1
|
Hoyeck MP, Angela Ching ME, Basu L, van Allen K, Palaniyandi J, Perera I, Poleo-Giordani E, Hanson AA, Ghorbani P, Fullerton MD, Bruin JE. The aryl hydrocarbon receptor in β-cells mediates the effects of TCDD on glucose homeostasis in mice. Mol Metab 2024; 81:101893. [PMID: 38309623 PMCID: PMC10867573 DOI: 10.1016/j.molmet.2024.101893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024] Open
Abstract
OBJECTIVE Chronic exposure to persistent organic pollutants (POPs) is associated with increased incidence of type 2 diabetes, hyperglycemia, and poor insulin secretion in humans. Dioxins and dioxin-like compounds are a broad class of POPs that exert cellular toxicity through activation of the aryl hydrocarbon receptor (AhR). We previously showed that a single high-dose injection of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, aka dioxin; 20 μg/kg) in vivo reduced fasted and glucose-stimulated plasma insulin levels for up to 6 weeks in male and female mice. TCDD-exposed male mice were also modestly hypoglycemic and had increased insulin sensitivity, whereas TCDD-exposed females were transiently glucose intolerant. Whether these effects are driven by AhR activation in β-cells requires investigation. METHODS We exposed female and male β-cell specific Ahr knockout (βAhrKO) mice and littermate Ins1-Cre genotype controls (βAhrWT) to a single high dose of 20 μg/kg TCDD and tracked the mice for 6 weeks. RESULTS Under baseline conditions, deleting AhR from β-cells caused hypoglycemia in female mice, increased insulin secretion ex vivo in female mouse islets, and promoted modest weight gain in male mice. Importantly, high-dose TCDD exposure impaired glucose homeostasis and β-cell function in βAhrWT mice, but these phenotypes were largely abolished in TCDD-exposed βAhrKO mice. CONCLUSION Our study demonstrates that AhR signaling in β-cells is important for regulating baseline β-cell function in female mice and energy homeostasis in male mice. We also show that β-cell AhR signaling largely mediates the effects of TCDD on glucose homeostasis in both sexes, suggesting that the effects of TCDD on β-cell function and health are driving metabolic phenotypes in peripheral tissues.
Collapse
Affiliation(s)
- Myriam P Hoyeck
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Ma Enrica Angela Ching
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Lahari Basu
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Kyle van Allen
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Jana Palaniyandi
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Ineli Perera
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Emilia Poleo-Giordani
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Antonio A Hanson
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Peyman Ghorbani
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Centre for Infection, Immunity and Inflammation, Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Morgan D Fullerton
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Centre for Infection, Immunity and Inflammation, Ottawa Institute of Systems Biology, Ottawa, ON, Canada; Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, ON, Canada
| | - Jennifer E Bruin
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, ON, Canada.
| |
Collapse
|
2
|
Miao L, Liu C, Cheong MS, Zhong R, Tan Y, Rengasamy KRR, Leung SWS, Cheang WS, Xiao J. Exploration of natural flavones' bioactivity and bioavailability in chronic inflammation induced-type-2 diabetes mellitus. Crit Rev Food Sci Nutr 2023; 63:11640-11667. [PMID: 35821658 DOI: 10.1080/10408398.2022.2095349] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Diabetes, being the most widespread illness, poses a serious threat to global public health. It seems that inflammation plays a critical role in the pathophysiology of diabetes. This review aims to demonstrate a probable link between type 2 diabetes mellitus (T2DM) and chronic inflammation during its development. Additionally, the current review examined the bioactivity of natural flavones and the possible molecular mechanisms by which they influence diabetes and inflammation. While natural flavones possess remarkable anti-diabetic and anti-inflammatory bioactivities, their therapeutic use is limited by the low oral bioavailability. Several factors contribute to the low bioavailability, including poor water solubility, food interaction, and unsatisfied metabolic behaviors, while the diseases (diabetes, inflammation, etc.) causing even less bioavailability. Throughout the years, different strategies have been developed to boost flavones' bioavailability, including structural alteration, biological transformation, and innovative drug delivery system design. This review addresses current advancements in improving the bioavailability of flavonoids in general, and flavones in particular. Clinical trials were also analyzed to provide insight into the potential application of flavonoids in diabetes and inflammatory therapies.
