1
|
Zhao L, Ni B, Li J, Liu R, Zhang Q, Zheng Z, Yang W, Yu W, Bi L. Evaluation of the impact of customized serum-free culture medium on the production of clinical-grade human umbilical cord mesenchymal stem cells: insights for future clinical applications. Stem Cell Res Ther 2024; 15:327. [PMID: 39334391 PMCID: PMC11438183 DOI: 10.1186/s13287-024-03949-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The selection of suitable culture medium is critical for achieving good clinical outcomes in cell therapy. To support the commercial application of stem cell therapy, customized culture media not only need to promote stem cell proliferation, but also need to save costs and meet industrial requirements for inter-batch consistency, efficacy, and biosafety. In this study, we developed a series of serum-free media (SFM) and elucidated the effects between different SFM, as well as between SFM and serum-containing meida (SCM), on human umbilical cord mesenchymal stem cells (hUC-MSCs) phenotype and function. We analyze and emphasize from the perspectives of clinical and commercial application why research on customized culture media is critical for the success of enterprises developing novel cellular therapeutics. METHODS We cultured hUC-MSCs with identical cell seeding densities in different formulations of SFM and SCM until passage 10 and examined the changes in cell phenotype and function. We analyzed the results with the commercial application requirments of the cellular therapy industry to assess the potential impact of customized culture media on inter-batch consistency, efficacy, stability, biosafety, and cost-effectiveness of industrial-scale cell production. RESULTS hUC-MSCs cultured in SCM and SFM exhibit consistent cell morphology and surface molecule expression, but hUC-MSCs cultured in SFM demonstrate higher activity, superior proliferative capacity, and greater stability. Furthermore, hUC-MSCs cultured in different SFM exhibit differences in cell activity, proliferative capacity, senescent rate, and S/M ratio of cell cycle, while maintaining a normal karyotype after long-term in vitro cultivation. Moreover, we found that hUC-MSCs cultured in different media exhibit variations in paracrine capacity and in their support of hematopoietic stem cell (HSC) self-renewal. CONCLUSION Considering the substantial funding and time required for cell-based drug development, our results underscore the importances of comprehensively optimizing the composition of medium for the specific disease prior to conducting clinical trials of cell-based therapies. The criteria for selecting culture medium should be based on the requirements of the target disease for cellular function. In addition, we provide a way to formulate different customized SFM, which is beneficial for the development of cell therapy industry.
Collapse
Affiliation(s)
- Lan Zhao
- Guangzhou National Laboratory, Guangzhou, 510005, People's Republic of China
| | - Beibei Ni
- Vaccine Research Institute, Cell-Gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China
| | - Jinqing Li
- Division of Hematology and Oncology, Department of Geriatrics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People's Republic of China
| | - Rui Liu
- Guangzhou National Laboratory, Guangzhou, 510005, People's Republic of China
| | - Qi Zhang
- Vaccine Research Institute, Cell-Gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China
| | - Zhuangbin Zheng
- Guangzhou National Laboratory, Guangzhou, 510005, People's Republic of China
| | - Wenjuan Yang
- Department of Hematology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China.
| | - Wei Yu
- Guangzhou National Laboratory, Guangzhou, 510005, People's Republic of China.
| | - Lijun Bi
- Guangzhou National Laboratory, Guangzhou, 510005, People's Republic of China.
| |
Collapse
|
2
|
Jovanovic VM, Narisu N, Bonnycastle LL, Tharakan R, Mesch KT, Glover HJ, Yan T, Sinha N, Sen C, Castellano D, Yang S, Blivis D, Ryu S, Bennett DF, Rosales-Soto G, Inman J, Ormanoglu P, LeClair CA, Xia M, Schneider M, Hernandez-Ochoa EO, Erdos MR, Simeonov A, Chen S, Collins FS, Doege CA, Tristan CA. Scalable Hypothalamic Arcuate Neuron Differentiation from Human Pluripotent Stem Cells Suitable for Modeling Metabolic and Reproductive Disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.601062. [PMID: 39005353 PMCID: PMC11244856 DOI: 10.1101/2024.06.27.601062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The hypothalamus, composed of several nuclei, is essential for maintaining our body's homeostasis. The arcuate nucleus (ARC), located in the mediobasal hypothalamus, contains neuronal populations with eminent roles in energy and glucose homeostasis as well as reproduction. These neuronal populations are of great interest for translational research. To fulfill this promise, we used a robotic cell culture platform to provide a scalable and chemically defined approach for differentiating human pluripotent stem cells (hPSCs) into pro-opiomelanocortin (POMC), somatostatin (SST), tyrosine hydroxylase (TH) and gonadotropin-releasing hormone (GnRH) neuronal subpopulations with an ARC-like signature. This robust approach is reproducible across several distinct hPSC lines and exhibits a stepwise induction of key ventral diencephalon and ARC markers in transcriptomic profiling experiments. This is further corroborated by direct comparison to human fetal hypothalamus, and the enriched expression of genes implicated in obesity and type 2 diabetes (T2D). Genome-wide chromatin accessibility profiling by ATAC-seq identified accessible regulatory regions that can be utilized to predict candidate enhancers related to metabolic disorders and hypothalamic development. In depth molecular, cellular, and functional experiments unveiled the responsiveness of the hPSC-derived hypothalamic neurons to hormonal stimuli, such as insulin, neuropeptides including kisspeptin, and incretin mimetic drugs such as Exendin-4, highlighting their potential utility as physiologically relevant cellular models for disease studies. In addition, differential glucose and insulin treatments uncovered adaptability within the generated ARC neurons in the dynamic regulation of POMC and insulin receptors. In summary, the establishment of this model represents a novel, chemically defined, and scalable platform for manufacturing large numbers of hypothalamic arcuate neurons and serves as a valuable resource for modeling metabolic and reproductive disorders.
