1
|
Nguyen AT, Masuda M, Mori Y, Adachi Y, Fukuda T, Furuichi A, Takikawa M, Tsuda Y, Hamada Y, Maruyama Y, Ohminami H, Ohnishi K, Taketani Y. All-trans retinoic acid induces lipophagy by reducing Rubicon in Hepa1c1c7 cells. J Lipid Res 2024; 65:100598. [PMID: 39032560 PMCID: PMC11381443 DOI: 10.1016/j.jlr.2024.100598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/13/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024] Open
Abstract
All-trans retinoic acid (atRA), a metabolite of vitamin A, reduces hepatic lipid accumulation in liver steatosis model animals. Lipophagy, a new lipolysis pathway, degrades a lipid droplet (LD) via autophagy in adipose tissue and the liver. We recently found that atRA induces lipophagy in adipocytes. However, it remains unclear whether atRA induces lipophagy in hepatocytes. In this study, we investigated the effects of atRA on lipophagy in Hepa1c1c7 cells and the liver of mice fed a high-fat diet (HFD). First, we confirmed that atRA induced autophagy in Hepa1c1c7 cells by Western blotting and the GFP-LC3-mCherry probe. Next, we evaluated the lipolysis in fatty Hepa1c1c7 cells treated with the knockdown of Atg5, an essential gene in autophagy induction. Atg5-knockdown partly suppressed the atRA-induced lipolysis in fatty Hepa1c1c7 cells. We also found that atRA reduced the protein, but not mRNA, expression of Rubicon, a negative regulator of autophagy, in Hepa1c1c7 cells and the liver of HFD-fed mice. Rubicon-knockdown partly inhibited the atRA-induced lipolysis in fatty Hepa1c1c7 cells. In addition, atRA reduced hepatic Rubicon expression in young mice, but the effect of atRA on it diminished in aged mice. Finally, we investigated the mechanism underlying reduced Rubicon protein expression by atRA in hepatocytes. A protein synthesis inhibitor, but not proteasome or lysosomal inhibitors, significantly blocked the reduction of Rubicon protein expression by atRA in Hepa1c1c7 cells. These results suggest that atRA may promote lipophagy in fatty hepatocytes by reducing hepatic Rubicon expression via inhibiting protein synthesis.
Collapse
Affiliation(s)
- Anh The Nguyen
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushma, Tokushima, Japan
| | - Masashi Masuda
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushma, Tokushima, Japan.
| | - Yuki Mori
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushma, Tokushima, Japan
| | - Yuichiro Adachi
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushma, Tokushima, Japan
| | - Teppei Fukuda
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushma, Tokushima, Japan
| | - Airi Furuichi
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushma, Tokushima, Japan
| | - Masaki Takikawa
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushma, Tokushima, Japan
| | - Yuki Tsuda
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushma, Tokushima, Japan
| | - Yuki Hamada
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushma, Tokushima, Japan
| | - Yusuke Maruyama
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushma, Tokushima, Japan
| | - Hirokazu Ohminami
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushma, Tokushima, Japan
| | - Kohta Ohnishi
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushma, Tokushima, Japan
| | - Yutaka Taketani
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushma, Tokushima, Japan
| |
Collapse
|
2
|
Sana-Eldine AO, Abdelgawad HM, Kotb NS, Shehata NI. The potential effect of Schisandrin-B combination with panitumumab in wild-type and mutant colorectal cancer cell lines: Role of apoptosis and autophagy. J Biochem Mol Toxicol 2023; 37:e23324. [PMID: 36808796 DOI: 10.1002/jbt.23324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/16/2022] [Accepted: 02/08/2023] [Indexed: 02/22/2023]
Abstract
Panitumumab is an approved monoclonal antibody for the treatment of colorectal cancer (CRC); however, mutations in EGFR signaling pathway resulted in poor response. Schisandrin-B (Sch-B) is a phytochemical that was suggested to protect against inflammation, oxidative stress, and cell proliferation. The present study aimed to investigate the potential effect of Sch-B on panitumumab-induced cytotoxicity in wild-type Caco-2, and mutant HCT-116 and HT-29 CRC cell lines, and the possible underlying mechanisms. CRC cell lines were treated with panitumumab, Sch-B, and their combination. The cytotoxic effect of drugs was determined by MTT assay. The apoptotic potential was assessed in-vitro by DNA fragmentation and caspase-3 activity. Additionally, autophagy was investigated via microscopic detection of autophagosomes and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) measurement of Beclin-1, Rubicon, LC3-II, and Bcl-2 expression. The drug pair enhanced panitumumab cytotoxicity in all CRC cell lines where IC50 of panitumumab was decreased in Caco-2 cell line. Apoptosis was induced through caspase-3 activation, DNA fragmentation, and Bcl-2 downregulation. Caco-2 cell line treated with panitumumab showed stained acidic vesicular organelles, contrariwise, all cell lines treated with Sch-B or the drug pair displayed green fluorescence indicating the lack of autophagosomes. qRT-PCR revealed the downregulation of LC3-II in all CRC cell lines, Rubicon in mutant cell lines, and Beclin-1 in HT-29 cell line only. Sch-B at 6.5 µM promoted panitumumab-induced apoptotic cell death, in-vitro, via caspase-3 activation and Bcl-2 downregulation, rather than autophagic cell death. This novel combination therapy against CRC, allows the reduction of panitumumab dose to guard against its adverse effects.
Collapse
Affiliation(s)
| | - Hanan M Abdelgawad
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nahla S Kotb
- Biochemistry Department, Faculty of postgraduate studies for advanced Biotechnology and life sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Nagwa I Shehata
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
Xie C, Wang S, Zhang H, Zhu Y, Jiang P, Shi S, Si Y, Chen J. Lnc-AIFM2-1 promotes HBV immune escape by acting as a ceRNA for miR-330-3p to regulate CD244 expression. Front Immunol 2023; 14:1121795. [PMID: 36845111 PMCID: PMC9946971 DOI: 10.3389/fimmu.2023.1121795] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/13/2023] [Indexed: 02/11/2023] Open
Abstract
Chronic hepatitis B (CHB) virus infection is a major risk factor for cirrhosis and hepatocellular carcinoma (HCC). Hepatitis B virus (HBV) immune escape is regulated by the exhaustion of virus-specific CD8+ T cells, which is associated with abnormal expression of negative regulatory molecule CD244. However, the underlying mechanisms are unclear. To investigate the important roles of non-coding RNAs play in CD244 regulating HBV immune escape, we performed microarray analysis to determine the differential expression profiles of long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and mRNAs in patients with CHB and patients with spontaneous clearance of HBV. Competing endogenous RNA (ceRNA) was analyzed by bioinformatics methods and confirmed by the dual-luciferase reporter assay. Furthermore, gene silencing and overexpression experiments were used to further identify the roles of lncRNA and miRNA in HBV immune escape through CD244 regulation. The results showed that the expression of CD244 on the surface of CD8+ T cells was significantly increased in CHB patients and in the co-culture system of T cells and HBV-infected HepAD38 cells, which was accompanied by the reduction of miR-330-3p and the elevation of lnc-AIFM2-1. The down-regulated miR-330-3p induced the apoptosis of T cells by lifting the inhibition of CD244, which was reversed by miR-330-3p mimic or CD244-siRNA. Lnc-AIFM2-1 promotes the accumulation of CD244, which is mediated by decreased miR-330-3p, and then reduced the clearance ability of CD8+ T cells to HBV through regulated CD244 expression. And the injury in the ability of CD8+ T cells to clear HBV can be reversed by lnc-AIFM2-1-siRNA, miR-330-3p mimic, or CD244-siRNA. Collectively, our findings indicate that lnc-AIFM2-1 on CD244 by acting as a ceRNA of miR-330-3p contributes to HBV immune escape, which may provide novel insights into the roles of interaction networks among lncRNA, miRNA, and mRNA in HBV immune escape, highlighting potential applications of lnc-AIFM2-1 and CD244 for diagnosis and treatment in CHB.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jie Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Dihydromyricetin inhibits Hepatitis B virus replication by activating NF-κB, MAPKs, and autophagy in HepG2.2.15 cells. Mol Biol Rep 2023; 50:1403-1414. [PMID: 36474061 DOI: 10.1007/s11033-022-07971-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/21/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Hepatitis B virus (HBV) infection is a severe global health problem, and there has been no effective method to eliminate HBV. This study was designed to explore the pharmacological mechanism of Dihydromyricetin (DHM) treatment on HBV replication in vitro. METHODS AND RESULTS DHM is a flavonoid compound from Ampelopsis grossedentata. Using HepG2.2.15 cells, which can stably express HBV in vitro, we demonstrated that DHM treatment dramatically reduced HBV replication and secretions of HBsAg and HBeAg. Meanwhile, DHM inhibited mRNA expression of HBV RNAs in HepG2.2.15 cells, including Total HBV RNA, HBV pregenomic RNA (pgRNA), and HBV precore mRNA (pcRNA). Also, DHM elevated the mRNA expressions of inflammatory cytokines and antiviral effectors. In contrast, DHM decreased the mRNA level of HNF4α, which positively correlated with HBV replication. Further studies show that the activation of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathway played a critical role in DHM-initiated inhibition of HBV replication in HepG2.2.15 cells. Besides, activated autophagy was another contributor that may accelerate the clearance of HBV components. CONCLUSION In summary, DHM could suppress HBV replication by activating NF-κB, MAPKs, and autophagy in HepG2.2.15 cells. Our studies shed light on the future application of DHM for the clinical treatment of HBV infection.
