1
|
Wang J, Yu L, Zhao J, Fu S, Mei Y, Lou B, Zhou Y. ClBeclin1 Positively Regulates Citrus Defence Against Citrus Yellow Vein Clearing Virus Through Mediating Autophagy-Dependent Degradation of ClAPX1. MOLECULAR PLANT PATHOLOGY 2024; 25:e70041. [PMID: 39658820 PMCID: PMC11631719 DOI: 10.1111/mpp.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024]
Abstract
Autophagy, one of the most widespread and highly conserved protein degradation systems in eukaryotic cells, plays an important role in plant growth, development and stress response. Beclin 1 is a core component of the phosphatidylinositol 3-kinase (PI3K) autophagy complex and positively regulates plant immunity against viruses. The upregulation of Eureka lemon ClBeclin1 was observed in response to citrus yellow vein clearing virus (CYVCV) infection. However, the function of ClBeclin1 and the underlying mechanism during CYVCV colonisation remain unclear. Here, the resistance evaluation of the overexpression and silencing of ClBeclin1 in Eureka lemon hairy roots revealed it as a positive regulator of citrus immunity against CYVCV. Transcriptomic profiling and metabolic analyses along with genetic evidence implied that the overexpression of ClBeclin1 positively triggered reactive oxygen species (ROS)- and jasmonic acid (JA)-mediated immunity in citrus. The accumulation of ROS and JA contents was attributed to the autophagic degradation of the ROS scavenger ClAPX1 via ClBeclin1 overexpression. Exogenous application of either H2O2 or JA significantly reduced CYVCV colonisation and vein-clearing symptoms on the host. Collectively, our findings indicate that ClBeclin1 activation contributes to citrus immunity against CYVCV through triggering ROS- and JA-mediated defence responses, and the accumulation of ROS and JA resulted from the autophagic degradation of ClAPX1 by ClBeclin1.
Collapse
Affiliation(s)
- Jiajun Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science CitySouthwest University/National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest UniversityChongqingChina
| | - Ling Yu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science CitySouthwest University/National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest UniversityChongqingChina
| | - Jinfa Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science CitySouthwest University/National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest UniversityChongqingChina
| | - Shimin Fu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science CitySouthwest University/National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest UniversityChongqingChina
| | - Yalin Mei
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science CitySouthwest University/National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest UniversityChongqingChina
| | - Binghai Lou
- Guangxi Key Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North GuangxiGuangxi Academy of Specialty CropsGuilinGuangxiChina
| | - Yan Zhou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science CitySouthwest University/National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest UniversityChongqingChina
| |
Collapse
|
2
|
Liu T, Zheng Y, Zhou S, Wang Y, Lei X, Xie L, Lin Q, Chang C, Xiao S, Qiu R, Qi H. 14-3-3 proteins inhibit autophagy by regulating SINAT-mediated proteolysis of ATG6 in Arabidopsis. BMC PLANT BIOLOGY 2024; 24:1148. [PMID: 39609744 PMCID: PMC11605875 DOI: 10.1186/s12870-024-05854-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND Autophagy is a conserved cellular process crucial for recycling cytoplasmic components and maintaining cellular homeostasis in eukaryotes. During autophagy, the formation of a protein complex involving AUTOPHAGY-RELATED PROTEIN 6 (ATG6) and phosphatidylinositol 3-kinase is pivotal for recruiting proteins involved in phagophore expansion. However, the intricate molecular mechanism regulating this protein complex in plants remains elusive. RESULTS Here, we aimed to unravel the molecular regulation of autophagy dynamics in Arabidopsis thaliana by investigating the involvement of the scaffold proteins 14-3-3λ and 14-3-3κ in regulating the proteolysis of ATG6. Phenotypic analyses revealed that 14-3-3λ and 14-3-3κ overexpression lines exhibited increased sensitivity to nutrient starvation, premature leaf senescence, and a decrease in starvation-induced autophagic vesicles, resembling the phenotypes of autophagy-defective mutants, suggesting the potential roles of 14-3-3 proteins in regulating autophagy in plants. Furthermore, our investigation unveiled the involvement of 14-3-3λ and 14-3-3κ in the RING finger E3 ligase SINAT1-mediated ubiquitination and destabilization of ATG6 in vivo. We also observed repressed turnover of ATG6 and translocation of GFP-ATG6 to mCherry-ATG8a-labelled punctate structures in the autophagy-defective mutant, which suggesting that ATG6 is probably a target of autophagy. Additionally, 14-3-3λ and 14-3-3κ interacted with Tumor necrosis factor Receptor Associated Factor 1a (TRAF1a) to promote the stability of TRAF1a in vivo under nutrient-rich conditions, suggesting a feedback regulation of autophagy. These findings demonstrate that 14-3-3λ and 14-3-3κ serve as scaffold proteins to regulate autophagy by facilitating the SINAT1-mediated proteolysis of ATG6, involving both direct and indirect mechanisms, in plants. CONCLUSIONS 14-3-3 proteins regulate autophagy by directly or indirectly binding to ATG6 and SINAT1 to promote ubiquitination and degradation of ATG6. 14-3-3 proteins are involved in modulating autophagy dynamics by facilitating SINAT1-mediated ubiquitination and degradation of ATG6.
Collapse
Affiliation(s)
- Ting Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Integrate Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Yuping Zheng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Shunkang Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Integrate Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Yao Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xue Lei
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Lijuan Xie
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Qingqi Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Changqing Chang
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Integrate Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| | - Hua Qi
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Yan H, Lu Z, Du X, You Z, Yang M, Li N, Li X, Ni Z, Wu H, Wang X, Zhao L, Wang H. Autophagy modulates Arabidopsis male gametophyte fertility and controls actin organization. Nat Commun 2024; 15:10071. [PMID: 39567510 PMCID: PMC11579482 DOI: 10.1038/s41467-024-54468-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/12/2024] [Indexed: 11/22/2024] Open
Abstract
Autophagy, a crucial mechanism for cellular degradation, is regulated by conserved autophagy-related (ATG) core proteins across species. Impairments in autophagy result in significant developmental and reproductive aberrations in mammals. However, autophagy is thought to be functionally dispensable in Arabidopsis thaliana since most of the ATG mutants lack severe growth and reproductive defects. Here, we challenge this perception by unveiling a role for autophagy in male gametophyte development and fertility in Arabidopsis. A detailed re-assessment of atg5 and atg7 mutants found that reduced autophagy activity in germinated pollen accompanied by partial aberrations in sperm cell biogenesis and pollen tube growth, leading to compromised seed formation. Furthermore, we revealed autophagy modulates the spatial organization of actin filaments via targeted degradation of actin depolymerization factors ADF7 and Profilin2 in pollen grains and tubes through a key receptor, Neighbor of BRCA1 (NBR1). Our findings advance the understanding of the evolutionary conservation and diversification of autophagy in modulating male fertility in plants contrasting to mammals.
Collapse
Affiliation(s)
- He Yan
- College of Life Sciences, South China Agricultural University, Guangzhou, China
- School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Zhen Lu
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Xiaojuan Du
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Zhengtao You
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Mingkang Yang
- College of Life Sciences, South China Agricultural University, Guangzhou, China
- School of Biology and Agriculture, Shaoguan University, Shaoguan, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
| | - Nianle Li
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Xuequan Li
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Zailue Ni
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Hong Wu
- College of Life Sciences, South China Agricultural University, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
| | - Xiangfeng Wang
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lifeng Zhao
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Hao Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, China.
- Guangdong Provincial Key Laboratory for the Developmental Biology and Environmental Adaption of Agricultural Organisms, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
4
|
Wang Y, Liu Y, Zhang Y, Sun X, Wang F, Xie Z, Qi K, Sun X, Zhang S. PbrATG6 modulates reactive oxygen species metabolism and interacts with PbrTLP15 synergistic enhancement of pear resistance to Botryosphaeria dothidea. Int J Biol Macromol 2024; 281:136663. [PMID: 39423984 DOI: 10.1016/j.ijbiomac.2024.136663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/03/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Autophagy is vital for plant defense against pathogens, with ATG6 being a key gene in this process. At present, little has been reported on the potential function and molecular mechanisms of ATG6 mediated pathogen resistance in pear. This study investigates the function of the pear homolog of ATG6 (PbrATG6) in resistance to Botryosphaeria dothidea. PbrATG6 is expressed differentially in pear tissues and its expression increases upon infection. Overexpression of PbrATG6 enhances resistance in Arabidopsis and pear calli, while silencing it increases susceptibility. PbrTLP15, a pathogenesis-related protein belonging to the PR5 family, was found that interacts with PbrATG6 by a yeast two-hybrid screening. Yeast two-hybrid, luciferase complementation imaging, bimolecular fluorescence complementation assays and pull-down assays showed that PbrATG6 interacts with PbrTLP15. The transient silencing transgenic assays of PbrATG6 and PbrTLP15 revealed that PbrATG6 could cooperate with PbrTLP15 to regulate pear B. dothidea resistance. In addition, transcriptional analyses of autophagy key genes in pTRV-PbrTLP15 and transmission electron microscopy (TEM) assays also implied that PbrTLP15 does affect autophagy. Hence, PbrATG6 and PbrTLP15 may synergistically enhance pear B. dothidea disease resistance. It provides a new strategy for the study of autophagy in pear disease resistance and enriches the research on pear disease resistance mechanism.
Collapse
Affiliation(s)
- Yun Wang
- Center of Pear Engineering Technology Research, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095.
| | - Yuting Liu
- Center of Pear Engineering Technology Research, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095
| | - Yue Zhang
- Center of Pear Engineering Technology Research, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095
| | - Xiaolei Sun
- Center of Pear Engineering Technology Research, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095
| | - Fei Wang
- Center of Pear Engineering Technology Research, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095
| | - Zhihua Xie
- Center of Pear Engineering Technology Research, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095
| | - Kaijie Qi
- Center of Pear Engineering Technology Research, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095
| | - Xun Sun
- Center of Pear Engineering Technology Research, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095.
| | - Shaoling Zhang
- Center of Pear Engineering Technology Research, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095.
| |
Collapse
|
5
|
Yi Z, Sharif R, Gulzar S, Huang Y, Ning T, Zhan H, Meng Y, Xu C. Changes in hemicellulose metabolism in banana peel during fruit development and ripening. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109025. [PMID: 39142014 DOI: 10.1016/j.plaphy.2024.109025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/19/2024] [Accepted: 08/06/2024] [Indexed: 08/16/2024]
Abstract
Hemicellulose is key in determining the fate of plant cell wall in almost all growth and developmental stages. Nevertheless, there is limited knowledge regarding its involvement in the development and ripening of banana fruit. This study investigated changes in the temporal-spatial distribution of various hemicellulose components, hemicellulose content, activities of the main hydrolysis enzymes, and transcription level of the main hemicellulose-related gene families in banana peels. Both hemicellulose and xylan contents were positively correlated to the fruit firmness observed in our previous study. On the contrary, the xylanase activity was negatively correlated to xylan content and the fruit firmness. The vascular bundle cells, phloem, and cortex of bananas are abundant in xyloglucan, xylan, and mannan contents. Interestingly, the changes in the signal intensity of the CCRC-M104 antibody recognizing non-XXXG type xyloglucan are positively correlated to hemicellulose content. According to RNA-Seq analysis, xyloglucan and xylan-related genes were highly active in the early stages of growth, and the expression of MaMANs and MaXYNs increased as the fruit ripened. The abundance of plant hormonal and growth-responsive cis-acting elements was detected in the 2 kb upstream region of hemicellulose-related gene families. Interaction between hemicellulose and cell wall-specific proteins and MaKCBP1/2, MaCKG1, and MaHKL1 was found. The findings shed light on cell wall hemicellulose's role in banana fruit development and ripening, which could improve nutrition, flavor, and reduce postharvest fruit losses.
