1
|
Sun J, Li Y, Meng M, Zeng X, Wang Q, Li W, Luo Y, Chen H, Dong Q. SIRT7 inhibits the aging and inflammatory damage of hPDLFs by suppressing the AKT/mTOR. Int Immunopharmacol 2024; 143:113300. [PMID: 39378651 DOI: 10.1016/j.intimp.2024.113300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/22/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Abstract
Periodontitis seriously affects oral health worldwide. Despite extensive efforts in prevention and treatment methods over the years, the prevalence of periodontitis in the population has not decreased. DNA damage-induced cellular senescence may be one of the mechanisms underlying periodontitis.Sirtuin7 (SIRT7) has deacetylase activity and regulates a variety of biological processes, including cell proliferation, death, and DNA damage repair.Increasing evidence confirms the crucial role of SIRT7 in age-related and inflammatory diseases. However, the mechanism of action of SIRT7 in periodontitis remains unclear. Our study demonstrates that SIRT7 is downregulated in human periodontal ligament fibroblasts induced by Porphyromonas gingivalis lipopolysaccharide (Pg-LPS). Overexpression of the SIRT7 gene significantly reduces the production of senescence-related molecules P53, P21, P16, as well as inflammatory cytokines IL-1β and TNF-α stimulated by Pg-LPS. Furthermore, overexpression of the SIRT7 gene significantly decreases the phosphorylation levels of AKT and mTOR in Pg-LPS-treated hPDLFs. Conversely, SIRT7 gene knockdown exhibits opposite effects compared to overexpression in Pg-LPS-treated hPDLFs. In conclusion, our findings indicate that SIRT7 can inhibit Pg-LPS-induced senescence and consequently suppress the secretion of inflammatory cytokines through the AKT/mTOR pathway. As a result, SIRT7 could be regarded a viable pharmaceutical target for clinical periodontitis treatment.
Collapse
Affiliation(s)
- Jinyi Sun
- School of Stomatology, Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China
| | - Ying Li
- Department of Prosthodontics, The Affiliated Stomatology Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China
| | - Maohua Meng
- Department of Prosthodontics, The Affiliated Stomatology Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China
| | - Xiao Zeng
- Department of Prosthodontics, The Affiliated Stomatology Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China
| | - Qinying Wang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, Guangdong Province, PR China
| | - Wenjie Li
- School of Stomatology, Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China
| | - Yuncai Luo
- School of Stomatology, Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China
| | - Helin Chen
- School of Stomatology, Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China; Department of Prosthodontics, The Affiliated Stomatology Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China
| | - Qiang Dong
- School of Stomatology, Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China; Department of Prosthodontics, The Affiliated Stomatology Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China.
| |
Collapse
|
2
|
Guo S, Fu L, Yin C, Shao W, Sun Q, Chen L, Xia T, Wang M, Xia H. ROS-Induced Gingival Fibroblast Senescence: Implications in Exacerbating Inflammatory Responses in Periodontal Disease. Inflammation 2024; 47:1918-1935. [PMID: 38630168 DOI: 10.1007/s10753-024-02014-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 11/30/2024]
Abstract
Periodontal disease is the pathological outcome of the overwhelming inflammation in periodontal tissue. Cellular senescence has been associated with chronic inflammation in several diseases. However, the role of cellular senescence in the pathogenesis of periodontal disease remained unclear. This study aimed to investigate the role and the mechanism of cellular senescence in periodontal disease. Using single-cell RNA sequencing, we first found the upregulated level of cellular senescence in fibroblasts and endothelial cells from inflamed gingival tissue. Subsequently, human gingival fibroblasts isolated from healthy and inflamed gingival tissues were labeled as H-GFs and I-GFs, respectively. Compared to H-GFs, I-GFs exhibited a distinct cellular senescence phenotype, including an increased proportion of senescence-associated β-galactosidase (SA-β-gal) positive cells, enlarged cell morphology, and significant upregulation of p16INK4A expression. We further observed increased cellular reactive oxygen species (ROS) activity, mitochondrial ROS, and DNA damage of I-GFs. These phenotypes could be reversed by ROS scavenger NAC, which suggested the cause of cellular senescence in I-GFs. The migration and proliferation assay showed the decreased activity of I-GFs while the gene expression of senescence-associated secretory phenotype (SASP) factors such as IL-1β, IL-6, TGF-β, and IL-8 was all significantly increased. Finally, we found that supernatants of I-GF culture induced more neutrophil extracellular trap (NET) formation and drove macrophage polarization toward the CD86-positive M1 pro-inflammatory phenotype. Altogether, our findings implicate that, in the inflamed gingiva, human gingival fibroblasts acquire a senescent phenotype due to oxidative stress-induced DNA and mitochondrial damage, which in turn activate neutrophils and macrophages through the secretion of SASP factors.
Collapse
Affiliation(s)
- Shuling Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Liangliang Fu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Chenghu Yin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Wenjun Shao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Quan Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Liangwen Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Ting Xia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Min Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| | - Haibin Xia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
3
|
Su NY, Ng MY, Liao HY, Liao YW, Wu M, Chao SC, Yu CC, Chang YC. Ganoderma Microsporum Immunomodulatory Protein Alleviates Inflammaging and Oxidative Stress in Diabetes-Associated Periodontitis via Nrf2 Signaling Activation: An In Vitro Study. Antioxidants (Basel) 2024; 13:817. [PMID: 39061886 PMCID: PMC11273761 DOI: 10.3390/antiox13070817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Periodontitis, characterized by inflammation and loss of periodontal tissue, is a significant health complication for individuals with diabetes mellitus (DM). Buildup of advanced glycation end-products (AGEs) in DM poses an increased risk of periodontitis via inflammaging. Ganoderma immunomodulatory protein (GMI) shows promise in suppressing inflammaging by mitigating oxidative stress and inflammation via Nrf2 modulation. However, its specific protective effects are not fully understood. Thus, this study aimed to investigate GMI's anti-inflammaging properties and its underlying mechanism in diabetic-associated periodontitis (DP). We first simulated DP by culturing human gingival fibroblasts (HGFs) with AGEs and lipopolysaccharides from P. gingivalis (LPS). We then evaluated the impact of GMI on cell proliferation, migration and wound healing. Additionally, we assessed GMI's effects on the components of inflammaging such as reactive oxygen species (ROS) formation, cellular senescence expression, IL-6 and IL-8 secretions, and NF-κB phosphorylation. Next, we explored whether GMI's anti-inflammaging effects are mediated through the Nrf2 pathway by evaluating Nrf2 and HO-1, followed by the assessment of IL-6 and IL-8 post-Nrf2 knockdown. Our findings revealed that GMI treatment suppressed ROS production, cell senescence, IL-6 and IL-8 and NF-κB phosphorylation. Furthermore, GMI upregulated Nrf2/HO-1 expression and its protective effects were reversed when Nrf2 was knocked down. In conclusion, GMI exerts its anti-inflammaging effect via the modulation of the Nrf2/NF-κB signaling axis in DP in vitro, highlighting its potential as an effective adjunct treatment for diabetes-related periodontitis.
Collapse
Affiliation(s)
- Ni-Yu Su
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (N.-Y.S.); (M.Y.N.)
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Min Yee Ng
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (N.-Y.S.); (M.Y.N.)
| | - Heng-Yi Liao
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (N.-Y.S.); (M.Y.N.)
| | - Yi-Wen Liao
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-W.L.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Movina Wu
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (N.-Y.S.); (M.Y.N.)
| | - Shih-Chi Chao
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-W.L.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (N.-Y.S.); (M.Y.N.)
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-W.L.)
| | - Yu-Chao Chang
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (N.-Y.S.); (M.Y.N.)
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| |
Collapse
|
4
|
Zhang A, Zhang C, Zhang Y, Hu T, Cheng R. PANoptosis is a compound death in periodontitis: A systematic review of ex vivo and in vivo studies. Oral Dis 2024; 30:1828-1842. [PMID: 37650218 DOI: 10.1111/odi.14726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/27/2023] [Accepted: 08/15/2023] [Indexed: 09/01/2023]
Abstract
OBJECTIVE The purpose of the systematic review is to verify the presence of PANoptosis in periodontitis based on the published literatures studying cell death in periodontitis. MATERIALS AND METHODS We conducted a comprehensive review of literature studying the types of cell death in vitro cellular experiments, in vivo rodent studies and clinical studies from three major databases: PubMed, Scopus, and Web of Science. The present systematic review was recorded in the PROSPERO database, under registration number CRD42022383456. RESULTS In total, 51 articles were included in this study. Our analysis of in vitro cell models revealed that pyroptosis, necroptosis, and apoptosis could be induced by periodontal pathogens in macrophages, fibroblasts, stem cells, and periodontal ligament cells. Furthermore, three types of cell death were detected in in vivo rodent periodontitis models. Clinical studies on human periodontitis tissue specimens and gingival crevicular fluid (GCF) showed that some key proteins related to pyroptosis, necroptosis, and apoptosis were elevated in periodontitis. CONCLUSIONS Various studies have established similar in vivo and in vitro models with three modes of death detected under the same conditions, revealing complex interactions between different types of cell death pathways in periodontitis and the potential for PANoptosis to occur in periodontitis.