Collapse
|
5
|
Liu S, Deng S, Li X, Chen J, Yuan Y, Zhao H, Zhou J, Wang J, Zhang H, Cheng D. Endosomal Escapable and Nuclear Localizing Cationic Polyaspartate-Based CRISPR Activation System for Preventing Respiratory Virus Infection by Specifically Inducing Interferon-λ. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55376-55391. [PMID: 36503225 DOI: 10.1021/acsami.2c16588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Global pandemics caused by viruses cause widespread panic and economic losses. The lack of specific antivirals and vaccines increases the spreading of viral diseases worldwide. Thus, alternative strategies are required to manage viral outbreaks. Here, we develop a CRISPR activation (CRISPRa) system based on polymeric carriers to prevent respiratory virus infection in a mouse model. A polyaspartate grafted with 2-(diisopropylamino) ethylamine (DIP) and nuclear localization signal peptides (NLS-MTAS fusion peptide) was complexed with plasmid DNA (pDNA) encoding dCas9-VPR and sgRNA targeting IFN-λ. The pH-sensitive DIP and NLS-MTAS groups were favor of endo-lysosomal escape and nuclear localization of pDNA, respectively. They synergistically improved gene transfection efficiency, resulting in significant reporter gene expression and IFN-λ upregulation in lung tissue. In vitro and in vivo prophylactic experiments showed that the non-viral CRISPRa system could prevent infection caused by H1N1 viruses with minimal inflammatory responses, presenting a promising prophylactic approach against respiratory virus infections.
Collapse
Affiliation(s)
- Shuang Liu
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou510275, PR China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou510275, PR China
| | - Shaohui Deng
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou510275, PR China
| | - Xiaoxia Li
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou510275, PR China
| | - Jifeng Chen
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou510275, PR China
| | - Yaochang Yuan
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou510275, PR China
| | - Hanjun Zhao
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong999077, PR China
| | - Jie Zhou
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong999077, PR China
| | - Jin Wang
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou510630, PR China
| | - Hui Zhang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou510275, PR China
| | - Du Cheng
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou510275, PR China
| |
Collapse
|
6
|
Liu C, Zhao W, Su J, Chen X, Zhao F, Fan J, Li X, Liu X, Zou L, Zhang M, Zhang Z, Zhang L, Fan S, Li Y, Zhao M, Chen J, Yi L. HSP90AA1 interacts with CSFV NS5A protein and regulates CSFV replication via the JAK/STAT and NF-κB signaling pathway. Front Immunol 2022; 13:1031868. [PMID: 36405689 PMCID: PMC9666401 DOI: 10.3389/fimmu.2022.1031868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/10/2022] [Indexed: 08/23/2023] Open
Abstract
Classical swine fever (CSF), caused by the classical swine fever virus (CSFV), is a highly contagious and fatal viral disease, posing a significant threat to the swine industry. Heat shock protein 90 kDa alpha class A member 1 (HSP90AA1) is a very conservative chaperone protein that plays an important role in signal transduction and viral proliferation. However, the role of HSP90AA1 in CSFV infection is unknown. In this study, we found that expression of HSP90AA1 could be promoted in PK-15 and 3D4/2 cells infected by CSFV. Over-expression of HSP90AA1 could inhibit CSFV replication and functional silencing of HSP90AA1 gene promotes CSFV replication. Further exploration revealed that HSP90AA1 interacted with CSFV NS5A protein and reduced the protein levels of NS5A. Since NS5A has an important role in CSFV replication and is closely related to type I IFN and NF-κB response, we further analyzed whether HSP90AA1 affects CSFV replication by regulating type I IFN and NF-κB pathway responses. Our research found HSP90AA1 positively regulated type I IFN response by promoting STAT1 phosphorylation and nuclear translocation processes and promoted the nuclear translocation processes of p-P65. However, CSFV infection antagonizes the activation of HSP90AA1 on JAK/STAT and NF-κB pathway. In conclusion, our study found that HSP90AA1 overexpression significantly inhibited CSFV replication and may inhibit CSFV replication by interacting with NS5A and activating JAK/STAT and NF-κB signaling pathways. These results provide new insights into the mechanism of action of HSP90AA1 in CSFV infection, which abundant the candidate library of anti-CSFV.
Collapse
Affiliation(s)
- Chenchen Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Wei Zhao
- China Institute of Veterinary Drug Control, Beijing, China
| | - Jia Su
- China Institute of Veterinary Drug Control, Beijing, China
| | - Xiaochun Chen
- China Institute of Veterinary Drug Control, Beijing, China
| | - Feifan Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Jindai Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Xiaodi Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Linke Zou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Mengru Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Zilin Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Liangliang Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Yuwan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| |
Collapse
|
7
|
Magné J, Green DR. LC3-associated endocytosis and the functions of Rubicon and ATG16L1. SCIENCE ADVANCES 2022; 8:eabo5600. [PMID: 36288306 PMCID: PMC9604520 DOI: 10.1126/sciadv.abo5600] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
LC3-associated endocytosis (LANDO) is a noncanonical function of the autophagy machinery, in which LC3 (microtubule-associated protein light chain) is conjugated to rab5-positive endosomes, using a portion of the canonical autophagy pathway. LANDO was initially discovered in a murine model of Alzheimer's disease as a critical regulator of amyloid-β receptor recycling in microglial cells, playing a protective role against neuronal loss and memory impairment. Recent evidence suggests an emerging role of LANDO in cytokine receptor signaling and innate immunity. Here, we discuss the regulation of two crucial effectors of LANDO, Rubicon and ATG16L1, and their impact on endocytosis, autophagy, and phagocytosis.
