts known as "doublets," which limit cell throughput and lead to spurious biological conclusions. Here, we present a computational doublet detection tool-DoubletFinder-that identifies doublets using only gene expression data. DoubletFinder predicts doublets according to each real cell's proximity in gene expression space to artificial doublets created by averaging the transcriptional profile of randomly chosen cell pairs. We first use scRNA-seq datasets where the identity of doublets is known to show that DoubletFinder identifies doublets formed from transcriptionally distinct cells. When these doublets are removed, the identification of differentially expressed genes is enhanced. Second, we provide a method for estimating DoubletFinder input parameters, allowing its application across scRNA-seq datasets with diverse distributions of cell types. Lastly, we present "best practices" for DoubletFinder applications and illustrate that DoubletFinder is insensitive to an experimentally validated kidney cell type with "hybrid" expression features.
Collapse
Affiliation(s)
- Christopher S McGinnis
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Lyndsay M Murrow
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Zev J Gartner
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA; Chan Zuckerbeg Biohub, University of California, San Francisco, San Francisco, CA, USA; Center for Cellular Construction, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
22
|
McGinnis CS, Murrow LM, Gartner ZJ. DoubletFinder: Doublet Detection in Single-Cell RNA Sequencing Data Using Artificial Nearest Neighbors. Cell Syst 2019; 8:329-337.e4. [PMID: 30954475 DOI: 10.1101/352484] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 11/15/2018] [Accepted: 03/06/2019] [Indexed: 05/24/2023]
Abstract
Single-cell RNA sequencing (scRNA-seq) data are commonly affected by technical artifacts known as "doublets," which limit cell throughput and lead to spurious biological conclusions. Here, we present a computational doublet detection tool-DoubletFinder-that identifies doublets using only gene expression data. DoubletFinder predicts doublets according to each real cell's proximity in gene expression space to artificial doublets created by averaging the transcriptional profile of randomly chosen cell pairs. We first use scRNA-seq datasets where the identity of doublets is known to show that DoubletFinder identifies doublets formed from transcriptionally distinct cells. When these doublets are removed, the identification of differentially expressed genes is enhanced. Second, we provide a method for estimating DoubletFinder input parameters, allowing its application across scRNA-seq datasets with diverse distributions of cell types. Lastly, we present "best practices" for DoubletFinder applications and illustrate that DoubletFinder is insensitive to an experimentally validated kidney cell type with "hybrid" expression features.
Collapse
Affiliation(s)
- Christopher S McGinnis
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Lyndsay M Murrow
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Zev J Gartner
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA; Chan Zuckerbeg Biohub, University of California, San Francisco, San Francisco, CA, USA; Center for Cellular Construction, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
23
|
Guo X, Wang W, Yuan X, Yang Y, Tian Q, Xiang Y, Sun Y, Bai Z. Heavy metal redistribution mechanism assisted magnetic separation for highly-efficient removal of lead and cadmium from human blood. J Colloid Interface Sci 2019; 536:563-574. [DOI: 10.1016/j.jcis.2018.10.095] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/28/2018] [Accepted: 10/29/2018] [Indexed: 12/23/2022]
|
24
|
Ong SM, Hadadi E, Dang TM, Yeap WH, Tan CTY, Ng TP, Larbi A, Wong SC. The pro-inflammatory phenotype of the human non-classical monocyte subset is attributed to senescence. Cell Death Dis 2018; 9:266. [PMID: 29449647 PMCID: PMC5833376 DOI: 10.1038/s41419-018-0327-1] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 01/12/2018] [Accepted: 01/12/2018] [Indexed: 11/16/2022]
Abstract
Human primary monocytes comprise a heterogeneous population that can be classified into three subsets based on CD14 and CD16 expression: classical (CD14high/CD16−), intermediate (CD14high/CD16+), and non-classical (CD14low/CD16+). The non-classical monocytes are the most pro-inflammatory in response to TLR stimulation in vitro, yet they express a remarkably high basal level of miR-146a, a microRNA known to negatively regulate the TLR pathway. This concurrence of a pro-inflammatory status and a high miR-146a level has been associated with cellular senescence in other cell types. Hence, we assessed the three monocyte subsets for evidence of senescence, including proliferative status, telomere length, cellular ROS levels, and mitochondrial membrane potential. Indeed, the non-classical subset exhibited the clearest hallmarks of senescence, followed by the intermediate and then the classical subset. In addition, the non-classical subset secreted pro-inflammatory cytokines basally in vitro. The highly pro-inflammatory nature of the non-classical monocytes could be a manifestation of the senescence-associated secretory phenotype (SASP), likely induced by a high basal NF-κB activity and IL-1α production. Finally, we observed an accumulation of the non-classical monocytes, in conjunction with higher levels of plasma TNF-α and IL-8, in the elderly. These factors may contribute to inflamm-aging and age-related inflammatory conditions, such as atherosclerosis and osteoarthritis. With our new understanding that the non-classical monocyte subset is a senescent population, we can now re-examine the role of this subset in disease conditions where this subset expands.
Collapse
Affiliation(s)
- Siew-Min Ong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Eva Hadadi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Truong-Minh Dang
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Wei-Hseun Yeap
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Crystal Tze-Ying Tan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Tze-Pin Ng
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Siew-Cheng Wong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| |
Collapse
|
25
|
Segura V, Valero ML, Cantero L, Muñoz J, Zarzuela E, García F, Aloria K, Beaskoetxea J, Arizmendi JM, Navajas R, Paradela A, Díez P, Dégano RM, Fuentes M, Orfao A, Montero AG, Garin-Muga A, Corrales FJ, Pino MMSD. In-Depth Proteomic Characterization of Classical and Non-Classical Monocyte Subsets. Proteomes 2018; 6:proteomes6010008. [PMID: 29401756 PMCID: PMC5874767 DOI: 10.3390/proteomes6010008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/24/2018] [Accepted: 02/01/2018] [Indexed: 01/02/2023] Open
Abstract
Monocytes are bone marrow-derived leukocytes that are part of the innate immune system. Monocytes are divided into three subsets: classical, intermediate and non-classical, which can be differentiated by their expression of some surface antigens, mainly CD14 and CD16. These cells are key players in the inflammation process underlying the mechanism of many diseases. Thus, the molecular characterization of these cells may provide very useful information for understanding their biology in health and disease. We performed a multicentric proteomic study with pure classical and non-classical populations derived from 12 healthy donors. The robust workflow used provided reproducible results among the five participating laboratories. Over 5000 proteins were identified, and about half of them were quantified using a spectral counting approach. The results represent the protein abundance catalogue of pure classical and enriched non-classical blood peripheral monocytes, and could serve as a reference dataset of the healthy population. The functional analysis of the differences between cell subsets supports the consensus roles assigned to human monocytes.