Collapse
Affiliation(s)
- Aopeng Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenchen Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuhan Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Hu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ran Cheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Hu A, Xiao F, Wu W, Xu H, Su J. LincRNA-EPS inhibits caspase-11 and NLRP3 inflammasomes in gingival fibroblasts to alleviate periodontal inflammation. Cell Prolif 2024; 57:e13539. [PMID: 37710420 PMCID: PMC10771112 DOI: 10.1111/cpr.13539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/21/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
To investigate the effects of long intergenic noncoding RNA-erythroid prosurvival (lincRNA-EPS) on periodontal inflammation mediated by inflammasomes and to explore its mechanism. Experimental periodontitis was induced in KO (lincRNA-EPS-/- ) and WT (lincRNA-EPS+/+ ) mice to compare the periodontal bone loss and inflammation by using micro-computed tomography, immunofluorescence staining and haematoxylin and eosin staining. The expression and activation of cysteinyl aspartate-specific proteinase-11 (caspase-11) and NOD-like receptor protein 3 (NLRP3) inflammasomes, as well as nuclear factor-kappa B (NF-κB) activation in mouse gingival fibroblasts (MGFs), were measured by real-time quantitative polymerase chain reaction, Western blotting, enzyme-linked immunosorbent and lactate dehydrogenase assays. MGFs were transfected with overexpression plasmids to assess the biological functions of lincRNA-EPS. RNA pull-down and immunoprecipitation experiments were performed to identify the interacting protein of lincRNA-EPS. LincRNA-EPS-expressing lentivirus was locally administered to inflamed periodontal tissues to evaluate its salvage function in periodontitis. The absence of lincRNA-EPS increased bone loss and expression of myeloperoxidase, interleukin-1α (IL-1α) and IL-1β in the inflammatory periodontium. LincRNA-EPS KO MGFs exhibited increased expression and activation of caspase-11/NLRP3 inflammasome components than WT MGFs under lipopolysaccharide (LPS) stimulation. The expression and activation of these molecules were inhibited in lincRNA-EPS overexpressed MGFs. Mechanistically, lincRNA-EPS directly bound to transactive response DNA-binding protein 43 (TDP43) in the nucleus of MGFs, and TDP43 knockdown exerted a similar inhibitory effect on NF-κB activation and the inflammasomes as lincRNA-EPS overexpression. Locally injecting lincRNA-EPS-expressing lentivirus weakened the periodontal damage. LincRNA-EPS inhibits the LPS-induced production and activation of caspase-11 and NLRP3 inflammasomes by suppressing the activation of the NF-κB signalling pathway via interacting with TDP43, thereby alleviating periodontitis.
Collapse
Affiliation(s)
- Anni Hu
- Department of ProsthodonticsStomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and RegenerationShanghaiChina
| | - Fan Xiao
- Department of ProsthodonticsStomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and RegenerationShanghaiChina
| | - Wenjing Wu
- Department of ProsthodonticsStomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and RegenerationShanghaiChina
| | - Huilin Xu
- Department of ProsthodonticsStomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and RegenerationShanghaiChina
| | - Jiansheng Su
- Department of ProsthodonticsStomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and RegenerationShanghaiChina
| |
Collapse
|
6
|
Teawcharoensopa C, Srisuwan T. The potential use of ascorbic acid to recover the cellular senescence of lipopolysaccharide-induced human apical papilla cells: an in vitro study. Clin Oral Investig 2023; 28:49. [PMID: 38153550 DOI: 10.1007/s00784-023-05455-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
OBJECTIVES To examine the effect of lipopolysaccharide (LPS) on cellular senescence induction of human apical papilla cells (hAPCs) and evaluate the potential use of 50 μg/ml ascorbic acid to recover cellular senescence and regenerative functions. MATERIALS AND METHODS hAPCs were treated with LPS at 1 and 10 μg/ml either with or without 50 μg/ml ascorbic acid for 48 h. The cellular senescence biomarkers were analyzed by senescence-associated β-galactosidase (SA-β-gal) staining and senescence-related gene expression, p16 and p21. Cell migration, at 12 h and 24 h, was evaluated using a scratch wound assay. Mineralization potential was assessed at 21 days using Alizarin red S staining and dentine sialophosphoprotein (DSPP) and bone sialoprotein (BSP) gene expression. RESULTS 1 μg/ml and 10 μg/ml LPS stimulation for 48 h induced cellular senescence, as shown by remarkable SA-β-gal staining and p16 and p21 gene expression. The percentage of wound closure and mineralized formation was reduced. The co-incubation with ascorbic acid significantly down-regulated the level of SA-β-gal staining. The reduction of senescence-associated gene expressions was observed. Ascorbic acid improved cell migration, mineralized nodule formation, and the expression of DSPP and BSP genes in LPS-treated hAPCs. CONCLUSIONS LPS significantly promoted cellular senescence on hAPCs and diminished the cell function capacity. Co-presence of ascorbic acid could impede cellular senescence and possibly improve the regenerative capacity of LPS-induced senescent hAPCs in vitro. CLINICAL RELEVANCE The data support the in vitro potential benefit of ascorbic acid on cellular senescence recovery of apical papilla cells.
Collapse
Affiliation(s)
- Chananporn Teawcharoensopa
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, TH, Thailand
- Sikhoraphum Hospital Dental Department, Surin, TH, Thailand
| | - Tanida Srisuwan
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, TH, Thailand.
| |
Collapse
|
7
|
Patil S, Yadalam PK, Hosmani J, Khan ZA, Shankar VG, Shaukat L, Khan SS, Awan KH. Modulation of oral cancer and periodontitis using chemotherapeutic agents - A narrative review. Dis Mon 2023; 69:101348. [PMID: 35341589 DOI: 10.1016/j.disamonth.2022.101348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Periodontitis, an inflammatory condition, is linked to a higher risk of developing oral cancer. Periodontitis may be a precipitating factor for tumorigenesis and the aggressiveness of specific cancer variants. Although genetics is considered the primary etiologic factor for the development of most cancers, many factors have come to be recognized in the initiation and progression of oral cancer. Consecutively, it is suggestive that periodontitis and oral cancer are distinct disease entities but share common pathogenic mechanisms. Oxidative stress and epigenetic mechanisms are among the most researched mechanisms responsible for initiating apoptotic mechanisms implicated in periodontitis and oral cancer. Current research aims to formulate therapeutic agents to intercede in these mechanisms via host modulation therapy and epigenetic therapy. These advances can revolutionize the treatment of periodontitis and oral cancer. This review aims to shed light on the common pathogenic mechanisms of these diseases and the various host modulation agents that could be beneficial in their treatment.
Collapse
Affiliation(s)
- Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Pradeep Kumar Yadalam
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha University, Chennai 600 077, India
| | - Jagadish Hosmani
- Oral Pathology Division, Department of Dental Sciences, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Zafar Ali Khan
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jouf University, Sakaka, Saudi Arabia
| | | | - Lubna Shaukat
- Dow International Dental College, Dow University of Health Sciences, Karachi, Pakistan
| | - Samar Saeed Khan
- Department of Maxillofacial Surgery & Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia
| | - Kamran Habib Awan
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, Utah, United States.
| |
Collapse
|
8
|
Blancas-Luciano BE, Becker-Fauser I, Zamora-Chimal J, Delgado-Domínguez J, Ruíz-Remigio A, Leyva-Huerta ER, Portilla-Robertson J, Fernández-Presas AM. Antimicrobial and anti-inflammatory activity of Cystatin C on human gingival fibroblast incubated with Porphyromonas gingivalis. PeerJ 2022; 10:e14232. [PMID: 36312752 PMCID: PMC9615962 DOI: 10.7717/peerj.14232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/22/2022] [Indexed: 01/24/2023] Open
Abstract
Background Periodontal disease is considered one of the most prevalent chronic infectious diseases, often leading to the disruption of tooth-supporting tissues, including alveolar bone, causing tooth mobility and loss. Porphyromonas gingivalis is considered the major etiological agent of this disease, having a plethora of virulence factors, including, lipopolysaccharides (LPS), hemolysins, and proteinases. Antimicrobial peptides are one of the main components of the innate immune response that inhibit the growth of P. gingivalis. The aim of this study was to analyze the antimicrobial activity of cystatin C and to assess the effect on the inflammatory and anti-inflammatory cytokines, the production of reactive oxygen species, and in the release of nitric oxide by human gingival fibroblasts incubated with P. gingivalis in the presence and absence of cystatin C. Methods P. gingivalis ATCC 33277 was exposed to cystatin C for 24h and co-cultured with human gingival fibroblasts (HGFs) ATCC CRL-2014. The effect of cystatin on growth of P. gingivalis and HGFs was evaluated. Pro-inflammatory (TNFα, IL-1β) and anti-inflammatory (IL-10) cytokines were determined by ELISA in the supernatants of HGFs incubated with P. gingivalis exposed to cystatin C. Additionally, nitrites and reactive oxygen species (ROS) production were evaluated. Results Cystatin Cinhibited the growth of P. gingivalis without affecting HGFs. Incubation of HGFs with P. gingivalis led to a significant increase of TNF-α and IL-1β. In contrast, HGFs incubated with P. gingivalis exposed to cystatin C showed a decreased production of both cytokines, whereas IL-10 was enhanced. Incubation of HGFs with P. gingivalis led to an increase of nitric oxide (NO) and ROS production, which was reduced in the presence of the peptide. Conclusions Cystatin C inhibits the growth of P. gingivalis and decreases the inflammatory cytokines, ROS, and NO production during infection of HGFs with P. gingivalis. Knowledge on the antimicrobial and immunomodulatory properties of cystatin C could aid in the design of new therapeutic approaches to facilitate the elimination of this bacterium to improve the treatment of periodontal disease.
