1
|
Qu Y, Dong R, Gu L, Chan C, Xie J, Glass C, Wang XF, Nixon AB, Ji Z. Single-cell and spatial detection of senescent cells using DeepScence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.21.568150. [PMID: 38045252 PMCID: PMC10690237 DOI: 10.1101/2023.11.21.568150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Accurately identifying senescent cells is essential for studying their spatial and molecular features. We developed DeepScence, a method based on deep neural networks, to identify senescent cells in single-cell and spatial transcriptomics data. DeepScence is based on CoreScence, a senescence-associated gene set we curated that incorporates information from multiple published gene sets. We demonstrate that DeepScence can accurately identify senescent cells in single-cell gene expression data collected both in vitro and in vivo, as well as in spatial transcriptomics data generated by different platforms, substantially outperforming existing methods.
Collapse
Affiliation(s)
- Yilong Qu
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Runze Dong
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Liangcai Gu
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Jichun Xie
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
- Department of Mathematics, Duke University, Durham, NC, USA
| | - Carolyn Glass
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Xiao-Fan Wang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Andrew B Nixon
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Zhicheng Ji
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
2
|
Calubag MF, Robbins PD, Lamming DW. A nutrigeroscience approach: Dietary macronutrients and cellular senescence. Cell Metab 2024; 36:1914-1944. [PMID: 39178854 PMCID: PMC11386599 DOI: 10.1016/j.cmet.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/09/2024] [Accepted: 07/31/2024] [Indexed: 08/26/2024]
Abstract
Cellular senescence, a process in which a cell exits the cell cycle in response to stressors, is one of the hallmarks of aging. Senescence and the senescence-associated secretory phenotype (SASP)-a heterogeneous set of secreted factors that disrupt tissue homeostasis and promote the accumulation of senescent cells-reprogram metabolism and can lead to metabolic dysfunction. Dietary interventions have long been studied as methods to combat age-associated metabolic dysfunction, promote health, and increase lifespan. A growing body of literature suggests that senescence is responsive to diet, both to calories and specific dietary macronutrients, and that the metabolic benefits of dietary interventions may arise in part through reducing senescence. Here, we review what is currently known about dietary macronutrients' effect on senescence and the SASP, the nutrient-responsive molecular mechanisms that may mediate these effects, and the potential for these findings to inform the development of a nutrigeroscience approach to healthy aging.
Collapse
Affiliation(s)
- Mariah F Calubag
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Paul D Robbins
- Institute On the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, SE, Minneapolis, MN 55455, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
3
|
Liu X, Zhang X, Liang J, Noble PW, Jiang D. Aging-Associated Molecular Changes in Human Alveolar Type I Cells. JOURNAL OF RESPIRATORY BIOLOGY AND TRANSLATIONAL MEDICINE 2024; 1:10012. [PMID: 39220636 PMCID: PMC11361087 DOI: 10.35534/jrbtm.2024.10012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Human alveolar type I (AT1) cells are specialized epithelial cells that line the alveoli in the lungs where gas exchange occurs. The primary function of AT1 cells is not only to facilitate efficient gas exchange between the air and the blood in the lungs, but also to contribute to the structural integrity of the alveoli to maintain lung function and homeostasis. Aging has notable effects on the structure, function, and regenerative capacity of human AT1 cells. However, our understanding of the molecular mechanisms driving these age-related changes in AT1 cells remains limited. Leveraging a recent single-cell transcriptomics dataset we generated on healthy human lungs, we identified a series of significant molecular alterations in AT1 cells from aged lungs. Notably, the aged AT1 cells exhibited increased cellular senescence and chemokine gene expression, alongside diminished epithelial features such as decreases in cell junctions, endocytosis, and pulmonary matrisome gene expression. Gene set analyses also indicated that aged AT1 cells were resistant to apoptosis, a crucial mechanism for turnover and renewal of AT1 cells, thereby ensuring alveolar integrity and function. Further research on these alterations is imperative to fully elucidate the impact on AT1 cells and is indispensable for developing effective therapies to preserve lung function and promote healthy aging.
Collapse
Affiliation(s)
- Xue Liu
- Department of Medicine and Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xuexi Zhang
- Department of Medicine and Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jiurong Liang
- Department of Medicine and Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Paul W. Noble
- Department of Medicine and Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dianhua Jiang
- Department of Medicine and Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
4
|
Guduric‐Fuchs J, Pedrini E, Bertelli PM, McDonnell S, Pathak V, McLoughlin K, O'Neill CL, Stitt AW, Medina RJ. A new gene signature for endothelial senescence identifies self-RNA sensing by retinoic acid-inducible gene I as a molecular facilitator of vascular aging. Aging Cell 2024; 23:e14240. [PMID: 39422883 PMCID: PMC11488300 DOI: 10.1111/acel.14240] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 10/19/2024] Open
Abstract
The number of senescent vascular endothelial cells increases during aging and their dysfunctional phenotype contributes to age-related cardiovascular disease. Identification of senescent cells is challenging as molecular changes are often tissue specific and occur amongst clusters of normal cells. Here, we established, benchmarked, and validated a new gene signature called EndoSEN that pinpoints senescent endothelial cells. The EndoSEN signature was enriched for interferon-stimulated genes (ISG) and correlated with the senescence-associated secretory phenotype (SASP). SASP establishment is classically attributed to DNA damage and cyclic GMP-AMP synthase activation, but our results revealed a pivotal role for RNA accumulation and sensing in senescent endothelial cells. Mechanistically, we showed that endothelial cell senescence hallmarks include self-RNA accumulation, RNA sensor RIG-I upregulation, and an ISG signature. Moreover, a virtual model of RIG-I knockout in endothelial cells underscored senescence as a key pathway regulated by this sensor. We tested and confirmed that RIG-I knockdown was sufficient to extend the lifespan and decrease the SASP in endothelial cells. Taken together, our evidence suggests that targeting RNA sensing is a potential strategy to delay vascular aging.
Collapse
Affiliation(s)
- Jasenka Guduric‐Fuchs
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen's University BelfastBelfastUK
| | - Edoardo Pedrini
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen's University BelfastBelfastUK
- Center for Omics Sciences (COSR)San Raffaele Scientific InstituteMilanItaly
| | - Pietro M. Bertelli
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen's University BelfastBelfastUK
| | - Shannon McDonnell
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen's University BelfastBelfastUK
| | - Varun Pathak
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen's University BelfastBelfastUK
| | - Kiran McLoughlin
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen's University BelfastBelfastUK
| | - Christina L. O'Neill
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen's University BelfastBelfastUK
| | - Alan W. Stitt
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen's University BelfastBelfastUK
| | - Reinhold J. Medina
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen's University BelfastBelfastUK
- Department of Eye and Vision ScienceInstitute for Life Course and Medical Science, University of LiverpoolLiverpoolUK
| |
Collapse
|
5
|
Mahmud S, Pitcher LE, Torbenson E, Robbins PD, Zhang L, Dong X. Developing transcriptomic signatures as a biomarker of cellular senescence. Ageing Res Rev 2024; 99:102403. [PMID: 38964507 PMCID: PMC11338099 DOI: 10.1016/j.arr.2024.102403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/07/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Cellular senescence is a cell fate driven by different types of stress, where damaged cells exit from the cell cycle and, in many cases, develop an inflammatory senescence-associated secretory phenotype (SASP). Senescence has often been linked to driving aging and the onset of multiple diseases conferred by the harmful SASP, which disrupts tissue homeostasis and impairs the regular function of many tissues. This phenomenon was first observed in vitro when fibroblasts halted replication after approximately 50 population doublings. In addition to replication-induced senescence, factors such as DNA damage and oncogene activation can induce cellular senescence both in culture and in vivo. Despite their contribution to aging and disease, identifying senescent cells in vivo has been challenging due to their heterogeneity. Although senescent cells can express the cell cycle inhibitors p16Ink4a and/or p21Cip1 and exhibit SA-ß-gal activity and evidence of a DNA damage response, there is no universal biomarker for these cells, regardless of inducer or cell type. Recent studies have analyzed the transcriptomic characteristics of these cells, leading to the identification of signature gene sets like CellAge, SeneQuest, and SenMayo. Advancements in single-cell and spatial RNA sequencing now allow for analyzing senescent cell heterogeneity within the same tissue and the development of machine learning algorithms, e.g., SenPred, SenSig, and SenCID, to discover cellular senescence using RNA sequencing data. Such insights not only deepen our understanding of the genetic pathways driving cellular senescence, but also promote the development of its quantifiable biomarkers. This review summarizes the current knowledge of transcriptomic signatures of cellular senescence and their potential as in vivo biomarkers.
Collapse
Affiliation(s)
- Shamsed Mahmud
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Twin Cities, 420 Washington Avenue SE, Minneapolis, MN 55455, USA; Department of Genetics, Cell Biology, and Development, University of Minnesota, Twin Cities, 420 Washington Avenue SE, Minneapolis, MN 55455, USA
| | - Louise E Pitcher
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Twin Cities, 420 Washington Avenue SE, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Twin Cities, 420 Washington Avenue SE, Minneapolis, MN 55455, USA
| | - Elijah Torbenson
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Twin Cities, 420 Washington Avenue SE, Minneapolis, MN 55455, USA; Department of Genetics, Cell Biology, and Development, University of Minnesota, Twin Cities, 420 Washington Avenue SE, Minneapolis, MN 55455, USA
| | - Paul D Robbins
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Twin Cities, 420 Washington Avenue SE, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Twin Cities, 420 Washington Avenue SE, Minneapolis, MN 55455, USA
| | - Lei Zhang
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Twin Cities, 420 Washington Avenue SE, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Twin Cities, 420 Washington Avenue SE, Minneapolis, MN 55455, USA
| | - Xiao Dong
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Twin Cities, 420 Washington Avenue SE, Minneapolis, MN 55455, USA; Department of Genetics, Cell Biology, and Development, University of Minnesota, Twin Cities, 420 Washington Avenue SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
6
|
Tao W, Yu Z, Han JDJ. Single-cell senescence identification reveals senescence heterogeneity, trajectory, and modulators. Cell Metab 2024; 36:1126-1143.e5. [PMID: 38604170 DOI: 10.1016/j.cmet.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/15/2023] [Accepted: 03/13/2024] [Indexed: 04/13/2024]
Abstract
Cellular senescence underlies many aging-related pathologies, but its heterogeneity poses challenges for studying and targeting senescent cells. We present here a machine learning program senescent cell identification (SenCID), which accurately identifies senescent cells in both bulk and single-cell transcriptome. Trained on 602 samples from 52 senescence transcriptome datasets spanning 30 cell types, SenCID identifies six major senescence identities (SIDs). Different SIDs exhibit different senescence baselines, stemness, gene functions, and responses to senolytics. SenCID enables the reconstruction of senescent trajectories under normal aging, chronic diseases, and COVID-19. Additionally, when applied to single-cell Perturb-seq data, SenCID helps reveal a hierarchy of senescence modulators. Overall, SenCID is an essential tool for precise single-cell analysis of cellular senescence, enabling targeted interventions against senescent cells.
Collapse
Affiliation(s)
- Wanyu Tao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, China
| | - Zhengqing Yu
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, China
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, China; Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, China.
| |
Collapse
|
7
|
Piao M, Feng K, Liu X, Bai X, Zheng Y, Sun M, Zhao P, Wang Y, Ban X, Xiong J, Shi C, Meng L, Liu Y, Yu L, Li J, Zhong S, Jiang X, Chen Y, Sun X, Zheng Y, Tian J. AgingReG: a curated database of aging regulatory relationships in humans. Database (Oxford) 2023; 2023:baad064. [PMID: 37805704 PMCID: PMC10558184 DOI: 10.1093/database/baad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 07/15/2023] [Accepted: 09/14/2023] [Indexed: 10/09/2023]
Abstract
Aging and cellular senescence are characterized by a progressive loss of physiological integrity, which could be triggered by aging factors such as physiological, pathological and external factors. Numerous studies have shown that gene regulatory events play crucial roles in aging, increasing the need for a comprehensive repository of regulatory relationships during aging. Here, we established a manually curated database of aging factors (AgingReG, https://bio.liclab.net/Aging-ReG/), focusing on the regulatory relationships during aging with experimental evidence in humans. By curating thousands of published literature, 2157 aging factor entries (1345 aging gene entries, 804 external factor entries and eight aging-related pathway entries) and related regulatory information were manually curated. The regulatory relationships were classified into four types according to their functions: (i) upregulation, which indicates that aging factors upregulate the expression of target genes during aging; (ii) downregulation, which indicates that aging factors downregulate the expression of target genes during aging; (iii) activation, which indicates that aging factors influence the activity of target genes during aging and (iv) inhibition, which indicates that aging factors inhibit the activation of target molecule activity, leading to declined or lost target activity. AgingReG involves 651 upregulating pairs, 632 downregulating pairs, 330 activation-regulating pairs and 34 inhibition-regulating pairs, covering 195 disease types and more than 800 kinds of cells and tissues from 1784 published literature studies. AgingReG provides a user-friendly interface to query, browse and visualize detailed information about the regulatory relationships during aging. We believe that AgingReG will serve as a valuable resource database in the field of aging research. Database URL: https://bio.liclab.net/Aging-ReG/.
