1
|
Chi H, Qu B, Prawira A, Richardt T, Maurer L, Hu J, Fu RM, Lempp FA, Zhang Z, Grimm D, Wu X, Urban S, Dao Thi VL. An hepatitis B and D virus infection model using human pluripotent stem cell-derived hepatocytes. EMBO Rep 2024; 25:4311-4336. [PMID: 39232200 PMCID: PMC11466959 DOI: 10.1038/s44319-024-00236-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024] Open
Abstract
Current culture systems available for studying hepatitis D virus (HDV) are suboptimal. In this study, we demonstrate that hepatocyte-like cells (HLCs) derived from human pluripotent stem cells (hPSCs) are fully permissive to HDV infection across various tested genotypes. When co-infected with the helper hepatitis B virus (HBV) or transduced to express the HBV envelope protein HBsAg, HLCs effectively release infectious progeny virions. We also show that HBsAg-expressing HLCs support the extracellular spread of HDV, thus providing a valuable platform for testing available anti-HDV regimens. By challenging the cells along the differentiation with HDV infection, we have identified CD63 as a potential HDV co-entry factor that was rate-limiting for HDV infection in immature hepatocytes. Given their renewable source and the potential to derive hPSCs from individual patients, we propose HLCs as a promising model for investigating HDV biology. Our findings offer new insights into HDV infection and expand the repertoire of research tools available for the development of therapeutic interventions.
Collapse
Affiliation(s)
- Huanting Chi
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Bingqian Qu
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
- Molecular Virology, Department of Infectious Diseases, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, Langen, Germany
| | - Angga Prawira
- Molecular Virology, Department of Infectious Diseases, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Talisa Richardt
- Molecular Virology, Department of Infectious Diseases, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Lars Maurer
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
- Department of Infectious Diseases, Virology, Section Viral Vector Technologies, University Hospital Heidelberg, Cluster of Excellence CellNetworks, BioQuant, Center for Integrative Infectious Diseases Research (CIID), Heidelberg, Germany
| | - Jungen Hu
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Rebecca M Fu
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Florian A Lempp
- Molecular Virology, Department of Infectious Diseases, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
- Humabs Biomed SA, A Subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Zhenfeng Zhang
- Molecular Virology, Department of Infectious Diseases, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
- School of Public Health and Emergency Management, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Dirk Grimm
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
- Department of Infectious Diseases, Virology, Section Viral Vector Technologies, University Hospital Heidelberg, Cluster of Excellence CellNetworks, BioQuant, Center for Integrative Infectious Diseases Research (CIID), Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg, Heidelberg, Germany
| | - Xianfang Wu
- Infection Biology Program and Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Stephan Urban
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany.
- Molecular Virology, Department of Infectious Diseases, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany.
| | - Viet Loan Dao Thi
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany.
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany.
| |
Collapse
|
2
|
Berke JM, Tan Y, Sauviller S, Wu DT, Zhang K, Conceição-Neto N, Blázquez Moreno A, Kong D, Kukolj G, Li C, Zhu R, Nájera I, Pauwels F. Class A capsid assembly modulator apoptotic elimination of hepatocytes with high HBV core antigen level in vivo is dependent on de novo core protein translation. J Virol 2024; 98:e0150223. [PMID: 38315015 PMCID: PMC10949496 DOI: 10.1128/jvi.01502-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/19/2023] [Indexed: 02/07/2024] Open
Abstract
Capsid assembly is critical in the hepatitis B virus (HBV) life cycle, mediated by the viral core protein. Capsid assembly is the target for new anti-viral therapeutics known as capsid assembly modulators (CAMs) of which the CAM-aberrant (CAM-A) class induces aberrant shaped core protein structures and leads to hepatocyte cell death. This study aimed to identify the mechanism of action of CAM-A modulators leading to HBV-infected hepatocyte elimination where CAM-A-mediated hepatitis B surface antigen (HBsAg) reduction was evaluated in a stable HBV replicating cell line and in AAV-HBV-transduced C57BL/6, C57BL/6 SCID, and HBV-infected chimeric mice with humanized livers. Results showed that in vivo treatment with CAM-A modulators induced pronounced reductions in hepatitis B e antigen (HBeAg) and HBsAg, associated with a transient alanine amino transferase (ALT) increase. Both HBsAg and HBeAg reductions and ALT increase were delayed in C57BL/6 SCID and chimeric mice, suggesting that adaptive immune responses may indirectly contribute. However, CD8+ T cell depletion in transduced wild-type mice did not impact antigen reduction, indicating that CD8+ T cell responses are not essential. Transient ALT elevation in AAV-HBV-transduced mice coincided with a transient increase in endoplasmic reticulum stress and apoptosis markers, followed by detection of a proliferation marker. Microarray data revealed antigen presentation pathway (major histocompatibility complex class I molecules) upregulation, overlapping with the apoptosis. Combination treatment with HBV-specific siRNA demonstrated that CAM-A-mediated HBsAg reduction is dependent on de novo core protein translation. To conclude, CAM-A treatment eradicates HBV-infected hepatocytes with high core protein levels through the induction of apoptosis, which can be a promising approach as part of a regimen to achieve functional cure. IMPORTANCE Treatment with hepatitis B virus (HBV) capsid assembly modulators that induce the formation of aberrant HBV core protein structures (CAM-A) leads to programmed cell death, apoptosis, of HBV-infected hepatocytes and subsequent reduction of HBV antigens, which differentiates CAM-A from other CAMs. The effect is dependent on the de novo synthesis and high levels of core protein.
Collapse
Affiliation(s)
- Jan Martin Berke
- Infectious Diseases Discovery, Infectious Diseases and Vaccines, Janssen Research and Development, Turnhoutseweg, Beerse, Belgium
| | - Ying Tan
- Infectious Diseases Discovery, Janssen Research and Development, Jinchuang Mansion, Pudong, Shanghai, China
| | - Sarah Sauviller
- Infectious Diseases Discovery, Infectious Diseases and Vaccines, Janssen Research and Development, Turnhoutseweg, Beerse, Belgium
| | - Dai-tze Wu
- Infectious Diseases Discovery, Janssen Research and Development, Jinchuang Mansion, Pudong, Shanghai, China
| | - Ke Zhang
- Infectious Diseases Discovery, Janssen Research and Development, Jinchuang Mansion, Pudong, Shanghai, China
| | - Nádia Conceição-Neto
- Infectious Diseases Discovery, Infectious Diseases and Vaccines, Janssen Research and Development, Turnhoutseweg, Beerse, Belgium
| | - Alfonso Blázquez Moreno
- Infectious Diseases Biomarkers, Infectious Diseases and Vaccines, Janssen Research and Development, Turnhoutseweg, Beerse, Belgium
| | - Desheng Kong
- Infectious Diseases Discovery, Janssen Research and Development, Jinchuang Mansion, Pudong, Shanghai, China
| | - George Kukolj
- Infectious Diseases Discovery, Janssen Research and Development, Brisbane, California, USA
| | - Chris Li
- Infectious Diseases Discovery, Janssen Research and Development, Brisbane, California, USA
| | - Ren Zhu
- Infectious Diseases Discovery, Janssen Research and Development, Jinchuang Mansion, Pudong, Shanghai, China
| | - Isabel Nájera
- Infectious Diseases Discovery, Janssen Research and Development, Brisbane, California, USA
| | - Frederik Pauwels
- Infectious Diseases Discovery, Infectious Diseases and Vaccines, Janssen Research and Development, Turnhoutseweg, Beerse, Belgium
| |
Collapse
|
3
|
Ahodantin J, Li F, Su L. Modeling HBV Infection and Therapy in Immunodeficient NOD-Rag1-/-IL2RgammaC-null (NRG) Fumarylacetoacetate Hydrolase (FAH) Knockout Mice with Human Chimeric Liver. Methods Mol Biol 2024; 2837:199-206. [PMID: 39044086 DOI: 10.1007/978-1-0716-4027-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Chimeric mouse models with a humanized liver (Hu-HEP mice) provide a unique tool to study human hepatotropic virus diseases, including viral infection, viral pathogenesis, and anti-viral therapy. Here, we describe a detailed protocol for studying hepatitis B infection in NRG-derived fumarylacetoacetate hydrolase (FAH) knockout mice repopulated with human hepatocytes (FRG-Hu HEP mice). The procedures include (1) maintenance and genotyping of the FRG mice, (2) intrasplenic injection of primary human hepatocytes (PHH), (3) 2-(2-nitro-4-fluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC) drug reduction cycling to improve human hepatocyte repopulation, (4) human albumin detection, and (5) HBV infection and detection. The method is simple and allows for highly reproducible generation of FRG-Hu HEP mice for HBV infection and therapy investigations.
Collapse
Affiliation(s)
- James Ahodantin
- Division of Virology, Pathogenesis and Cancer, Institute of Human Virology, Departments of Pharmacology, Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Feng Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lishan Su
- Division of Virology, Pathogenesis and Cancer, Institute of Human Virology, Departments of Pharmacology, Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Schefczyk S, Luo X, Liang Y, Hasenberg M, Walkenfort B, Trippler M, Schuhenn J, Sutter K, Lu M, Wedemeyer H, Schmidt HH, Broering R. Tg1.4HBV-s-rec mice, a crossbred hepatitis B virus-transgenic model, develop mild hepatitis. Sci Rep 2023; 13:22829. [PMID: 38129531 PMCID: PMC10739827 DOI: 10.1038/s41598-023-50090-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
Hepatitis B virus (HBV)-transgenic mice exhibit competent innate immunity and are therefore an ideal model for considering intrinsic or cell-based mechanisms in HBV pathophysiology. A highly replicative model that has been little used, let alone characterized, is the Tg1.4HBV-s-rec strain derived from cross breeding of HBV-transgenic mouse models that either accumulate (Alb/HBs, Tg[Alb1-HBV]Bri44) or lack (Tg1.4HBV-s-mut) the hepatitis B surface antigen (HBsAg). Tg1.4HBV-s-rec hepatocytes secreted HBsAg, Hepatitis B extracellular antigen (HBeAg) and produced HBV virions. Transmission electron microscopy visualised viral particles (Tg1.4HBV-s-rec), nuclear capsid formations (Tg1.4HBV-s-mut and Tg1.4HBV-s-rec) and endoplasmic reticulum malformations (Alb/HBs). Viral replication in Tg1.4HBV-s-rec and Tg1.4HBV-s-mut differed in HBsAg expression and interestingly in the distribution of HBV core antigen (HBcAg) and HBV × protein. While in Tg1.4HBV-s-mut hepatocytes, the HBcAg was located in the cytoplasm, in Tg1.4HBV-s-rec hepatocytes, the HBcAg appeared in the nuclei, suggesting a more productive replication. Finally, Tg1.4HBV-s-rec mice showed symptoms of mild hepatitis, with reduced liver function and elevated serum transaminases, which appeared to be related to natural killer T cell activation. In conclusion, the study of Alb/HBs, Tg1.4HBV-s-mut and their F1 progeny provides a powerful tool to elucidate HBV pathophysiology, especially in the early HBeAg-positive phases of chronic infection and chronic hepatitis.
Collapse
Affiliation(s)
- Stefan Schefczyk
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Xufeng Luo
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
- Institute for Lymphoma Research, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Yaojie Liang
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Mike Hasenberg
- Electron Microscopy Unit, Imaging Center Essen, Medical Faculty, Germany Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bernd Walkenfort
- Electron Microscopy Unit, Imaging Center Essen, Medical Faculty, Germany Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Martin Trippler
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Jonas Schuhenn
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kathrin Sutter
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Mengji Lu
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Hartmut H Schmidt
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Ruth Broering
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany.
| |
Collapse
|
5
|
Bailey JT, Moshkani S, Rexhouse C, Cimino JL, Robek MD. CD4 + T cells reverse surface antigen persistence in a mouse model of HBV replication. Microbiol Spectr 2023; 11:e0344723. [PMID: 37948314 PMCID: PMC10715182 DOI: 10.1128/spectrum.03447-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/09/2023] [Indexed: 11/12/2023] Open
Abstract
IMPORTANCE Hepatitis B virus (HBV) is a leading causative agent of viral hepatitis. A preventative vaccine has existed for decades, but only limited treatment options are available for people living with chronic HBV. Animal models for studying HBV are constrained due to narrow viral tropism, impeding understanding of the natural immune response to the virus. Here, using a vector to overcome the narrow host range and establish HBV replication in mice, we identified the role of helper T cells in controlling HBV. We show that helper T cells promote the B cell's ability to generate antibodies that remove HBV and its associated surface antigen from the blood and that transfer of purified helper T cells from HBV-immunized mice can reverse the accumulation of virus and antigen, furthering our understanding of the immune response to HBV.
Collapse
Affiliation(s)
- Jacob T. Bailey
- Department of Immunology & Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Safiehkhatoon Moshkani
- Department of Immunology & Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Catherine Rexhouse
- Department of Immunology & Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Jesse L. Cimino
- Department of Immunology & Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Michael D. Robek
- Department of Immunology & Microbial Disease, Albany Medical College, Albany, New York, USA
| |
Collapse
|
6
|
Rong N, Liu J. Development of animal models for emerging infectious diseases by breaking the barrier of species susceptibility to human pathogens. Emerg Microbes Infect 2023; 12:2178242. [PMID: 36748729 PMCID: PMC9970229 DOI: 10.1080/22221751.2023.2178242] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Outbreaks of emerging infectious diseases pose a serious threat to public health security, human health and economic development. After an outbreak, an animal model for an emerging infectious disease is urgently needed for studying the etiology, host immune mechanisms and pathology of the disease, evaluating the efficiency of vaccines or drugs against infection, and minimizing the time available for animal model development, which is usually hindered by the nonsusceptibility of common laboratory animals to human pathogens. Thus, we summarize the technologies and methods that induce animal susceptibility to human pathogens, which include viral receptor humanization, pathogen-targeted tissue humanization, immunodeficiency induction and screening for naturally susceptible animal species. Furthermore, the advantages and deficiencies of animal models developed using each method were analyzed, and these will guide the selection of susceptible animals and potentially reduce the time needed to develop animal models during epidemics.