Collapse
Affiliation(s)
- Vukasin M. Jovanovic
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation Rockville, MD 20850, USA
- Hypothalamus Consortium
| | - Narisu Narisu
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Hypothalamus Consortium
| | - Lori L. Bonnycastle
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Hypothalamus Consortium
| | - Ravi Tharakan
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation Rockville, MD 20850, USA
| | - Kendall T. Mesch
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation Rockville, MD 20850, USA
- Hypothalamus Consortium
| | - Hannah J. Glover
- Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
- Hypothalamus Consortium
| | - Tingfen Yan
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Hypothalamus Consortium
| | - Neelam Sinha
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Hypothalamus Consortium
| | - Chaitali Sen
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation Rockville, MD 20850, USA
- Hypothalamus Consortium
| | - David Castellano
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation Rockville, MD 20850, USA
| | - Shu Yang
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation Rockville, MD 20850, USA
| | - Dvir Blivis
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation Rockville, MD 20850, USA
| | - Seungmi Ryu
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation Rockville, MD 20850, USA
| | - Daniel F. Bennett
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Giovanni Rosales-Soto
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Jason Inman
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation Rockville, MD 20850, USA
| | - Pinar Ormanoglu
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation Rockville, MD 20850, USA
| | - Christopher A. LeClair
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation Rockville, MD 20850, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation Rockville, MD 20850, USA
| | - Martin Schneider
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Erick O. Hernandez-Ochoa
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Michael R. Erdos
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Hypothalamus Consortium
| | - Anton Simeonov
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation Rockville, MD 20850, USA
| | - Shuibing Chen
- Department of Surgery, Center for Genomic Health, Weill Cornell Medicine, New York, NY 10065, USA
- Hypothalamus Consortium
| | - Francis S. Collins
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Hypothalamus Consortium
| | - Claudia A. Doege
- Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
- Hypothalamus Consortium
| | - Carlos A. Tristan
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation Rockville, MD 20850, USA
- Hypothalamus Consortium
| |
Collapse
|
3
|
Radoszkiewicz K, Hribljan V, Isakovic J, Mitrecic D, Sarnowska A. Critical points for optimizing long-term culture and neural differentiation capacity of rodent and human neural stem cells to facilitate translation into clinical settings. Exp Neurol 2023; 363:114353. [PMID: 36841464 DOI: 10.1016/j.expneurol.2023.114353] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/03/2023] [Accepted: 02/18/2023] [Indexed: 02/27/2023]
Abstract
Despite several decades of research on the nature and functional properties of neural stem cells, which brought great advances in regenerative medicine, there is still a plethora of ambiguous protocols and interpretations linked to their applications. Here, we present a whole spectrum of protocol elements that should be standardized in order to obtain viable cell cultures and facilitate their translation into clinical settings. Additionally, this review also presents outstanding limitations and possible problems to be encountered when dealing with protocol optimization. Most importantly, we also outline the critical points that should be considered before starting any experiments utilizing neural stem cells or interpreting their results.
Collapse
Affiliation(s)
- Klaudia Radoszkiewicz
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5 Street, 02-106 Warsaw, Poland
| | - Valentina Hribljan
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, Zagreb, Croatia
| | - Jasmina Isakovic
- Omnion Research International Ltd, Heinzelova 4, 10000 Zagreb, Croatia
| | - Dinko Mitrecic
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, Zagreb, Croatia
| | - Anna Sarnowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5 Street, 02-106 Warsaw, Poland.
| |
Collapse
|
4
|
Chavoshinezhad S, Zibaii MI, Seyed Nazari MH, Ronaghi A, Asgari Taei A, Ghorbani A, Pandamooz S, Salehi MS, Valian N, Motamedi F, Haghparast A, Dargahi L. Optogenetic stimulation of entorhinal cortex reveals the implication of insulin signaling in adult rat's hippocampal neurogenesis. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110344. [PMID: 33964323 DOI: 10.1016/j.pnpbp.2021.110344] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/28/2021] [Accepted: 05/02/2021] [Indexed: 12/29/2022]
Abstract
Adult neurogenesis in the hippocampal dentate gyrus plays a critical role in learning and memory. Projections originating from entorhinal cortex, known as the perforant pathway, provide the main input to the dentate gyrus and promote neurogenesis. However, neuromodulators and molecular changes mediating neurogenic effects of this pathway are not yet fully understood. Here, by means of an optogenetic approach, we investigated neurogenesis and synaptic plasticity in the hippocampus of adult rats induced by stimulation of the perforant pathway. The lentiviruses carrying hChR2 (H134R)-mCherry gene under the control of the CaMKII promoter were injected into the medial entorhinal cortex region of adult rats. After 21 days, the entorhinal cortex region was exposed to the blue laser (473 nm) for five consecutive days (30 min/day). The expression of synaptic plasticity and neurogenesis markers in the hippocampus were evaluated using molecular and histological approaches. In parallel, the changes in the gene expression of insulin and its signaling pathway, trophic factors, and components of mitochondrial biogenesis were assessed. Our results showed that optogenetic stimulation of the entorhinal cortex promotes hippocampal neurogenesis and synaptic plasticity concomitant with the increased levels of insulin mRNA and its signaling markers, neurotrophic factors, and activation of mitochondrial biogenesis. These findings suggest that effects of perforant pathway stimulation on the hippocampus, at least in part, are mediated by insulin increase in the dentate gyrus and subsequently activation of its downstream signaling pathway.
Collapse
Affiliation(s)
- Sara Chavoshinezhad
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | | | | | - Abdolaziz Ronaghi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afsaneh Asgari Taei
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Ghorbani
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Sareh Pandamooz
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Valian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereshteh Motamedi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Bhattacharya A, Choi WWY, Muffat J, Li Y. Modeling Developmental Brain Diseases Using Human Pluripotent Stem Cells-Derived Brain Organoids - Progress and Perspective. J Mol Biol 2021; 434:167386. [PMID: 34883115 DOI: 10.1016/j.jmb.2021.167386] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023]
Abstract
Developmental brain diseases encompass a group of conditions resulting from genetic or environmental perturbations during early development. Despite the increased research attention in recent years following recognition of the prevalence of these diseases, there is still a significant lack of knowledge of their etiology and treatment options. The genetic and clinical heterogeneity of these diseases, in addition to the limitations of experimental animal models, contribute to this difficulty. In this regard, the advent of brain organoid technology has provided a new means to study the cause and progression of developmental brain diseases in vitro. Derived from human pluripotent stem cells, brain organoids have been shown to recapitulate key developmental milestones of the early human brain. Combined with technological advancements in genome editing, tissue engineering, electrophysiology, and multi-omics analysis, brain organoids have expanded the frontiers of human neurobiology, providing valuable insight into the cellular and molecular mechanisms of normal and pathological brain development. This review will summarize the current progress of applying brain organoids to model human developmental brain diseases and discuss the challenges that need to be overcome to further advance their utility.
Collapse
Affiliation(s)
- Afrin Bhattacharya
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; The University of Toronto, Department of Molecular Genetics, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Wendy W Y Choi
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; The University of Toronto, Department of Molecular Genetics, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Julien Muffat
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; The University of Toronto, Department of Molecular Genetics, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Program in Neurosciences and Mental Health, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Yun Li
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; The University of Toronto, Department of Molecular Genetics, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
6
|
Mor ME, Harvey A, Familari M, St Clair-Glover M, Viventi S, de Iongh RU, Cameron FJ, Dottori M. Neural differentiation medium for human pluripotent stem cells to model physiological glucose levels in human brain. Brain Res Bull 2021; 173:141-149. [PMID: 34022288 DOI: 10.1016/j.brainresbull.2021.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 05/05/2021] [Accepted: 05/17/2021] [Indexed: 12/30/2022]
Abstract
Cortical neurospheres (NSPs) derived from human pluripotent stem cells (hPSC), have proven to be a successful platform to investigate human brain development and neuro-related diseases. Currently, many of the standard hPSC neural differentiation media, use concentrations of glucose (approximately 17.5-25 mM) and insulin (approximately 3.2 μM) that are much greater than the physiological concentrations found in the human brain. These culture conditions make it difficult to analyse perturbations of glucose or insulin on neuronal development and differentiation. We established a new hPSC neural differentiation medium that incorporated physiological brain concentrations of glucose (2.5 mM) and significantly reduced insulin levels (0.86 μM). This medium supported hPSC neural induction and formation of cortical NSPs. The revised hPSC neural differentiation medium, may provide an improved platform to model brain development and to investigate neural differentiation signalling pathways impacted by abnormal glucose and insulin levels.