Collapse
Affiliation(s)
- Minghui Piao
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, No. 246 Xuefu Road, Nangang District, Harbin 150086, China
| | - Ke Feng
- College of Bioinformatics Science and Technology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150086, China
| | - Xinyu Liu
- School of Medical Informatics, Daqing Campus, Harbin Medical University, No. 39 Xinyang Road, High Tech Zone, Daqing 163319, China
| | - Xuefeng Bai
- School of Medical Informatics, Daqing Campus, Harbin Medical University, No. 39 Xinyang Road, High Tech Zone, Daqing 163319, China
- State Key Laboratory of Genetic Engineering, Human Phenome Institute and School of Life Sciences, Fudan University, No. 2005 Songhu Road, Yangpu District, Shanghai 200438, China
| | - Yuqi Zheng
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin 150086, China
| | - Meiling Sun
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin 150086, China
| | - Peng Zhao
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin 150086, China
| | - Yani Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin 150086, China
| | - Xiaofang Ban
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin 150086, China
| | - Jie Xiong
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin 150086, China
| | - Chengyu Shi
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin 150086, China
| | - Li Meng
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin 150086, China
| | - Yuxin Liu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin 150086, China
| | - Li Yu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin 150086, China
| | - Jing Li
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin 150086, China
| | - Shan Zhong
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin 150086, China
| | - Xinjian Jiang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin 150086, China
| | - Yu Chen
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin 150086, China
| | - Xin Sun
- Department of Cardiology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), No. 1017 Dongmen North Road, Luohu District, Shenzhen 518000, China
| | - Yan Zheng
- State Key Laboratory of Genetic Engineering, Human Phenome Institute and School of Life Sciences, Fudan University, No. 2005 Songhu Road, Yangpu District, Shanghai 200438, China
| | - Jinwei Tian
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, No. 246 Xuefu Road, Nangang District, Harbin 150086, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, No. 3 Xueyuan Road, Longhua District, Haikou 571199, China
| |
Collapse
|
8
|
Jia M, Agudelo Garcia PA, Ovando‐Ricardez JA, Tabib T, Bittar HT, Lafyatis RA, Mora AL, Benos PV, Rojas M. Transcriptional changes of the aging lung. Aging Cell 2023; 22:e13969. [PMID: 37706427 PMCID: PMC10577555 DOI: 10.1111/acel.13969] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 09/15/2023] Open
Abstract
Aging is a natural process associated with declined organ function and higher susceptibility to developing chronic diseases. A systemic single-cell type-based study provides a unique opportunity to understand the mechanisms behind age-related pathologies. Here, we use single-cell gene expression analysis comparing healthy young and aged human lungs from nonsmoker donors to investigate age-related transcriptional changes. Our data suggest that aging has a heterogenous effect on lung cells, as some populations are more transcriptionally dynamic while others remain stable in aged individuals. We found that monocytes and alveolar macrophages were the most transcriptionally affected populations. These changes were related to inflammation and regulation of the immune response. Additionally, we calculated the LungAge score, which reveals the diversity of lung cell types during aging. Changes in DNA damage repair, fatty acid metabolism, and inflammation are essential for age prediction. Finally, we quantified the senescence score in aged lungs and found that the more biased cells toward senescence are immune and progenitor cells. Our study provides a comprehensive and systemic analysis of the molecular signatures of lung aging. Our LungAge signature can be used to predict molecular signatures of physiological aging and to detect common signatures of age-related lung diseases.
Collapse
Affiliation(s)
- Minxue Jia
- Department of Computational and Systems BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Joint Carnegie Mellon ‐ University of Pittsburgh Computational Biology Ph.D. ProgramPittsburghPennsylvaniaUSA
| | | | | | - Tracy Tabib
- Division of Rheumatology and Clinical Immunology, Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Humberto T. Bittar
- Division of Rheumatology and Clinical Immunology, Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Robert A. Lafyatis
- Division of Rheumatology and Clinical Immunology, Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Ana L. Mora
- Department of Internal MedicineOhio State UniversityColumbusOhioUSA
| | - Panayiotis V. Benos
- Department of Computational and Systems BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Joint Carnegie Mellon ‐ University of Pittsburgh Computational Biology Ph.D. ProgramPittsburghPennsylvaniaUSA
- Department of EpidemiologyUniversity of FloridaGainesvilleFloridaUSA
| | - Mauricio Rojas
- Department of Internal MedicineOhio State UniversityColumbusOhioUSA
| |
Collapse
|
9
|
Wang W, Zhou X, Wang J, Yao J, Wen H, Wang Y, Sun M, Zhang C, Tao W, Zou J, Ni T. Approximate estimation of cell-type resolution transcriptome in bulk tissue through matrix completion. Brief Bioinform 2023; 24:bbad273. [PMID: 37529921 DOI: 10.1093/bib/bbad273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/20/2023] [Accepted: 07/10/2023] [Indexed: 08/03/2023] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool for uncovering cellular heterogeneity. However, the high costs associated with this technique have rendered it impractical for studying large patient cohorts. We introduce ENIGMA (Deconvolution based on Regularized Matrix Completion), a method that addresses this limitation through accurately deconvoluting bulk tissue RNA-seq data into a readout with cell-type resolution by leveraging information from scRNA-seq data. By employing a matrix completion strategy, ENIGMA minimizes the distance between the mixture transcriptome obtained with bulk sequencing and a weighted combination of cell-type-specific expression. This allows the quantification of cell-type proportions and reconstruction of cell-type-specific transcriptomes. To validate its performance, ENIGMA was tested on both simulated and real datasets, including disease-related tissues, demonstrating its ability in uncovering novel biological insights.
Collapse
Affiliation(s)
- Weixu Wang
- State Key Laboratory of Genetic Engineering, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Center for Evolutionary Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
| | - Xiaolan Zhou
- State Key Laboratory of Genetic Engineering, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Center for Evolutionary Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
| | - Jing Wang
- State Key Laboratory of Genetic Engineering, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Center for Evolutionary Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
| | - Jun Yao
- State Key Laboratory of Genetic Engineering, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Center for Evolutionary Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
| | - Haimei Wen
- State Key Laboratory of Genetic Engineering, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Center for Evolutionary Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
| | - Yi Wang
- Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
| | - Mingwan Sun
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, P.R. China
| | - Chao Zhang
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, P.R. China
| | - Wei Tao
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, P.R. China
| | - Jiahua Zou
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, P.R. China
| | - Ting Ni
- State Key Laboratory of Genetic Engineering, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Center for Evolutionary Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
- State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P.R. China
| |
Collapse
|
10
|
Ei ZZ, Mutirangura A, Arunmanee W, Chanvorachote P. The Role of Box A of HMGB1 in Enhancing Stem Cell Properties of Human Mesenchymal Cells: A Novel Approach for the Pursuit of Anti-aging Therapy. In Vivo 2023; 37:2006-2017. [PMID: 37652483 PMCID: PMC10500522 DOI: 10.21873/invivo.13298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND/AIM Box A is a highly conserved DNA-binding domain of high-mobility group box 1 (HMGB1) and has been shown to reverse senescence and aging features in many cell models. We investigated whether the activation of box A can influence stem cell properties. MATERIALS AND METHODS Human dermal papilla (DP) cells and primary human white pre-adipocytes (HWPc) were employed as mesenchymal cell models. Box A-overexpressing plasmids were used to induce cellular box A expression. mRNA and protein levels of stemness markers POU class 5 homeobox 1 pseudogene 5 (OCT4, HGNC: 9221), Nanog homeobox (NANOG, HGNC: 20857), and SRY-box transcription factor 2 (SOX2, HGNC:11195) in DP cells and HWPc were measured by real-time polymerase chain reaction and immunofluorescence analysis, respectively. RESULTS Transfection efficiency of box A-overexpressing plasmid was 80% and 50% in DP cells and HWPc, respectively. The proliferative rate of both cell types significantly increased 72 h after transfection. Levels of OCT4, NANOG and SOX2 mRNA and protein expression were significantly increased in box A-transfected DP cells and HWPc compared to empty plasmid-transfected cells. Immunofluorescence analysis confirmed the induction of OCT4, NANOG and SOX2 protein expression in response to box A in DP cells and HWPc. OCT4 and SOX2 were expressed in both the nuclear and cytoplasmic compartments, while NANOG was intensely located in the nucleus of box A-transfected cells. CONCLUSION Our findings suggest that box A may potentially enhance stemness, which may have significant benefits in improving stem cell function due to aging processes and disease. This research may have implications for regenerative medicine applications.
Collapse
Affiliation(s)
- Zin Zin Ei
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Apiwat Mutirangura
- Center of Excellence in Molecular Genetics of Cancer and Human Disease, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Wanatchaporn Arunmanee
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand;
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
11
|
Mao S, Su J, Wang L, Bo X, Li C, Chen H. A transcriptome-based single-cell biological age model and resource for tissue-specific aging measures. Genome Res 2023; 33:1381-1394. [PMID: 37524436 PMCID: PMC10547252 DOI: 10.1101/gr.277491.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 07/12/2023] [Indexed: 08/02/2023]
Abstract
Accurately measuring biological age is crucial for improving healthcare for the elderly population. However, the complexity of aging biology poses challenges in how to robustly estimate aging and interpret the biological significance of the traits used for estimation. Here we present SCALE, a statistical pipeline that quantifies biological aging in different tissues using explainable features learned from literature and single-cell transcriptomic data. Applying SCALE to the "Mouse Aging Cell Atlas" (Tabula Muris Senis) data, we identified tissue-level transcriptomic aging programs for more than 20 murine tissues and created a multitissue resource of mouse quantitative aging-associated genes. We observe that SCALE correlates well with other age indicators, such as the accumulation of somatic mutations, and can distinguish subtle differences in aging even in cells of the same chronological age. We further compared SCALE with other transcriptomic and methylation "clocks" in data from aging muscle stem cells, Alzheimer's disease, and heterochronic parabiosis. Our results confirm that SCALE is more generalizable and reliable in assessing biological aging in aging-related diseases and rejuvenating interventions. Overall, SCALE represents a valuable advancement in our ability to measure aging accurately, robustly, and interpretably in single cells.
Collapse
Affiliation(s)
- Shulin Mao
- Yuanpei College, Peking University, Beijing 100871, China
- Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jiayu Su
- Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China
- Department of Systems Biology, Columbia University, New York, New York 10032, USA
| | - Longteng Wang
- Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China
- School of Life Sciences, Joint Graduate Program of Peking-Tsinghua-NIBS, Peking University, Beijing 100871, China
| | - Xiaochen Bo
- Institute of Health Service and Transfusion Medicine, Beijing 100850, China
| | - Cheng Li
- Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China;
- Center for Statistical Science, Peking University, Beijing 100871, China
| | - Hebing Chen
- Institute of Health Service and Transfusion Medicine, Beijing 100850, China;
| |
Collapse
|
12
|
Holloway K, Neherin K, Dam KU, Zhang H. Cellular senescence and neurodegeneration. Hum Genet 2023; 142:1247-1262. [PMID: 37115318 DOI: 10.1007/s00439-023-02565-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
Advancing age is a major risk factor of Alzheimer's disease (AD). The worldwide prevalence of AD is approximately 50 million people, and this number is projected to increase substantially. The molecular mechanisms underlying the aging-associated susceptibility to cognitive impairment in AD are largely unknown. As a hallmark of aging, cellular senescence is a significant contributor to aging and age-related diseases including AD. Senescent neurons and glial cells have been detected to accumulate in the brains of AD patients and mouse models. Importantly, selective elimination of senescent cells ameliorates amyloid beta and tau pathologies and improves cognition in AD mouse models, indicating a critical role of cellular senescence in AD pathogenesis. Nonetheless, the mechanisms underlying when and how cellular senescence contributes to AD pathogenesis remain unclear. This review provides an overview of cellular senescence and discusses recent advances in the understanding of the impact of cellular senescence on AD pathogenesis, with brief discussions of the possible role of cellular senescence in other neurodegenerative diseases including Down syndrome, Parkinson's disease, multiple sclerosis, and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Kristopher Holloway
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Kashfia Neherin
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Kha Uyen Dam
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Hong Zhang
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA.
| |
Collapse
|
13
|
Hou J, Liang WY, Xiong S, Long P, Yue T, Wen X, Wang T, Deng H. Identification of hub genes and potential ceRNA networks of diabetic cardiomyopathy. Sci Rep 2023; 13:10258. [PMID: 37355664 PMCID: PMC10290640 DOI: 10.1038/s41598-023-37378-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023] Open
Abstract
Diabetic cardiomyopathy (DCM), a common complication of diabetes, is defined as ventricular dysfunction in the absence of underlying heart disease. Noncoding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs) and microRNAs (miRNAs), play a crucial role in the development of DCM. Weighted Gene Co-Expression Network Analysis (WGCNA) was used to identify key modules in DCM-related pathways. DCM-related miRNA-mRNA network and DCM-related ceRNA network were constructed by miRNA-seq to identify hub genes in these modules. We identified five hub genes that are associated with the onset of DCM, including Troponin C1 (Tnnc1), Phospholamban (Pln), Fatty acid binding proteins 3 (Fabp3), Popeye domain containing 2 (Popdc2), and Tripartite Motif-containing Protein 63 (Trim63). miRNAs that target the hub genes were mainly involved in TGF-β and Wnt signaling pathways. GO BP enrichment analysis found these miRNAs were involved in the signaling of TGF-β and glucose homeostasis. Q-PCR results found the gene expressions of Pln, Fabp3, Trim63, Tnnc1, and Popdc2 were significantly increased in DCM. Our study identified five hub genes (Tnnc1, Pln, Fabp3, Popdc2, Trim63) whose associated ceRNA networks are responsible for the onset of DCM.