Collapse
Affiliation(s)
- Na Rong
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, People’s Republic of China
| | - Jiangning Liu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, People’s Republic of China, Jiangning Liu
| |
Collapse
|
7
|
Maya S, Hershkovich L, Cardozo-Ojeda EF, Shirvani-Dastgerdi E, Srinivas J, Shekhtman L, Uprichard SL, Berneshawi AR, Cafiero TR, Dahari H, Ploss A. Hepatitis delta virus RNA decline post-inoculation in human NTCP transgenic mice is biphasic. mBio 2023; 14:e0100823. [PMID: 37436080 PMCID: PMC10470517 DOI: 10.1128/mbio.01008-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 07/13/2023] Open
Abstract
Chronic infection with hepatitis B and delta viruses (HDV) is the most serious form of viral hepatitis due to more severe manifestations of an accelerated progression to liver fibrosis, cirrhosis, and hepatocellular carcinoma. We characterized early HDV kinetics post-inoculation and incorporated mathematical modeling to provide insights into host-HDV dynamics. We analyzed HDV RNA serum viremia in 192 immunocompetent (C57BL/6) and immunodeficient (NRG) mice that did or did not transgenically express the HDV receptor-human sodium taurocholate co-transporting polypeptide (hNTCP). Kinetic analysis indicates an unanticipated biphasic decline consisting of a sharp first-phase and slower second-phase decline regardless of immunocompetence. HDV decline after re-inoculation again followed a biphasic decline; however, a steeper second-phase HDV decline was observed in NRG-hNTCP mice compared to NRG mice. HDV-entry inhibitor bulevirtide administration and HDV re-inoculation indicated that viral entry and receptor saturation are not major contributors to clearance, respectively. The biphasic kinetics can be mathematically modeled by assuming the existence of a non-specific-binding compartment with a constant on/off-rate and the steeper second-phase decline by a loss of bound virus that cannot be returned as free virus to circulation. The model predicts that free HDV is cleared with a half-life of 35 minutes (standard error, SE: 6.3), binds to non-specific cells with a rate of 0.05 per hour (SE: 0.01), and returns as free virus with a rate of 0.11 per hour (SE: 0.02). Characterizing early HDV-host kinetics elucidates how quickly HDV is either cleared or bound depending on the immunological background and hNTCP presence. IMPORTANCE The persistence phase of HDV infection has been studied in some animal models; however, the early kinetics of HDV in vivo is incompletely understood. In this study, we characterize an unexpectedly HDV biphasic decline post-inoculation in immunocompetent and immunodeficient mouse models and use mathematical modeling to provide insights into HDV-host dynamics.
Collapse
Affiliation(s)
- Stephanie Maya
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Leeor Hershkovich
- Department of Medicine, The Program for Experimental & Theoretical Modeling, Division of Hepatology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - E. Fabian Cardozo-Ojeda
- Department of Medicine, The Program for Experimental & Theoretical Modeling, Division of Hepatology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Jay Srinivas
- Department of Medicine, The Program for Experimental & Theoretical Modeling, Division of Hepatology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Louis Shekhtman
- Department of Medicine, The Program for Experimental & Theoretical Modeling, Division of Hepatology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Susan L. Uprichard
- Department of Medicine, The Program for Experimental & Theoretical Modeling, Division of Hepatology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Andrew R. Berneshawi
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Thomas R. Cafiero
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Harel Dahari
- Department of Medicine, The Program for Experimental & Theoretical Modeling, Division of Hepatology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
8
|
Bayurova E, Zhitkevich A, Avdoshina D, Kupriyanova N, Kolyako Y, Kostyushev D, Gordeychuk I. Common Marmoset Cell Lines and Their Applications in Biomedical Research. Cells 2023; 12:2020. [PMID: 37626830 PMCID: PMC10453182 DOI: 10.3390/cells12162020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/19/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Common marmosets (Callithrix jacchus; CMs) are small New World primates widely used in biomedical research. Early stages of such research often include in vitro experiments which require standardized and well-characterized CM cell cultures derived from different tissues. Despite the long history of laboratory work with CMs and high translational potential of such studies, the number of available standardized, well-defined, stable, and validated CM cell lines is still small. While primary cells and immortalized cell lines are mostly used for the studies of infectious diseases, biochemical research, and targeted gene therapy, the main current applications of CM embryonic stem cells and induced pluripotent stem cells are regenerative medicine, stem cell research, generation of transgenic CMs, transplantology, cell therapy, reproductive physiology, oncology, and neurodegenerative diseases. In this review we summarize the data on the main advantages, drawbacks and research applications of CM cell lines published to date including primary cells, immortalized cell lines, lymphoblastoid cell lines, embryonic stem cells, and induced pluripotent stem cells.
Collapse
Affiliation(s)
- Ekaterina Bayurova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; (E.B.); (A.Z.); (D.A.); (N.K.); (Y.K.)
| | - Alla Zhitkevich
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; (E.B.); (A.Z.); (D.A.); (N.K.); (Y.K.)
| | - Daria Avdoshina
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; (E.B.); (A.Z.); (D.A.); (N.K.); (Y.K.)
| | - Natalya Kupriyanova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; (E.B.); (A.Z.); (D.A.); (N.K.); (Y.K.)
- Institute for Translational Medicine and Biotechnology, Sechenov University, 117418 Moscow, Russia
| | - Yuliya Kolyako
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; (E.B.); (A.Z.); (D.A.); (N.K.); (Y.K.)
- Institute for Translational Medicine and Biotechnology, Sechenov University, 117418 Moscow, Russia
| | - Dmitry Kostyushev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, 119435 Moscow, Russia;
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Ilya Gordeychuk
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; (E.B.); (A.Z.); (D.A.); (N.K.); (Y.K.)
- Institute for Translational Medicine and Biotechnology, Sechenov University, 117418 Moscow, Russia
| |
Collapse
|
9
|
Makokha GN, Chayama K, Hayes CN, Abe-Chayama H, Abuduwaili M, Hijikata M. Deficiency of SCAP inhibits HBV pathogenesis via activation of the interferon signaling pathway. Virology 2023; 585:248-258. [PMID: 37437369 DOI: 10.1016/j.virol.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/15/2023] [Accepted: 07/03/2023] [Indexed: 07/14/2023]
Abstract
Hepatitis B virus (HBV) infects the liver and is a major risk factor for liver cirrhosis and hepatocellular carcinoma. Approaches for an effective cure are thwarted by limited knowledge of virus-host interactions. Herein, we identified SCAP as a novel host factor that regulates HBV gene expression. SCAP, sterol regulatory element-binding protein (SREBP) cleavage-activating protein, is an integral membrane protein located in the endoplasmic reticulum. The protein plays a central role in controlling lipid synthesis and uptake by cells. We found that gene silencing of SCAP significantly inhibited HBV replication; furthermore, knockdown of SREBP2 but not SREBP1, the downstream effectors of SCAP, reduced HBs antigen production from HBV infected primary hepatocytes. We also demonstrated that knockdown of SCAP resulted in activation of interferons (IFNs) and IFN stimulated genes (ISGs). Conversely, ectopic expression of SREBP2 in SCAP-deficient cells restored expression of IFNs and ISGs. Importantly, expression of SREBP2 restored HBV production in SCAP knockdown cells, suggesting that SCAP participates in HBV replication through an effect on IFN production via its downstream effector SREBP2. This observation was further confirmed by blocking IFN signaling by an anti-IFN antibody, which restored HBV infection in SCAP-deficient cells. This led to the conclusion that SCAP regulates the IFN pathway through SREBP, thereby affecting the HBV lifecycle. This is the first study to reveal the involvement of SCAP in regulation of HBV infection. These results may facilitate development of new antiviral strategies against HBV.
Collapse
Affiliation(s)
- Grace Naswa Makokha
- Laboratory of Medical Innovation, Department of Collaborative Research, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Kazuaki Chayama
- Laboratory of Medical Innovation, Department of Collaborative Research, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - C Nelson Hayes
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiromi Abe-Chayama
- Center for Medical Specialist Graduate Education and Research, Hiroshima University, Hiroshima, Japan
| | - Maidina Abuduwaili
- Laboratory of Medical Innovation, Department of Collaborative Research, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Makoto Hijikata
- Laboratory of Medical Innovation, Department of Collaborative Research, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
10
|
Liu Y, Cafiero TR, Park D, Biswas A, Winer BY, Cho CH, Bram Y, Chandar V, Connell AKO, Gertje HP, Crossland N, Schwartz RE, Ploss A. Targeted viral adaptation generates a simian-tropic hepatitis B virus that infects marmoset cells. Nat Commun 2023; 14:3582. [PMID: 37328459 PMCID: PMC10276007 DOI: 10.1038/s41467-023-39148-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/26/2023] [Indexed: 06/18/2023] Open
Abstract
Hepatitis B virus (HBV) only infects humans and chimpanzees, posing major challenges for modeling HBV infection and chronic viral hepatitis. The major barrier in establishing HBV infection in non-human primates lies at incompatibilities between HBV and simian orthologues of the HBV receptor, sodium taurocholate co-transporting polypeptide (NTCP). Through mutagenesis analysis and screening among NTCP orthologues from Old World monkeys, New World monkeys and prosimians, we determined key residues responsible for viral binding and internalization, respectively and identified marmosets as a suitable candidate for HBV infection. Primary marmoset hepatocytes and induced pluripotent stem cell-derived hepatocyte-like cells support HBV and more efficient woolly monkey HBV (WMHBV) infection. Adapted chimeric HBV genome harboring residues 1-48 of WMHBV preS1 generated here led to a more efficient infection than wild-type HBV in primary and stem cell derived marmoset hepatocytes. Collectively, our data demonstrate that minimal targeted simianization of HBV can break the species barrier in small NHPs, paving the path for an HBV primate model.
Collapse
Affiliation(s)
- Yongzhen Liu
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Thomas R Cafiero
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Debby Park
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Abhishek Biswas
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
- Research Computing, Office of Information Technology, Princeton University, Princeton, NJ, 08544, USA
| | - Benjamin Y Winer
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
- Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | | | - Yaron Bram
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Vasuretha Chandar
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Aoife K O' Connell
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, 02118, USA
| | - Hans P Gertje
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, 02118, USA
| | - Nicholas Crossland
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, 02118, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
11
|
Salama II, Sami SM, Salama SI, Abdel-Latif GA, Shaaban FA, Fouad WA, Abdelmohsen AM, Raslan HM. Current and novel modalities for management of chronic hepatitis B infection. World J Hepatol 2023; 15:585-608. [PMID: 37305370 PMCID: PMC10251278 DOI: 10.4254/wjh.v15.i5.585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/13/2023] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
Over 296 million people are estimated to have chronic hepatitis B viral infection (CHB), and it poses unique challenges for elimination. CHB is the result of hepatitis B virus (HBV)-specific immune tolerance and the presence of covalently closed circular DNA as mini chromosome inside the nucleus and the integrated HBV. Serum hepatitis B core-related antigen is the best surrogate marker for intrahepatic covalently closed circular DNA. Functional HBV “cure” is the durable loss of hepatitis B surface antigen (HBsAg), with or without HBsAg seroconversion and undetectable serum HBV DNA after completing a course of treatment. The currently approved therapies are nucleos(t)ide analogues, interferon-alpha, and pegylated-interferon. With these therapies, functional cure can be achieved in < 10% of CHB patients. Any variation to HBV or the host immune system that disrupts the interaction between them can lead to reactivation of HBV. Novel therapies may allow efficient control of CHB. They include direct acting antivirals and immunomodulators. Reduction of the viral antigen load is a crucial factor for success of immune-based therapies. Immunomodulatory therapy may lead to modulation of the host immune system. It may enhance/restore innate immunity against HBV (as toll-like-receptors and cytosolic retinoic acid inducible gene I agonist). Others may induce adaptive immunity as checkpoint inhibitors, therapeutic HBV vaccines including protein (HBsAg/preS and hepatitis B core antigen), monoclonal or bispecific antibodies and genetically engineered T cells to generate chimeric antigen receptor-T or T-cell receptor-T cells and HBV-specific T cells to restore T cell function to efficiently clear HBV. Combined therapy may successfully overcome immune tolerance and lead to HBV control and cure. Immunotherapeutic approaches carry the risk of overshooting immune responses causing uncontrolled liver damage. The safety of any new curative therapies should be measured in relation to the excellent safety of currently approved nucleos(t)ide analogues. Development of novel antiviral and immune modulatory therapies should be associated with new diagnostic assays used to evaluate the effectiveness or to predict response.