Collapse
Affiliation(s)
- Michal E Mor
- Department of Anatomy & Physiology, University of Melbourne, Australia
| | | | - Mary Familari
- School of BioSciences, University of Melbourne, Australia
| | - Mitchell St Clair-Glover
- Illawarra Health and Medical Research Institute, Molecular Horizons, University of Wollongong, Australia
| | - Serena Viventi
- The Florey Institute of Neuroscience and Mental Health, Australia
| | - Robb U de Iongh
- Department of Anatomy & Physiology, University of Melbourne, Australia
| | - Fergus J Cameron
- Murdoch Children's Research Institute, The Royal Children's Hospital, Australia; Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Australia
| | - Mirella Dottori
- Department of Anatomy & Physiology, University of Melbourne, Australia; Illawarra Health and Medical Research Institute, Molecular Horizons, University of Wollongong, Australia; Department of Biomedical Engineering, University of Melbourne, Australia.
| |
Collapse
|
7
|
Pan X, Zhu Y, Wu X, Liu L, Ying R, Wang L, Du N, Zhang J, Jin J, Meng X, Dai F, Huang Y. The interaction of ASIC1a and ERS mediates nerve cell apoptosis induced by insulin deficiency. Eur J Pharmacol 2020; 893:173816. [PMID: 33345857 DOI: 10.1016/j.ejphar.2020.173816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 10/22/2022]
Abstract
Diabetes-related brain complications are the most serious complications of terminal diabetes. The increasing evidence have showed that the predisposing factor is not only hyperglycemia, but also insulin deficiency. In this study, we demonstrated that insulin deficiency was involved in the apoptosis of nerve cells, and it was related to the interaction between acid-sensitive ion channel 1a (ASIC1a) and endoplasmic reticulum stress (ERS). By silencing C/EBP homologous protein (CHOP) and ASIC1a, the pro-apoptotic effect of insulin deficiency on NS20y cells was relieved. Further research found that the binding of CHOP and C/EBPα was increased in the nucleus of cells cultured without insulin, and C/EBPα was competitively inhibited as a negative regulator of ASIC1a, which further increased the ERS and lead to neuronal apoptosis. In summary, ERS and ASIC1a play an important role in neurological damage caused by insulin deficiency. Our finding may lead to new ideas and treatment of diabetes-related brain complications.
Collapse
Affiliation(s)
- Xuesheng Pan
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
| | - Yueqin Zhu
- Department of Pharmacy, West Branch of the First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Cancer Hospital), Hefei, 230031, China
| | - Xian Wu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
| | - Lan Liu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China; Department of Pharmacy, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China
| | - Ruixue Ying
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Lili Wang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
| | - Na Du
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
| | - Jin Zhang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
| | - Juan Jin
- Department of Pharmacology, School of Basic Medicine, Anhui Medical University. Hefei, 230032, China
| | - Xiaoming Meng
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
| | - Fang Dai
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Yan Huang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China.
| |
Collapse
|
8
|
Human Dental Pulp Stem Cells and Gingival Mesenchymal Stem Cells Display Action Potential Capacity In Vitro after Neuronogenic Differentiation. Stem Cell Rev Rep 2020; 15:67-81. [PMID: 30324358 DOI: 10.1007/s12015-018-9854-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The potential of human mesenchymal stromal/stem cells (MSCs) including oral stem cells (OSCs) as a cell source to derive functional neurons has been inconclusive. Here we tested a number of human OSCs for their neurogenic potential compared to non-OSCs and employed various neurogenic induction methods. OSCs including dental pulp stem cells (DPSCs), gingiva-derived mesenchymal stem cells (GMSCs), stem cells from apical papilla and non-OSCs including bone marrow MSCs (BMMSCs), foreskin fibroblasts and dermal fibroblasts using non-neurosphere-mediated or neurosphere-mediated methods to guide them toward neuronal lineages. Cells were subjected to RT-qPCR, immunocytofluorescence to detect the expression of neurogenic genes or electrophysiological analysis at final stage of maturation. We found that induced DPSCs and GMSCs overall appeared to be more neurogenic compared to other cells either morphologically or levels of neurogenic gene expression. Nonetheless, of all the neural induction methods employed, only one neurosphere-mediated method yielded electrophysiological properties of functional neurons. Under this method, cells expressed increased neural stem cell markers, nestin and SOX1, in the first phase of differentiation. Neuronal-like cells expressed βIII-tubulin, CNPase, GFAP, MAP-2, NFM, pan-Nav, GAD67, Nav1.6, NF1, NSE, PSD95, and synapsin after the second phase of differentiation to maturity. Electrophysiological experiments revealed that 8.3% of DPSC-derived neuronal cells and 21.2% of GMSC-derived neuronal cells displayed action potential, although no spontaneous excitatory/inhibitory postsynaptic action potential was observed. We conclude that DPSCs and GMSCs have the potential to become neuronal cells in vitro, therefore, these cells may be used as a source for neural regeneration.
Collapse
|
9
|
Wan W, Cao L, Kalionis B, Murthi P, Xia S, Guan Y. Iron Deposition Leads to Hyperphosphorylation of Tau and Disruption of Insulin Signaling. Front Neurol 2019; 10:607. [PMID: 31275224 PMCID: PMC6593079 DOI: 10.3389/fneur.2019.00607] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/22/2019] [Indexed: 12/22/2022] Open
Abstract
Iron deposition in the brain is an early issue in Alzheimer's disease (AD). However, the pathogenesis of iron-induced pathological changes in AD remains elusive. Insulin resistance in brains is an essential feature of AD. Previous studies determined that insulin resistance is involved in the development of pathologies in AD. Tau pathology is one of most important hallmarks in AD and is associated with the impairment of cognition and clinical grades of the disease. In the present study, we observed that ferrous (Fe2+) chloride led to aberrant phosphorylation of tau, and decreased tyrosine phosphorylation levels of insulin receptor β (IRβ), insulin signal substrate 1 (IRS-1) and phosphoinositide 3-kinase p85α (PI3K p85α), in primary cultured neurons. In the in vivo studies using mice with supplemented dietary iron, learning and memory was impaired. As well, hyperphosphorylation of tau and disrupted insulin signaling in the brain was induced in iron-overloaded mice. Furthermore, in our in vitro work we identified the activation of insulin signaling following exogenous supplementation of insulin. This was further attenuated by iron-induced hyperphosphorylation of tau in primary neurons. Together, these data suggest that dysfunctional insulin signaling participates in iron-induced abnormal phosphorylation of tau in AD. Our study highlights the promising role of insulin signaling in pathological lesions induced by iron overloading.