Collapse
Affiliation(s)
- Jun Hou
- Department of Cardiology, The Third People's Hospital of Chengdu/Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Wan Yi Liang
- Department of Microbiology and Immunology, Faculty of Science, University of British Columbia, Vancouver, BC, Canada
| | - Shiqiang Xiong
- Department of Cardiology, The Third People's Hospital of Chengdu/Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Pan Long
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Tian Yue
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Xudong Wen
- Department of Gastroenterology and Hepatology, Chengdu First People's Hospital, Chengdu, Sichuan, China
| | - Tianchen Wang
- Alfred E. Mann Department of Biomedical Engineering, University of South California, Los Angeles, CA, USA
| | - Haoyu Deng
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
- Centre for Heart and Lung Innovation, St. Paul's Hospital, University of British Columbia, 1081 Burrard Street, Vancouver, BC, V6Z 1Y6, Canada.
| |
Collapse
|
14
|
Wu M, Han J, Wu H, Liu Z. Proteasome-dependent senescent tumor cells mediate immunosuppression through CCL20 secretion and M2 polarization in pancreatic ductal adenocarcinoma. Front Immunol 2023; 14:1216376. [PMID: 37398643 PMCID: PMC10310997 DOI: 10.3389/fimmu.2023.1216376] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
The outcome of pancreatic ductal adenocarcinoma (PDAC) remains poor due to few therapeutic options available and challenges with precision therapy to target each tumour's specific characteristics. In this study, a biologically meaningful patient stratification-prognostic model with therapeutic suggestion value based on tumor senescence was developed and validated in multiple independent cohorts. Further mechanistic investigation based on single-cell transcriptomic data and in vitro experiments revealed that complement derived from non-senescent tumor cells stimulates M1 differentiation and antigen presentation, while senescent tumor cells secrete CCL20 to favor immunosuppressive M2 polarization. Also, senescent phenotype depends on proteasome function, suggesting that high-risk, high-senescence patients may benefit from proteasome inhibitors, which reverse senescence-mediated resistance to conventional chemotherapy and improve outcome. In conclusion, the current study identified senescence as a tumor-specific, hazardous factor associated with immunosuppression in PDAC. Mechanistically, senescence abrogates complement-induced M1 activation and antigen presentation, and upregulates CCL20 to favor M2 polarization. The senescence-related risk model is prognostic and therapeutic-suggestive. In light of the reliance of senescent cells on proteasomal functions, proteasome inhibitors are promising agents for high-risk patients with senescent PDAC.
Collapse
Affiliation(s)
- Mengwei Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiashu Han
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ziwen Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Jannone G, Riani EB, de Magnée C, Tambucci R, Evraerts J, Ravau J, Baldin P, Bouzin C, Loriot A, Gatto L, Decottignies A, Najimi M, Sokal EM. Senescence and senotherapies in biliary atresia and biliary cirrhosis. Aging (Albany NY) 2023; 15:204700. [PMID: 37204430 DOI: 10.18632/aging.204700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/24/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Premature senescence occurs in adult hepatobiliary diseases and worsens the prognosis through deleterious liver remodeling and hepatic dysfunction. Senescence might also arises in biliary atresia (BA), the first cause of pediatric liver transplantation. Since alternatives to transplantation are needed, our aim was to investigate premature senescence in BA and to assess senotherapies in a preclinical model of biliary cirrhosis. METHODS BA liver tissues were prospectively obtained at hepatoportoenterostomy (n=5) and liver transplantation (n=30) and compared to controls (n=10). Senescence was investigated through spatial whole transcriptome analysis, SA-β-gal activity, p16 and p21 expression, γ-H2AX and senescence-associated secretory phenotype (SASP). Human allogenic liver-derived progenitor cells (HALPC) or dasatinib and quercetin (D+Q) were administrated to two-month-old Wistar rats after bile duct ligation (BDL). RESULTS Advanced premature senescence was evidenced in BA livers from early stage and continued to progress until liver transplantation. Senescence and SASP were predominant in cholangiocytes, but also present in surrounding hepatocytes. HALPC but not D+Q reduced the early marker of senescence p21 in BDL rats and improved biliary injury (serum γGT and Sox9 expression) and hepatocytes mass loss (Hnf4a). CONCLUSIONS BA livers displayed advanced cellular senescence at diagnosis that continued to progress until liver transplantation. HALPC reduced early senescence and improved liver disease in a preclinical model of BA, providing encouraging preliminary results regarding the use of senotherapies in pediatric biliary cirrhosis.
Collapse
Affiliation(s)
- Giulia Jannone
- Pediatric Hepatology and Cell Therapy Unit, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Eliano Bonaccorsi Riani
- Abdominal Transplantation Unit, Department of Surgery, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Catherine de Magnée
- Pediatric Surgery and Transplantation Unit, Department of Surgery, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Roberto Tambucci
- Pediatric Surgery and Transplantation Unit, Department of Surgery, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Jonathan Evraerts
- Pediatric Hepatology and Cell Therapy Unit, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Joachim Ravau
- Pediatric Hepatology and Cell Therapy Unit, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Pamela Baldin
- Department of Anatomopathology, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Caroline Bouzin
- IREC Imaging Platform (2IP), Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Axelle Loriot
- Computational Biology and Bioinformatics Unit, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Laurent Gatto
- Computational Biology and Bioinformatics Unit, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Anabelle Decottignies
- Genetic and Epigenetic Alterations of Genomes Group, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Mustapha Najimi
- Pediatric Hepatology and Cell Therapy Unit, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Etienne Marc Sokal
- Pediatric Hepatology and Cell Therapy Unit, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| |
Collapse
|
16
|
Wu Y, Tang L, Huang H, Yu Q, Hu B, Wang G, Ge F, Yin T, Li S, Yu X. Phosphoglycerate dehydrogenase activates PKM2 to phosphorylate histone H3T11 and attenuate cellular senescence. Nat Commun 2023; 14:1323. [PMID: 36899022 PMCID: PMC10006232 DOI: 10.1038/s41467-023-37094-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Vascular endothelial cells (ECs) senescence correlates with the increase of cardiovascular diseases in ageing population. Although ECs rely on glycolysis for energy production, little is known about the role of glycolysis in ECs senescence. Here, we report a critical role for glycolysis-derived serine biosynthesis in preventing ECs senescence. During senescence, the expression of serine biosynthetic enzyme PHGDH is significantly reduced due to decreased transcription of the activating transcription factor ATF4, which leads to reduction of intracellular serine. PHGDH prevents premature senescence primarily by enhancing the stability and activity of pyruvate kinase M2 (PKM2). Mechanistically, PHGDH interacts with PKM2, which prevents PCAF-catalyzed PKM2 K305 acetylation and subsequent degradation by autophagy. In addition, PHGDH facilitates p300-catalyzed PKM2 K433 acetylation, which promotes PKM2 nuclear translocation and stimulates its activity to phosphorylate H3T11 and regulate the transcription of senescence-associated genes. Vascular endothelium-targeted expression of PHGDH and PKM2 ameliorates ageing in mice. Our findings reveal that enhancing serine biosynthesis could become a therapy to promote healthy ageing.
Collapse
Affiliation(s)
- Yinsheng Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Lixu Tang
- School of Martial Arts, Wuhan Sports University, Wuhan, Hubei, 430079, China
| | - Han Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Qi Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Bicheng Hu
- The Central Laboratory, Wuhan No.1 Hospital, Wuhan, Hubei, 430022, China
| | - Gang Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Feng Ge
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Tailang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China.
| | - Shanshan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China.
| | - Xilan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China.
| |
Collapse
|
17
|
Zeng S, Liang Y, Lai S, Bi S, Huang L, Li Y, Deng W, Xu P, Liu M, Xiong Z, Chen J, Tu Z, Chen D, Du L. TNFα/TNFR1 signal induces excessive senescence of decidua stromal cells in recurrent pregnancy loss. J Reprod Immunol 2023; 155:103776. [PMID: 36495656 DOI: 10.1016/j.jri.2022.103776] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 10/26/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022]
Abstract
Defects in decidual response are associated with adverse pregnancy outcomes which includes recurrent pregnancy loss (RPL). It is reported that cellular senescence happens during decidualization and pro-senescent decidual response in the luteal phase endometrium is related to RPL. However, the underlying mechanisms of how excessive decidual senescence takes place in RPL decidua cells remain largely unexplored. The senescent phenotype of RPL decidua and tumor necrosis factor receptor 1(TNFR1) expression were analyzed by using our previously published single-cell sequencing dataset of decidua cells from 6 RPL and 5 matched normal decidua, which were further verified by PCR and WB in decidual tissues. Effects of TNFα on the decidual stromal cells (DSCs) senescence and underlying molecular pathways were analyzed using the in vitro decidualization model of human endometrial stromal cells (HESCs). We showed that decidual stroma cells from RPL patients exhibited transcriptomic features of cellular senescence by analysis of single-cell datasets. The TNFα level and TNFR1 expression were increased in RPL decidua tissues. Furthermore, in vitro cell model demonstrated that increased TNFα induced excessive senescence during decidualization and TNFR1/p53/p16 pathway mediates TNFα-induced stromal senescence. In addition, we also found that the expression of IGFBP1 was regulated by TNFα-TNFR1 interaction during decidualization. Taken together, the present findings suggest that the increased secretion of TNFα induced stromal cell excessive senescence in RPL decidua, which is mediated via TNFR1, and thus provide a possible therapeutic target for the treatment of RPL.
Collapse
Affiliation(s)
- Shanshan Zeng
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Yingyu Liang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Siying Lai
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Shilei Bi
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Lijun Huang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Yulian Li
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Weinan Deng
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Pei Xu
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Mingxing Liu
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Zhongtang Xiong
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Jingsi Chen
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou 510150, China; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China
| | - Zhaowei Tu
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou 510150, China; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China
| | - Dunjin Chen
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou 510150, China; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China.
| | - Lili Du
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou 510150, China; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China.
| |
Collapse
|
18
|
Manna S, Scheel J, Noone A, McElwain CJ, Scaife C, Gupta S, English J, McCarthy C, McCarthy FP. A proteomic profile of the healthy human placenta. Clin Proteomics 2023; 20:1. [PMID: 36593452 PMCID: PMC9808999 DOI: 10.1186/s12014-022-09388-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/09/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The placenta remains one of the least studied organs within the human body. Yet, placental dysfunction has been associated with various pregnancy complications leading to both maternal and fetal death and long-term health consequences. The aim of this study was to characterise the protein networks of healthy term placental sub-anatomical regions using label free quantification mass spectrometry. METHODS Three healthy placentae were sampled at five sample sites and each biopsy was dissected into maternal-, middle-, and fetal- sub-anatomical regions. Quadrupole-orbitrap mass spectrometer was used in data dependant analysis mode to identify 1859 unique proteins before detailed differential expression between regions. RESULTS Protein profiling identified 1081, 1086, and 1101 proteins in maternal, middle, and fetal sub-anatomical regions respectively. Differentially expressed proteins were identified considering the effect between sample site location and sub-anatomical region on protein expression. Of these, 374 differentially expressed proteins (Two-way ANOVA adjusted p-value < 0.05, HSD Tukey adjusted p-value 0.05) were identified between sample site locations and sub-anatomical regions. The placenta specific disease map NaviCenta ( https://www.sbi.uni-rostock.de/minerva/index.xhtml?id=NaviCenta ) was used to focus functional analysis results to the placenta specific context. Subsequently, functional analysis with a focus on senescence, and mitochondrial function were performed. Significant differences were observed between sub-anatomical regions in protein intensity and composition. A decrease in anti-senescent proteins within the maternal sub-anatomical region, and an increase in proteins associated with a switch from ATP to fatty acid consumption as a source of energy between middle and fetal sub-anatomical regions were observed. CONCLUSION These results suggest that normal proteomic variations exist within the anatomical structure of the placenta, thus recommending serial sectioning methodology for consistent placental research.