Collapse
Affiliation(s)
- Lingchao Miao
- State Key Laboratory of Quality Control in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Conghui Liu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Meang Sam Cheong
- State Key Laboratory of Quality Control in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Ruting Zhong
- State Key Laboratory of Quality Control in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Yi Tan
- State Key Laboratory of Quality Control in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Kannan R R Rengasamy
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Susan Wai Sum Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wai San Cheang
- State Key Laboratory of Quality Control in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Jianbo Xiao
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| |
Collapse
|
3
|
Zhong J, Zhao G, Edwards S, Tran J, Rajagopalan S, Rao X. Particulate air pollution exaggerates diet-induced insulin resistance through NLRP3 inflammasome in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 328:121603. [PMID: 37062408 PMCID: PMC10164710 DOI: 10.1016/j.envpol.2023.121603] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023]
Abstract
Air particulate matter 2.5 (PM2.5) has been demonstrated to exaggerate insulin resistance in both human and animal studies. However, the exact molecular mechanisms remain elusive. This study sought to assess the role of NLRP3 inflammasome in PM2.5 exposure-induced insulin resistance and explore the underlying mechanisms. Wild-type (WT), Nlrp3-/-, Tlr4Lps-d, or Nrf2-/- mice, on a normal diet or high-fat diet (HFD), were exposed to PM2.5 or filtered air (FA) in a whole-body exposure facility. Priming (first signal) and assembly (second signal) of NLRP3 inflammasome activation were assessed by measuring the transcription of Nlrp3/Il-1β and detecting the activity of caspase-1 and secretion of IL-1β. We found PM2.5 exposure exaggerated insulin resistance and increased IL-1β production in the HFD-fed WT mice, but not Nlrp3-/- mice. Gene expressions of Nlrp3 and Il-1β in the lungs and peritoneal macrophages were upregulated in WT mice exposed to PM2.5. When stimulated with LPS (first signal) or monosodium urate (second signal), PM2.5 exposure was able to enhance the activity of caspase-1 and IL-1β secretion, suggesting that PM2.5 may serve as a stimulus of either the first or second signal for NLRP3 inflammasome activation. Effects of PM2.5 on caspase-1 activation and IL-1β secretion were partially blocked in Tlr4Lps-d mice. Reactive oxygen species (ROS), co-localization of NLRP3 and mitochondria, and secondary lysosomes in macrophages were increased after PM2.5 exposure, while deficiency of antioxidant gene Nrf2 in mice significantly enhanced PM2.5-induced secretion of IL-1β. Imaging flow cytometry and transmission electron microscopy demonstrated an engulfment of PM2.5 particles by macrophages, while suppression of phagocytosis by cytochalasin D abolished PM2.5-induced transcription of Nlrp3/Il-1β. Our results demonstrated a critical role of NLRP3 inflammasome in PM2.5 exaggerated insulin resistance, and multiple pathways in the first and second signals of NLRP3 inflammasome activation may be involved.
Collapse
Affiliation(s)
- Jixin Zhong
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China; Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, 44106, United States
| | - Gang Zhao
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, 97239, United States; Department of Cardiology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| | - Sabrina Edwards
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, 97239, United States
| | - Joanne Tran
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, 97239, United States; Pacific Northwest University of Health Science, Yakima, WA, 98901, United States
| | - Sanjay Rajagopalan
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, 44106, United States
| | - Xiaoquan Rao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China; Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, 44106, United States; Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, 97239, United States.