Collapse
Affiliation(s)
- Víctor Segura
- Proteomics, Genomics and Bioinformatics Unit, Center for Applied Medical Research, University of Navarra, Pamplona 31008, Spain.
| | - M Luz Valero
- Proteomics Unit; Central Service for Experimental Research (SCSIE), University of Valencia. Dr Moliner 50, 46100 Burjassot, Spain.
| | - Laura Cantero
- Proteomics Unit; Central Service for Experimental Research (SCSIE), University of Valencia. Dr Moliner 50, 46100 Burjassot, Spain.
| | - Javier Muñoz
- Spanish National Cancer Research Centre (CNIO), Melchor Férnandez Almagro, 3, 28029 Madrid. Spain.
| | - Eduardo Zarzuela
- Spanish National Cancer Research Centre (CNIO), Melchor Férnandez Almagro, 3, 28029 Madrid. Spain.
| | - Fernando García
- Spanish National Cancer Research Centre (CNIO), Melchor Férnandez Almagro, 3, 28029 Madrid. Spain.
| | - Kerman Aloria
- Proteomics Core Facility-SGIKER, University of the Basque Country, UPV/EHU, 48940 Leioa, Spain.
| | - Javier Beaskoetxea
- Department of Biochemistry and Molecular Biology, University of the Basque Country, UPV/EHU, 48940 Leioa, Spain.
| | - Jesús M Arizmendi
- Department of Biochemistry and Molecular Biology, University of the Basque Country, UPV/EHU, 48940 Leioa, Spain.
| | - Rosana Navajas
- Proteomics Unit, Centro Nacional de Biotecnología-CSIC, Darwin 3, 28049 Madrid, Spain.
| | - Alberto Paradela
- Proteomics Unit, Centro Nacional de Biotecnología-CSIC, Darwin 3, 28049 Madrid, Spain.
| | - Paula Díez
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
- Proteomics Unit. Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Rosa Mª Dégano
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
- Proteomics Unit. Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Manuel Fuentes
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
- Proteomics Unit. Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Alberto Orfao
- Cancer Research Center. University of Salamanca-CSIC, IBSAL, 37007 Salamanca, Spain.
| | - Andrés García Montero
- Spanish National DNA Bank Carlos III, University of Salamanca, 37007 Salamanca, Spain.
| | - Alba Garin-Muga
- Proteomics, Genomics and Bioinformatics Unit, Center for Applied Medical Research, University of Navarra, Pamplona 31008, Spain.
| | - Fernando J Corrales
- Proteomics Unit, Centro Nacional de Biotecnología-CSIC, Darwin 3, 28049 Madrid, Spain.
| | - Manuel M Sánchez Del Pino
- Department of Biochemistry and Molecular Biology, University of Valencia. Dr Moliner 50, 46100 Burjassot, Spain.
- Biotechnology and Biomedicine Interdisciplinary Research Unit (ERI BIOTECMED), University of Valencia. Dr Moliner 50, 46100 Burjassot, Spain.
| |
Collapse
|
26
|
Zasada M, Lenart M, Rutkowska-Zapała M, Stec M, Durlak W, Grudzień A, Krzeczkowska A, Mól N, Pilch M, Siedlar M, Kwinta P. Analysis of PD-1 expression in the monocyte subsets from non-septic and septic preterm neonates. PLoS One 2017; 12:e0186819. [PMID: 29049359 PMCID: PMC5648248 DOI: 10.1371/journal.pone.0186819] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 10/09/2017] [Indexed: 12/12/2022] Open
Abstract
Programmed death-1 (PD-1) receptor system represents a part of recently reported immunoregulatory pathway. PD-1 is an immune checkpoint molecule, which plays an important role in downregulating the immune system proinflammatory activity. Until recently, PD-1 expression was not established on immune cells of the preterm infants. The study objectives were to confirm expression of the PD-1 receptors on the monocytes isolated from very low birth weight newborns (VLBW), and to analyze their expression during the first week of life and late-onset sepsis. Peripheral blood mononuclear cells were isolated from 76 VLBW patients without early-onset sepsis on their 5th day of life (DOL). PD-1 expression was determined on the monocyte subsets (classical, intermediate, non-classical) by flow cytometry. In case of late-onset sepsis (LOS), the same analysis was performed. Our results demonstrated that on the 5th DOL, PD-1 receptors were present in all the monocyte subsets. Children, whose mothers had received antenatal steroids, presented higher absolute numbers of non-classical monocytes with PD-1 expression. Infants born extremely preterm who later developed LOS, initially showed a lower percentage of PD-1 receptor-positive intermediate monocytes in comparison to neonates born very preterm. During LOS, we observed a rise in the percentage of classical monocytes with PD-1 expression. In case of septic shock or fatal outcome, there was a higher percentage and absolute count of intermediate monocytes with PD-1 expression in comparison to children without these complications. In conclusion, monocytes from VLBW children express PD-1 receptors. Antenatal steroid administration seems to induce PD-1 receptor expression in the non-classical monocytes. PD-1 might play a role in immunosuppressive phase of sepsis in the prematurely born children with septic shock and fatal outcome.
Collapse
Affiliation(s)
- Magdalena Zasada
- Department of Paediatrics, Institute of Paediatrics, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
- * E-mail:
| | - Marzena Lenart
- Department of Clinical Immunology, Institute of Paediatrics, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Magdalena Rutkowska-Zapała
- Department of Clinical Immunology, Institute of Paediatrics, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Małgorzata Stec
- Department of Clinical Immunology, Institute of Paediatrics, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Wojciech Durlak
- Department of Paediatrics, Institute of Paediatrics, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Andrzej Grudzień
- Department of Paediatrics, Institute of Paediatrics, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Agnieszka Krzeczkowska
- Department of Paediatrics, Institute of Paediatrics, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Nina Mól
- Department of Paediatrics, Institute of Paediatrics, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Marta Pilch
- Department of Paediatrics, Institute of Paediatrics, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Paediatrics, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Przemko Kwinta
- Department of Paediatrics, Institute of Paediatrics, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
27
|
Involvement of Monocyte Subsets in the Immunopathology of Giant Cell Arteritis. Sci Rep 2017; 7:6553. [PMID: 28747747 PMCID: PMC5529580 DOI: 10.1038/s41598-017-06826-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/23/2017] [Indexed: 12/24/2022] Open
Abstract
Monocytes/macrophages are critical in systemic and local inflammation in giant cell arteritis (GCA) and possibly in clinically overlapping polymyalgia rheumatica (PMR). Therefore, we aimed to understand the contribution of monocyte subsets and the CX3CR1-CX3CL1 and CCR2-CCL2 migratory pathways, to the pathology of GCA. Peripheral blood monocytes were enumerated in samples from newly-diagnosed, untreated GCA and PMR patients and after prednisone-induced remission. The distribution of classical (CD14brightCD16neg) and the more pro-inflammatory, intermediate (CD14brightCD16+) and non-classical (CD14dimCD16+) monocyte subsets was analysed by flow cytometry. The phenotype of macrophages in temporal artery biopsies (TABs) from GCA patients was studied by immunohistochemistry and immunofluorescence. A clear monocytosis was seen in newly diagnosed GCA and PMR patients caused by elevated numbers of classical monocytes. Prednisone treatment suppressed numbers of non-classical monocytes. Both chemokine CX3CL1 and CCL2 were highly expressed in the TAB. Most macrophages in the TAB of GCA patients expressed non-classical monocyte markers CD16 and CX3CR1 whereas co-localisation of CD16 with classical monocyte marker CCR2 was infrequent. In conclusion, we report an altered distribution of monocyte subsets in both GCA and PMR patients. The majority of macrophages in TABs of GCA patients were CD68 + CD16 + CX3CR1 + CCR2- and thereby resembled the phenotype of non-classical monocytes.