Collapse
Affiliation(s)
- Samprikta Manna
- grid.411916.a0000 0004 0617 6269Department of Obstetrics and Gynaecology, Cork University Maternity Hospital, University College Cork, Cork, Ireland
| | - Julia Scheel
- grid.10493.3f0000000121858338Dept. of Systems Biology and Bioinformatics, University of Rostock, 18057 Rostock, Germany
| | - Aisling Noone
- grid.7872.a0000000123318773Department of Anatomy and Neuroscience, Western Gateway Building, University College Cork, Cork, Ireland
| | - Colm J. McElwain
- grid.7872.a0000000123318773Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork, Ireland
| | - Caitriona Scaife
- grid.7886.10000 0001 0768 2743UCD Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Shailendra Gupta
- grid.10493.3f0000000121858338Dept. of Systems Biology and Bioinformatics, University of Rostock, 18057 Rostock, Germany
| | - Jane English
- grid.512512.0INFANT Research Centre, Cork, Ireland ,grid.7872.a0000000123318773Department of Anatomy and Neuroscience, Western Gateway Building, University College Cork, Cork, Ireland
| | - Cathal McCarthy
- grid.7872.a0000000123318773Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork, Ireland
| | - Fergus P. McCarthy
- grid.411916.a0000 0004 0617 6269Department of Obstetrics and Gynaecology, Cork University Maternity Hospital, University College Cork, Cork, Ireland ,grid.512512.0INFANT Research Centre, Cork, Ireland
| |
Collapse
|
19
|
Yang C, Han Z, Zhan W, Wang Y, Feng J. Predictive investigation of idiopathic pulmonary fibrosis subtypes based on cellular senescence-related genes for disease treatment and management. Front Genet 2023; 14:1157258. [PMID: 37035748 PMCID: PMC10079953 DOI: 10.3389/fgene.2023.1157258] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/15/2023] [Indexed: 04/11/2023] Open
Abstract
Background: Idiopathic pulmonary fibrosis (IPF), a chronic, progressive lung disease characterized by interstitial remodeling and tissue destruction, affects people worldwide and places a great burden on society. Cellular senescence is thought to be involved in the mechanisms and development of IPF. The aim of this study was to predictively investigate subtypes of IPF according to cellular senescence-related genes and their correlation with the outcome of patients with IPF, providing possible treatment and management options for disease control. Methods: Gene expression profiles and follow-up data were obtained from the GEO database. Senescence-related genes were obtained from the CSGene database and analyzed their correlation with the outcome of IPF. A consensus cluster was constructed to classify the samples based on correlated genes. The GSVA and WGCNA packages in R were used to calculate the immune-related enriched fractions and construct gene expression modules, respectively. Metascape and the clusterProfiler package in R were used to enrich gene functions. The ConnectivityMap was used to probe suitable drugs for potential treatment. Results: A total of 99 cellular senescence-related genes were associated with IPF prognosis. Patients with IPF were divided into two subtypes with significant prognostic differences. Subtype S2 was characterized by enhanced fibrotic progression and infection, leading to acute exacerbation of IPF and poor prognosis. Finally, five cellular senescence-related genes, TYMS, HJURP, UBE2C, BIRC5, and KIF2C, were identified as potential biomarkers in poor prognostic patients with IPF. Conclusion: The study findings indicate that cellular senescence-related genes can be used to distinguish the prognosis of patients with IPF. Among them, five genes can be used as candidate biomarkers to predict patients with a poor prognostic subtype for which anti-fibrosis and anti-infection treatments could be suitable.
Collapse
Affiliation(s)
| | | | | | - Yubao Wang
- *Correspondence: Yubao Wang, ; Jing Feng,
| | - Jing Feng
- *Correspondence: Yubao Wang, ; Jing Feng,
| |
Collapse
|
20
|
Welch N, Singh SS, Musich R, Mansuri MS, Bellar A, Mishra S, Chelluboyina AK, Sekar J, Attaway AH, Li L, Willard B, Hornberger TA, Dasarathy S. Shared and unique phosphoproteomics responses in skeletal muscle from exercise models and in hyperammonemic myotubes. iScience 2022; 25:105325. [PMID: 36345342 PMCID: PMC9636548 DOI: 10.1016/j.isci.2022.105325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/22/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Skeletal muscle generation of ammonia, an endogenous cytotoxin, is increased during exercise. Perturbations in ammonia metabolism consistently occur in chronic diseases, and may blunt beneficial skeletal muscle molecular responses and protein homeostasis with exercise. Phosphorylation of skeletal muscle proteins mediates cellular signaling responses to hyperammonemia and exercise. Comparative bioinformatics and machine learning-based analyses of published and experimentally derived phosphoproteomics data identified differentially expressed phosphoproteins that were unique and shared between hyperammonemic murine myotubes and skeletal muscle from exercise models. Enriched processes identified in both hyperammonemic myotubes and muscle from exercise models with selected experimental validation included protein kinase A (PKA), calcium signaling, mitogen-activated protein kinase (MAPK) signaling, and protein homeostasis. Our approach of feature extraction from comparative untargeted "omics" data allows for selection of preclinical models that recapitulate specific human exercise responses and potentially optimize functional capacity and skeletal muscle protein homeostasis with exercise in chronic diseases.
Collapse
Affiliation(s)
- Nicole Welch
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Shashi Shekhar Singh
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ryan Musich
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
| | - M. Shahid Mansuri
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Annette Bellar
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Saurabh Mishra
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | - Jinendiran Sekar
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Amy H. Attaway
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ling Li
- Proteomics Core, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Belinda Willard
- Proteomics Core, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Troy A. Hornberger
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Srinivasan Dasarathy
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
21
|
Jin M, Xu R, Wang L, Alam MM, Ma Z, Zhu S, Martini AC, Jadali A, Bernabucci M, Xie P, Kwan KY, Pang ZP, Head E, Liu Y, Hart RP, Jiang P. Type-I-interferon signaling drives microglial dysfunction and senescence in human iPSC models of Down syndrome and Alzheimer's disease. Cell Stem Cell 2022; 29:1135-1153.e8. [PMID: 35803230 DOI: 10.1016/j.stem.2022.06.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/27/2022] [Accepted: 06/09/2022] [Indexed: 12/17/2022]
Abstract
Microglia are critical in brain development and Alzheimer's disease (AD) etiology. Down syndrome (DS) is the most common genetic developmental disorder and risk factor for AD. Surprisingly, little information is available on the impact of trisomy of human chromosome 21 (Hsa21) on microglial functions during DS brain development and in AD in DS. Using induced pluripotent stem cell (iPSC)-based organoid and chimeric mouse models, we report that DS microglia exhibit an enhanced synaptic pruning function, which alters neuronal synaptic functions. In response to human brain tissue-derived pathological tau, DS microglia undergo cellular senescence and exhibit elevated type-I-interferon signaling. Mechanistically, knockdown of Hsa21-encoded type I interferon receptors, IFNARs, rescues the DS microglial phenotypes both during brain development and in response to pathological tau. Our findings provide in vivo evidence that human microglia respond to pathological tau by exhibiting dystrophic phenotypes. Targeting IFNARs may improve DS microglial functions and prevent senescence.
Collapse
Affiliation(s)
- Mengmeng Jin
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Ranjie Xu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Le Wang
- Department of Neuroscience and Cell Biology and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Mahabub Maraj Alam
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Ziyuan Ma
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Sining Zhu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Alessandra C Martini
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Azadeh Jadali
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Matteo Bernabucci
- Department of Neuroscience and Cell Biology and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Kelvin Y Kwan
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Zhiping P Pang
- Department of Neuroscience and Cell Biology and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Ying Liu
- Department of Neurosurgery and Center for Stem Cell and Regenerative Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Center for Translational Science, Florida International University, Miami, FL 34987, USA
| | - Ronald P Hart
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Peng Jiang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
22
|
Kumar A, Welch N, Mishra S, Bellar A, Silva RN, Li L, Singh SS, Sharkoff M, Kerr A, Chelluboyina AK, Sekar J, Attaway AH, Hoppel C, Willard B, Davuluri G, Dasarathy S. Metabolic reprogramming during hyperammonemia targets mitochondrial function and postmitotic senescence. JCI Insight 2021; 6:154089. [PMID: 34935641 PMCID: PMC8783680 DOI: 10.1172/jci.insight.154089] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/03/2021] [Indexed: 12/27/2022] Open
Abstract
Ammonia is a cytotoxic metabolite with pleiotropic molecular and metabolic effects, including senescence induction. During dysregulated ammonia metabolism, which occurs in chronic diseases, skeletal muscle becomes a major organ for nonhepatocyte ammonia uptake. Muscle ammonia disposal occurs in mitochondria via cataplerosis of critical intermediary metabolite α-ketoglutarate, a senescence-ameliorating molecule. Untargeted and mitochondrially targeted data were analyzed by multiomics approaches. These analyses were validated experimentally to dissect the specific mitochondrial oxidative defects and functional consequences, including senescence. Responses to ammonia lowering in myotubes and in hyperammonemic portacaval anastomosis rat muscle were studied. Whole-cell transcriptomics integrated with whole-cell, mitochondrial, and tissue proteomics showed distinct temporal clusters of responses with enrichment of oxidative dysfunction and senescence-related pathways/proteins during hyperammonemia and after ammonia withdrawal. Functional and metabolic studies showed defects in electron transport chain complexes I, III, and IV; loss of supercomplex assembly; decreased ATP synthesis; increased free radical generation with oxidative modification of proteins/lipids; and senescence-associated molecular phenotype–increased β-galactosidase activity and expression of p16INK, p21, and p53. These perturbations were partially reversed by ammonia lowering. Dysregulated ammonia metabolism caused reversible mitochondrial dysfunction by transcriptional and translational perturbations in multiple pathways with a distinct skeletal muscle senescence-associated molecular phenotype.
Collapse
Affiliation(s)
| | | | | | | | | | - Ling Li
- Proteomics & Metabolomics Core, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | | | | | | | | | - Charles Hoppel
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Belinda Willard
- Proteomics & Metabolomics Core, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Gangarao Davuluri
- Department of Integrated Physiology and Molecular Metabolism, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Srinivasan Dasarathy
- Department of Inflammation & Immunity and.,Department of Gastroenterology, Hepatology & Nutrition, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
23
|
Xie W, Ke Y, You Q, Li J, Chen L, Li D, Fang J, Chen X, Zhou Y, Chen L, Hong H. Single-Cell RNA Sequencing and Assay for Transposase-Accessible Chromatin Using Sequencing Reveals Cellular and Molecular Dynamics of Aortic Aging in Mice. Arterioscler Thromb Vasc Biol 2021; 42:156-171. [PMID: 34879708 DOI: 10.1161/atvbaha.121.316883] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE The impact of vascular aging on cardiovascular diseases has been extensively studied; however, little is known regarding the cellular and molecular mechanisms underlying age-related vascular aging in aortic cellular subpopulations. Approach and Results: Transcriptomes and transposase-accessible chromatin profiles from the aortas of 4-, 26-, and 86-week-old C57/BL6J mice were analyzed using single-cell RNA sequencing and assay for transposase-accessible chromatin sequencing. By integrating the heterogeneous transcriptome and chromatin accessibility data, we identified cell-specific TF (transcription factor) regulatory networks and open chromatin states. We also determined that aortic aging affects cell interactions, inflammation, cell type composition, dysregulation of transcriptional control, and chromatin accessibility. Endothelial cells 1 have higher gene set activity related to cellular senescence and aging than do endothelial cells 2. Moreover, construction of senescence trajectories shows that endothelial cell 1 and fibroblast senescence is associated with distinct TF open chromatin states and an mRNA expression model. CONCLUSIONS Our data provide a system-wide model for transcriptional and epigenetic regulation during aortic aging at single-cell resolution.
