1
|
Chaisupasakul P, Pekthong D, Wangteeraprasert A, Kaewkong W, Somran J, Kaewpaeng N, Parhira S, Srisawang P. Combination of ethyl acetate fraction from Calotropis gigantea stem bark and sorafenib induces apoptosis in HepG2 cells. PLoS One 2024; 19:e0300051. [PMID: 38527038 PMCID: PMC10962855 DOI: 10.1371/journal.pone.0300051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 02/15/2024] [Indexed: 03/27/2024] Open
Abstract
The cytotoxicity of the ethyl acetate fraction of the Calotropis gigantea (L.) Dryand. (C. gigantea) stem bark extract (CGEtOAc) has been demonstrated in many types of cancers. This study examined the improved cancer therapeutic activity of sorafenib when combined with CGEtOAc in HepG2 cells. The cell viability and cell migration assays were applied in HepG2 cells treated with varying concentrations of CGEtOAc, sorafenib, and their combination. Flow cytometry was used to determine apoptosis, which corresponded with a decline in mitochondrial membrane potential and activation of DNA fragmentation. Reactive oxygen species (ROS) levels were assessed in combination with the expression of the phosphatidylinositol-3-kinase (PI3K)/ protein kinase B (Akt)/ mammalian target of rapamycin (mTOR) pathway, which was suggested for association with ROS-induced apoptosis. Combining CGEtOAc at 400 μg/mL with sorafenib at 4 μM, which were their respective half-IC50 concentrations, significantly inhibited HepG2 viability upon 24 h of exposure in comparison with the vehicle and each single treatment. Consequently, CGEtOAc when combined with sorafenib significantly diminished HepG2 migration and induced apoptosis through a mitochondrial-correlation mechanism. ROS production was speculated to be the primary mechanism of stimulating apoptosis in HepG2 cells after exposure to a combination of CGEtOAc and sorafenib, in association with PI3K/Akt/mTOR pathway suppression. Our results present valuable knowledge to support the development of anticancer regimens derived from the CGEtOAc with the chemotherapeutic agent sorafenib, both of which were administered at half-IC50, which may minimize the toxic implications of cancer treatments while improving the therapeutic effectiveness toward future medical applications.
Collapse
Affiliation(s)
- Pattaraporn Chaisupasakul
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
| | - Dumrongsak Pekthong
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
- Center of Excellence for Environmental Health and Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | | | - Worasak Kaewkong
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Julintorn Somran
- Department of Pathology, Faculty of Medicine, Naresuan University, Phitsanulok, Thailand
| | - Naphat Kaewpaeng
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Supawadee Parhira
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
- Center of Excellence for Environmental Health and Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Piyarat Srisawang
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
- Center of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
2
|
Cerella C, Gajulapalli SR, Lorant A, Gerard D, Muller F, Lee Y, Kim KR, Han BW, Christov C, Récher C, Sarry JE, Dicato M, Diederich M. ATP1A1/BCL2L1 predicts the response of myelomonocytic and monocytic acute myeloid leukemia to cardiac glycosides. Leukemia 2024; 38:67-81. [PMID: 37904054 PMCID: PMC10776384 DOI: 10.1038/s41375-023-02076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 11/01/2023]
Abstract
Myelomonocytic and monocytic acute myeloid leukemia (AML) subtypes are intrinsically resistant to venetoclax-based regimens. Identifying targetable vulnerabilities would limit resistance and relapse. We previously documented the synergism of venetoclax and cardiac glycoside (CG) combination in AML. Despite preclinical evidence, the repurposing of cardiac glycosides (CGs) in cancer therapy remained unsuccessful due to a lack of predictive biomarkers. We report that the ex vivo response of AML patient blasts and the in vitro sensitivity of established cell lines to the hemi-synthetic CG UNBS1450 correlates with the ATPase Na+/K+ transporting subunit alpha 1 (ATP1A1)/BCL2 like 1 (BCL2L1) expression ratio. Publicly available AML datasets identify myelomonocytic/monocytic differentiation as the most robust prognostic feature, along with core-binding factor subunit beta (CBFB), lysine methyltransferase 2A (KMT2A) rearrangements, and missense Fms-related receptor tyrosine kinase 3 (FLT3) mutations. Mechanistically, BCL2L1 protects from cell death commitment induced by the CG-mediated stepwise triggering of ionic perturbation, protein synthesis inhibition, and MCL1 downregulation. In vivo, CGs showed an overall tolerable profile while impacting tumor growth with an effect ranging from tumor growth inhibition to regression. These findings suggest a predictive marker for CG repurposing in specific AML subtypes.
Collapse
Affiliation(s)
- Claudia Cerella
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Fondation Recherche sur le Cancer et les Maladies du Sang, Pavillon 2, 6A rue Barblé, L-1210, Luxembourg, Luxembourg
| | - Sruthi Reddy Gajulapalli
- Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Anne Lorant
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Fondation Recherche sur le Cancer et les Maladies du Sang, Pavillon 2, 6A rue Barblé, L-1210, Luxembourg, Luxembourg
| | - Deborah Gerard
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Fondation Recherche sur le Cancer et les Maladies du Sang, Pavillon 2, 6A rue Barblé, L-1210, Luxembourg, Luxembourg
| | - Florian Muller
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Fondation Recherche sur le Cancer et les Maladies du Sang, Pavillon 2, 6A rue Barblé, L-1210, Luxembourg, Luxembourg
| | - Yejin Lee
- Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyung Rok Kim
- Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byung Woo Han
- Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Christo Christov
- University of Lorraine, Service Commun de Microscopie, Nancy, France
| | - Christian Récher
- Cancer Research Center of Toulouse, UMR 1037 INSERM/ Université Toulouse III-Paul Sabatier, 2 avenue Hubert Curien, Oncopôle, 31037, Toulouse, France
| | - Jean-Emmanuel Sarry
- Cancer Research Center of Toulouse, UMR 1037 INSERM/ Université Toulouse III-Paul Sabatier, 2 avenue Hubert Curien, Oncopôle, 31037, Toulouse, France
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Fondation Recherche sur le Cancer et les Maladies du Sang, Pavillon 2, 6A rue Barblé, L-1210, Luxembourg, Luxembourg
| | - Marc Diederich
- Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
3
|
Poohadsuan J, O'Doherty GA, Owattanapanich W, Kungwankiattichai S, Rojanasakul Y, Issaragrisil S, Luanpitpong S. Cardiac glycoside ouabain efficiently targets leukemic stem cell apoptotic machinery independent of cell differentiation status. Cell Commun Signal 2023; 21:283. [PMID: 37828578 PMCID: PMC10568939 DOI: 10.1186/s12964-023-01317-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 09/13/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is an aggressive hematologic malignancy characterized by an accumulation of immature leukemic myeloblasts initiating from leukemic stem cells (LSCs)-the subpopulation that is also considered the root cause of chemotherapy resistance. Repurposing cardiac glycosides to treat cancers has gained increasing attention and supporting evidence, but how cardiac glycosides effectively target LSCs, e.g., whether it involves cell differentiation, remains largely unexplored. METHODS Digoxin, a user-designed digitoxigenin-α-L-rhamnoside (D6-MA), and ouabain were tested against various human AML-derived cells with different maturation phenotypes. Herein, we established two study models to specifically determine the effects of cardiac glycosides on LSC death and differentiation-one allowed change in dynamics of LSCs and leukemic progenitor cells (LPCs), while another maintained their undifferentiated status. Regulatory mechanisms underlying cardiac glycoside-induced cytotoxicity were investigated and linked to cell cycle distribution and apoptotic machinery. RESULTS Primitive AML cells containing CD34+ LSCs/LPCs were very responsive to nanomolar concentrations of cardiac glycosides, with ouabain showing the greatest efficiency. Ouabain preferentially induces caspase-dependent apoptosis in LSCs, independent of its cell differentiation status, as evidenced by (i) the tremendous induction of apoptosis by ouabain in AML cells that acquired less than 15% differentiation and (ii) the higher rate of apoptosis in enriched LSCs than in LPCs. We sorted LSCs and LPCs according to their cell cycle distribution into G0/G1, S, and G2/M cells and revealed that G0/G1 cells in LSCs, which was its major subpopulation, were the top ouabain responders, indicating that the difference in ouabain sensitivity between LSCs and LPCs involved both distinct cell cycle distribution and intrinsic apoptosis regulatory mechanisms. Further, Mcl-1 and c-Myc, which were differentially expressed in LSCs and LPCs, were found to be the key apoptosis mediators that determined ouabain sensitivity in AML cells. Ouabain induces a more rapid loss of Mcl-1 and c-Myc in LSCs than in LPCs via the mechanisms that in part involve an inhibition of Mcl-1 protein synthesis and an induction of c-Myc degradation. CONCLUSIONS Our data provide new insight for repurposing cardiac glycosides for the treatment of relapsed/refractory AML through targeting LSCs via distinct cell cycle and apoptosis machinery. Video Abstract.
Collapse
Affiliation(s)
- Jirarat Poohadsuan
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Siriraj Hospital, Bangkoknoi, Bangkok, 10700, Thailand
| | - George A O'Doherty
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Weerapat Owattanapanich
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Center of Excellence of Siriraj Adult Acute Myeloid/Lymphoblastic Leukemia, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Smith Kungwankiattichai
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Center of Excellence of Siriraj Adult Acute Myeloid/Lymphoblastic Leukemia, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV, USA
- WVU Cancer Institute, West Virginia University, Morgantown, WV, USA
| | - Surapol Issaragrisil
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Siriraj Hospital, Bangkoknoi, Bangkok, 10700, Thailand
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sudjit Luanpitpong
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Siriraj Hospital, Bangkoknoi, Bangkok, 10700, Thailand.
| |
Collapse
|
4
|
Amiri M, Molavi O, Sabetkam S, Jafari S, Montazersaheb S. Stimulators of immunogenic cell death for cancer therapy: focusing on natural compounds. Cancer Cell Int 2023; 23:200. [PMID: 37705051 PMCID: PMC10500939 DOI: 10.1186/s12935-023-03058-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023] Open
Abstract
A growing body of evidence indicates that the anticancer effect of the immune system can be activated by the immunogenic modulation of dying cancer cells. Cancer cell death, as a result of the activation of an immunomodulatory response, is called immunogenic cell death (ICD). This regulated cell death occurs because of increased immunogenicity of cancer cells undergoing ICD. ICD plays a crucial role in stimulating immune system activity in cancer therapy. ICD can therefore be an innovative route to improve anticancer immune responses associated with releasing damage-associated molecular patterns (DAMPs). Several conventional and chemotherapeutics, as well as preclinically investigated compounds from natural sources, possess immunostimulatory properties by ICD induction. Natural compounds have gained much interest in cancer therapy owing to their low toxicity, low cost, and inhibiting cancer cells by interfering with different mechanisms, which are critical in cancer progression. Therefore, identifying natural compounds with ICD-inducing potency presents agents with promising potential in cancer immunotherapy. Naturally derived compounds are believed to act as immunoadjuvants because they elicit cancer stress responses and DAMPs. Acute exposure to DAMP molecules can activate antigen-presenting cells (APCs), such as dendritic cells (DCs), which leads to downstream events by cytotoxic T lymphocytes (CTLs) and natural killer cells (NKs). Natural compounds as inducers of ICD may be an interesting approach to ICD induction; however, parameters that determine whether a compound can be used as an ICD inducer should be elucidated. Here, we aimed to discuss the impact of multiple ICD inducers, mainly focusing on natural agents, including plant-derived, marine molecules, and bacterial-based compounds, on the release of DAMP molecules and the activation of the corresponding signaling cascades triggering immune responses. In addition, the potential of synthetic agents for triggering ICD is also discussed.