Collapse
Affiliation(s)
- Zan Yi
- Department of Horticulture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Rahat Sharif
- Department of Horticulture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Shazma Gulzar
- Department of Horticulture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yongxin Huang
- Department of Horticulture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Tong Ning
- Department of Horticulture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Huiling Zhan
- Department of Horticulture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yue Meng
- Department of Horticulture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Chunxiang Xu
- Department of Horticulture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
6
|
He Z, Zhou M, Feng X, Di Q, Meng D, Yu X, Yan Y, Sun M, Li Y. The Role of Brassinosteroids in Plant Cold Stress Response. Life (Basel) 2024; 14:1015. [PMID: 39202757 PMCID: PMC11355907 DOI: 10.3390/life14081015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Temperature affects plant growth and geographical distribution. Cold stress occurs when temperatures fall below the physiologically optimal range for plants, causing permanent and irreversible damage to plant growth, development, and production. Brassinosteroids (BRs) are steroid hormones that play an important role in plant growth and various stress responses. Recent studies have shown that low temperatures affect BR biosynthesis in many plant species and that BR signaling is involved in the regulation of plant tolerance to low temperatures, both in the CBF-dependent and CBF-independent pathways. These two regulatory pathways correspond to transient and acclimation responses of low temperature, respectively. The crosstalk between BRs and other hormones is a significant factor in low-temperature tolerance. We provide an overview of recent developments in our knowledge of BRs' function in plant responses to cold stress and how they interact with other plant hormones in this review.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mintao Sun
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.H.); (M.Z.); (X.F.); (Q.D.); (D.M.); (X.Y.); (Y.Y.)
| | - Yansu Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.H.); (M.Z.); (X.F.); (Q.D.); (D.M.); (X.Y.); (Y.Y.)
| |
Collapse
|
7
|
Fan D, Wang X, Liu T, Liu H, Peng Y, Tang X, Ye X, Sun K, Yue Y, Xu D, Li C, Luo K. Epigenetic regulation of high light-induced anthocyanin biosynthesis by histone demethylase IBM1 in Arabidopsis. THE NEW PHYTOLOGIST 2024; 242:2570-2585. [PMID: 38708492 DOI: 10.1111/nph.19789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/27/2024] [Indexed: 05/07/2024]
Abstract
In plant species, anthocyanin accumulation is specifically regulated by light signaling. Although the CONSTITUTIVELY PHOTOMORPHOGENIC1/SUPPRESSOR OF PHYA-105 (COP1/SPA) complex is known to control anthocyanin biosynthesis in response to light, the precise mechanism underlying this process remains largely unknown. Here, we report that Increase in BONSAI Methylation 1 (IBM1), a JmjC domain-containing histone demethylase, participates in the regulation of light-induced anthocyanin biosynthesis in Arabidopsis. The expression of IBM1 was induced by high light (HL) stress, and loss-of-function mutations in IBM1 led to accelerated anthocyanin accumulation under HL conditions. We further identified that IBM1 is directly associated with SPA1/3/4 chromatin in vivo to establish a hypomethylation status on H3K9 and DNA non-CG at these loci under HL, thereby releasing their expression. Genetic analysis showed that quadruple mutants of IBM1 and SPA1/3/4 resemble spa134 mutants. Overexpression of SPA1 in ibm1 mutants complements the mutant phenotype. Our results elucidate the significance and mechanism of IBM1 histone demethylase in the epigenetic regulation of anthocyanin biosynthesis in Arabidopsis under HL conditions.
Collapse
Affiliation(s)
- Di Fan
- Chongqing Key Laboratory of Innovative and Utilization of Tree Germplasm Resources, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Xianqiang Wang
- Chongqing Key Laboratory of Innovative and Utilization of Tree Germplasm Resources, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Tingting Liu
- Chongqing Key Laboratory of Innovative and Utilization of Tree Germplasm Resources, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Huimin Liu
- Chongqing Key Laboratory of Innovative and Utilization of Tree Germplasm Resources, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yingying Peng
- Chongqing Key Laboratory of Innovative and Utilization of Tree Germplasm Resources, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Xiaofeng Tang
- Chongqing Key Laboratory of Innovative and Utilization of Tree Germplasm Resources, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Xiao Ye
- Chongqing Key Laboratory of Innovative and Utilization of Tree Germplasm Resources, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Kuan Sun
- Chongqing Key Laboratory of Innovative and Utilization of Tree Germplasm Resources, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yuchen Yue
- Chongqing Key Laboratory of Innovative and Utilization of Tree Germplasm Resources, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Dan Xu
- Chongqing Key Laboratory of Innovative and Utilization of Tree Germplasm Resources, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Chaofeng Li
- Chongqing Key Laboratory of Innovative and Utilization of Tree Germplasm Resources, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Keming Luo
- Chongqing Key Laboratory of Innovative and Utilization of Tree Germplasm Resources, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
8
|
Wang Y, Xie D, Zheng X, Guo M, Qi Z, Yang P, Yu J, Zhou J. MAPK20-mediated ATG6 phosphorylation is critical for pollen development in Solanum lycopersicum L. HORTICULTURE RESEARCH 2024; 11:uhae069. [PMID: 38725462 PMCID: PMC11079483 DOI: 10.1093/hr/uhae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/25/2024] [Indexed: 05/12/2024]
Abstract
In flowering plants, male gametogenesis is tightly regulated by numerous genes. Mitogen-activated protein kinase (MAPK) plays a critical role in plant development and stress response, while its role in plant reproductive development is largely unclear. The present study demonstrated MAPK20 phosphorylation of ATG6 to mediate pollen development and germination in tomato (Solanum lycopersicum L.). MAPK20 was preferentially expressed in the stamen of tomato, and mutation of MAPK20 resulted in abnormal pollen grains and inhibited pollen viability and germination. MAPK20 interaction with ATG6 mediated the formation of autophagosomes. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis showed that ATG6 was phosphorylated by MAPK20 at Ser-265. Mutation of ATG6 in wild-type (WT) or in MAPK20 overexpression plants resulted in malformed and inviable pollens. Meanwhile, the number of autophagosomes in mapk20 and atg6 mutants was significantly lower than that of WT plants. Our results suggest that MAPK20-mediated ATG6 phosphorylation and autophagosome formation are critical for pollen development and germination.
Collapse
Affiliation(s)
- Yu Wang
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Dongling Xie
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Xuelian Zheng
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Mingyue Guo
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Zhenyu Qi
- Hainan Institute, Zhejiang University, Sanya 572000, China
- Agricultural Experiment Station, Zhejiang University, Hangzhou 310058, China
| | - Ping Yang
- Agricultural Experiment Station, Zhejiang University, Hangzhou 310058, China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Sanya 572000, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
| | - Jie Zhou
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Sanya 572000, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
| |
Collapse
|
9
|
Shang JN, Yu CG, Li R, Xi Y, Jian YJ, Xu N, Chen S. The nonautophagic functions of autophagy-related proteins. Autophagy 2024; 20:720-734. [PMID: 37682088 PMCID: PMC11062363 DOI: 10.1080/15548627.2023.2254664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023] Open
Abstract
ABBREVIATIONS ATG: autophagy related; BECN1: beclin 1; cAMP: cyclic adenosine monophosphate; dsDNA: double-stranded DNA; EMT: epithelial-mesenchymal transition; IFN: interferon; ISCs: intestinal stem cells; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAPK/JNK: mitogen-activated protein kinase/c-Jun N-terminal kinases; MTOR: mechanistic target of rapamycin kinase; STING1: stimulator of interferon response cGAMP interactor 1; UVRAG: UV radiation resistance associated; VPS: vacuolar protein sorting.
Collapse
Affiliation(s)
- Jia-Ni Shang
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Henan University School of Medicine, Kaifeng, Henan, PR China
| | - Chen-Ge Yu
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Henan University School of Medicine, Kaifeng, Henan, PR China
| | - Rui Li
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Henan University School of Medicine, Kaifeng, Henan, PR China
| | - Yan Xi
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Henan University School of Medicine, Kaifeng, Henan, PR China
| | - Yue Jenny Jian
- Nanjing Foreign Language School, Nanjing, Jiangsu, PR China
| | - Nan Xu
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Henan University School of Medicine, Kaifeng, Henan, PR China
| | - Su Chen
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Henan University School of Medicine, Kaifeng, Henan, PR China
| |
Collapse
|
10
|
Singh SP, Verma RK, Goel R, Kumar V, Singh RR, Sawant SV. Arabidopsis BECLIN1-induced autophagy mediates reprogramming in tapetal programmed cell death by altering the gross cellular homeostasis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108471. [PMID: 38503186 DOI: 10.1016/j.plaphy.2024.108471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/14/2024] [Accepted: 02/23/2024] [Indexed: 03/21/2024]
Abstract
In flowering plants, the tapetum degeneration in post-meiotic anther occurs through developmental programmed cell death (dPCD), which is one of the most critical and sensitive steps for the proper development of male gametophytes and fertility. Yet the pathways of dPCD, its regulation, and its interaction with autophagy remain elusive. Here, we report that high-level expression of Arabidopsis autophagy-related gene BECLIN1 (BECN1 or AtATG6) in the tobacco tapetum prior to their dPCD resulted in developmental defects. BECN1 induces severe autophagy and multiple cytoplasm-to-vacuole pathways, which alters tapetal cell reactive oxygen species (ROS)-homeostasis that represses the tapetal dPCD. The transcriptome analysis reveals that BECN1- expression caused major changes in the pathway, resulting in altered cellular homeostasis in the tapetal cell. Moreover, BECN1-mediated autophagy reprograms the execution of tapetal PCD by altering the expression of the key developmental PCD marker genes: SCPL48, CEP1, DMP4, BFN1, MC9, EXI1, and Bcl-2 member BAG5, and BAG6. This study demonstrates that BECN1-mediated autophagy is inhibitory to the dPCD of the tapetum, but the severity of autophagy leads to autophagic death in the later stages. The delayed and altered mode of tapetal degeneration resulted in male sterility.
Collapse
Affiliation(s)
- Surendra Pratap Singh
- Plant Molecular Biology Laboratory, CSIR National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India; Department of Botany, University of Lucknow, Lucknow, 226007, India.
| | - Rishi Kumar Verma
- Plant Molecular Biology Laboratory, CSIR National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Ridhi Goel
- Plant Molecular Biology Laboratory, CSIR National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Verandra Kumar
- Plant Molecular Biology Laboratory, CSIR National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India.
| | | | - Samir V Sawant
- Plant Molecular Biology Laboratory, CSIR National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
11
|
Fu X, Xin Y, Shen G, Luo K, Xu C, Wu N. A cytokinin response factor PtCRF1 is involved in the regulation of wood formation in poplar. TREE PHYSIOLOGY 2024; 44:tpad156. [PMID: 38123505 DOI: 10.1093/treephys/tpad156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
Wood formation is a complex developmental process under the control of multiple levels of regulatory transcriptional network and hormone signals in trees. It is well known that cytokinin (CK) signaling plays an important role in maintaining the activity of the vascular cambium. The CK response factors (CRFs) encoding a subgroup of AP2 transcription factors have been identified to mediate the CK-dependent regulation in different plant developmental processes. However, the functions of CRFs in wood development remain unclear. Here, we characterized the function of PtCRF1, a CRF transcription factor isolated from poplar, in the process of wood formation. The PtCRF1 is preferentially expressed in secondary vasculature, especially in vascular cambium and secondary phloem, and encodes a transcriptional activator. Overexpression of PtCRF1 in transgenic poplar plants led to a significant reduction in the cell layer number of vascular cambium. The development of wood tissue was largely promoted in the PtCRF1-overexpressing lines, while it was significantly compromised in the CRISPR/Cas9-generated double mutant plants of PtCRF1 and its closest homolog PtCRF2. The RNA sequencing (RNA-seq) and quantitative reverse transcription PCR (RT-qPCR) analyses showed that PtCRF1 repressed the expression of the typical CK-responsive genes. Furthermore, bimolecular fluorescence complementation assays revealed that PtCRF1 competitively inhibits the direct interactions between histidine phosphotransfer proteins and type-B response regulator by binding to PtHP protein. Collectively, these results indicate that PtCRF1 negatively regulates CK signaling and is required for woody cell differentiation in poplar.