Collapse
Affiliation(s)
- Iman Ibrahim Salama
- Department of Community Medicine Research, National Research Centre, Giza 12411, Dokki, Egypt
| | - Samia M Sami
- Department of Child Health, National Research Centre, Giza 12411, Dokki, Egypt
| | - Somaia I Salama
- Department of Community Medicine Research, National Research Centre, Giza 12411, Dokki, Egypt
| | - Ghada A Abdel-Latif
- Department of Community Medicine Research, National Research Centre, Giza 12411, Dokki, Egypt
| | - Fatma A Shaaban
- Department of Child Health, National Research Centre, Giza 12411, Dokki, Egypt
| | - Walaa A Fouad
- Department of Community Medicine Research, National Research Centre, Giza 12411, Dokki, Egypt
| | - Aida M Abdelmohsen
- Department of Community Medicine Research, National Research Centre, Giza 12411, Dokki, Egypt
| | - Hala M Raslan
- Department of Internal Medicine, National Research Centre, Giza 12411, Dokki, Egypt
| |
Collapse
|
12
|
Nassal M. How many steps to a feasible mouse model of hepatitis B virus infection? Hepatology 2023; 77:1090-1094. [PMID: 35871466 DOI: 10.1002/hep.32684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 12/08/2022]
Affiliation(s)
- Michael Nassal
- Department of Internal Medicine 2/Molecular Biology , University Hospital Freiburg , Freiburg , Germany
| |
Collapse
|
13
|
Maya S, Hershkovich L, Cardozo-Ojeda EF, Shirvani-Dastgerdi E, Srinivas J, Shekhtman L, Uprichard SL, Berneshawi AR, Cafiero TR, Dahari H, Ploss A. Hepatitis delta virus RNA decline post inoculation in human NTCP transgenic mice is biphasic. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.17.528964. [PMID: 36824865 PMCID: PMC9949124 DOI: 10.1101/2023.02.17.528964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Background and Aims Chronic infection with hepatitis B and hepatitis delta viruses (HDV) is considered the most serious form of viral hepatitis due to more severe manifestations of and accelerated progression to liver fibrosis, cirrhosis, and hepatocellular carcinoma. There is no FDA-approved treatment for HDV and current interferon-alpha treatment is suboptimal. We characterized early HDV kinetics post inoculation and incorporated mathematical modeling to provide insights into host-HDV dynamics. Methods We analyzed HDV RNA serum viremia in 192 immunocompetent (C57BL/6) and immunodeficient (NRG) mice that did or did not transgenically express the HDV receptor - human sodium taurocholate co-transporting peptide (hNTCP). Results Kinetic analysis indicates an unanticipated biphasic decline consisting of a sharp first-phase and slower second-phase decline regardless of immunocompetence. HDV decline after re-inoculation again followed a biphasic decline; however, a steeper second-phase HDV decline was observed in NRG-hNTCP mice compared to NRG mice. HDV-entry inhibitor bulevirtide administration and HDV re-inoculation indicated that viral entry and receptor saturation are not major contributors to clearance, respectively. The biphasic kinetics can be mathematically modeled by assuming the existence of a non-specific binding compartment with a constant on/off-rate and the steeper second-phase decline by a loss of bound virus that cannot be returned as free virus to circulation. The model predicts that free HDV is cleared with a half-life of 18 minutes (standard error, SE: 2.4), binds to non-specific cells with a rate of 0.06 hour -1 (SE: 0.03), and returns as free virus with a rate of 0.23 hour -1 (SE: 0.03). Conclusions Understanding early HDV-host kinetics will inform pre-clinical therapeutic kinetic studies on how the efficacy of anti-HDV therapeutics can be affected by early kinetics of viral decline. LAY SUMMARY The persistence phase of HDV infection has been studied in some animal models, however, the early kinetics of HDV in vivo is incompletely understood. In this study, we characterize an unexpectedly HDV biphasic decline post inoculation in immunocompetent and immunodeficient mouse models and use mathematical modeling to provide insights into HDV-host dynamics. Understanding the kinetics of viral clearance in the blood can aid pre-clinical development and testing models for anti-HDV therapeutics.
Collapse
|
14
|
Yang Z, Sun B, Xiang J, Wu H, Kan S, Hao M, Chang L, Liu H, Wang D, Liu W. Role of epigenetic modification in interferon treatment of hepatitis B virus infection. Front Immunol 2022; 13:1018053. [PMID: 36325353 PMCID: PMC9618964 DOI: 10.3389/fimmu.2022.1018053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/27/2022] [Indexed: 11/28/2022] Open
Abstract
Human hepatitis B virus (HBV) is a small, enveloped DNA virus that causes acute and chronic hepatitis. Chronic hepatitis B (CHB) is associated with hepatocellular carcinoma pathogenesis. Interferons (IFNs) have been used for the treatment of CHB for a long time, with advantages including less treatment duration and sustained virological response. Presently, various evidence suggests that epigenetic modification of the viral covalently closed circular DNA (cccDNA) and the host genome is crucial for the regulation of viral activity. This modification includes histone acetylation, DNA methylation, N6-methyladenosine, and non-coding RNA modification. IFN treatment for CHB can stimulate multiple IFN-stimulated genes for inhibiting virus replication. IFNs can also affect the HBV life cycle through epigenetic modulation. In this review, we summarized the different mechanisms through which IFN-α inhibits HBV replication, including epigenetic regulation. Moreover, the mechanisms underlying IFN activity are discussed, which indicated its potential as a novel treatment for CHB. It is proposed that epigenetic changes such as histone acetylation, DNA methylation, m6A methylation could be the targets of IFN, which may offer a novel approach to HBV treatment.
Collapse
Affiliation(s)
- Zhijing Yang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Baozhen Sun
- Department of Hepatobiliary and Pancreas Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jingcheng Xiang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Han Wu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shaoning Kan
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ming Hao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Lu Chang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Huimin Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
- *Correspondence: Dongxu Wang, ; Weiwei Liu,
| | - Weiwei Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
- *Correspondence: Dongxu Wang, ; Weiwei Liu,
| |
Collapse
|
15
|
Hong X, Kawasawa YI, Menne S, Hu J. Host cell-dependent late entry step as determinant of hepatitis B virus infection. PLoS Pathog 2022; 18:e1010633. [PMID: 35714170 PMCID: PMC9246237 DOI: 10.1371/journal.ppat.1010633] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/30/2022] [Accepted: 06/01/2022] [Indexed: 12/19/2022] Open
Abstract
Hepatitis B virus (HBV) has a highly restricted host range and cell tropism. Other than the human sodium taurocholate cotransporting polypeptide (huNTCP), the HBV entry receptor, host determinants of HBV susceptibility are poorly understood. Woodchucks are naturally infected with woodchuck hepatitis virus (WHV), closely related to HBV, but not with HBV. Here, we investigated the capabilities of woodchuck hepatic and human non-hepatic cell lines to support HBV infection. DNA transfection assays indicated that all cells tested supported both HBV and WHV replication steps post entry, including the viral covalently closed circular DNA (cccDNA) formation, which is essential for establishing and sustaining infection. Ectopic expression of huNTCP rendered one, but not the other, woodchuck hepatic cell line and the non-hepatic human cell line competent to support productive HBV entry, defined here by cccDNA formation during de novo infection. All huNTCP-expressing cell lines tested became susceptible to infection with hepatitis D virus (HDV) that shares the same entry receptor and initial steps of entry with HBV, suggesting that a late entry/trafficking step(s) of HBV infection was defective in one of the two woodchuck cell lines. In addition, the non-susceptible woodchuck hepatic cell line became susceptible to HBV after fusion with human hepatic cells, suggesting the lack of a host cell-dependent factor(s) in these cells. Comparative transcriptomic analysis of the two woodchuck cell lines revealed widespread differences in gene expression in multiple biological processes that may contribute to HBV infection. In conclusion, other than huNTCP, neither human- nor hepatocyte-specific factors are essential for productive HBV entry. Furthermore, a late trafficking step(s) during HBV infection, following the shared entry steps with HDV and before cccDNA formation, is subject to host cell regulation and thus, a host determinant of HBV infection. Fundamental studies on, and development of therapies against, chronic hepatitis B virus (HBV) infection, which inflicts hundreds of millions worldwide, are impeded by deficiencies in HBV-susceptible animal models. HBV displays a strict species and cell tropism that are not clearly understood. Here, by studying replication of HBV, and the related woodchuck hepatitis virus, in human and woodchuck hepatic or non-hepatic cells, we found that non-hepatic human cells and some woodchuck hepatic cells could support productive HBV entry after expression of the human cell receptor for HBV. Moreover, by studying the infection of hepatitis D virus, which shares the same entry receptor and initial steps of entry with HBV, we could narrow down a host determinant of HBV infection operating at a late entry/trafficking step(s). Our study thus provides new insights into determinants of HBV host tropism and facilitates the development of HBV-susceptible animal models.
Collapse
Affiliation(s)
- Xupeng Hong
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Yuka Imamura Kawasawa
- Department of Pharmacology, Department of Biochemistry and Molecular Biology, Institute for Personalized Medicine, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Stephan Menne
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, District of Columbia, United States of America
| | - Jianming Hu
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
16
|
Enhanced host immune responses in presence of HCV facilitate HBV clearance in coinfection. Virol Sin 2022; 37:408-417. [PMID: 35523417 PMCID: PMC9243674 DOI: 10.1016/j.virs.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 03/21/2022] [Indexed: 01/21/2023] Open
Abstract
Hepatitis B virus (HBV)/Hepatitis C virus (HCV) coinfection is frequently observed because of the common infection routine. Despite the reciprocal inhibition exerted by HBV and HCV genomes, the coinfection of HBV and HCV is associated with more severe forms of liver diseases. However, the complexity of viral interference and underlying pathological mechanism is still unclarified. With the demonstration of absence of direct viral interplay, some in vitro studies suggest the indirect effects of viral-host interaction on viral dominance outcome. Here, we comprehensively investigated the viral replication and host immune responses which might mediate the interference between viruses in HBV/HCV coinfected Huh7-NTCP cells and immunocompetent HCV human receptors transgenic ICR mice. We found that presence of HCV significantly inhibited HBV replication in vitro and in vivo irrespective of the coinfection order, while HBV did not affect HCV replication. Pathological alteration was coincidently reproduced in coinfected mice. In addition to the participation of innate immune response, an involvement of HCV in up-regulating HBV-specific immune responses was described to facilitate HBV clearance. Our systems partially recapitulate HBV/HCV coinfection and unveil the uncharacterized adaptive anti-viral immune responses during coinfection, which renews the knowledge on the nature of indirect viral interaction during HBV/HCV coinfection. HCV inhibited HBV replication in Huh7-NTCP cells. HCV suppressed HBV in immunocompetent mice. Induced innate immune response by HCV limited HBV replication. Presence of HCV enhanced HBV specific immune response. Moderate and acute live injure was caused by HBV/HCV coinfection.
Collapse
|
17
|
Abstract
Hepatitis B virus (HBV) is a hepatotropic virus and an important human pathogen. There are an estimated 296 million people in the world that are chronically infected by this virus, and many of them will develop severe liver diseases including hepatitis, cirrhosis and hepatocellular carcinoma (HCC). HBV is a small DNA virus that replicates via the reverse transcription pathway. In this review, we summarize the molecular pathways that govern the replication of HBV and its interactions with host cells. We also discuss viral and non-viral factors that are associated with HBV-induced carcinogenesis and pathogenesis, as well as the role of host immune responses in HBV persistence and liver pathogenesis.
Collapse
Affiliation(s)
- Yu-Chen Chuang
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Kuen-Nan Tsai
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Jing-Hsiung James Ou
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| |
Collapse
|
18
|
Avdoshina DV, Kondrashova AS, Belikova MG, Bayurova EO. Murine Models of Chronic Viral Infections and Associated Cancers. Mol Biol 2022; 56:649-667. [PMID: 36217336 PMCID: PMC9534466 DOI: 10.1134/s0026893322050028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/07/2022]
Abstract
Viruses are now recognized as bona fide etiologic factors of human cancer. Carcinogenic viruses include Epstein– Barr virus (EBV), high-risk human papillomaviruses (HPVs), hepatitis B virus (HBV), hepatitis C virus (HCV), human T-cell leukemia virus type 1 (HTLV-1), human immunodeficiency virus type 1 (HIV-1, indirectly), and several candidate human cancer viruses. It is estimated that 15% of all human tumors worldwide are caused by viruses. Tumor viruses establish long-term persistent infections in humans, and cancer is an accidental side effect of viral replication strategies. Viruses are usually not complete carcinogens, supporting the concept that cancer results from the accumulation of multiple cooperating events, in which human cancer viruses display different, often opposing roles. The laboratory mouse Mus musculus is one of the best in vivo experimental systems for modeling human pathology, including viral infections and cancer. However, mice are unsusceptible to infection with the known carcinogenic viruses. Many murine models were developed to overcome this limitation and to address various aspects of virus-associated carcinogenesis, from tumors resulting from xenografts of human tissues and cells, including cancerous and virus infected, to genetically engineered mice susceptible to viral infections and associated cancer. The review considers the main existing models, analyzes their advantages and drawbacks, describes their applications, outlines the prospects of their further development.
Collapse
Affiliation(s)
- D. V. Avdoshina
- Chumakov Federal Scientific Center for Research and Development of Immunobiological Products, Russian Academy of Sciences (Polio Institute), 108819 Moscow, Russia
| | - A. S. Kondrashova
- Chumakov Federal Scientific Center for Research and Development of Immunobiological Products, Russian Academy of Sciences (Polio Institute), 108819 Moscow, Russia
| | - M. G. Belikova
- Chumakov Federal Scientific Center for Research and Development of Immunobiological Products, Russian Academy of Sciences (Polio Institute), 108819 Moscow, Russia ,Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia ,Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - E. O. Bayurova
- Chumakov Federal Scientific Center for Research and Development of Immunobiological Products, Russian Academy of Sciences (Polio Institute), 108819 Moscow, Russia ,Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| |
Collapse
|
19
|
Tian J, Li C, Li W. Entry of hepatitis B virus: going beyond NTCP to the nucleus. Curr Opin Virol 2021; 50:97-102. [PMID: 34428726 DOI: 10.1016/j.coviro.2021.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 01/05/2023]
Abstract
Hepatitis B virus (HBV) infection remains a major cause of liver diseases and hepatocellular carcinoma. HBV infection begins by low-affinity attachment to hepatocytes and subsequent binding with a specific receptor sodium taurocholate cotransporting polypeptide (NTCP) on sinusoidal-basolateral side of liver parenchymal cells. Following internalization with an unclear mechanism, HBV undergoes uncoating, capsid disassembling and culminates in delivering its genome into the nucleus and forms the covalently closed circular (ccc) DNA. In this review, we briefly summarize the current understanding of HBV entry and discuss some unanswered questions along the entry pathway beyond NTCP binding into the nucleus.