Collapse
Affiliation(s)
- Mina Amiri
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahnaz Sabetkam
- Department of Anatomy, Faculty of Medicine, university of Kyrenia, Kyrenia, Northern Cyprus
- Department of Anatomy and histopathology, Faculty of medicine, Tabriz medical sciences, Islamic Azad University, Tabriz, Iran
| | - Sevda Jafari
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Sneyers F, Kerkhofs M, Speelman-Rooms F, Welkenhuyzen K, La Rovere R, Shemy A, Voet A, Eelen G, Dewerchin M, Tait SWG, Ghesquière B, Bootman MD, Bultynck G. Intracellular BAPTA directly inhibits PFKFB3, thereby impeding mTORC1-driven Mcl-1 translation and killing MCL-1-addicted cancer cells. Cell Death Dis 2023; 14:600. [PMID: 37684238 PMCID: PMC10491774 DOI: 10.1038/s41419-023-06120-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 08/10/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Intracellular Ca2+ signals control several physiological and pathophysiological processes. The main tool to chelate intracellular Ca2+ is intracellular BAPTA (BAPTAi), usually introduced into cells as a membrane-permeant acetoxymethyl ester (BAPTA-AM). Previously, we demonstrated that BAPTAi enhanced apoptosis induced by venetoclax, a BCL-2 antagonist, in diffuse large B-cell lymphoma (DLBCL). This finding implied a novel interplay between intracellular Ca2+ signaling and anti-apoptotic BCL-2 function. Hence, we set out to identify the underlying mechanisms by which BAPTAi enhances cell death in B-cell cancers. In this study, we discovered that BAPTAi alone induced apoptosis in hematological cancer cell lines that were highly sensitive to S63845, an MCL-1 antagonist. BAPTAi provoked a rapid decline in MCL-1-protein levels by inhibiting mTORC1-driven Mcl-1 translation. These events were not a consequence of cell death, as BAX/BAK-deficient cancer cells exhibited similar downregulation of mTORC1 activity and MCL-1-protein levels. Next, we investigated how BAPTAi diminished mTORC1 activity and identified its ability to impair glycolysis by directly inhibiting 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) activity, a previously unknown effect of BAPTAi. Notably, these effects were also induced by a BAPTAi analog with low affinity for Ca2+. Consequently, our findings uncover PFKFB3 inhibition as an Ca2+-independent mechanism through which BAPTAi impairs cellular metabolism and ultimately compromises the survival of MCL-1-dependent cancer cells. These findings hold two important implications. Firstly, the direct inhibition of PFKFB3 emerges as a key regulator of mTORC1 activity and a promising target in MCL-1-dependent cancers. Secondly, cellular effects caused by BAPTAi are not necessarily related to Ca2+ signaling. Our data support the need for a reassessment of the role of Ca2+ in cellular processes when findings were based on the use of BAPTAi.
Collapse
Affiliation(s)
- Flore Sneyers
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Campus Gasthuisberg O&N I, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Martijn Kerkhofs
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Campus Gasthuisberg O&N I, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Femke Speelman-Rooms
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Campus Gasthuisberg O&N I, Herestraat 49 box 802, 3000, Leuven, Belgium
- KU Leuven, Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, Campus Gasthuisberg O&N I bis, Herestraat 49 box 901, 3000, Leuven, Belgium
| | - Kirsten Welkenhuyzen
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Campus Gasthuisberg O&N I, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Rita La Rovere
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Campus Gasthuisberg O&N I, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Ahmed Shemy
- KU Leuven, Laboratory for Biomolecular Modelling and Design, Department of Chemistry, Celestijnenlaan 200G, 3001, Heverlee, Belgium
| | - Arnout Voet
- KU Leuven, Laboratory for Biomolecular Modelling and Design, Department of Chemistry, Celestijnenlaan 200G, 3001, Heverlee, Belgium
| | - Guy Eelen
- KU Leuven, Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Leuven Cancer Institute, Campus Gasthuisberg O&N4, Herestraat 49 box 912, Leuven, Belgium
- VIB-KU Leuven, Center for Cancer Biology, Laboratory of Angiogenesis and Vascular Metabolism, Campus Gasthuisberg O&N4, Herestraat 49 box 912, 3000, Leuven, Belgium
| | - Mieke Dewerchin
- KU Leuven, Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Leuven Cancer Institute, Campus Gasthuisberg O&N4, Herestraat 49 box 912, Leuven, Belgium
- VIB-KU Leuven, Center for Cancer Biology, Laboratory of Angiogenesis and Vascular Metabolism, Campus Gasthuisberg O&N4, Herestraat 49 box 912, 3000, Leuven, Belgium
| | - Stephen W G Tait
- Cancer Research UK Beatson Institute, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Bart Ghesquière
- KU Leuven, Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, Leuven, Belgium - VIB, Metabolomics Core Facility Leuven, Center for Cancer Biology, Leuven, Belgium, Herestraat 49 box 912, 3000, Leuven, Belgium
| | - Martin D Bootman
- School of Life, Health and Chemical Sciences, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK.
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Campus Gasthuisberg O&N I, Herestraat 49 box 802, 3000, Leuven, Belgium.
| |
Collapse
|
6
|
Kim J, Ji S, Lee JY, Lorquin J, Orlikova-Boyer B, Cerella C, Mazumder A, Muller F, Dicato M, Detournay O, Diederich M. Marine Polyether Phycotoxin Palytoxin Induces Apoptotic Cell Death via Mcl-1 and Bcl-2 Downregulation. Mar Drugs 2023; 21:md21040233. [PMID: 37103372 PMCID: PMC10143546 DOI: 10.3390/md21040233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/28/2023] Open
Abstract
Palytoxin is considered one of the most potent biotoxins. As palytoxin-induced cancer cell death mechanisms remain to be elucidated, we investigated this effect on various leukemia and solid tumor cell lines at low picomolar concentrations. As palytoxin did not affect the viability of peripheral blood mononuclear cells (PBMC) from healthy donors and did not create systemic toxicity in zebrafish, we confirmed excellent differential toxicity. Cell death was characterized by a multi-parametric approach involving the detection of nuclear condensation and caspase activation assays. zVAD-sensitive apoptotic cell death was concomitant with a dose-dependent downregulation of antiapoptotic Bcl-2 family proteins Mcl-1 and Bcl-xL. Proteasome inhibitor MG-132 prevented the proteolysis of Mcl-1, whereas the three major proteasomal enzymatic activities were upregulated by palytoxin. Palytoxin-induced dephosphorylation of Bcl-2 further exacerbated the proapoptotic effect of Mcl-1 and Bcl-xL degradation in a range of leukemia cell lines. As okadaic acid rescued cell death triggered by palytoxin, protein phosphatase (PP)2A was involved in Bcl-2 dephosphorylation and induction of apoptosis by palytoxin. At a translational level, palytoxin abrogated the colony formation capacity of leukemia cell types. Moreover, palytoxin abrogated tumor formation in a zebrafish xenograft assay at concentrations between 10 and 30 pM. Altogether, we provide evidence of the role of palytoxin as a very potent and promising anti-leukemic agent, acting at low picomolar concentrations in cellulo and in vivo.
Collapse
Affiliation(s)
- Jaemyun Kim
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08626, Republic of Korea
| | - Seungwon Ji
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08626, Republic of Korea
| | - Jin-Young Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08626, Republic of Korea
| | - Jean Lorquin
- Institut Méditerranéen d'Océanologie, 163 Avenue de Luminy, CEDEX 09, 13288 Marseille, France
| | - Barbora Orlikova-Boyer
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08626, Republic of Korea
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), BAM3 Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210 Luxembourg, Luxembourg
| | - Claudia Cerella
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08626, Republic of Korea
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), BAM3 Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210 Luxembourg, Luxembourg
| | - Aloran Mazumder
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08626, Republic of Korea
| | - Florian Muller
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), BAM3 Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210 Luxembourg, Luxembourg
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), BAM3 Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210 Luxembourg, Luxembourg
| | - Olivier Detournay
- Planktovie SAS, 45 Rue Frédéric Joliot Curie, CEDEX 13, 13013 Marseille, France
| | - Marc Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08626, Republic of Korea
| |
Collapse
|
7
|
Mesenchymal Stem/Stromal Cells in Three-Dimensional Cell Culture: Ion Homeostasis and Ouabain-Induced Apoptosis. Biomedicines 2023; 11:biomedicines11020301. [PMID: 36830836 PMCID: PMC9953635 DOI: 10.3390/biomedicines11020301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
This study describes the changes in ion homeostasis of human endometrial mesenchymal stem/stromal cells (eMSCs) during the formation of three-dimensional (3D) cell structures (spheroids) and investigates the conditions for apoptosis induction in 3D eMSCs. Detached from the monolayer culture, (2D) eMSCs accumulate Na+ and have dissipated transmembrane ion gradients, while in compact spheroids, eMSCs restore the lower Na+ content and the high K/Na ratio characteristic of functionally active cells. Organized as spheroids, eMSCs are non-proliferating cells with an active Na/K pump and a lower K+ content per g cell protein, which is typical for quiescent cells and a mean lower water content (lower hydration) in 3D eMSCs. Further, eMSCs in spheroids were used to evaluate the role of K+ depletion and cellular signaling context in the induction of apoptosis. In both 2D and 3D eMSCs, treatment with ouabain (1 µM) results in inhibition of pump-mediated K+ uptake and severe K+ depletion as well as disruption of the mitochondrial membrane potential. In 3D eMSCs (but not in 2D eMSCs), ouabain initiates apoptosis via the mitochondrial pathway. It is concluded that, when blocking the Na/K pump, cardiac glycosides prime mitochondria to apoptosis, and whether a cell enters the apoptotic pathway depends on the cell-specific signaling context, which includes the type of apoptotic protein expressed.
Collapse
|
8
|
Monovalent ions and stress-induced senescence in human mesenchymal endometrial stem/stromal cells. Sci Rep 2022; 12:11194. [PMID: 35778548 PMCID: PMC9249837 DOI: 10.1038/s41598-022-15490-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 06/24/2022] [Indexed: 01/10/2023] Open
Abstract
Monovalent ions are involved in growth, proliferation, differentiation of cells as well as in their death. This work concerns the ion homeostasis during senescence induction in human mesenchymal endometrium stem/stromal cells (hMESCs): hMESCs subjected to oxidative stress (sublethal pulse of H2O2) enter the premature senescence accompanied by persistent DNA damage, irreversible cell cycle arrest, increased expression of the cell cycle inhibitors (p53, p21) cell hypertrophy, enhanced β-galactosidase activity. Using flame photometry to estimate K+, Na+ content and Rb+ (K+) fluxes we found that during the senescence development in stress-induced hMESCs, Na+/K+pump-mediated K+ fluxes are enhanced due to the increased Na+ content in senescent cells, while ouabain-resistant K+ fluxes remain unchanged. Senescence progression is accompanied by a peculiar decrease in the K+ content in cells from 800-900 to 500-600 µmol/g. Since cardiac glycosides are offered as selective agents for eliminating senescent cells, we investigated the effect of ouabain on ion homeostasis and viability of hMESCs and found that in both proliferating and senescent hMESCs, ouabain (1 nM-1 µM) inhibited pump-mediated K+ transport (ID50 5 × 10-8 M), decreased cell K+/Na+ ratio to 0.1-0.2, however did not induce apoptosis. Comparison of the effect of ouabain on hMESCs with the literature data on the selective cytotoxic effect of cardiac glycosides on senescent or cancer cells suggests the ion pump blockade and intracellular K+ depletion should be synergized with target apoptotic signal to induce the cell death.
Collapse
|
9
|
Semba M, Takamatsu S, Komazawa-Sakon S, Miyoshi E, Nishiyama C, Nakano H, Moriwaki K. Proscillaridin A Sensitizes Human Colon Cancer Cells to TRAIL-Induced Cell Death. Int J Mol Sci 2022; 23:ijms23136973. [PMID: 35805980 PMCID: PMC9266755 DOI: 10.3390/ijms23136973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a cytotoxic cytokine that induces cancer cell death by binding to TRAIL receptors. Because of its selective cytotoxicity toward cancer cells, TRAIL therapeutics, such as recombinant TRAIL and agonistic antibodies targeting TRAIL receptors, have garnered attention as promising cancer treatment agents. However, many cancer cells acquire resistance to TRAIL-induced cell death. To overcome this issue, we searched for agents to sensitize cancer cells to TRAIL-induced cell death by screening a small-molecule chemical library consisting of diverse compounds. We identified a cardiac glycoside, proscillaridin A, as the most effective TRAIL sensitizer in colon cancer cells. Proscillaridin A synergistically enhanced TRAIL-induced cell death in TRAIL-sensitive and -resistant colon cancer cells. Additionally, proscillaridin A enhanced cell death in cells treated with TRAIL and TRAIL sensitizer, the second mitochondria-derived activator of caspase mimetic. Proscillaridin A upregulated TRAIL receptor expression, while downregulating the levels of the anti-cell death molecules, cellular FADD-like IL-1β converting enzyme-like inhibitor protein and Mcl1, in a cell type-dependent manner. Furthermore, proscillaridin A enhanced TRAIL-induced cell death partly via O-glycosylation. Taken together, our findings suggest that proscillaridin A is a promising agent that enhances the anti-cancer efficacy of TRAIL therapeutics.
Collapse
Affiliation(s)
- Manami Semba
- Department of Biochemistry, Graduate School of Medicine, Toho University, Ota-ku, Tokyo 143-8540, Japan; (M.S.); (S.K.-S.); (H.N.)