Collapse
Affiliation(s)
- Wenbin Wan
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lan Cao
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bill Kalionis
- Department of Maternal-Fetal Medicine, Pregnancy Research Centre, University of Melbourne, Parkville, VIC, Australia.,Department of Obstetrics and Gynecology, Royal Women's Hospital, Parkville, VIC, Australia
| | - Padma Murthi
- Department of Obstetrics and Gynecology, University of Melbourne, Parkville, VIC, Australia
| | - Shijin Xia
- Shanghai Institute of Geriatrics, Huadong Hospital, Fudan University, Shanghai, China
| | - Yangtai Guan
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Clarke JR, Ribeiro FC, Frozza RL, De Felice FG, Lourenco MV. Metabolic Dysfunction in Alzheimer's Disease: From Basic Neurobiology to Clinical Approaches. J Alzheimers Dis 2019; 64:S405-S426. [PMID: 29562518 DOI: 10.3233/jad-179911] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Clinical trials have extensively failed to find effective treatments for Alzheimer's disease (AD) so far. Even after decades of AD research, there are still limited options for treating dementia. Mounting evidence has indicated that AD patients develop central and peripheral metabolic dysfunction, and the underpinnings of such events have recently begun to emerge. Basic and preclinical studies have unveiled key pathophysiological mechanisms that include aberrant brain stress signaling, inflammation, and impaired insulin sensitivity. These findings are in accordance with clinical and neuropathological data suggesting that AD patients undergo central and peripheral metabolic deregulation. Here, we review recent basic and clinical findings indicating that metabolic defects are central to AD pathophysiology. We further propose a view for future therapeutics that incorporates metabolic defects as a core feature of AD pathogenesis. This approach could improve disease understanding and therapy development through drug repurposing and/or identification of novel metabolic targets.
Collapse
Affiliation(s)
- Julia R Clarke
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe C Ribeiro
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rudimar L Frozza
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro, Brazil
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Karakatsani A, Shah B, Ruiz de Almodovar C. Blood Vessels as Regulators of Neural Stem Cell Properties. Front Mol Neurosci 2019; 12:85. [PMID: 31031591 PMCID: PMC6473036 DOI: 10.3389/fnmol.2019.00085] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 03/20/2019] [Indexed: 01/07/2023] Open
Abstract
In the central nervous system (CNS), a precise communication between the vascular and neural compartments is essential for proper development and function. Recent studies demonstrate that certain neuronal populations secrete various molecular cues to regulate blood vessel growth and patterning in the spinal cord and brain during development. Interestingly, the vasculature is now emerging as a critical component that regulates stem cell niches during neocortical development, as well as during adulthood. In this review article, we will first provide an overview of blood vessel development and maintenance in embryonic and adult neurogenic niches. We will also summarize the current understanding of how blood vessel-derived signals influence the behavior of neural stem cells (NSCs) during early development as well as in adulthood, with a focus on their metabolism.
Collapse
Affiliation(s)
- Andromachi Karakatsani
- European Center for Angioscience, Medicine Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Bhavin Shah
- European Center for Angioscience, Medicine Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carmen Ruiz de Almodovar
- European Center for Angioscience, Medicine Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Institute for Transfusion Medicine and Immunology, Medicine Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
12
|
Rad SK, Arya A, Karimian H, Madhavan P, Rizwan F, Koshy S, Prabhu G. Mechanism involved in insulin resistance via accumulation of β-amyloid and neurofibrillary tangles: link between type 2 diabetes and Alzheimer's disease. Drug Des Devel Ther 2018; 12:3999-4021. [PMID: 30538427 PMCID: PMC6255119 DOI: 10.2147/dddt.s173970] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The pathophysiological link between type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) has been suggested in several reports. Few findings suggest that T2DM has strong link in the development process of AD, and the complete mechanism is yet to be revealed. Formation of amyloid plaques (APs) and neurofibrillary tangles (NFTs) are two central hallmarks in the AD. APs are the dense composites of β-amyloid protein (Aβ) which accumulates around the nerve cells. Moreover, NFTs are the twisted fibers containing hyperphosphorylated tau proteins present in certain residues of Aβ that build up inside the brain cells. Certain factors contribute to the aetiogenesis of AD by regulating insulin signaling pathway in the brain and accelerating the formation of neurotoxic Aβ and NFTs via various mechanisms, including GSK3β, JNK, CamKII, CDK5, CK1, MARK4, PLK2, Syk, DYRK1A, PPP, and P70S6K. Progression to AD could be influenced by insulin signaling pathway that is affected due to T2DM. Interestingly, NFTs and APs lead to the impairment of several crucial cascades, such as synaptogenesis, neurotrophy, and apoptosis, which are regulated by insulin, cholesterol, and glucose metabolism. The investigation of the molecular cascades through insulin functions in brain contributes to probe and perceive progressions of diabetes to AD. This review elaborates the molecular insights that would help to further understand the potential mechanisms linking T2DM and AD.
Collapse
Affiliation(s)
- Sima Kianpour Rad
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Aditya Arya
- Department of Pharmacology and Therapeutics, School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia,
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia,
- Malaysian Institute of Pharmaceuticals and Nutraceuticals (IPharm), Bukit Gambir, Gelugor, Pulau Pinang, Malaysia,
| | - Hamed Karimian
- Department of Pharmacology and Therapeutics, School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia,
| | - Priya Madhavan
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Farzana Rizwan
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Shajan Koshy
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Girish Prabhu
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| |
Collapse
|
13
|
Hyper-insulinemia increases the glutamate-excitotoxicity in cortical neurons: A mechanistic study. Eur J Pharmacol 2018; 833:524-530. [DOI: 10.1016/j.ejphar.2018.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/20/2018] [Accepted: 07/02/2018] [Indexed: 12/29/2022]
|
14
|
Uezono N, Zhu Y, Fujimoto Y, Yasui T, Matsuda T, Nakajo M, Abematsu M, Setoguchi T, Mori S, Takahashi HK, Komiya S, Nishibori M, Nakashima K. Prior Treatment with Anti-High Mobility Group Box-1 Antibody Boosts Human Neural Stem Cell Transplantation-Mediated Functional Recovery After Spinal Cord Injury. Stem Cells 2018. [PMID: 29517828 DOI: 10.1002/stem.2802] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Together with residual host neurons, transplanted neural stem cell (NSC)-derived neurons play a critical role in reconstructing disrupted neural circuits after spinal cord injury (SCI). Since a large number of tracts are disrupted and the majority of host neurons die around the lesion site as the damage spreads, minimizing this spreading and preserving the lesion site are important for attaining further improvements in reconstruction. High mobility group box-1 (HMGB1) is a damage-associated molecular pattern protein that triggers sterile inflammation after tissue injury. In the ischemic and injured brain, neutralization of HMGB1 with a specific antibody reportedly stabilizes the blood-brain barrier, suppresses inflammatory cytokine expression, and improves functional recovery. Using a SCI model mouse, we here developed a combinatorial treatment for SCI: administering anti-HMGB1 antibody prior to transplantation of NSCs derived from human induced pluripotent stem cells (hiPSC-NSCs) yielded a dramatic improvement in locomotion recovery after SCI. Even anti-HMGB1 antibody treatment alone alleviated blood-spinal cord barrier disruption and edema formation, and increased the number of neurites from spared axons and the survival of host neurons, resulting in functional recovery. However, this recovery was greatly enhanced by the subsequent hiPSC-NSC transplantation, reaching an extent that has never before been reported. We also found that this improved recovery was directly associated with connections established between surviving host neurons and transplant-derived neurons. Taken together, our results highlight combinatorial treatment with anti-HMGB1 antibody and hiPSC-NSC transplantation as a promising novel therapy for SCI. Stem Cells 2018;36:737-750.