| |
Collapse
|
4
|
Su WJ, Li JM, Zhang T, Cao ZY, Hu T, Zhong SY, Xu ZY, Gong H, Jiang CL. Microglial NLRP3 inflammasome activation mediates diabetes-induced depression-like behavior via triggering neuroinflammation. Prog Neuropsychopharmacol Biol Psychiatry 2023; 126:110796. [PMID: 37209992 DOI: 10.1016/j.pnpbp.2023.110796] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/02/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Abundant evidence suggests that the prevalence and risk of depression in people with diabetes is high. However, the pathogenesis of diabetes-related depression remains unclear. Since neuroinflammation is associated with the pathophysiology of diabetic complications and depression, this study aims to elucidate the neuroimmune mechanism of diabetes-related depression. METHODS Male C57BL/6 mice were injected with streptozotocin to establish a diabetes model. After screening, diabetic mice were treated with the NLRP3 inhibitor MCC950. Then, metabolic indicators and depression-like behaviors were evaluated in these mice, as well as their central and peripheral inflammation. To explore the mechanism of high glucose-induced microglial NLRP3 inflammasome activation, we performed in vitro studies focusing on its canonical upstream signal I (TLR4/MyD88/NF-κB) and signal II (ROS/PKR/P2X7R/TXNIP). RESULTS Diabetic mice exhibited depression-like behaviors and activation of NLRP3 inflammasome in hippocampus. In vitro high-glucose (50 mM) environment primed microglial NLRP3 inflammasome by promoting NF-κB phosphorylation in a TLR4/MyD88-independent manner. Subsequently, high glucose activated the NLRP3 inflammasome via enhancing intracellular ROS accumulation, upregulating P2X7R, as well as promoting PKR phosphorylation and TXNIP expression, thereby facilitating the production and secretion of IL-1β. Inhibition of NLRP3 with MCC950 significantly restored hyperglycemia-induced depression-like behavior and reversed the increase in IL-1β levels in the hippocampus and serum. CONCLUSION The activation of NLRP3 inflammasome, probably mainly in hippocampal microglia, mediates the development of depression-like behaviors in STZ-induced diabetic mice. Targeting the microglial inflammasome is a feasible strategy for the treatment of diabetes-related depression.
Collapse
Affiliation(s)
- Wen-Jun Su
- Department of Stress Medicine, Faculty of Psychology, Naval Medical University, Shanghai 200433, China.
| | - Jia-Mei Li
- Department of Stress Medicine, Faculty of Psychology, Naval Medical University, Shanghai 200433, China; The 971st Hospital of PLA Navy, Qingdao 266072, China
| | - Ting Zhang
- Department of Stress Medicine, Faculty of Psychology, Naval Medical University, Shanghai 200433, China
| | - Zhi-Yong Cao
- Department of Stress Medicine, Faculty of Psychology, Naval Medical University, Shanghai 200433, China; Department of Psychiatry and Sleep Disorder, The 904th Hospital of PLA, Changzhou 213004, China
| | - Ting Hu
- Department of Stress Medicine, Faculty of Psychology, Naval Medical University, Shanghai 200433, China
| | - Shi-Yang Zhong
- Department of Stress Medicine, Faculty of Psychology, Naval Medical University, Shanghai 200433, China
| | - Zhang-Yang Xu
- Department of Stress Medicine, Faculty of Psychology, Naval Medical University, Shanghai 200433, China; The Battalion 3 of Cadet Brigade, School of Basic Medicine, Naval Medical University, Shanghai 200433, China
| | - Hong Gong
- Department of Developmental Neuropsychology, Faculty of Medical Psychology, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Chun-Lei Jiang
- Department of Stress Medicine, Faculty of Psychology, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
5
|
Mohammed S, Qadri SSYH, Molangiri A, Basak S, Rajkumar H. Gestational low dietary protein induces intrauterine inflammation and alters the programming of adiposity & insulin sensitivity in the adult offspring. J Nutr Biochem 2023; 116:109330. [PMID: 36967094 DOI: 10.1016/j.jnutbio.2023.109330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/31/2023] [Accepted: 03/18/2023] [Indexed: 04/08/2023]