Collapse
Affiliation(s)
- Wenhui Xie
- Department of Geriatrics, Fujian Key Laboratory of Vascular Aging, Fujian Medical University, Fujian Institute of Geriatrics, Department of Cardiology, Department of Cardiac Surgery, Fujian Heart Disease Center, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yilang Ke
- Department of Geriatrics, Fujian Key Laboratory of Vascular Aging, Fujian Medical University, Fujian Institute of Geriatrics, Department of Cardiology, Department of Cardiac Surgery, Fujian Heart Disease Center, Fujian Medical University Union Hospital, Fuzhou, China
| | - Qinyi You
- Department of Geriatrics, Fujian Key Laboratory of Vascular Aging, Fujian Medical University, Fujian Institute of Geriatrics, Department of Cardiology, Department of Cardiac Surgery, Fujian Heart Disease Center, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jing Li
- Department of Geriatrics, Fujian Key Laboratory of Vascular Aging, Fujian Medical University, Fujian Institute of Geriatrics, Department of Cardiology, Department of Cardiac Surgery, Fujian Heart Disease Center, Fujian Medical University Union Hospital, Fuzhou, China
| | - Lu Chen
- Department of Geriatrics, Fujian Key Laboratory of Vascular Aging, Fujian Medical University, Fujian Institute of Geriatrics, Department of Cardiology, Department of Cardiac Surgery, Fujian Heart Disease Center, Fujian Medical University Union Hospital, Fuzhou, China
| | - Dang Li
- Department of Geriatrics, Fujian Key Laboratory of Vascular Aging, Fujian Medical University, Fujian Institute of Geriatrics, Department of Cardiology, Department of Cardiac Surgery, Fujian Heart Disease Center, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jun Fang
- Department of Geriatrics, Fujian Key Laboratory of Vascular Aging, Fujian Medical University, Fujian Institute of Geriatrics, Department of Cardiology, Department of Cardiac Surgery, Fujian Heart Disease Center, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaofeng Chen
- Department of Geriatrics, Fujian Key Laboratory of Vascular Aging, Fujian Medical University, Fujian Institute of Geriatrics, Department of Cardiology, Department of Cardiac Surgery, Fujian Heart Disease Center, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yuanyuan Zhou
- Department of Geriatrics, Fujian Key Laboratory of Vascular Aging, Fujian Medical University, Fujian Institute of Geriatrics, Department of Cardiology, Department of Cardiac Surgery, Fujian Heart Disease Center, Fujian Medical University Union Hospital, Fuzhou, China
| | - Liangwan Chen
- Department of Geriatrics, Fujian Key Laboratory of Vascular Aging, Fujian Medical University, Fujian Institute of Geriatrics, Department of Cardiology, Department of Cardiac Surgery, Fujian Heart Disease Center, Fujian Medical University Union Hospital, Fuzhou, China
| | - Huashan Hong
- Department of Geriatrics, Fujian Key Laboratory of Vascular Aging, Fujian Medical University, Fujian Institute of Geriatrics, Department of Cardiology, Department of Cardiac Surgery, Fujian Heart Disease Center, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
24
|
Rivellini C, Porrello E, Dina G, Mrakic-Sposta S, Vezzoli A, Bacigaluppi M, Gullotta GS, Chaabane L, Leocani L, Marenna S, Colombo E, Farina C, Newcombe J, Nave KA, Pardi R, Quattrini A, Previtali SC. JAB1 deletion in oligodendrocytes causes senescence-induced inflammation and neurodegeneration in mice. J Clin Invest 2021; 132:145071. [PMID: 34874913 PMCID: PMC8803330 DOI: 10.1172/jci145071] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
Oligodendrocytes are the primary target of demyelinating disorders and progressive neurodegenerative changes may evolve in the CNS. DNA damage and oxidative stress are considered key pathogenic events, but the underlying molecular mechanisms remain unclear. Moreover, animal models do not fully recapitulate human diseases, complicating the path to effective treatments. Here we report that mice with cell autonomous deletion of the nuclear COP9 signalosome component CSN5 (JAB1) in oligodendrocytes develop DNA damage and defective DNA repair in myelinating glial cells. Interestingly, oligodendrocytes lacking JAB1 expression underwent a senescence-like phenotype that fostered chronic inflammation and oxidative stress. These mutants developed progressive CNS demyelination, microglia inflammation and neurodegeneration, with severe motor deficits and premature death. Notably, blocking microglia inflammation did not prevent neurodegeneration, whereas the deletion of p21CIP1 but not p16INK4a pathway ameliorated the disease. We suggest that senescence is key to sustaining neurodegeneration in demyelinating disorders and may be considered a potential therapeutic target.
Collapse
Affiliation(s)
- Cristina Rivellini
- Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Emanuela Porrello
- Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giorgia Dina
- Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology National Research Council, ICF-CNR, Milan, Italy
| | - Alessandra Vezzoli
- Institute of Clinical Physiology National Research Council, ICF-CNR, Milan, Italy
| | - Marco Bacigaluppi
- Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giorgia Serena Gullotta
- Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Linda Chaabane
- Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Letizia Leocani
- Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Marenna
- Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Emanuela Colombo
- Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cinthia Farina
- Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Jia Newcombe
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Ruggero Pardi
- Division of Immunology, Transplantation, and Infectious Disease, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angelo Quattrini
- Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefano C Previtali
- Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
25
|
Welch N, Singh SS, Kumar A, Dhruba SR, Mishra S, Sekar J, Bellar A, Attaway AH, Chelluboyina A, Willard BB, Li L, Huo Z, Karnik SS, Esser K, Longworth MS, Shah YM, Davuluri G, Pal R, Dasarathy S. Integrated multiomics analysis identifies molecular landscape perturbations during hyperammonemia in skeletal muscle and myotubes. J Biol Chem 2021; 297:101023. [PMID: 34343564 PMCID: PMC8424232 DOI: 10.1016/j.jbc.2021.101023] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/16/2021] [Accepted: 07/28/2021] [Indexed: 12/27/2022] Open
Abstract
Ammonia is a cytotoxic molecule generated during normal cellular functions. Dysregulated ammonia metabolism, which is evident in many chronic diseases such as liver cirrhosis, heart failure, and chronic obstructive pulmonary disease, initiates a hyperammonemic stress response in tissues including skeletal muscle and in myotubes. Perturbations in levels of specific regulatory molecules have been reported, but the global responses to hyperammonemia are unclear. In this study, we used a multiomics approach to vertically integrate unbiased data generated using an assay for transposase-accessible chromatin with high-throughput sequencing, RNA-Seq, and proteomics. We then horizontally integrated these data across different models of hyperammonemia, including myotubes and mouse and human muscle tissues. Changes in chromatin accessibility and/or expression of genes resulted in distinct clusters of temporal molecular changes including transient, persistent, and delayed responses during hyperammonemia in myotubes. Known responses to hyperammonemia, including mitochondrial and oxidative dysfunction, protein homeostasis disruption, and oxidative stress pathway activation, were enriched in our datasets. During hyperammonemia, pathways that impact skeletal muscle structure and function that were consistently enriched were those that contribute to mitochondrial dysfunction, oxidative stress, and senescence. We made several novel observations, including an enrichment in antiapoptotic B-cell leukemia/lymphoma 2 family protein expression, increased calcium flux, and increased protein glycosylation in myotubes and muscle tissue upon hyperammonemia. Critical molecules in these pathways were validated experimentally. Human skeletal muscle from patients with cirrhosis displayed similar responses, establishing translational relevance. These data demonstrate complex molecular interactions during adaptive and maladaptive responses during the cellular stress response to hyperammonemia.
Collapse
Affiliation(s)
- Nicole Welch
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Shashi Shekhar Singh
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Avinash Kumar
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Saugato Rahman Dhruba
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas, USA
| | - Saurabh Mishra
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jinendiran Sekar
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Annette Bellar
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Amy H Attaway
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Department of Pulmonary Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Aruna Chelluboyina
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Belinda B Willard
- Proteomics Research Core Services, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ling Li
- Proteomics Research Core Services, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Zhiguang Huo
- Department of Biostatistics, College of Public Health and Health Profession, University of Florida, Gainesville, Florida, USA
| | - Sadashiva S Karnik
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Karyn Esser
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Michelle S Longworth
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Yatrik M Shah
- Department of Molecular & Integrative Physiology and Department of Gastroenterology, University of Michigan, Ann Arbor, Michigan, USA
| | - Gangarao Davuluri
- Integrated Physiology and Molecular Metabolism, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Ranadip Pal
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas, USA.
| | - Srinivasan Dasarathy
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio, USA.
| |
Collapse
|
26
|
Chen W, Yu X, Wu Y, Tang J, Yu Q, Lv X, Zha Z, Hu B, Li X, Chen J, Ma L, Workman JL, Li S. The SESAME complex regulates cell senescence through the generation of acetyl-CoA. Nat Metab 2021; 3:983-1000. [PMID: 34183849 DOI: 10.1038/s42255-021-00412-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/14/2021] [Indexed: 11/09/2022]
Abstract
Acetyl-CoA is a central node in carbon metabolism and plays critical roles in regulatory and biosynthetic processes. The acetyl-CoA synthetase Acs2, which catalyses acetyl-CoA production from acetate, is an integral subunit of the serine-responsive SAM-containing metabolic enzyme (SESAME) complex, but the precise function of Acs2 within the SESAME complex remains unclear. Here, using budding yeast, we show that Acs2 within the SESAME complex is required for the regulation of telomere silencing and cellular senescence. Mechanistically, the SESAME complex interacts with the histone acetyltransferase SAS protein complex to promote histone H4K16 acetylation (H4K16ac) enrichment and the occupancy of bromodomain-containing protein, Bdf1, at subtelomeric regions. This interaction maintains telomere silencing by antagonizing the spreading of Sir2 along the telomeres, which is enhanced by acetate. Consequently, dissociation of Sir2 from telomeres by acetate leads to compromised telomere silencing and accelerated chronological ageing. In human endothelial cells, ACSS2, the ortholog of yeast Acs2, also interacts with H4K16 acetyltransferase hMOF and are required for acetate to increase H4K16ac, reduce telomere silencing and induce cell senescence. Altogether, our results reveal a conserved mechanism to connect cell metabolism with telomere silencing and cellular senescence.
Collapse
Affiliation(s)
- Wanping Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Xilan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Yinsheng Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Jie Tang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Qi Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Xiaodong Lv
- Human Aging Research Institute (HARI), School of Life Science, Nanchang University, Nanchang, China
| | - Zitong Zha
- Human Aging Research Institute (HARI), School of Life Science, Nanchang University, Nanchang, China
| | - Bicheng Hu
- The Central Laboratory, Wuhan No.1 Hospital, Wuhan, China
| | - Xin Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Jianguo Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Jerry L Workman
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Shanshan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China.
| |
Collapse
|
27
|
Yao C, Guan X, Carraro G, Parimon T, Liu X, Huang G, Mulay A, Soukiasian HJ, David G, Weigt SS, Belperio JA, Chen P, Jiang D, Noble PW, Stripp BR. Senescence of Alveolar Type 2 Cells Drives Progressive Pulmonary Fibrosis. Am J Respir Crit Care Med 2021; 203:707-717. [PMID: 32991815 DOI: 10.1164/rccm.202004-1274oc] [Citation(s) in RCA: 232] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Rationale: Idiopathic pulmonary fibrosis (IPF) is an insidious and fatal interstitial lung disease associated with declining pulmonary function. Accelerated aging, loss of epithelial progenitor cell function and/or numbers, and cellular senescence are implicated in the pathogenies of IPF.Objectives: We sought to investigate the role of alveolar type 2 (AT2) cellular senescence in initiation and/or progression of pulmonary fibrosis and therapeutic potential of targeting senescence-related pathways and senescent cells.Methods: Epithelial cells of 9 control donor proximal and distal lung tissues and 11 IPF fibrotic lung tissues were profiled by single-cell RNA sequencing to assesses the contribution of epithelial cells to the senescent cell fraction for IPF. A novel mouse model of conditional AT2 cell senescence was generated to study the role of cellular senescence in pulmonary fibrosis.Measurements and Main Results: We show that AT2 cells isolated from IPF lung tissue exhibit characteristic transcriptomic features of cellular senescence. We used conditional loss of Sin3a in adult mouse AT2 cells to initiate a program of p53-dependent cellular senescence, AT2 cell depletion, and spontaneous, progressive pulmonary fibrosis. We establish that senescence rather than loss of AT2 cells promotes progressive fibrosis and show that either genetic or pharmacologic interventions targeting p53 activation or senescence block fibrogenesis.Conclusions: Senescence of AT2 cells is sufficient to drive progressive pulmonary fibrosis. Early attenuation of senescence-related pathways and elimination of senescent cells are promising therapeutic approaches to prevent pulmonary fibrosis.