Collapse
Affiliation(s)
- Xiaokang Fu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, School of Life Sciences, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Yufeng Xin
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Gui Shen
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Keming Luo
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, School of Life Sciences, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Changzheng Xu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, School of Life Sciences, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Nengbiao Wu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, School of Life Sciences, Ministry of Education, Southwest University, Chongqing 400715, China
| |
Collapse
|
12
|
Zhang B, Huang S, Meng Y, Chen W. Gold nanoparticles (AuNPs) can rapidly deliver artificial microRNA (AmiRNA)-ATG6 to silence ATG6 expression in Arabidopsis. PLANT CELL REPORTS 2023:10.1007/s00299-023-03026-5. [PMID: 37160448 DOI: 10.1007/s00299-023-03026-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/29/2023] [Indexed: 05/11/2023]
Abstract
KEY MESSAGE We establish a fast and efficient transient silencing system that facilitates functional studies of some genes, whose knockout leads to plant lethality. In plants, the generation of loss-of-function mutants is crucial for studying gene function. Artificial microRNA (AmiRNA) technology is a more targeted and effective tool for gene silencing. Gold nanoparticles (AuNPs) can bind nucleic acids and deliver them into animal cells. Here, AuNPs are used in combination with AmiRNA technology in plants. We found that AmiRNA-autophagy-related proteins (ATG6) can be delivered to cells by AuNPs to achieve the effect of ATG6 silencing. It is worth noting that on the 10th day there is still a silencing effect. Similar to the atg5 lines, silencing of ATG6 significantly reduced plant resistance to Pseudomonas syringae pv.maculicola (Psm) ES4326/AvrRpt2. Interestingly, ATG6 silencing and ATG5 mutation in NPR1-GFP (nonexpressor of pathogenesis-related genes) lines significantly reduced plant resistance to Psm ES4326/AvrRpt2, suggesting that autophagy is also involved in NPR1-regulated plant immune responses. In summary, we establish a fast and efficient transient silencing system that facilitates functional studies of some genes, whose knockout leads to plant lethality.
Collapse
Affiliation(s)
- Baihong Zhang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Shuqin Huang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Yixuan Meng
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Wenli Chen
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
13
|
Yan H, Zhuang M, Xu X, Li S, Yang M, Li N, Du X, Hu K, Peng X, Huang W, Wu H, Tse YC, Zhao L, Wang H. Autophagy and its mediated mitochondrial quality control maintain pollen tube growth and male fertility in Arabidopsis. Autophagy 2023; 19:768-783. [PMID: 35786359 PMCID: PMC9980518 DOI: 10.1080/15548627.2022.2095838] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Macroautophagy/autophagy, a major catabolic pathway in eukaryotes, participates in plant sexual reproduction including the processes of male gametogenesis and the self-incompatibility response. Rapid pollen tube growth is another essential reproductive process that is metabolically highly demanding to drive the vigorous cell growth for delivery of male gametes for fertilization in angiosperms. Whether and how autophagy operates to maintain the homeostasis of pollen tubes remains unknown. Here, we provide evidence that autophagy is elevated in growing pollen tubes and critically required during pollen tube growth and male fertility in Arabidopsis. We demonstrate that SH3P2, a critical non-ATG regulator of plant autophagy, colocalizes with representative ATG proteins during autophagosome biogenesis in growing pollen tubes. Downregulation of SH3P2 expression significantly disrupts Arabidopsis pollen germination and pollen tube growth. Further analysis of organelle dynamics reveals crosstalk between autophagosomes and prevacuolar compartments following the inhibition of phosphatidylinositol 3-kinase. In addition, time-lapse imaging and tracking of ATG8e-labeled autophagosomes and depolarized mitochondria demonstrate that they interact specifically via the ATG8-family interacting motif (AIM)-docking site to mediate mitophagy. Ultrastructural identification of mitophagosomes and two additional forms of autophagosomes imply that multiple types of autophagy are likely to function simultaneously within pollen tubes. Altogether, our results suggest that autophagy is functionally crucial for mediating mitochondrial quality control and canonical cytoplasm recycling during pollen tube growth.Abbreviations: AIM: ATG8-family interacting motif; ATG8: autophagy related 8; ATG5: autophagy related 5; ATG7: autophagy related 7; BTH: acibenzolar-S-methyl; DEX: dexamethasone; DNP: 2,4-dinitrophenol; GFP: green fluorescent protein; YFP: yellow fluorescent protein; PtdIns3K: phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; PVC: prevacuolar compartment; SH3P2: SH3 domain-containing protein 2.
Collapse
Affiliation(s)
- He Yan
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Hong Kong, China
| | - Menglong Zhuang
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Hong Kong, China
| | - Xiaoyu Xu
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Hong Kong, China
| | - Shanshan Li
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Hong Kong, China
| | - Mingkang Yang
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Hong Kong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou null China
| | - Nianle Li
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Hong Kong, China
| | - Xiaojuan Du
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Hong Kong, China
| | - Kangwei Hu
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Hong Kong, China
| | - Xiaomin Peng
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Hong Kong, China
| | - Wei Huang
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Hong Kong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou null China
| | - Hong Wu
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Hong Kong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou null China
| | - Yu Chung Tse
- Core Research Facilities, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Lifeng Zhao
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Hong Kong, China
| | - Hao Wang
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Hong Kong, China
| |
Collapse
|
14
|
Overexpression of PpSnRK1α in Tomato Increased Autophagy Activity under Low Nutrient Stress. Int J Mol Sci 2022; 23:ijms23105464. [PMID: 35628273 PMCID: PMC9141306 DOI: 10.3390/ijms23105464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 11/26/2022] Open
Abstract
Plants suffer from a variety of environmental stresses during their growth and development. The evolutionarily conserved sucrose nonfermenting kinase 1-related protein kinase 1 (SnRK1) plays a central role in the regulation of energy homeostasis in response to stresses. In plant cells, autophagy is a degradation process occurring during development or under stress, such as nutrient starvation. In recent years, SnRK1 signaling has been reported to be an upstream activator of autophagy. However, these studies all focused on the regulatory effect of SnRK1 on TOR signaling and the autophagy-related gene 1 (ATG1) complex. In this study, overexpression of the gene encoding the Prunus persica SnRK1 α subunit (PpSnRK1α) in tomato improved the photosynthetic rates and enhanced the resistance to low nutrient stress (LNS). Overexpression of PpSnRK1α increased autophagy activity and upregulated the expression of seven autophagy-related genes (ATGs). The transcriptional levels of SlSnRK2 family genes were altered significantly by PpSnRK1α, signifying that PpSnRK1α may be involved in the ABA signaling pathway. Further analysis showed that PpSnRK1α not only activated autophagy by inhibiting target of rapamycin (TOR) signaling but also enhanced ABA-induced autophagy. This indicates that PpSnRK1α regulates the photosynthetic rate and induces autophagy, and then responds to low nutrient stress.
Collapse
|
15
|
Bhadmus OA, Badu-Apraku B, Adeyemo OA, Agre PA, Queen ON, Ogunkanmi AL. Genome-Wide Association Analysis Reveals Genetic Architecture and Candidate Genes Associated with Grain Yield and Other Traits under Low Soil Nitrogen in Early-Maturing White Quality Protein Maize Inbred Lines. Genes (Basel) 2022; 13:genes13050826. [PMID: 35627211 PMCID: PMC9141126 DOI: 10.3390/genes13050826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 02/01/2023] Open
Abstract
Maize production in the savannas of sub-Saharan Africa (SSA) is constrained by the low nitrogen in the soils. The identification of quantitative trait loci (QTL) conferring tolerance to low soil nitrogen (low-N) is crucial for the successful breeding of high-yielding QPM maize genotypes under low-N conditions. The objective of this study was to identify QTLs significantly associated with grain yield and other low-N tolerance-related traits under low-N. The phenotypic data of 140 early-maturing white quality protein maize (QPM) inbred lines were evaluated under low-N. The inbred lines were genotyped using 49,185 DArTseq markers, from which 7599 markers were filtered for population structure analysis and genome-wide association study (GWAS). The inbred lines were grouped into two major clusters based on the population structure analysis. The GWAS identified 24, 3, 10, and 3 significant SNPs respectively associated with grain yield, stay-green characteristic, and plant and ear aspects, under low-N. Sixteen SNP markers were physically located in proximity to 32 putative genes associated with grain yield, stay-green characteristic, and plant and ear aspects. The putative genes GRMZM2G127139, GRMZM5G848945, GRMZM2G031331, GRMZM2G003493, GRMZM2G067964, GRMZM2G180254, on chromosomes 1, 2, 8, and 10 were involved in cellular nitrogen assimilation and biosynthesis, normal plant growth and development, nitrogen assimilation, and disease resistance. Following the validation of the markers, the putative candidate genes and SNPs could be used as genomic markers for marker-assisted selection, to facilitate genetic gains for low-N tolerance in maize production.
Collapse
Affiliation(s)
- Olatunde A. Bhadmus
- Department of Cell Biology and Genetics, University of Lagos, Lagos 101017, Nigeria; (O.A.B.); (O.A.A.); (A.L.O.)
- International Institute of Tropical Agriculture, IITA, PMB 5320 Oyo Road, Ibadan 200285, Nigeria; (P.A.A.); (O.N.Q.)
| | - Baffour Badu-Apraku
- International Institute of Tropical Agriculture, IITA, PMB 5320 Oyo Road, Ibadan 200285, Nigeria; (P.A.A.); (O.N.Q.)
- Correspondence:
| | - Oyenike A. Adeyemo
- Department of Cell Biology and Genetics, University of Lagos, Lagos 101017, Nigeria; (O.A.B.); (O.A.A.); (A.L.O.)
| | - Paterne A. Agre
- International Institute of Tropical Agriculture, IITA, PMB 5320 Oyo Road, Ibadan 200285, Nigeria; (P.A.A.); (O.N.Q.)
| | - Offornedo N. Queen
- International Institute of Tropical Agriculture, IITA, PMB 5320 Oyo Road, Ibadan 200285, Nigeria; (P.A.A.); (O.N.Q.)
| | - Adebayo L. Ogunkanmi
- Department of Cell Biology and Genetics, University of Lagos, Lagos 101017, Nigeria; (O.A.B.); (O.A.A.); (A.L.O.)
| |
Collapse
|
16
|
Wang J, Miao S, Liu Y, Wang Y. Linking Autophagy to Potential Agronomic Trait Improvement in Crops. Int J Mol Sci 2022; 23:ijms23094793. [PMID: 35563184 PMCID: PMC9103229 DOI: 10.3390/ijms23094793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 12/10/2022] Open
Abstract
Autophagy is an evolutionarily conserved catabolic process in eukaryotic cells, by which the superfluous or damaged cytoplasmic components can be delivered into vacuoles or lysosomes for degradation and recycling. Two decades of autophagy research in plants uncovers the important roles of autophagy during diverse biological processes, including development, metabolism, and various stress responses. Additionally, molecular machineries contributing to plant autophagy onset and regulation have also gradually come into people’s sights. With the advancement of our knowledge of autophagy from model plants, autophagy research has expanded to include crops in recent years, for a better understanding of autophagy engagement in crop biology and its potentials in improving agricultural performance. In this review, we summarize the current research progress of autophagy in crops and discuss the autophagy-related approaches for potential agronomic trait improvement in crop plants.