Collapse
Affiliation(s)
- Naohiro Uezono
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan.,Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yicheng Zhu
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Yusuke Fujimoto
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tetsuro Yasui
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Taito Matsuda
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Masahide Nakajo
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan.,Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Masahiko Abematsu
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Takao Setoguchi
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Shuji Mori
- Department of Pharmacology, School of Pharmacy, Shujitsu University, Naka-ku, Okayama, Japan
| | - Hideo K Takahashi
- Department of Pharmacology, Kinki University, Faculty of Medicine, Osaka-Sayama, Japan
| | - Setsuro Komiya
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
15
|
Decourtye L, Clemessy M, Mire E, Ledent T, Périn L, Robinson IC, Le Bouc Y, Kappeler L. Impact of insulin on primary arcuate neurons culture is dependent on early-postnatal nutritional status and neuronal subpopulation. PLoS One 2018; 13:e0193196. [PMID: 29466413 PMCID: PMC5821369 DOI: 10.1371/journal.pone.0193196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/06/2018] [Indexed: 12/23/2022] Open
Abstract
Nutrition plays a critical role in programming and shaping linear growth during early postnatal life through direct action on the development of the neuroendocrine somatotropic (GH/IGF-1) axis. IGF-1 is a key factor in modulating the programming of linear growth during this period. Notably, IGF-1 preferentially stimulates axonal growth of GHRH neurons in the arcuate nucleus of the hypothalamus (Arc), which is crucial for the proliferation of somatotroph progenitors in the pituitary, thus influencing later GH secretory capacity. However, other nutrition-related hormones may also be involved. Among them, insulin shares several structural and functional similarities with IGF-1, as well as downstream signaling effectors. We investigated the role of insulin in the control of Arc axonal growth using an in vitro model of arcuate explants culture and a cell-type specific approach (GHRH-eGFP mice) under both physiological conditions (normally fed pups) and those of dietary restriction (underfed pups). Our data suggest that insulin failed to directly control axonal growth of Arc neurons or influence specific IGF-1-mediated effects on GHRH neurons. Insulin may act on neuronal welfare, which appears to be dependent on neuronal sub-populations and is influenced by the nutritional status of pups in which Arc neurons develop.
Collapse
Affiliation(s)
- Lyvianne Decourtye
- Sorbonne Université, INSERM, Centre de Recherche St-Antoine, CRSA, Paris, France
| | - Maud Clemessy
- Sorbonne Université, INSERM, Centre de Recherche St-Antoine, CRSA, Paris, France
| | - Erik Mire
- Sorbonne Université, INSERM, Centre de Recherche St-Antoine, CRSA, Paris, France
| | - Tatiana Ledent
- Sorbonne Université, INSERM, Centre de Recherche St-Antoine, CRSA, Paris, France
| | - Laurence Périn
- Sorbonne Université, AP-HP, Hôpital Armand-Trousseau, Paris, France
| | - Iain C. Robinson
- MRC, National Institute for Medical Research, Division of Molecular Neuroendocrinology, London, United Kingdom
| | - Yves Le Bouc
- Sorbonne Université, INSERM, Centre de Recherche St-Antoine, CRSA, Paris, France
| | - Laurent Kappeler
- Sorbonne Université, INSERM, Centre de Recherche St-Antoine, CRSA, Paris, France
- * E-mail:
| |
Collapse
|
16
|
Massai D, Bolesani E, Diaz DR, Kropp C, Kempf H, Halloin C, Martin U, Braniste T, Isu G, Harms V, Morbiducci U, Dräger G, Zweigerdt R. Sensitivity of human pluripotent stem cells to insulin precipitation induced by peristaltic pump-based medium circulation: considerations on process development. Sci Rep 2017. [PMID: 28638147 PMCID: PMC5479836 DOI: 10.1038/s41598-017-04158-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Controlled large-scale production of human pluripotent stem cells (hPSCs) is indispensable for their envisioned clinical translation. Aiming at advanced process development in suspension culture, the sensitivity of hPSC media to continuous peristaltic pump-based circulation, a well-established technology extensively used in hydraulically-driven bioreactors, was investigated. Unexpectedly, conditioning of low protein media (i.e. E8 and TeSR-E8) in a peristaltic pump circuit induced severe viability loss of hPSCs cultured as aggregates in suspension. Optical, biochemical, and cytological analyses of the media revealed that the applied circulation mode resulted in the reduction of the growth hormone insulin by precipitation of micro-sized particles. Notably, in contrast to insulin depletion, individual withdrawal of other medium protein components (i.e. bFGF, TGFβ1 or transferrin) provoked minor reduction of hPSC viability, if any. Supplementation of the surfactant glycerol or the use of the insulin analogue Aspart did not overcome the issue of insulin precipitation. In contrast, the presence of bovine or human serum albumin (BSA or HSA, respectively) stabilized insulin rescuing its content, possibly by acting as molecular chaperone-like protein, ultimately supporting hPSC maintenance. This study highlights the potential and the requirement of media optimization for automated hPSC processing and has broad implications on media development and bioreactor-based technologies.
Collapse
Affiliation(s)
- Diana Massai
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Emiliano Bolesani
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Diana Robles Diaz
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Christina Kropp
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Henning Kempf
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Caroline Halloin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Tudor Braniste
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,National Center for Materials Study and Testing, Technical University of Moldova, Bv. Stefan cel Mare 168, Chisinau, 2004, Republic of Moldova
| | - Giuseppe Isu
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy.,Department of Biomedicine, University of Basel and Department of Surgery, University Hospital of Basel, 4031, Basel, Switzerland
| | - Vanessa Harms
- Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| | - Umberto Morbiducci
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| | - Gerald Dräger
- REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany. .,REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
17
|
Boroujeni ME, Gardaneh M, Shahriari MH, Aliaghaei A, Hasani S. Synergy Between Choroid Plexus Epithelial Cell-Conditioned Medium and Knockout Serum Replacement Converts Human Adipose-Derived Stem Cells to Dopamine-Secreting Neurons. Rejuvenation Res 2017; 20:309-319. [PMID: 28437187 DOI: 10.1089/rej.2016.1887] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human adipose-derived stem cells (hADSCs) have great capacity to differentiate into mesodermal origins as well as nonmesodermal lineages, including neural cells. This valuable feature paves the way for the therapeutic application of hADSCs for neurodegenerative maladies such as Parkinson's disease (PD). We tested the capacity of choroid plexus epithelial cell-conditioned medium (CPEC-CM) alone or cocktailed with knockout serum (KS) to induce dopaminergic (DAergic) differentiation of hADSCs. To this end, hADSCs from lipoaspirate were phenotypically characterized and shown to maintain mesodermal multipotency so that selected media easily differentiated them into osteoblasts, chondrocytes, and adipocytes. To begin inducing hADSC neuronal differentiation, we isolated CPECs from rat brain and expanded them in culture to obtain CPEC-CM. We then treated hADSCs with optimized quantities of collected CPEC-CM, KS, or both. The ADSCs treated with either CPEC-CM or CPEC-CM and KS displayed morphological changes typical of neuron-like phenotypes. As revealed by reverse transcription polymerase chain reaction (RT-PCR), quantitative real-time PCR (qPCR), and immunostaining analyses, hADSCs cotreated with CPEC-CM and KS expressed significantly higher levels of neuronal and DAergic markers in comparison with single-treated groups. Moreover, the hADSCs began expressing dopamine-biosynthesizing enzymes mainly after cotreatment with CPEC-CM and KS. Consequently, only cotreated hADSCs were capable of synthesizing and releasing dopamine detectable by high-performance liquid chromatography (HPLC). Finally, hADSCs growing in an ordinary medium were found positive for astrocytic marker glial fibrillary acidic protein (GFAP), but stopped GFAP expression on either single or cotreatments. These combined results suggest that CPEC-CM and KS can synergize to remarkably augment DAergic induction of hADSCs, an effect that has implications for cell replacement therapy for PD and related disorders.