Collapse
Affiliation(s)
| | - Ingeborg Becker-Fauser
- Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, Mexico City, México
| | - Jaime Zamora-Chimal
- Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, Mexico City, México
| | - José Delgado-Domínguez
- Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, Mexico City, México
| | - Adriana Ruíz-Remigio
- Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, Mexico City, México
| | - Elba Rosa Leyva-Huerta
- Departmento de Medicina Oral y Patología, División de Posgrado, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City, México
| | - Javier Portilla-Robertson
- Departmento de Medicina Oral y Patología, División de Posgrado, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City, México
| | - Ana María Fernández-Presas
- Departamento de Microbiología y Parasitología, Universidad Nacional Autónoma de México, Mexico City, México,Centro de investigación en Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Mexico City, México
| |
Collapse
|
9
|
Minabian S, Soleimani S. S, Torabi M, Mohammadi M, Ranjbar H. Evaluation of P53 protein expression in gingival tissues of patients with chronic periodontitis by immunohistochemistry methods. Clin Exp Dent Res 2022; 8:1348-1353. [PMID: 36263737 PMCID: PMC9760160 DOI: 10.1002/cre2.668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE Periodontitis is one of the most important periodontal diseases that can be affected by many factors. Although the mechanism of periodontitis development is not yet fully understood, previous studies suggest that apoptosis may be one of the pathological factors that can affect the process of the disease by destroying old and damaged cells. Low expression of P53 protein is one of the reasons for delaying cell death that allows damaged cells to survive longer and gives more time for the chance of mutations and pathogenesis. Because of the important role of P53 in gingival cells of patients with chronic periodontitis, the objective of our study is to evaluate the P53 protein expression in gingival tissues of patients with chronic periodontitis by immunohistochemistry methods. MATERIALS AND METHODS In this cross-sectional study, 35 patients with severe to moderate chronic periodontitis (loss of attachment ≥3 mm, probing depth ≥5 mm) with no treatment and 25 people who were healthy for periodontal problems were examined. Gingival biopsies from marginal and attached gingiva were obtained, prepared, and mounted on slides. Then, the expression of P53 on each slide was evaluated by optic microscopy after using P53 antibodies and staining with hematoxylin-eosin (immunohistochemistry method). Data were analyzed using independent t-test, Mann-Whitney U-test, and Spearman correlation test using SPSS Statistics version 18.0. RESULTS The mean ages of participants in the case and control groups were 37.58 and 32.09, respectively. Our results showed that the expression of P53 was not significant in periodontitis compared to the control group (p > .05). Also, gender could not affect the expression of P53 in both groups (p > .05), and there was no significant relationship between age and P53 gene incidence. CONCLUSION Chronic periodontitis has no significant effect on P53 expression, so changes in apoptosis due to P53 expression in periodontitis are not significant.
Collapse
Affiliation(s)
- Samaneh Minabian
- Oral and Dental Diseases Research CenterKerman University of Medical SciencesKermanIran
| | - Shima Soleimani S.
- Oral and Dental Diseases Research CenterKerman University of Medical SciencesKermanIran
| | - Molook Torabi
- Oral and Dental Diseases Research CenterKerman University of Medical SciencesKermanIran,Oral and Maxillofacial Pathology Department, School of DentistryKerman University of Medical SciencesKermanIran
| | - Mohammad Mohammadi
- Oral and Dental Diseases Research CenterKerman University of Medical SciencesKermanIran,Periodontics Department, School of DentistryKerman University of Medical SciencesKermanIran
| | - Hadi Ranjbar
- Mental Health Research Center, Psychological Health Research InstituteIran University of Medical SciencesTehranIran
| |
Collapse
|
10
|
Chen L, Zhao T, Liu M, Chen Q, Yang Y, Zhang J, Wang S, Zhu X, Zhang H, Huang Q, Ai K. Ultra-small molybdenum-based nanodots as an antioxidant platform for effective treatment of periodontal disease. Front Bioeng Biotechnol 2022; 10:1042010. [PMID: 36338110 PMCID: PMC9632960 DOI: 10.3389/fbioe.2022.1042010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/15/2022] Open
Abstract
Periodontal disease (PD) is a local inflammatory disease with high morbidity, manifesting tissue destruction results from inflammation of the host immune response to bacterial antigens and irritants. The supportive function of connective tissue and skeletal tissue can be jeopardized without prompt and effective intervention, representing the major cause of tooth loss. However, traditional treatments exhibited great limitations, such as low efficacies, causing serious side effects and recurrent inflammatory episodes. As a major defense mechanism, reactive oxygen species (ROS) play important roles in the pathological progression of PD. Antioxidant therapy is widely believed to be an effective strategy for ROS-triggered diseases, including oxidative stress-induced PD. Most antioxidants can only scavenge one or a few limited kinds of ROS and cannot handle all kinds. In addition, current antioxidant nanomaterials present limitations associated with toxicity, low stability, and poor biocompatibility. To this end, we develop ultra-small molybdenum-based nanodots (MoNDs) with strong ROS in oxidative stress-induced PD. To the best of our knowledge, this is the first time that MoNDs have been used for PD. In the present study, MoNDs have shown extremely good therapeutic effects as ROS scavengers. Spectroscopic and in vitro experiments provided strong evidence for the roles of MoNDs in eliminating multiple ROS and inhibiting ROS-induced inflammatory responses. In addition, the mouse model of PD was established and demonstrated the feasibility of MoNDs as powerful antioxidants. It can alleviate periodontal inflammation by scavenging multiple ROS without obvious side effects and exhibit good biocompatibility. Thus, this newly developed nanomedicine is effective in scavenging ROS and inhibiting M1 phenotypic polarization, which provides promising candidates for the treatment of PD.
Collapse
Affiliation(s)
- Li Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Tianjiao Zhao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Min Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Qiaohui Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yunrong Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jinping Zhang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shuya Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xiaoyu Zhu
- Xiangya School of Stomatology, Central South University, Changsha, China
| | - Huanan Zhang
- Xiangya School of Stomatology, Central South University, Changsha, China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Qiong Huang,
| | - Kelong Ai
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| |
Collapse
|
11
|
Cytotoxicity and Efficacy in Debris and Smear Layer Removal of HOCl-Based Irrigating Solution: An In Vitro Study. J Funct Biomater 2022; 13:jfb13030095. [PMID: 35893463 PMCID: PMC9326542 DOI: 10.3390/jfb13030095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 12/10/2022] Open
Abstract
In the present study we evaluated the cytotoxicity of super-oxidized water on human gingival fibroblasts and its efficacy in debris and smear layer removal from root canal walls. Cultured gingival fibroblasts were exposed to super-oxidized water (Sterilox), which was diluted in Iscove’s modified Dulbecco’s medium (IMDM) at 30%, 40%, 50%, 60% and 70% concentrations. The control group was maintained in IMDM. The cell viability was evaluated by means of an MTT assay after incubation periods of 1 h, 2 h, 24 h and 48 h. Pathological cellular changes were also observed under fluorescence and phase contrast microscopes. The efficacy in debris and smear layer removal was evaluated in comparison to the conventional application of sodium hypochlorite (NaOCl) and ethylenediaminetetraacetic acid (EDTA). Forty maxillary premolars were randomly divided into two equal groups (n = 20) and shaped with ProTaper NEXT rotary instruments using Sterilox or NaOCl/EDTA for irrigation. Afterwards, roots were split longitudinally and examined under a scanning electron microscope. The results revealed that super-oxidized water and sterile distilled water have acceptable biological properties for endodontic applications at concentrations up to 50% (p > 0.05). Moreover, super-oxidized water is equally effective in debris and smear layer removal as compared to NaOCl/EDTA (p > 0.05).
Collapse
|
12
|
Exploring the pharmacological components and effective mechanism of Mori Folium against periodontitis using network pharmacology and molecular docking. Arch Oral Biol 2022; 139:105391. [DOI: 10.1016/j.archoralbio.2022.105391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 12/25/2022]
|
13
|
Weber F, Quach HQ, Reiersen M, Sarraj SY, Bakir DN, Jankowski VA, Nilsson PH, Tiainen H. Characterization of the foreign body response of titanium implants modified with polyphenolic coatings. J Biomed Mater Res A 2022; 110:1341-1355. [PMID: 35218127 PMCID: PMC9305744 DOI: 10.1002/jbm.a.37377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/28/2022]
Abstract
The foreign body response is dictating the outcome of wound healing around any implanted materials. Patients who suffer from chronic inflammatory diseases and impaired wound healing often face a higher risk for implant failure. Therefore, functional surfaces need to be developed to improve tissue integration. For this purpose, we evaluated the impact of surface coatings made of antioxidant polyphenolic molecules tannic acid (TA) and pyrogallol (PG) on the host response in human blood. Our results showed that although the polyphenolic surface modifications impact the initial blood protein adsorption compared to Ti, the complement and coagulation systems are triggered. Despite complement activation, monocytes and granulocytes remained inactivated, which was manifested in a low pro-inflammatory cytokine expression. Under oxidative stress, both coatings were able to reduce intracellular reactive oxygen species in human gingival fibroblasts (hGFs). However, no anti-inflammatory effects of polyphenolic coatings could be verified in hGFs stimulated with lipopolysaccharide and IL-1β. Although polyphenols reportedly inhibit the NF-κB signaling pathway, phosphorylation of NF-κB p65 was observed. In conclusion, our results indicated that TA and PG coatings improved the hemocompatibility of titanium surfaces and have the potential to reduce oxidative stress during wound healing.