Collapse
Affiliation(s)
- Ji Tian
- National Institute of Biological Science, Beijing, 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Cong Li
- National Institute of Biological Science, Beijing, 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Wenhui Li
- National Institute of Biological Science, Beijing, 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China.
| |
Collapse
|
20
|
Appelman MD, Wettengel JM, Protzer U, Oude Elferink RPJ, van de Graaf SFJ. Molecular regulation of the hepatic bile acid uptake transporter and HBV entry receptor NTCP. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158960. [PMID: 33932583 DOI: 10.1016/j.bbalip.2021.158960] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/06/2021] [Accepted: 04/26/2021] [Indexed: 12/18/2022]
Abstract
Transporters expressed by hepatocytes and enterocytes play a critical role in maintaining the enterohepatic circulation of bile acids. The sodium taurocholate cotransporting polypeptide (NTCP), exclusively expressed at the basolateral side of hepatocytes, mediates the uptake of conjugated bile acids. In conditions where bile flow is impaired (cholestasis), pharmacological inhibition of NTCP-mediated bile acid influx is suggested to reduce hepatocellular damage due to bile acid overload. Furthermore, NTCP has been shown to play an important role in hepatitis B virus (HBV) and hepatitis Delta virus (HDV) infection by functioning as receptor for viral entry into hepatocytes. This review provides a summary of current molecular insight into the regulation of NTCP expression at the plasma membrane, hepatic bile acid transport, and NTCP-mediated viral infection.
Collapse
Affiliation(s)
- Monique D Appelman
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers Amsterdam, the Netherlands; Amsterdam Gastroenterology, Endocrinology, Metabolism (AGEM), Amsterdam, the Netherlands
| | - Jochen M Wettengel
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
| | - Ulrike Protzer
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany; German Center for Infection Research (DZIF), Munich partner site, Munich, Germany
| | - Ronald P J Oude Elferink
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers Amsterdam, the Netherlands; Amsterdam Gastroenterology, Endocrinology, Metabolism (AGEM), Amsterdam, the Netherlands; Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Stan F J van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers Amsterdam, the Netherlands; Amsterdam Gastroenterology, Endocrinology, Metabolism (AGEM), Amsterdam, the Netherlands; Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
21
|
Ko C, Su J, Festag J, Bester R, Kosinska AD, Protzer U. Intramolecular recombination enables the formation of hepatitis B virus (HBV) cccDNA in mice after HBV genome transfer using recombinant AAV vectors. Antiviral Res 2021; 194:105140. [PMID: 34284057 DOI: 10.1016/j.antiviral.2021.105140] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 01/11/2023]
Abstract
The mouse is not a natural host of hepatitis B virus (HBV) infection and - despite engraftment of hepatocytes with the HBV receptor - does not support formation of HBV covalently closed circular (ccc) DNA serving as a template for viral transcription and permitting persistent infection. In a recent study, cccDNA formation in mouse hepatocytes has been described following an HBV genome delivery by a recombinant, adeno-associated virus vector (rAAV) (Lucifora et al., 2017). The integrity of HBV cccDNA, its origin and functionality, however, remained open. In this study, we investigated the identity, origin, and functionality of cccDNA established in mice infected with rAAV carrying 1.3-fold overlength HBV genomes. We show that replication of HBV genotypes A, B, C and D can be initiated in mouse livers, and that cccDNA derived from all genotypes is detected. Restriction enzyme and exonuclease digestion as well as sequencing analysis of cccDNA amplicons revealed authentic HBV cccDNA without any detectable alteration compared to cccDNA established after HBV infection of human liver cells. Mouse livers transduced with a core protein-deficient HBV using rAAV still supported cccDNA formation demonstrating that the genesis of cccDNA was independent of HBV replication. When mice were infected with an rAAV-HBV1.3 carrying premature stop codons in the 5' but not in the 3' core protein open reading frame, the stop codon was partially replaced by the wild-type sequence. This strongly indicated that intramolecular recombination, based on >900 identical base pairs residing at the both ends of the HBV1.3 transgene was the origin of cccDNA formation. Accordingly, we observed a constant loss of cccDNA molecules from mouse livers over time, while HBeAg levels increased over the first two weeks after rAAV-HBV1.3 infection and remained constant thereafter, suggesting a minor contribution of the cccDNA molecules formed to viral transcription and protein expression. In summary, our results provide strong evidence that intramolecular recombination of an overlength, linear HBV genome, but not HBV genome recycling, enables cccDNA formation in rAAV-HBV mouse models.
Collapse
Affiliation(s)
- Chunkyu Ko
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany; Infectious Diseases Therapeutic Research Center, Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Jinpeng Su
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany
| | - Julia Festag
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany
| | - Romina Bester
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany
| | - Anna D Kosinska
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany; German Center for Infection Research (DZIF), Munich partner site, Munich, Germany
| | - Ulrike Protzer
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany; German Center for Infection Research (DZIF), Munich partner site, Munich, Germany.
| |
Collapse
|
22
|
Saraceni C, Birk J. A Review of Hepatitis B Virus and Hepatitis C Virus Immunopathogenesis. J Clin Transl Hepatol 2021; 9:409-418. [PMID: 34221927 PMCID: PMC8237136 DOI: 10.14218/jcth.2020.00095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/21/2021] [Accepted: 04/22/2021] [Indexed: 12/13/2022] Open
Abstract
Despite the advances in therapy, hepatitis B virus (HBV) and hepatitis C virus (HCV) still represent a significant global health burden, both as major causes of cirrhosis, hepatocellular carcinoma, and death worldwide. HBV is capable of incorporating its covalently closed circular DNA into the host cell's hepatocyte genome, making it rather difficult to eradicate its chronic stage. Successful viral clearance depends on the complex interactions between the virus and host's innate and adaptive immune response. One encouraging fact on hepatitis B is the development and effective distribution of the HBV vaccine. This has significantly reduced the spread of this virus. HCV is a RNA virus with high mutagenic capacity, thus enabling it to evade the immune system and have a high rate of chronic progression. High levels of HCV heterogeneity and its mutagenic capacity have made it difficult to create an effective vaccine. The recent advent of direct acting antivirals has ushered in a new era in hepatitis C therapy. Sustained virologic response is achieved with DAAs in 85-99% of cases. However, this still leads to a large population of treatment failures, so further advances in therapy are still needed. This article reviews the immunopathogenesis of HBV and HCV, their properties contributing to host immune system avoidance, chronic disease progression, vaccine efficacy and limitations, as well as treatment options and common pitfalls of said therapy.
Collapse
Affiliation(s)
- Corey Saraceni
- Correspondence to: Corey Saraceni, University of Connecticut School of Medicine, Department of Medicine, Division of Gastroenterology and Hepatology, 263 Farmington Avenue, Farmington, CT 06030-8074, USA. Tel: +1-203-733-7408, Fax: +1-860-679-3159, E-mail:
| | | |
Collapse
|
23
|
In Vivo Models of HDV Infection: Is Humanizing NTCP Enough? Viruses 2021; 13:v13040588. [PMID: 33807170 PMCID: PMC8065588 DOI: 10.3390/v13040588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 12/28/2022] Open
Abstract
The discovery of sodium taurocholate co-transporting polypeptide (NTCP) as a hepatitis B (HBV) and delta virus (HDV) entry receptor has encouraged the development of new animal models of infection. This review provides an overview of the different in vivo models that are currently available to study HDV either in the absence or presence of HBV. By presenting new advances and remaining drawbacks, we will discuss human host factors which, in addition to NTCP, need to be investigated or identified to enable a persistent HDV infection in murine hepatocytes. Detailed knowledge on species-specific factors involved in HDV persistence also shall contribute to the development of therapeutic strategies.
Collapse
|
24
|
Kruse RL, Barzi M, Legras X, Pankowicz FP, Furey N, Liao L, Xu J, Bissig-Choisat B, Slagle BL, Bissig KD. A hepatitis B virus transgenic mouse model with a conditional, recombinant, episomal genome. JHEP Rep 2021; 3:100252. [PMID: 33733079 PMCID: PMC7940981 DOI: 10.1016/j.jhepr.2021.100252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/27/2020] [Accepted: 01/04/2021] [Indexed: 01/21/2023] Open
Abstract
Background & Aims Development of new and more effective therapies against hepatitis B virus (HBV) is limited by the lack of suitable small animal models. The HBV transgenic mouse model containing an integrated overlength 1.3-mer construct has yielded crucial insights, but this model unfortunately lacks covalently closed circular DNA (cccDNA), the episomal HBV transcriptional template, and cannot be cured given that HBV is integrated in every cell. Methods To solve these 2 problems, we generated a novel transgenic mouse (HBV1.1X), which generates an excisable circular HBV genome using Cre/LoxP technology. This model possesses a HBV1.1-mer cassette knocked into the ROSA26 locus and is designed for stable expression of viral proteins from birth, like the current HBV transgenic mouse model, before genomic excision with the introduction of Cre recombinase. Results We demonstrated induction of recombinant cccDNA (rcccDNA) formation via viral or transgenic Cre expression in HBV1.1X mice, and the ability to regulate HBsAg and HBc expression with Cre in mice. Tamoxifen-inducible Cre could markedly downregulate baseline HBsAg levels from the integrated HBV genome. To demonstrate clearance of HBV from HBV1.1X mice, we administered adenovirus expressing Cre, which permanently and significantly reduced HBsAg and core antigen levels in the murine liver via rcccDNA excision and a subsequent immune response. Conclusions The HBV1.1X model is the first Cre-regulatable HBV transgenic mouse model and should be of value to mimic chronic HBV infection, with neonatal expression and tolerance of HBV antigens, and on-demand modulation of HBV expression. Lay summary Hepatitis B virus (HBV) can only naturally infect humans and chimpanzees. Mouse models have been developed with the HBV genome integrated into mouse chromosomes, but this prevents mice from being cured. We developed a new transgenic mouse model that allows for HBV to be excised from mouse chromosomes to form a recombinant circular DNA molecule resembling the natural circular HBV genome. HBV expression could be reduced in these mice, enabling curative therapies to be tested in this new mouse model.
Collapse
Affiliation(s)
- Robert L Kruse
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA.,Center for Stem Cells and Regenerative Medicine, Baylor College of Medicine, Houston, TX, USA.,Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX, USA.,Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Mercedes Barzi
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC, USA.,Y.T. and Alice Chen Pediatric Genetics and Genomics Research Center, Duke University, Durham, NC, USA
| | - Xavier Legras
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC, USA.,Y.T. and Alice Chen Pediatric Genetics and Genomics Research Center, Duke University, Durham, NC, USA
| | - Francis P Pankowicz
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA.,Center for Stem Cells and Regenerative Medicine, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Nika Furey
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA.,Center for Stem Cells and Regenerative Medicine, Baylor College of Medicine, Houston, TX, USA.,Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC, USA.,Y.T. and Alice Chen Pediatric Genetics and Genomics Research Center, Duke University, Durham, NC, USA
| | - Lan Liao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Janming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Beatrice Bissig-Choisat
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA.,Center for Stem Cells and Regenerative Medicine, Baylor College of Medicine, Houston, TX, USA.,Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC, USA.,Y.T. and Alice Chen Pediatric Genetics and Genomics Research Center, Duke University, Durham, NC, USA
| | - Betty L Slagle
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Karl-Dimiter Bissig
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA.,Center for Stem Cells and Regenerative Medicine, Baylor College of Medicine, Houston, TX, USA.,Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX, USA.,Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC, USA.,Y.T. and Alice Chen Pediatric Genetics and Genomics Research Center, Duke University, Durham, NC, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Duke Center for Virology, Duke University, Durham, NC, USA.,Duke Cancer Institute, Duke University, Durham, NC, USA
| |
Collapse
|
25
|
Pu F, Chen F, Liu J, Zhang Z, Shao Z. Immune Regulation of the cGAS-STING Signaling Pathway in the Tumor Microenvironment and Its Clinical Application. Onco Targets Ther 2021; 14:1501-1516. [PMID: 33688199 PMCID: PMC7935450 DOI: 10.2147/ott.s298958] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/19/2021] [Indexed: 12/25/2022] Open
Abstract
As a DNA receptor in the cytoplasm, cyclic GMP-AMP synthase (cGAS) contributes to the recognition of abnormal DNA in the cytoplasm and contributes to the stimulator of interferon genes (STING) signaling pathway. cGAS could mediate the expression of interferon-related genes, inflammatory-related factors, and downstream chemokines, thus initiating the immune response. The STING protein is a key effector downstream of the DNA receptor pathway. It is widely expressed across cell types such as immune cells, tumor cells, and stromal cells and plays a role in signal transduction for cytoplasmic DNA sensing and immunity. STING agonists, as novel agonists, are used in preclinical research and in the treatment of various tumors via clinical trials and have displayed attractive application prospects. Studying the cGAS-STING signaling pathway will deepen our understanding of tumor immunity and provide a basis for the research and development of antitumor drugs.
Collapse
Affiliation(s)
- Feifei Pu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Fengxia Chen
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, People's Republic of China
| | - Jianxiang Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Zhicai Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
26
|
Wu MR, Huang YY, Hsiao JK. Role of Sodium Taurocholate Cotransporting Polypeptide as a New Reporter and Drug-Screening Platform: Implications for Preventing Hepatitis B Virus Infections. Mol Imaging Biol 2021; 22:313-323. [PMID: 31140111 DOI: 10.1007/s11307-019-01373-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE Sodium taurocholate cotransporting polypeptide (NTCP) is a transmembrane protein responsible for delivering indocyanine green (ICG), an ideal infrared fluorescent dye, from extracellular space into the cytoplasm. Additionally, NTCP located in the hepatocyte membrane is the portal for hepatitis B and D virus (HBV/HDV) infections. This study verified the feasibility of NTCP as a reporter and further established a drug-screening platform for HBV/HDV infections. PROCEDURES NTCP was transduced into HT-29, a colorectal cancer cell line. To examine the use of NTCP as a reporter, NTCP-expressing cells were treated with ICG and examined through flow cytometry, an in vivo imaging system (IVIS), and confocal microscopy. Furthermore, ICG was administrated to NTCP-expressing tumor-bearing nude mice and examined using the IVIS. To study the drug-screening platform, NTCP-expressing cells were treated with cyclosporin A, an NTCP inhibitor, and ICG, and examined using a multimode detection platform. Moreover, nude mice were injected with NTCP inhibitors and ICG, and subsequently, their ICG signal was examined in vivo and in the blood. RESULTS In the reporter study, the ICG signal was higher in NTCP-expressing cells/tumors than in control cells/tumors after ICG treatment. In the drug-screening platform study, NTCP-expressing cells had decreased ICG intensity after treatment with NTCP inhibitors and ICG. Nude mice that were administered cyclosporin A had lower ICG intensity in the liver and higher intensity in the peripheral tissue and blood. CONCLUSIONS NTCP and ICG form an ideal reporter system with extensive applications in cancer biology, robust drug-drug interactions, and drug screening in HBV/HDV infections.