Collapse
Affiliation(s)
- Mahdi Eskandarian Boroujeni
- 1 Department of Stem Cells and Regenerative Medicine, Faculty of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology , Tehran, Iran
| | - Mossa Gardaneh
- 1 Department of Stem Cells and Regenerative Medicine, Faculty of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology , Tehran, Iran
| | - Mehrnoosh Hasan Shahriari
- 1 Department of Stem Cells and Regenerative Medicine, Faculty of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology , Tehran, Iran
| | - Abbas Aliaghaei
- 2 Department of Anatomy, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Sanaz Hasani
- 1 Department of Stem Cells and Regenerative Medicine, Faculty of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology , Tehran, Iran
| |
Collapse
|
18
|
Kunze A, Murray CT, Godzich C, Lin J, Owsley K, Tay A, Di Carlo D. Modulating motility of intracellular vesicles in cortical neurons with nanomagnetic forces on-chip. LAB ON A CHIP 2017; 17:842-854. [PMID: 28164203 PMCID: PMC5400667 DOI: 10.1039/c6lc01349j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Vesicle transport is a major underlying mechanism of cell communication. Inhibiting vesicle transport in brain cells results in blockage of neuronal signals, even in intact neuronal networks. Modulating intracellular vesicle transport can have a huge impact on the development of new neurotherapeutic concepts, but only if we can specifically interfere with intracellular transport patterns. Here, we propose to modulate motion of intracellular lipid vesicles in rat cortical neurons based on exogenously bioconjugated and cell internalized superparamagnetic iron oxide nanoparticles (SPIONs) within microengineered magnetic gradients on-chip. Upon application of 6-126 pN on intracellular vesicles in neuronal cells, we explored how the magnetic force stimulus impacts the motion pattern of vesicles at various intracellular locations without modulating the entire cell morphology. Altering vesicle dynamics was quantified using, mean square displacement, a caging diameter and the total traveled distance. We observed a de-acceleration of intercellular vesicle motility, while applying nanomagnetic forces to cultured neurons with SPIONs, which can be explained by a decrease in motility due to opposing magnetic force direction. Ultimately, using nanomagnetic forces inside neurons may permit us to stop the mis-sorting of intracellular organelles, proteins and cell signals, which have been associated with cellular dysfunction. Furthermore, nanomagnetic force applications will allow us to wirelessly guide axons and dendrites by exogenously using permanent magnetic field gradients.
Collapse
Affiliation(s)
- Anja Kunze
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA. and Department of Electrical and Computer Engineering, Montana State University, Bozeman, Montana 59717, USA.
| | - Coleman Tylor Murray
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA.
| | - Chanya Godzich
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA.
| | - Jonathan Lin
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA.
| | - Keegan Owsley
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA.
| | - Andy Tay
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA.
| | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA. and California NanoSystems Institute, University of California, Los Angeles, California 90095, USA and Jonsson Comprehensive Cancer Research Center, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
19
|
Garwood CJ, Ratcliffe LE, Morgan SV, Simpson JE, Owens H, Vazquez-Villaseñor I, Heath PR, Romero IA, Ince PG, Wharton SB. Insulin and IGF1 signalling pathways in human astrocytes in vitro and in vivo; characterisation, subcellular localisation and modulation of the receptors. Mol Brain 2015; 8:51. [PMID: 26297026 PMCID: PMC4546315 DOI: 10.1186/s13041-015-0138-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 08/02/2015] [Indexed: 12/20/2022] Open
Abstract
Background The insulin/IGF1 signalling (IIS) pathways are involved in longevity regulation and are dysregulated in neurons in Alzheimer’s disease (AD). We previously showed downregulation in IIS gene expression in astrocytes with AD-neuropathology progression, but IIS in astrocytes remains poorly understood. We therefore examined the IIS pathway in human astrocytes and developed models to reduce IIS at the level of the insulin or the IGF1 receptor (IGF1R). Results We determined IIS was present and functional in human astrocytes by immunoblotting and showed astrocytes express the insulin receptor (IR)-B isoform of Ir. Immunocytochemistry and cell fractionation followed by western blotting revealed the phosphorylation status of insulin receptor substrate (IRS1) affects its subcellular localisation. To validate IRS1 expression patterns observed in culture, expression of key pathway components was assessed on post-mortem AD and control tissue using immunohistochemistry. Insulin signalling was impaired in cultured astrocytes by treatment with insulin + fructose and resulted in decreased IR and Akt phosphorylation (pAkt S473). A monoclonal antibody against IGF1R (MAB391) induced degradation of IGF1R receptor with an associated decrease in downstream pAkt S473. Neither treatment affected cell growth or viability as measured by MTT and Cyquant® assays or GFAP immunoreactivity. Discussion IIS is functional in astrocytes. IR-B is expressed in astrocytes which differs from the pattern in neurons, and may be important in differential susceptibility of astrocytes and neurons to insulin resistance. The variable presence of IRS1 in the nucleus, dependent on phosphorylation pattern, suggests the function of signalling molecules is not confined to cytoplasmic cascades. Down-regulation of IR and IGF1R, achieved by insulin + fructose and monoclonal antibody treatments, results in decreased downstream signalling, though the lack of effect on viability suggests that astrocytes can compensate for changes in single pathways. Changes in signalling in astrocytes, as well as in neurons, may be important in ageing and neurodegeneration. Electronic supplementary material The online version of this article (doi:10.1186/s13041-015-0138-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Claire J Garwood
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, The University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
| | - Laura E Ratcliffe
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, The University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
| | - Sarah V Morgan
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, The University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
| | - Julie E Simpson
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, The University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
| | - Helen Owens
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, The University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
| | - Irina Vazquez-Villaseñor
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, The University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
| | - Paul R Heath
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, The University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
| | - Ignacio A Romero
- Biomedical Research Network, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Paul G Ince
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, The University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
| | - Stephen B Wharton
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, The University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK.