Collapse
|
8
|
IFITM3 Interacts with the HBV/HDV Receptor NTCP and Modulates Virus Entry and Infection. Viruses 2022; 14:v14040727. [PMID: 35458456 PMCID: PMC9027621 DOI: 10.3390/v14040727] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
The Na+/taurocholate co-transporting polypeptide (NTCP, gene symbol SLC10A1) is both a physiological bile acid transporter and the high-affinity hepatic receptor for the hepatitis B and D viruses (HBV/HDV). Virus entry via endocytosis of the virus/NTCP complex involves co-factors, but this process is not fully understood. As part of the innate immunity, interferon-induced transmembrane proteins (IFITM) 1–3 have been characterized as virus entry-restricting factors for many viruses. The present study identified IFITM3 as a novel protein–protein interaction (PPI) partner of NTCP based on membrane yeast-two hybrid and co-immunoprecipitation experiments. Surprisingly, IFITM3 knockdown significantly reduced in vitro HBV infection rates of NTCP-expressing HuH7 cells and primary human hepatocytes (PHHs). In addition, HuH7-NTCP cells showed significantly lower HDV infection rates, whereas infection with influenza A virus was increased. HBV-derived myr-preS1 peptide binding to HuH7-NTCP cells was intact even under IFITM3 knockdown, suggesting that IFITM3-mediated HBV/HDV infection enhancement occurs in a step subsequent to the viral attachment to NTCP. In conclusion, IFITM3 was identified as a novel NTCP co-factor that significantly affects in vitro infection with HBV and HDV in NTCP-expressing hepatoma cells and PHHs. While there is clear evidence for a direct PPI between IFITM3 and NTCP, the specific mechanism by which this PPI facilitates the infection process remains to be identified in future studies.
Collapse
|
9
|
Li J, Kemper T, Broering R, Chen J, Yuan Z, Wang X, Lu M. Interferon Alpha Induces Cellular Autophagy and Modulates Hepatitis B Virus Replication. Front Cell Infect Microbiol 2022; 12:804011. [PMID: 35186790 PMCID: PMC8847603 DOI: 10.3389/fcimb.2022.804011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/10/2022] [Indexed: 12/19/2022] Open
Abstract
Hepatitis B virus (HBV) infection causes acute and chronic liver diseases, including severe hepatitis, liver cirrhosis, and hepatocellular carcinoma (HCC). Interferon alpha 2a (IFNα-2a) is commonly used for treating chronic HBV infection. However, its efficacy remains relatively low. Yet, the immunological and molecular mechanisms for successful IFNα-2a treatment remain elusive. One issue is whether the application of increasing IFNα doses may modulate cellular processes and HBV replication in hepatic cells. In the present study, we focused on the interaction of IFNα signaling with other cellular signaling pathways and the consequence for HBV replication. The results showed that with the concentration of 6000 U/ml IFNα-2a treatment downregulated the activity of not only the Akt/mTOR signaling but also the AMPK signaling. Additionally, IFNα-2a treatment increased the formation of the autophagosomes by blocking autophagic degradation. Furthermore, IFNα-2a treatment inhibited the Akt/mTOR signaling and initiated autophagy under low and high glucose concentrations. In reverse, inhibition of autophagy using 3-methyladenine (3-MA) and glucose concentrations influenced the expression of IFNα-2a-induced ISG15 and IFITM1. Despite of ISGs induction, HBV replication and gene expression in HepG2.2.15 cells, a cell model with continuous HBV replication, were slightly increased at high doses of IFNα-2a. In conclusion, our study indicates that IFNα-2a treatment may interfere with multiple intracellular signaling pathways, facilitate autophagy initiation, and block autophagic degradation, thereby resulting in slightly enhanced HBV replication.
Collapse
Affiliation(s)
- Jia Li
- Insititute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Thekla Kemper
- Insititute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ruth Broering
- Department of Gastroenterology, Hepatology and Transplant Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jieliang Chen
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xueyu Wang
- Insititute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- State Key Laboratory for Diagnostic and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Mengji Lu, ; Xueyu Wang,
| | - Mengji Lu
- Insititute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- *Correspondence: Mengji Lu, ; Xueyu Wang,
| |
Collapse
|
10
|
Minami S, Nakamura S, Yoshimori T. Rubicon in Metabolic Diseases and Ageing. Front Cell Dev Biol 2022; 9:816829. [PMID: 35083223 PMCID: PMC8784836 DOI: 10.3389/fcell.2021.816829] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/15/2021] [Indexed: 12/20/2022] Open
Abstract
Autophagy is a conserved cellular degradation system that maintains intracellular homeostasis. Cytoplasmic components are engulfed into double-membrane vesicles called autophagosomes, which fuse with lysosomes, and resulting in the degradation of sequestered materials. Recently, a close association between autophagy and the pathogenesis of metabolic diseases and ageing has become apparent: autophagy is dysregulated during metabolic diseases and ageing; dysregulation of autophagy is intimately associated with the pathophysiology. Rubicon (Run domain Beclin-1 interacting and cysteine-rich containing protein) has been identified as a Beclin-1 associated protein. Notably, Rubicon is one of few negative regulators of autophagy whereas many autophagy-related genes are positive regulators of autophagy. Rubicon also has autophagy-independent functions including phagocytosis and endocytosis. In this mini-review, we focus on the various roles of Rubicon in different organs in the settings of metabolic diseases and ageing, and discuss its potential role as a promising therapeutic target.
Collapse
Affiliation(s)
- Satoshi Minami
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Shuhei Nakamura
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.,Institute for Advanced Co-Creation Studies, Osaka University, Suita, Japan
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| |
Collapse
|
11
|
Chathuranga K, Weerawardhana A, Dodantenna N, Lee JS. Regulation of antiviral innate immune signaling and viral evasion following viral genome sensing. Exp Mol Med 2021; 53:1647-1668. [PMID: 34782737 PMCID: PMC8592830 DOI: 10.1038/s12276-021-00691-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/15/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023] Open
Abstract
A harmonized balance between positive and negative regulation of pattern recognition receptor (PRR)-initiated immune responses is required to achieve the most favorable outcome for the host. This balance is crucial because it must not only ensure activation of the first line of defense against viral infection but also prevent inappropriate immune activation, which results in autoimmune diseases. Recent studies have shown how signal transduction pathways initiated by PRRs are positively and negatively regulated by diverse modulators to maintain host immune homeostasis. However, viruses have developed strategies to subvert the host antiviral response and establish infection. Viruses have evolved numerous genes encoding immunomodulatory proteins that antagonize the host immune system. This review focuses on the current state of knowledge regarding key host factors that regulate innate immune signaling molecules upon viral infection and discusses evidence showing how specific viral proteins counteract antiviral responses via immunomodulatory strategies.
Collapse
Affiliation(s)
- Kiramage Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea
| | - Asela Weerawardhana
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea
| | - Niranjan Dodantenna
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea.