Collapse
Affiliation(s)
- Florian Weber
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Huy Quang Quach
- Department of Immunology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Mathias Reiersen
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Sadaf Yosef Sarraj
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Dyala Nidal Bakir
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | | | - Per H Nilsson
- Department of Immunology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Hanna Tiainen
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
14
|
Sedghi LM, Bacino M, Kapila YL. Periodontal Disease: The Good, The Bad, and The Unknown. Front Cell Infect Microbiol 2021; 11:766944. [PMID: 34950607 PMCID: PMC8688827 DOI: 10.3389/fcimb.2021.766944] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/11/2021] [Indexed: 01/08/2023] Open
Abstract
Periodontal disease is classically characterized by progressive destruction of the soft and hard tissues of the periodontal complex, mediated by an interplay between dysbiotic microbial communities and aberrant immune responses within gingival and periodontal tissues. Putative periodontal pathogens are enriched as the resident oral microbiota becomes dysbiotic and inflammatory responses evoke tissue destruction, thus inducing an unremitting positive feedback loop of proteolysis, inflammation, and enrichment for periodontal pathogens. Keystone microbial pathogens and sustained gingival inflammation are critical to periodontal disease progression. However, recent studies have revealed the importance of previously unidentified microbes involved in disease progression, including various viruses, phages and bacterial species. Moreover, newly identified immunological and genetic mechanisms, as well as environmental host factors, including diet and lifestyle, have been discerned in recent years as further contributory factors in periodontitis. These factors have collectively expanded the established narrative of periodontal disease progression. In line with this, new ideologies related to maintaining periodontal health and treating existing disease have been explored, such as the application of oral probiotics, to limit and attenuate disease progression. The role of systemic host pathologies, such as autoimmune disorders and diabetes, in periodontal disease pathogenesis has been well noted. Recent studies have additionally identified the reciprocated importance of periodontal disease in potentiating systemic disease states at distal sites, such as in Alzheimer's disease, inflammatory bowel diseases, and oral cancer, further highlighting the importance of the oral cavity in systemic health. Here we review long-standing knowledge of periodontal disease progression while integrating novel research concepts that have broadened our understanding of periodontal health and disease. Further, we delve into innovative hypotheses that may evolve to address significant gaps in the foundational knowledge of periodontal disease.
Collapse
Affiliation(s)
- Lea M. Sedghi
- School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
| | - Margot Bacino
- School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
| | - Yvonne Lorraine Kapila
- School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
- Department of Periodontology, School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
15
|
Koidou VP, Hagi-Pavli E, Cross S, Nibali L, Donos N. Molecular profiling of intrabony defects' gingival crevicular fluid. J Periodontal Res 2021; 57:152-161. [PMID: 34788472 DOI: 10.1111/jre.12948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 12/29/2022]
Abstract
AIM To profile, for the first time, the gingival crevicular fluid (GCF) of intrabony defects against a wide array of inflammatory and regenerative markers. MATERIALS AND METHODS Twenty-one patients contributed one intrabony defect and one periodontally healthy site. Clinical and radiographic measures were obtained. GCF samples were analyzed with multiplex bead immunoassays over 27 markers previously identified by our group. Comparisons were performed using Wilcoxon matched-pairs signed-ranks tests, using a Bonferroni corrected α = 0.05/27 = 0.0019. RESULTS Intrabony defect sites presented significantly increased GCF volume and disease-associated clinical and radiographic characteristics (p < .05). Intrabony defect sites presented significantly increased IL-1α, IL-1β, IL-6, IFN-γ, and MMP-8 levels compared with periodontally healthy sites (p < .0019). For regeneration markers, significantly higher FGF basic and VEGF levels were observed (p < .0019). Notably, traits of cell senescence were identified for the first time in the GCF. CONCLUSIONS The differentiation of intrabony defects from periodontally healthy control sites can be based on clinical and radiographic measures and on a differentiated GCF profile that is site-specific. Alongside catabolic processes, through significant up-regulation of inflammation and connective tissue remodeling, unique molecular characteristics of intrabony defects may render them a microenvironment amenable to regeneration. Traits of the senescence-associated secretory phenotype may suggest the existence of senescent cells during periodontal inflammation in intrabony defects.
Collapse
Affiliation(s)
- Vasiliki P Koidou
- Centre for Oral Clinical Research, Queen Mary University of London Barts and The London School of Medicine and Dentistry, London, UK.,Centre for Immunobiology & Regenerative Medicine, Queen Mary University of London Barts and The London School of Medicine and Dentistry, London, UK
| | - Eleni Hagi-Pavli
- Centre for Immunobiology & Regenerative Medicine, Queen Mary University of London Barts and The London School of Medicine and Dentistry, London, UK
| | - Samantha Cross
- Centre for Clinical Trials and Methodology, Queen Mary University of London Barts and The London School of Medicine and Dentistry, London, UK
| | - Luigi Nibali
- Centre for Oral Clinical Research, Queen Mary University of London Barts and The London School of Medicine and Dentistry, London, UK.,Centre for Host Microbiome Interactions, King's College London, London, UK
| | - Nikolaos Donos
- Centre for Oral Clinical Research, Queen Mary University of London Barts and The London School of Medicine and Dentistry, London, UK.,Centre for Immunobiology & Regenerative Medicine, Queen Mary University of London Barts and The London School of Medicine and Dentistry, London, UK
| |
Collapse
|
16
|
Li L, Li J, Wang Y, Liu X, Li S, Wu Y, Tang W, Qiu Y. Resveratrol prevents inflammation and oxidative stress response in LPS-induced human gingival fibroblasts by targeting the PI3K/AKT and Wnt/β-catenin signaling pathways. Genet Mol Biol 2021; 44:e20200349. [PMID: 34227646 PMCID: PMC8258621 DOI: 10.1590/1678-4685-gmb-2020-0349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 04/22/2021] [Indexed: 11/22/2022] Open
Abstract
This study aimed to elucidate the anti-inflammatory and antioxidant properties of resveratrol (RSV) in human gingival fibroblasts (HGFs) following stimulation by P. gingivalis lipopolysaccharide (LPS). The levels of the inflammatory cytokines IL-1β, IL-6, IL-8 and TNFα, the activity of the antioxidant enzymes SOD and GSH-Px, and the levels of MDA, were evaluated by ELISA. It was observed that the expression of IL-1β, IL-6, IL-8 and TNFα in LPS-induced HGFs was significantly downregulated by RSV in a dose-dependent manner. RSV also partly increased oxidative stress (OS)-related factors, including SOD and GSH-Px, which was accompanied by a decrease in MDA production, although the results were not statistically significant. Additionally, RSV-induced deactivation of the PI3K/AKT and Wnt/β-catenin pathways in LPS-induced HGFs was observed by western blot analysis. Subsequently, it was demonstrated treatment with PI3K/AKT pathway inhibitor (LY294002) or Wnt/β-catenin pathway inhibitor (Dickkopf-1, DKK-1) could further enhance the anti-inflammatory and antioxidant effects of RSV by downregulating the expression of IL-1β, IL-6, IL-8 and TNFα, and the production of MDA, and increasing the activity of SOD and GSH-Px in LPS-induced HGFs. These results suggested RSV attenuated the inflammation and OS injury of P. gingivalis LPS-treated HGFs by deactivating the PI3K/AKT and Wnt/β-catenin signaling pathways.
Collapse
Affiliation(s)
- Lihua Li
- North Sichuan Medical College, Department of Dentistry, Nanchong, Sichuan, P.R. China
| | - Junxiong Li
- North Sichuan Medical College, Department of Dentistry, Nanchong, Sichuan, P.R. China
| | - Yujiao Wang
- North Sichuan Medical College, Department of Dentistry, Nanchong, Sichuan, P.R. China
| | - Xin Liu
- University of Chinese Academy of Sciences, Chongqing Savaid Stomatology Hospital, Department of General Dentistry, Chongqing, P.R. China
| | - Siyu Li
- North Sichuan Medical College, Department of Dentistry, Nanchong, Sichuan, P.R. China
| | - Yan Wu
- North Sichuan Medical College, Department of Dentistry, Nanchong, Sichuan, P.R. China
| | - Wanrong Tang
- North Sichuan Medical College, Department of Dentistry, Nanchong, Sichuan, P.R. China
| | - Ya Qiu
- Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, P.R. China
| |
Collapse
|
17
|
The correlation of altitude with gingival status among adolescents in western China: a cross-sectional study. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:3151-3167. [PMID: 33528681 DOI: 10.1007/s10653-021-00812-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 01/07/2021] [Indexed: 02/05/2023]
Abstract
Periodontal disease is common in Chinese adolescents. There is little information about the effect of different altitudes on gingival health. This study aimed to investigate the gingival status at different altitudes and to identify relative factors that affect adolescents' gingival status. A total of 1033 adolescents aged 12-14 years were included in this cross-sectional study in Ganzi (plateau, 1400 m, 2560 m, 3300 m) and Suining (plain, 300 m). Gingival status was assessed by the presence of gingival bleeding on probing (BOP) and dental calculus (DC). Demographic variables, socioeconomic status, dairy habits and oral health-related knowledge, attitudes and behaviors were obtained via questionnaire. Univariate and multivariate binary logistic regression analyses were performed to identify potential relative factors. A total of 64.09% and 77.15% of adolescents had BOP and DC, respectively. The prevalence rates of BOP and DC were higher in the plateau than the plain (P < 0.05). After adjusting for all other factors and interaction terms, residence altitudes of 2560 m [300 m as reference: P < 0.001, odds ratio (OR) = 4.072] and 3300 m (300 m as reference: P = 0.002, OR = 4.053) were significant relative factors of BOP, and an altitude of 2560 m (300 m as reference: P = 0.001, OR = 3.866, 1400 m as reference: P = 0.001, OR = 3.944) was an important relative factor of DC. Gingival bleeding and calculus deposits were common at different altitudes. High altitude was a significant relative factor of gingival bleeding and calculus deposits.