| |
Collapse
|
20
|
Bilotta F, Lauretta MP, Tewari A, Haque M, Hara N, Uchino H, Rosa G. Insulin and the Brain: A Sweet Relationship With Intensive Care. J Intensive Care Med 2015; 32:48-58. [PMID: 26168800 DOI: 10.1177/0885066615594341] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/28/2015] [Accepted: 05/15/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Insulin receptors (IRs) in the brain have unique molecular features and a characteristic pattern of distribution. Their possible functions extend beyond glucose utilization. In this systematic review, we explore the interactions between insulin and the brain and its implications for anesthesiologists, critical care physicians, and other medical disciplines. METHODS A literature search of published preclinical and clinical studies between 1978 and 2014 was conducted, yielding 5996 articles. After applying inclusion and exclusion criteria, 92 studies were selected for this systematic review. RESULTS The IRs have unique molecular features, pattern of distribution, and mechanism of action. It has effects on neuronal function, metabolism, and neurotransmission. The IRs are involved in neuronal apoptosis and neurodegenerative processes. CONCLUSION In this systematic review, we present a close relationship between insulin and the brain, with discernible effects on memory, learning abilities, and motor functions. The potential therapeutic effects extend from acute brain insults such as traumatic brain injury, brain ischemia, and hemorrhage, to chronic neurodegenerative diseases such as Alzheimer and Parkinson disease. An understanding of the wider effects of insulin conveyed in this review will prompt anaesthesiologists and critical care physicians to consider its therapeutic potential and guide future studies.
Collapse
Affiliation(s)
- F Bilotta
- Department of Anesthesiology, Critical Care and Pain Medicine, "Sapienza" University of Rome, Rome, Italy
| | - M P Lauretta
- Anesthesia and Intensive Care Department, "La Sapienza" University of Rome, Rome, Italy .,Critical Care Department, University College London Hospital, London, United Kingdom
| | - A Tewari
- Department of Pediatric Neuroanesthesia and IONM, Cincinnati Children Hospital & Medical Center, Cincinnati, OH, USA
| | - M Haque
- Anesthesia and Critical Care Department, University College London Hospital, London, United Kingdom
| | - N Hara
- Department of Anesthesiology, Tokyo Medical University, Tokyo, Japan
| | - H Uchino
- Department of Anesthesiology, Tokyo Medical University, Tokyo, Japan
| | - G Rosa
- Department of Anesthesiology, Critical Care and Pain Medicine, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
21
|
Lourenco MV, Ferreira ST, De Felice FG. Neuronal stress signaling and eIF2α phosphorylation as molecular links between Alzheimer's disease and diabetes. Prog Neurobiol 2015; 129:37-57. [PMID: 25857551 DOI: 10.1016/j.pneurobio.2015.03.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/10/2015] [Accepted: 03/29/2015] [Indexed: 12/22/2022]
Abstract
Mounting evidence from clinical, epidemiological, neuropathology and preclinical studies indicates that mechanisms similar to those leading to peripheral metabolic deregulation in metabolic disorders, such as diabetes and obesity, take place in the brains of Alzheimer's disease (AD) patients. These include pro-inflammatory mechanisms, brain metabolic stress and neuronal insulin resistance. From a molecular and cellular perspective, recent progress has been made in unveiling novel pathways that act in an orchestrated way to cause neuronal damage and cognitive decline in AD. These pathways converge to the activation of neuronal stress-related protein kinases and excessive phosphorylation of eukaryotic translation initiation factor 2α (eIF2α-P), which plays a key role in control of protein translation, culminating in synapse dysfunction and memory loss. eIF2α-P signaling thus links multiple neuronal stress pathways to impaired neuronal function and neurodegeneration. Here, we present a critical analysis of recently discovered molecular mechanisms underlying impaired brain insulin signaling and metabolic stress, with emphasis on the role of stress kinase/eIF2α-P signaling as a hub that promotes brain and behavioral impairments in AD. Because very similar mechanisms appear to operate in peripheral metabolic deregulation in T2D and in brain defects in AD, we discuss the concept that targeting defective brain insulin signaling and neuronal stress mechanisms with anti-diabetes agents may be an attractive approach to fight memory decline in AD. We conclude by raising core questions that remain to be addressed toward the development of much needed therapeutic approaches for AD.
Collapse
Affiliation(s)
- Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.
| |
Collapse
|
22
|
Sun M, Li M, Huang Q, Han F, Gu JH, Xie J, Han R, Qin ZH, Zhou Z. Ischemia/reperfusion-induced upregulation of TIGAR in brain is mediated by SP1 and modulated by ROS and hormones involved in glucose metabolism. Neurochem Int 2015; 80:99-109. [PMID: 25445985 DOI: 10.1016/j.neuint.2014.09.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 08/30/2014] [Accepted: 09/24/2014] [Indexed: 10/24/2022]
Abstract
We previously found that TIGAR (TP53-induced glycolysis and apoptosis regulator) was upregulated in response to ischemia/reperfusion insult in a TP53-independent manner. The present study sought to investigate the regulatory mechanisms of TIGAR upregulation in animal and cellular models of stroke. The animal and cellular models of ischemia/reperfusion were produced by transient middle cerebral artery occlusion and reperfusion (tMCAO/R) and oxygen-glucose deprivation/reoxygenation (OGD/R), respectively. The expression of TIGAR protein in cortical tissues and hippocampal neuronal cell line HT22 cells or primary neurons was determined. Glucose, hormones and hydrogen peroxide (H2O2) were administered to mice via injection into the tail vein or lateral ventricle or directly added into cell culture medium. In mice subjected to tMCAO/R, the blood glucose level rapidly increased, peaking at 0.5 h and then declined. TIGAR protein was also significantly increased and then declined with a delayed time-course. The increase in TIGAR protein was blunted when blood glucose levels were controlled with insulin. However, administering glucose solution to mice or adding glucose to cell culture medium had no effect on TIGAR protein levels. In contrast adrenaline, hydrocortisone, glucagon and H2O2 significantly increased TIGAR protein expression, whereas insulin inhibited TIGAR expression. The transcription factor SP1 was induced by ischemia/reperfusion ahead of TIGAR upregulation. Inhibiting SP1 with mithramycin A or silencing SP1 with siRNA blocked the ischemia-induced TIGAR upregulation. These results suggest that ROS and hormones regulating blood glucose metabolism play a role in ischemia/reperfusion-induced TIGAR upregulation.