| |
Collapse
|
12
|
Wang X, Wei Z, Lan T, He Y, Cheng B, Li R, Chen H, Li F, Liu G, Jiang B, Lin Y, Lu M, Meng Z. CCDC88A/GIV promotes HBV replication and progeny secretion via enhancing endosomal trafficking and blocking autophagic degradation. Autophagy 2021; 18:357-374. [PMID: 34190023 PMCID: PMC8942511 DOI: 10.1080/15548627.2021.1934271] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Hepatitis B virus (HBV) particles are thought to be secreted from hepatocytes through multivesicular bodies (MVBs); however, the cellular trafficking mechanisms prior to this process remain elusive. It has been reported that CCDC88A/GIV expression, which is involved in multiple aspects of vesicular trafficking, changes dynamically at different phases of chronic HBV infection. In this study, we focused on the role of CCDC88A/GIV in HBV replication. In the liver tissues of chronically HBV-infected patients, HBV infection significantly enhanced CCDC88A/GIV expression, and increased endoplasmic reticulum (ER) stress and autophagosome formation without changing endosome formation. Additionally, colocalization of SHBsAg with early endosomes (~30.2%) far exceeded that with autophagosomes (~3.2%). In hepatoma cells, CCDC88A/GIV and its downstream proteins, DNM2 (dynamin 2; a CCDC88A/GIV effector), CLTC and RAB5A significantly enhanced HBV replication and endosome formation but inhibited autophagosome formation. Blocking endocytosis disrupted HBsAg trafficking to endosomes and caused its accumulation in the ER lumen, which triggered ER stress to initiate the unfolded protein response (UPR). Therefore, HBsAg trafficking into autophagosomes was increased, and the lysosomal activity and maturation, which was inhibited by HBV infection, were restored. Meanwhile, core particles were prevented from entering MVBs. CCDC88A/GIV and its other effector, GNAI3, decreased autophagic flux by enhancing the insulin-induced AKT-MTOR pathway, thereby inhibiting HBV antigens autophagic degradation. In conclusion, CCDC88A/GIV enhanced HBV replication by increasing endosomal trafficking and reducing autophagic degradation of HBV antigens, suggesting that CCDC88A/GIV-mediated endosomal trafficking plays an important role in HBV replication and progeny secretion.Abbreviations: ACTB: actin beta; AO: acridine orange; ATF6: activating transcription factor 6; CCDC88A/GIV: coiled-coil domain containing 88A; CLTC: clathrin heavy chain; CQ: chloroquine; DAPI: 4ʹ,6-diamidino-2-phenylindole; DNM2: dynamin 2; ER: endoplasmic reticulum; ERN1: endoplasmic reticulum to nucleus signaling 1; EIF2A: eukaryotic translation initiation factor 2A; FBS: fetal bovine serum; GNAI3: G protein subunit alpha i3; HBV: hepatitis B virus; HBV RIs: HBV replication intermediates; HBcAg: HBV core protein; HBsAg: HBV surface antigen; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MVBs: multivesicular bodies; MTOR: mechanistic target of rapamycin kinase; PDI: protein disulfide isomerase; PHH: primary human hepatocyte; pSM2: a HBV replication-competent plasmid; HSPA5/BIP: heat shock protein family A (Hsp70) member 5; SQSTM1/p62: sequestosome 1; siRNA: small interfering RNA; SEM: standard error of the mean; UPR: unfolded protein response
Collapse
Affiliation(s)
- Xueyu Wang
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei province, China.,Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Zhiqiang Wei
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei province, China.,Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Tingyu Lan
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei province, China.,Department of Infectious Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei province, China
| | - Yulin He
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei province, China
| | - Bin Cheng
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei province, China
| | - Ruimin Li
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei province, China
| | - Hongxia Chen
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei province, China
| | - Fahong Li
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department of Infectious Diseases,Huashan Hospital, Fudan University, Shanghai, China
| | - Guohua Liu
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei province, China
| | - Bin Jiang
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei province, China.,Department of Hepatobiliary Pancreatic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei province, China
| | - Yong Lin
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Mengji Lu
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Zhongji Meng
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei province, China.,Department of Infectious Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei province, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei province, China
| |
Collapse
|
13
|
Nah J, Zablocki D, Sadoshima J. The roles of the inhibitory autophagy regulator Rubicon in the heart: A new therapeutic target to prevent cardiac cell death. Exp Mol Med 2021; 53:528-536. [PMID: 33854187 PMCID: PMC8102471 DOI: 10.1038/s12276-021-00600-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 01/30/2023] Open
Abstract
Autophagy contributes to the maintenance of cardiac homeostasis. The level of autophagy is dynamically altered in heart disease. Although autophagy is a promising therapeutic target, only a few selective autophagy activator candidates have been reported thus far. Rubicon is one of the few endogenous negative regulators of autophagy and a potential target for autophagy-inducing therapeutics. Rubicon was initially identified as a component of the Class III PI3K complex, and it has multiple functions, not only in canonical autophagy but also in endosomal trafficking and inflammatory responses. This review summarizes the molecular action of Rubicon in canonical and noncanonical autophagy. We discuss the roles of Rubicon in cardiac stress and the therapeutic potential of Rubicon in cardiac diseases through its modulation of autophagy.
Collapse
Affiliation(s)
- Jihoon Nah
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ, USA.
| | - Daniela Zablocki
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
14
|
Jabeen K, Malik U, Mansoor S, Shahzad S, Zahid S, Javed A. Effect of oxidative stress and calcium deregulation on FAM26F (CALHM6) expression during hepatitis B virus infection. BMC Infect Dis 2021; 21:228. [PMID: 33639860 PMCID: PMC7913464 DOI: 10.1186/s12879-021-05888-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 02/10/2021] [Indexed: 11/23/2022] Open
Abstract
Background Family with sequence similarity 26, member F (FAM26F) is an important innate immunity modulator playing a significant role in diverse immune responses, however, the association of FAM26F expression with HBV infection is not yet known. Thus, the current study aims to explore the differential expression of FAM26F in vitro in HepAD38 and HepG2 cell lines upon HBV infection, and in vivo in HBV infected individuals. The effects of antioxidant and calcium inhibitors on the regulation of FAM26F expression were also evaluated. The expression of FAM26F was simultaneously determined with well-established HBV infection markers: IRF3, and IFN-β. Methods The expression of FAM26F and marker genes was analyzed through Real-time qPCR and western blot. Results Our results indicate that the differential expression of FAM26F followed the same trend as that of IRF3 and IFN-β. The in vitro study revealed that, in both HBV infected cell lines, FAM26F expression was significantly down-regulated as compared to uninfected control cells. Treatment of cells with N-acetyl-L-cysteine (NAC), EGTA-AM, BAPTA-AM, and Ru360 significantly upregulated the expression of FAM26F in both the cell lines. Moreover, in in vivo study, FAM26F expression was significantly downregulated in all HBV infected groups as compared to controls (p = 0.0007). The expression was higher in the HBV recovered cases, probably due to the decrease in infection and increase in the immunity of these individuals. Conclusion Our study is the first to show the association of FAM26F with HBV infection. It is proposed that FAM26F expression could be an early predictive marker for HBV infection, and thus is worthy of further investigation. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-05888-0.
Collapse
Affiliation(s)
- Kehkshan Jabeen
- Genomics Research Lab, Department of Biological Sciences, International Islamic University Islamabad, Islamabad, 44000, Pakistan
| | - Uzma Malik
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12 Campus, Islamabad, 44000, Pakistan
| | - Sajid Mansoor
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12 Campus, Islamabad, 44000, Pakistan.,Department of Microbiology, Faculty of Life Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| | - Shaheen Shahzad
- Genomics Research Lab, Department of Biological Sciences, International Islamic University Islamabad, Islamabad, 44000, Pakistan
| | - Saadia Zahid
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12 Campus, Islamabad, 44000, Pakistan
| | - Aneela Javed
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12 Campus, Islamabad, 44000, Pakistan.
| |
Collapse
|
15
|
Hepatitis C virus enhances Rubicon expression, leading to autophagy inhibition and intracellular innate immune activation. Sci Rep 2020; 10:15290. [PMID: 32943718 PMCID: PMC7498609 DOI: 10.1038/s41598-020-72294-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/18/2020] [Indexed: 12/19/2022] Open
Abstract
Autophagy, a degradation system, works to maintain cellular homeostasis. However, as the impact of Hepatitis C virus (HCV) infection on hepatocyte autophagy and its effect on HCV replication remain unclear, we examined them. HCV infection suppressed late-stage autophagy and increased Rubicon. siRNA-mediated knockdown of Rubicon promoted autophagy in HCV-infected cells. In Huh-7 cells harbouring the HCV replicon, Rubicon knockdown downregulated the expression of type 1 interferon (IFN)-related genes and upregulated HCV replication. Rubicon overexpression or administration of bafilomycin A1 or chloroquine, an inhibitor of late-stage autophagy, suppressed autophagy and activated the type 1 IFN pathway. On the other hand, Atg7 knockout suppressed early-stage autophagy and did not activate the type 1 IFN pathway. In livers of humanized liver chimeric mice, HCV infection increased Rubicon and enhanced type 1 IFN signalling. Elimination of HCV in the mice reduced the increase in Rubicon due to HCV infection. The expression levels of Rubicon and IFN-stimulated genes in chronic hepatitis C patients were higher than those in non-B, non-C hepatitis patients. HCV infection increased Rubicon and suppressed hepatocyte autophagy, leading to activation of the intracellular immune response. Rubicon induction is involved in HCV replication via activation of the intracellular immune response.