Abstract
Malnutrition associated with low dietary protein can induce gestational inflammation and sets a long-lasting metabolic impact on the offspring even after replenishment. The work investigated whether a low-protein diet (LPD) during pregnancy and lactation induces intrauterine inflammation and predisposes offspring to adiposity and insulin resistance in their adult life. Female Golden Syrian hamsters were fed LPD (10.0% energy from protein) or a control diet (CD, 20.0 % energy from protein) from preconception until lactation. All pups were switched to CD after lactation and continued until the end. Maternal LPD increased intrauterine inflammation by enhancing neutrophil infiltration, amniotic hsCRP, oxidative stress, and mRNA expression of NFκβ, IL8, COX2, and TGFβ in the chorioamniotic membrane (P<.05). The prepregnancy body weight, placental, and fetal weights, serum AST and ALT were decreased, while blood platelets, lymphocytes, insulin, and HDL were significantly increased in LPD-fed dams (P<.05). A postnatal switch to an adequate protein could not prevent hyperlipidemia in the 6-months LPD/CD offspring. The lipid profile and liver functions were restored over 10 months of protein feeding but failed to normalize fasting glucose and body fat accumulation compared to CD/CD. LPD/CD showed elevated GLUT4 expression & activated pIRS1 in the skeletal muscle and increased expression of IL6, IL1β, and p65-NFκB proteins in the liver (P<.05). In conclusion, present data suggest that maternal protein restriction may induce intrauterine inflammation and affect liver inflammation in the adult offspring by an influx of fats from adipose that may alter lipid metabolism and reduce insulin sensitivity in skeletal muscle.
Collapse
|
6
|
Wu C, Liu J, Li Y, Wang N, Yan Q, Jiang Z. Manno-oligosaccharides from cassia seed gum ameliorate inflammation and improve glucose metabolism in diabetic rats. Food Funct 2022; 13:6674-6687. [PMID: 35647651 DOI: 10.1039/d1fo03057d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Functional oligosaccharides show anti-diabetic effects through inflammation regulation with improved glucose metabolism. In this study, novel prebiotics of manno-oligosaccharides from cassia seed gum (CMOS) were incorporated into the diet of streptozotocin (STZ) plus high-fat and high-sugar diet (HFSD)-induced rats. After feeding for 8 weeks, CMOS (300-1200 mg per kg b.w. per d) significantly ameliorated the fasting blood glucose level (7.1-8.2 mmol L-1) as compared with that of the model group (14.2 mmol L-1), where the area under the oral glucose tolerance test curve was decreased by 20.0%-24.5%. Meanwhile, CMOS prevented STZ plus HFSD-induced damage to islet tissue with a clear and integrated morphology and reduced the glucagon/insulin area ratio (by 97.9% for 300 mg per kg b.w. per d CMOS). CMOS also reduced metabolic endotoxemia and maintained intestinal integrity with recovered mRNA expression of Zo-1 and occludin to the normal comparable level. Upon 16S rDNA sequencing, it was found that CMOS regulated the microbiota composition in the cecum with an increased relative abundance of Bifidobacteria, while that of Shigella was decreased. The molecular mechanisms involved in the anti-diabetic effects of CMOS were further studied. CMOS reduced the mRNA expression of Tlr2 and Tlr4 in the intestines of STZ plus HFSD-induced rats. Meanwhile, Nlrp3 associated inflammasome activation in the intestine and liver with glucose metabolism disorder was inhibited by CMOS, resulting in reduced interleukin-1β secretion (by 38.8-46.4% for CMOS of 300-1200 mg per kg b.w. per d) and inflammation. Furthermore, CMOS regulated the AKT/IRS/AMPK signaling pathway and improved glucose metabolism in the liver. Findings obtained here implicated that CMOS could modulate metabolic-inflammation as a functional dietary supplement.