Collapse
|
18
|
Jariyamana N, Chuveera P, Dewi A, Leelapornpisid W, Ittichaicharoen J, Chattipakorn S, Srisuwan T. Effects of N-acetyl cysteine on mitochondrial ROS, mitochondrial dynamics, and inflammation on lipopolysaccharide-treated human apical papilla cells. Clin Oral Investig 2021; 25:3919-3928. [PMID: 33404763 DOI: 10.1007/s00784-020-03721-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES N-Acetyl cysteine (NAC), a well-known antioxidant molecule, has been used to modulate oxidative stress and inflammation. However, no studies have examined the effect of NAC in regenerative endodontic procedures (REPs). Therefore, the aim of this study was to investigate the effects of NAC on cell survival, mitochondrial reactive oxygen species (mtROS) production, and inflammatory and mitochondria-related gene expression on lipopolysaccharide (LPS)-treated apical papilla cells (APCs). MATERIALS AND METHODS To assess the NAC concentration, 5 and 10 mM NAC were administered to LPS-treated APCs. Cell proliferation was measured at 24, 48, and 72 h by using AlamarBlue® assay. The 5-mM concentration was further analyzed using different treatment durations: 10 min, 24 h, and the entire study period. The mtROS production was quantified using MitoSOX™ Red and MitoTracker™ Green. RT-PCR was used to detect the expression of IL-6 and TNF-α inflammatory genes and mitochondrial morphology-related genes (Mfn-2/Drp-1 and Bcl-2/Bax) at 6 and 24 h. The statistical significance level was set at 0.05. RESULTS Five-millimolar NAC promoted the highest LPS-treated APC proliferation. The use of 24-h NAC stimulated cell proliferation, whereas the entire-period NAC application (> 48 h) significantly reduced the cell number. The mtROS levels were slightly altered after NAC induction. Ten-minute NAC treatment downregulated the IL-6 and TNF-α expression, whereas the expression of Bcl-2/Bax and Mfn-2/Drp-1 ratios was upregulated at 6 h. CONCLUSIONS Under the LPS-induced inflammatory condition, NAC stimulated APC survival and decreased inflammation. Ten-minute NAC treatment was sufficient to reduce the level of inflammation and maintain the mitochondrial dynamics. CLINICAL RELEVANCE Ten-minute NAC application is sufficient to reduce the level of inflammation and maintain the mitochondrial dynamics. Therefore, NAC may be considered as a potential adjunctive irrigation solution in REPs.
Collapse
Affiliation(s)
- Nutcha Jariyamana
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Patchanee Chuveera
- Department of Family and Community Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Anat Dewi
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Warat Leelapornpisid
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jitjiroj Ittichaicharoen
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn Chattipakorn
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Tanida Srisuwan
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
19
|
Aquino-Martinez R, Khosla S, Farr JN, Monroe DG. Periodontal Disease and Senescent Cells: New Players for an Old Oral Health Problem? Int J Mol Sci 2020; 21:E7441. [PMID: 33050175 PMCID: PMC7587987 DOI: 10.3390/ijms21207441] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 12/19/2022] Open
Abstract
The recent identification of senescent cells in periodontal tissues has the potential to provide new insights into the underlying mechanisms of periodontal disease etiology. DNA damage-driven senescence is perhaps one of the most underappreciated delayed consequences of persistent Gram-negative bacterial infection and inflammation. Although the host immune response rapidly protects against bacterial invasion, oxidative stress generated during inflammation can indirectly deteriorate periodontal tissues through the damage to vital cell macromolecules, including DNA. What happens to those healthy cells that reside in this harmful environment? Emerging evidence indicates that cells that survive irreparable genomic damage undergo cellular senescence, a crucial intermediate mechanism connecting DNA damage and the immune response. In this review, we hypothesize that sustained Gram-negative bacterial challenge, chronic inflammation itself, and the constant renewal of damaged tissues create a permissive environment for the abnormal accumulation of senescent cells. Based on emerging data we propose a model in which the dysfunctional presence of senescent cells may aggravate the initial immune reaction against pathogens. Further understanding of the role of senescent cells in periodontal disease pathogenesis may have clinical implications by providing more sophisticated therapeutic strategies to combat tissue destruction.
Collapse
Affiliation(s)
- Ruben Aquino-Martinez
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; (S.K.); (J.N.F.); (D.G.M.)
| | - Sundeep Khosla
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; (S.K.); (J.N.F.); (D.G.M.)
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Joshua N. Farr
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; (S.K.); (J.N.F.); (D.G.M.)
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - David G. Monroe
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; (S.K.); (J.N.F.); (D.G.M.)
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
20
|
Janjić K, Schädl B, Andrukhov O, Agis H. The response of gingiva monolayer, spheroid, and ex vivo tissue cultures to collagen membranes and bone substitute. J Tissue Eng Regen Med 2020; 14:1307-1317. [PMID: 32652865 PMCID: PMC7539981 DOI: 10.1002/term.3102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 06/26/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022]
Abstract
Collagen membranes and bone substitute are popular biomaterials in guided tissue regeneration for treatment of traumatized or diseased periodontal tissue. Development of these biomaterials starts in monolayer cell culture, failing to reflect in vivo tissue organization. Spheroid cultures potentially mimic in vivo tissues in structure and functionality. This study aims to compare gingiva cell (GC) monolayers and spheroids to ex vivo gingiva. Human GC monolayers, spheroids and gingiva ex vivo tissues were cultured on plastic surfaces, collagen membranes or bone substitute. Hematoxylin-eosin (HE) staining, immunohistochemistry for KI67 and caspase 3 (CASP3), resazurin-based toxicity assays, quantitative polymerase chain reaction for collagen I (COL1A1), vascular endothelial growth factor (VEGF), angiogenin (ANG), interleukin (IL)6 and IL8 and ELISA for COL1A1, VEGF, ANG, IL6 and IL8 were performed in all cultures. Morphology was different in all culture set-ups. Staining of KI67 was positive in monolayers and staining of CASP3 was positive in spheroids. All culture set-ups were viable. COL1A1 production was modulated in monolayers and ex vivo tissues at mRNA levels, VEGF in monolayers and ex vivo tissues at mRNA levels and in spheroids at protein levels, ANG in spheroids at mRNA levels and in monolayers and spheroids at protein levels, IL6 in monolayers and spheroids at mRNA levels and in spheroids and ex vivo tissues at protein levels and IL8 in monolayers and ex vivo tissues at mRNA levels. Modulations were surface-dependent. In conclusion, each culture model is structurally and functionally different. Neither GC monolayers nor spheroids mimicked gingiva ex vivo tissue in all measured aspects.
Collapse
Affiliation(s)
- Klara Janjić
- Department of Conservative Dentistry and Periodontology, University Clinic of DentistryMedical University of ViennaViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Barbara Schädl
- Department of Conservative Dentistry and Periodontology, University Clinic of DentistryMedical University of ViennaViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
- AUVA Research CenterLudwig Boltzmann Institute for Experimental and Clinical TraumatologyViennaAustria
| | - Oleh Andrukhov
- Department of Conservative Dentistry and Periodontology, University Clinic of DentistryMedical University of ViennaViennaAustria
| | - Hermann Agis
- Department of Conservative Dentistry and Periodontology, University Clinic of DentistryMedical University of ViennaViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| |
Collapse
|
21
|
Kang Y, Yang R, Wei Z, Zhu D, Tang T, Zhu L, Hu X, Zha G. Phenytoin sodium-ameliorated gingival fibroblast aging is associated with autophagy. J Periodontal Res 2020; 55:642-650. [PMID: 32281104 DOI: 10.1111/jre.12750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/01/2020] [Accepted: 03/15/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND OBJECTIVE Human gingival fibrolasts aging is an important cause of periodontal disease. Phenytoin sodium (phenytoin) has a side effect of gingival hyperplasia and an effect on the autophagy progress. This study investigated whether the effect of phenytoin on aging gingival fibroblast is related to the autophagy pathway. MATERIAL AND METHODS The aging model of gingival fibroblast cell line HGF-1 was induced by hydrogen peroxide (H2 O2 ), and the treatment of phenytoin and 3-methyladenine (3-MA) was performed simultaneously. Cell viability, cell cycle, and intracellular calcium ion were measured by flow cytometry. Changes in expression of basic fibroblast growth factor (bFGF), P16INK4A , P21cip1 , and bFGF, P16INK4A , P21cip1 , LC3II, p62, and Beclin were tested by using reverse transcription polymerase chain reaction, western blot, and immunofluorescence staining. RESULTS The results showed that aging HGF-1 proliferation was inhibited by H2 O2 , gene, protein expression of bFGF, P16INK4A , and P21cip1 were decreased, autophagy-related proteins LC3II, p62, and Becline were decreased, and the proportion of G0/G1 phase and intracellular calcium ion of cell cycle was increased. Phenytoin treatment could recovery above changes, but the effect of phenytoin could be blocked by 3-MA. CONCLUSION We propose that phenytoin alleviates the aging of gingival fibroblasts induced by H2 O2 . This condition is related to the enhancement of autophagy pathway.
Collapse
Affiliation(s)
- Yi Kang
- Laboratory of Stomatology, First-class Subjects of Zhejiang Province, College of Medicine and Health, Lishui University, Lishui, China
| | - Ruhui Yang
- Laboratory of Stomatology, First-class Subjects of Zhejiang Province, College of Medicine and Health, Lishui University, Lishui, China.,Department of Pharmacology, College of Medicine and Health, Lishui University, Lishui, China
| | - Zhe Wei
- Department of Pharmacology, College of Medicine and Health, Lishui University, Lishui, China
| | - Daqun Zhu
- Laboratory of Stomatology, First-class Subjects of Zhejiang Province, College of Medicine and Health, Lishui University, Lishui, China
| | - Tingbing Tang
- Department of Anatomy, College of Medicine and Health, Lishui University, Lishui, China
| | - Licheng Zhu
- Department of Pharmacology, College of Medicine and Health, Lishui University, Lishui, China
| | - Xiaoxia Hu
- Department of Pharmacology, College of Medicine and Health, Lishui University, Lishui, China
| | - Guangyu Zha
- Laboratory of Stomatology, First-class Subjects of Zhejiang Province, College of Medicine and Health, Lishui University, Lishui, China
| |
Collapse
|
22
|
Mlcochova P, Winstone H, Zuliani-Alvarez L, Gupta RK. TLR4-Mediated Pathway Triggers Interferon-Independent G0 Arrest and Antiviral SAMHD1 Activity in Macrophages. Cell Rep 2020; 30:3972-3980.e5. [PMID: 32209460 PMCID: PMC7109521 DOI: 10.1016/j.celrep.2020.03.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/09/2020] [Accepted: 02/28/2020] [Indexed: 12/20/2022] Open
Abstract
Macrophages exist predominantly in two distinct states, G0 and a G1-like state that is accompanied by phosphorylation of SAMHD1 at T592. Here, we demonstrate that Toll-like receptor 4 (TLR4) activation can potently induce G0 arrest and SAMHD1 antiretroviral activity by an interferon (IFN)-independent pathway. This pathway requires TLR4 engagement with TRIF, but not involvement of TBK1 or IRF3. Exclusive Myd88 activators are unable to trigger G0 arrest or SAMHD1 dephosphorylation, demonstrating this arrest is also Myd88/nuclear factor κB (NF-κB) independent. The G0 arrest is accompanied by p21 upregulation and CDK1 depletion, consistent with the observed SAMHD1 dephosphorylation at T592. Furthermore, we show by SAMHD1 knockdown that the TLR4-activated pathway potently blocks HIV-1 infection in macrophages specifically via SAMHD1. Together, these data demonstrate that macrophages can mobilize an intrinsic cell arrest and anti-viral state by activating TLR4 prior to IFN secretion, thereby highlighting the importance of cell-cycle regulation as a response to pathogen-associated danger signals in macrophages.