Collapse
|
17
|
B B, Zeng Z, Zhou C, Lian G, Guo F, Wang J, Han N, Zhu M, Bian H. Identification of New ATG8s-Binding Proteins with Canonical LC3-Interacting Region in Autophagosomes of Barley Callus. PLANT & CELL PHYSIOLOGY 2022:pcac015. [PMID: 35134996 DOI: 10.1093/pcp/pcac015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Autophagy is essential to maintain cellular homeostasis for normal cell growth and development. In selective autophagy, ATG8 plays a crucial role in cargo target recognition by binding to various adaptors and receptors with the ATG8-interacting motif, also known as the LC3-interacting region (LIR). However, the process of autophagy in the callus, as a proliferating cell type, is largely unknown. In this study, we overexpressed green fluorescent protein (GFP)-ATG8a and GFP-ATG8b transgenic barley callus and checked their autophagic activities. We identified five new ATG8 candidate interactors containing the canonical LIR motif by using immunoprecipitation coupled with mass spectrometry: RPP3, COPE, NCLN, RAE1, and CTSL. The binding activities between these candidate interactors and ATG8 were further demonstrated in the punctate structure. Notably, RPP3 was colocalized in ATG8-labeled autophagosomes under tunicamycin-induced ER stress. GST pull-down assays showed that the interaction between RPP3 and ATG8 could be prevented by mutating the LIRs region of RPP3 or the LIR docking site (LDS) of ATG8, suggesting that RPP3 directly interacted with ATG8 in an LIR-dependent manner via the LDS. Our findings would provide the basis for further investigations on novel receptors and functions of autophagy in plants, especially in the physiological state of cell de-differentiation.
Collapse
|
18
|
Liu N, Zhou S, Li B, Ren W. Involvement of the Autophagy Protein Atg6 in Development and Virulence in the Gray Mold Fungus Botrytis cinerea. Front Microbiol 2022; 12:798363. [PMID: 34970250 PMCID: PMC8712751 DOI: 10.3389/fmicb.2021.798363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/25/2021] [Indexed: 01/18/2023] Open
Abstract
Gray mold caused by Botrytis cinerea is a devastating disease that leads to huge economic losses worldwide. Autophagy is an evolutionarily conserved process that maintains intracellular homeostasis through self-eating. In this study, we identified and characterized the biological function of the autophagy-related protein Atg6 in B. cinerea. Targeted deletion of the BcATG6 gene showed block of autophagy and several phenotypic defects in aspects of mycelial growth, conidiation, sclerotial formation and virulence. All of the phenotypic defects were restored by targeted gene complementation. Taken together, these results suggest that BcAtg6 plays important roles in the regulation of various cellular processes in B. cinerea.
Collapse
Affiliation(s)
- Na Liu
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China.,Engineering Research Center of Fruit and Vegetable Pest Precise Control of Qingdao, Qingdao, China
| | - Shanyue Zhou
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China.,Engineering Research Center of Fruit and Vegetable Pest Precise Control of Qingdao, Qingdao, China
| | - Baohua Li
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China.,Engineering Research Center of Fruit and Vegetable Pest Precise Control of Qingdao, Qingdao, China
| | - Weichao Ren
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China.,Engineering Research Center of Fruit and Vegetable Pest Precise Control of Qingdao, Qingdao, China
| |
Collapse
|
19
|
Zhou X, Zhao P, Sun MX. Autophagy in sexual plant reproduction: new insights. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7658-7667. [PMID: 34338297 DOI: 10.1093/jxb/erab366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Autophagy is a mechanism by which damaged or unwanted cells are degraded and their constituents recycled. Over the past decades, research focused on autophagy has expanded from yeast to mammals and plants, and the core machinery regulating autophagy appears to be conserved. In plants, autophagy has essential roles in responses to stressful conditions and also contributes to normal development, especially in the context of reproduction. Here, based on recent efforts to understand the roles and molecular mechanisms underlying autophagy, we highlight the specific roles of autophagy in plant reproduction and provide new insights for further studies.
Collapse
Affiliation(s)
- Xuemei Zhou
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, Engineering Research Centre for the Protection and Utilization of Bioresource in Ethnic Area of Southern China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Peng Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Meng-Xiang Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
20
|
Yang Y, Xiang Y, Niu Y. An Overview of the Molecular Mechanisms and Functions of Autophagic Pathways in Plants. PLANT SIGNALING & BEHAVIOR 2021; 16:1977527. [PMID: 34617497 PMCID: PMC9208794 DOI: 10.1080/15592324.2021.1977527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Autophagy is an evolutionarily conserved pathway for the degradation of damaged or toxic components. Under normal conditions, autophagy maintains cellular homeostasis. It can be triggered by senescence and various stresses. In the process of autophagy, autophagy-related (ATG) proteins not only function as central signal regulators but also participate in the development of complex survival mechanisms when plants suffer from adverse environments. Therefore, ATGs play significant roles in metabolism, development and stress tolerance. In the past decade, both the molecular mechanisms of autophagy and a large number of components involved in the assembly of autophagic vesicles have been identified. In recent studies, an increasing number of components, mechanisms, and receptors have appeared in the autophagy pathway. In this paper, we mainly review the recent progress of research on the molecular mechanisms of plant autophagy, as well as its function under biotic stress and abiotic stress.
Collapse
Affiliation(s)
- Yang Yang
- Moe Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences,Lanzhou University, Lanzhou, China
| | - Yun Xiang
- Moe Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences,Lanzhou University, Lanzhou, China
| | - Yue Niu
- Moe Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences,Lanzhou University, Lanzhou, China
| |
Collapse
|
21
|
Significance of brassinosteroids and their derivatives in the development and protection of plants under abiotic stress. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00853-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Wei Y, Zeng H, Liu W, Cheng X, Zhu B, Guo J, Shi H. Autophagy-related genes serve as heat shock protein 90 co-chaperones in disease resistance against cassava bacterial blight. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:925-937. [PMID: 34037995 DOI: 10.1111/tpj.15355] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/10/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Heat shock protein 90 (HSP90) is involved in plant growth and various stress responses via regulating protein homeostasis. Autophagy keeps cellular homeostasis by recycling the components of cellular cytoplasmic constituents. Although they have similar effects on cellular protein homeostasis, the direct association between HSP90 and autophagy signaling remains unclear in plants, especially in tropical crops. In this study, the correlation between HSP90 and autophagy signaling was systematically analyzed by protein-protein interaction in cassava, one of the most important economy fruit in tropic. In addition, their effects on plant disease response and underlying mechanisms in cassava were investigated by functional genomics and genetic phenotype assay. The potential MeHSP90.9-MeSGT1-MeRAR1 chaperone complex interacts with MeATGs and subsequently triggers autophagy signaling, conferring improved disease resistance to cassava bacterial blight (CBB). On the contrary, HSP90 inhibitor and autophagy inhibitor decreased disease resistance against CBB in cassava, and autophagy may be involved in the potential MeHSP90.9-MeSGT1-MeRAR1 chaperone complex-mediated multiple immune responses. This study highlights the precise modulation of autophagy signaling by potential MeHSP90.9-MeSGT1-MeRAR1 chaperone complex in autophagy-mediated disease resistance to CBB.
Collapse
Affiliation(s)
- Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Hongqiu Zeng
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Wen Liu
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU)/Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Xiao Cheng
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Binbin Zhu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Jingru Guo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| |
Collapse
|
23
|
Zhang J, Ge W, Chang H, Xin X, Ji R. Discovery of BrATG6 and its potential role in Brassica rapa L. resistance to infection by Plasmodiophora brassicae. Gene 2021; 791:145711. [PMID: 33984445 DOI: 10.1016/j.gene.2021.145711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/14/2021] [Accepted: 05/06/2021] [Indexed: 11/30/2022]
Abstract
Clubroot disease, caused by Plasmodiophora brassicae infection, occurs in cruciferous vegetable crops in many areas of the world, sometimes leading to yield loss. In this study, a differentially expressed protein (0305), was found between control and clubroot-diseased Chinese cabbage (Brassica rapa L.) roots through two-dimensional electrophoresis. Mass spectrometry analysis showed that Bra003466 was highly matched to protein 0305. Because the sequence of Bra003466 had 89% percent identity with ATG6 of Arabidopsis thaliana and other Brassica, the gene was named as BrATG6. However, 790 bp sequences were mismatched with the cDNA sequence of the Bra003466 gene from the Brassica database. In this study, we cloned the cDNA of Bra003466 and found the BrATG6 was highly expressed in roots among all organs. When plants were inoculated with P. brassicae Woronin, the expression of BrATG6 was significantly increased in infected roots of Chinese cabbage. This result was verified by reverse transcription-qPCR and in situ hybridization. Examination of disease resistance showed that, compared with wild type plants, A. thaliana ATG6 deletion mutants were more easily infected by P. brassicae than WT. This shows that BrATG6 may play a potential role in the resistance of B. rapa to P. brassicae infection.
Collapse
Affiliation(s)
- Jing Zhang
- Shenyang Agricultural University, Liaoning Province Cruciferous Vegetables Genetic Breeding Primary Laboratory, Shenyang, Liaoning 110866, China
| | - Wenjie Ge
- Shenyang Agricultural University, Liaoning Province Cruciferous Vegetables Genetic Breeding Primary Laboratory, Shenyang, Liaoning 110866, China
| | - Hong Chang
- Shenyang Agricultural University, Liaoning Province Cruciferous Vegetables Genetic Breeding Primary Laboratory, Shenyang, Liaoning 110866, China
| | - Xifeng Xin
- Shenyang Agricultural University, Liaoning Province Cruciferous Vegetables Genetic Breeding Primary Laboratory, Shenyang, Liaoning 110866, China
| | - Ruiqin Ji
- Shenyang Agricultural University, Liaoning Province Cruciferous Vegetables Genetic Breeding Primary Laboratory, Shenyang, Liaoning 110866, China.
| |
Collapse
|
24
|
Nakamura S, Hagihara S, Izumi M. Mitophagy in plants. Biochim Biophys Acta Gen Subj 2021; 1865:129916. [PMID: 33932484 DOI: 10.1016/j.bbagen.2021.129916] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/06/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022]
Abstract
Mitochondria play a central role in primary metabolism in plants as well as in heterotrophic eukaryotes. Plants must control the quality and number of mitochondria in response to a changing environment, across cell types and developmental stages. Mitophagy is defined as the degradation of mitochondria by autophagy, an evolutionarily conserved system for the removal and recycling of intracellular components. Recent studies have highlighted the importance of mitophagy in plant stress responses. This review article summarizes our current knowledge of plant mitophagy and discusses the underlying mechanisms. In plants, chloroplasts cooperate with mitochondria for energy production, and autophagy also targets chloroplasts through a process known as chlorophagy. Advances in plant autophagy studies now allow a comparative analysis of the autophagic turnover of mitochondria and chloroplasts, via the selective degradation of their soluble proteins, fragments, or entire organelles.