Collapse
|
28
|
Karwaciak I, Gorzkiewicz M, Bartosz G, Pulaski L. TLR2 activation induces antioxidant defence in human monocyte-macrophage cell line models. Oncotarget 2017; 8:54243-54264. [PMID: 28903338 PMCID: PMC5589577 DOI: 10.18632/oncotarget.17342] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 04/10/2017] [Indexed: 01/08/2023] Open
Abstract
When monocytes are recruited to inflammation/infection sites, extravasate and differentiate into macrophages, they encounter increasing levels of oxidative stress, both from exogenous and endogenous sources. In this study, we aimed to determine whether there are specific biochemical mechanisms responsible for an increase in oxidative stress resistance in differentiating macrophages. We performed experiments on in vitro cell line models of the monocyte-macrophage differentiation axis (less differentiated THP-1 cells and more differentiated Mono Mac 6 cells). At the same time, we verified the hypothesis that activating monocyte/macrophage innate immune response by pathogens (exemplified by stimulating the TLR2 pattern recognition receptor) would further strengthen cellular antioxidant defences. We found that resistance to exogenous oxidative stress increased substantially both during differentiation and upon activation of TLR2. This increase in antioxidant resistance was accompanied by decrease in free radical damage to cellular proteins. On the molecular level, this resistance was mediated especially by increased levels and activity of glutathione, glutathione-related antioxidant enzymes and Mn superoxide dismutase, as shown by gene expression assays, Western blotting and enzyme activity assays. Moreover, upon TLR2 activation additional molecular mechanisms came into play, conferring additional resistance levels even upon differentiated macrophage-like cells, mainly related to thioredoxin-linked antioxidant enzymes.
Collapse
Affiliation(s)
- Iwona Karwaciak
- Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodz, Poland
| | - Michal Gorzkiewicz
- Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodz, Poland.,Department of General Biophysics, Faculty of Biology and Environmental Sciences, University of Lodz, Lodz, Poland
| | - Grzegorz Bartosz
- Department of Molecular Biophysics, Faculty of Biology and Environmental Sciences, University of Lodz, Lodz, Poland
| | - Lukasz Pulaski
- Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodz, Poland.,Department of Molecular Biophysics, Faculty of Biology and Environmental Sciences, University of Lodz, Lodz, Poland
| |
Collapse
|
29
|
Jakob A, Mussotter F, Ohnesorge S, Dietz L, Pardo J, Haidl ID, Thierse HJ. Immunoproteomic identification and characterization of Ni 2+-regulated proteins implicates Ni 2+ in the induction of monocyte cell death. Cell Death Dis 2017; 8:e2684. [PMID: 28300831 PMCID: PMC5386519 DOI: 10.1038/cddis.2017.112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 12/19/2022]
Abstract
Nickel allergy is the most common cause of allergic reactions worldwide, with cutaneous and systemic effects potentially affecting multiple organs. Monocytes are precursors of not only macrophages but also dendritic cells, the most potent activators of nickel hypersensitivity. Monocytes are themselves important antigen-presenting cells, capable of nickel-specific T-cell activation in vivo and in vitro, in addition to being important for immediate innate immune inflammation. To elucidate early Ni2+-dependent inflammatory molecular mechanisms in human monocytes, a Ni2+-specific proteomic approach was applied. Quantitative two-dimensional (2D) differential gel electrophoresis and Delta2D software analyses coupled with matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) revealed that Ni2+ significantly regulated 56 protein species, of which 36 were analyzed by MALDI-MS. Bioinformatics analyses of all identified proteins resulted in Ni2+-associated functional annotation clusters, such as cell death, metal ion binding, and cytoskeletal remodeling. The involvement of Ni2+ in the induction of monocyte cell death, but not T-cell death, was observed at Ni2+ concentrations at or above 250 μM. Examination of caspase activity during Ni2+-mediated cell death revealed monocytic cell death independent of caspase-3 and -7 activity. However, confocal microscopy analysis demonstrated Ni2+-triggered cytoskeletal remodeling and nuclear condensation, characteristic of cellular apoptosis. Thus, Ni2+-specific peripheral blood mononuclear cell stimulation suggests monocytic cell death at Ni2+ concentrations at or above 250 μM, and monocytic effects on immune regulation at lower Ni2+ concentrations.