Collapse
Affiliation(s)
- Menq-Rong Wu
- Institute of Biomedical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan.,Department of Medical Imaging, Taipei Tzuchi General Hospital, Buddhist Tzu-Chi Medical Foundation, No.289, Jianguo Rd., Xindian Dist., New Taipei City, 23142, Taiwan
| | - Yi-You Huang
- Institute of Biomedical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Jong-Kai Hsiao
- Department of Medical Imaging, Taipei Tzuchi General Hospital, Buddhist Tzu-Chi Medical Foundation, No.289, Jianguo Rd., Xindian Dist., New Taipei City, 23142, Taiwan. .,School of Medicine, Tzu Chi University, No.701, Sec. 3, Zhongyang Rd., Hualien, 97004, Taiwan.
| |
Collapse
|
27
|
Loffredo-Verde E, Bhattacharjee S, Malo A, Festag J, Kosinska AD, Ringelhan M, Rim Sarkar S, Steiger K, Heikenwaelder M, Protzer U, Prazeres da Costa CU. Dynamic, Helminth-Induced Immune Modulation Influences the Outcome of Acute and Chronic Hepatitis B Virus Infection. J Infect Dis 2021; 221:1448-1461. [PMID: 31875228 DOI: 10.1093/infdis/jiz594] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 12/23/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Chronic hepatitis B develops more frequently in countries with high prevalence of helminth infections. The crosstalk between these 2 major liver-residing pathogens, Schistosoma mansoni and hepatitis B virus (HBV), is barely understood. METHODS We used state-of-the-art models for both acute and chronic HBV infection to study the pathogen-crosstalk during the different immune phases of schistosome infection. RESULTS Although liver pathology caused by schistosome infection was not affected by either acute or chronic HBV infection, S mansoni infection influenced HBV infection outcomes in a phase-dependent manner. Interferon (IFN)-γ secreting, HBV- and schistosome-specific CD8 T cells acted in synergy to reduce HBV-induced pathology during the TH1 phase and chronic phase of schistosomiasis. Consequently, HBV was completely rescued in IFN-γ-deficient or in TH2 phase coinfected mice demonstrating the key role of this cytokine. It is interesting to note that secondary helminth infection on the basis of persistent (chronic) HBV infection increased HBV-specific T-cell frequency and resulted in suppression of virus replication but failed to fully restore T-cell function and eliminate HBV. CONCLUSIONS Thus, schistosome-induced IFN-γ had a prominent antiviral effect that outcompeted immunosuppressive effects of TH2 cytokines, whereas HBV coinfection did not alter schistosome pathogenicity.
Collapse
Affiliation(s)
- Eva Loffredo-Verde
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University Munich, Munich, Germany.,Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany
| | - Sonakshi Bhattacharjee
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University Munich, Munich, Germany
| | - Antje Malo
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany
| | - Julia Festag
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany
| | - Anna D Kosinska
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany.,German Center for Infection Research, Munich partner site, Munich, Germany
| | - Marc Ringelhan
- 2nd Medical Department, University Hospital rechts der Isar, Technical University Munich, Munich, Germany.,German Center for Infection Research, Munich partner site, Munich, Germany
| | - Sabrina Rim Sarkar
- Comparative Experimental Pathology, Institute of Pathology, School of Medicine, Technical University Munich, Munich, Germany
| | - Katja Steiger
- Comparative Experimental Pathology, Institute of Pathology, School of Medicine, Technical University Munich, Munich, Germany
| | - Mathias Heikenwaelder
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany.,Institute of Molecular Immunology, University Hospital rechts der Isar, Technical University Munich, Munich, Germany
| | - Ulrike Protzer
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany.,German Center for Infection Research, Munich partner site, Munich, Germany
| | - Clarissa U Prazeres da Costa
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University Munich, Munich, Germany.,German Center for Infection Research, Munich partner site, Munich, Germany
| |
Collapse
|
28
|
Giersch K, Hermanussen L, Volz T, Kah J, Allweiss L, Casey J, Sureau C, Dandri M, Lütgehetmann M. Murine hepatocytes do not support persistence of Hepatitis D virus mono-infection in vivo. Liver Int 2021; 41:410-419. [PMID: 32997847 DOI: 10.1111/liv.14677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUNDS & AIMS As a result of the limited availability of in vivo models for hepatitis D virus (HDV), treatment options for HDV chronically infected patients are still scant. The discovery of sodium taurocholate cotransporting polypeptide (NTCP) as HDV entry receptor has enabled the development of new infection models. AIM To comparatively assess the efficacy and persistence of HDV mono-infection in murine and human hepatocytes in vivo. METHODS Mice with humanized NTCP (hNTCPed84-87 mice) were generated by editing amino acid residues 84-87 of murine NTCP in C57BL/6J mice. HDV infection was assessed in hNTCPed84-87 mice and in immune deficient uPA/SCID/beige (USB) mice, whose livers were reconstituted with human or murine (hNTCPed84-87 ) hepatocytes. Livers were analysed between 5 and 42 days post-HDV inoculation by qRT-PCR, immunofluorescence and RNA in situ hybridization (ISH). RESULTS hNTCPed84-87 mice could be infected with HDV genotype 1 or 3. ISH analysis demonstrated the presence of antigenomic HDV RNA positive murine hepatocytes with both genotypes, proving initiation of HDV replication. Strikingly, murine hepatocytes cleared HDV within 21 days both in immunocompetent hNTCPed84-87 mice and in immunodeficient USB mice xenografted with murine hepatocytes. In contrast, HDV infection remained stable for at least 42 days in human hepatocytes. Intrinsic innate responses were not enhanced in any of the HDV mono-infected cells and livers. CONCLUSION These findings suggest that in addition to NTCP, further species-specific factors limit HDV infection efficacy and persistence in murine hepatocytes. Identifying such species barriers may be crucial to develop novel potential therapeutic targets of HDV.
Collapse
Affiliation(s)
- Katja Giersch
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lennart Hermanussen
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tassilo Volz
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Janine Kah
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lena Allweiss
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - John Casey
- Georgetown University Medical Center, Washington, DC, USA
| | - Camille Sureau
- Institut National de la Transfusion Sanguine, Paris, France
| | - Maura Dandri
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems site, Borstel, Germany
| | - Marc Lütgehetmann
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems site, Borstel, Germany.,Department of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
29
|
Luo M, Liu Y, Liu N, Shao W, Ming L, Liu J, Xie Y. Proscillaridin A inhibits hepatocellular carcinoma progression through inducing mitochondrial damage and autophagy. Acta Biochim Biophys Sin (Shanghai) 2021; 53:19-28. [PMID: 33201987 DOI: 10.1093/abbs/gmaa139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths globally. At present, drug options for systemic treatment of HCC are very limited. There is an urgent need to develop additional effective drugs for HCC treatment. In the present study, we found that proscillaridin A (ProA), a cardiac glycoside, exerted a strong anticancer effect on multiple HCC cell lines. ProA significantly inhibited the cell proliferation, migration, and invasion of HCC cells. ProA also had a marked inhibitory effect on the progression of HCC in the MHCC97H xenograft nude mouse model. ProA-mediated suppression of HCC was closely related to cell apoptosis. ProA-treated HCC cells displayed significant mitochondrial damage and elevated reactive oxygen species production, resulting in profound cell apoptosis. Meanwhile, ProA also played a role in autophagy induction in HCC cells. Defects in autophagy partially relieved ProA's anticancer effect in HCC cells. Our findings demonstrate that ProA can effectively inhibit HCC progression and may serve as a potential therapeutic agent for HCC treatment.
Collapse
Affiliation(s)
- Mengjun Luo
- Key Laboratory of Medical Molecular Virology (NHC & MOE & CAMS), Institutes of Biomedical Sciences, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences,Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yanfeng Liu
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Nannan Liu
- Key Laboratory of Medical Molecular Virology (NHC & MOE & CAMS), Institutes of Biomedical Sciences, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences,Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Weiqing Shao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Lijun Ming
- Key Laboratory of Medical Molecular Virology (NHC & MOE & CAMS), Institutes of Biomedical Sciences, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences,Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jing Liu
- Key Laboratory of Medical Molecular Virology (NHC & MOE & CAMS), Institutes of Biomedical Sciences, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences,Shanghai Medical College, Fudan University, Shanghai 200032, China
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology (NHC & MOE & CAMS), Institutes of Biomedical Sciences, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences,Shanghai Medical College, Fudan University, Shanghai 200032, China
- Children's Hospital, Fudan University, Shanghai 201199, China
| |
Collapse
|
30
|
Masemann D, Ludwig S, Boergeling Y. Advances in Transgenic Mouse Models to Study Infections by Human Pathogenic Viruses. Int J Mol Sci 2020; 21:E9289. [PMID: 33291453 PMCID: PMC7730764 DOI: 10.3390/ijms21239289] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 02/08/2023] Open
Abstract
Medical research is changing into direction of precision therapy, thus, sophisticated preclinical models are urgently needed. In human pathogenic virus research, the major technical hurdle is not only to translate discoveries from animals to treatments of humans, but also to overcome the problem of interspecies differences with regard to productive infections and comparable disease development. Transgenic mice provide a basis for research of disease pathogenesis after infection with human-specific viruses. Today, humanized mice can be found at the very heart of this forefront of medical research allowing for recapitulation of disease pathogenesis and drug mechanisms in humans. This review discusses progress in the development and use of transgenic mice for the study of virus-induced human diseases towards identification of new drug innovations to treat and control human pathogenic infectious diseases.
Collapse
Affiliation(s)
| | | | - Yvonne Boergeling
- Institute of Virology Muenster, University of Muenster, 48149 Muenster, Germany; (D.M.); (S.L.)
| |
Collapse
|
31
|
TLR4/AP-1-Targeted Anti-Inflammatory Intervention Attenuates Insulin Sensitivity and Liver Steatosis. Mediators Inflamm 2020; 2020:2960517. [PMID: 33013197 PMCID: PMC7519185 DOI: 10.1155/2020/2960517] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/15/2020] [Accepted: 09/04/2020] [Indexed: 01/17/2023] Open
Abstract
Insulin resistance has been shown to be the common pathogenesis of many metabolic diseases. Metainflammation is one of the important characteristics of insulin resistance. Macrophage polarization mediates the production and development of metainflammation. Toll-like receptor 4 (TLR4) mediates macrophage activity and is probably the intersection of immunity and metabolism, but the detailed mechanism is probably not fully understood. Activated protein 1 (AP1) signaling pathway is very important in macrophage activation-mediated inflammation. However, it is unclear whether AP1 signaling pathway mediates metabolic inflammation in the liver. We aimed to investigate the effects of macrophage TLR4-AP1 signaling pathway on hepatocyte metabolic inflammation, insulin sensitivity, and lipid deposition, as well as to explore the potential of TLR4-AP1 as new intervention targets of insulin resistance and liver steatosis. TLR4 and AP1 were silenced in the RAW264.7 cells by lentiviral siRNA transfection. In vivo transduction of lentivirus was administered in mice fed with high-fat diet. Insulin sensitivity and inflammation were evaluated in the treated cells or animals. Our results indicated that TLR4/AP-1 siRNA transfection alleviated high-fat diet-induced systemic and hepatic inflammation, obesity, and insulin resistance in mice. Additionally, TLR4/AP-1 siRNA transfection mitigated palmitic acid- (PA-) induced inflammation in RAW264.7 cells and metabolic abnormalities in cocultured AML hepatocytes. Herein, we propose that TLR4-AP1 signaling pathway activation plays a crucial role in high fat- or PA-induced metabolic inflammation and insulin resistance in hepatocytes. Intervention of the TLR4 expression regulates macrophage polarization and metabolic inflammation and further alleviates insulin resistance and lipid deposition in hepatocytes.
Collapse
|
32
|
Burwitz BJ, Zhou Z, Li W. Animal models for the study of human hepatitis B and D virus infection: New insights and progress. Antiviral Res 2020; 182:104898. [PMID: 32758525 DOI: 10.1016/j.antiviral.2020.104898] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/09/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022]
Abstract
Hepatitis B virus (HBV) is a member of the Hepadnaviridae family and infects hepatocytes, leading to liver pathology in acutely and chronically infected individuals. Co-infection with Hepatitis D virus (HDV), which requires the surface proteins of HBV to replicate, can exacerbate this disease progression. Thus, the >250 million people living with chronic HBV infection, including 13 million co-infected with HDV, would significantly benefit from an effective and affordable curative treatment. Animal models are crucial to the development of innovative disease therapies, a paradigm repeated again and again throughout the fields of immunology, neurology, reproduction, and development. Unfortunately, HBV has a highly-restricted species tropism, infecting limited species including humans, chimpanzees, and treeshrews. The first experimentally controlled studies of HBV infection were following inoculation of human volunteers in 1942, which identified the transmissibility of hepatitis through serum transfer and led to the hypothesis that the etiological agent was viral. Subsequent research in chimpanzees (Desmyter et al., 1971; Lichter, 1969) and later in other species, such as the treeshrews (Walter et al., 1996; Yan et al., 1996), further confirmed the viral origin of hepatitis B. Shortly thereafter, HBV-like viral infections were identified in woodchucks (Summers et al., 1978; Werner et al., 1979) and ducks, and much of our understanding of HBV replication can be attributed to these important models. However, with the exodus of chimpanzees from research and the limited reagents and historical data for treeshrews and other understudied species, there remains an urgent need to identify physiologically relevant models of chronic HBV infection. While large strides have been made in generating such models, particularly over the past two decades, there is still no available model that faithfully recapitulates the immunity and pathogenesis of HBV infection. Here, we discuss recent advancements in the generation of murine and non-human primate (NHP) models of HBV/HDV infection.