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Katsushika-ku, Tokyo 125-8585, Japan;
| | - Shinji Takamatsu
- Department of Molecular Biochemistry and Clinical Investigation, Graduate School of Medicine, Faculty of Medicine, Osaka University, Suita 565-0871, Osaka, Japan; (S.T.); (E.M.)
| | - Sachiko Komazawa-Sakon
- Department of Biochemistry, Graduate School of Medicine, Toho University, Ota-ku, Tokyo 143-8540, Japan; (M.S.); (S.K.-S.); (H.N.)
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Graduate School of Medicine, Faculty of Medicine, Osaka University, Suita 565-0871, Osaka, Japan; (S.T.); (E.M.)
| | - Chiharu Nishiyama
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Katsushika-ku, Tokyo 125-8585, Japan;
| | - Hiroyasu Nakano
- Department of Biochemistry, Graduate School of Medicine, Toho University, Ota-ku, Tokyo 143-8540, Japan; (M.S.); (S.K.-S.); (H.N.)
| | - Kenta Moriwaki
- Department of Biochemistry, Graduate School of Medicine, Toho University, Ota-ku, Tokyo 143-8540, Japan; (M.S.); (S.K.-S.); (H.N.)
- Correspondence: ; Tel.: +81-3-3762-4151 (ext. 2355)
| |
Collapse
|
10
|
Yang HY, Chen YX, Luo S, He YL, Feng WJ, Sun Y, Chen JJ, Gao K. Cardiac glycosides from Digitalis lanata and their cytotoxic activities. RSC Adv 2022; 12:23240-23251. [PMID: 36090389 PMCID: PMC9380703 DOI: 10.1039/d2ra04464a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/09/2022] [Indexed: 11/21/2022] Open
Abstract
Cardiac glycosides (CGs) are good candidates as drug leads in the treatment of cancer because of their structural diversities and potent biological activities. In this study, fifteen CGs including three new ones (1–3) were isolated from Digitalis lanata Ehrh. Their structures were elucidated by HRESIMS, NMR spectroscopic methods, including homonuclear and heteronuclear coupling constant analysis, and acid-catalyzed hydrolysis and derivatization analysis of the sugar chain. The cytotoxic activities of these CGs were evaluated against three human cancer cell lines (A549, HeLa and MCF-7 cell lines), and all of them showed strong activities at nanomolar scale. The flow cytometric analysis indicated that compound 1 induced cell cycle arrest in the G2/M phase. Transcriptome analysis revealed a panel of possible targets for compound 1. RT-PCR and western blot experiments showed that 1 significantly inhibited the expression of vasohibin-2 (VASH2). Moreover, compound 1 restrained angiogenesis in a concentration-dependent manner in the chick embryo chorioallantoic membrane (CAM) model. Cardiac glycosides (CGs) are good candidates as drug leads in the treatment of cancer because of their structural diversities and potent biological activities.![]()
Collapse
Affiliation(s)
- Hong-Ying Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Chengguan District, Lanzhou, Gansu, 730000, People's Republic of China
| | - Ya-Xiong Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Chengguan District, Lanzhou, Gansu, 730000, People's Republic of China
- Key Laboratory of Space Radiobiology of Gansu Province & CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
| | - Shangwen Luo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Chengguan District, Lanzhou, Gansu, 730000, People's Republic of China
| | - Yi-Lin He
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Chengguan District, Lanzhou, Gansu, 730000, People's Republic of China
- Research Institute, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
| | - Wei-Jiao Feng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Chengguan District, Lanzhou, Gansu, 730000, People's Republic of China
| | - Yue Sun
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Chengguan District, Lanzhou, Gansu, 730000, People's Republic of China
| | - Jian-Jun Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Chengguan District, Lanzhou, Gansu, 730000, People's Republic of China
| | - Kun Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Chengguan District, Lanzhou, Gansu, 730000, People's Republic of China
| |
Collapse
|
11
|
Chavda VP, Ertas YN, Walhekar V, Modh D, Doshi A, Shah N, Anand K, Chhabria M. Advanced Computational Methodologies Used in the Discovery of New Natural Anticancer Compounds. Front Pharmacol 2021; 12:702611. [PMID: 34483905 PMCID: PMC8416109 DOI: 10.3389/fphar.2021.702611] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022] Open
Abstract
Natural chemical compounds have been widely investigated for their programmed necrosis causing characteristics. One of the conventional methods for screening such compounds is the use of concentrated plant extracts without isolation of active moieties for understanding pharmacological activity. For the last two decades, modern medicine has relied mainly on the isolation and purification of one or two complicated active and isomeric compounds. The idea of multi-target drugs has advanced rapidly and impressively from an innovative model when first proposed in the early 2000s to one of the popular trends for drug development in 2021. Alternatively, fragment-based drug discovery is also explored in identifying target-based drug discovery for potent natural anticancer agents which is based on well-defined fragments opposite to use of naturally occurring mixtures. This review summarizes the current key advancements in natural anticancer compounds; computer-assisted/fragment-based structural elucidation and a multi-target approach for the exploration of natural compounds.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, India
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey.,ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey
| | - Vinayak Walhekar
- Department of Medicinal Chemistry, Bharati Vidyapeeth's Poona College of Pharmacy, Pune, India
| | - Dharti Modh
- Department of Medicinal Chemistry, Bharati Vidyapeeth's Poona College of Pharmacy, Pune, India
| | - Avani Doshi
- Department of Chemistry, SAL Institute of Pharmacy, Ahmedabad, India
| | - Nirav Shah
- Department of Pharmaceutics, SAL Institute of Pharmacy, Ahmedabad, India
| | - Krishna Anand
- Faculty of Health Sciences and National Health Laboratory Service, Department of Chemical Pathology, School of Pathology, University of the Free State, Bloemfontein, South Africa
| | - Mahesh Chhabria
- Department of Pharmaceutical Chemistry, L.M. College of Pharmacy, Ahmedabad, India
| |
Collapse
|
12
|
Fakhri S, Tomas M, Capanoglu E, Hussain Y, Abbaszadeh F, Lu B, Hu X, Wu J, Zou L, Smeriglio A, Simal-Gandara J, Cao H, Xiao J, Khan H. Antioxidant and anticancer potentials of edible flowers: where do we stand? Crit Rev Food Sci Nutr 2021; 62:8589-8645. [PMID: 34096420 DOI: 10.1080/10408398.2021.1931022] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Edible flowers are attracting special therapeutic attention and their administration is on the rise. Edible flowers play pivotal modulatory roles on oxidative stress and related interconnected apoptotic/inflammatory pathways toward the treatment of cancer. In this review, we highlighted the phytochemical content and therapeutic applications of edible flowers, as well as their modulatory potential on the oxidative stress pathways and apoptotic/inflammatory mediators, resulting in anticancer effects. Edible flowers are promising sources of phytochemicals (e.g., phenolic compounds, carotenoids, terpenoids) with several therapeutic effects. They possess anti-inflammatory, anti-diabetic, anti-microbial, anti-depressant, anxiolytic, anti-obesity, cardioprotective, and neuroprotective effects. Edible flowers potentially modulate oxidative stress by targeting erythroid nuclear transcription factor-2/extracellular signal-regulated kinase/mitogen-activated protein kinase (Nrf2/ERK/MAPK), reactive oxygen species (ROS), nitric oxide (NO), malondialdehyde (MDA) and antioxidant response elements (AREs). As the interconnected pathways to oxidative stress, inflammatory mediators, including tumor necrosis factor (TNF)-α, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), interleukins (ILs) as well as apoptotic pathways such as Bcl-2-associated X protein (Bax), Bcl-2, caspase and cytochrome C are critical targets of edible flowers in combating cancer. In this regard, edible flowers could play promising anticancer effects by targeting oxidative stress and downstream dysregulated pathways.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Merve Tomas
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Yaseen Hussain
- Control release drug delivery system, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Fatemeh Abbaszadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.,Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Xiaolan Hu
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, China
| | - Jianlin Wu
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo -Ourense Campus, Ourense, Spain
| | - Hui Cao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo -Ourense Campus, Ourense, Spain
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo -Ourense Campus, Ourense, Spain.,Institute of Food Safety & Nutrition, Jinan University, Guangzhou, China
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
13
|
Investigation of the cytotoxic activity of two novel digitoxigenin analogues on H460 lung cancer cells. Anticancer Drugs 2021; 31:452-462. [PMID: 32079825 DOI: 10.1097/cad.0000000000000872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cardiac glycosides (CGs) are natural compounds traditionally used for the treatment of heart disorders, and recently new therapeutic possibilities were proposed. Their antitumor reports and clinical trials have notably enhanced, including those targeted for lung cancer, the most lethal type that lacks of new treatment agents, instigating the research of these molecules. The CGs studied here, named C10 {3β-[(N-(2-hydroxyethyl)aminoacetyl]amino-3-deoxydigitoxigenin} and C18 (3β-(aminoacetyl)amino-3-deoxydigitoxigenin), are semisynthetic derivatives prepared from digitoxigenin scaffold. Both compounds demonstrated high cytotoxicity for different cancer cell lines, especially H460 lung cancer cells, and their cytotoxic effects were deeply investigated using different methodological approaches. C10 induced cell death at lower concentrations and during shorter periods of treatment than C18, and increased the number of small and irregular nuclei, which are characteristics of apoptosis. This type of cell death was confirmed by caspase-3/7 assay. Both compounds reduced H460 cells proliferative potential by long-term action, and C10 showed the strongest potential. Moreover, these compounds induced a significant decrease of the area and viability of H460 spheroids providing preclinical favorable profiles to develop new chemotherapeutic agents.
Collapse
|
14
|
Weng JR, Lin WY, Bai LY, Hu JL, Feng CH. Antitumor Activity of the Cardiac Glycoside αlDiginoside by Modulating Mcl-1 in Human Oral Squamous Cell Carcinoma Cells. Int J Mol Sci 2020; 21:ijms21217947. [PMID: 33114727 PMCID: PMC7663359 DOI: 10.3390/ijms21217947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/16/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
We recently isolated a cardiac glycoside (CG), αldiginoside, from an indigenous plant in Taiwan, which exhibits potent tumor-suppressive efficacy in oral squamous cell carcinoma (OSCC) cell lines (SCC2095 and SCC4, IC50 < 0.2 µM; 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays). Here, we report that αldiginoside caused Sphase arrest and apoptosis, through the inhibition of a series of signaling pathways, including those mediated by cyclin E, phospho-CDC25C (p-CDC25C), and janus kinase/signal transducer and activator of transcription (JAK/STAT)3. αldiginoside induced apoptosis, as indicated by caspase activation and poly (ADP-ribose) polymerase (PARP) cleavage. Equally important, αldiginoside reduced Mcl-1 expression through protein degradation, and overexpression of Mcl-1 partially protected SCC2095 cells from αldiginoside’s cytotoxicity. Taken together, these data suggest the translational potential of αldiginoside to foster new therapeutic strategies for OSCC treatment.
Collapse
Affiliation(s)
- Jing-Ru Weng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Department of Biotechnology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 11042, Taiwan
- Correspondence: ; Tel.: +886-7-525-2000 (ext. 5026); Fax: +886-7-525-5020
| | - Wei-Yu Lin
- Department of Pharmacy, Kinmen Hospital, Kinmen 89142, Taiwan;
| | - Li-Yuan Bai
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung 40447, Taiwan; (L.-Y.B.); (J.-L.H.)
- College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Jing-Lan Hu
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung 40447, Taiwan; (L.-Y.B.); (J.-L.H.)
| | - Chia-Hsien Feng
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| |
Collapse
|
15
|
Cerella C, Dicato M, Diederich M. BH3 Mimetics in AML Therapy: Death and Beyond? Trends Pharmacol Sci 2020; 41:793-814. [PMID: 33032835 DOI: 10.1016/j.tips.2020.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/01/2020] [Accepted: 09/10/2020] [Indexed: 12/16/2022]
Abstract
B cell lymphoma 2 (BCL2) homology domain 3 (BH3) mimetics are targeted therapeutic agents that allow response prediction and patient stratification. BH3 mimetics are prototypical activators of the mitochondrial death program in cancer. They emerged as important modulators of cellular mechanisms contributing to poor therapeutic responses, including cancer cell stemness, cancer-specific metabolic routes, paracrine signaling to the tumor microenvironment, and immune modulation. We present an overview of the antagonism between BH3 mimetics and antiapoptotic BCL2 proteins. We focus on acute myeloid leukemia (AML), a cancer with reduced therapeutic options that have recently been improved by BH3 mimetics.