Collapse
Affiliation(s)
- Annika Jakob
- Laboratory for Immunology and Proteomics, Department of Dermatology and University Medical Center Mannheim, University of Heidelberg, Mannheim 68167, Germany
| | - Franz Mussotter
- German Federal Institute for Risk Assessment, Chemicals and Product Safety, Berlin 10589, Germany
| | - Stefanie Ohnesorge
- Laboratory for Immunology and Proteomics, Department of Dermatology and University Medical Center Mannheim, University of Heidelberg, Mannheim 68167, Germany.,Department of Molecular Immunology, Biology III, University of Freiburg and Max-Planck-Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Lisa Dietz
- Laboratory for Immunology and Proteomics, Department of Dermatology and University Medical Center Mannheim, University of Heidelberg, Mannheim 68167, Germany.,Functional Proteome Analysis, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Julian Pardo
- Aragón I+D Foundation (ARAID), Zaragoza, Spain.,Department of Microbiology, Preventive Medicine and Public Health, University of Zaragoza/IIS Aragón, Zaragoza, Spain.,Biomedical Research Center of Aragón (CIBA), Aragón Health Research Institute (IIS Aragón), University of Zaragoza, Zaragoza, Spain.,Nanoscience Institute of Aragon (INA), University of Zaragoza, Zaragoza, Spain
| | - Ian D Haidl
- Dalhousie Inflammation Group, Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Hermann-Josef Thierse
- Laboratory for Immunology and Proteomics, Department of Dermatology and University Medical Center Mannheim, University of Heidelberg, Mannheim 68167, Germany.,German Federal Institute for Risk Assessment, Chemicals and Product Safety, Berlin 10589, Germany.,Functional Proteome Analysis, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| |
Collapse
|
30
|
miR-125b controls monocyte adaptation to inflammation through mitochondrial metabolism and dynamics. Blood 2016; 128:3125-3136. [PMID: 27702798 DOI: 10.1182/blood-2016-02-697003] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 09/28/2016] [Indexed: 02/06/2023] Open
Abstract
Metabolic changes drive monocyte differentiation and fate. Although abnormal mitochondria metabolism and innate immune responses participate in the pathogenesis of many inflammatory disorders, molecular events regulating mitochondrial activity to control life and death in monocytes remain poorly understood. We show here that, in human monocytes, microRNA-125b (miR-125b) attenuates the mitochondrial respiration through the silencing of the BH3-only proapoptotic protein BIK and promotes the elongation of the mitochondrial network through the targeting of the mitochondrial fission process 1 protein MTP18, leading to apoptosis. Proinflammatory activation of monocyte-derived macrophages is associated with a concomitant increase in miR-125b expression and decrease in BIK and MTP18 expression, which lead to reduced oxidative phosphorylation and enhanced mitochondrial fusion. In a chronic inflammatory systemic disorder, CD14+ blood monocytes display reduced miR-125b expression as compared with healthy controls, inversely correlated with BIK and MTP18 messenger RNA expression. Our findings not only identify BIK and MTP18 as novel targets for miR-125b that control mitochondrial metabolism and dynamics, respectively, but also reveal a novel function for miR-125b in regulating metabolic adaptation of monocytes to inflammation. Together, these data unravel new molecular mechanisms for a proapoptotic role of miR-125b in monocytes and identify potential targets for interfering with excessive inflammatory activation of monocytes in inflammatory disorders.
Collapse
|
31
|
Dang TM, Wong WC, Ong SM, Li P, Lum J, Chen J, Poidinger M, Zolezzi F, Wong SC. MicroRNA expression profiling of human blood monocyte subsets highlights functional differences. Immunology 2015; 145:404-16. [PMID: 25707426 DOI: 10.1111/imm.12456] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 02/12/2015] [Accepted: 02/17/2015] [Indexed: 12/14/2022] Open
Abstract
Within human blood there are two subsets of monocytes that can be identified by differential expression of CD16. Although numerous phenotypic and functional differences between the subsets have been described, little is known of the mechanisms underlying the distinctive properties of the two subsets. MicroRNAs (miRNAs) are small non-coding RNAs that can regulate gene expression through promoting mRNA degradation or repressing translation, leading to alterations in cellular processes. Their potential influence on the functions of monocyte subsets has not been investigated. In this study, we employed microarray analysis to define the miRNA expression profile of human monocyte subsets. We identified 66 miRNAs that were differentially expressed (DE) between CD16(+) and CD16(-) monocytes. Gene ontology analysis revealed that the predicted targets of the DE miRNAs were predominantly associated with cell death and cellular movement. We validated the functional impacts of selected DE miRNAs in CD16(-) monocytes, over-expression of miR-432 significantly increases apoptosis, and inhibiting miR-19a significantly reduces cell motility. Furthermore, we found that miR-345, another DE miRNA directly targets the transcription factor RelA in monocytes, which resulted in the differential expression of RelA in monocyte subsets. This implicates miR-345 indirect regulation of many genes downstream of RelA, including important inflammatory mediators. Together, our data show that DE miRNAs could contribute substantially to regulating the functions of human blood monocytes.
Collapse
Affiliation(s)
- Truong-Minh Dang
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Wing-Cheong Wong
- Bioinformatic Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Siew-Min Ong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Peng Li
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Josephine Lum
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jinmiao Chen
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Michael Poidinger
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Francesca Zolezzi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Siew-Cheng Wong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
32
|
Malavez Y, Voss OH, Gonzalez-Mejia ME, Parihar A, Doseff AI. Distinct contribution of protein kinase Cδ and protein kinase Cε in the lifespan and immune response of human blood monocyte subpopulations. Immunology 2015; 144:611-20. [PMID: 25322815 DOI: 10.1111/imm.12412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 10/13/2014] [Accepted: 10/14/2014] [Indexed: 02/06/2023] Open
Abstract
Monocytes, key components of the immune system, are a heterogeneous population comprised of classical monocytes (CD16(-) ) and non-classical monocytes (CD16(+) ). Monocytes are short lived and undergo spontaneous apoptosis, unless stimulated. Dysregulation of monocyte numbers contribute to the pathophysiology of inflammatory diseases, yet the contribution of each subset remains poorly characterized. Protein kinase C (PKC) family members are central to monocyte biology; however, their role in regulating lifespan and immune function of CD16(-) and CD16(+) monocytes has not been studied. Here, we evaluated the contribution of PKCδ and PKCε in the lifespan and immune response of both monocyte subsets. We showed that CD16(+) monocytes are more susceptible to spontaneous apoptosis because of the increased caspase-3, -8 and -9 activities accompanied by higher kinase activity of PKCδ. Silencing of PKCδ reduced apoptosis in both CD16(+) and CD16(-) monocytes. CD16(+) monocytes express significantly higher levels of PKCε and produce more tumour necrosis factor-α in CD16(+) compared with CD16(-) monocytes. Silencing of PKCε affected the survival and tumour necrosis factor-α production. These findings demonstrate a complex network with similar topography, yet unique regulatory characteristics controlling lifespan and immune response in each monocyte subset, helping define subset-specific coordination programmes controlling monocyte function.