Collapse
Affiliation(s)
- Chenxuan Wu
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Jun Liu
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Yanxiao Li
- Department of Nutrition and Health, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Nannan Wang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Qiaojuan Yan
- Department of Nutrition and Health, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Zhengqiang Jiang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
7
|
Ma J, Zeng P, Liu L, Zhu M, Zheng J, Wang C, Zhao X, Hu W, Yang X, Duan Y, Han J, Miao QR, Chen Y. Peroxisome Proliferator-Activated Receptor-Gamma Reduces ER Stress and Inflammation via Targeting NGBR Expression. Front Pharmacol 2022; 12:817784. [PMID: 35111067 PMCID: PMC8801792 DOI: 10.3389/fphar.2021.817784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/27/2021] [Indexed: 01/01/2023] Open
Abstract
Increased Nogo-B receptor (NGBR) expression in the liver improves insulin sensitivity by reducing endoplasmic reticulum stress (ER stress) and activating the AMPK pathway, although it remains elusive the mechanisms by which NGBR is induced. In this study, we found that PPARγ ligands (rosiglitazone or pioglitazone) increased NGBR expression in hepatic cells and HUVECs. Furthermore, promoter analysis defined two PPREs (PPARγ-responsive elements) in the promoter region of NGBR, which was further confirmed by the ChIP assay. In vivo, using liver-specific PPARγ deficient (PPARγLKO) mice, we identified the key role of PPARγ expression in pioglitazone-induced NGBR expression. Meanwhile, the basal level of ER stress and inflammation was slightly increased by NGBR knockdown. However, the inhibitory effect of rosiglitazone on inflammation was abolished while rosiglitazone-inhibited ER stress was weakened by NGBR knockdown. Taken together, these findings show that NGBR is a previously unrecognized target of PPARγ activation and plays an essential role in PPARγ-reduced ER stress and inflammation.
Collapse
Affiliation(s)
- Jialing Ma
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Peng Zeng
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Lipei Liu
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Mengmeng Zhu
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Juan Zheng
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Chengyi Wang
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xiaokang Zhao
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Wenquan Hu
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Xiaoxiao Yang
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yajun Duan
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jihong Han
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.,College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Qing R Miao
- Diabetes and Obesity Research Center, New York University Long Island School of Medicine, New York, NY, United States
| | - Yuanli Chen
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
8
|
Yu Q, Wang T, Wang F, Yang Y, He C, Yang W, Zhang J, Zou Z. High n-3 fatty acids counteract hyperglycemia-induced insulin resistance in fat-1 mice via pre-adipocyte NLRP3 inflammasome inhibition. Food Funct 2021; 12:230-240. [PMID: 33295913 DOI: 10.1039/d0fo02092c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Although n-3 polyunsaturated fatty acids (n-3 PUFAs) have potential anti-insulin resistance activity, the mechanism remains largely unknown. In this study, increased glucose resistance, insulin sensitivity, and lower glycemia were observed upon streptozotocin (STZ) treatment in n-3 PUFA-enriched fat-1 mice compared to wild type (WT) mice. Endogenous n-3 PUFAs in fat-1 mice were found to impair hyperglycemia or high glucose level-induced nucleotide-binding domain and leucine-rich repeat pyrin 3 domain (NLRP3) inflammasome activation and inhibit IL-1β secretion in adipose tissues. In addition, endogenous n-3 PUFAs also inhibited high glucose-induced caspase-1 activity and IL-1β secretion in pre-adipocyte-enriched stromal vascular fractions (SVF) isolated from adipose tissues. Furthermore, in 3T3-L1 pre-adipocytes, high levels of glucose induced thioredoxin interacting protein (TXNIP) expression and activated the NLRP3 inflammasome, which was counteracted by docosahexaenoic acid (DHA), the major n-3 PUFA in fat-1 mice, by downregulating TXNIP via the phosphatidylinositol-3-kinase (PI3K)/Akt pathway. Our results suggest that n-3 PUFA-mediated insulin sensitivity is at least partly associated with inflammasome inhibition in pre-adipocytes. Our findings highlight the potential clinical use of dietary n-3 PUFAs in the prevention or intervention of T2D and other NLRP3 inflammasome-driven inflammatory diseases.