Collapse
Affiliation(s)
- Claudia Cerella
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, L-2540 Luxembourg, Luxembourg
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, L-2540 Luxembourg, Luxembourg
| | - Marc Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 151-742, South Korea.
| |
Collapse
|
16
|
Saranaruk P, Kariya R, Sittithumcharee G, Boueroy P, Boonmars T, Sawanyawisuth K, Wongkham C, Wongkham S, Okada S, Vaeteewoottacharn K. Chromomycin A3 suppresses cholangiocarcinoma growth by induction of S phase cell cycle arrest and suppression of Sp1‑related anti‑apoptotic proteins. Int J Mol Med 2020; 45:1005-1016. [PMID: 32124934 PMCID: PMC7053871 DOI: 10.3892/ijmm.2020.4482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/10/2019] [Indexed: 01/12/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a cancer of biliary epithelium. Late diagnosis and resistance to conventional chemotherapy are the major obstacles in CCA treatment. Increased expression of anti‑apoptotic proteins are observed in CCA, which might confer chemoresistance. Thus, modulations of anti‑apoptotic proteins leading to apoptotic induction is the focus of this study. Chromomycin A3 (CMA3), an anthraquinone glycoside‑mithramycin A analog, was selected. CMA3 strongly binds to GC‑rich regions in DNA, where specificity protein 1 (Sp1), a common transcription factor of apoptosis‑related proteins, is preferentially bounded. The effects of CMA3 on anti‑proliferation, cell cycle arrest and apoptosis induction in CCA cells were demonstrated by MTT assay, flow cytometry and western blot analysis. The results showed CMA3 suppressed cell proliferation in vitro in the nM range. At low doses, CMA3 inhibited cell cycle progression at S phase, while it promoted caspase‑dependent apoptosis at higher doses. CMA3 induced effects of apoptosis were through the suppression of Sp1‑related anti‑apoptotic proteins, FADD‑like IL‑1β‑converting enzyme‑inhibitory protein, myeloid cell leukemia‑1, X‑linked inhibitor of apoptosis protein, cellular inhibitor of apoptosis and survivin. The anti‑CCA effects of CMA3 were confirmed in the xenograft mouse model. CMA3 retarded xenograft tumor growth. Taken together, CMA3 induced apoptosis in CCA cells by diminishing the Sp1‑related anti‑apoptotic proteins is demonstrated. CMA3 might be useful as a chemosensitizing agent.
Collapse
Affiliation(s)
- Paksiree Saranaruk
- Department of Biochemistry, Faculty of Medicine
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ryusho Kariya
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection and Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Gunya Sittithumcharee
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection and Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Parichart Boueroy
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000
| | - Thidarut Boonmars
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kanlayanee Sawanyawisuth
- Department of Biochemistry, Faculty of Medicine
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chaisiri Wongkham
- Department of Biochemistry, Faculty of Medicine
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sopit Wongkham
- Department of Biochemistry, Faculty of Medicine
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection and Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Kulthida Vaeteewoottacharn
- Department of Biochemistry, Faculty of Medicine
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection and Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
17
|
Pervushin NV, Senichkin VV, Zhivotovsky B, Kopeina GS. Mcl-1 as a "barrier" in cancer treatment: Can we target it now? INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 351:23-55. [PMID: 32247581 DOI: 10.1016/bs.ircmb.2020.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During the last two decades, the study of Mcl-1, an anti-apoptotic member of the Bcl-2 family, attracted researchers due to its important role in cancer cell survival and tumor development. The significance of Mcl-1 protein in resistance to chemotherapeutics makes it an attractive target in cancer therapy. Here, we discuss the diverse possibilities for indirect Mcl-1 inhibition through its downregulation, for example, via targeting for proteasomal degradation or blockage of translation and transcription. We also provide an overview of the direct blocking of protein-protein interactions with pro-apoptotic Bcl-2 family proteins, including examples of the most promising regulators of Mcl-1 and selective BH3-mimetics, which at present are under clinical evaluation. Moreover, several approaches for the co-targeting of Mcl-1 and other proteins (e.g., CDKs) are also presented. In addition, we highlight the broad spectrum of problems that accompanied the discovery and development of effective Mcl-1 inhibitors.
Collapse
Affiliation(s)
| | | | - Boris Zhivotovsky
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Gelina S Kopeina
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
18
|
Yun HH, Kim S, Kuh HJ, Lee JH. Downregulation of BIS sensitizes A549 cells for digoxin-mediated inhibition of invasion and migration by the STAT3-dependent pathway. Biochem Biophys Res Commun 2020; 524:643-648. [PMID: 32029272 DOI: 10.1016/j.bbrc.2020.01.154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 11/15/2022]
Abstract
Digoxin, a compound of the cardiac glycoside family, was originally prescribed for heart failure but has recently been rediscovered for its potent antitumor activity. However, it has a narrow therapeutic margin due to its cardiotoxicity, limiting its safe use as an antitumor agent in clinical practice. To widen its therapeutic margin, we investigated whether the antitumor effect of digoxin is potentiated by the depletion of BCL-2-interacting cell death suppressor (BIS) in A549 lung cancer cells. BIS is a multifunctional protein that is frequently overexpressed in most human cancers including lung cancer. Our results demonstrated that the inhibitory potential of digoxin on the migratory behavior of A549 cells is significantly enhanced by BIS depletion as assessed by transwell assay and collagen-incorporated 3D spheroid culture. Western blotting revealed that combination treatment significantly reduces p-STAT3 expression. In addition, a STAT3 inhibitor substantially suppressed the aggressive phenotypes of A549 cells. Thus, our results suggest that loss of STAT3 activity is a possible molecular mechanism for the synergistic effect of digoxin and BIS depletion. Our findings suggest the sensitizing role of BIS silencing to reduce the dose of digoxin for treatment of lung cancer with a high metastatic potential.
Collapse
Affiliation(s)
- Hye Hyeon Yun
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea; Institute of Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Seulki Kim
- Department of Biomedicine & Health Sciences, Graduate School, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea; Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Hyo-Jeong Kuh
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Jeong-Hwa Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea; Institute of Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea.
| |
Collapse
|
19
|
Ha YN, Song S, Orlikova-Boyer B, Cerella C, Christov C, Kijjoa A, Diederich M. Petromurin C Induces Protective Autophagy and Apoptosis in FLT3-ITD-Positive AML: Synergy with Gilteritinib. Mar Drugs 2020; 18:md18010057. [PMID: 31963113 PMCID: PMC7024157 DOI: 10.3390/md18010057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/25/2022] Open
Abstract
Treatment of acute myeloid leukemia (AML) remains inefficient due to drug resistance and relapse, particularly in patients with FMS-like tyrosine kinase 3 (FLT3)-internal tandem duplication (ITD). Marine-derived natural products have recently been used for drug development against AML. We show in this study that petromurin C, which was isolated from the culture extract of the marine-derived fungus Aspergillus candidus KUFA0062, isolated from the marine sponge Epipolasis sp., induces early autophagy followed by apoptotic cell death via activation of the intrinsic cell death pathway concomitant with mitochondrial stress and downregulation of Mcl-1 in FLT3-ITD mutated MV4-11 cells. Moreover, petromurin C synergized with the clinically-used FLT3 inhibitor gilteritinib at sub-toxic concentrations. Altogether, our results provide preliminary indications that petromurin C provides anti-leukemic effects alone or in combination with gilteritinib.
Collapse
MESH Headings
- Aniline Compounds/administration & dosage
- Aniline Compounds/pharmacology
- Animals
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Apoptosis/drug effects
- Aquatic Organisms/chemistry
- Autophagy/drug effects
- Biological Products/administration & dosage
- Biological Products/pharmacology
- Cell Line, Tumor
- Down-Regulation/drug effects
- Drug Resistance, Neoplasm
- Drug Synergism
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Pyrazines/administration & dosage
- Pyrazines/pharmacology
- Signal Transduction/drug effects
- U937 Cells
- Zebrafish
- fms-Like Tyrosine Kinase 3/genetics
- fms-Like Tyrosine Kinase 3/metabolism
Collapse
Affiliation(s)
- You Na Ha
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08626, Korea; (Y.N.H.); (S.S.)
| | - Sungmi Song
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08626, Korea; (Y.N.H.); (S.S.)
| | - Barbora Orlikova-Boyer
- Laboratoire de Biologie Moléculaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg; (B.O.-B.); (C.C.)
| | - Claudia Cerella
- Laboratoire de Biologie Moléculaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg; (B.O.-B.); (C.C.)
| | - Christo Christov
- Service d’Histologie, Faculté de Médicine, Université de Lorraine, INSERM U1256 NGERE, 54000 Nancy, France;
| | - Anake Kijjoa
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Lexões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Marc Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08626, Korea; (Y.N.H.); (S.S.)
- Correspondence: ; Tel.: +82-2-880-8919
| |
Collapse
|
20
|
Fang S, Tao H, Xia K, Guo W. Proscillaridin A induces apoptosis and inhibits the metastasis of osteosarcoma in vitro and in vivo. Biochem Biophys Res Commun 2019; 521:880-886. [PMID: 31708095 DOI: 10.1016/j.bbrc.2019.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 11/02/2019] [Indexed: 01/23/2023]
Abstract
The side effects of chemotherapy, drug resistance, and tumor metastasis hinder the development of treatment for osteosarcoma, leading to poor prognosis of patients with the disease. Proscillaridin A, a kind of cardiac glycoside, has been proven to have anti-proliferative properties in many malignant tumors, but the efficacy of the drug in treating osteosarcoma is unclear. In the present study, we assessed the effects of Proscillaridin A on osteosarcoma and investigated its underlying action mechanism. The cell cytotoxicity assay showed that Proscillaridin A significantly inhibited the proliferation of 143B cells in a dose- and time-dependent manner. Also, flow cytometry and invasion assay revealed that Proscillaridin A induced apoptosis and reduced 143B cell motility. Western blotting and PCR were used to detect the expressions of Bcl-xl and MMP2 and showed that mRNA/protein expression levels decreased significantly in Proscillaridin A-treated osteosarcoma cells. Using a mouse xenograft model, we found that Proscillaridin A treatment significantly inhibited tumor growth and lung metastasis in vivo and decreased the expression levels of Bcl-xl and MMP2. No noticeable side effect was observed in the liver, kidney, and hematological functions. Conclusively, Proscillaridin A suppressed proliferation, induced apoptosis, and inhibited 143B cell metastasis in vitro and in vivo, and these effects could be mediated by downregulating the expressions of Bcl-xl and MMP2.
Collapse
Affiliation(s)
- Shuo Fang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China
| | - Hai Tao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China
| | - Kezhou Xia
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China
| | - Weichun Guo
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China.
| |
Collapse
|
21
|
Sheikholeslami K, Ali Sher A, Lockman S, Kroft D, Ganjibakhsh M, Nejati-Koshki K, Shojaei S, Ghavami S, Rastegar M. Simvastatin Induces Apoptosis in Medulloblastoma Brain Tumor Cells via Mevalonate Cascade Prenylation Substrates. Cancers (Basel) 2019; 11:cancers11070994. [PMID: 31319483 PMCID: PMC6678292 DOI: 10.3390/cancers11070994] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 07/12/2019] [Indexed: 02/07/2023] Open
Abstract
Medulloblastoma is a common pediatric brain tumor and one of the main types of solid cancers in children below the age of 10. Recently, cholesterol-lowering “statin” drugs have been highlighted for their possible anti-cancer effects. Clinically, statins are reported to have promising potential for consideration as an adjuvant therapy in different types of cancers. However, the anti-cancer effects of statins in medulloblastoma brain tumor cells are not currently well-defined. Here, we investigated the cell death mechanisms by which simvastatin mediates its effects on different human medulloblastoma cell lines. Simvastatin is a lipophilic drug that inhibits HMG-CoA reductase and has pleotropic effects. Inhibition of HMG-CoA reductase prevents the formation of essential downstream intermediates in the mevalonate cascade, such as farnesyl pyrophosphate (FPP) and gernaylgerany parophosphate (GGPP). These intermediates are involved in the activation pathway of small Rho GTPase proteins in different cell types. We observed that simvastatin significantly induces dose-dependent apoptosis in three different medulloblastoma brain tumor cell lines (Daoy, D283, and D341 cells). Our investigation shows that simvastatin-induced cell death is regulated via prenylation intermediates of the cholesterol metabolism pathway. Our results indicate that the induction of different caspases (caspase 3, 7, 8, and 9) depends on the nature of the medulloblastoma cell line. Western blot analysis shows that simvastatin leads to changes in the expression of regulator proteins involved in apoptosis, such as Bax, Bcl-2, and Bcl-xl. Taken together, our data suggests the potential application of a novel non-classical adjuvant therapy for medulloblastoma, through the regulation of protein prenylation intermediates that occurs via inhibition of the mevalonate pathway.