Collapse
Affiliation(s)
- Yadira Malavez
- Department of Molecular Genetics, Department of Internal Medicine, Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | | | | | | | | |
Collapse
|
33
|
Traunecker E, Gardner R, Fonseca JE, Polido-Pereira J, Seitz M, Villiger PM, Iezzi G, Padovan E. Blocking of LFA-1 enhances expansion of Th17 cells induced by human CD14(+) CD16(++) nonclassical monocytes. Eur J Immunol 2015; 45:1414-25. [PMID: 25678252 DOI: 10.1002/eji.201445100] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 12/12/2014] [Accepted: 02/06/2015] [Indexed: 01/07/2023]
Abstract
Among human peripheral blood (PB) monocyte (Mo) subsets, the classical CD14(++) CD16(-) (cMo) and intermediate CD14(++) CD16(+) (iMo) Mos are known to activate pathogenic Th17 responses, whereas the impact of nonclassical CD14(+) CD16(++) Mo (nMo) on T-cell activation has been largely neglected. The aim of this study was to obtain new mechanistic insights on the capacity of Mo subsets from healthy donors (HDs) to activate IL-17(+) T-cell responses in vitro, and assess whether this function was maintained or lost in states of chronic inflammation. When cocultured with autologous CD4(+) T cells in the absence of TLR-2/NOD2 agonists, PB nMos from HDs were more efficient stimulators of IL-17-producing T cells, as compared to cMo. These results could not be explained by differences in Mo lifespan and cytokine profiles. Notably, however, the blocking of LFA-1/ICAM-1 interaction resulted in a significant increase in the percentage of IL-17(+) T cells expanded in nMo/T-cell cocultures. As compared to HD, PB Mo subsets of patients with rheumatoid arthritis were hampered in their T-cell stimulatory capacity. Our new insights highlight the role of Mo subsets in modulating inflammatory T-cell responses and suggest that nMo could become a critical therapeutic target against IL-17-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Emmanuel Traunecker
- Department of Biomedicine (DBM), Basel University Hospital, Basel, Switzerland
| | - Rui Gardner
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Unidade de Investigação em Reumatologia, Instituto de Medicina Molecular da Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | | | | | - Michael Seitz
- Universitätsklinik für Rheumatologie, Klinische Immunologie und Allergologie, Inselspital, Bern, Switzerland
| | - Peter M Villiger
- Universitätsklinik für Rheumatologie, Klinische Immunologie und Allergologie, Inselspital, Bern, Switzerland
| | - Giandomenica Iezzi
- Department of Biomedicine (DBM), Cancer Immunotherapy, Institute of Surgical Research (ICFS), Basel University Hospital, Basel, Switzerland
| | - Elisabetta Padovan
- Department of Biomedicine (DBM), Cancer Immunotherapy, Institute of Surgical Research (ICFS), Basel University Hospital, Basel, Switzerland
| |
Collapse
|
34
|
Cox SN, Serino G, Sallustio F, Blasi A, Rossini M, Pesce F, Schena FP. Altered monocyte expression and expansion of non-classical monocyte subset in IgA nephropathy patients. Nephrol Dial Transplant 2015; 30:1122-232. [DOI: 10.1093/ndt/gfv017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 06/10/2014] [Indexed: 12/26/2022] Open
|
35
|
White GE, McNeill E, Channon KM, Greaves DR. Fractalkine promotes human monocyte survival via a reduction in oxidative stress. Arterioscler Thromb Vasc Biol 2014; 34:2554-62. [PMID: 25359863 PMCID: PMC4236230 DOI: 10.1161/atvbaha.114.304717] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Supplemental Digital Content is available in the text. Objective— The CX3C chemokine fractalkine (CX3CL1) has a critical role in the development of atherogenesis because apolipoprotein-E–deficient mice lacking CX3CL1 or its receptor CX3CR1 develop smaller plaques and polymorphisms in CX3CR1 are associated with altered risk of cardiovascular disease. CX3CR1 is found on numerous cell types involved in atherogenesis but seems to have a key role in monocyte function. We aimed to elucidate the role of CX3CL1 in human monocyte survival and determine the mechanism by which CX3CL1 spares monocytes from apoptosis. Approach and Results— Primary human monocytes were prepared from healthy donors and subjected to serum-starvation to induce spontaneous apoptosis. The addition of CX3CL1, but not other chemokines tested, promoted monocyte survival in a dose-dependent manner with full-length CX3CL1 (including the mucin stalk) having a more potent antiapoptotic effect than chemokine-domain CX3CL1. The prosurvival effect of CX3CL1 was evident in both monocyte subsets although nonclassical monocytes were more prone to spontaneous apoptosis. In addition, we found that the effect of CX3CL1 was independent of CX3CR1 genotype. Serum-starvation increased the level of intracellular reactive oxygen species, and this was reduced by the addition of CX3CL1. Inhibition of oxidative stress with an antioxidant prevented monocyte apoptosis, indicating that this is the dominant mechanism of cell death targeted by CX3CL1. Conclusions— CX3CL1 has a substantial and highly reproducible antiapoptotic effect on human monocytes, via a mechanism involving a reduction in oxidative stress. This suggests that CX3CL1 is likely to play a key role in human atherogenesis and may provide a novel therapeutic target in cardiovascular disease.
Collapse
Affiliation(s)
- Gemma E White
- From the Sir William Dunn School of Pathology (G.E.W., D.R.G.), Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, John Radcliffe Hospital (E.M., K.M.C.), and Wellcome Trust Centre for Human Genetics (E.M., K.M.C.), University of Oxford, Oxford, United Kingdom
| | - Eileen McNeill
- From the Sir William Dunn School of Pathology (G.E.W., D.R.G.), Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, John Radcliffe Hospital (E.M., K.M.C.), and Wellcome Trust Centre for Human Genetics (E.M., K.M.C.), University of Oxford, Oxford, United Kingdom
| | - Keith M Channon
- From the Sir William Dunn School of Pathology (G.E.W., D.R.G.), Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, John Radcliffe Hospital (E.M., K.M.C.), and Wellcome Trust Centre for Human Genetics (E.M., K.M.C.), University of Oxford, Oxford, United Kingdom
| | - David R Greaves
- From the Sir William Dunn School of Pathology (G.E.W., D.R.G.), Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, John Radcliffe Hospital (E.M., K.M.C.), and Wellcome Trust Centre for Human Genetics (E.M., K.M.C.), University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
36
|
Abstract
Key Points
In-depth regulome analysis of human monocyte subsets, including transcription and enhancer profiling. Description of metabolomic differences in human monocyte subsets.
Collapse
|
37
|
Das Mohapatra A, Panda SK, Pradhan AK, Prusty BK, Satapathy AK, Ravindran B. Filarial antigens mediate apoptosis of human monocytes through Toll-like receptor 4. J Infect Dis 2014; 210:1133-44. [PMID: 24737802 DOI: 10.1093/infdis/jiu208] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Apoptosis of several host cells induced by parasites/parasite products has been investigated in human filariasis to understand immune hyporesponsiveness. However, apoptosis of monocytes-one of the major antigen presenting cells in peripheral circulation, which are chronically exposed to filarial antigens in infected subjects-is yet to be understood. METHODS Apoptosis of human monocytes with Brugia pahangi antigen (BpA) was demonstrated by scoring several apoptotic markers using flow cytometry. Ability of BpA and plasma of infected subjects to suppress lymphocyte proliferation was demonstrated by (3)H thymidine incorporation assay and carboxyfluorescein succinimidyl ester dilution assay. RESULTS BpA induced significant apoptosis of normal human monocytes, primarily through Toll-like receptor 4 (TLR4), and suppressed phytohemagglutinin (PHA)-mediated proliferation of normal human T lymphocytes. However, monocytes of Wuchereria bancrofti-infected subjects were resistant to BpA-induced apoptosis. Plasma of infected subjects also mediated apoptosis of normal monocytes, presumably due to circulating filarial antigens, and resulted in inhibition of PHA-induced proliferation. CONCLUSION Normal human monocytes were found to be qualitatively different from those of filariasis-infected subjects; whereas filarial antigens mediate apoptosis of normal human monocytes through TLR4, those of infected subjects were found to be resistant.