Collapse
Affiliation(s)
- Qingyao Yu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Tiantian Wang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Feng Wang
- Department of Laboratory Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang 315040, China
| | - Yong Yang
- Department of Clinical laboratory, the affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315020, China
| | - Canxia He
- Zhejiang Key Laboratory of Pathophysiology, Medical School, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Wenge Yang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - JinJie Zhang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Zuquan Zou
- Zhejiang Key Laboratory of Pathophysiology, Medical School, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
9
|
Yang B, Maddison LA, Zaborska KE, Dai C, Yin L, Tang Z, Zang L, Jacobson DA, Powers AC, Chen W. RIPK3-mediated inflammation is a conserved β cell response to ER stress. SCIENCE ADVANCES 2020; 6:eabd7272. [PMID: 33355143 PMCID: PMC11206196 DOI: 10.1126/sciadv.abd7272] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/28/2020] [Indexed: 06/12/2023]
Abstract
Islet inflammation is an important etiopathology of type 2 diabetes; however, the underlying mechanisms are not well defined. Using complementary experimental models, we discovered RIPK3-dependent IL1B induction in β cells as an instigator of islet inflammation. In cultured β cells, ER stress activated RIPK3, leading to NF-kB-mediated proinflammatory gene expression. In a zebrafish muscle insulin resistance model, overnutrition caused islet inflammation, β cell dysfunction, and loss in an ER stress-, ripk3-, and il1b-dependent manner. In mouse islets, high-fat diet triggered the IL1B expression in β cells before macrophage recruitment in vivo, and RIPK3 inhibition suppressed palmitate-induced β cell dysfunction and Il1b expression in vitro. Furthermore, in human islets grafted in hyperglycemic mice, a marked increase in ER stress, RIPK3, and NF-kB activation in β cells were accompanied with murine macrophage infiltration. Thus, RIPK3-mediated induction of proinflammatory mediators is a conserved, previously unrecognized β cell response to metabolic stress and a mediator of the ensuing islet inflammation.
Collapse
Affiliation(s)
- Bingyuan Yang
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA
| | - Lisette A Maddison
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA
| | - Karolina E Zaborska
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA
| | - Chunhua Dai
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, 2215 Garland Avenue, Nashville, TN 37232, USA
| | - Linlin Yin
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA
| | - Zihan Tang
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA
| | - Liqing Zang
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Japan
| | - David A Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA
| | - Alvin C Powers
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, 2215 Garland Avenue, Nashville, TN 37232, USA
- VA Tennessee Valley Healthcare, 1310 24th Ave. S, Nashville, TN 37212, USA
| | - Wenbiao Chen
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA.
| |
Collapse
|
10
|
Safhi MM, Alam MF, Sivakumar SM, Anwer T. Hepatoprotective Potential of Sargassum muticum against STZ-Induced Diabetic Liver Damage in Wistar Rats by Inhibiting Cytokines and the Apoptosis Pathway. Anal Cell Pathol (Amst) 2019; 2019:7958701. [PMID: 30937278 PMCID: PMC6415279 DOI: 10.1155/2019/7958701] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/11/2019] [Accepted: 01/28/2019] [Indexed: 12/18/2022] Open
Abstract
Liver inflammation and necrosis are the foremost problems interlinked with diabetes mellitus (DM). The methanolic extract of Sargassum muticum (MESM) plays a hepatoprotective role in streptozotocin- (STZ-) induced hepatic injury. In this study, STZ exposure induced diabetes that augmented hepatic damage, which was reflected in serum enzyme markers, the cytokine network, and caspase-3 and caspase-9 levels in Group 2. Exposure to the MESM tremendously modulated the levels of hepatic enzyme markers ALP, ACP, ALT, and AST in Groups 3 and 4. The cytokine network was well regulated by suppressing the release of cytokines, and the levels of caspase-3 and caspase-9 were also reduced in Groups 3 and 4. The present study suggests that MESM treatment at 200 and 500 mg protected the liver and also minimizes the glucose level. Thus, the MESM plays a key role in rejuvenating the liver and can modulate diabetes's pathogenic effect by reducing the glucose level.