Collapse
Affiliation(s)
- Kimia Sheikholeslami
- Regenerative Medicine Program, and Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, BMSB 627, Winnipeg, MB R3E 0J9, Canada
- Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Annan Ali Sher
- Regenerative Medicine Program, and Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, BMSB 627, Winnipeg, MB R3E 0J9, Canada
| | - Sandhini Lockman
- Regenerative Medicine Program, and Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, BMSB 627, Winnipeg, MB R3E 0J9, Canada
| | - Daniel Kroft
- Regenerative Medicine Program, and Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, BMSB 627, Winnipeg, MB R3E 0J9, Canada
| | - Meysam Ganjibakhsh
- Regenerative Medicine Program, and Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, BMSB 627, Winnipeg, MB R3E 0J9, Canada
| | - Kazem Nejati-Koshki
- Regenerative Medicine Program, and Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, BMSB 627, Winnipeg, MB R3E 0J9, Canada
| | - Shahla Shojaei
- Department of Human Anatomy and Cell Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Research Institute of Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Mojgan Rastegar
- Regenerative Medicine Program, and Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, BMSB 627, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|
22
|
Natural modulators of the hallmarks of immunogenic cell death. Biochem Pharmacol 2019; 162:55-70. [PMID: 30615863 DOI: 10.1016/j.bcp.2018.12.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 12/19/2018] [Indexed: 12/16/2022]
Abstract
Natural compounds act as immunoadjuvants as their therapeutic effects trigger cancer stress response and release of damage-associated molecular patterns (DAMPs). These reactions occur through an increase in the immunogenicity of cancer cells that undergo stress followed by immunogenic cell death (ICD). These processes result in a chemotherapeutic response with a potent immune-mediating reaction. Natural compounds that induce ICD may function as an interesting approach in converting cancer into its own vaccine. However, multiple parameters determine whether a compound can act as an ICD inducer, including the nature of the inducer, the premortem stress pathways, the cell death pathways, the intrinsic antigenicity of the cell, and the potency and availability of an immune cell response. Thus, the identification of hallmarks of ICD is important in determining the prognostic biomarkers for new therapeutic approaches and combination treatments.
Collapse
|
23
|
Florean C, Kim KR, Schnekenburger M, Kim HJ, Moriou C, Debitus C, Dicato M, Al-Mourabit A, Han BW, Diederich M. Synergistic AML Cell Death Induction by Marine Cytotoxin (+)-1( R), 6( S), 1'( R), 6'( S), 11( R), 17( S)-Fistularin-3 and Bcl-2 Inhibitor Venetoclax. Mar Drugs 2018; 16:md16120518. [PMID: 30572618 PMCID: PMC6316187 DOI: 10.3390/md16120518] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 11/23/2022] Open
Abstract
Treatment of acute myeloid leukemia (AML) patients is still hindered by resistance and relapse, resulting in an overall poor survival rate. Recently, combining specific B-cell lymphoma (Bcl)-2 inhibitors with compounds downregulating myeloid cell leukemia (Mcl)-1 has been proposed as a new effective strategy to eradicate resistant AML cells. We show here that 1(R), 6(S), 1’(R), 6’(S), 11(R), 17(S)-fistularin-3, a bromotyrosine compound of the fistularin family, isolated from the marine sponge Suberea clavata, synergizes with Bcl-2 inhibitor ABT-199 to efficiently kill Mcl-1/Bcl-2-positive AML cell lines, associated with Mcl-1 downregulation and endoplasmic reticulum stress induction. The absolute configuration of carbons 11 and 17 of the fistularin-3 stereoisomer was fully resolved in this study for the first time, showing that the fistularin we isolated from the marine sponge Subarea clavata is in fact the (+)-11(R), 17(S)-fistularin-3 stereoisomer keeping the known configuration 1(R), 6(S), 1’(R), and 6’(S) for the verongidoic acid part. Docking studies and in vitro assays confirm the potential of this family of molecules to inhibit DNA methyltransferase 1 activity.
Collapse
MESH Headings
- Animals
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/administration & dosage
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Cell Line, Tumor
- Cell Survival/drug effects
- Drug Screening Assays, Antitumor
- Drug Synergism
- Endoplasmic Reticulum Stress/drug effects
- HL-60 Cells
- Humans
- Isoxazoles/administration & dosage
- Isoxazoles/chemistry
- Isoxazoles/isolation & purification
- Isoxazoles/pharmacology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Molecular Docking Simulation
- Porifera/chemistry
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Sulfonamides/administration & dosage
- Sulfonamides/pharmacology
- Tyrosine/administration & dosage
- Tyrosine/analogs & derivatives
- Tyrosine/chemistry
- Tyrosine/isolation & purification
- Tyrosine/pharmacology
- U937 Cells
Collapse
Affiliation(s)
- Cristina Florean
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg.
| | - Kyung Rok Kim
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| | - Michael Schnekenburger
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg.
| | - Hyun-Jung Kim
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea.
| | - Céline Moriou
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, University of Paris-Saclay, 1, Avenue de la Terrasse, 91198 Gif-Sur-Yvette, France.
| | - Cécile Debitus
- LEMAR, IRD, UBO, CNRS, IFREMER, IUEM, 29280 Plouzané, France.
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg.
| | - Ali Al-Mourabit
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, University of Paris-Saclay, 1, Avenue de la Terrasse, 91198 Gif-Sur-Yvette, France.
| | - Byung Woo Han
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| | - Marc Diederich
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| |
Collapse
|
24
|
Khatiwala RV, Zhang S, Li X, Devejian N, Bennett E, Cai C. Inhibition of p16 INK4A to Rejuvenate Aging Human Cardiac Progenitor Cells via the Upregulation of Anti-oxidant and NFκB Signal Pathways. Stem Cell Rev Rep 2018; 14:612-625. [PMID: 29675777 DOI: 10.1007/s12015-018-9815-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Autologous human cardiac stem/progenitor cell (hCPC) therapy is a promising treatment that has come into use in recent years for patients with cardiomyopathy. Though innovative in theory, a major hindrance to the practical application of this treatment is that the hCPCs of elderly patients, who are most susceptible to myocardial disease, are senescent and prone to cell death. Rejuvenating hCPCs from elderly patients may help overcome this obstacle, and can be accomplished by reversing entry into the cellular stage of senescence. p16INK4A, a cyclin dependent kinase inhibitor, is an important player in the regulation of cell senescence. In this study, we investigated whether knockdown of p16INK4A will rejuvenate aging hCPCs to a youthful phenotype. Our data indicated that upregulation of p16INK4A is associated with hCPC senescence. Both cell proliferation and survival capacity were significantly increased in hCPCs infected with lentivirus expressing p16INK4A shRNA when compared to control hCPCs. The knockdown of p16INK4A also induced antioxidant properties as indicated by a 50% decrease in ROS generation at basal cell metabolism, and a 25% decrease in ROS generation after exposure to oxidative stress. Genes associated with cell senescence (p21CIP1), anti-apoptosis (BCL2 and MCL1), anti-oxidant (CYGB, PRDX1 and SRXN1), and NFκB signal pathway (p65, IKBKB, HMOX1, etc.), were significantly upregulated after the p16INK4A knockdown. Knocking down the NFĸB-p65 expression also significantly diminished the cytoprotective effect caused by the p16INK4A knockdown. Our results suggest that genetic knockdown of p16INK4A may play a significant role in inducing antioxidant effects and extending lifespan of aging hCPCs. This genetic modification may enhance the effectiveness of autologous hCPC therapy for repair of infarcted myocardium.
Collapse
Affiliation(s)
- Roshni V Khatiwala
- Department of Molecular and Cellular Physiology, Center for Cardiovascular Sciences, & Department of Medicine, Albany Medical College, Albany, NY, 12208, USA
| | - Shuning Zhang
- Department of Molecular and Cellular Physiology, Center for Cardiovascular Sciences, & Department of Medicine, Albany Medical College, Albany, NY, 12208, USA
| | - Xiuchun Li
- Department of Molecular and Cellular Physiology, Center for Cardiovascular Sciences, & Department of Medicine, Albany Medical College, Albany, NY, 12208, USA
| | - Neil Devejian
- Division of Pediatric Cardiothoracic Surgery, Albany Medical Center, Albany, NY, 12208, USA
| | - Edward Bennett
- Division of Cardiothoracic Surgery, Albany Medical Center, Albany, NY, 12208, USA
| | - Chuanxi Cai
- Department of Molecular and Cellular Physiology, Center for Cardiovascular Sciences, & Department of Medicine, Albany Medical College, Albany, NY, 12208, USA.
| |
Collapse
|
25
|
Abstract
Myeloid cell leukemia-1 (MCL-1), a member of antiapoptotic BCL-2 family proteins, is a key regulator of mitochondrial homeostasis. Frequent overexpression of MCL-1 in human primary and drug-resistant cancer cells makes it an attractive cancer therapeutic target. Significant progress has been made in the development of small-molecule MCL-1 inhibitors in recent years, and three MCL-1 selective inhibitors have advanced to clinical trials. This review briefly discusses recent advances in the development of small molecules targeting MCL-1 for cancer therapy.
Collapse
Affiliation(s)
- Weiguo Xiang
- Department of Internal Medicine, University of Michigan Medical School,
| | - Chao-Yie Yang
- Department of Internal Medicine, University of Michigan Medical School,
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA,
| | - Longchuan Bai
- Department of Internal Medicine, University of Michigan Medical School,
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA,
| |
Collapse
|
26
|
Deng K, Shen J, Wang W, Li M, Li H, Chen C, Zhao H, Zhang M, Xue T, Liu Q, Lui VWY, Hong B, Lin W. Sodium chloride (NaCl) potentiates digoxin-induced anti-tumor activity in small cell lung cancer. Cancer Biol Ther 2018; 20:52-64. [PMID: 30183476 DOI: 10.1080/15384047.2018.1504723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Small cell lung cancer (SCLC) is a malignant neuroendocrine tumor with very high mortality. Effective new therapy for advanced SCLC patients is urgently needed. By screening a FDA-approved drug library, we identified a cardiac glycoside (CG), namely digoxin (an inhibitor of cellular Na+/K+ ATPase pump), which was highly effective in inhibiting SCLC cell growth. Intriguing findings showed that NaCl supplement markedly enhanced the anti-tumor activities of digoxin in both in vitro and in vivo models of SCLC. Subsequent analysis revealed that this novel combination of digoxin/NaCl caused an up-regulation of intracellular Na+ and Ca2+ levels with an induction of higher resting membrane potential of SCLC cells. We also found that this combination lead to morphological shrinking of SCLC cells, together with high levels of cytochrome C release. Lastly, our data revealed that NaCl supplement was able to induce the expression of ATP1A1 (a Na+/K+ ATPase subunit), in which contributes directly to the increased sensitivity of SCLC cells to digoxin. Thus, this is the first demonstration that NaCl is a potent supplement necessitating superior anti-cancer effects of digoxin for SCLC. Further, our study suggests that digoxin treatment could need to be combined with NaCl supplement in future clinical trial of SCLC, particularly where low Na+ is often present in SCLC patients.