Collapse
Affiliation(s)
| | | | | | | | - Ashok Kumar Satapathy
- Department of Immunology, Regional Medical Research Center, Indian Council of Medical Research, Bhubaneswar, India
| | | |
Collapse
|
38
|
Fairbairn L, Kapetanovic R, Beraldi D, Sester DP, Tuggle CK, Archibald AL, Hume DA. Comparative analysis of monocyte subsets in the pig. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:6389-96. [PMID: 23667115 DOI: 10.4049/jimmunol.1300365] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Human and mouse monocyte can be divided into two different subpopulations based on surface marker expression: CD14/16 and Ly6C/CX3CR1, respectively. Monocyte subpopulations in the pig were identified based on reciprocal expression of CD14 and the scavenger receptor CD163. The two populations, CD14(hi)-CD163(low) and CD14(low)-CD163(hi), show approximately equal abundance in the steady-state. Culture of pig PBMCs in CSF1 indicates that the two populations are a maturation series controlled by this growth factor. Gene expression in pig monocyte subpopulations was profiled using the newly developed and annotated pig whole genome snowball microarray. Previous studies have suggested a functional equivalence between human and mouse subsets, but certain genes such as CD36, CLEC4E, or TREM-1 showed human-specific expression. The same genes were expressed selectively in pig monocyte subsets. However, the profiles suggest that the pig CD14(low)-CD163(high) cells are actually equivalent to intermediate human monocytes, and there is no CD14(-) CD16(+) "nonclassical" population. The results are discussed in terms of the relevance of the pig as a model for understanding human monocyte function.
Collapse
Affiliation(s)
- Lynsey Fairbairn
- The Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
39
|
Wong KL, Yeap WH, Tai JJY, Ong SM, Dang TM, Wong SC. The three human monocyte subsets: implications for health and disease. Immunol Res 2012; 53:41-57. [PMID: 22430559 DOI: 10.1007/s12026-012-8297-3] [Citation(s) in RCA: 500] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Human blood monocytes are heterogeneous and conventionally subdivided into two subsets based on CD16 expression. Recently, the official nomenclature subdivides monocytes into three subsets, the additional subset arising from the segregation of the CD16+ monocytes into two based on relative expression of CD14. Recent whole genome analysis reveal that specialized functions and phenotypes can be attributed to these newly defined monocyte subsets. In this review, we discuss these recent results, and also the description and utility of this new segregation in several disease conditions. We also discuss alternative markers for segregating the monocyte subsets, for example using Tie-2 and slan, which do not necessarily follow the official method of segregating monocyte subsets based on relative CD14 and CD16 expressions.
Collapse
Affiliation(s)
- Kok Loon Wong
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #04/04 Immunos, Biopolis, Singapore
| | | | | | | | | | | |
Collapse
|
40
|
Tucci P. Caloric restriction: is mammalian life extension linked to p53? Aging (Albany NY) 2012; 4:525-34. [PMID: 22983298 PMCID: PMC3461340 DOI: 10.18632/aging.100481] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 08/21/2012] [Indexed: 12/21/2022]
Abstract
Caloric restriction, that is limiting food intake, is recognized in mammals as the best characterized and most reproducible strategy for extending lifespan, retarding physiological aging and delaying the onset of age-associated diseases. The aim of this mini review is to argue that p53 is the connection in the abilities of both the Sirt-1 pathway and the TOR pathway to impact on longevity of cells and organisms. This novel, lifespan regulating function of p53 may be evolutionarily more ancient than its relatively recent role in apoptosis and tumour suppression, and is likely to provide many new insights into lifespan modulation.
Collapse
Affiliation(s)
- Paola Tucci
- Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, UK.
| |
Collapse
|
41
|
Perrin S, Cremer J, Roll P, Faucher O, Ménard A, Reynes J, Dellamonica P, Naqvi A, Micallef J, Jouve E, Tamalet C, Solas C, Pissier C, Arnoux I, Nicolino-Brunet C, Espinosa L, Lévy N, Kaspi E, Robaglia-Schlupp A, Poizot-Martin I, Cau P. HIV-1 infection and first line ART induced differential responses in mitochondria from blood lymphocytes and monocytes: the ANRS EP45 "Aging" study. PLoS One 2012; 7:e41129. [PMID: 22829920 PMCID: PMC3400613 DOI: 10.1371/journal.pone.0041129] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 06/18/2012] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The ANRS EP45 "Aging" study investigates the cellular mechanisms involved in the accelerated aging of HIV-1 infected and treated patients. The data reported focus on mitochondria, organelles known to be involved in cell senescence. METHODS 49 HIV-1 infected patients untreated with antiretroviral therapy, together with 49 seronegative age- and sex-matched control subjects and 81 HIV-1 infected and treated patients, were recruited by 3 AIDS centres (Marseille, Montpellier, Nice; France; http://clinicaltrials.gov/, NCT01038999). In more than 88% of treated patients, the viral load was <40 copies/ml and the CD4+ cell count was >500/mm(3). ROS (reactive oxygen species) production and ΔΨm (inner membrane potential) were measured by flow cytometry in blood lymphocytes and monocytes (functional parameters). Three mitochondrial network quantitative morphological parameters were computed using confocal microscopy and image analysis. Three PBMC mitochondrial proteins (porin and subunits 2 and 4 of cytochrome C oxidase encoded by mtDNA or nuclear DNA, respectively) were analysed by western blotting. RESULTS Quantitative changes in PBMC mitochondrial proteins were not induced by either HIV-1 infection or ART. Discriminant analysis integrating functional (ROS production and ΔΨm) or morphological (network volume density, fragmentation and branching) parameters revealed HIV-1 infection and ART differential effects according to cell type. First line ART tended to rescue lymphocyte mitochondrial parameters altered by viral infection, but induced slight changes in monocytes. No statistical difference was found between the effects of three ART regimens on mitochondrial parameters. Correlations between functional parameters and viral load confirmed the damaging effects of HIV-1 in lymphocyte mitochondria. CONCLUSIONS In patients considered to be clinically stable, mitochondria exhibited functional and morphological modifications in PBMCs resulting from either direct or indirect effects of HIV-1 infection (lymphocytes), or from first line ART (monocytes). Together with other tissue impairments, these changes may contribute to global aging.