Collapse
Affiliation(s)
- Benjamin J Burwitz
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, 97006, USA.
| | - Zhongmin Zhou
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China; National Institute of Biological Sciences, Beijing, 102206, China.
| | - Wenhui Li
- National Institute of Biological Sciences, Beijing, 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China.
| |
Collapse
|
33
|
Wettengel JM, Burwitz BJ. Innovative HBV Animal Models Based on the Entry Receptor NTCP. Viruses 2020; 12:E828. [PMID: 32751581 PMCID: PMC7472226 DOI: 10.3390/v12080828] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B is a major global health problem, with an estimated 257 million chronically infected patients and almost 1 million deaths per year. The causative agent is hepatitis B virus (HBV), a small, enveloped, partially double-stranded DNA virus. HBV has a strict species specificity, naturally infecting only humans and chimpanzees. Sodium taurocholate co-transporting polypeptide (NTCP), a bile acid transporter expressed on hepatocytes, has been shown to be one of the key factors in HBV infection, playing a crucial role in the HBV entry process in vitro and in vivo. Variations in the amino acid sequence of NTCP can inhibit HBV infection and, therefore, contributes, in part, to the species barrier. This discovery has revolutionized the search for novel animal models of HBV. Indeed, it was recently shown that variations in the amino acid sequence of NTCP represent the sole species barrier for HBV infection in macaques. Here, we review what is known about HBV entry through the NTCP receptor and highlight how this knowledge has been harnessed to build new animal models for the study of HBV pathogenesis and curative therapies.
Collapse
Affiliation(s)
- Jochen M. Wettengel
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Trogerstr. 30, 81675 Munich, Germany;
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, 505 N.W. 185th Avenue Beaverton, Tanasbourne, OR 97006, USA
| | - Benjamin J. Burwitz
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, 505 N.W. 185th Avenue Beaverton, Tanasbourne, OR 97006, USA
| |
Collapse
|
34
|
Sugahara G, Ishida Y, Sun J, Tateno C, Saito T. Art of Making Artificial Liver: Depicting Human Liver Biology and Diseases in Mice. Semin Liver Dis 2020; 40:189-212. [PMID: 32074631 PMCID: PMC8629128 DOI: 10.1055/s-0040-1701444] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Advancement in both bioengineering and cell biology of the liver led to the establishment of the first-generation humanized liver chimeric mouse (HLCM) model in 2001. The HLCM system was initially developed to satisfy the necessity for a convenient and physiologically representative small animal model for studies of hepatitis B virus and hepatitis C virus infection. Over the last two decades, the HLCM system has substantially evolved in quality, production capacity, and utility, thereby growing its versatility beyond the study of viral hepatitis. Hence, it has been increasingly employed for a variety of applications including, but not limited to, the investigation of drug metabolism and pharmacokinetics and stem cell biology. To date, more than a dozen distinctive HLCM systems have been established, and each model system has similarities as well as unique characteristics, which are often perplexing for end-users. Thus, this review aims to summarize the history, evolution, advantages, and pitfalls of each model system with the goal of providing comprehensive information that is necessary for researchers to implement the ideal HLCM system for their purposes. Furthermore, this review article summarizes the contribution of HLCM and its derivatives to our mechanistic understanding of various human liver diseases, its potential for novel applications, and its current limitations.
Collapse
Affiliation(s)
- Go Sugahara
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California,Research & Development Department, PhoenixBio, Co., Ltd, Higashi-Hiroshima, Hiroshima, Japan
| | - Yuji Ishida
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California,Research & Development Department, PhoenixBio, Co., Ltd, Higashi-Hiroshima, Hiroshima, Japan
| | - Jeffrey Sun
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Chise Tateno
- Research & Development Department, PhoenixBio, Co., Ltd, Higashi-Hiroshima, Hiroshima, Japan
| | - Takeshi Saito
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California,USC Research Center for Liver Diseases, Los Angeles, California
| |
Collapse
|
35
|
SAMD4 family members suppress human hepatitis B virus by directly binding to the Smaug recognition region of viral RNA. Cell Mol Immunol 2020; 18:1032-1044. [PMID: 32341522 PMCID: PMC7223975 DOI: 10.1038/s41423-020-0431-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 12/16/2022] Open
Abstract
HBV infection initiates hepatitis B and promotes liver cirrhosis and hepatocellular carcinoma. IFN-α is commonly used in hepatitis B therapy, but how it inhibits HBV is not fully understood. We screened 285 human interferon-stimulated genes (ISGs) for anti-HBV activity using a cell-based assay, which revealed several anti-HBV ISGs. Among these ISGs, SAMD4A was the strongest suppressor of HBV replication. We found the binding site of SAMD4A in HBV RNA, which was a previously unidentified Smaug recognition region (SRE) sequence conserved in HBV variants. SAMD4A binds to the SRE site in viral RNA to trigger its degradation. The SAM domain in SAMD4A is critical for RNA binding and the C-terminal domain of SAMD4A is required for SAMD4A anti-HBV function. Human SAMD4B is a homolog of human SAMD4A but is not an ISG, and the murine genome encodes SAMD4. All these SAMD4 proteins suppressed HBV replication when overexpressed in vitro and in vivo. We also showed that knocking out the Samd4 gene in hepatocytes led to a higher level of HBV replication in mice and AAV-delivered SAMD4A expression reduced the virus titer in HBV-producing transgenic mice. In addition, a database analysis revealed a negative correlation between the levels of SAMD4A/B and HBV in patients. Our data suggest that SAMD4A is an important anti-HBV ISG for use in IFN therapy of hepatitis B and that the levels of SAMD4A/B expression are related to HBV sensitivity in humans.
Collapse
|
36
|
Chromatin remodelling factor BAF155 protects hepatitis B virus X protein (HBx) from ubiquitin-independent proteasomal degradation. Emerg Microbes Infect 2020; 8:1393-1405. [PMID: 31533543 PMCID: PMC6758689 DOI: 10.1080/22221751.2019.1666661] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
HBx is a short-lived protein whose rapid turnover is mainly regulated by ubiquitin-dependent proteasomal degradation pathways. Our prior work identified BAF155 to be one of the HBx binding partners. Since BAF155 has been shown to stabilize other members of the SWI/SNF chromatin remodelling complex by attenuating their proteasomal degradation, we proposed that BAF155 might also contribute to stabilizing HBx protein in a proteasome-dependent manner. Here we report that BAF155 protected hepatitis B virus X protein (HBx) from ubiquitin-independent proteasomal degradation by competing with the 20S proteasome subunit PSMA7 to bind to HBx. BAF155 was found to directly interact with HBx via binding of its SANT domain to the HBx region between amino acid residues 81 and 120. Expression of either full-length BAF155 or SANT domain increased HBx protein levels whereas siRNA-mediated knockdown of endogenous BAF155 reduced HBx protein levels. Increased HBx stability and steady-state level by BAF155 were attributable to inhibition of ubiquitin-independent and PSMA7-mediated protein degradation. Consequently, overexpression of BAF155 enhanced the transcriptional transactivation function of HBx, activated protooncogene expression and inhibited hepatoma cell clonogenicity. These results suggest that BAF155 plays important roles in ubiquitin-independent degradation of HBx, which may be related to the pathogenesis and carcinogenesis of HBV-associated HCC.
Collapse
|
37
|
Yang X, Cai W, Sun X, Bi Y, Zeng C, Zhao X, Zhou Q, Xu T, Xie Q, Sun P, Zhou X. Defined host factors support HBV infection in non-hepatic 293T cells. J Cell Mol Med 2020; 24:2507-2518. [PMID: 31930674 PMCID: PMC7028854 DOI: 10.1111/jcmm.14944] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/11/2019] [Accepted: 12/09/2019] [Indexed: 02/05/2023] Open
Abstract
Hepatitis B virus (HBV) is a human hepatotropic virus. However, HBV infection also occurs at extrahepatic sites, but the relevant host factors required for HBV infection in non-hepatic cells are only partially understood. In this article, a non-hepatic cell culture model is constructed by exogenous expression of four host genes (NTCP, HNF4α, RXRα and PPARα) in human non-hepatic 293T cells. This cell culture model supports HBV entry, transcription and replication, as evidenced by the detection of HBV pgRNA, HBV cccDNA, HBsAg, HBeAg, HBcAg and HBVDNA. Our results suggest that the above cellular factors may play a key role in HBV infection of non-hepatic cells. This model will facilitate the identification of host genes that support extrahepatic HBV infection.
Collapse
Affiliation(s)
- Xiaoqiang Yang
- Stem Cell Research CenterShantou University Medical CollegeShantouChina
- The Center for Reproductive MedicineShantou University Medical CollegeShantouChina
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular ImmunopathologyShantou University Medical CollegeShantouChina
- Medical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Weiwen Cai
- Stem Cell Research CenterShantou University Medical CollegeShantouChina
- The Center for Reproductive MedicineShantou University Medical CollegeShantouChina
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular ImmunopathologyShantou University Medical CollegeShantouChina
| | - Xiaoyue Sun
- Stem Cell Research CenterShantou University Medical CollegeShantouChina
- The Center for Reproductive MedicineShantou University Medical CollegeShantouChina
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular ImmunopathologyShantou University Medical CollegeShantouChina
| | - Yanwei Bi
- Stem Cell Research CenterShantou University Medical CollegeShantouChina
- The Center for Reproductive MedicineShantou University Medical CollegeShantouChina
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular ImmunopathologyShantou University Medical CollegeShantouChina
| | - Chui Zeng
- Stem Cell Research CenterShantou University Medical CollegeShantouChina
- The Center for Reproductive MedicineShantou University Medical CollegeShantouChina
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular ImmunopathologyShantou University Medical CollegeShantouChina
| | - XiaoYu Zhao
- Stem Cell Research CenterShantou University Medical CollegeShantouChina
- The Center for Reproductive MedicineShantou University Medical CollegeShantouChina
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular ImmunopathologyShantou University Medical CollegeShantouChina
| | - Qi Zhou
- Stem Cell Research CenterShantou University Medical CollegeShantouChina
- The Center for Reproductive MedicineShantou University Medical CollegeShantouChina
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular ImmunopathologyShantou University Medical CollegeShantouChina
| | - Tian Xu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular ImmunopathologyShantou University Medical CollegeShantouChina
| | - Qingdong Xie
- Stem Cell Research CenterShantou University Medical CollegeShantouChina
- The Center for Reproductive MedicineShantou University Medical CollegeShantouChina
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular ImmunopathologyShantou University Medical CollegeShantouChina
| | - Pingnan Sun
- Stem Cell Research CenterShantou University Medical CollegeShantouChina
- The Center for Reproductive MedicineShantou University Medical CollegeShantouChina
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular ImmunopathologyShantou University Medical CollegeShantouChina
| | - Xiaoling Zhou
- Stem Cell Research CenterShantou University Medical CollegeShantouChina
- The Center for Reproductive MedicineShantou University Medical CollegeShantouChina
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular ImmunopathologyShantou University Medical CollegeShantouChina
| |
Collapse
|
38
|
Li F, Wang Z, Hu F, Su L. Cell Culture Models and Animal Models for HBV Study. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1179:109-135. [PMID: 31741335 DOI: 10.1007/978-981-13-9151-4_5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Highly representative and relevant cell and mouse models are required for HBV study, including uncovering its lifecycle, investigation of the viral-host interaction, and development and evaluation of the novel antiviral therapy. During the past 40 years, both HBV cell culture models and animal models have evolved over several generations, each with significant improvement for specific purposes. In one aspect, HBV cell culture models experienced the original noninfection model including HBV plasmid DNA transfection and HBV genome integrated stable cells such as HepG2.2.15 which constitutively produces HBV virus and HepAD38 cells and its derivatives which drug-regulated HBV production. As for HBV infection models, HepaRG cells once dominated the HBV infection field for over a decade, but its complicated and labor-extensive cell differentiation procedures discouraged primary researchers from stepping in the field. The identification of human NTCP as HBV receptor evoked great enthusiasm of the whole HBV field, and its readily adaptive characteristic makes it popular in many HBV laboratories. Recombinant cccDNA (rc-cccDNA) emerged recently aiming to tackle the very basic question of how to eventually eradicate cccDNA without HBV real virus infection. In the other aspect, HBV transgenic mouse was firstly generated in the 1990s, which was helpful to decipher HBV production in vivo. However, the HBV transgenic mice were naturally immune tolerant to HBV viral products. Subsequently, a series of nonintegrated HBV mouse models were generated through plasmid hydrodynamic tail vein injection and viral vector-mediated delivery approaches, and HBV full life cycle was incomplete as cccDNA was not formed from HBV relaxed circular DNA (rcDNA). Human NTCP transgenic mouse still could not support productive HBV infection, and humanized mouse liver with human hepatocytes which supported whole HBV life cycle still dominates HBV infection in vivo, a value but expensive model until now. Other methods to empower mouse to carry HBV cccDNA were also exploited. In this chapter, we summarized the advantages and disadvantages of each model historically and provided protocols for HBV infection in HepG2-NTCP cells, HBV rc-cccDNA transfection in HepG2 cells, and HBV infection in NRG-Fah-/- liver humanized mouse.
Collapse
Affiliation(s)
- Feng Li
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Zhuo Wang
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Fengyu Hu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lishan Su
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
39
|
Jiang LQ, Wang TY, Wang Y, Wang ZY, Bai YT. Co-disposition of chitosan nanoparticles by multi types of hepatic cells and their subsequent biological elimination: the mechanism and kinetic studies at the cellular and animal levels. Int J Nanomedicine 2019; 14:6035-6060. [PMID: 31534335 PMCID: PMC6681437 DOI: 10.2147/ijn.s208496] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/03/2019] [Indexed: 12/12/2022] Open
Abstract
Background: The clearance of nanomaterials (NMs) from the liver is essential for clinical safety, and their hepatic clearance is primarily determined by the co-disposition process of various types of hepatic cells. Studies of this process and the subsequent clearance routes are urgently needed for organic NMs, which are used as drug carriers more commonly than the inorganic ones. Materials and methods: In this study, the co-disposition of chitosan-based nanoparticles (CsNps) by macrophages and hepatocytes at both the cellular and animal levels as well as their subsequent biological elimination were investigated. RAW264.7 and Hepa1-6 cells were used as models of Kupffer cells and hepatocytes, respectively. Results: The cellular studies showed that CsNps released from RAW264.7 cells could enter Hepa1-6 cells through both clathrin- and caveolin-mediated endocytosis. The transport from Kupffer cells to hepatocytes was also studied in mice, and it was observed that most CsNps localized to the hepatocytes after intravenous injection. Following the distribution in hepatocytes, the hepatobiliary-fecal excretion route was shown to be the primary elimination route for CsNps, besides the kidney-urinary excretion route. The elimination of CsNps in mice was a lengthy process, with a half time of about 2 months. Conclusion: The demonstration in this study of the transport of CsNps from macrophages to hepatocytes and the subsequent hepatobiliary-fecal excretion provides basic information for the future development and clinical application of NMs.