Collapse
Affiliation(s)
- Ke Deng
- a High Magnetic Field Laboratory , Chinese Academy of Sciences , Hefei , P. R. China.,b University of Science and Technology of China , Hefei , P. R. China.,c Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei , P. R. China
| | - Jiawei Shen
- d School of Life Sciences , University of Science and Technology of China , Hefei , P. R. China
| | - Wei Wang
- a High Magnetic Field Laboratory , Chinese Academy of Sciences , Hefei , P. R. China.,c Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei , P. R. China
| | - Ming Li
- a High Magnetic Field Laboratory , Chinese Academy of Sciences , Hefei , P. R. China.,b University of Science and Technology of China , Hefei , P. R. China.,c Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei , P. R. China.,e Department of Laboratory Diagnostics , Western Branch of The First Affiliated Hospital of University of Science and Technology of China , Hefei , P. R. China
| | - Hong Li
- a High Magnetic Field Laboratory , Chinese Academy of Sciences , Hefei , P. R. China.,c Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei , P. R. China
| | - Cheng Chen
- a High Magnetic Field Laboratory , Chinese Academy of Sciences , Hefei , P. R. China.,b University of Science and Technology of China , Hefei , P. R. China.,c Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei , P. R. China
| | - Huan Zhao
- d School of Life Sciences , University of Science and Technology of China , Hefei , P. R. China
| | - Mei Zhang
- d School of Life Sciences , University of Science and Technology of China , Hefei , P. R. China
| | - Tian Xue
- d School of Life Sciences , University of Science and Technology of China , Hefei , P. R. China
| | - Qingsong Liu
- a High Magnetic Field Laboratory , Chinese Academy of Sciences , Hefei , P. R. China.,c Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei , P. R. China
| | - Vivian Wai Yan Lui
- f School of Biomedical Sciences, Faculty of Medicine , The Chinese University of Hong Kong , Hong Kong SAR
| | - Bo Hong
- a High Magnetic Field Laboratory , Chinese Academy of Sciences , Hefei , P. R. China.,c Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei , P. R. China
| | - Wenchu Lin
- a High Magnetic Field Laboratory , Chinese Academy of Sciences , Hefei , P. R. China.,c Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei , P. R. China
| |
Collapse
|
27
|
Natural scaffolds in anticancer therapy and precision medicine. Biotechnol Adv 2018; 36:1563-1585. [PMID: 29729870 DOI: 10.1016/j.biotechadv.2018.04.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 04/08/2018] [Accepted: 04/26/2018] [Indexed: 12/21/2022]
Abstract
The diversity of natural compounds is essential for their mechanism of action. The source, structures and structure activity relationship of natural compounds contributed to the development of new classes of chemotherapy agents for over 40 years. The availability of combinatorial chemistry and high-throughput screening has fueled the challenge to identify novel compounds that mimic nature's chemistry and to predict their macromolecular targets. Combining conventional and targeted therapies helped to successfully overcome drug resistance and prolong disease-free survival. Here, we aim to provide an overview of preclinical investigated natural compounds alone and in combination to further improve personalization of cancer treatment.
Collapse
|
28
|
Liu X, Wang S, Xu J, Kou B, Chen D, Wang Y, Zhu X. Extract of Stellerachamaejasme L(ESC) inhibits growth and metastasis of human hepatocellular carcinoma via regulating microRNA expression. Altern Ther Health Med 2018; 18:99. [PMID: 29554896 PMCID: PMC5859742 DOI: 10.1186/s12906-018-2123-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 02/01/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND MicroRNAs(miRNAs)are involved in the initiation and progression of hepatocellular carcinoma. ESC, an extract of Stellerachamaejasme L, had been confirmed as a potential anti-tumor extract of Traditional Chinese Medicine. In light of the important role of miRNAs in hepatocellular carcinoma, we questioned whether the inhibitory effects of ESC on hepatocellular carcinoma (HCC) were associated with miRNAs. METHODS The proliferation inhibition of ESC on HCC cells was measured with MTT assay. The migration inhibition of ESC on HCC cells was measured with transwell assay. The influences of ESC on growth and metastasis inhibition were evaluated with xenograft tumor model of HCC. Protein expressions were measured with western blot and immunofluorescence methods and miRNA profiles were detected with miRNA array. Differential miRNA and target mRNAs were verified with real-time PCR. RESULTS The results showed that ESC could inhibit proliferation and epithelial mesenchymal transition (EMT) in HCC cells in vitro and tumor growth and metastasis in xenograft models in vivo. miRNA array results showed that 69 differential miRNAs in total of 429 ones were obtained in MHCC97H cells treated by ESC. hsa-miR-107, hsa-miR-638, hsa-miR-106b-5p were selected to be validated with real-time PCR method in HepG2 and MHCC97H cells. Expressions of hsa-miR-107 and hsa-miR-638 increased obviously in HCC cells treated by ESC. Target genes of three miRNAs were also validated with real-time PCR. Interestingly, only target genes of hsa-miR-107 changed greatly. ESC downregulated the MCL1, SALL4 and BCL2 gene expressions significantly but did not influence the expression of CACNA2D1. CONCLUSION The findings suggested ESC regressed growth and metastasis of human hepatocellular carcinoma via regulating microRNAs expression and their corresponding target genes.
Collapse
|
29
|
Schneider NFZ, Cerella C, Lee JY, Mazumder A, Kim KR, de Carvalho A, Munkert J, Pádua RM, Kreis W, Kim KW, Christov C, Dicato M, Kim HJ, Han BW, Braga FC, Simões CMO, Diederich M. Cardiac Glycoside Glucoevatromonoside Induces Cancer Type-Specific Cell Death. Front Pharmacol 2018; 9:70. [PMID: 29545747 PMCID: PMC5838923 DOI: 10.3389/fphar.2018.00070] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 01/19/2018] [Indexed: 11/25/2022] Open
Abstract
Cardiac glycosides (CGs) are natural compounds used traditionally to treat congestive heart diseases. Recent investigations repositioned CGs as potential anticancer agents. To discover novel cytotoxic CG scaffolds, we selected the cardenolide glucoevatromonoside (GEV) out of 46 CGs for its low nanomolar anti-lung cancer activity. GEV presented reduced toxicity toward non-cancerous cell types (lung MRC-5 and PBMC) and high-affinity binding to the Na+/K+-ATPase α subunit, assessed by computational docking. GEV-induced cell death was caspase-independent, as investigated by a multiparametric approach, and culminates in severe morphological alterations in A549 cells, monitored by transmission electron microscopy, live cell imaging and flow cytometry. This non-canonical cell death was not preceded or accompanied by exacerbation of autophagy. In the presence of GEV, markers of autophagic flux (e.g. LC3I-II conversion) were impacted, even in presence of bafilomycin A1. Cell death induction remained unaffected by calpain, cathepsin, parthanatos, or necroptosis inhibitors. Interestingly, GEV triggered caspase-dependent apoptosis in U937 acute myeloid leukemia cells, witnessing cancer-type specific cell death induction. Differential cell cycle modulation by this CG led to a G2/M arrest, cyclin B1 and p53 downregulation in A549, but not in U937 cells. We further extended the anti-cancer potential of GEV to 3D cell culture using clonogenic and spheroid formation assays and validated our findings in vivo by zebrafish xenografts. Altogether, GEV shows an interesting anticancer profile with the ability to exert cytotoxic effects via induction of different cell death modalities.
Collapse
Affiliation(s)
- Naira F Z Schneider
- Laboratorio de Virologia Applicada, Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Claudia Cerella
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Luxembourg, Luxembourg.,Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Jin-Young Lee
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Aloran Mazumder
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Kyung Rok Kim
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Annelise de Carvalho
- Laboratorio de Virologia Applicada, Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Jennifer Munkert
- Department of Biology, Friedrich-Alexander Universität, Erlangen-Nürnberg, Erlangen, Germany
| | - Rodrigo M Pádua
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Wolfgang Kreis
- Department of Biology, Friedrich-Alexander Universität, Erlangen-Nürnberg, Erlangen, Germany
| | - Kyu-Won Kim
- SNU-Harvard Neurovascular Protection Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | | | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Luxembourg, Luxembourg
| | - Hyun-Jung Kim
- College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Byung Woo Han
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Fernão C Braga
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cláudia M O Simões
- Laboratorio de Virologia Applicada, Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Marc Diederich
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| |
Collapse
|
30
|
Sun Y, Huang YH, Huang FY, Mei WL, Liu Q, Wang CC, Lin YY, Huang C, Li YN, Dai HF, Tan GH. 3'-epi-12β-hydroxyfroside, a new cardenolide, induces cytoprotective autophagy via blocking the Hsp90/Akt/mTOR axis in lung cancer cells. Am J Cancer Res 2018; 8:2044-2060. [PMID: 29556372 PMCID: PMC5858516 DOI: 10.7150/thno.23304] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/19/2018] [Indexed: 02/05/2023] Open
Abstract
Rationale: Cardenolides have potential as anticancer drugs. 3′-epi-12β-hydroxyfroside (HyFS) is a new cardenolide structure isolated by our research group, but its molecular mechanisms remain poorly understood. This study investigates the relationship between its antitumor activities and autophagy in lung cancer cells. Methods: Cell growth and proliferation were detected by MTT, lactate dehydrogenase (LDH) release, 5-ethynyl-20-deoxyuridine (EDU) and colony formation assays. Cell apoptosis was detected by flow cytometry. Autophagic and signal proteins were detected by Western blotting. Markers of autophagy and autophagy flux were also detected by immunofluorescence, transmission electron microscopy and acridine orange staining. Real time RT-PCR was used to analyze the gene expression of Hsp90. Hsp90 ubiquitination was detected by coimmunoprecipitation. The antitumore activities of HyFS were observed in nude mice. Results: HyFS treatment inhibited cell proliferation and induced autophagy in A549 and H460 lung cancer cells, but stronger inhibition of cell proliferation and induction of cell apoptosis were shown when HyFS-mediated autophagy was blocked. The Hsp90/Akt/mTOR axis was found to be involved in the activation of HyFS-mediated autophagy. Evidence of direct interaction between Hsp90 and Akt was observed. HyFS treatment resulted in decreased levels of heat shock protein 90 (Hsp90) and phosphorylated Akt, overexpression of Hsp90 increased activation of autophagy, and inhibition of Hsp90 expression decreased autophagy. In addition, ubiquitin-mediated degradation of Hsp90 and subsequent dephosphorylation of its client protein Akt were also found in HyFS-treated lung cancer cells. Moreover, combination treatment with HyFS and chloroquine showed remarkably increased tumor inhibition in both A549- and H460-bearing mice. Conclusion: Our results demonstrate that HyFS induced cytoprotective autophagy through ubiquitin-mediated degradation of Hsp90, which further blocked the Akt/mTOR pathway in lung cancer cells. Thus, a combination of a HyFS-like cardenolide and an autophagic inhibitor is a potential alternative approach for the treatment of lung cancer.
Collapse
|
31
|
Zhang G, Wang C, Sun M, Li J, Wang B, Jin C, Hua P, Song G, Zhang Y, Nguyen LLH, Cui R, Liu R, Wang L, Zhang X. Cinobufagin inhibits tumor growth by inducing intrinsic apoptosis through AKT signaling pathway in human nonsmall cell lung cancer cells. Oncotarget 2018; 7:28935-46. [PMID: 26959116 PMCID: PMC5045368 DOI: 10.18632/oncotarget.7898] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/18/2016] [Indexed: 11/25/2022] Open
Abstract
The cinobufagin (CB) has a broad spectrum of cytotoxicity to inhibit cell proliferation of various human cancer cell lines, but the molecular mechanisms still remain elusive. Here we observed that CB inhibited the cell proliferation and tumor growth, but induced cell cycle arrest and apoptosis in a dose-dependent manner in non-small cell lung cancer (NSCLC) cells. Treatment with CB significantly increased the reactive oxygen species but decreased the mitochondrial membrane potential in NSCLC cells. These effects were markedly blocked when the cells were pretreated with N-acetylcysteine, a specific reactive oxygen species inhibitor. Furthermore, treatment with CB induced the expression of BAX but reduced that of BCL-2, BCL-XL and MCL-1, leading to an activation of caspase-3, chromatin condensation and DNA degradation in order to induce programmed cell death in NSCLC cells. In addition, treatment with CB reduced the expressions of p-AKTT308 and p-AKTS473 and inhibited the AKT/mTOR signaling pathway in NSCLC cells in a time-dependent manner. Our results suggest that CB inhibits tumor growth by inducing intrinsic apoptosis through the AKT signaling pathway in NSCLC cells.