Collapse
|
16
|
Lin Y, Zhao Z, Huang A, Lu M. Interplay between Cellular Autophagy and Hepatitis B Virus Replication: A Systematic Review. Cells 2020; 9:cells9092101. [PMID: 32942717 PMCID: PMC7563265 DOI: 10.3390/cells9092101] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 12/18/2022] Open
Abstract
Autophagy, a conserved process in which cells break down and destroy old, damaged, or abnormal proteins and other substances in the cytoplasm through lysosomal degradation, occurs via autophagosome formation and aids in the maintenance of intracellular homeostasis. Autophagy is closely associated with hepatitis B virus (HBV) replication and assembly. Currently, HBV infection is still one of the most serious public health issues worldwide. The unavailability of satisfactory therapeutic strategies for chronic HBV infection indicates an urgent need to elucidate the mechanisms underlying the pathogenesis of HBV infection. Increasing evidence has shown that HBV not only possesses the ability to induce incomplete autophagy but also evades autophagic degradation, indicating that HBV utilizes or hijacks the autophagy machinery for its own replication. Therefore, autophagy might be a crucial target pathway for controlling HBV infection. The definite molecular mechanisms underlying the association between cellular autophagy and HBV replication require further clarification. In this review, we have summarized and discussed the latest findings on the interplay between autophagy and HBV replication.
Collapse
Affiliation(s)
- Yong Lin
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing 400016, China; (Z.Z.); (A.H.)
- Correspondence: (Y.L.); (M.L.); Tel./Fax: +86-236-848-6780 (Y.L.); Tel.: +49-2017233530 (M.L.); +49-2017235929 (M.L.)
| | - Zhenyu Zhao
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing 400016, China; (Z.Z.); (A.H.)
| | - Ailong Huang
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing 400016, China; (Z.Z.); (A.H.)
| | - Mengji Lu
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
- Correspondence: (Y.L.); (M.L.); Tel./Fax: +86-236-848-6780 (Y.L.); Tel.: +49-2017233530 (M.L.); +49-2017235929 (M.L.)
| |
Collapse
|
17
|
Wang X, Lin Y, Liu S, Zhu Y, Lu K, Broering R, Lu M. O-GlcNAcylation modulates HBV replication through regulating cellular autophagy at multiple levels. FASEB J 2020; 34:14473-14489. [PMID: 32892442 DOI: 10.1096/fj.202001168rr] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 02/05/2023]
Abstract
O-GlcNAcylation is a form of posttranslational modification, and serves various functions, including modulation of location, stability, and activity for the modified proteins. O-linked-N-acetylglucosamine (O-GlcNAc) transferase (OGT) is an essential cellular enzyme that posttranslationally modifies the cellular proteins with O-GlcNAc moiety. Early studies reported that the decreased O-GlcNAcylation regulates cellular autophagy, a process relevant for hepatitis B virus replication (HBV) and assembly. Therefore, we addressed the question how O-GlcNAcylation regulates cellular autophagy and HBV replication. Inhibition of OGT activity with a small molecule inhibitor OSMI-1 or silencing OGT significantly enhanced HBV replication and HBsAg production in hepatoma cells and primary human hepatocytes (PHHs). Western blotting analysis showed that inhibition of O-GlcNAcylation-induced endoplasmic reticulum (ER) stress and cellular autophagy, two processes subsequently leading to enhanced HBV replication. Importantly, the numbers of autophagosomes and the levels of autophagic markers LC3-II and SQSTM1/p62 in hepatoma cells were elevated after inhibition of O-GlcNAcylation. Further analysis revealed that inhibition of O-GlcNAcylation blocked autophagosome-lysosome fusion and thereby prevented autophagic degradation of HBV virions and proteins. Moreover, OSMI-1 further promoted HBV replication by inducing autophagosome formation via inhibiting the O-GlcNAcylation of Akt and mTOR. In conclusion, decreased O-GlcNAcylation enhanced HBV replication through increasing autophagosome formation at multiple levels, including triggering ER-stress, Akt/mTOR inhibition, and blockade of autophagosome-lysosome fusion.
Collapse
Affiliation(s)
- Xueyu Wang
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Yong Lin
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Shi Liu
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ying Zhu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Kefeng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ruth Broering
- Department of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Mengji Lu
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
18
|
Hepatitis B Virus DNA is a Substrate for the cGAS/STING Pathway but is not Sensed in Infected Hepatocytes. Viruses 2020; 12:v12060592. [PMID: 32485908 PMCID: PMC7354540 DOI: 10.3390/v12060592] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/24/2020] [Accepted: 05/28/2020] [Indexed: 12/18/2022] Open
Abstract
Hepatitis B virus (HBV) chronic infection is a critical risk factor for hepatocellular carcinoma. The innate immune response to HBV infection is a matter of debate. In particular, viral escape mechanisms are poorly understood. Our study reveals that HBV RNAs are not immunostimulatory in immunocompetent myeloid cells. In contrast, HBV DNA from viral particles and DNA replication intermediates are immunostimulatory and sensed by cyclic GMP-AMP Synthase (cGAS) and Stimulator of Interferon Genes (STING). We show that primary human hepatocytes express DNA sensors to reduced levels compared to myeloid cells. Nevertheless, hepatocytes can respond to HBV relaxed-circular DNA (rcDNA), when transfected in sufficient amounts, but not to HBV infection. Finally, our data suggest that HBV infection does not actively inhibit the DNA-sensing pathway. In conclusion, in infected hepatocytes, HBV passively evades recognition by cellular sensors of nucleic acids by (i) producing non-immunostimulatory RNAs, (ii) avoiding sensing of its DNAs by cGAS/STING without active inhibition of the pathway.
Collapse
|
19
|
SOX9 represses hepatitis B virus replication through binding to HBV EnhII/Cp and inhibiting the promoter activity. Antiviral Res 2020; 177:104761. [PMID: 32147495 DOI: 10.1016/j.antiviral.2020.104761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 12/13/2022]
Abstract
Hepatitis B virus (HBV) infection affects 364 million people worldwide and causes a serious global public health problem. The SRY-related high mobility group-box 9 (SOX9) is a risk of developing cirrhosis in patients with chronic hepatitis B and a cancer stem cell marker. However, the role of SOX9 in HBV replication has not been reported. This study revealed a distinct mechanism underling the regulation of HBV replication mediated by SOX9. HBV induces SOX9 mRNA and protein expression in human hepatoma cells, including HepG2.2.15, HepG2, Huh7, and HepG2-NTCP cells. Further study demonstrated that HBV activates SOX9 expression at the transcriptional level through inducing SOX9 promoter activity and HBc could induce the activity of SOX9 promoter. Interestingly, SOX9 in turn represses HBV replication in human hepatoma cells. More importantly, SOX9 inhibits HBV infection in HepG2-NTCP cells and C57/BL6 mice. Detailed study revealed that SOX9 suppresses HBV replication through directly binding to HBV EnhII/Cp (HBV 1667-1672 nt) to inhibit EnhII/Cp activation. Results from deletion mutant analysis, ChIP assay, nuclear and cytoplasmic extraction analysis, and immunofluorescence demonstrated that SOX9 high mobility group (HMG) domain is required for SOX9 anti-HBV activity. Moreover, we demonstrated that SOX9 and hepatocyte nuclear factor 4 alpha (HNF4α) can bind to HBV EnhII/Cp (HBV 1667-1672 nt) individually and simultaneously to regulate the promoter activity. Collectively, the results revealed a distinct negative feedback mechanism underlying HBV replication and SOX9 expression, and identified SOX9 as a new host restriction factor in HBV replication and infection. IMPORTANCE: HBV infection is a global public health problem by causing serious liver diseases, but the mechanisms underlying HBV pathogenesis remain largely unknown. SOX9 is a risk of developing cirrhosis and a cancer stem cell marker, however, the role of SOX9 in HBV infection has not been reported. The authors revealed a distinct mechanism underling the regulation of HBV replication and SOX9 expression. On the one hand, HBV induces SOX9 expression in human hepatoma cells through activating SOX9 promoter. On the other hand, SOX9 in turn represses HBV replication in human hepatoma cells by binding to and inhibiting HBV EnhII/Cp through its HMG domain. More importantly, SOX9 inhibits HBV infection in HepG2-NTCP cells and C57/BL6 mice. Therefore, this study identifies SOX9 as a novel and potential therapeutic reagent for the prevention and treatment of HBV-associated diseases.