Collapse
Affiliation(s)
- Sakuya Nakamura
- Center for Sustainable Resource Science (CSRS), RIKEN, 351-0198 Wako, Japan
| | - Shinya Hagihara
- Center for Sustainable Resource Science (CSRS), RIKEN, 351-0198 Wako, Japan
| | - Masanori Izumi
- Center for Sustainable Resource Science (CSRS), RIKEN, 351-0198 Wako, Japan.
| |
Collapse
|
25
|
Qi H, Xia FN, Xiao S. Autophagy in plants: Physiological roles and post-translational regulation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:161-179. [PMID: 32324339 DOI: 10.1111/jipb.12941] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/22/2020] [Indexed: 05/20/2023]
Abstract
In eukaryotes, autophagy helps maintain cellular homeostasis by degrading and recycling cytoplasmic materials via a tightly regulated pathway. Over the past few decades, significant progress has been made towards understanding the physiological functions and molecular regulation of autophagy in plant cells. Increasing evidence indicates that autophagy is essential for plant responses to several developmental and environmental cues, functioning in diverse processes such as senescence, male fertility, root meristem maintenance, responses to nutrient starvation, and biotic and abiotic stress. Recent studies have demonstrated that, similar to nonplant systems, the modulation of core proteins in the plant autophagy machinery by posttranslational modifications such as phosphorylation, ubiquitination, lipidation, S-sulfhydration, S-nitrosylation, and acetylation is widely involved in the initiation and progression of autophagy. Here, we provide an overview of the physiological roles and posttranslational regulation of autophagy in plants.
Collapse
Affiliation(s)
- Hua Qi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Fan-Nv Xia
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
26
|
Zhao P, Zhou XM, Zhao LL, Cheung AY, Sun MX. Autophagy-mediated compartmental cytoplasmic deletion is essential for tobacco pollen germination and male fertility. Autophagy 2020; 16:2180-2192. [PMID: 31983274 PMCID: PMC7751669 DOI: 10.1080/15548627.2020.1719722] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 10/23/2019] [Accepted: 01/17/2020] [Indexed: 01/23/2023] Open
Abstract
In plants, macroautophagy/autophagy has mainly been associated with stress-related processes but how it impacts normal physiological and developmental processes remains largely unexplored. Pollen germination is the critical first step toward fertilization in flowering plants. It is metabolically demanding and relies on high levels of cytoplasmic reorganization activities to support a dramatic morphological transformation that underlies the development of a pollen tube as the conduit to deliver sperm for fertilization. The role of autophagy in this process remains unclear. Here we provide evidence that pollen germination is accompanied by elevated autophagic activity and successful pollen tube emergence depends on autophagy-mediated cytoplasmic deletion. Genetic and cytological experiments demonstrate that inhibition of autophagy prevents pollen germination while induces the persistence of a layer of undegraded cytoplasm at the germination aperture. Together, these results unveil a novel compartmentalized autophagy. Furthermore, high-throughput comparative lipidomic analyses show that suppressed autophagy-induced inhibition of pollen germination is accompanied by altered profiles of stored and signaling lipids. Proteomic analyses reveal that autophagy likely exert its role in pollen germination via downstream mitochondria-related pathways. These findings reveal a critical role for autophagy in initiating pollen germination and provide evidences for compartmental cytoplasmic deletion being crucial for male fertility. Abbreviations: 3-MA: 3-methyladenine; ATG: autophagy-related gene; Cer: ceramide; CL: cardiolipin; Con A: concanamycin A; DAG: diradylglycerol; GO: gene ontology; HAG: hour after germination; LC-MS: liquid chromatography-mass spectrometry; MAG: min after germination; MDC: monodansylcadaverine; PE: phosphatidylethanolamine; PI: phosphatidylinositol; PLD: phospholipase D; PtdIns3K: phosphatidylinositol 3-kinase; RT-qPCR: quantitative real-time reverse transcription PCR; TAG: triradylglycerol; TEM: transmission electron microscopy; TMT: tandem mass tagging.
Collapse
Affiliation(s)
- Peng Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xue-Mei Zhou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lin-Lin Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Alice Y. Cheung
- Department of Biochemistry and Molecular Biology, Molecular and Cell Biology Program, Plant Biology Program, University of Massachusetts, Amherst, MA, USA
| | - Meng-Xiang Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
27
|
Wu L, Williams JS, Sun L, Kao TH. Sequence analysis of the Petunia inflata S-locus region containing 17 S-Locus F-Box genes and the S-RNase gene involved in self-incompatibility. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1348-1368. [PMID: 33048387 DOI: 10.1111/tpj.15005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
Self-incompatibility in Petunia is controlled by the polymorphic S-locus, which contains S-RNase encoding the pistil determinant and 16-20 S-locus F-box (SLF) genes collectively encoding the pollen determinant. Here we sequenced and assembled approximately 3.1 Mb of the S2 -haplotype of the S-locus in Petunia inflata using bacterial artificial chromosome clones collectively containing all 17 SLF genes, SLFLike1, and S-RNase. Two SLF pseudogenes and 28 potential protein-coding genes were identified, 20 of which were also found at the S-loci of both the S6a -haplotype of P. inflata and the SN -haplotype of self-compatible Petunia axillaris, but not in the S-locus remnants of self-compatible potato (Solanum tuberosum) and tomato (Solanum lycopersicum). Comparative analyses of S-locus sequences of these three S-haplotypes revealed potential genetic exchange in the flanking regions of SLF genes, resulting in highly similar flanking regions between different types of SLF and between alleles of the same type of SLF of different S-haplotypes. The high degree of sequence similarity in the flanking regions could often be explained by the presence of similar long terminal repeat retroelements, which were enriched at the S-loci of all three S-haplotypes and in the flanking regions of all S-locus genes examined. We also found evidence of the association of transposable elements with SLF pseudogenes. Based on the hypothesis that SLF genes were derived by retrotransposition, we identified 10 F-box genes as putative SLF parent genes. Our results shed light on the importance of non-coding sequences in the evolution of the S-locus, and on possible evolutionary mechanisms of generation, proliferation, and deletion of SLF genes.
Collapse
Affiliation(s)
- Lihua Wu
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Justin S Williams
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Linhan Sun
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Teh-Hui Kao
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| |
Collapse
|
28
|
Zhu L, Chen Z, Li H, Sun Y, Wang L, Zeng H, He Y. Lipid metabolism is involved in male fertility regulation of the photoperiod- and thermo sensitive genic male sterile rice line Peiai 64S. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 299:110581. [PMID: 32900435 DOI: 10.1016/j.plantsci.2020.110581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/03/2020] [Accepted: 06/23/2020] [Indexed: 05/28/2023]
Abstract
Peiai 64S (PA64S) is a photoperiod- and thermo sensitive genic male sterile (PTGMS) rice line that has been widely applied in two-line hybrid rice breeding. The male fertility mechanism of PTGMS has always been the research focus. We obtained fertile PA64S (F) and sterile fertile PA64S (S) plants at 21℃ and 28℃, respectively. Here, we analyzed the development of anthers and pollen grains of PA64S (S) and found that the degradation of tapetum and sporopollenin accumulation of pollen exine was abnormal. The content of lipid components in PA64S (F) and PA64S (S) were different by LC-MS, among which sterols, (O-acyl) ω-hydroxy fatty acids, ceramide, and other lipid components were upregulated in PA64S (F). The results of transcriptome showed that many significantly different genes were enriched in the lipid metabolism pathways. Additionally, lipid synthesis and transport genes were downregulated in PA64S (S). In summary, the differences of the PA64S fertility under different temperatures were analyzed through multi-levels comparison. These results suggest that lipid synthesis and transport during PA64S anther development affects the lipid accumulation of pollen exine, and ultimately affected fertility. The differences in lipids content may also be a factor affecting PA64S pollen fertility.
Collapse
Affiliation(s)
- Lan Zhu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China.
| | - Zhen Chen
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China.
| | - Haixia Li
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China.
| | - Yujun Sun
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China.
| | - Lei Wang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China.
| | - Hanlai Zeng
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China.
| | - Ying He
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China.
| |
Collapse
|
29
|
Cui Y, Zhao Q, Hu S, Jiang L. Vacuole Biogenesis in Plants: How Many Vacuoles, How Many Models? TRENDS IN PLANT SCIENCE 2020; 25:538-548. [PMID: 32407694 DOI: 10.1016/j.tplants.2020.01.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 01/19/2020] [Accepted: 01/27/2020] [Indexed: 05/22/2023]
Abstract
Vacuoles are the largest membrane-bounded organelles and have essential roles in plant growth and development, but several important questions on the biogenesis and dynamics of lytic vacuoles (LVs) remain. Here, we summarize and discuss recent research and models of vacuole formation, and propose, with testable hypotheses, that besides inherited vacuoles, plant cells can also synthesize LVs de novo from multiple organelles and routes in response to growth and development or external factors. Therefore, LVs may be further classified into different subgroups and/or populations with different pH, cargos, and functions, among which multivesicular body (MVB)-derived small vacuoles are the main source for central vacuole formation in arabidopsis root cortical cells.
Collapse
Affiliation(s)
- Yong Cui
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Qiong Zhao
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Shuai Hu
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; CUHK Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
30
|
Li S, Yan H, Mei WM, Tse YC, Wang H. Boosting autophagy in sexual reproduction: a plant perspective. THE NEW PHYTOLOGIST 2020; 226:679-689. [PMID: 31917864 DOI: 10.1111/nph.16414] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
The key process of sexual reproduction is the successful fusion of the sperm and egg cell. Distinct from dynamic and flagellated animal sperm cells, higher flowering plant sperm cells are immotile. Therefore, plants have evolved a novel reproductive system to achieve fertilization and generate progenies. Plant sexual reproduction consists of multiple steps, mainly including gametophyte development, pollen-pistil recognition, pollen germination, double fertilization and postfertilization. During reproduction, active production, consumption and recycling of cellular components and energy are critically required to achieve fertilization. However, the underlying machinery of cellular degradation and turnover remains largely unexplored. Autophagy, the major catabolic pathway in eukaryotic cells, participates in regulating multiple aspects of plant activities, including abiotic and biotic stress resistance, pathogen response, senescence, nutrient remobilization and plant development. Nevertheless, a key unanswered question is how autophagy regulates plant fertilization and reproduction. Here, we focus on comparing and contrasting autophagy in several key reproductive processes of plant and animal systems to feature important distinctions and highlight future research directions of autophagy in angiosperm reproduction. We further discuss the potential crosstalk between autophagy and programmed cell death, which are often considered as two disconnected events in plant sexual reproduction.
Collapse
Affiliation(s)
- Shanshan Li
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - He Yan
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Wei-Ming Mei
- Outpatient Department of Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yu Chung Tse
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment and Department of Biology, Southern University of Science and Technology, Shenzhen, 518005, China
| | - Hao Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
31
|
Chi C, Li X, Fang P, Xia X, Shi K, Zhou Y, Zhou J, Yu J. Brassinosteroids act as a positive regulator of NBR1-dependent selective autophagy in response to chilling stress in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1092-1106. [PMID: 31639824 DOI: 10.1093/jxb/erz466] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 10/08/2019] [Indexed: 05/20/2023]
Abstract
Autophagy is a highly conserved and regulated catabolic process involved in the degradation of protein aggregates, which plays critical roles in eukaryotes. In plants, multiple molecular processes can induce or suppress autophagy but the mechanism of its regulation by phytohormones is poorly understood. Brassinosteroids (BRs) are steroid phytohormones that play crucial roles in plant response to stresses. Here, we investigate the role of BRs in NBR1-dependent selective autophagy in response to chilling stress in tomato. BRs and their signaling element BZR1 can induce autophagy and accumulation of the selective autophagy receptor NBR1 in tomato under chilling stress. Cold increased the stability of BZR1, which was promoted by BRs. Cold- and BR-induced increased BZR1 stability activated the transcription of several autophagy-related genes (ATGs) and NBR1 genes by directly binding to their promoters, which resulted in selective autophagy. Furthermore, silencing of these ATGs or NBR1 genes resulted in a decreased accumulation of several functional proteins and an increased accumulation of ubiquitinated proteins, subsequently compromising BR-induced cold tolerance. These results strongly suggest that BRs regulate NBR1-dependent selective autophagy in a BZR1-dependent manner in response to chilling stress in tomato.