Collapse
Affiliation(s)
- Li-Qun Jiang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Ting-Yu Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yun Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Zi-Yao Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yu-Ting Bai
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
- School of Stomatology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
40
|
Torresi J, Tran BM, Christiansen D, Earnest-Silveira L, Schwab RHM, Vincan E. HBV-related hepatocarcinogenesis: the role of signalling pathways and innovative ex vivo research models. BMC Cancer 2019; 19:707. [PMID: 31319796 PMCID: PMC6637598 DOI: 10.1186/s12885-019-5916-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 07/09/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) is the leading cause of liver cancer, but the mechanisms by which HBV causes liver cancer are poorly understood and chemotherapeutic strategies to cure liver cancer are not available. A better understanding of how HBV requisitions cellular components in the liver will identify novel therapeutic targets for HBV associated hepatocellular carcinoma (HCC). MAIN BODY The development of HCC involves deregulation in several cellular signalling pathways including Wnt/FZD/β-catenin, PI3K/Akt/mTOR, IRS1/IGF, and Ras/Raf/MAPK. HBV is known to dysregulate several hepatocyte pathways and cell cycle regulation resulting in HCC development. A number of these HBV induced changes are also mediated through the Wnt/FZD/β-catenin pathway. The lack of a suitable human liver model for the study of HBV has hampered research into understanding pathogenesis of HBV. Primary human hepatocytes provide one option; however, these cells are prone to losing their hepatic functionality and their ability to support HBV replication. Another approach involves induced-pluripotent stem (iPS) cell-derived hepatocytes. However, iPS technology relies on retroviruses or lentiviruses for effective gene delivery and pose the risk of activating a range of oncogenes. Liver organoids developed from patient-derived liver tissues provide a significant advance in HCC research. Liver organoids retain the characteristics of their original tissue, undergo unlimited expansion, can be differentiated into mature hepatocytes and are susceptible to natural infection with HBV. CONCLUSION By utilizing new ex vivo techniques like liver organoids it will become possible to develop improved and personalized therapeutic approaches that will improve HCC outcomes and potentially lead to a cure for HBV.
Collapse
Affiliation(s)
- Joseph Torresi
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010 Australia
| | - Bang Manh Tran
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010 Australia
| | - Dale Christiansen
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010 Australia
| | - Linda Earnest-Silveira
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010 Australia
| | - Renate Hilda Marianne Schwab
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010 Australia
| | - Elizabeth Vincan
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010 Australia
- Victorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010 Australia
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA 6845 Australia
| |
Collapse
|
41
|
Abstract
Hepatitis B virus (HBV) affects more than 257 million people globally, resulting in progressively worsening liver disease, manifesting as fibrosis, cirrhosis, and hepatocellular carcinoma. The exceptionally narrow species tropism of HBV restricts its natural hosts to humans and non-human primates, including chimpanzees, gorillas, gibbons, and orangutans. The unavailability of completely immunocompetent small-animal models has contributed to the lack of curative therapeutic interventions. Even though surrogates allow the study of closely related viruses, their host genetic backgrounds, immune responses, and molecular virology differ from those of HBV. Various different models, based on either pure murine or xenotransplantation systems, have been introduced over the past years, often making the choice of the optimal model for any given question challenging. Here, we offer a concise review of in vivo model systems employed to study HBV infection and steps in the HBV life cycle or pathogenesis.
Collapse
Affiliation(s)
| | - Catherine Cherry
- Section of Virology, Department of Medicine, Imperial College London, W2 1PGLondon, U.K
| | - Harry Gunn
- Section of Virology, Department of Medicine, Imperial College London, W2 1PGLondon, U.K
| | - Marcus Dorner
- Section of Virology, Department of Medicine, Imperial College London, W2 1PGLondon, U.K
| |
Collapse
|
42
|
Thi EP, Dhillon AP, Ardzinski A, Bidirici-Ertekin L, Cobarrubias KD, Cuconati A, Kondratowicz AS, Kwak K, Li AHL, Miller A, Pasetka C, Pei L, Phelps JR, Snead NM, Wang X, Ye X, Sofia MJ, Lee ACH. ARB-1740, a RNA Interference Therapeutic for Chronic Hepatitis B Infection. ACS Infect Dis 2019; 5:725-737. [PMID: 30403127 DOI: 10.1021/acsinfecdis.8b00191] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Current approved nucleoside analogue treatments for chronic hepatitis B virus (HBV) infection are effective at controlling viral titer but are not curative and have minimal impact on the production of viral proteins such as surface antigen (HBsAg), the HBV envelope protein believed to play a role in maintaining the immune tolerant state required for viral persistence. Novel agents are needed to effect HBV cure, and reduction of HBV antigenemia may potentiate activation of effective and long-lasting host immune control. ARB-1740 is a clinical stage RNA interference agent composed of three siRNAs delivered using lipid nanoparticle technology. In a number of cell and animal models of HBV, ARB-1740 caused HBV RNA reduction, leading to inhibition of multiple elements of the viral life cycle including HBsAg, HBeAg, and HBcAg viral proteins as well as replication marker HBV DNA. ARB-1740 demonstrated pan-genotypic activity in vitro and in vivo, targeting three distinct highly conserved regions of the HBV genome, and effectively inhibited replication of nucleoside analogue-resistant HBV variants. Combination of ARB-1740 with a capsid inhibitor and pegylated interferon-alpha led to greater liver HBsAg reduction which correlated with more robust induction of innate immune responses in a human chimeric mouse model of HBV. The preclinical profile of ARB-1740 demonstrates the promise of RNA interference and HBV antigen reduction in treatment strategies driving toward a cure for HBV.
Collapse
Affiliation(s)
- Emily P. Thi
- Arbutus Biopharma, 701 Veterans Circle, Warminster, Pennsylvania 18974 United States
| | - Ammen P. Dhillon
- Arbutus Biopharma, 701 Veterans Circle, Warminster, Pennsylvania 18974 United States
| | - Andrzej Ardzinski
- Arbutus Biopharma, 701 Veterans Circle, Warminster, Pennsylvania 18974 United States
| | - Lale Bidirici-Ertekin
- Arbutus Biopharma, 701 Veterans Circle, Warminster, Pennsylvania 18974 United States
| | - Kyle D. Cobarrubias
- Arbutus Biopharma, 701 Veterans Circle, Warminster, Pennsylvania 18974 United States
| | - Andrea Cuconati
- Arbutus Biopharma, 701 Veterans Circle, Warminster, Pennsylvania 18974 United States
| | | | - Kaylyn Kwak
- Arbutus Biopharma, 701 Veterans Circle, Warminster, Pennsylvania 18974 United States
| | - Alice H. L. Li
- Arbutus Biopharma, 701 Veterans Circle, Warminster, Pennsylvania 18974 United States
| | - Angela Miller
- Arbutus Biopharma, 701 Veterans Circle, Warminster, Pennsylvania 18974 United States
| | - Chris Pasetka
- Arbutus Biopharma, 701 Veterans Circle, Warminster, Pennsylvania 18974 United States
| | - Luying Pei
- Arbutus Biopharma, 701 Veterans Circle, Warminster, Pennsylvania 18974 United States
| | - Janet R. Phelps
- Arbutus Biopharma, 701 Veterans Circle, Warminster, Pennsylvania 18974 United States
| | - Nicholas M. Snead
- Arbutus Biopharma, 701 Veterans Circle, Warminster, Pennsylvania 18974 United States
| | - Xiaohe Wang
- Arbutus Biopharma, 701 Veterans Circle, Warminster, Pennsylvania 18974 United States
| | - Xin Ye
- Arbutus Biopharma, 701 Veterans Circle, Warminster, Pennsylvania 18974 United States
| | - Michael J. Sofia
- Arbutus Biopharma, 701 Veterans Circle, Warminster, Pennsylvania 18974 United States
| | - Amy C. H. Lee
- Arbutus Biopharma, 701 Veterans Circle, Warminster, Pennsylvania 18974 United States
| |
Collapse
|
43
|
Hu J, Lin YY, Chen PJ, Watashi K, Wakita T. Cell and Animal Models for Studying Hepatitis B Virus Infection and Drug Development. Gastroenterology 2019; 156:338-354. [PMID: 30243619 PMCID: PMC6649672 DOI: 10.1053/j.gastro.2018.06.093] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/21/2018] [Accepted: 06/26/2018] [Indexed: 12/11/2022]
Abstract
Many cell culture and animal models have been used to study hepatitis B virus (HBV) replication and its effects in the liver; these have facilitated development of strategies to control and clear chronic HBV infection. We discuss the advantages and limitations of systems for studying HBV and developing antiviral agents, along with recent advances. New and improved model systems are needed. Cell culture systems should be convenient, support efficient HBV infection, and reproduce responses of hepatocytes in the human body. We also need animals that are fully permissive to HBV infection, convenient for study, and recapitulate human immune responses to HBV and effects in the liver. High-throughput screening technologies could facilitate drug development based on findings from cell and animal models.
Collapse
Affiliation(s)
- Jianming Hu
- The Pennsylvania State University College of Medicine, Hershey, Pennsylvania.
| | - You-Yu Lin
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pei-Jer Chen
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Hepatitis Research Center, National Taiwan University Hospital, National Taiwan University.
| | | | - Takaji Wakita
- National Institute of Infectious Diseases, Tokyo, Japan.
| |
Collapse
|
44
|
Nie YZ, Zheng YW, Miyakawa K, Murata S, Zhang RR, Sekine K, Ueno Y, Takebe T, Wakita T, Ryo A, Taniguchi H. Recapitulation of hepatitis B virus-host interactions in liver organoids from human induced pluripotent stem cells. EBioMedicine 2018; 35:114-123. [PMID: 30120080 PMCID: PMC6156717 DOI: 10.1016/j.ebiom.2018.08.014] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 07/23/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023] Open
Abstract
Therapies against hepatitis B virus (HBV) have improved in recent decades; however, the development of individualized treatments has been limited by the lack of individualized infection models. In this study, we used human induced pluripotent stem cell (hiPSC) to generate a functional liver organoid (LO) that inherited the genetic background of the donor, and evaluated its application in modeling HBV infection and exploring virus–host interactions. To establish a functional hiPSC-LO, we cultured hiPSC-derived endodermal, mesenchymal, and endothelial cells with a chemically defined medium in a three-dimensional microwell culture system. Based on cell-cell interactions, these cells could organize themselves and gradually differentiate into a functional organoid, which exhibited stronger hepatic functions than hiPSC derived hepatic like cell (HLC). Moreover, the functional LO demonstrated more susceptibility to HBV infection than hiPSC-HLC, and could maintain HBV propagation and produce infectious virus for a prolonged duration. Furthermore, we found that virus infection could cause hepatic dysfunction of hiPSC-LOs, with down-regulation of hepatic gene expression, induced release of early acute liver failure markers, and altered hepatic ultrastructure. Therefore, our study demonstrated that HBV infection in hiPSC-LOs could recapitulate virus life cycle and virus induced hepatic dysfunction, suggesting that hiPSC-LOs may provide a promising individualized infection model for the development of individualized treatment for hepatitis.
Collapse
Affiliation(s)
- Yun-Zhong Nie
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Yun-Wen Zheng
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan; Department of Advanced Gastroenterological Surgical Science and Technology, University of Tsukuba, Tsukuba-shi, Ibaraki 305-8575, Japan; Research Center of Stem Cells and Regenerative Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China,.
| | - Kei Miyakawa
- Department of Microbiology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Soichiro Murata
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Ran-Ran Zhang
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Keisuke Sekine
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Yasuharu Ueno
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Takanori Takebe
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, 162-8640 Tokyo, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Hideki Taniguchi
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan; Advanced Medical Research Center, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan.
| |
Collapse
|
45
|
Winer BY, Shirvani-Dastgerdi E, Bram Y, Sellau J, Low BE, Johnson H, Huang T, Hrebikova G, Heller B, Sharon Y, Giersch K, Gerges S, Seneca K, Pais MA, Frankel AS, Chiriboga L, Cullen J, Nahass RG, Lutgehetmann M, Toettcher JE, Wiles MV, Schwartz RE, Ploss A. Preclinical assessment of antiviral combination therapy in a genetically humanized mouse model for hepatitis delta virus infection. Sci Transl Med 2018; 10:eaap9328. [PMID: 29950446 PMCID: PMC6337727 DOI: 10.1126/scitranslmed.aap9328] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/19/2017] [Accepted: 05/14/2018] [Indexed: 12/11/2022]
Abstract
Chronic delta hepatitis, caused by hepatitis delta virus (HDV), is the most severe form of viral hepatitis, affecting at least 20 million hepatitis B virus (HBV)-infected patients worldwide. HDV/HBV co- or superinfections are major drivers for hepatocarcinogenesis. Antiviral treatments exist only for HBV and can only suppress but not cure infection. Development of more effective therapies has been impeded by the scarcity of suitable small-animal models. We created a transgenic (tg) mouse model for HDV expressing the functional receptor for HBV and HDV, the human sodium taurocholate cotransporting peptide NTCP. Both HBV and HDV entered hepatocytes in these mice in a glycoprotein-dependent manner, but one or more postentry blocks prevented HBV replication. In contrast, HDV persistently infected hNTCP tg mice coexpressing the HBV envelope, consistent with HDV dependency on the HBV surface antigen (HBsAg) for packaging and spread. In immunocompromised mice lacking functional B, T, and natural killer cells, viremia lasted at least 80 days but resolved within 14 days in immunocompetent animals, demonstrating that lymphocytes are critical for controlling HDV infection. Although acute HDV infection did not cause overt liver damage in this model, cell-intrinsic and cellular innate immune responses were induced. We further demonstrated that single and dual treatment with myrcludex B and lonafarnib efficiently suppressed viremia but failed to cure HDV infection at the doses tested. This small-animal model with inheritable susceptibility to HDV opens opportunities for studying viral pathogenesis and immune responses and for testing novel HDV therapeutics.