Collapse
Affiliation(s)
- Guangxin Zhang
- Department of Thoracic Surgery, Second Hospital of Jilin University, Changchun, P.R. China
| | - Chao Wang
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Integrative Endemic Area, Tongji Hospital of Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Mei Sun
- Department of Pathology, Second Hospital of Jilin University, Changchun, P.R. China
| | - Jindong Li
- Department of Thoracic Surgery, Second Hospital of Jilin University, Changchun, P.R. China
| | - Bin Wang
- Department of Thoracic Surgery, Second Hospital of Jilin University, Changchun, P.R. China
| | - Chengyan Jin
- Department of Thoracic Surgery, Second Hospital of Jilin University, Changchun, P.R. China
| | - Peiyan Hua
- Department of Thoracic Surgery, Second Hospital of Jilin University, Changchun, P.R. China
| | - Ge Song
- Department of Thoracic Surgery, Second Hospital of Jilin University, Changchun, P.R. China
| | - Yifan Zhang
- Department of Thoracic Surgery, Second Hospital of Jilin University, Changchun, P.R. China
| | - Lisa L H Nguyen
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, P.R. China
| | - Runhua Liu
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Lizhong Wang
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Xingyi Zhang
- Department of Thoracic Surgery, Second Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
32
|
Yagdi Efe E, Mazumder A, Lee JY, Gaigneaux A, Radogna F, Nasim MJ, Christov C, Jacob C, Kim KW, Dicato M, Chaimbault P, Cerella C, Diederich M. Tubulin-binding anticancer polysulfides induce cell death via mitotic arrest and autophagic interference in colorectal cancer. Cancer Lett 2017; 410:139-157. [DOI: 10.1016/j.canlet.2017.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 12/14/2022]
|
33
|
Ali R, Samman N, Al Zahrani H, Nehdi A, Rahman S, Khan AL, Al Balwi M, Alriyees LA, Alzaid M, Al Askar A, Boudjelal M. Isolation and characterization of a new naturally immortalized human breast carcinoma cell line, KAIMRC1. BMC Cancer 2017; 17:803. [PMID: 29187162 PMCID: PMC5707794 DOI: 10.1186/s12885-017-3812-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 11/21/2017] [Indexed: 12/26/2022] Open
Abstract
Background Breast cancer is one of the most common cancer and a leading cause of death in women. Up to date the most commonly used breast cancer cell lines are originating from Caucasians or Afro-Americans but rarely cells are being derived from other ethnic groups. Here we describe for the first time the establishment of a naturally transformed breast cancer cell line, KAIMRC1 from an Arab woman of age 62 suffering from stage IIB breast cancer (T2N1M0). Moreover, we have characterized these cells for the biological and molecular markers, induction of MAPK pathways as well as its response to different commercially available drugs and compounds. Methods Breast cancer tissue sections were minced and cultured in media for several weeks. KAIMRC1 cells were successfully isolated from one of the primary breast tumor tissue cultures without any enzymatic digestion. To study the growth characteristics of the cells, wound healing assay, clonogenic assay, cell proliferation assays and live cell time-lapse microscopy was performed. Karyotyping, Immunophenotyping and molecular pathway specific compound treatment was also performed. A selective breast cancer gene expression panel was used to identify genes involved in the signal transduction dysregulation and malfunction of normal biological processes during breast carcinogenesis. Results These cells are ER/PR-positive and HER2-negative. The epithelial nature of these cells was confirmed by flow cytometry analysis using epithelial cell markers. They are cuboidal in shape and relatively smaller in size as compared to established cell lines, MCF-7, MDA MB-231 and the normal breast cell line, MCF-10A. In normal cell culture conditions these cells showed the capability of growing both in monolayer as well as in 3-D conformation. They showed a doubling time in vitro of approximately 24 h. They exhibit a modal karyotype of 58–63,X with abnormalities in a couple of chromosomes. KAIMRC1 cells were found to be more responsive to drug treatment in vitro in comparison to the established MDA MB-231 and MCF-7 cell lines. Conclusions In conclusion we have isolated and characterized a new naturally immortalized breast cell line, KAIMRC1 with a potential to play a key role in opening up novel avenues towards the understanding of breast carcinoma. Electronic supplementary material The online version of this article (10.1186/s12885-017-3812-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rizwan Ali
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center (KAIMRC), National Guard Health Affairs (NGHA), P.O. Box 22490, Riyadh, 11426, Saudi Arabia.,King Abdullah International Medical Research Center/ King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), NGHA, Riyadh, 11426, Saudi Arabia
| | - Nosaibah Samman
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center (KAIMRC), National Guard Health Affairs (NGHA), P.O. Box 22490, Riyadh, 11426, Saudi Arabia.,King Abdullah International Medical Research Center/ King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), NGHA, Riyadh, 11426, Saudi Arabia
| | - Hajar Al Zahrani
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center (KAIMRC), National Guard Health Affairs (NGHA), P.O. Box 22490, Riyadh, 11426, Saudi Arabia.,King Abdullah International Medical Research Center/ King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), NGHA, Riyadh, 11426, Saudi Arabia
| | - Atef Nehdi
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center (KAIMRC), National Guard Health Affairs (NGHA), P.O. Box 22490, Riyadh, 11426, Saudi Arabia.,King Abdullah International Medical Research Center/ King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), NGHA, Riyadh, 11426, Saudi Arabia
| | - Sabhi Rahman
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center (KAIMRC), National Guard Health Affairs (NGHA), P.O. Box 22490, Riyadh, 11426, Saudi Arabia.,King Abdullah International Medical Research Center/ King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), NGHA, Riyadh, 11426, Saudi Arabia
| | - Abdul Latif Khan
- Department of Pathology and Laboratory Medicine, King Abdullah Medical City (KAMC), NGHA, Riyadh, 11426, Saudi Arabia
| | - Mohamed Al Balwi
- Department of Pathology and Laboratory Medicine, King Abdullah Medical City (KAMC), NGHA, Riyadh, 11426, Saudi Arabia
| | | | - Manal Alzaid
- Department of Surgery, KAMC, NGHA, Riyadh, 11426, Saudi Arabia
| | - Ahmed Al Askar
- King Abdullah International Medical Research Center/ King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), NGHA, Riyadh, 11426, Saudi Arabia
| | - Mohamed Boudjelal
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center (KAIMRC), National Guard Health Affairs (NGHA), P.O. Box 22490, Riyadh, 11426, Saudi Arabia. .,King Abdullah International Medical Research Center/ King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), NGHA, Riyadh, 11426, Saudi Arabia.
| |
Collapse
|
34
|
Anticancer and Immunogenic Properties of Cardiac Glycosides. Molecules 2017; 22:molecules22111932. [PMID: 29117117 PMCID: PMC6150164 DOI: 10.3390/molecules22111932] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 10/29/2017] [Accepted: 11/04/2017] [Indexed: 12/25/2022] Open
Abstract
Cardiac glycosides (CGs) are natural compounds widely used in the treatment of several cardiac conditions and more recently have been recognized as potential antitumor compounds. They are known to be ligands for Na/K-ATPase, which is a promising drug target in cancer. More recently, in addition to their antitumor effects, it has been suggested that CGs activate tumor-specific immune responses. This review summarizes the anticancer aspects of CGs as new strategies for immunotherapy and drug repositioning (new horizons for old players), and the possible new targets for CGs in cancer cells.
Collapse
|
35
|
Elimination of undifferentiated human embryonic stem cells by cardiac glycosides. Sci Rep 2017; 7:5289. [PMID: 28706279 PMCID: PMC5509667 DOI: 10.1038/s41598-017-05616-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 06/05/2017] [Indexed: 12/14/2022] Open
Abstract
An important safety concern in the use of human pluripotent stem cells (hPSCs) is tumorigenic risk, because these cells can form teratomas after an in vivo injection at ectopic sites. Several thousands of undifferentiated hPSCs are sufficient to induce teratomas in a mouse model. Thus, it is critical to remove all residue-undifferentiated hPSCs that have teratoma potential before the clinical application of hPSC-derived cells. In this study, our data demonstrated the cytotoxic effects of cardiac glycosides, such as digoxin, lanatoside C, bufalin, and proscillaridin A, in human embryonic stem cells (hESCs). This phenomenon was not observed in human bone marrow mesenchymal stem cells (hBMMSCs). Most importantly, digoxin and lanatoside C did not affect the stem cells’ differentiation ability. Consistently, the viability of the hESC-derived MSCs, neurons, and endothelium cells was not affected by the digoxin and lanatoside C treatment. Furthermore, the in vivo experiments demonstrated that digoxin and lanatoside C prevented teratoma formation. To the best of our knowledge, this study is the first to describe the cytotoxicity and tumor prevention effects of cardiac glycosides in hESCs. Digoxin and lanatoside C are also the first FDA-approved drugs that demonstrated cytotoxicity in undifferentiated hESCs.
Collapse
|
36
|
Chen WL, Ren Y, Ren J, Erxleben C, Johnson ME, Gentile S, Kinghorn AD, Swanson SM, Burdette JE. (+)-Strebloside-Induced Cytotoxicity in Ovarian Cancer Cells Is Mediated through Cardiac Glycoside Signaling Networks. JOURNAL OF NATURAL PRODUCTS 2017; 80:659-669. [PMID: 28234008 PMCID: PMC5768141 DOI: 10.1021/acs.jnatprod.6b01150] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
(+)-Strebloside, a cardiac glycoside isolated from the stem bark of Streblus asper collected in Vietnam, has shown some potential for further investigation as an antineoplastic agent. A mechanistic study using an in vitro assay and molecular docking analysis indicated that (+)-strebloside binds and inhibits Na+/K+-ATPase in a similar manner to digitoxin. Inhibition of growth of different high-grade serous ovarian cancer cells including OVCAR3, OVSAHO, Kuramochi, OVCAR4, OVCAR5, and OVCAR8 resulted from treatment with (+)-strebloside. Furthermore, this compound blocked cell cycle progression at the G2 phase and induced PARP cleavage, indicating apoptosis activation in OVCAR3 cells. (+)-Strebloside potently inhibited mutant p53 expression through the induction of ERK pathways and inhibited NF-κB activity in human ovarian cancer cells. However, in spite of its antitumor potential, the overall biological activity of (+)-strebloside must be regarded as being typical of better-known cardiac glycosides such as digoxin and ouabain. Further chemical alteration of cardiac glycosides might help to reduce negative side effects while increasing cancer cell cytotoxicity.
Collapse
Affiliation(s)
- Wei-Lun Chen
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Yulin Ren
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Jinhong Ren
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Christian Erxleben
- Department of Molecular Pharmacology & Therapeutics, Loyola University, Chicago, IL 60153, United States
| | - Michael E. Johnson
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Saverio Gentile
- Department of Molecular Pharmacology & Therapeutics, Loyola University, Chicago, IL 60153, United States
| | - A. Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Steven M. Swanson
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Joanna E. Burdette
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| |
Collapse
|
37
|
Schneider NFZ, Silva IT, Persich L, de Carvalho A, Rocha SC, Marostica L, Ramos ACP, Taranto AG, Pádua RM, Kreis W, Barbosa LA, Braga FC, Simões CMO. Cytotoxic effects of the cardenolide convallatoxin and its Na,K-ATPase regulation. Mol Cell Biochem 2017; 428:23-39. [DOI: 10.1007/s11010-016-2914-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 12/21/2016] [Indexed: 01/08/2023]
|
38
|
Diederich M, Muller F, Cerella C. Cardiac glycosides: From molecular targets to immunogenic cell death. Biochem Pharmacol 2017; 125:1-11. [DOI: 10.1016/j.bcp.2016.08.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 08/15/2016] [Indexed: 11/26/2022]
|
39
|
Bcl-2 protein family expression pattern determines synergistic pro-apoptotic effects of BH3 mimetics with hemisynthetic cardiac glycoside UNBS1450 in acute myeloid leukemia. Leukemia 2016; 31:755-759. [PMID: 27872497 PMCID: PMC5339427 DOI: 10.1038/leu.2016.341] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
40
|
Babina IS. The Controlling Cancer Summit, 17-19 May 2016, London, UK. Future Oncol 2016; 12:2363-5. [PMID: 27453173 DOI: 10.2217/fon-2016-0297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Controlling Cancer Summit, London, UK, 17-19 May 2016 The Controlling Cancer Summit is an intimate informal meeting that annually gathers international academic and clinical researchers to network and debate the current advancements and challenges of oncology research. This year, it focused not only on diagnostic/prognostic biomarkers and genetic influences in cancer but also novel and sometimes unconventional therapeutic interventions. This report will summarize the meeting highlights that contribute to our comprehension of cancer biology and new innovative ways to target this disease.
Collapse
Affiliation(s)
- Irina S Babina
- Molecular Oncology, The Breast Cancer Now Research Centre, The Institute of Cancer Research, London, SW3 9JB, UK
| |
Collapse
|
41
|
Diederich M, Cerella C. Non-canonical programmed cell death mechanisms triggered by natural compounds. Semin Cancer Biol 2016; 40-41:4-34. [PMID: 27262793 DOI: 10.1016/j.semcancer.2016.06.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 12/11/2022]
Abstract
Natural compounds are the fundament of pharmacological treatments and more than 50% of all anticancer drugs are of natural origins or at least derived from scaffolds present in Nature. Over the last 25 years, molecular mechanisms triggered by natural anticancer compounds were investigated. Emerging research showed that molecules of natural origins are useful for both preventive and therapeutic purposes by targeting essential hallmarks and enabling characteristics described by Hanahan and Weinberg. Moreover, natural compounds were able to change the differentiation status of selected cell types. One of the earliest response of cells treated by pharmacologically active compounds is the change of its morphology leading to ultra-structural perturbations: changes in membrane composition, cytoskeleton integrity, alterations of the endoplasmic reticulum, mitochondria and of the nucleus lead to formation of morphological alterations that are a characteristic of both compound and cancer type preceding cell death. Apoptosis and autophagy were traditionally considered as the most prominent cell death or cell death-related mechanisms. By now multiple other cell death modalities were described and most likely involved in response to chemotherapeutic treatment. It can be hypothesized that especially necrosis-related phenotypes triggered by various treatments or evolving from apoptotic or autophagic mechanisms, provide a more efficient therapeutic outcome depending on cancer type and genetic phenotype of the patient. In fact, the recent discovery of multiple regulated forms of necrosis and the initial elucidation of the corresponding cell signaling pathways appear nowadays as important tools to clarify the immunogenic potential of non-canonical forms of cell death induction.