Collapse
Affiliation(s)
- Changfu Yao
- Women's Guild Lung Institute, Department of Medicine.,The Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, and
| | | | | | | | - Xue Liu
- Women's Guild Lung Institute, Department of Medicine
| | | | - Apoorva Mulay
- Women's Guild Lung Institute, Department of Medicine
| | - Harmik J Soukiasian
- Division of Thoracic Surgery, Cedars-Sinai Medical Center, Los Angeles, California
| | - Gregory David
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York University, New York, New York; and
| | - Stephen S Weigt
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - John A Belperio
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Peter Chen
- Women's Guild Lung Institute, Department of Medicine
| | - Dianhua Jiang
- Women's Guild Lung Institute, Department of Medicine
| | - Paul W Noble
- Women's Guild Lung Institute, Department of Medicine
| | - Barry R Stripp
- Women's Guild Lung Institute, Department of Medicine.,The Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, and
| |
Collapse
|
28
|
Chemoinformatic Screening for the Selection of Potential Senolytic Compounds from Natural Products. Biomolecules 2021; 11:biom11030467. [PMID: 33809876 PMCID: PMC8004226 DOI: 10.3390/biom11030467] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/17/2022] Open
Abstract
Cellular senescence is a cellular condition that involves significant changes in gene expression and the arrest of cell proliferation. Recently, it has been suggested in experimental models that the elimination of senescent cells with pharmacological methods delays, prevents, and improves multiple adverse outcomes related to age. In this sense, the so-called senoylitic compounds are a class of drugs that selectively eliminates senescent cells (SCs) and that could be used in order to delay such adverse outcomes. Interestingly, the first senolytic drug (navitoclax) was discovered by using chemoinformatic and network analyses. Thus, in the present study, we searched for novel senolytic compounds through the use of chemoinformatic tools (fingerprinting and network pharmacology) over different chemical databases (InflamNat and BIOFACQUIM) coming from natural products (NPs) that have proven to be quite remarkable for drug development. As a result of screening, we obtained three molecules (hinokitiol, preussomerin C, and tanshinone I) that could be considered senolytic compound candidates since they share similarities in structure with senolytic leads (tunicamycin, ginsenoside Rb1, ABT 737, rapamycin, navitoclax, timosaponin A-III, digoxin, roxithromycin, and azithromycin) and targets involved in senescence pathways with potential use in the treatment of age-related diseases.
Collapse
|
29
|
Sullivan DI, Jiang M, Hinchie AM, Roth MG, Bahudhanapati H, Nouraie M, Liu J, McDyer JF, Mallampalli RK, Zhang Y, Kass DJ, Finkel T, Alder JK. Transcriptional and Proteomic Characterization of Telomere-Induced Senescence in a Human Alveolar Epithelial Cell Line. Front Med (Lausanne) 2021; 8:600626. [PMID: 33634147 PMCID: PMC7902064 DOI: 10.3389/fmed.2021.600626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 01/05/2021] [Indexed: 01/16/2023] Open
Abstract
Cellular senescence due to telomere dysfunction has been hypothesized to play a role in age-associated diseases including idiopathic pulmonary fibrosis (IPF). It has been postulated that paracrine mediators originating from senescent alveolar epithelia signal to surrounding mesenchymal cells and contribute to disease pathogenesis. However, murine models of telomere-induced alveolar epithelial senescence fail to display the canonical senescence-associated secretory phenotype (SASP) that is observed in senescent human cells. In an effort to understand human-specific responses to telomere dysfunction, we modeled telomere dysfunction-induced senescence in a human alveolar epithelial cell line. We hypothesized that this system would enable us to probe for differences in transcriptional and proteomic senescence pathways in vitro and to identify novel secreted protein (secretome) changes that potentially contribute to the pathogenesis of IPF. Following induction of telomere dysfunction, a robust senescence phenotype was observed. RNA-seq analysis of the senescent cells revealed the SASP and comparisons to previous murine data highlighted differences in response to telomere dysfunction. We conducted a proteomic analysis of the senescent cells using a novel biotin ligase capable of labeling secreted proteins. Candidate biomarkers selected from our transcriptional and secretome data were then evaluated in IPF and control patient plasma. Four novel proteins were found to be differentially expressed between the patient groups: stanniocalcin-1, contactin-1, tenascin C, and total inhibin. Our data show that human telomere-induced, alveolar epithelial senescence results in a transcriptional SASP that is distinct from that seen in analogous murine cells. Our findings suggest that studies in animal models should be carefully validated given the possibility of species-specific responses to telomere dysfunction. We also describe a pragmatic approach for the study of the consequences of telomere-induced alveolar epithelial cell senescence in humans.
Collapse
Affiliation(s)
- Daniel I. Sullivan
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States,Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Pittsburgh, PA, United States
| | - Mao Jiang
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States,The Third Xiangya Hospital, Central South University, Changsha, China
| | - Angela M. Hinchie
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Mark G. Roth
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Harinath Bahudhanapati
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States,Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Pittsburgh, PA, United States
| | - Mehdi Nouraie
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States,Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Pittsburgh, PA, United States
| | - Jie Liu
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, United States,University of Pittsburgh Medical Center, Pittsburgh, PA, United States,Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - John F. McDyer
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rama K. Mallampalli
- Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Yingze Zhang
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States,Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Pittsburgh, PA, United States
| | - Daniel J. Kass
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States,Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Pittsburgh, PA, United States
| | - Toren Finkel
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, United States,University of Pittsburgh Medical Center, Pittsburgh, PA, United States,Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jonathan K. Alder
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States,Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Pittsburgh, PA, United States,*Correspondence: Jonathan K. Alder
| |
Collapse
|
30
|
Wang Y, Eng DG, Kaverina NV, Loretz CJ, Koirala A, Akilesh S, Pippin JW, Shankland SJ. Global transcriptomic changes occur in aged mouse podocytes. Kidney Int 2020; 98:1160-1173. [PMID: 32592814 PMCID: PMC7606654 DOI: 10.1016/j.kint.2020.05.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/17/2020] [Accepted: 05/28/2020] [Indexed: 01/15/2023]
Abstract
Glomerular podocytes undergo structural and functional changes with advanced age, that increase susceptibility of aging kidneys to worse outcomes following superimposed glomerular diseases. To delineate transcriptional changes in podocytes in aged mice, RNA-seq was performed on isolated populations of reporter-labeled (tdTomato) podocytes from multiple young (two to three months) and advanced aged mice (22 to 24 months, equivalent to 70 plus year old humans). Of the 2,494 differentially expressed genes, 1,219 were higher and 1,275 were lower in aged podocytes. Pathway enrichment showed that major biological processes increased in aged podocytes included immune responses, non-coding RNA metabolism, gene silencing and MAP kinase signaling. Conversely, aged podocytes showed downregulation of developmental, morphogenesis and metabolic processes. Canonical podocyte marker gene expression decreased in aged podocytes, with increases in apoptotic and senescence genes providing a mechanism for the progressive loss of podocytes seen with aging. In addition, we revealed aberrations in the podocyte autocrine signaling network, identified the top transcription factors perturbed in aged podocytes, and uncovered candidate gene modulations that might promote healthy aging in podocytes. The transcriptional signature of aging is distinct from other kidney diseases. Thus, our study provides insights into biomarker discovery and molecular targeting of the aging process itself within podocytes.
Collapse
Affiliation(s)
- Yuliang Wang
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington, USA; Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington, USA
| | - Diana G Eng
- Division of Nephrology, University of Washington, Seattle, Washington, USA
| | - Natalya V Kaverina
- Division of Nephrology, University of Washington, Seattle, Washington, USA
| | - Carol J Loretz
- Division of Nephrology, University of Washington, Seattle, Washington, USA
| | - Abbal Koirala
- Division of Nephrology, University of Washington, Seattle, Washington, USA
| | - Shreeram Akilesh
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Jeffrey W Pippin
- Division of Nephrology, University of Washington, Seattle, Washington, USA
| | - Stuart J Shankland
- Division of Nephrology, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
31
|
Malila Y, Uengwetwanit T, Arayamethakorn S, Srimarut Y, Thanatsang KV, Soglia F, Strasburg GM, Rungrassamee W, Visessanguan W. Transcriptional Profiles of Skeletal Muscle Associated With Increasing Severity of White Striping in Commercial Broilers. Front Physiol 2020; 11:580. [PMID: 32612536 PMCID: PMC7308426 DOI: 10.3389/fphys.2020.00580] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/11/2020] [Indexed: 01/10/2023] Open
Abstract
Development of the white striping (WS) abnormality adversely impacts overall quality of broiler breast meat. Its etiology remains unclear. This study aimed at exploring transcriptional profiles of broiler skeletal muscles exhibiting different WS severity to elucidate molecular mechanisms underlying the development and progression of WS. Total RNA was isolated from pectoralis major of male 7-week-old Ross 308 broilers. The samples were classified as mild (n = 6), moderate (n = 6), or severe (n = 4), based on number and thickness of the white striations on the meat surface. The transcriptome was profiled using a chicken gene expression microarray with one-color hybridization technique. Gene expression patterns of each WS severity level were compared against each other; hence, there were three comparisons: moderate vs. mild (C1), severe vs. moderate (C2), and severe vs. mild (C3). Differentially expressed genes (DEGs) were identified using the combined criteria of false discovery rate ≤ 0.05 and absolute fold change ≥1.2. Differential expression of 91, 136, and 294 transcripts were identified in C1, C2, and C3, respectively. There were no DEGs in common among the three comparisons. Based on pathway analysis, the enriched pathways of C1 were related with impaired homeostasis of macronutrients and small biochemical molecules with disrupted Ca2+-related pathways. Decreased abundance of the period circadian regulator suggested the shifted circadian phase when moderate WS developed. The enriched pathways uniquely obtained in C2 were RNA degradation, Ras signaling, cellular senescence, axon guidance, and salivary secretion. The DEGs identified in those pathways might play crucial roles in regulating cellular ion balances and cell-cycle arrest. In C3, the pathways responsible for phosphatidylinositol 3-kinase-Akt signaling, p53 activation, apoptosis, and hypoxia-induced processes were modified. Additionally, pathways associated with a variety of diseases with the DEGs involved in regulation of [Ca2+], collagen formation, microtubule-based motor, and immune response were identified. Eight pathways were common to all three comparisons (i.e., calcium signaling, Ras-associated protein 1 signaling, ubiquitin-mediated proteolysis, vascular smooth muscle contraction, oxytocin signaling, and pathway in cancer). The current findings support the role of intracellular ion imbalance, particularly Ca2+, oxidative stress, and impaired programmed cell death on WS progression.
Collapse
Affiliation(s)
- Yuwares Malila
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathum Thani, Thailand
| | - Tanaporn Uengwetwanit
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathum Thani, Thailand
| | - Sopacha Arayamethakorn
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathum Thani, Thailand
| | - Yanee Srimarut
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathum Thani, Thailand
| | - Krittaporn V Thanatsang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathum Thani, Thailand
| | - Francesca Soglia
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Cesena, Italy
| | - Gale M Strasburg
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Wanilada Rungrassamee
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathum Thani, Thailand
| | - Wonnop Visessanguan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathum Thani, Thailand
| |
Collapse
|
32
|
Docherty MH, Baird DP, Hughes J, Ferenbach DA. Cellular Senescence and Senotherapies in the Kidney: Current Evidence and Future Directions. Front Pharmacol 2020; 11:755. [PMID: 32528288 PMCID: PMC7264097 DOI: 10.3389/fphar.2020.00755] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/06/2020] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence refers to a cellular phenotype characterized by an altered transcriptome, pro-inflammatory secretome, and generally irreversible growth arrest. Acutely senescent cells are widely recognized as performing key physiological functions in vivo promoting normal organogenesis, successful wound repair, and cancer defense. In contrast, the accumulation of chronically senescent cells in response to aging, cell stress, genotoxic damage, and other injurious stimuli is increasingly recognized as an important contributor to organ dysfunction, tissue fibrosis, and the more generalized aging phenotype. In this review, we summarize our current knowledge of the role of senescent cells in promoting progressive fibrosis and dysfunction with a particular focus on the kidney and reference to other organ systems. Specific differences between healthy and senescent cells are reviewed along with a summary of several experimental pharmacological approaches to deplete or manipulate senescent cells to preserve organ integrity and function with aging and after injury. Finally, key questions for future research and clinical translation are discussed.