Collapse
|
20
|
Autophagy in hepatitis B or C virus infection: An incubator and a potential therapeutic target. Life Sci 2020; 242:117206. [DOI: 10.1016/j.lfs.2019.117206] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022]
|
21
|
Galais M, Pradel B, Vergne I, Robert-Hebmann V, Espert L, Biard-Piechaczyk M. [LAP (LC3-associated phagocytosis): phagocytosis or autophagy?]. Med Sci (Paris) 2019; 35:635-642. [PMID: 31532375 DOI: 10.1051/medsci/2019129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Phagocytosis and macroautophagy, named here autophagy, are two essential mechanisms of lysosomal degradation of diverse cargos into membrane structures. Both mechanisms are involved in immune regulation and cell survival. However, phagocytosis triggers degradation of extracellular material whereas autophagy engulfs only cytoplasmic elements. Furthermore, activation and maturation of these two processes are different. LAP (LC3-associated phagocytosis) is a form of phagocytosis that uses components of the autophagy pathway. It can eliminate (i) pathogens, (ii) immune complexes, (iii) threatening neighbouring cells, dead or alive, and (iv) cell debris, such as POS (photoreceptor outer segment) and the midbody released at the end of mitosis. Cells have thus optimized their means of elimination of dangerous components by sharing some fundamental elements coming from the two main lysosomal degradation pathways.
Collapse
Affiliation(s)
- Mathilde Galais
- Institut de recherche en infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 1919, route de Mende, 34293 Montpellier, France
| | - Baptiste Pradel
- Institut de recherche en infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 1919, route de Mende, 34293 Montpellier, France
| | - Isabelle Vergne
- Institut de pharmacologie et de biologie structurale (IPBS), Université de Toulouse, CNRS, UPS, 205, route de Narbonne, 31400 Toulouse, France
| | - Véronique Robert-Hebmann
- Institut de recherche en infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 1919, route de Mende, 34293 Montpellier, France
| | - Lucile Espert
- Institut de recherche en infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 1919, route de Mende, 34293 Montpellier, France
| | - Martine Biard-Piechaczyk
- Institut de recherche en infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 1919, route de Mende, 34293 Montpellier, France
| |
Collapse
|
22
|
Fang P, Yu H, Li M, He R, Zhu Y, Liu S. Rubicon: a facilitator of viral immune evasion. Cell Mol Immunol 2019; 16:770-771. [PMID: 31164715 PMCID: PMC6804746 DOI: 10.1038/s41423-019-0248-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 11/09/2022] Open
Affiliation(s)
- Peining Fang
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, 430072, Wuhan, China
| | - Haisheng Yu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, 430072, Wuhan, China
| | - Mengqi Li
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, 430072, Wuhan, China
| | - Rui He
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, 430072, Wuhan, China
| | - Ying Zhu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, 430072, Wuhan, China
| | - Shi Liu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, 430072, Wuhan, China.
| |
Collapse
|
23
|
Thomas E, Baumert TF. Hepatitis B Virus-Hepatocyte Interactions and Innate Immune Responses: Experimental Models and Molecular Mechanisms. Semin Liver Dis 2019; 39:301-314. [PMID: 31266064 PMCID: PMC7377277 DOI: 10.1055/s-0039-1685518] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Chronic hepatitis B virus (HBV) infection is a major cause of liver disease and cancer worldwide. While current therapeutic approaches can efficiently control viral infection, efficient curative antivirals are absent. The understanding of virus-hepatocyte interactions and sensing of viral infection is an important prerequisite for the development of novel antiviral therapies for cure. Hepatocyte intrinsic innate immunity provides a rapid first line of defense to combat viral infection through the upregulation of antiviral and inflammatory genes. However, the functional relevance of many of these antiviral signaling pathways in the liver and their role in HBV pathogenesis is still only partially understood. The recent identification of intracellular RNA and DNA sensing pathways and their involvement in disease biology, including viral pathogenesis and carcinogenesis, is currently transforming our understanding of virus-host interactions. Here the authors review the current knowledge on intrinsic antiviral innate immune responses including the role of viral nucleic acid sensing pathways in the liver. Since HBV has been designated as a "stealth virus," the study of the impact of HBV on signaling pathways in the hepatocyte is of significant interest to understand viral pathogenesis. Characterizing the mechanism underlying these HBV-host interactions and targeting related pathways to enhance antiviral innate responses may open new strategies to trigger noncytopathic clearance of covalently closed circular DNA to ultimately cure patients with chronic HBV infection.
Collapse
Affiliation(s)
- Emmanuel Thomas
- Schiff Center for Liver Diseases, University of Miami Miller School of Medicine, Miami, Florida,Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Thomas F. Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France,Laboratory of Excellence HEPSYS, University of Strasbourg, Strasbourg, France,Institut Hospitalo-Universitaire, Pôle hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| |
Collapse
|
24
|
Lin Y, Wu C, Wang X, Liu S, Zhao K, Kemper T, Yu H, Li M, Zhang J, Chen M, Zhu Y, Chen X, Lu M. Glucosamine promotes hepatitis B virus replication through its dual effects in suppressing autophagic degradation and inhibiting MTORC1 signaling. Autophagy 2019; 16:548-561. [PMID: 31204557 DOI: 10.1080/15548627.2019.1632104] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glucosamine (GlcN), a dietary supplement widely utilized to promote joint health and effective in the treatment of osteoarthritis, is an effective macroautophagy/autophagy activator in vitro and in vivo. Previous studies have shown that autophagy is required for hepatitis B virus (HBV) replication and envelopment. The objective of this study was to determine whether and how GlcN affects HBV replication, using in vitro and in vivo experiments. Our data demonstrated that HBsAg production and HBV replication were significantly increased by GlcN treatment. Confocal microscopy and western blot analysis showed that the amount of autophagosomes and the levels of autophagic markers MAP1LC3/LC3-II and SQSTM1 were clearly elevated by GlcN treatment. GlcN strongly blocked autophagic degradation of HBV virions and proteins by inhibiting lysosomal acidification through its amino group. Moreover, GlcN further promoted HBV replication by inducing autophagosome formation via feedback inhibition of mechanistic target of rapamycin kinase complex 1 (MTORC1) signaling in an RRAGA (Ras related GTP binding A) GTPase-dependent manner. In vivo, GlcN application promoted HBV replication and blocked autophagic degradation in an HBV hydrodynamic injection mouse model. In addition, GlcN promoted influenza A virus, enterovirus 71, and vesicular stomatitis virus replication in vitro. In conclusion, GlcN efficiently promotes virus replication by inducing autophagic stress through its dual effects in suppressing autophagic degradation and inhibiting MTORC1 signaling. Thus, there is a potential risk of enhanced viral replication by oral GlcN intake in chronically virally infected patients.Abbreviations: ACTB: actin beta; ATG: autophagy-related; CMIA: chemiluminescence immunoassay; ConA: concanavalin A; CQ: chloroquine; CTSD: cathepsin D; DAPI: 4',6-diamidino-2-phenylindole; EV71: enterovirus 71; GalN: galactosamine; GFP: green fluorescence protein; GlcN: glucosamine; GNPNAT1: glucosamine-phosphate N-acetyltransferase 1; HBP: hexosamine biosynthesis pathway; HBV: hepatitis B virus; HBcAg: hepatitis B core antigen; HBsAg: hepatitis B surface antigen; HBeAg: hepatitis B e antigen; HBV RI: hepatitis B replicative intermediate; IAV: influenza A virus; LAMP1: lysosomal associated membrane protein 1; LAMTOR: late endosomal/lysosomal adaptor, MAPK and MTOR activator; ManN: mannosamine; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTORC1: mechanistic target of rapamycin kinase complex 1; PHH: primary human hepatocyte; RAB7: RAB7A, member RAS oncogene family; RPS6KB1: ribosomal protein S6 kinase B1; RRAGA: Ras related GTP binding A; RT-PCR: reverse transcriptase polymerase chain reaction; SEM: standard error of the mean; siRNA: small interfering RNA; SQSTM1/p62: sequestosome 1; UAP1: UDP-N-acetylglucosamine pyrophosphorylase 1; VSV: vesicular stomatitis virus.