Collapse
Affiliation(s)
- Cheng Chi
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Xiaomeng Li
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Pingping Fang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Xiaojian Xia
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Kai Shi
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Jie Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou, China
| |
Collapse
|
32
|
Han B, Xu H, Feng Y, Xu W, Cui Q, Liu A. Genomic Characterization and Expressional Profiles of Autophagy-Related Genes ( ATGs) in Oilseed Crop Castor Bean ( Ricinus communis L.). Int J Mol Sci 2020; 21:E562. [PMID: 31952322 PMCID: PMC7013546 DOI: 10.3390/ijms21020562] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 12/20/2022] Open
Abstract
Cellular autophagy is a widely-occurring conserved process for turning over damaged organelles or recycling cytoplasmic contents in cells. Although autophagy-related genes (ATGs) have been broadly identified from many plants, little is known about the potential function of autophagy in mediating plant growth and development, particularly in recycling cytoplasmic contents during seed development and germination. Castor bean (Ricinus communis) is one of the most important inedible oilseed crops. Its mature seed has a persistent and large endosperm with a hard and lignified seed coat, and is considered a model system for studying seed biology. Here, a total of 34 RcATG genes were identified in the castor bean genome and their sequence structures were characterized. The expressional profiles of these RcATGs were examined using RNA-seq and real-time PCR in a variety of tissues. In particular, we found that most RcATGs were significantly up-regulated in the later stage of seed coat development, tightly associated with the lignification of cell wall tissues. During seed germination, the expression patterns of most RcATGs were associated with the decomposition of storage oils. Furthermore, we observed by electron microscopy that the lipid droplets were directly swallowed by the vacuoles, suggesting that autophagy directly participates in mediating the decomposition of lipid droplets via the microlipophagy pathway in germinating castor bean seeds. This study provides novel insights into understanding the potential function of autophagy in mediating seed development and germination.
Collapse
Affiliation(s)
- Bing Han
- Department of Economic Plants and Biotechnology, and Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China; (B.H.); (W.X.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Xu
- College of Life Sciences, Yunnan University, Kunming 650091, China; (H.X.); (Y.F.)
| | - Yingting Feng
- College of Life Sciences, Yunnan University, Kunming 650091, China; (H.X.); (Y.F.)
| | - Wei Xu
- Department of Economic Plants and Biotechnology, and Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China; (B.H.); (W.X.)
| | - Qinghua Cui
- College of Life Sciences, Yunnan University, Kunming 650091, China; (H.X.); (Y.F.)
| | - Aizhong Liu
- Key Laboratory for Forest Resources Conservation and Utilization in Southwest Mountains of China, College of Forestry, Southwest Forestry University, Kunming 650201, China
| |
Collapse
|
33
|
Norizuki T, Minamino N, Ueda T. Role of Autophagy in Male Reproductive Processes in Land Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:756. [PMID: 32625219 PMCID: PMC7311755 DOI: 10.3389/fpls.2020.00756] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/12/2020] [Indexed: 05/02/2023]
Abstract
Autophagy is a highly conserved system for degrading and recycling cytoplasmic components. The identification of autophagy-related (ATG) genes, required for autophagosome formation, has led to numerous studies using atg mutants. These studies have revealed the physiological significance of autophagy in various functions of diverse organisms. In land plants, autophagy is required for higher-order functions such as stress responses and development. Although defective autophagy does not result in any marked defect in the reproductive processes of Arabidopsis thaliana under laboratory conditions, several studies have shown that autophagy plays a pivotal role in male reproduction in several land plants. In this review, we aim to summarize information on the role of autophagy in male reproductive processes in land plants.
Collapse
Affiliation(s)
- Takuya Norizuki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Japan
| | - Naoki Minamino
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Japan
- The Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
- *Correspondence: Takashi Ueda,
| |
Collapse
|
34
|
Wang L, Lu W, Ran L, Dou L, Yao S, Hu J, Fan D, Li C, Luo K. R2R3-MYB transcription factor MYB6 promotes anthocyanin and proanthocyanidin biosynthesis but inhibits secondary cell wall formation in Populus tomentosa. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:733-751. [PMID: 31021017 DOI: 10.1111/tpj.14364] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 04/08/2019] [Indexed: 05/18/2023]
Abstract
The secondary cell wall is an important carbon sink in higher plants and its biosynthesis requires coordination of metabolic fluxes in the phenylpropanoid pathway. In Arabidopsis (Arabidopsis thaliana), MYB75 and the KNOX transcription factor KNAT7 form functional complexes to regulate secondary cell wall formation in the inflorescence stem. However, the molecular mechanism by which these transcription factors control different branches of the phenylpropanoid pathway remains poorly understood in woody species. We isolated an R2R3-MYB transcription factor MYB6 from Populus tomentosa and determined that it was expressed predominately in young leaves. Overexpression of MYB6 in transgenic poplar upregulated flavonoid biosynthetic gene expression, resulting in significantly increased accumulation of anthocyanin and proanthocyanidins. MYB6-overexpression plants showed reduced secondary cell wall deposition, accompanied by repressed expression of secondary cell wall biosynthetic genes. We further showed that MYB6 interacted physically with KNAT7 and formed functional complexes that acted to repress secondary cell wall development in poplar and Arabidopsis. The results provide an insight into the transcriptional mechanisms involved in the regulation of the metabolic fluxes between the flavonoid and lignin biosynthetic pathways in poplar.
Collapse
Affiliation(s)
- Lijun Wang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Wanxiang Lu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Lingyu Ran
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Liwen Dou
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Shu Yao
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jian Hu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Di Fan
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Chaofeng Li
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Southwest University, Chongqing, 400715, China
| |
Collapse
|
35
|
Chung T. How phosphoinositides shape autophagy in plant cells. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 281:146-158. [PMID: 30824047 DOI: 10.1016/j.plantsci.2019.01.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/10/2019] [Accepted: 01/19/2019] [Indexed: 05/06/2023]
Abstract
Plant cells use autophagy to degrade their own cytoplasm in vacuoles, thereby not only recycling their breakdown products, but also ensuring the homeostasis of essential cytoplasmic constituents and organelles. Plants and other eukaryotes have a conserved set of core Autophagy-related (ATG) genes involved in the biogenesis of the autophagosome, the main autophagic compartment destined for the lytic vacuole. In the past decade, the core ATG genes were isolated from several plant species. The core ATG proteins include the components of the VACUOLAR PROTEIN SORTING 34 (VPS34) complex that is responsible for the local production of phosphatidylinositol 3-phosphate (PI3P) at the site of autophagosome formation. Dissecting the roles of PI3P and its effectors in autophagy is challenging, because of the multi-faceted links between autophagosomal and endosomal systems. This review highlights recent studies on putative plant PI3P effectors involved in autophagosome dynamics. Molecular mechanisms underlying the requirement of PI3P for autophagosome biogenesis and trafficking are also discussed.
Collapse
Affiliation(s)
- Taijoon Chung
- Department of Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
36
|
Young PG, Passalacqua MJ, Chappell K, Llinas RJ, Bartel B. A facile forward-genetic screen for Arabidopsis autophagy mutants reveals twenty-one loss-of-function mutations disrupting six ATG genes. Autophagy 2019; 15:941-959. [PMID: 30734619 PMCID: PMC6526838 DOI: 10.1080/15548627.2019.1569915] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Macroautophagy is a process through which eukaryotic cells degrade large substrates including organelles, protein aggregates, and invading pathogens. Over 40 autophagy-related (ATG) genes have been identified through forward-genetic screens in yeast. Although homology-based analyses have identified conserved ATG genes in plants, only a few atg mutants have emerged from forward-genetic screens in Arabidopsis thaliana. We developed a screen that consistently recovers Arabidopsis atg mutations by exploiting mutants with defective LON2/At5g47040, a protease implicated in peroxisomal quality control. Arabidopsis lon2 mutants exhibit reduced responsiveness to the peroxisomally-metabolized auxin precursor indole-3-butyric acid (IBA), heightened degradation of several peroxisomal matrix proteins, and impaired processing of proteins harboring N-terminal peroxisomal targeting signals; these defects are ameliorated by preventing autophagy. We optimized a lon2 suppressor screen to expedite recovery of additional atg mutants. After screening mutagenized lon2-2 seedlings for restored IBA responsiveness, we evaluated stabilization and processing of peroxisomal proteins, levels of several ATG proteins, and levels of the selective autophagy receptor NBR1/At4g24690, which accumulates when autophagy is impaired. We recovered 21 alleles disrupting 6 ATG genes: ATG2/At3g19190, ATG3/At5g61500, ATG5/At5g17290, ATG7/At5g45900, ATG16/At5g50230, and ATG18a/At3g62770. Twenty alleles were novel, and 3 of the mutated genes lack T-DNA insertional alleles in publicly available repositories. We also demonstrate that an insertional atg11/At4g30790 allele incompletely suppresses lon2 defects. Finally, we show that NBR1 is not necessary for autophagy of lon2 peroxisomes and that NBR1 overexpression is not sufficient to trigger autophagy of seedling peroxisomes, indicating that Arabidopsis can use an NBR1-independent mechanism to target peroxisomes for autophagic degradation. Abbreviations: ATG: autophagy-related; ATI: ATG8-interacting protein; Col-0: Columbia-0; DSK2: dominant suppressor of KAR2; EMS: ethyl methanesulfonate; GFP: green fluorescent protein; IAA: indole-3-acetic acid; IBA: indole-3-butyric acid; ICL: isocitrate lyase; MLS: malate synthase; NBR1: Next to BRCA1 gene 1; PEX: peroxin; PMDH: peroxisomal malate dehydrogenase; PTS: peroxisomal targeting signal; thiolase: 3-ketoacyl-CoA thiolase; UBA: ubiquitin-associated; WT: wild type
Collapse
Affiliation(s)
- Pierce G Young
- a Department of Biosciences , Rice University , Houston , TX , USA
| | | | - Kevin Chappell
- a Department of Biosciences , Rice University , Houston , TX , USA.,b Department of Biology , University of Mary Hardin-Baylor , Belton , TX , USA
| | - Roxanna J Llinas
- a Department of Biosciences , Rice University , Houston , TX , USA
| | - Bonnie Bartel
- a Department of Biosciences , Rice University , Houston , TX , USA
| |
Collapse
|
37
|
Tang J, Bassham DC. Autophagy in crop plants: what's new beyond Arabidopsis? Open Biol 2018; 8:180162. [PMID: 30518637 PMCID: PMC6303781 DOI: 10.1098/rsob.180162] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/08/2018] [Indexed: 12/19/2022] Open
Abstract
Autophagy is a major degradation and recycling pathway in plants. It functions to maintain cellular homeostasis and is induced by environmental cues and developmental stimuli. Over the past decade, the study of autophagy has expanded from model plants to crop species. Many features of the core machinery and physiological functions of autophagy are conserved among diverse organisms. However, several novel functions and regulators of autophagy have been characterized in individual plant species. In light of its critical role in development and stress responses, a better understanding of autophagy in crop plants may eventually lead to beneficial agricultural applications. Here, we review recent progress on understanding autophagy in crops and discuss potential future research directions.