Collapse
Affiliation(s)
- Marie Helena Docherty
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom.,Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - David P Baird
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom.,Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Jeremy Hughes
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom.,Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - David A Ferenbach
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom.,Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
33
|
Johnson ECB, Dammer EB, Duong DM, Ping L, Zhou M, Yin L, Higginbotham LA, Guajardo A, White B, Troncoso JC, Thambisetty M, Montine TJ, Lee EB, Trojanowski JQ, Beach TG, Reiman EM, Haroutunian V, Wang M, Schadt E, Zhang B, Dickson DW, Ertekin-Taner N, Golde TE, Petyuk VA, De Jager PL, Bennett DA, Wingo TS, Rangaraju S, Hajjar I, Shulman JM, Lah JJ, Levey AI, Seyfried NT. Large-scale proteomic analysis of Alzheimer's disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nat Med 2020; 26:769-780. [PMID: 32284590 PMCID: PMC7405761 DOI: 10.1038/s41591-020-0815-6] [Citation(s) in RCA: 504] [Impact Index Per Article: 126.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/27/2020] [Indexed: 12/12/2022]
Abstract
Our understanding of Alzheimer's disease (AD) pathophysiology remains incomplete. Here we used quantitative mass spectrometry and coexpression network analysis to conduct the largest proteomic study thus far on AD. A protein network module linked to sugar metabolism emerged as one of the modules most significantly associated with AD pathology and cognitive impairment. This module was enriched in AD genetic risk factors and in microglia and astrocyte protein markers associated with an anti-inflammatory state, suggesting that the biological functions it represents serve a protective role in AD. Proteins from this module were elevated in cerebrospinal fluid in early stages of the disease. In this study of >2,000 brains and nearly 400 cerebrospinal fluid samples by quantitative proteomics, we identify proteins and biological processes in AD brains that may serve as therapeutic targets and fluid biomarkers for the disease.
Collapse
Affiliation(s)
- Erik C B Johnson
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
| | - Eric B Dammer
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Duc M Duong
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Lingyan Ping
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Maotian Zhou
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Luming Yin
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | | | | - Madhav Thambisetty
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Thomas J Montine
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Edward B Lee
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas G Beach
- Department of Pathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Eric M Reiman
- Banner Alzheimer's Institute, Arizona State University and University of Arizona, Phoenix, AZ, USA
| | - Vahram Haroutunian
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- JJ Peters VA Medical Center MIRECC, Bronx, NY, USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric Schadt
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Todd E Golde
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Taub Institute, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Thomas S Wingo
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Srikant Rangaraju
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ihab Hajjar
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Joshua M Shulman
- Departments of Neurology, Neuroscience and Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - James J Lah
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Allan I Levey
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
| | - Nicholas T Seyfried
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
34
|
Dodig S, Čepelak I, Pavić I. Hallmarks of senescence and aging. Biochem Med (Zagreb) 2019; 29:030501. [PMID: 31379458 PMCID: PMC6610675 DOI: 10.11613/bm.2019.030501] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/10/2019] [Indexed: 12/12/2022] Open
Abstract
The complex process of biological aging, as an intrinsic feature of living beings, is the result of genetic and, to a greater extent, environmental factors and time. For many of the changes taking place in the body during aging, three factors are important: inflammation, immune aging and senescence (cellular aging, biological aging). Senescence is an irreversible form of long-term cell-cycle arrest, caused by excessive intracellular or extracellular stress or damage. The purpose of this cell-cycles arrest is to limit the proliferation of damaged cells, to eliminate accumulated harmful factors and to disable potential malignant cell transformation. As the biological age does not have to be in accordance with the chronological age, it is important to find specific hallmarks and biomarkers that could objectively determine the rate of age of a person. These biomarkers might be a valuable measure of physiological, i.e. biological age. Biomarkers should meet several criteria. For example, they have to predict the rate of aging, monitor a basic process that underlies the aging process, be able to be tested repeatedly without harming the person. In addition, biomarkers have to be indicators of biological processes, pathogenic processes or pharmacological responses to therapeutic intervention. It is considered that the telomere length is the weak biomarker (with poor predictive accuracy), and there is currently no reliable biomarker that meets all the necessary criteria.
Collapse
Affiliation(s)
- Slavica Dodig
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Ivana Čepelak
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Ivan Pavić
- Department of Pulmonology, Allergology and Immunology, Children’s Hospital Zagreb; School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
35
|
Abstract
Cellular senescence defines an irreversible cell growth arrest state linked to loss of tissue function and aging in mammals. This transition from proliferation to senescence is typically characterized by increased expression of the cell-cycle inhibitor p16INK4a and formation of senescence-associated heterochromatin foci (SAHF). SAHF formation depends on HIRA-mediated nucleosome assembly of histone H3.3, which is regulated by the serine/threonine protein kinase Pak2. However, it is unknown if Pak2 contributes to cellular senescence. Here, we show that depletion of Pak2 delayed oncogene-induced senescence in IMR90 human fibroblasts and oxidative stress-induced senescence of mouse embryonic fibroblasts (MEFs), whereas overexpression of Pak2 accelerated senescence of IMR90 cells. Importantly, depletion of Pak2 in BubR1 progeroid mice attenuated the onset of aging-associated phenotypes and extended life span. Pak2 is required for expression of genes involved in cellular senescence and regulated the deposition of newly synthesized H3.3 onto chromatin in senescent cells. Together, our results demonstrate that Pak2 is an important regulator of cellular senescence and organismal aging, in part through the regulation of gene expression and H3.3 nucleosome assembly.
Collapse
|
36
|
Talukdar S, Bhoopathi P, Emdad L, Das S, Sarkar D, Fisher PB. Dormancy and cancer stem cells: An enigma for cancer therapeutic targeting. Adv Cancer Res 2019; 141:43-84. [PMID: 30691685 DOI: 10.1016/bs.acr.2018.12.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dormancy occurs when cells remain viable but stop proliferating. When most of a cancer population undergoes this phenomenon, the result is called tumor dormancy, and when a single cancer cell undergoes this process, it is termed quiescence. Cancer stem cells (CSCs) share several overlapping characteristics and signaling pathways with dormant cancer cells, including therapy resistance, and an ability to metastasize and evade the immune system. Cancer cells can be broadly grouped into dormancy-competent CSCs (DCCs), cancer-repopulating cells (CRCs), dormancy-incompetent CSCs and disseminated tumor cells (DTCs). The settings in which cancer cells exploit the dormancy phase to survive and adapt are: (i) primary cancer dormancy; (ii) metastatic dormancy; (iii) therapy-induced dormancy; and (iv) immunologic dormancy. Dormancy, therapy resistance and plasticity of CSCs are fundamentally interconnected processes mediated through mechanisms involving reversible genetic alterations. Niches including metastatic, bone marrow, and perivascular are known to harbor dormant cancer cells. Mechanisms of dormancy induction are complex and multi-factorial and can involve angiogenic switching, addictive oncogene inhibition, immunoediting, anoikis, therapy, autophagy, senescence, epigenetic, and biophysical regulation. Therapy can have opposing effects on cancer cells with respect to dormancy; some therapies can induce dormancy, while others can reactivate dormant cells. There is a lack of consensus relative to the value of therapy-induced dormancy, i.e., some researchers view dormancy induction as a beneficial strategy as it can lead to metastasis inhibition, while others argue that reactivating dormant cancer cells and then eliminating them through therapy are a better approach. More focused investigations of intrinsic cell kinetics and environmental dynamics that promote and maintain cancer cells in a dormant state, and the long-term consequences of dormancy are critical for improving current therapeutic treatment outcomes.
Collapse
Affiliation(s)
- Sarmistha Talukdar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Swadesh Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
37
|
Fuentealba M, Dönertaş HM, Williams R, Labbadia J, Thornton JM, Partridge L. Using the drug-protein interactome to identify anti-ageing compounds for humans. PLoS Comput Biol 2019; 15:e1006639. [PMID: 30625143 PMCID: PMC6342327 DOI: 10.1371/journal.pcbi.1006639] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 01/22/2019] [Accepted: 11/14/2018] [Indexed: 01/07/2023] Open
Abstract
Advancing age is the dominant risk factor for most of the major killer diseases in developed countries. Hence, ameliorating the effects of ageing may prevent multiple diseases simultaneously. Drugs licensed for human use against specific diseases have proved to be effective in extending lifespan and healthspan in animal models, suggesting that there is scope for drug repurposing in humans. New bioinformatic methods to identify and prioritise potential anti-ageing compounds for humans are therefore of interest. In this study, we first used drug-protein interaction information, to rank 1,147 drugs by their likelihood of targeting ageing-related gene products in humans. Among 19 statistically significant drugs, 6 have already been shown to have pro-longevity properties in animal models (p < 0.001). Using the targets of each drug, we established their association with ageing at multiple levels of biological action including pathways, functions and protein interactions. Finally, combining all the data, we calculated a ranked list of drugs that identified tanespimycin, an inhibitor of HSP-90, as the top-ranked novel anti-ageing candidate. We experimentally validated the pro-longevity effect of tanespimycin through its HSP-90 target in Caenorhabditis elegans. Human life expectancy is continuing to increase worldwide, as a result of successive improvements in living conditions and medical care. Although this trend is to be celebrated, advancing age is the major risk factor for multiple impairments and chronic diseases. As a result, the later years of life are often spent in poor health and lowered quality of life. However, these effects of ageing are not inevitable, because very long-lived people often suffer rather little ill-health at the end of their lives. Furthermore, laboratory experiments have shown that animals fed with specific drugs can live longer and with fewer age-related diseases than their untreated companions. We therefore need to identify drugs with anti-ageing properties for humans. We have used publically available data and a computer-based approach to search for drugs that affect components and processes known to be important in human ageing. This approach worked, because it was able to re-discover several drugs known to increase lifespan in animal models, plus some new ones, including one that we tested experimentally and validated in this study. These drugs are now a high priority for animal testing and for exploring effects on human ageing.
Collapse
Affiliation(s)
- Matías Fuentealba
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Handan Melike Dönertaş
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Rhianna Williams
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Johnathan Labbadia
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Janet M. Thornton
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Linda Partridge
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- * E-mail:
| |
Collapse
|
38
|
A network-based meta-analysis for characterizing the genetic landscape of human aging. Biogerontology 2017; 19:81-94. [PMID: 29270911 PMCID: PMC5765210 DOI: 10.1007/s10522-017-9741-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 12/01/2017] [Indexed: 01/22/2023]
Abstract
Great amounts of omics data are generated in aging research, but their diverse and partly complementary nature requires integrative analysis approaches for investigating aging processes and connections to age-related diseases. To establish a broader picture of the genetic and epigenetic landscape of human aging we performed a large-scale meta-analysis of 6600 human genes by combining 35 datasets that cover aging hallmarks, longevity, changes in DNA methylation and gene expression, and different age-related diseases. To identify biological relationships between aging-associated genes we incorporated them into a protein interaction network and characterized their network neighborhoods. In particular, we computed a comprehensive landscape of more than 1000 human aging clusters, network regions where genes are highly connected and where gene products commonly participate in similar processes. In addition to clusters that capture known aging processes such as nutrient-sensing and mTOR signaling, we present a number of clusters with a putative functional role in linking different aging processes as promising candidates for follow-up studies. To enable their detailed exploration, all datasets and aging clusters are made freely available via an interactive website (https://gemex.eurac.edu/bioinf/age/).
Collapse
|
39
|
Chen Y, Liu Y, Du M, Zhang W, Xu L, Gao X, Zhang L, Gao H, Xu L, Li J, Zhao M. Constructing a comprehensive gene co-expression based interactome in Bos taurus. PeerJ 2017; 5:e4107. [PMID: 29226034 PMCID: PMC5719962 DOI: 10.7717/peerj.4107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/08/2017] [Indexed: 01/08/2023] Open
Abstract
Integrating genomic information into cattle breeding is an important approach to exploring genotype-phenotype relationships for complex traits related to diary and meat production. To assist with genomic-based selection, a reference map of interactome is needed to fully understand and identify the functional relevant genes. To this end, we constructed a co-expression analysis of 92 tissues and this represents the systematic exploration of gene-gene relationship in Bos taurus. By using robust WGCNA (Weighted Gene Correlation Network Analysis), we described the gene co-expression network of 5,000 protein-coding genes with majority variations in expression across 92 tissues. Further module identifications found 55 highly organized functional clusters representing diverse cellular activities. To demonstrate the re-use of our interaction for functional genomics analysis, we extracted a sub-network associated with DNA binding genes in Bos taurus. The subnetwork was enriched within regulation of transcription from RNA polymerase II promoter representing central cellular functions. In addition, we identified 28 novel linker genes associated with more than 100 DNA binding genes. Our WGCNA-based co-expression network reconstruction will be a valuable resource for exploring the molecular mechanisms of incompletely characterized proteins and for elucidating larger-scale patterns of functional modulization in the Bos taurus genome.