Collapse
Affiliation(s)
- Sophie Perrin
- Inserm UMR 910, Aix-Marseille Univ, Marseille, France
- Laboratoire de Biologie Cellulaire, CHU (Centre Hospitalier Universitaire) La Timone AP-HM (Assistance Publique - Hôpitaux de Marseille), Marseille, France
| | - Jonathan Cremer
- Inserm UMR 910, Aix-Marseille Univ, Marseille, France
- Laboratoire de Biologie Cellulaire, CHU (Centre Hospitalier Universitaire) La Timone AP-HM (Assistance Publique - Hôpitaux de Marseille), Marseille, France
| | - Patrice Roll
- Inserm UMR 910, Aix-Marseille Univ, Marseille, France
- Laboratoire de Biologie Cellulaire, CHU (Centre Hospitalier Universitaire) La Timone AP-HM (Assistance Publique - Hôpitaux de Marseille), Marseille, France
| | - Olivia Faucher
- Service d’Immuno-Hématologie Clinique, CHU (Centre Hospitalier Universitaire) Sainte Marguerite AP-HM (Assistance Publique - Hôpitaux de Marseille), Marseille, France
| | - Amélie Ménard
- Service d’Immuno-Hématologie Clinique, CHU (Centre Hospitalier Universitaire) Sainte Marguerite AP-HM (Assistance Publique - Hôpitaux de Marseille), Marseille, France
| | - Jacques Reynes
- Département des Maladies Infectieuses et Tropicales, CHRU (Centre Hospitalier Régional et Universitaire) Gui-de-Chauliac, Montpellier, France
| | - Pierre Dellamonica
- Service d’Infectiologie, CHU (Centre Hospitalier Universitaire) L’Archet 1, Nice, France
| | - Alissa Naqvi
- Service d’Infectiologie, CHU (Centre Hospitalier Universitaire) L’Archet 1, Nice, France
| | - Joëlle Micallef
- Centre d’Investigation Clinique - Unité de Pharmacologie Clinique et d’Evaluations Thérapeutiques (CIC-UPCET), CHU (Centre Hospitalier Universitaire) La Timone AP-HM (Assistance Publique - Hôpitaux de Marseille), Marseille, France
| | - Elisabeth Jouve
- Centre d’Investigation Clinique - Unité de Pharmacologie Clinique et d’Evaluations Thérapeutiques (CIC-UPCET), CHU (Centre Hospitalier Universitaire) La Timone AP-HM (Assistance Publique - Hôpitaux de Marseille), Marseille, France
| | - Catherine Tamalet
- Fédération de Microbiologie Clinique, CHU (Centre Hospitalier Universitaire) La Timone AP-HM (Assistance Publique - Hôpitaux de Marseille), Marseille, France
- URMITE CNRS-IRD UMR 6236, Aix-Marseille Univ, Marseille, France
| | - Caroline Solas
- Laboratoire de Pharmacocinétique et de Toxicologie, CHU (Centre Hospitalier Universitaire) La Timone AP-HM (Assistance Publique - Hôpitaux de Marseille), Marseille, France
- Inserm UMR U911, Aix-Marseille Univ, Marseille, France
| | - Christel Pissier
- Laboratoire de Pharmacocinétique et de Toxicologie, CHU (Centre Hospitalier Universitaire) La Timone AP-HM (Assistance Publique - Hôpitaux de Marseille), Marseille, France
- Inserm UMR U911, Aix-Marseille Univ, Marseille, France
| | - Isabelle Arnoux
- Laboratoire d’Hématologie, CHU (Centre Hospitalier Universitaire) La Timone AP-HM (Assistance Publique - Hôpitaux de Marseille), Marseille, France
| | - Corine Nicolino-Brunet
- Laboratoire d’Hématologie, CHU (Centre Hospitalier Universitaire) La Conception AP-HM (Assistance Publique - Hôpitaux de Marseille), Marseille, France
| | - Léon Espinosa
- URMITE CNRS-IRD UMR 6236, Aix-Marseille Univ, Marseille, France
| | - Nicolas Lévy
- Inserm UMR 910, Aix-Marseille Univ, Marseille, France
- Laboratoire de Génetique Moléculaire, CHU (Centre Hospitalier Universitaire) La Timone AP-HM (Assistance Publique - Hôpitaux de Marseille), Marseille, France
| | - Elise Kaspi
- Inserm UMR 910, Aix-Marseille Univ, Marseille, France
- Laboratoire de Biologie Cellulaire, CHU (Centre Hospitalier Universitaire) La Timone AP-HM (Assistance Publique - Hôpitaux de Marseille), Marseille, France
| | - Andrée Robaglia-Schlupp
- Inserm UMR 910, Aix-Marseille Univ, Marseille, France
- Laboratoire de Biologie Cellulaire, CHU (Centre Hospitalier Universitaire) La Timone AP-HM (Assistance Publique - Hôpitaux de Marseille), Marseille, France
| | - Isabelle Poizot-Martin
- Service d’Immuno-Hématologie Clinique, CHU (Centre Hospitalier Universitaire) Sainte Marguerite AP-HM (Assistance Publique - Hôpitaux de Marseille), Marseille, France
| | - Pierre Cau
- Inserm UMR 910, Aix-Marseille Univ, Marseille, France
- Laboratoire de Biologie Cellulaire, CHU (Centre Hospitalier Universitaire) La Timone AP-HM (Assistance Publique - Hôpitaux de Marseille), Marseille, France
- * E-mail:
| |
Collapse
|
42
|
Frankenberger M, Hofer TPJ, Marei A, Dayyani F, Schewe S, Strasser C, Aldraihim A, Stanzel F, Lang R, Hoffmann R, Prazeres da Costa O, Buch T, Ziegler-Heitbrock L. Transcript profiling of CD16-positive monocytes reveals a unique molecular fingerprint. Eur J Immunol 2012; 42:957-74. [PMID: 22531920 DOI: 10.1002/eji.201141907] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
CD16-positive (CD14(++) CD16(+) and CD14(+) CD16(++) ) monocytes have unique features with respect to phenotype and function. We have used transcriptional profiling for comparison of CD16-positive monocytes and classical monocytes. We show herein that 187 genes are greater than fivefold differentially expressed, including 90 genes relevant to immune response and inflammation. Hierarchical clustering of data for monocyte subsets and CD1c(+) myeloid blood dendritic cells (DCs) demonstrate that CD16-positive cells are more closely related to classical monocytes than to DCs. Reverse transcriptase polymerase chain reaction for ten genes with the strongest differential expression confirmed the pattern including a lower messenger RNA level for CD14, CD163, and versican in CD16-positive monocytes. The pattern was similar for CD16-positive monocytes at rest and after exercise mobilization from the marginal pool. By contrast, alveolar macrophages, small sputum macrophages, breast milk macrophages, and synovial macrophages all showed a different pattern. When monocyte-derived macrophages (MDMs) were generated from CD16-positive monocytes by culture with macrophage colony-stimulating factor in vitro, then the MDMs maintained properties of their progeny with lower expression of CD14, CD163, and versican compared with CD14(++) CD16(-) MDMs. Furthermore, CD16-positive MDMs showed a higher phagocytosis for opsonized Escherichia coli. The data demonstrate that CD16-positive monocytes form a distinct type of cell, which gives rise to a distinct macrophage phenotype.