Collapse
Affiliation(s)
- Benjamin Y Winer
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Elham Shirvani-Dastgerdi
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Yaron Bram
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Julie Sellau
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Benjamin E Low
- Department of Technology Evaluation and Development, The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609-1500 USA
| | - Heath Johnson
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Tiffany Huang
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Gabriela Hrebikova
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Brigitte Heller
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Yael Sharon
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Katja Giersch
- Department of Internal Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sherif Gerges
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Kathleen Seneca
- Infectious Disease Care, 105 Raider Boulevard, Hillsborough, NJ 08844, USA
| | - Mihai-Alexandru Pais
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Angela S Frankel
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Luis Chiriboga
- Department of Pathology, New York University Medical Center, New York, NY 10016, USA
| | - John Cullen
- Department of Population Health and Pathobiology, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607, USA
| | - Ronald G Nahass
- Infectious Disease Care, 105 Raider Boulevard, Hillsborough, NJ 08844, USA
| | - Marc Lutgehetmann
- Institute of Microbiology, Virology and Hygiene, University Medical Hospital, Hamburg-Eppendorf, Hamburg, Germany
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Michael V Wiles
- Department of Technology Evaluation and Development, The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609-1500 USA
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA.
| |
Collapse
|
46
|
Preclinical Profile of AB-423, an Inhibitor of Hepatitis B Virus Pregenomic RNA Encapsidation. Antimicrob Agents Chemother 2018; 62:AAC.00082-18. [PMID: 29555628 DOI: 10.1128/aac.00082-18] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/10/2018] [Indexed: 12/11/2022] Open
Abstract
AB-423 is a member of the sulfamoylbenzamide (SBA) class of hepatitis B virus (HBV) capsid inhibitors in phase 1 clinical trials. In cell culture models, AB-423 showed potent inhibition of HBV replication (50% effective concentration [EC50] = 0.08 to 0.27 μM; EC90 = 0.33 to 1.32 μM) with no significant cytotoxicity (50% cytotoxic concentration > 10 μM). Addition of 40% human serum resulted in a 5-fold increase in the EC50s. AB-423 inhibited HBV genotypes A through D and nucleos(t)ide-resistant variants in vitro Treatment of HepDES19 cells with AB-423 resulted in capsid particles devoid of encapsidated pregenomic RNA and relaxed circular DNA (rcDNA), indicating that it is a class II capsid inhibitor. In a de novo infection model, AB-423 prevented the conversion of encapsidated rcDNA to covalently closed circular DNA, presumably by interfering with the capsid uncoating process. Molecular docking of AB-423 into crystal structures of heteroaryldihydropyrimidines and an SBA and biochemical studies suggest that AB-423 likely also binds to the dimer-dimer interface of core protein. In vitro dual combination studies with AB-423 and anti-HBV agents, such as nucleos(t)ide analogs, RNA interference agents, or interferon alpha, resulted in additive to synergistic antiviral activity. Pharmacokinetic studies with AB-423 in CD-1 mice showed significant systemic exposures and higher levels of accumulation in the liver. A 7-day twice-daily administration of AB-423 in a hydrodynamic injection mouse model of HBV infection resulted in a dose-dependent reduction in serum HBV DNA levels, and combination with entecavir or ARB-1467 resulted in a trend toward antiviral activity greater than that of either agent alone, consistent with the results of the in vitro combination studies. The overall preclinical profile of AB-423 supports its further evaluation for safety, pharmacokinetics, and antiviral activity in patients with chronic hepatitis B.
Collapse
|
47
|
Nio Y, Akahori Y, Okamura H, Watashi K, Wakita T, Hijikata M. Inhibitory effect of fasiglifam on hepatitis B virus infections through suppression of the sodium taurocholate cotransporting polypeptide. Biochem Biophys Res Commun 2018; 501:820-825. [PMID: 29723527 DOI: 10.1016/j.bbrc.2018.04.199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 04/25/2018] [Indexed: 11/26/2022]
Abstract
Fasiglifam is a selective partial agonist of G-protein-coupled receptor 40 (GPR40), which was developed for the treatment of type 2 diabetes mellitus. However, the clinical development of fasiglifam was voluntarily terminated during phase III clinical trials due to adverse liver effects. Fasiglifam showed an inhibitory effect on sodium taurocholate cotransporting polypeptide (NTCP) in human and rat hepatocytes. Recently, NTCP was reported to be a functional receptor for human hepatitis B virus (HBV) infections. Therefore, in this study, we hypothesised that fasiglifam would be a good candidate for a novel HBV entry inhibitor, and its effects were evaluated by using NTCP-overexpressing HepG2 cells, human hepatocyte cell lines and human hepatocytes (PXB cells) obtained from PXB mice. Pre-treatment with fasiglifam at a concentration of 30 μM prior to HBV infection significantly suppressed supernatant HBV DNA levels after HBV infection in NTCP-overexpressing HepG2 cells, human hepatocyte cell lines and PXB cells. Fasiglifam did not suppress supernatant HBV DNA levels up to 50 μM in HepG2.2.15.7 cells, which are stably transfected with a complete HBV genome without HBV infection. These results indicated that fasiglifam only affect on HBV infection via NTCP inhibition. For HBV treatment of fasiglifam, further investigation including additional non clinical research in addition to the evaluation of safety and efficacy in humans would be needed in the future study.
Collapse
Affiliation(s)
- Yasunori Nio
- Takeda Pharmaceutical Company Limited, Pharmaceutical Research Division, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan.
| | - Yuichi Akahori
- Laboratory of Tumour Viruses, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawaharacho, Shogoin, Sakyoku, Kyoto 606-8507, Japan; Grad. Sch. of Biostudies, Kyoto University, 53 Kawaharacho, Shogoin, Sakyoku, Kyoto 606-8507, Japan
| | - Hitomi Okamura
- Laboratory of Tumour Viruses, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawaharacho, Shogoin, Sakyoku, Kyoto 606-8507, Japan; Grad. Sch. of Biostudies, Kyoto University, 53 Kawaharacho, Shogoin, Sakyoku, Kyoto 606-8507, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Makoto Hijikata
- Laboratory of Tumour Viruses, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawaharacho, Shogoin, Sakyoku, Kyoto 606-8507, Japan; Grad. Sch. of Biostudies, Kyoto University, 53 Kawaharacho, Shogoin, Sakyoku, Kyoto 606-8507, Japan.
| |
Collapse
|
48
|
Li F, Nio K, Yasui F, Murphy CM, Su L. Studying HBV Infection and Therapy in Immune-Deficient NOD-Rag1-/-IL2RgammaC-null (NRG) Fumarylacetoacetate Hydrolase (Fah) Knockout Mice Transplanted with Human Hepatocytes. Methods Mol Biol 2018; 1540:267-276. [PMID: 27975325 DOI: 10.1007/978-1-4939-6700-1_23] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chimeric mouse models with a humanized liver provide a unique tool to study hepatic virus diseases, including viral infection, viral pathogenesis, and antiviral therapy. Here we describe a detailed protocol for studying hepatitis B infection in NRG-derived fumarylacetoacetate hydrolase (Fah) knockout mice repopulated with human hepatocytes. The procedures include (1) maintenance and genotyping of the homozygous NRG-fah/fah mutant mice (NRG/F), (2) intrasplenic injection of human hepatocytes, (3) NTBC drug reduction cycling to improve human hepatocyte repopulation, (4) human albumin detection, and (5) HBV infection and detection. The method is simple and allows for highly reproducible generation of NRG/F-hu Hep mice for studying HBV infection and therapy.
Collapse
Affiliation(s)
- Feng Li
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kouki Nio
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Fumihiko Yasui
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Christopher M Murphy
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Lishan Su
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
49
|
Zhang JF, Xiong HL, Cao JL, Wang SJ, Guo XR, Lin BY, Zhang Y, Zhao JH, Wang YB, Zhang TY, Yuan Q, Zhang J, Xia NS. A cell-penetrating whole molecule antibody targeting intracellular HBx suppresses hepatitis B virus via TRIM21-dependent pathway. Am J Cancer Res 2018; 8:549-562. [PMID: 29290826 PMCID: PMC5743566 DOI: 10.7150/thno.20047] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 09/27/2017] [Indexed: 12/11/2022] Open
Abstract
Rationale: Monoclonal antibodies (mAbs) mostly targeting extracellular or cell surface molecules have been widely used in the treatment of various diseases. However, mAbs cannot pass through the cell membrane as efficiently as small compounds, thus limiting their use against intracellular targets. Methods to shuttle antibodies into living cells may largely expand research and application in areas based on mAbs. Hepatitis B virus X protein (HBx) is an important intracellular multi-functional viral protein in the life cycle of hepatitis B virus (HBV). HBx plays essential roles in virus infection and replication and is strongly associated with HBV-related carcinogenesis. Methods: In this study, we developed a cell-penetrating whole molecule antibody targeting HBx (9D11-Tat) by the fusion of a cell penetrating peptide (CPP) on the C-terminus of the heavy chain of a potent mAb specific to HBx (9D11). The anti-HBV effect and mechanism of 9D11-Tat were investigated in cell and mouse models mimicking chronic HBV infection. Results: Our results demonstrated that the recombinant 9D11-Tat antibody could efficiently internalize into living cells and significantly suppress viral transcription, replication, and protein production both in vitro and in vivo. Further analyses suggested the internalized 9D11-Tat antibody could greatly reduce intracellular HBx via Fc binding receptor TRIM21-mediated protein degradation. This process simultaneously stimulated the activations of NF-κB, AP-1, and IFN-β, which promoted an antiviral state of the host cell. Conclusion: In summary, our study offers a new approach to target intracellular pathogenesis-related protein by engineered cell-penetrating mAb expanding their potential for therapeutic applications. Moreover, the 9D11-Tat antibody may provide a novel therapeutic agent against human chronic HBV infection.
Collapse
|
50
|
Lempp FA, Wiedtke E, Qu B, Roques P, Chemin I, Vondran FWR, Le Grand R, Grimm D, Urban S. Sodium taurocholate cotransporting polypeptide is the limiting host factor of hepatitis B virus infection in macaque and pig hepatocytes. Hepatology 2017; 66:703-716. [PMID: 28195359 DOI: 10.1002/hep.29112] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/19/2017] [Accepted: 02/09/2017] [Indexed: 12/23/2022]
Abstract
UNLABELLED Infections with the human hepatitis B virus (HBV) and hepatitis D virus (HDV) depend on species-specific host factors like the receptor human sodium taurocholate cotransporting polypeptide (hNTCP). Complementation of mouse hepatocytes with hNTCP confers susceptibility to HDV but not HBV, indicating the requirement of additional HBV-specific factors. As an essential premise toward the establishment of an HBV-susceptible animal model, we investigated the role of hNTCP as a limiting factor of hepatocytes in commonly used laboratory animals. Primary hepatocytes from mice, rats, dogs, pigs, rhesus macaques, and cynomolgus macaques were transduced with adeno-associated viral vectors encoding hNTCP and subsequently infected with HBV. Cells were analyzed for Myrcludex B binding, taurocholate uptake, HBV covalently closed circular DNA formation, and expression of all HBV markers. Sodium taurocholate cotransporting polypeptide (Ntcp) from the respective species was cloned and analyzed for HBV and HDV receptor activity in a permissive hepatoma cell line. Expression of hNTCP in mouse, rat, and dog hepatocytes permits HDV infection but does not allow establishment of HBV infection. Contrarily, hepatocytes from cynomolgus macaques, rhesus macaques, and pigs became fully susceptible to HBV upon hNTCP expression with efficiencies comparable to human hepatocytes. Analysis of cloned Ntcp from all species revealed a pronounced role of the human homologue to support HBV and HDV infection. CONCLUSION Ntcp is the key host factor limiting HBV infection in cynomolgus and rhesus macaques and in pigs. In rodents (mouse, rat) and dogs, transfer of hNTCP supports viral entry but additional host factors are required for the establishment of HBV infection. This finding paves the way for the development of macaques and pigs as immunocompetent animal models to study HBV infection in vivo, immunological responses against the virus and viral pathogenesis. (Hepatology 2017;66:703-716).
Collapse
Affiliation(s)
- Florian A Lempp
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany.,German Centre for Infection Research, partner site Heidelberg, Heidelberg, Germany
| | - Ellen Wiedtke
- Cluster of Excellence CellNetworks, Department of Infectious Diseases, Virology, BioQuant, University Hospital Heidelberg, Heidelberg, Germany
| | - Bingqian Qu
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Pierre Roques
- Division of ImmunoVirology, Institute of Emerging Diseases and Innovative Therapies, Centre d'Energie Atomique, Fontenay aux Roses, Paris, France.,UMRE01, UMR1184, Université Paris Sud, Orsay, France
| | - Isabelle Chemin
- Université de Lyon, INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Florian W R Vondran
- Regenerative Medicine and Experimental Surgery, Department of General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany.,German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover, Germany
| | - Roger Le Grand
- Division of ImmunoVirology, Institute of Emerging Diseases and Innovative Therapies, Centre d'Energie Atomique, Fontenay aux Roses, Paris, France.,UMRE01, UMR1184, Université Paris Sud, Orsay, France
| | - Dirk Grimm
- Cluster of Excellence CellNetworks, Department of Infectious Diseases, Virology, BioQuant, University Hospital Heidelberg, Heidelberg, Germany
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany.,German Centre for Infection Research, partner site Heidelberg, Heidelberg, Germany
| |
Collapse
|