Collapse
Affiliation(s)
- Petra Mlcochova
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | | | - Ravindra K Gupta
- Department of Medicine, University of Cambridge, Cambridge, UK; Africa Health Research Institute, Durban, KwaZulu Natal, South Africa.
| |
Collapse
|
23
|
Ibler AEM, ElGhazaly M, Naylor KL, Bulgakova NA, F El-Khamisy S, Humphreys D. Typhoid toxin exhausts the RPA response to DNA replication stress driving senescence and Salmonella infection. Nat Commun 2019; 10:4040. [PMID: 31492859 PMCID: PMC6731267 DOI: 10.1038/s41467-019-12064-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 08/15/2019] [Indexed: 01/10/2023] Open
Abstract
Salmonella Typhi activates the host DNA damage response through the typhoid toxin, facilitating typhoid symptoms and chronic infections. Here we reveal a non-canonical DNA damage response, which we call RING (response induced by a genotoxin), characterized by accumulation of phosphorylated histone H2AX (γH2AX) at the nuclear periphery. RING is the result of persistent DNA damage mediated by toxin nuclease activity and is characterized by hyperphosphorylation of RPA, a sensor of single-stranded DNA (ssDNA) and DNA replication stress. The toxin overloads the RPA pathway with ssDNA substrate, causing RPA exhaustion and senescence. Senescence is also induced by canonical γΗ2ΑΧ foci revealing distinct mechanisms. Senescence is transmitted to non-intoxicated bystander cells by an unidentified senescence-associated secreted factor that enhances Salmonella infections. Thus, our work uncovers a mechanism by which genotoxic Salmonella exhausts the RPA response by inducing ssDNA formation, driving host cell senescence and facilitating infection.
Collapse
Affiliation(s)
- Angela E M Ibler
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
- Department of Pathology, Tennis Court Road, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Mohamed ElGhazaly
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Kathryn L Naylor
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Natalia A Bulgakova
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Sherif F El-Khamisy
- The Healthy Life Span Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
- Center of Genomics, Zewail City of Science and Technology, Giza, Egypt
| | - Daniel Humphreys
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK.
| |
Collapse
|
24
|
Fernandes G, Vanyo ST, Alsharif SBA, Andreana S, Visser MB, Dziak R. Strontium Effects on Human Gingival Fibroblasts. J ORAL IMPLANTOL 2019; 45:274-280. [DOI: 10.1563/aaid-joi-d-18-00253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Strontium is a naturally occurring alkaline earth metal that has been shown to be useful not only in the treatment and prevention of osteoporosis but also in the treatment of dentinal hypersensitivity in the oral cavity; strontium is also an effective cariostatic, antiplaque, antigingivitis agent. Relatively little is known, however, about the effects of strontium on gingival fibroblasts. The purpose of the present investigation was to conduct in vitro studies on the potential for strontium to positively affect the activity of these cells such that it might be effective in the enhancement of gingival attachment to surfaces, such as healing abutments in implants in the oral cavity. The results indicate that strontium added as strontium citrate (0.5–1.0 mM), both in the absence and presence of a healing abutment, increases human gingival cell activity and decreases apoptosis in these cells. Scanning electron microscopy studies also reveal that the addition of strontium increases attachment of gingival fibroblasts to the surfaces of healing abutments. These studies provide the basis for further investigations on the use of strontium in the prevention and treatment of peri-implantitis by maximizing the formation of a peri-implant soft-tissue barrier.
Collapse
Affiliation(s)
- Gabriela Fernandes
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY
| | - Stephen T. Vanyo
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY
| | | | - Sebastiano Andreana
- Department of Restorative Dentistry, School of Dental Medicine, University at Buffalo, Buffalo, NY
| | - Michelle B. Visser
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY
| | - Rosemary Dziak
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY
| |
Collapse
|
25
|
Kızıldağ A, Arabacı T, Albayrak M, Taşdemir U, Şenel E, Dalyanoglu M, Demirci E. Therapeutic effects of caffeic acid phenethyl ester on alveolar bone loss in rats with endotoxin-induced periodontitis. J Dent Sci 2019; 14:339-345. [PMID: 31890119 PMCID: PMC6921107 DOI: 10.1016/j.jds.2019.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/25/2019] [Indexed: 02/06/2023] Open
Abstract
Background/purpose Caffeic acid phenethyl ester (CAPE) is an antioxidant which is decreases the bone resorption and enhances the bone healing. The aim of this study was to investigate the effects of administering systemic CAPE on alveolar bone loss in rats with experimental periodontitis. Materials and methods Thirty male Sprague Dawley rats were divided into three groups: control, endotoxin-induced periodontitis (EP), and EP treated with CAPE (EP-CAPE). Endotoxin was injected into the gingiva of test rats on days 1, 3, and 5, whereas saline was injected into the control rats. The EP-CAPE group received 10 mmol/kg/day CAPE intraperitoneally for 28 consecutive days. Saline was given in the control and EP groups in the same manner. At the end of the study, intracardiac blood samples were obtained, and the rats were sacrificed. Alveolar bone loss was analyzed with histometric measurements. The oxidative stress index (OSI) was used to evaluate the oxidative stress. The receptor activator of the nuclear factor kappa B ligand (RANKL) level was analyzed stereologically. Results CAPE administration significantly decreased the serum OSI and interleukin-1β levels. Alveolar bone loss was statistically higher in the EP group compared with the EP-CAPE group (P < 0.05). Immunohistochemical analyses of the RANKL were significantly lower in the EP-CAPE group than in the EP group (P < 0.05). Conclusion This experimental study revealed that CAPE administration significantly prevented alveolar bone loss and stimulated periodontal tissue healing.
Collapse
Affiliation(s)
- Alper Kızıldağ
- Department of Periodontology, Faculty of Dentistry, Pamukkale University, Denizli, Turkey
| | - Taner Arabacı
- Department of Periodontology, Faculty of Dentistry, Atatürk University, Erzurum, Turkey
| | - Mevlüt Albayrak
- Medical Laboratory Department, Health Services Vocational Training School, Ataturk University, Erzurum, Turkey
| | - Ufuk Taşdemir
- Department of Maxillofacial Surgery, Faculty of Dentistry, Pamukkale University, Denizli, Turkey
| | - Erman Şenel
- Department of Maxillofacial Surgery, Faculty of Dentistry, Pamukkale University, Denizli, Turkey
| | - Mukaddes Dalyanoglu
- Department of Physiology, Medical School, Pamukkale University, Denizli, Turkey
| | - Elif Demirci
- Medical Biology Department, Medical School, Ataturk University, Erzurum, Turkey
| |
Collapse
|
26
|
Tadin A, Gavic L, Roguljic M, Jerkovic D, Zeljezic D. Nuclear morphological changes in gingival epithelial cells of patients with periodontitis. Clin Oral Investig 2019; 23:3749-3757. [DOI: 10.1007/s00784-019-02803-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/11/2019] [Indexed: 01/07/2023]
|
27
|
Zhao Z, Li J, Ding XN, Zhou L, Sun DG. ADAM28 dramatically regulates the biological features of human gingival fibroblasts. Odontology 2018; 107:333-341. [PMID: 30552542 DOI: 10.1007/s10266-018-0403-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 11/25/2018] [Indexed: 11/29/2022]
Abstract
This study was to explore the effects of a disintegrin and metalloproteinase 28 (ADAM28) on the proliferation, differentiation, and apoptosis of human gingival fibroblasts (HGFs) and probable mechanism. After ADAM28 antisense oligodeoxynucleotide (AS-ODN) and sense oligodeoxynucleotide (S-ODN) were transfected into HGFs by Lipofectamine 2000, respectively, the expression discrepancies of ADAM28 among various groups were evaluated by reverse transcription-polymerase chain reaction (RT-PCR) and Western-blotting. Methabenzthiazuron (MTT) and cell-cycle assays were used to test the HGFs proliferation activity. Annexin V fluorescein isothiocyanate (FITC)/propidium iodide (PI) and alkaline phosphatase (ALP) analysis were performed separately to measure apoptosis and the cytodifferentiation standard. Immunocytochemistry and Western-blotting were carried out to determine the influence of ADAM28 AS-ODN on HGFs expressing core binding factor α1 (Cbfα1), cementum protein 1 (CEMP1), osteopontin (OPN) and dentin matrix protein 1 (DMP1). The AS-ODN group displayed the lowest expression level in HGFs, meanwhile the ADAM28 S-ODN group showed the highest. Furthermore, blocking of ADAM28 could inhibit the proliferation of HGFs, enhance HGFs differentiation and induce apoptosis of HGFs. Whereas, overexpression of ADAM28 generated the opposite effects and inhibited apoptosis. ADAM28 AS-ODN was able to notably suppress the expressions of Cbfα1 and CEMP1, and ADAM28 had positive correlations with cbfα1 and CEMP1. These provided conspicuous evidence that ADAM28 may play a crucial role in root development as a potential regulator of growth, differentiation, and apoptosis of HGFs.