Collapse
Affiliation(s)
- Yong Lin
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Chunchen Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Science, Wuhan, China
| | - Xueyu Wang
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Shi Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Kaitao Zhao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Science, Wuhan, China
| | - Thekla Kemper
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Haisheng Yu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Mengqi Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jiming Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Mingzhou Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ying Zhu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xinwen Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Science, Wuhan, China
| | - Mengji Lu
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
25
|
Yang F. Post-translational Modification Control of HBV Biological Processes. Front Microbiol 2018; 9:2661. [PMID: 30443247 PMCID: PMC6222169 DOI: 10.3389/fmicb.2018.02661] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/18/2018] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus infection remains a global healthy issue that needs to be urgently solved. Novel strategies for anti-viral therapy are based on exploring the effective diagnostic markers and therapeutic targets of diseases caused by hepatitis B virus (HBV) infection. It is well-established that not only viral proteins themselves but also key factors from the host control the biological processes associated with HBV, including replication, transcription, packaging, and secretion. Protein post-translational modifications (PTMs), such as phosphorylation, acetylation, methylation, and ubiquitination, have been shown to control protein activity, regulate protein stability, promote protein interactions and alter protein subcellular localization, leading to the modulation of crucial signaling pathways and affected cellular processes. This review focuses on the functions and effects of diverse PTMs in regulating important processes in the HBV life cycle. The potential roles of PTMs in the pathogenesis of HBV-associated liver diseases are also discussed.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
Martinez J. LAP it up, fuzz ball: a short history of LC3-associated phagocytosis. Curr Opin Immunol 2018; 55:54-61. [PMID: 30286399 DOI: 10.1016/j.coi.2018.09.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 09/12/2018] [Indexed: 12/23/2022]
Abstract
LC3-associated phagocytosis (LAP) exists at the crossroads of the two evolutionary pathways of phagocytosis and autophagy. When a phagocyte engulfs an extracellular particle that engages receptor signaling, components of the autophagy machinery and Rubicon are recruited to the cargo-containing phagosome or LAPosome. Formation of the LAPosome is critical for both cargo clearance as well as mediating the proper signaling cascade. Globally, LAP functions as an immunosuppressive mechanism, as LAP deficiency often results in hyperinflammation. As defects in the autophagy machinery have been long associated with aberrant immune responses and autoimmune disorders, it is vital that we now revisit these associations with forms of non-canonical autophagy, like LAP, in mind.
Collapse
Affiliation(s)
- Jennifer Martinez
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Research Triangle Park, NC, USA.
| |
Collapse
|
27
|
Tan G, Xu F, Song H, Yuan Y, Xiao Q, Ma F, Qin FXF, Cheng G. Identification of TRIM14 as a Type I IFN-Stimulated Gene Controlling Hepatitis B Virus Replication by Targeting HBx. Front Immunol 2018; 9:1872. [PMID: 30150992 PMCID: PMC6100580 DOI: 10.3389/fimmu.2018.01872] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/30/2018] [Indexed: 12/28/2022] Open
Abstract
Hepatitis B virus (HBV) remains a major cause of hepatic disease that threatens human health worldwide. Type I IFN (IFN-I) therapy is an important therapeutic option for HBV patients. The antiviral effect of IFN is mainly mediated via upregulation of the expressions of the downstream IFN-stimulated genes. However, the mechanisms by which IFN induces ISG production and inhibits HBV replication are yet to be clarified. TRIM14 was recently reported as a key molecule in the IFN-signaling pathway that regulates IFN production in response to viral infection. In this study, we sought to understand the mechanisms by which IFN restricts HBV replication. We confirmed that TRIM14 is an ISG in the hepatic cells, and that the pattern-recognition receptor ligands polyI:C and polydAdT induce TRIM14 dependent on IFN-I production. In addition, IFN-I-activated STAT1 (but not STAT3) directly bound to the TRIM14 promoter and mediated the induction of TRIM14. Interestingly, TRIM14 played an important role in IFN-I-mediated inhibition of HBV, and the TRIM14 SPRY domain interacted with the C-terminal of HBx, which might block the role of HBx in facilitating HBV replication by inhibiting the formation of the Smc-HBx–DDB1 complex. Thus, our study clearly demonstrates that TRIM14 is a STAT1-dependent ISG, and that the IFN-I–TRIM14–HBx axis shows an alternative way to understand the mechanism by which IFN-I inhibits virus replication.
Collapse
Affiliation(s)
- Guangyun Tan
- Department of Immunology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Fengchao Xu
- Department of Immunology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Hongxiao Song
- Department of Immunology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Ye Yuan
- Department of Medicine Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Qingfei Xiao
- Department of Nephrology, The First Hospital, Jilin University, Changchun, China
| | - Feng Ma
- Suzhou Institute of Systems Medicine, Suzhou, China
| | | | - Genhong Cheng
- Department of Immunology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.,Suzhou Institute of Systems Medicine, Suzhou, China.,Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, United States
| |
Collapse
|
28
|
Tan G, Song H, Xu F, Cheng G. When Hepatitis B Virus Meets Interferons. Front Microbiol 2018; 9:1611. [PMID: 30072974 PMCID: PMC6058040 DOI: 10.3389/fmicb.2018.01611] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/28/2018] [Indexed: 12/12/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection imposes a severe burden on global public health. Currently, there are no curative therapies for millions of chronic HBV-infected patients (Lok et al., 2017). Interferon (IFN; including pegylated IFN) is an approved anti-HBV drug that not only exerts direct antiviral activity, but also augments immunity against HBV infection. Through a systematic review of the literature, here we summarize and present recent progress in research regarding the interactions between IFN and HBV as well as dissect the antiviral mechanisms of IFN. We focus on inhibition of HBV replication by IFN-stimulated genes (ISGs) as well as inhibition of IFN signaling by HBV and viral proteins. Finally, we briefly discuss current IFN-based HBV treatment strategies. This review may help to better understand the mechanisms involved in the therapeutic action of IFN as well as the crosstalk between IFN and HBV, and facilitate the development of both direct-acting and immunology-based new HBV drugs.
Collapse
Affiliation(s)
- Guangyun Tan
- Department of Immunology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Hongxiao Song
- Department of Immunology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Fengchao Xu
- Department of Immunology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Genhong Cheng
- Department of Immunology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.,Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States.,Center of System Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China
| |
Collapse
|
29
|
Abstract
Hepatitis B virus (HBV) and its associated chronic infection remain serious health threats worldwide. However, there is still no impactful approach for clinical treatment of hepatitis B patients. Therefore, developing a better understanding of the interactions between HBV and its host is particularly important. HBV infection has been reported to induce type-III but not type-I or type-II interferon (IFN). In this study, we identified CBFβ, an HIV enhancer, as an HBV restriction factor that is specifically induced by type-III IFN in the early stages of HBV infection. Type-III IFN-induced IL-10 played an important role in the production of CBFβ. Interestingly, the interaction between CBFβ- and HBV-encoded regulatory protein X (HBx) enhanced the stability of CBFβ, but notably blocked HBx-mediated promotion of HBV replication. CBFβ expression was lower in HBV patients than in healthy persons, and the addition of serum from HBV patients inhibited CBFβ expression in HepG2 cells. On the contrary, HBV via HBsAg inhibited type-III IFN-induced CBFβ expression and decreased the anti-HBV activity of type-III IFN, suggesting that HBV inhibits antiviral interferon-stimulated gene (ISG) expression and induces IFN resistance. Collectively, our results demonstrate that type-III IFN-triggered and IL-10-induced CBFβ are crucial factors for inhibiting HBV replication, and the HBx–CBFβ–HBsAg axis reveals a new molecular mechanism of interaction between HBV and its hosts.