Collapse
Affiliation(s)
- Jie Tang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
38
|
Yuan R, Lan J, Fang Y, Yu H, Zhang J, Huang J, Qin G. The Arabidopsis USL1 controls multiple aspects of development by affecting late endosome morphology. THE NEW PHYTOLOGIST 2018; 219:1388-1405. [PMID: 29897620 PMCID: PMC6099276 DOI: 10.1111/nph.15249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 04/21/2018] [Indexed: 05/07/2023]
Abstract
The polar transport of auxin controls many aspects of plant development. However, the molecular mechanisms underlying auxin tranport regulation remain to be further elucidated. We identified a mutant named as usl1 (unflattened and small leaves) in a genetic screen in Arabidopsis thaliana. The usl1 displayed multiple aspects of developmental defects in leaves, embryogenesis, cotyledons, silique phyllotaxy and lateral roots in addition to abnormal leaves. USL1 encodes a protein orthologous to the yeast vacuolar protein sorting (Vps) 38p and human UV RADIATION RESISTANCE-ASSOCIATED GENE (UVRAG). Cell biology, Co-IP/MS and yeast two-hybrid were used to identify the function of USL1. USL1 colocalizes at the subcellular level with VPS29, a key factor of the retromer complex that controls auxin transport. The morphology of the VPS29-associated late endosomes (LE) is altered from small dots in the wild-type to aberrant enlarged circles in the usl1 mutants. The usl1 mutant synergistically interacts with vps29. We also found that USL1 forms a complex with AtVPS30 and AtVPS34. We propose that USL1 controls multiple aspects of plant development by affecting late endosome morphology and by regulating the PIN1 polarity. Our findings provide a new layer of the understanding on the mechanisms of plant development regulation.
Collapse
Affiliation(s)
- Rongrong Yuan
- State Key Laboratory of Protein and Plant Gene ResearchSchool of Life SciencesSchool of Advanced Agricultural SciencesPeking UniversityBeijing100871China
- The Peking‐Tsinghua Center for Life SciencesAcademy for Advanced Interdisciplinary StudiesPeking UniversityBeijing100871China
| | - Jingqiu Lan
- State Key Laboratory of Protein and Plant Gene ResearchSchool of Life SciencesSchool of Advanced Agricultural SciencesPeking UniversityBeijing100871China
| | - Yuxing Fang
- State Key Laboratory of Protein and Plant Gene ResearchSchool of Life SciencesSchool of Advanced Agricultural SciencesPeking UniversityBeijing100871China
| | - Hao Yu
- State Key Laboratory of Protein and Plant Gene ResearchSchool of Life SciencesSchool of Advanced Agricultural SciencesPeking UniversityBeijing100871China
| | - Jinzhe Zhang
- State Key Laboratory of Protein and Plant Gene ResearchSchool of Life SciencesSchool of Advanced Agricultural SciencesPeking UniversityBeijing100871China
| | - Jiaying Huang
- State Key Laboratory of Protein and Plant Gene ResearchSchool of Life SciencesSchool of Advanced Agricultural SciencesPeking UniversityBeijing100871China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene ResearchSchool of Life SciencesSchool of Advanced Agricultural SciencesPeking UniversityBeijing100871China
| |
Collapse
|
39
|
Shangguan L, Fang X, Chen L, Cui L, Fang J. Genome-wide analysis of autophagy-related genes (ARGs) in grapevine and plant tolerance to copper stress. PLANTA 2018; 247:1449-1463. [PMID: 29541879 DOI: 10.1007/s00425-018-2864-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 02/01/2018] [Indexed: 05/26/2023]
Abstract
Grapevine autophagy-related genes (ARGs) include 35 members that have unique evolutionary backgrounds and expression patterns, with some of them responding to abiotic stresses, including copper stress. Autophagy is one of the most crucial self-regulating phenomena in livings organisms, including animals, plants, yeasts, etc. In the genomes of plants, like Arabidopsis, rice, tobacco, and barley, more than 30 autophagy-related genes (ARGs) have been found. These ARGs are involved in plant development, programed cell death, and the stress response process. In plants, and particularly in grapevine, high copper stress results from the application of the Bordeaux mixture, a widely used fungicide. However, the function of autophagy in plant tolerance to copper stress is unknown. Accordingly, in this study, a genome-wide analysis was performed to identify Vitis vinifera ARGs (VvARGs), and 35 VvARGs were detected. A gene family analysis revealed that the tandem and segmental duplication events played significant roles in the VvARG gene family expansion. Moreover, there was more intense signature of purifying selection for the comparison between grape and rice than between grape and Arabidopsis. In response to copper treatment, both the autophagosome number and malondialdehyde concentration increased during the initial 4 h post-treatment, and reached maximal values at 24 h. An expression analysis indicated that most VvARGs responded to copper stress at 4 h post-treatment, and some VvARGs (e.g., VvATG6, VvATG8i, and VvATG18h) exhibited responses to most abiotic stresses. These results provide a detailed overview of the ARGs in grapevine and indicate multiple functions of autophagy in fruit development and abiotic stresses in grapevine. The key ARG (e.g., ATG8i) should be investigated in more detail in grapevine and other plant species.
Collapse
Affiliation(s)
- Lingfei Shangguan
- Horticultural Department, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiang Fang
- Horticultural Department, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lide Chen
- Horticultural Department, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liwen Cui
- Horticultural Department, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinggui Fang
- Horticultural Department, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
40
|
Liu F, Hu W, Vierstra RD. The Vacuolar Protein Sorting-38 Subunit of the Arabidopsis Phosphatidylinositol-3-Kinase Complex Plays Critical Roles in Autophagy, Endosome Sorting, and Gravitropism. FRONTIERS IN PLANT SCIENCE 2018; 9:781. [PMID: 29967628 PMCID: PMC6016017 DOI: 10.3389/fpls.2018.00781] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/23/2018] [Indexed: 05/02/2023]
Abstract
The family of phosphatidylinositols (PtdIns) plays essential roles in membrane identity and intracellular trafficking events. In animals and yeast, PtdIn-3-phosphate, which is particularly important for endosomal sorting, lysosomal/vacuolar transport and autophagy, is assembled by two conserved kinase complexes comprised of the catalytic VACUOLAR PROTEIN SORTING (VPS)-34 subunit, along with VPS15, AUTOPHAGY-RELATED (ATG)-6, and either ATG14 (complex I) or VPS38 (complex II). Here, we describe the Arabidopsis ortholog of VPS38 and show by interaction assays that it assembles into a tetrameric PtdIn-3 kinase complex II. Plants missing VPS38 are viable but have dampened pollen germination and heightened seed abortion, and display a dwarf rosette phenotype, with defects in leaf and vascular development and sucrose sensing. vps38 seeds accumulate irregular protein storage vesicles and suppress processing of storage proteins into their mature forms. Consistent with a role for PtdIn-3-phosphate in autophagy, vps38 mutants are hypersensitive to nitrogen and fixed-carbon starvation and show reduced autophagic transport of cargo into vacuoles. vps38 seedlings also have dampened root gravitropism, which is underpinned by aberrant vectoral auxin transport likely caused by defects in plasma membrane/endosome cycling of the PIN-FORMED family of auxin transporters necessary for asymmetric cell elongation. Collectively, this study places VPS38 and its class-III PtdIn-3 kinase complex at the nexus of numerous endosomal trafficking events important to plant growth and development.
Collapse
Affiliation(s)
- Fen Liu
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Weiming Hu
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Richard D. Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
- *Correspondence: Richard D. Vierstra,
| |
Collapse
|
41
|
Sanchez-Vera V, Kenchappa CS, Landberg K, Bressendorff S, Schwarzbach S, Martin T, Mundy J, Petersen M, Thelander M, Sundberg E. Autophagy is required for gamete differentiation in the moss Physcomitrella patens. Autophagy 2017; 13:1939-1951. [PMID: 28837383 PMCID: PMC5788497 DOI: 10.1080/15548627.2017.1366406] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 07/17/2017] [Accepted: 08/08/2017] [Indexed: 12/21/2022] Open
Abstract
Autophagy, a major catabolic process in eukaryotes, was initially related to cell tolerance to nutrient depletion. In plants autophagy has also been widely related to tolerance to biotic and abiotic stresses (through the induction or repression of programmed cell death, PCD) as well as to promotion of developmentally regulated PCD, starch degradation or caloric restriction important for life span. Much less is known regarding its role in plant cell differentiation. Here we show that macroautophagy, the autophagy pathway driven by engulfment of cytoplasmic components by autophagosomes and its subsequent degradation in vacuoles, is highly active during germ cell differentiation in the early diverging land plant Physcomitrella patens. Our data provide evidence that suppression of ATG5-mediated autophagy results in reduced density of the egg cell-mediated mucilage that surrounds the mature egg, pointing toward a potential role of autophagy in extracellular mucilage formation. In addition, we found that ATG5- and ATG7-mediated autophagy is essential for the differentiation and cytoplasmic reduction of the flagellated motile sperm and hence for sperm fertility. The similarities between the need of macroautophagy for sperm differentiation in moss and mouse are striking, strongly pointing toward an ancestral function of autophagy not only as a protector against nutrient stress, but also in gamete differentiation.
Collapse
Affiliation(s)
- Victoria Sanchez-Vera
- Department of Plant Biology, Swedish University of Agricultural Sciences, The Linnean Centre of Plant Biology in Uppsala, Uppsala, Sweden
| | - Chandra Shekar Kenchappa
- Department of Plant Biology, Swedish University of Agricultural Sciences, The Linnean Centre of Plant Biology in Uppsala, Uppsala, Sweden
| | - Katarina Landberg
- Department of Plant Biology, Swedish University of Agricultural Sciences, The Linnean Centre of Plant Biology in Uppsala, Uppsala, Sweden
| | | | - Stefan Schwarzbach
- Department of Plant Biology, Swedish University of Agricultural Sciences, The Linnean Centre of Plant Biology in Uppsala, Uppsala, Sweden
| | - Tom Martin
- Department of Plant Biology, Swedish University of Agricultural Sciences, The Linnean Centre of Plant Biology in Uppsala, Uppsala, Sweden
| | - John Mundy
- Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Morten Petersen
- Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Mattias Thelander
- Department of Plant Biology, Swedish University of Agricultural Sciences, The Linnean Centre of Plant Biology in Uppsala, Uppsala, Sweden
| | - Eva Sundberg
- Department of Plant Biology, Swedish University of Agricultural Sciences, The Linnean Centre of Plant Biology in Uppsala, Uppsala, Sweden
| |
Collapse
|
42
|
Wan S, Li C, Ma X, Luo K. PtrMYB57 contributes to the negative regulation of anthocyanin and proanthocyanidin biosynthesis in poplar. PLANT CELL REPORTS 2017; 36:1263-1276. [PMID: 28523445 DOI: 10.1007/s00299-017-2151-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/25/2017] [Indexed: 05/18/2023]
Abstract
A novel R2R3 MYB transcription factor PtrMYB57 interacted with bHLH131 and PtrTTG1 to form the MBW complex and negatively regulated the biosynthesis of both anthocyanins and PAs in poplar. R2R3-MYB transcription factors (TFs) are important regulators of secondary metabolite biosynthesis in woody species. A series of R2R3-MYB TFs involved in anthocyanin and proanthocyanidin (PA) biosynthesis have been identified in poplar. In this study, we report the identification and characterization of a subgroup 4 MYB member PtrMYB57, which contains a repressor domain (LxLxL) at the C-terminal end. PtrMYB57 encodes an R2R3 MYB protein localized in the nucleus and is predominantly expressed in mature leaves. Transgenic poplar overexpressing PtrMYB57 showed a reduction in anthocyanin and PA accumulation compared to wild-type plants. By contrast, a high anthocyanin and PA phenotype was observed in Ptrmyb57 mutants generated by the CRISPR/Cas9 system. Furthermore, transient expression assays revealed that PtrMYB57 interacted with bHLH131 (bHLH) and PtrTTG1 (WDR) to form the MBW complex and bound to the flavonoid gene promoters, leading to inhibition of these promoters. Taken together, our results suggest that PtrMYB57 plays a negative role in the regulation of anthocyanin and PA biosynthesis in poplar.