Collapse
Affiliation(s)
- Yan Chen
- Innovation Team of Cattle Genetics and Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yining Liu
- The School of Public Health, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, China
| | - Min Du
- Department of Animal Science, Washington State University, Pullman, WA, United States of America
| | - Wengang Zhang
- Innovation Team of Cattle Genetics and Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ling Xu
- Innovation Team of Cattle Genetics and Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xue Gao
- Innovation Team of Cattle Genetics and Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lupei Zhang
- Innovation Team of Cattle Genetics and Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huijiang Gao
- Innovation Team of Cattle Genetics and Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lingyang Xu
- Innovation Team of Cattle Genetics and Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junya Li
- Innovation Team of Cattle Genetics and Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Min Zhao
- School of Engineering, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Queensland, Australia
| |
Collapse
|
40
|
Liu J, Cheng Y, Wang X, Zhang L, Liu H. An Optimal Mean Based Block Robust Feature Extraction Method to Identify Colorectal Cancer Genes with Integrated Data. Sci Rep 2017; 7:8584. [PMID: 28819308 PMCID: PMC5561268 DOI: 10.1038/s41598-017-08881-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/14/2017] [Indexed: 12/25/2022] Open
Abstract
It is urgent to diagnose colorectal cancer in the early stage. Some feature genes which are important to colorectal cancer development have been identified. However, for the early stage of colorectal cancer, less is known about the identity of specific cancer genes that are associated with advanced clinical stage. In this paper, we conducted a feature extraction method named Optimal Mean based Block Robust Feature Extraction method (OMBRFE) to identify feature genes associated with advanced colorectal cancer in clinical stage by using the integrated colorectal cancer data. Firstly, based on the optimal mean and L 2,1-norm, a novel feature extraction method called Optimal Mean based Robust Feature Extraction method (OMRFE) is proposed to identify feature genes. Then the OMBRFE method which introduces the block ideology into OMRFE method is put forward to process the colorectal cancer integrated data which includes multiple genomic data: copy number alterations, somatic mutations, methylation expression alteration, as well as gene expression changes. Experimental results demonstrate that the OMBRFE is more effective than previous methods in identifying the feature genes. Moreover, genes identified by OMBRFE are verified to be closely associated with advanced colorectal cancer in clinical stage.
Collapse
Affiliation(s)
- Jian Liu
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| | - Yuhu Cheng
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| | - Xuesong Wang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China.
| | - Lin Zhang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| | - Hui Liu
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| |
Collapse
|
41
|
Cohen J, Torres C. HIV-associated cellular senescence: A contributor to accelerated aging. Ageing Res Rev 2017; 36:117-124. [PMID: 28017881 DOI: 10.1016/j.arr.2016.12.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/28/2016] [Accepted: 12/12/2016] [Indexed: 01/15/2023]
Abstract
Due to the advent of antiretroviral therapy HIV is no longer a terminal disease and the HIV infected patients are becoming increasingly older. While this is a major success, with increasing age comes an increased risk for disease. The age-related comorbidities that HIV infected patients experience suggest that they suffer from accelerated aging. One possible contributor to this accelerated aging is cellular senescence, an age-associated response that can occur prematurely in response to stress, and that is emerging as a contributor to disease and aging. HIV patients experience several stressors such as the virus itself, antiretroviral drugs and to a lesser extent, substance abuse that can induce cellular senescence. This review summarizes the current knowledge of senescence induction in response to these stressors and their relation to the comorbidities in HIV patients. Cellular senescence may be a possible therapeutic target for these comorbidities.
Collapse
|
42
|
Tesauro M, Mauriello A, Rovella V, Annicchiarico-Petruzzelli M, Cardillo C, Melino G, Di Daniele N. Arterial ageing: from endothelial dysfunction to vascular calcification. J Intern Med 2017; 281:471-482. [PMID: 28345303 DOI: 10.1111/joim.12605] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Complex structural and functional changes occur in the arterial system with advancing age. The aged artery is characterized by changes in microRNA expression patterns, autophagy, smooth muscle cell migration and proliferation, and arterial calcification with progressively increased mechanical vessel rigidity and stiffness. With age the vascular smooth muscle cells modify their phenotype from contractile to 'synthetic' determining the development of intimal thickening as early as the second decade of life as an adaptive response to forces acting on the arterial wall. The increased permeability observed in intimal thickening could represent the substrate on which low-level atherosclerotic stimuli can promote the development of advanced atherosclerotic lesions. In elderly patients the atherosclerotic plaques tend to be larger with increased vascular stenosis. In these plaques there is a progressive accumulation of both lipids and collagen and a decrease of inflammation. Similarly the plaques from elderly patients show more calcification as compared with those from younger patients. The coronary artery calcium score is a well-established marker of adverse cardiovascular outcomes. The presence of diffuse calcification in a severely stenotic segment probably induces changes in mechanical properties and shear stress of the arterial wall favouring the rupture of a vulnerable lesion in a less stenotic adjacent segment. Oxidative stress and inflammation appear to be the two primary pathological mechanisms of ageing-related endothelial dysfunction even in the absence of clinical disease. Arterial ageing is no longer considered an inexorable process. Only a better understanding of the link between ageing and vascular dysfunction can lead to significant advances in both preventative and therapeutic treatments with the aim that in the future vascular ageing may be halted or even reversed.
Collapse
Affiliation(s)
- M Tesauro
- Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - A Mauriello
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome, Italy
| | - V Rovella
- Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | | | - C Cardillo
- Department of Internal Medicine, Catholic University, Rome, Italy
| | - G Melino
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome, Italy.,Medical Research Council, Toxicology Unit, Leicester University, Leicester, UK
| | - N Di Daniele
- Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy
| |
Collapse
|
43
|
Guebel DV, Torres NV. Sexual Dimorphism and Aging in the Human Hyppocampus: Identification, Validation, and Impact of Differentially Expressed Genes by Factorial Microarray and Network Analysis. Front Aging Neurosci 2016; 8:229. [PMID: 27761111 PMCID: PMC5050216 DOI: 10.3389/fnagi.2016.00229] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/14/2016] [Indexed: 01/09/2023] Open
Abstract
Motivation: In the brain of elderly-healthy individuals, the effects of sexual dimorphism and those due to normal aging appear overlapped. Discrimination of these two dimensions would powerfully contribute to a better understanding of the etiology of some neurodegenerative diseases, such as “sporadic” Alzheimer. Methods: Following a system biology approach, top-down and bottom-up strategies were combined. First, public transcriptome data corresponding to the transition from adulthood to the aging stage in normal, human hippocampus were analyzed through an optimized microarray post-processing (Q-GDEMAR method) together with a proper experimental design (full factorial analysis). Second, the identified genes were placed in context by building compatible networks. The subsequent ontology analyses carried out on these networks clarify the main functionalities involved. Results: Noticeably we could identify large sets of genes according to three groups: those that exclusively depend on the sex, those that exclusively depend on the age, and those that depend on the particular combinations of sex and age (interaction). The genes identified were validated against three independent sources (a proteomic study of aging, a senescence database, and a mitochondrial genetic database). We arrived to several new inferences about the biological functions compromised during aging in two ways: by taking into account the sex-independent effects of aging, and considering the interaction between age and sex where pertinent. In particular, we discuss the impact of our findings on the functions of mitochondria, autophagy, mitophagia, and microRNAs. Conclusions: The evidence obtained herein supports the occurrence of significant neurobiological differences in the hippocampus, not only between adult and elderly individuals, but between old-healthy women and old-healthy men. Hence, to obtain realistic results in further analysis of the transition from the normal aging to incipient Alzheimer, the features derived from the sexual dimorphism in hippocampus should be explicitly considered.
Collapse
Affiliation(s)
- Daniel V Guebel
- Biotechnology Counselling ServicesBuenos Aires, Argentina; Systems Biology and Mathematical Modelling Group, Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Facultad de Ciencias, Universidad de La LagunaSan Cristóbal de La Laguna, España
| | - Néstor V Torres
- Systems Biology and Mathematical Modelling Group, Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Facultad de Ciencias, Universidad de La Laguna San Cristóbal de La Laguna, España
| |
Collapse
|
44
|
Zhao X, Dong Y, Zhang J, Li D, Hu G, Yao J, Li Y, Huang P, Zhang M, Zhang J, Huang Z, Zhang Y, Miao Y, Xu Q, Li H. Leptin changes differentiation fate and induces senescence in chondrogenic progenitor cells. Cell Death Dis 2016; 7:e2188. [PMID: 27077804 PMCID: PMC4855655 DOI: 10.1038/cddis.2016.68] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/23/2016] [Accepted: 02/23/2016] [Indexed: 12/26/2022]
Abstract
Body weight is a component of the mechanical theory of OA (osteoarthritis) pathogenesis. Obesity was also found to be a risk factor for digital OA involving non-weight-bearing joints, which suggested that metabolism influences the occurrence and progression of OA. The metabolic origin of OA has been partially attributed to the involvement of adipokines, such as leptin, the levels of which are significantly and positively correlated with cartilage degeneration in OA patients. However, the mechanisms by which leptin-induced cartilage degeneration occurs are poorly understood. The discovery of chondrogenic progenitor cells (CPCs) opened up new opportunities for investigation. Investigating the effects of leptin on differentiation and proliferation in CPCs would increase our understanding of the roles played by leptin in the aetiology and development of OA. Here, CPCs were harvested using single-cell sorting from rat cartilage tissues to obtain mesenchymal stem-like cells, which possess clonogenicity, proliferation and stemness. High doses of leptin decreased the ability of the CPCs to migrate, inhibited their chondrogenic potential and increased their osteogenic potential, suggesting that leptin changes differentiation fates in CPCs. High doses of leptin induced cell cycle arrest and senescence in CPCs by activating the p53/p21 pathway and inhibiting the Sirt1 pathway. Inhibiting the Sirt1 pathway accelerated cartilage senescence in knockout (KO) mice. Activating the leptin pathway induced higher Ob-Rb expression and was significantly correlated with cartilage degeneration (lower levels of Coll-2) and tissue senescence (higher levels of p53/p21 and lower levels of Sirt1) in OA patients, suggesting that leptin-induced CPCs senescence contributes to the development of OA. Taken together, our results reveal new links between obesity and cartilage damage that are induced by leptin-mediated effects on cell behaviour and senescence.
Collapse
Affiliation(s)
- X Zhao
- Department of Orthopaedics, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Y Dong
- Department of Joint Surgery, The First People's Hospital of Lianyungang, Lianyungang, China
| | - J Zhang
- Department of Orthopaedics, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - D Li
- Department of Transplantation and Hepatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - G Hu
- Department of Orthopaedics, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - J Yao
- Department of Animal Facility, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Y Li
- Ren Ji-Med X Stem Cell Research Centre, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - P Huang
- Department of Orthopaedics, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - M Zhang
- Department of Transplantation and Hepatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - J Zhang
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Z Huang
- Department of Orthopaedics, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Y Zhang
- Department of Orthopaedics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Y Miao
- Department of Orthopaedics, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Q Xu
- Department of Orthopaedics, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - H Li
- Traditional Chinese Medicine Department, Ren Ji Hospital, School of Medicine, Shanghai JiaoTong University, 160 Pujian Road, Shanghai 200127, China
| |
Collapse
|
45
|
Zhao M, Rotgans B, Wang T, Cummins SF. REGene: a literature-based knowledgebase of animal regeneration that bridge tissue regeneration and cancer. Sci Rep 2016; 6:23167. [PMID: 26975833 PMCID: PMC4791596 DOI: 10.1038/srep23167] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 02/18/2016] [Indexed: 12/13/2022] Open
Abstract
Regeneration is a common phenomenon across multiple animal phyla. Regeneration-related genes (REGs) are critical for fundamental cellular processes such as proliferation and differentiation. Identification of REGs and elucidating their functions may help to further develop effective treatment strategies in regenerative medicine. So far, REGs have been largely identified by small-scale experimental studies and a comprehensive characterization of the diverse biological processes regulated by REGs is lacking. Therefore, there is an ever-growing need to integrate REGs at the genomics, epigenetics, and transcriptome level to provide a reference list of REGs for regeneration and regenerative medicine research. Towards achieving this, we developed the first literature-based database called REGene (REgeneration Gene database). In the current release, REGene contains 948 human (929 protein-coding and 19 non-coding genes) and 8445 homologous genes curated from gene ontology and extensive literature examination. Additionally, the REGene database provides detailed annotations for each REG, including: gene expression, methylation sites, upstream transcription factors, and protein-protein interactions. An analysis of the collected REGs reveals strong links to a variety of cancers in terms of genetic mutation, protein domains, and cellular pathways. We have prepared a web interface to share these regeneration genes, supported by refined browsing and searching functions at http://REGene.bioinfo-minzhao.org/.
Collapse
Affiliation(s)
- Min Zhao
- School of Engineering, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558, Australia
| | - Bronwyn Rotgans
- School of Engineering, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558, Australia
| | - Tianfang Wang
- School of Engineering, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558, Australia
| | - S F Cummins
- School of Engineering, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558, Australia
| |
Collapse
|