Collapse
Affiliation(s)
- Zheng Zhao
- Qingdao Stomatological Hospital, No.17 De-xian Road, Qingdao, 266000, Shandong, People's Republic of China.
| | - Jie Li
- Qingdao Stomatological Hospital, No.17 De-xian Road, Qingdao, 266000, Shandong, People's Republic of China
| | - Xiu-Na Ding
- Qingdao Stomatological Hospital, No.17 De-xian Road, Qingdao, 266000, Shandong, People's Republic of China
| | - Lei Zhou
- Qingdao Stomatological Hospital, No.17 De-xian Road, Qingdao, 266000, Shandong, People's Republic of China
| | - De-Gang Sun
- Qingdao Stomatological Hospital, No.17 De-xian Road, Qingdao, 266000, Shandong, People's Republic of China
| |
Collapse
|
28
|
Mytych J, Solek P, Koziorowski M. Klotho modulates ER-mediated signaling crosstalk between prosurvival autophagy and apoptotic cell death during LPS challenge. Apoptosis 2018; 24:95-107. [DOI: 10.1007/s10495-018-1496-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Tigani EK, Skrtic D, Valerio MS, Kaufman G. Assessing the effect of triethyleneglycol dimethacrylate on tissue repair in 3D organotypic cultures. J Appl Toxicol 2018; 39:247-259. [PMID: 30229966 DOI: 10.1002/jat.3714] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/14/2018] [Accepted: 07/19/2018] [Indexed: 12/17/2022]
Abstract
Leachables from dental restoratives induce toxicity in gingival and pulp tissues and affect tissue regeneration/healing. Appropriate testing of these materials requires a platform that mimics the in vivo environment and allows the architectural self-assembly of cells into tissue constructs. In this study, we employ a new 3D model to assess the impact of triethyleneglycol dimethacrylate (TEGDMA) on early organization and advanced recruitment/accumulation of immortalized mouse gingival fibroblasts (GFs) and dental papilla mesenchymal cells (DPMCs) in extracellular matrix. We hypothesize that TEGDMA (1) interferes with the developmental architecture of GFs and DPMCs, and (2) inhibits the deposition of mineral. To test these hypotheses, GFs and DPMCs were incubated with the soluble TEGDMA at concentrations (0-2.5) mmol/L. Diameter and thickness of the constructs were determined by microscopic analysis. Cell differentiation was assessed by immunocytochemistry and the secreted mineral detected by alizarin-red staining. TEGDMA interfered with the development of GFs and/or DPMCs microtissues in a dose-dependent manner by inhibiting growth of inter-spherical cell layers and decreasing spheroid size (four to six times). At low/moderate TEGDMA levels, GFs organoids retained their structures while reducing thickness up to 21%. In contrast, at low TEGDMA doses, architecture of DPMC organoids was altered and thickness decreased almost twofold. Overall, developmental ability of TEGDMA-exposed GFs and DPMCs depended on TEGDMA level. GFs constructs were more resistant to structural modifications. The employed 3D platform was proven as an efficient tool for quantifying the effects of leachables on tissue repair capacities of gingiva and dental pulp.
Collapse
Affiliation(s)
- Elise K Tigani
- Volpe Research Center, American Dental Association Foundation, Gaithersburg, MD, 20899, USA
| | - Drago Skrtic
- Volpe Research Center, American Dental Association Foundation, Gaithersburg, MD, 20899, USA
| | - Michael S Valerio
- Volpe Research Center, American Dental Association Foundation, Gaithersburg, MD, 20899, USA
| | - Gili Kaufman
- Volpe Research Center, American Dental Association Foundation, Gaithersburg, MD, 20899, USA
| |
Collapse
|
30
|
Kasnak G, Könönen E, Syrjänen S, Gürsoy M, Zeidán-Chuliá F, Firatli E, Gürsoy UK. NFE2L2/NRF2, OGG1, and cytokine responses of human gingival keratinocytes against oxidative insults of various origin. Mol Cell Biochem 2018; 452:63-70. [PMID: 30030777 DOI: 10.1007/s11010-018-3412-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 07/13/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Bacterial or tobacco-related insults induce oxidative stress in gingival keratinocytes. The aim of this study was to investigate anti-oxidative and cytokine responses of human gingival keratinocytes (HMK cells) against Porphyromonas gingivalis lipopolysaccharide (Pg LPS), nicotine, and 4-nitroquinoline N-oxide (4-NQO). MATERIALS AND METHODS HMK cells were incubated with Pg LPS (1 µl/ml), nicotine (1.54 mM), and 4-NQO (1 µM) for 24 h. Intracellular and extracellular levels of interleukin (IL)-1β, IL-1 receptor antagonist (IL-1Ra), IL-8, monocyte chemoattractant protein (MCP)-1, and vascular endothelial growth factor (VEGF) were measured with the Luminex® xMAP™ technique, and nuclear factor, erythroid 2 like 2 (NFE2L2/NRF2) and 8-oxoguanine DNA glycosylase (OGG1) with Western blots. Data were statistically analyzed by two-way ANOVA with Bonferroni correction. RESULTS All tested oxidative stress inducers increased intracellular OGG1 levels, whereas only nicotine and 4-NQO induced NFE2L2/NRF2 levels. Nicotine, 4-NQO, and their combinational applications with Pg LPS induced the secretions of IL-1β and IL-1Ra, while that of IL-8 was inhibited by the presence of Pg LPS. MCP-1 secretion was suppressed by nicotine, alone and together with Pg LPS, while 4-NQO activated its secretion. Treatment of HMK cells with Pg LPS, nicotine, 4-NQO, or their combinations did not affect VEGF levels. CONCLUSION Pg LPS, nicotine, and 4-NQO induce oxidative stress and regulate anti-oxidative response and cytokine expressions in human gingival keratinocytes differently. These results may indicate that bacterial and tobacco-related insults regulate distinct pathways.
Collapse
Affiliation(s)
- Gökhan Kasnak
- Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland. .,Faculty of Dentistry, Istanbul University, Istanbul, Turkey.
| | - Eija Könönen
- Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland.,Welfare Division, Oral Health, City of Turku, Finland
| | - Stina Syrjänen
- Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland.,Department of Pathology, Turku University Hospital, Turku, Finland
| | - Mervi Gürsoy
- Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland
| | - Fares Zeidán-Chuliá
- Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland.,Departamento de Ciencias Biomédicas Básicas, Facultad de Ciencias Biomédicas y de la Salud, Universidad Europea de Madrid, Madrid, Spain
| | - Erhan Firatli
- Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - Ulvi K Gürsoy
- Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland
| |
Collapse
|
31
|
Kasnak G, Firatli E, Könönen E, Olgac V, Zeidán-Chuliá F, Gursoy UK. Elevated levels of 8-OHdG and PARK7/DJ-1 in peri-implantitis mucosa. Clin Implant Dent Relat Res 2018; 20:574-582. [PMID: 29787640 DOI: 10.1111/cid.12619] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/06/2018] [Accepted: 04/05/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Reactive oxygen species contribute to periodontal tissue homeostasis under control of anti-oxidative responses. Disruption in this balance induces severe inflammation and extended tissue degradation. PURPOSE Aim of this study was to identify the expression levels of nuclear factor, erythroid 2 like 2 (NFE2L2/NRF2), Parkinsonism associated deglycase (PARK7/DJ-1), kelch-like ECH associated protein 1 (KEAP1), and 8-hydroxy-deoxyguanosine (8-OHdG) in peri-implant mucosal tissues affected by peri-implantitis, and to compare the levels to those of periodontally diseased and healthy tissue samples. METHODS Tissue biopsies were collected from systemically healthy, non-smoking 12 peri-implantitis patients, 13 periodontitis patients, and 13 periodontally healthy controls. Expression levels of NFE2L2/NRF2, PARK7/DJ-1, KEAP1, and 8-OHdG in tissue samples were analyzed immunohistochemically. Statistical analysis was performed by one-way ANOVA with Tukey's HSD test. RESULTS Inflammatory cell infiltration in the connective tissue and loss of architecture in the spinous layer of the epithelium were prominent in peri-implantitis. Proportions of 8-OHdG and PARK7/DJ-1 expressing cells were elevated in both peri-implantitis (P = .025 for 8-OHdG and P = .014 for PARK7/DJ-1) and periodontitis (P = .038 for 8-OHdG and P = .012 for PARK7/DJ-1) groups in comparison with controls. Staining intensities of 8-OHdG and PARK7/DJ-1 were higher in the periodontitis and peri-implantitis groups than in the control (P < .01) groups. There was no difference in the expression levels of NFE2L2/NRF2 between the groups. KEAP1 was not observed in any tissue sample. CONCLUSIONS Peri-implantitis is characterized by severe inflammation and architectural changes in the epithelium and connective tissue. The expressions of 8-OHdG and PARK7/DJ-1 are elevated in both peri-implantitis and periodontitis.