Collapse
Affiliation(s)
- Shuzhen Wan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Chaofeng Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
- School of Life Science, Southwest University, No. 1, Tiansheng Road, Beibei, Chongqing, 400715, China
| | - Xiaodong Ma
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
- China School of Chemistry and Chemical Engineering, Qinghai University for Nationalities, 3 Bayi Middle Road, Xining, 810007, Qinghai, China
| | - Keming Luo
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.
- University of the Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China.
- School of Life Science, Southwest University, No. 1, Tiansheng Road, Beibei, Chongqing, 400715, China.
| |
Collapse
|
43
|
Wei Y, Liu W, Hu W, Liu G, Wu C, Liu W, Zeng H, He C, Shi H. Genome-wide analysis of autophagy-related genes in banana highlights MaATG8s in cell death and autophagy in immune response to Fusarium wilt. PLANT CELL REPORTS 2017; 36:1237-1250. [PMID: 28451821 DOI: 10.1007/s00299-017-2149-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/22/2017] [Indexed: 05/02/2023]
Abstract
KEY MESSAGE MaATG8s play important roles in hypersensitive-like cell death and immune response, and autophagy is essential for disease resistance against Foc in banana. Autophagy is responsible for the degradation of damaged cytoplasmic constituents in the lysosomes or vacuoles. Although the effects of autophagy have been extensively revealed in model plants, the possible roles of autophagy-related gene in banana remain unknown. In this study, 32 MaATGs were identified in the draft genome, and the profiles of several MaATGs in response to fungal pathogen Fusarium oxysporum f. sp. cubense (Foc) were also revealled. We found that seven MaATG8s were commonly regulated by Foc. Through transient expression in Nicotiana benthamiana leaves, we highlight the novel roles of MaATG8s in conferring hypersensitive-like cell death, and MaATG8s-mediated hypersensitive response-like cell death is dependent on autophagy. Notablly, autophagy inhibitor 3-methyladenine (3-MA) treatment resulted in decreased disease resistance in response to Foc4, and the effect of 3-MA treatment could be rescued by exogenous salicylic acid, jasmonic acid and ethylene, indicating the involvement of autophagy-mediated plant hormones in banana resistance to Fusarium wilt. Taken together, this study may extend our understanding the putative role of MaATG8s in hypersensitive-like cell death and the essential role of autophagy in immune response against Foc in banana.
Collapse
Affiliation(s)
- Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Wen Liu
- Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, Hubei, China
| | - Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, 571101, Hainan, China
| | - Guoyin Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Chunjie Wu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Wei Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Hongqiu Zeng
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Chaozu He
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China.
| |
Collapse
|
44
|
New advances in autophagy in plants: Regulation, selectivity and function. Semin Cell Dev Biol 2017; 80:113-122. [PMID: 28734771 DOI: 10.1016/j.semcdb.2017.07.018] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/08/2017] [Accepted: 07/15/2017] [Indexed: 01/01/2023]
Abstract
Autophagy is a major and conserved pathway for delivering unwanted proteins or damaged organelles to the vacuole for degradation and recycling. In plants, it functions as a housekeeping process to maintain cellular homeostasis under normal conditions and is induced by stress and senescence; it thus plays important roles in development, stress tolerance and metabolism. Autophagy can both execute bulk degradation and be highly selective in targeting cargos under specific environmental conditions or during certain developmental processes. Here, we review recent research on autophagy in plants, and discuss new insights into its core mechanism, regulation, selectivity and physiological roles. Potential future directions are also highlighted.
Collapse
|
45
|
Zientara-Rytter K, Sirko A. To deliver or to degrade - an interplay of the ubiquitin-proteasome system, autophagy and vesicular transport in plants. FEBS J 2017; 283:3534-3555. [PMID: 26991113 DOI: 10.1111/febs.13712] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 02/21/2016] [Accepted: 03/14/2016] [Indexed: 12/21/2022]
Abstract
The efficient utilization and subsequent reuse of cell components is a key factor in determining the proper growth and functioning of all cells under both optimum and stress conditions. The process of intracellular and intercellular recycling is especially important for the appropriate control of cellular metabolism and nutrient management in immobile organisms, such as plants. Therefore, the accurate recycling of amino acids, lipids, carbohydrates or micro- and macronutrients available in the plant cell becomes a critical factor that ensures plant survival and growth. Plant cells possess two main degradation mechanisms: a ubiquitin-proteasome system and autophagy, which, as a part of an intracellular trafficking system, is based on vesicle transport. This review summarizes knowledge of both the ubiquitin-proteasome system and autophagy pathways, describes the cross-talk between the two and discusses the relationships between autophagy and the vesicular transport systems.
Collapse
Affiliation(s)
| | - Agnieszka Sirko
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
46
|
Zeng X, Zeng Z, Liu C, Yuan W, Hou N, Bian H, Zhu M, Han N. A barley homolog of yeast ATG6 is involved in multiple abiotic stress responses and stress resistance regulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 115:97-106. [PMID: 28343064 DOI: 10.1016/j.plaphy.2017.03.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/13/2017] [Accepted: 03/17/2017] [Indexed: 05/02/2023]
Abstract
Autophagy is a highly conserved degradation pathway among eukaryote cells, which can recycle damaged or unwanted cell materials upon encountering stress conditions. As a key component of the Class III PI3K kinase complex, ATG6/Beclin-1 is essential for autophagosome formation. In this study, we isolated a putative HvATG6 gene in barley genome. The protein encoded by HvATG6 shares high sequence identity to ATG6 orthologs in rice and wheat, and has a typical autophagy-specific domain containing segments of repeated β-sheet-α-helix. The expression of HvATG6 protein restored the appearance of autophagosomes in yeast atg6 mutant, indicating that HvATG6 complements the deficiency of yeast ATG6 protein in autophagy. Punctate florescence signals, considered as the PAS for autophagosome initiation, were observed in the cytoplasm of cells when HvATG6-GFP fusion construct was transformed into barley protoplast. Furthermore, the expression of HvATG6 was upregulated by various abiotic stresses including dark, H2O2 treatment, nitrogen deficiency, high salinity, drought, low temperature and toxic aluminum. Knockdown of HvATG6 in barley leaves through barley strip mosaic virus (BSMV)-induced gene silencing led to accelerated yellowing under dark and H2O2 treatments. Based on the above findings, we propose that barley ATG6 plays the similar role as other plant ATG6 orthologs, and might be involved in stress-induced autophagy process.
Collapse
Affiliation(s)
- Xiaowei Zeng
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Zhanghui Zeng
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Cuicui Liu
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Weiyi Yuan
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Ning Hou
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Hongwu Bian
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Muyuan Zhu
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Ning Han
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
47
|
Paul P, Röth S, Schleiff E. Importance of organellar proteins, protein translocation and vesicle transport routes for pollen development and function. PLANT REPRODUCTION 2016; 29:53-65. [PMID: 26874709 DOI: 10.1007/s00497-016-0274-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 01/18/2016] [Indexed: 05/27/2023]
Abstract
Protein translocation. Cellular homeostasis strongly depends on proper distribution of proteins within cells and insertion of membrane proteins into the destined membranes. The latter is mediated by organellar protein translocation and the complex vesicle transport system. Considering the importance of protein transport machineries in general it is foreseen that these processes are essential for pollen function and development. However, the information available in this context is very scarce because of the current focus on deciphering the fundamental principles of protein transport at the molecular level. Here we review the significance of protein transport machineries for pollen development on the basis of pollen-specific organellar proteins as well as of genetic studies utilizing mutants of known organellar proteins. In many cases these mutants exhibit morphological alterations highlighting the requirement of efficient protein transport and translocation in pollen. Furthermore, expression patterns of genes coding for translocon subunits and vesicle transport factors in Arabidopsis thaliana are summarized. We conclude that with the exception of the translocation systems in plastids-the composition and significance of the individual transport systems are equally important in pollen as in other cell types. Apparently for plastids only a minimal translocon, composed of only few subunits, exists in the envelope membranes during maturation of pollen. However, only one of the various transport systems known from thylakoids seems to be required for the function of the "simple thylakoid system" existing in pollen plastids. In turn, the vesicle transport system is as complex as seen for other cell types as it is essential, e.g., for pollen tube formation.
Collapse
Affiliation(s)
- Puneet Paul
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438, Frankfurt Am Main, Germany
| | - Sascha Röth
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438, Frankfurt Am Main, Germany
| | - Enrico Schleiff
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438, Frankfurt Am Main, Germany.
- Cluster of Excellence Frankfurt, Goethe University, 60438, Frankfurt Am Main, Germany.
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, 60438, Frankfurt Am Main, Germany.
| |
Collapse
|
48
|
Rana RM, Khan MA, Shah MK, Ali Z, Zhang H. Insights into the Mechanism of Heat Shock Mitigation Through Protein Repair, Recycling and Degradation. HEAT SHOCK PROTEINS AND PLANTS 2016. [DOI: 10.1007/978-3-319-46340-7_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
49
|
Li C, Wang X, Ran L, Tian Q, Fan D, Luo K. PtoMYB92 is a Transcriptional Activator of the Lignin Biosynthetic Pathway During Secondary Cell Wall Formation in Populus tomentosa. PLANT & CELL PHYSIOLOGY 2015; 56:2436-2446. [PMID: 26508520 DOI: 10.1093/pcp/pcv157] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/19/2015] [Indexed: 06/05/2023]
Abstract
Wood is the most abundant biomass in perennial woody plants and is mainly made up of secondary cell wall. R2R3-MYB transcription factors are important regulators of secondary wall biosynthesis in plants. In this study, we describe the identification and characterization of a poplar MYB transcription factor PtoMYB92, a homolog of Arabidopsis MYB42 and MYB85, which is involved in the regulation of secondary cell wall biosynthesis. PtoMYB92 is specifically expressed in xylem tissue in poplar. Subcellular localization and transcriptional activation analysis suggest that PtoMYB92 is a nuclear-localized transcriptional activator. Overexpression of PtoMYB92 in poplar resulted in an increase in secondary cell wall thickness in stems and ectopic deposition of lignin in leaves. Quantitative real-time PCR showed that PtoMYB92 specifically activated the expression of lignin biosynthetic genes. Furthermore, transient expression assays using a β-glucuronidase (GUS) reporter gene revealed that PtoMYB92 is an activator in the lignin biosynthetic pathway during secondary cell wall formation. Taken together, our results suggest that PtoMYB92 is involved in the regulation of secondary cell wall formation in poplar by controlling the biosynthesis of monolignols.
Collapse
Affiliation(s)
- Chaofeng Li
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing 400715, China Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 810008 Xining, China These authors contributed equally to this work
| | - Xianqiang Wang
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing 400715, China These authors contributed equally to this work
| | - Lingyu Ran
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Qiaoyan Tian
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Di Fan
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Keming Luo
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing 400715, China Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 810008 Xining, China
| |
Collapse
|
50
|
New Insight into the Mechanism and Function of Autophagy in Plant Cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 320:1-40. [PMID: 26614870 DOI: 10.1016/bs.ircmb.2015.07.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Autophagy is a degradation pathway that is conserved throughout eukaryotic organisms and plays important roles in the tolerance of abiotic and biotic stresses. It functions as a housekeeping process to remove unwanted cell components under normal conditions, and is induced during stress and senescence to break down damaged cellular contents and to recycle materials. The target components are engulfed into specialized transport structures termed autophagosomes and are subsequently delivered to the vacuole for degradation. Here, we review milestones in the study of autophagy in plants, discuss recent advances in our understanding of the mechanism and physiological roles of plant autophagy, and highlight potential future directions of research.
Collapse
|