Collapse
Affiliation(s)
- Meiling Sun
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University School of Pharmaceutical Science, Suzhou 215123, China
| | - Mei Li
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University School of Pharmaceutical Science, Suzhou 215123, China
| | - Qiao Huang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University School of Pharmaceutical Science, Suzhou 215123, China
| | - Feng Han
- Institute of Pharmacology, Toxicology and Biochemical Pharmaceutics, Zhejiang University, Hangzhou 310058, China
| | - Jin-Hua Gu
- Department of Pathophysiology, Nantong University School of Medical Science, Nantong 226001, China
| | - Jiaming Xie
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University School of Pharmaceutical Science, Suzhou 215123, China
| | - Rong Han
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University School of Pharmaceutical Science, Suzhou 215123, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University School of Pharmaceutical Science, Suzhou 215123, China.
| | - Zhipeng Zhou
- Department of Radiology, Affiliated Hospital of Guilin Medical College, Guilin 541001, China.
| |
Collapse
|
23
|
Chang MY, Rhee YH, Yi SH, Lee SJ, Kim RK, Kim H, Park CH, Lee SH. Doxycycline enhances survival and self-renewal of human pluripotent stem cells. Stem Cell Reports 2014; 3:353-64. [PMID: 25254347 PMCID: PMC4175555 DOI: 10.1016/j.stemcr.2014.06.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 06/24/2014] [Accepted: 06/25/2014] [Indexed: 12/12/2022] Open
Abstract
We here report that doxycycline, an antibacterial agent, exerts dramatic effects on human embryonic stem and induced pluripotent stem cells (hESC/iPSCs) survival and self-renewal. The survival-promoting effect was also manifest in cultures of neural stem cells (NSCs) derived from hESC/iPSCs. These doxycycline effects are not associated with its antibacterial action, but mediated by direct activation of a PI3K-AKT intracellular signal. These findings indicate doxycycline as a useful supplement for stem cell cultures, facilitating their growth and maintenance.
Collapse
Affiliation(s)
- Mi-Yoon Chang
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul 133-791, Korea; Hanyang Biomedical Research Institute, Hanyang University, Seoul 133-791, Korea
| | - Yong-Hee Rhee
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul 133-791, Korea; Hanyang Biomedical Research Institute, Hanyang University, Seoul 133-791, Korea; Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 133-791, Korea
| | - Sang-Hoon Yi
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul 133-791, Korea; Hanyang Biomedical Research Institute, Hanyang University, Seoul 133-791, Korea
| | - Su-Jae Lee
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 133-791, Korea
| | - Rae-Kwon Kim
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 133-791, Korea
| | - Hyongbum Kim
- Hanyang Biomedical Research Institute, Hanyang University, Seoul 133-791, Korea; Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 133-791, Korea
| | - Chang-Hwan Park
- Hanyang Biomedical Research Institute, Hanyang University, Seoul 133-791, Korea; Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 133-791, Korea
| | - Sang-Hun Lee
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul 133-791, Korea; Hanyang Biomedical Research Institute, Hanyang University, Seoul 133-791, Korea; Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 133-791, Korea.
| |
Collapse
|
24
|
Insulin influences developmental competence of bovine oocytes cultured in α-MEM plus follicle-simulating hormone. ZYGOTE 2014; 23:563-72. [PMID: 24912867 DOI: 10.1017/s0967199414000239] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The aim of this study was to evaluate the dose-response effect of insulin, plus follicle-simulating hormone (FSH) at a fixed concentration, in a serum-free defined culture medium (DCM) on the in vitro maturation of bovine cumulus-oocyte complexes (COCs). For oocyte nuclear maturation, the expression levels of GDF9, GLUT1, PRDX1 and HSP70.1 transcripts related to oocyte and embryo developmental competence were analysed. For in vitro maturation (IVM), cumulus-oocyte complexes from slaughterhouse ovaries were distributed into four groups based on insulin concentration added to serum-free DCM, which was composed of alpha minimum essential medium (α-MEM), as basal medium: (1) DCM control: 0 ng/ml; (2) DCM1: 1 ng/ml; (3) DCM10: 10 ng/ml; and (4) DCM100: 100 ng/ml. After IVM, the nuclear status of a sample of oocytes was analysed and the other oocytes were submitted for in vitro fertilization (IVF) and in vitro culture (IVC). Different concentrations of insulin did not affect significantly the nuclear maturation and cleavage rate (72 h post-insemination) across all groups. Blastocyst rate (192 h post-insemination) did not differ in DCM control (24.3%), DCM1 (27.0%) and DCM10 (26.3%) groups, but the DCM100 (36.1%) group showed a greater blastocyst rate (P 0.05) was observed at the different insulin concentrations. The results indicated that insulin added to DCM influenced levels of transcripts related to cellular stress (HSP70-1 and PRDX1) and oocyte competence (GDF9) in bovine oocytes and at higher concentrations enhanced blastocyst production.
Collapse
|
25
|
Blázquez E, Velázquez E, Hurtado-Carneiro V, Ruiz-Albusac JM. Insulin in the brain: its pathophysiological implications for States related with central insulin resistance, type 2 diabetes and Alzheimer's disease. Front Endocrinol (Lausanne) 2014; 5:161. [PMID: 25346723 PMCID: PMC4191295 DOI: 10.3389/fendo.2014.00161] [Citation(s) in RCA: 323] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/21/2014] [Indexed: 12/21/2022] Open
Abstract
Although the brain has been considered an insulin-insensitive organ, recent reports on the location of insulin and its receptors in the brain have introduced new ways of considering this hormone responsible for several functions. The origin of insulin in the brain has been explained from peripheral or central sources, or both. Regardless of whether insulin is of peripheral origin or produced in the brain, this hormone may act through its own receptors present in the brain. The molecular events through which insulin functions in the brain are the same as those operating in the periphery. However, certain insulin actions are different in the central nervous system, such as hormone-induced glucose uptake due to a low insulin-sensitive GLUT-4 activity, and because of the predominant presence of GLUT-1 and GLUT-3. In addition, insulin in the brain contributes to the control of nutrient homeostasis, reproduction, cognition, and memory, as well as to neurotrophic, neuromodulatory, and neuroprotective effects. Alterations of these functional activities may contribute to the manifestation of several clinical entities, such as central insulin resistance, type 2 diabetes mellitus (T2DM), and Alzheimer's disease (AD). A close association between T2DM and AD has been reported, to the extent that AD is twice more frequent in diabetic patients, and some authors have proposed the name "type 3 diabetes" for this association. There are links between AD and T2DM through mitochondrial alterations and oxidative stress, altered energy and glucose metabolism, cholesterol modifications, dysfunctional protein O-GlcNAcylation, formation of amyloid plaques, altered Aβ metabolism, and tau hyperphosphorylation. Advances in the knowledge of preclinical AD and T2DM may be a major stimulus for the development of treatment for preventing the pathogenic events of these disorders, mainly those focused on reducing brain insulin resistance, which is seems to be a common ground for both pathological entities.
Collapse
Affiliation(s)
- Enrique Blázquez
- Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- The Center for Biomedical Research in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Madrid, Spain
- *Correspondence: Enrique Blázquez, Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, Madrid 28040, Spain e-mail:
| | - Esther Velázquez
- Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- The Center for Biomedical Research in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Madrid, Spain
| | - Verónica Hurtado-Carneiro
- Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- The Center for Biomedical Research in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Madrid, Spain
| | - Juan Miguel Ruiz-Albusac
- Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- The Center for Biomedical Research in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Madrid, Spain
| |
Collapse
|