Collapse
Affiliation(s)
- Gökhan Kasnak
- Institute of Dentistry, University of Turku, Turku, Finland.,Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - Erhan Firatli
- Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - Eija Könönen
- Institute of Dentistry, University of Turku, Turku, Finland
| | - Vakur Olgac
- Institute of Oncology, Department of Tumor Pathology, Istanbul University, Istanbul, Turkey
| | | | | |
Collapse
|
32
|
Cheng R, Feng Y, Zhang R, Liu W, Lei L, Hu T. The extent of pyroptosis varies in different stages of apical periodontitis. Biochim Biophys Acta Mol Basis Dis 2018; 1864:226-237. [DOI: 10.1016/j.bbadis.2017.10.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/02/2017] [Accepted: 10/19/2017] [Indexed: 01/28/2023]
|
33
|
Younis LT, Abu Hassan MI, Taiyeb Ali TB, Bustami TJ. 3D TECA hydrogel reduces cellular senescence and enhances fibroblasts migration in wound healing. Asian J Pharm Sci 2017; 13:317-325. [PMID: 32104405 PMCID: PMC7032142 DOI: 10.1016/j.ajps.2017.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/08/2017] [Accepted: 12/04/2017] [Indexed: 12/11/2022] Open
Abstract
This study was designed to investigate the effect of 3D TECA hydrogel on the inflammatory-induced senescence marker, and to assess the influence of the gel on the periodontal ligament fibroblasts (PDLFs) migration in wound healing in vitro. PDLFs were cultured with 20 ng/ml TNF-α to induce inflammation in the presence and absence of 50 µM 3D TECA gel for 14 d. The gel effect on the senescence maker secretory associated-β-galactosidase (SA-β-gal) activity was measured by a histochemical staining. Chromatin condensation and DNA synthesis of the cells were assessed by 4′,6-diamidino-2-phenylindole and 5-ethynyl-2′-deoxyuridine fluorescent staining respectively. For evaluating fibroblasts migration, scratch wound healing assay and Pro-Plus Imaging software were used. The activity of senescence marker, SA-β-gal, was positive in the samples with TNF-α-induced inflammation. SA-β-gal percentage is suppressed (>65%, P < 0.05) in the treated cells with TECA gel as compared to the non-treated cells. Chromatin foci were obvious in the non-treated samples. DNA synthesis was markedly recognized by the fluorescent staining in the treated compared to non-treated cultures. Scratch wound test indicated that the cells migration rate was significantly higher (14.9 µm2/h, P < 0.05) in the treated versus (11 µm2/h) for control PDLFs. The new formula of 3D TECA suppresses the inflammatory-mediated cellular senescence and enhanced fibroblasts proliferation and migration. Therefore, 3D TECA may be used as an adjunct to accelerate repair and healing of periodontal tissues.
Collapse
Affiliation(s)
- Luay Thanoon Younis
- Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh 47000, Malaysia
| | | | - Tara Bai Taiyeb Ali
- Faculty of Dentistry, Universiti Teknologi MARA, MAHSA University, Jenjarom 42610, Malaysia
| | | |
Collapse
|
34
|
Cheng R, Liu W, Zhang R, Feng Y, Bhowmick NA, Hu T. Porphyromonas gingivalis-Derived Lipopolysaccharide Combines Hypoxia to Induce Caspase-1 Activation in Periodontitis. Front Cell Infect Microbiol 2017; 7:474. [PMID: 29184853 PMCID: PMC5694474 DOI: 10.3389/fcimb.2017.00474] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/30/2017] [Indexed: 02/05/2023] Open
Abstract
Periodontitis is defined as inflammation affecting the supporting tissue of teeth. Periodontal pathogens initiate the disease and induce inflammatory host response. Hypoxia may accelerate the process by producing pro-inflammatory factors. The aim of this study is to investigate the effect of Porphyromonas gingivalis (P. gingivalis) lipopolysaccharides (LPS) and Escherichia coli (E. coli) LPS in inducing caspase-1 activation in normoxic or hypoxic phases. The results showed that healthy gingiva was in a normoxic phase (HIF-1α negative). However, hypoxia appeared in periodontitis, in which NLRP3, cleaved-caspase-1, interleukin 1 beta (IL-1β) and caspase-1-induced cell death was enhanced in periodontitis specimens. The in vitro experiment showed that P. gingivalis LPS slightly decreased the level of NLRP3 and IL-1β in gingival fibroblasts under normoxia. Surprisingly, hypoxia reversed the effects of P. gingivalis LPS, highly promoted caspase-1 activation and IL-1β maturation. E. coli LPS, a kind of pathogen-associated molecular pattern (PAMP) was chosen to simulate the effect of Gram-negative microbiota. Different from P. gingivalis LPS, E. coli LPS enhanced IL-1β maturation both in normoxia and hypoxia. Moreover, E. coli LPS turned normoxia into hypoxia phase in experimental periodontitis model, which may subsequently propel the inflammatory effect of P. gingivalis LPS. It was concluded that E. coli LPS induced a hypoxic phase, which is a combing pathological factor of P. gingivalis LPS in caspase-1 activating and IL-1β maturation in periodontal inflammation.
Collapse
Affiliation(s)
- Ran Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Wen Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rui Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuchao Feng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Neil A. Bhowmick
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Tao Hu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
35
|
Napa K, Baeder AC, Witt JE, Rayburn ST, Miller MG, Dallon BW, Gibbs JL, Wilcox SH, Winden DR, Smith JH, Reynolds PR, Bikman BT. LPS from P. gingivalis Negatively Alters Gingival Cell Mitochondrial Bioenergetics. Int J Dent 2017; 2017:2697210. [PMID: 28592970 PMCID: PMC5448046 DOI: 10.1155/2017/2697210] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/13/2017] [Accepted: 03/20/2017] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Oral inflammatory pathologies are linked to increased oxidative stress, thereby partly explaining their relevance in the etiology of systemic disorders. The purpose of this work was to determine the degree to which LPS from Porphyromonas gingivalis, the primary pathogen related to oral inflammation, altered gingival mitochondrial function and reactive oxygen species generation. METHODS Human gingival fibroblast (HGF-1) cells were treated with lipopolysaccharide of P. gingivalis. Mitochondrial function was determined via high-resolution respirometry. P GINGIVALIS Mitochondrial function was determined via high-resolution respirometry. RESULTS LPS-treated HGF-1 cells had significantly higher mitochondrial complex IV and higher rates of mitochondrial respiration. However, this failed to translate into greater ATP production, as ATP production was paradoxically diminished with LPS treatment. Nevertheless, production of the reactive H2O2 was elevated with LPS treatment. CONCLUSIONS LPS elicits an increase in gingival cell mitochondria content, with a subsequent increase in reactive oxygen species production (i.e., H2O2), despite a paradoxical reduction in ATP generation. These findings provide an insight into the nature of oxidative stress in oral inflammatory pathologies.
Collapse
Affiliation(s)
- Kiran Napa
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, USA
| | - Andrea C. Baeder
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, USA
| | - Jeffrey E. Witt
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| | - Sarah T. Rayburn
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, USA
| | - Madison G. Miller
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| | - Blake W. Dallon
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| | - Jonathan L. Gibbs
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| | - Shalene H. Wilcox
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, USA
| | - Duane R. Winden
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, USA
| | - Jared H. Smith
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| | - Paul R. Reynolds
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| | - Benjamin T. Bikman
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
36
|
Investigating the Origins of Toxic Response in TiO₂ Nanoparticle-Treated Cells. NANOMATERIALS 2017; 7:nano7040083. [PMID: 28398241 PMCID: PMC5408175 DOI: 10.3390/nano7040083] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/03/2017] [Accepted: 04/05/2017] [Indexed: 01/08/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are widely used in sunscreens, cosmetics and body implants, and this raises toxicity concerns. Although a large number of reports claim that they are safe to use, others claim that they induce reactive oxygen species formation and can be carcinogenic. In this study, the origins of toxic response to TiO2 NPs were investigated by using Surface-enhanced Raman spectroscopy (SERS) which provides multidimensional information on the cellular dynamics at single cell level without any requirement for cell fixation. Three cell lines of vein (HUVEC), lung carcinoma (A549) and skin (L929) origin were tested for their toxic response upon exposure to 20, 40, 80 and 160 µg/mL anatase-TiO2 NPs for 24 h. It was demonstrated that the level of toxic response is both cell line and dose-dependent. L929 fibroblasts were the most resistant cell line to oxidative stress whereas in HUVEC and A549, cell lines collagen and lipid deformation were observed, respectively.
Collapse
|
37
|
Qian Y, Shao M, Zou W, Wang L, Cheng R, Hu T. Focal adhesion kinase maintains, but not increases the adhesion of dental pulp cells. Hum Cell 2017; 30:98-105. [PMID: 28238196 DOI: 10.1007/s13577-017-0159-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/11/2017] [Indexed: 02/05/2023]
Abstract
Focal adhesion kinase (FAK) functions as a key enzyme in the integrin-mediated adhesion-signalling pathway. Here, we aimed to investigate the effects of FAK on adhesion of human dental pulp (HDP) cells. We transfected lentiviral vectors to silence or overexpress FAK in HDP cells ex vivo. Early cell adhesion, cell survival and focal contacts (FCs)-related proteins (FAK and paxillin) were examined. By using immunofluorescence, the formation of FCs and cytoskeleton was detected, respectively. We found that both adhesion and survival of HDP cells were suppressed by FAK inhibition. However, FAK overexpression slightly inhibited cell adhesion and exhibited no change in cell survival compared with the control. A thick rim of cytoskeleton accumulated and smaller dot-shaped FCs appeared in FAK knockdown cells. Phosphorylation of paxillin (p-paxillin) was inhibited in FAK knockdown cells, verifying that the adhesion was inhibited. Less cytoskeleton and elongated FCs were observed in FAK-overexpressed cells. However, p-paxillin had no significant difference compared with the control. In conclusion, the data suggest that FAK maintains cell adhesion, survival and cytoskeleton formation, but excessive FAK has no positive effects on these aspects.
Collapse
Affiliation(s)
- Yuyan Qian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Endodontics, Guiyang Hospital of Stomatology, Guiyang, Guizhou, China
| | - Meiying Shao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Wenlin Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Linyan Wang
- Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ran Cheng
- Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| | - Tao Hu
- Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
38
|
Affiliation(s)
- R Cheng
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - T Hu
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - N A Bhowmick
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|