Collapse
Affiliation(s)
- Marc Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 151-742, South Korea.
| | - Claudia Cerella
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| |
Collapse
|
42
|
Zou Y, Liu W, Zhang J, Xiang D. miR-153 regulates apoptosis and autophagy of cardiomyocytes by targeting Mcl-1. Mol Med Rep 2016; 14:1033-9. [PMID: 27220418 DOI: 10.3892/mmr.2016.5309] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 05/05/2016] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRs) are a class of important regulators, which are involved in the regulation of apoptosis. Oxidative stress‑induced apoptosis is the predominant factor accounting for cardiac ischemia‑reperfusion injury. miR‑153 has been previously shown to have an antitumor effect in cancer. However, whether miR‑153 is involved in oxidative stress‑induced apoptosis in the heart remains to be elucidated. To this end, the present study used reverse transcription‑quantitative polymerase chain reaction to detect miR-153 levels upon oxidative stress, and evaluated apoptosis, autophagy and expression of critical genes by western blotting. A luciferase assay was also used to confirm the potential target gene. In the present study, it was found that the expression of miR‑153 was significantly increased upon H2O2 stimulation, and the inhibition of endogenous miR‑153 decreased apoptosis. To further identify the mechanism underlying the pro‑apoptotic effect of miR‑153, the present study analyzed the 3'untranslated region of myeloid cell leukemia‑1 (Mcl‑1), and found that Mcl‑1 was potentially targeted by miR‑153. The forced expression of miR‑153 inhibited the expression of Mcl‑1 and luciferase activity, which was reversed by its antisense inhibitor. Furthermore, it was shown that the inhibition of miR‑153 induced autophagy during oxidative stress, and that its effects of autophagy induction and apoptosis inhibition were efficiently abrogated by Mcl‑1 small interfering RNA. In conclusion, the results of the present study elucidated a novel mechanism by which miR‑153 regulates the survival of cardimyocytes during oxidative stress through the modulation of apoptosis and autophagy. These effects may be mediated directly by targeting Mcl‑1. These finding revealed the potential clinical value of miR‑153 in the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Yuhai Zou
- Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Wenting Liu
- Department of ENT, Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, P.R. China
| | - Jinxia Zhang
- Department of Cardiology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Dingcheng Xiang
- Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
43
|
Vogel TJ, Jeon C, Karlan B, Walsh C. Digoxin therapy is not associated with improved survival in epithelial ovarian cancer: A SEER-Medicare database analysis. Gynecol Oncol 2015; 140:285-8. [PMID: 26691221 DOI: 10.1016/j.ygyno.2015.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 12/03/2015] [Accepted: 12/11/2015] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Both in vitro and clinical trial data suggest that cardiac glycosides demonstrate a synergistic anti-tumor effect when administered with platinum chemotherapy. Epidemiologic studies have also demonstrated improved cancer survival in colorectal, breast, head and neck and hepatocellular carcinoma patients on digoxin therapy at the time of cancer treatment. We sought to determine whether digoxin improves survival in epithelial ovarian cancer patients treated with platinum. METHODS Surveillance, Epidemiology and End-Results (SEER) tumor registries program data on ovarian cancer patients diagnosed in 2007-2009 were linked to Medicare claims data to capture platinum administration, digoxin use and cardiac comorbidities. We analyzed 762 patients who underwent cancer-directed surgery and received platinum chemotherapy. Patients were considered digoxin users during platinum administration if a prescription was filled within 6months of cancer diagnosis. Cox proportional hazards regression models were used to determine the impact of digoxin use on overall survival (OS). RESULTS Among 762 epithelial ovarian cancer patients treated with surgery and platinum chemotherapy, 53 (7%) used digoxin ever and 38 (5%) used digoxin specifically during platinum administration. Adjusting for age, heart disease and Charlson comorbidity score, digoxin use was not associated with OS (HR=1.29, 95% CI 0.81, 2.06). CONCLUSIONS In this SEER-Medicare database analysis, digoxin use during chemotherapy was not associated with improved OS outcomes in patients with epithelial ovarian cancer treated with surgery and platinum chemotherapy. These conclusions are limited, however, by a small sample size and bias intrinsic to claims-based data and should be further evaluated in a larger cohort.
Collapse
Affiliation(s)
- Tilley Jenkins Vogel
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Suite 290 West Tower, Los Angeles, CA 90048, USA.
| | - Christie Jeon
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard 1S33, Los Angeles, CA 90048, USA.
| | - Beth Karlan
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Suite 290 West Tower, Los Angeles, CA 90048, USA.
| | - Christine Walsh
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Suite 290 West Tower, Los Angeles, CA 90048, USA.
| |
Collapse
|
44
|
Cytotoxic, Antiproliferative and Pro-Apoptotic Effects of 5-Hydroxyl-6,7,3',4',5'-Pentamethoxyflavone Isolated from Lantana ukambensis. Nutrients 2015; 7:10388-97. [PMID: 26690473 PMCID: PMC4690089 DOI: 10.3390/nu7125537] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 11/27/2015] [Accepted: 11/30/2015] [Indexed: 12/04/2022] Open
Abstract
Lantana ukambensis (Vatke) Verdc. is an African food and medicinal plant. Its red fruits are eaten and highly appreciated by the rural population. This plant was extensively used in African folk medicinal traditions to treat chronic wounds but also as anti-leishmanial or cytotoxic remedies, especially in Burkina Faso, Tanzania, Kenya, or Ethiopia. This study investigates the in vitro bioactivity of polymethoxyflavones extracted from a L. ukambensis as anti-proliferative and pro-apoptotic agents. We isolated two known polymethoxyflavones, 5,6,7,3′,4′,5′-hexamethoxyflavone (1) and 5-hydroxy-6,7,3′,4′,5′-pentamethoxyflavone (2) from the whole plant of L. ukambensis. Their chemical structures were determined by spectroscopic analysis and comparison with published data. These molecules were tested for the anti-proliferative, cytotoxic and pro-apoptotic effects on human cancer cells. Among them, 5-hydroxy-6,7,3′,4′,5′-pentamethoxyflavone (2) was selectively cytotoxic against monocytic lymphoma (U937), acute T cell leukemia (Jurkat), and chronic myelogenous leukemia (K562) cell lines, but not against peripheral blood mononuclear cells (PBMCs) from healthy donors, at all tested concentrations. Moreover, this compound exhibited significant anti-proliferative and pro-apoptotic effects against U937 acute myelogenous leukemia cells. This study highlights the anti-proliferative and pro-apoptotic effects of 5-hydroxy-6,7,3′,4′,5′-pentamethoxyflavone (2) and provides a scientific basis of traditional use of L. ukambensis.
Collapse
|
45
|
Cell type-dependent ROS and mitophagy response leads to apoptosis or necroptosis in neuroblastoma. Oncogene 2015; 35:3839-53. [PMID: 26640148 DOI: 10.1038/onc.2015.455] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 10/05/2015] [Indexed: 02/06/2023]
Abstract
A limiting factor in the therapeutic outcome of children with high-risk neuroblastoma is the intrinsic and acquired resistance to common chemotherapeutic treatments. Here we investigated the molecular mechanisms by which the hemisynthetic cardiac glycoside UNBS1450 overcomes this limitation and induces differential cell death modalities in both neuroblastic and stromal neuroblastoma through stimulation of a cell-type-specific autophagic response eventually leading to apoptosis or necroptosis. In neuroblastic SH-SY5Y cells, we observed a time-dependent production of reactive oxygen species that affects lysosomal integrity inducing lysosome-associated membrane protein 2 degradation and cathepsin B and L activation. Subsequent mitochondrial membrane depolarization and accumulation of mitochondria in phagophores occurred after 8h of UNBS1450 treatment. Results were confirmed by mitochondrial mass analysis, electron microscopy and co-localization of mitochondria with GFP-LC3, suggesting the impaired clearance of damaged mitochondria. Thus, a stress-induced defective autophagic flux and the subsequent lack of clearance of damaged mitochondria sensitized SH-SY5Y cells to UNBS1450-induced apoptosis. Inhibition of autophagy with small inhibitory RNAs against ATG5, ATG7 and Beclin-1 protected SH-SY5Y cells against the cytotoxic effect of UNBS1450 by inhibiting apoptosis. In contrast, autophagy progression towards the catabolic state was observed in stromal SK-N-AS cells: here reactive oxygen species (ROS) generation remained undetectable preserving intact lysosomes and engulfing damaged mitochondria after UNBS1450 treatment. Moreover, autophagy inhibition determined sensitization of SK-N-AS to apoptosis. We identified efficient mitophagy as the key mechanism leading to failure of activation of the apoptotic pathway that increased resistance of SK-N-AS to UNBS1450, triggering rather necroptosis at higher doses. Altogether we characterize here the differential modulation of ROS and mitophagy as a main determinant of neuroblastoma resistance with potential relevance for personalized anticancer therapeutic approaches.
Collapse
|
46
|
Delebinski CI, Georgi S, Kleinsimon S, Twardziok M, Kopp B, Melzig MF, Seifert G. Analysis of proliferation and apoptotic induction by 20 steroid glycosides in 143B osteosarcoma cells in vitro. Cell Prolif 2015; 48:600-10. [PMID: 26300346 DOI: 10.1111/cpr.12208] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/04/2015] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES Osteosarcoma is the most common type of malignant bone tumour in children and adolescents; it has poor prognosis, is highly metastatic and is resistant to current therapeutic approaches. In this study, different herbal extracts used in phytotherapy have been screened after searching innovative natural anti-cancer components. MATERIALS AND METHODS Twenty steroid glycosides were examined for accordance to their potential of inhibiting cell proliferation and inducing apoptosis in the osteosarcoma cell line 143B. Cell proliferation was examined using a CASY counter. Effects of cardiac glycosides on induction of apoptosis were evaluated by Annexin V-APC and flow cytometry, caspase activity assay and measurement of mitochondrial membrane potential. RESULTS The study revealed that various steroid glycosides suppress cell proliferation in a concentration-dependent manner. Further investigations indicated apoptotic induction by 17 of the 20 tested cardenolides and bufadienolides. Bufadienolide proscillaridin A, arenobufagin, and cardenolides evomonoside, convallatoxol and ouabain waged strongest apoptotic induction, associated with breakdown of mitochondrial membrane potential and activation of caspases -8 and -9. In contrast, the bufadienolide resibufogenin and cardenolide uzarin had no effect on proliferation inhibition, apoptotic induction or change in mitochondrial membrane potential. CONCLUSION These results indicate that bufadienolides proscillaridin A and arenobufagin and cardenolide evomonoside, or related natural compounds might be promising new starting points for development of novel anti-cancer agents for treatment of osteosarcoma.
Collapse
Affiliation(s)
- C I Delebinski
- Department of Paediatric Oncology/Haematology, Otto-Heubner-Centre for Paediatric and Adolescent Medicine (OHC), Charité, Universitaetsmedizin Berlin, Berlin, 13353, Germany
| | - S Georgi
- FU Berlin, Institute for Pharmacy, Berlin, 14195, Germany
| | - S Kleinsimon
- Department of Paediatric Oncology/Haematology, Otto-Heubner-Centre for Paediatric and Adolescent Medicine (OHC), Charité, Universitaetsmedizin Berlin, Berlin, 13353, Germany
| | - M Twardziok
- Department of Paediatric Oncology/Haematology, Otto-Heubner-Centre for Paediatric and Adolescent Medicine (OHC), Charité, Universitaetsmedizin Berlin, Berlin, 13353, Germany
| | - B Kopp
- Department of Pharmacognosy, University of Vienna, Vienna, A-1090, Austria
| | - M F Melzig
- FU Berlin, Institute for Pharmacy, Berlin, 14195, Germany
| | - G Seifert
- Department of Paediatric Oncology/Haematology, Otto-Heubner-Centre for Paediatric and Adolescent Medicine (OHC), Charité, Universitaetsmedizin Berlin, Berlin, 13353, Germany
| |
Collapse
|