Collapse
|
30
|
Wong SW, Sil P, Martinez J. Rubicon: LC3-associated phagocytosis and beyond. FEBS J 2017; 285:1379-1388. [PMID: 29215797 DOI: 10.1111/febs.14354] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/06/2017] [Accepted: 12/04/2017] [Indexed: 02/07/2023]
Abstract
Rubicon (Rubcn) was initially identified as a component of the Class III PI3K complex and a negative regulator of canonical autophagy and endosomal trafficking. However, Rubicon has attracted the most notoriety because of its critical role in LC3-associated phagocytosis (LAP), a form of noncanonical autophagy that utilizes some components of the autophagy machinery to process extracellular cargo. Additionally, Rubicon has been identified as a key modulator of the inflammatory response and viral replication. In this review, we discuss the known functions of Rubicon in LAP and other signaling pathways and examine the disease pathologies associated with Rubicon dysfunction in animal models and humans.
Collapse
Affiliation(s)
- Sing-Wai Wong
- Immunity, Inflammation, and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, NC, USA.,Oral and Craniofacial Biomedicine Curriculum, School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - Payel Sil
- Immunity, Inflammation, and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, NC, USA
| | - Jennifer Martinez
- Immunity, Inflammation, and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, NC, USA
| |
Collapse
|
31
|
Sil P, Muse G, Martinez J. A ravenous defense: canonical and non-canonical autophagy in immunity. Curr Opin Immunol 2017; 50:21-31. [PMID: 29125936 DOI: 10.1016/j.coi.2017.10.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/04/2017] [Indexed: 12/29/2022]
Abstract
While classically considered a survival mechanism employed during nutrient scarcity, the autophagy pathway operates in multiple scenarios wherein a return to homeostasis or degradative removal of an invader is required. Now recognized as a pathway with vast immunoregulatory power, autophagy can no longer serve as a 'one size fits all' term, as its machinery can be recruited to different pathogens, at different times, with different outcomes. Both canonical autophagy and the molecularly related, yet divergent pathways non-canonical autophagy are key players in proper host defense and allow us an opportunity to tailor infectious disease intervention and treatment to its specific pathway.
Collapse
Affiliation(s)
- Payel Sil
- Immunity, Inflammation, and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Ginger Muse
- Immunity, Inflammation, and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Jennifer Martinez
- Immunity, Inflammation, and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
32
|
PTEN-L promotes type I interferon responses and antiviral immunity. Cell Mol Immunol 2017; 15:48-57. [PMID: 29057971 DOI: 10.1038/cmi.2017.102] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/21/2017] [Accepted: 08/21/2017] [Indexed: 01/16/2023] Open
Abstract
Phosphatase and tensin homolog deleted on chromosome ten (PTEN) is a well-known tumor suppressor that acts as a dual-specificity phosphatase and is frequently mutated in human cancer. Our previous work has demonstrated that PTEN also plays a vital role in type I interferon responses and antiviral innate immunity. Recently, a translational variant of PTEN with a long N-terminal extension (PTEN-L) has been discovered that is secreted into the extracellular environment and enters recipient cells, where it exerts a phosphatase function antagonistic to PI3K/Akt signaling and tumorigenesis. In this study, we demonstrate that PTEN-L promotes type I interferon responses and antiviral innate immunity during viral infection in a phosphatase activity-dependent manner. Compared with canonical PTEN, PTEN-L also exerts its antiviral function when it is applied exogenously in protein form. This finding was confirmed in cell cultures and mouse infection models. Furthermore, PTEN-L enhances the responses of both type I interferon and proinflammatory cytokines, thus suggesting that PTEN-L might possess additional functions compared with those of PTEN. Thus, the antiviral function of PTEN-L may open an avenue for the use of PTEN-L in antiviral therapy, particularly in patients with PTEN-deficient tumors.
Collapse
|
33
|
Ortega-Prieto AM, Dorner M. Immune Evasion Strategies during Chronic Hepatitis B and C Virus Infection. Vaccines (Basel) 2017; 5:E24. [PMID: 28862649 PMCID: PMC5620555 DOI: 10.3390/vaccines5030024] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/25/2017] [Accepted: 08/30/2017] [Indexed: 12/15/2022] Open
Abstract
Both hepatitis B virus (HBV) and hepatitis C virus (HCV) infections are a major global healthcare problem with more than 240 million and 70 million infected, respectively. Both viruses persist within the liver and result in progressive liver disease, resulting in liver fibrosis, cirrhosis and hepatocellular carcinoma. Strikingly, this pathogenesis is largely driven by immune responses, unable to clear an established infection, rather than by the viral pathogens themselves. Even though disease progression is very similar in both infections, HBV and HCV have evolved distinct mechanisms, by which they ensure persistence within the host. Whereas HCV utilizes a cloak-and-dagger approach, disguising itself as a lipid-like particle and immediately crippling essential pattern-recognition pathways, HBV has long been considered a "stealth" virus, due to the complete absence of innate immune responses during infection. Recent developments and access to improved model systems, however, revealed that even though it is among the smallest human-tropic viruses, HBV may, in addition to evading host responses, employ subtle immune evasion mechanisms directed at ensuring viral persistence in the absence of host responses. In this review, we compare the different strategies of both viruses to ensure viral persistence by actively interfering with viral recognition and innate immune responses.
Collapse
Affiliation(s)
| | - Marcus Dorner
- Section of Virology, Department of Medicine, Imperial College London, London W2 1PG, UK.
| |
Collapse
|
34
|
Ma Z, Liu J, Wu W, Zhang E, Zhang X, Li Q, Zelinskyy G, Buer J, Dittmer U, Kirschning CJ, Lu M. The IL-1R/TLR signaling pathway is essential for efficient CD8 + T-cell responses against hepatitis B virus in the hydrodynamic injection mouse model. Cell Mol Immunol 2017; 14:997-1008. [PMID: 28757610 PMCID: PMC5719144 DOI: 10.1038/cmi.2017.43] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 05/13/2017] [Accepted: 05/13/2017] [Indexed: 12/18/2022] Open
Abstract
The outcome of hepatitis B viral (HBV) infection is determined by the complex interactions between replicating HBV and the immune system. While the role of the adaptive immune system in the resolution of HBV infection has been studied extensively, the contribution of innate immune mechanisms remains to be defined. Here we examined the role of the interleukin-1 receptor/Toll-like receptor (IL-1R/TLR) signaling pathway in adaptive immune responses and viral clearance by exploring the HBV mouse model. Hydrodynamic injection with a replication-competent HBV genome was performed in wild-type mice (WT) and a panel of mouse strains lacking specific innate immunity component expression. We found higher levels of HBV protein production and replication in Tlr2−/−, Tlr23479−/−, 3d/Tlr24−/−, Myd88/Trif−/− and Irak4−/− mice, which was associated with reduced HBV-specific CD8+ T-cell responses in these mice. Importantly, HBV clearance was delayed for more than 2 weeks in 3d/Tlr24−/−, Myd88/Trif−/− and Irak4−/− mice compared to WT mice. HBV-specific CD8+ T-cell responses were functionally impaired for producing the cytokines IFN-γ, TNF-α and IL-2 in TLR signaling-deficient mice compared to WT mice. In conclusion, the IL-1R/TLR signaling pathway might contribute to controlling HBV infection by augmenting HBV-specific CD8+ T-cell responses.
Collapse
Affiliation(s)
- Zhiyong Ma
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Jia Liu
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Weimin Wu
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Ejuan Zhang
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Xiaoyong Zhang
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Qian Li
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Gennadiy Zelinskyy
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Jan Buer
- Institute of Medical Microbiology, University Hospital of Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Ulf Dittmer
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Carsten J Kirschning
- Institute of Medical Microbiology, University Hospital of Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Mengji Lu
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, 45122 Essen, Germany
| |
Collapse
|