Collapse
Affiliation(s)
- Marion Frankenberger
- Comprehensive Pneumology Center, Helmholtz Zentrum München, Ludwig-Maximilians University and Asklepios Fachklinik Gauting, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Helmin-Basa A, Czerwionka-Szaflarska M, Bala G, Szaflarska-Poplawska A, Mierzwa G, Gackowska L, Kubiszewska I, Eljaszewicz A, Marszalek A, Michalkiewicz J. Expression of adhesion and activation molecules on circulating monocytes in children with Helicobacter pylori infection. Helicobacter 2012; 17:181-6. [PMID: 22515355 DOI: 10.1111/j.1523-5378.2011.00932.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
OBJECTIVES The aim of this study was to assess the cell surface expression of adhesion (CD11a, CD11b, CD11c, CD18, CD54, and CD58) and activation (CD14, HLA-DR, and CD16) molecules on the circulating monocytes in Helicobacter pylori (H. pylori)-infected and noninfected children with gastritis, with the goal of comparing the results with those obtained from the controls. MATERIALS AND METHODS Ninety-four children were studied: 47 of them with H. pylori infection (of those 25 children after the failure of eradication therapy) and 26 children with gastritis where H. pylori infection was excluded, as well as 21 controls. H. pylori infection status was assessed based on [¹³C] urea breath test, rapid urease test, and histology. Analysis of the monocyte surface molecule expression was carried out by flow cytometry. RESULTS H. pylori-infected children and children who experienced a failure of the eradication therapy differed significantly in the expression of adhesion and activation molecule on circulating monocytes. A decrease, both in the proportion of CD11c- and CD14-bearing monocytes, and the expression of CD11c and CD14 molecules on circulating monocytes, was found in children in whom the eradication therapy failed (p < .05). Low expression of CD11b (p = .04) and CD18 (p = .02) integrins on monocytes was also observed. Additionally, the percentage of HLA-DR-bearing monocytes was decreased (p = .04), while the CD16 density receptor was increased (p = .02). Compared with the controls, low percentage of CD16-positive monocytes was noted in noninfected children with gastritis (p = .01). CONCLUSION H. pylori eradication therapy in children causes inhibition of inflammatory response via a reduction in CD11b, CD11c, and CD18 beta2 integrin monocyte expression.
Collapse
Affiliation(s)
- Anna Helmin-Basa
- Department of Immunology, Collegium Medicum Nicolaus Copernicus University, M. Sklodowskiej-Curie 9, Bydgoszcz 85-094, Poland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
A defect of CD16-positive monocytes can occur without disease. Immunobiology 2012; 218:169-74. [PMID: 22459269 DOI: 10.1016/j.imbio.2012.02.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 02/20/2012] [Accepted: 02/20/2012] [Indexed: 12/11/2022]
Abstract
The CD16-positive monocytes have been first described in 1988 but to date no selective defect in the number of these cells in blood has been reported. We now describe a family in which three of four siblings lack both CD16-positive monocyte subsets, i.e. the nonclassical and the intermediate monocytes. All three had CD16-positive monocytes of 2 cells/μl or less as compared to 52±18 cells/μl in healthy controls. The index case was affected by recurrent pleural effusion and infections and had evidence of an auto-inflammatory condition but no mutation of any of the relevant candidate genes. The other two siblings without CD16-positive monocytes were apparently healthy. There was no defect in serum M-CSF levels and no mutation in the M-CSF and M-CSFR genes. The data indicate that the absence of CD16-positive monocytes in blood does not lead to disease.
Collapse
|
45
|
Bucur O, Stancu AL, Khosravi-Far R, Almasan A. Analysis of apoptosis methods recently used in Cancer Research and Cell Death & Disease publications. Cell Death Dis 2012; 3:e263. [PMID: 22297295 PMCID: PMC3288344 DOI: 10.1038/cddis.2012.2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Abstract
The strong interest in cell death, and the shift in emphasis from basic mechanisms to translational aspects fostered the launch last year of the new sister journal of Cell Death and Differentiation, named Cell Death and Disease, to reflect its stronger focus towards clinical applications. Here, we review that first year of activity, which reflects an enthusiastic response by the scientific community. On the basis of this, we now launch two novel initiatives, the start of a new section dedicated to cancer metabolism and the opening of a new editorial office in Shanghai.
Collapse
|
47
|
Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood 2011; 118:e16-31. [PMID: 21653326 DOI: 10.1182/blood-2010-12-326355] [Citation(s) in RCA: 769] [Impact Index Per Article: 54.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
New official nomenclature subdivides human monocytes into 3 subsets: the classical (CD14(++)CD16(-)), intermediate (CD14(++)CD16(+)), and nonclassical (CD14(+)CD16(++)) monocytes. This introduces new challenges, as monocyte heterogeneity is mostly understood based on 2 subsets, the CD16(-) and CD16(+) monocytes. Here, we comprehensively defined the 3 circulating human monocyte subsets using microarray, flow cytometry, and cytokine production analysis. We find that intermediate monocytes expressed a large majority (87%) of genes and surface proteins at levels between classical and nonclassical monocytes. This establishes their intermediary nature at the molecular level. We unveil the close relationship between the intermediate and nonclassic monocytes, along with features that separate them. Intermediate monocytes expressed highest levels of major histocompatibility complex class II, GFRα2 and CLEC10A, whereas nonclassic monocytes were distinguished by cytoskeleton rearrangement genes, inflammatory cytokine production, and CD294 and Siglec10 surface expression. In addition, we identify new features for classic monocytes, including AP-1 transcription factor genes, CLEC4D and IL-13Rα1 surface expression. We also find circumstantial evidence supporting the developmental relationship between the 3 subsets, including gradual changes in maturation genes and surface markers. By comprehensively defining the 3 monocyte subsets during healthy conditions, we facilitate target identification and detailed analyses of aberrations that may occur to monocyte subsets during diseases.
Collapse
|