Collapse
Affiliation(s)
- Mohammed M. Safhi
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammad Firoz Alam
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | | | - Tarique Anwer
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
11
|
Janicijevic SM, Dejanovic SD, Borovcanin M. Interplay of Brain-Derived Neurotrophic Factor and Cytokines in Schizophrenia. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2018. [DOI: 10.1515/sjecr-2017-0031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family and plays an important role in neuroplasticity, differentiation and survival of neurons, as well as their function. Neuroinflammation has been explored in the pathophysiology of many mental disorders, such as schizophrenia. Cytokines representing different types of immune responses have an impact on neurogenesis and BDNF expression. Cross-regulation of BDNF and cytokines is accomplished through several signalling pathways. Also, typical and atypical antipsychotic drugs variously modulate the expression of BDNF and serum levels of cytokines, which can possibly be used in evaluation of therapy effectiveness. Comorbidity of metabolic syndrome and atopic diseases has been considered in the context of BDNF and cytokines interplay in schizophrenia.
Collapse
Affiliation(s)
- Slavica Minic Janicijevic
- Doctor of Medicine, PhD Student at the Faculty of Medical Sciences , University of Kragujevac , Kragujevac , Serbia
| | - Slavica Djukic Dejanovic
- Department of Psychiatry, Faculty of Medical Sciences , University of Kragujevac , Kragujevac , Serbia
| | - Milica Borovcanin
- Department of Psychiatry, Faculty of Medical Sciences , University of Kragujevac , Kragujevac , Serbia
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences , University of Kragujevac , Kragujevac , Serbia
| |
Collapse
|
12
|
Su WJ, Peng W, Gong H, Liu YZ, Zhang Y, Lian YJ, Cao ZY, Wu R, Liu LL, Wang B, Wang YX, Jiang CL. Antidiabetic drug glyburide modulates depressive-like behavior comorbid with insulin resistance. J Neuroinflammation 2017; 14:210. [PMID: 29084550 PMCID: PMC5663104 DOI: 10.1186/s12974-017-0985-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/23/2017] [Indexed: 12/12/2022] Open
Abstract
Background Abundant reports indicated that depression was often comorbid with type 2 diabetes and even metabolic syndrome. Considering they might share common biological origins, it was tentatively attributed to the chronic cytokine-mediated inflammatory response which was induced by dysregulation of HPA axis and overactivation of innate immunity. However, the exact mechanisms remain obscure. Herein, we mainly focused on the function of the NLRP3 inflammasome to investigate this issue. Methods Male C57BL/6 mice were subjected to 12 weeks of chronic unpredictable mild stress (CUMS), some of which were injected with glyburide or fluoxetine. After CUMS procedure, behavioral and metabolic tests were carried out. In order to evaluate the systemic inflammation associated with inflammasome activation, IL-1β and inflammasome components in hippocampi and pancreases, as well as corticosterone and IL-1β in serum were detected separately. Moreover, immunostaining was performed to assess morphologic characteristics of pancreases. Results In the present study, we found that 12 weeks’ chronic stress resulted in depressive-like behavior comorbid with insulin resistance. Furthermore, antidiabetic drug glyburide, an inhibitor of the NLRP3 inflammasome, was discovered to be effective in preventing the experimental comorbidity. In brief, it improved behavioral performance, ameliorated insulin intolerance as well as insulin signaling in the hippocampus possibly through inhibiting NLRP3 inflammasome activation by suppressing the expression of TXNIP. Conclusions All these evidence supported our hypothesis that chronic stress led to comorbidity of depressive-like behavior and insulin resistance via long-term mild inflammation. More importantly, based on the beneficial effects of blocking the activation of the NLRP3 inflammasome, we provided a potential therapeutic target for clinical comorbidity and a new strategy for management of both diabetes and depression.
Collapse
Affiliation(s)
- Wen-Jun Su
- Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, 800 Xiangyin Road, Shanghai, China
| | - Wei Peng
- Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, 800 Xiangyin Road, Shanghai, China
| | - Hong Gong
- Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, 800 Xiangyin Road, Shanghai, China
| | - Yun-Zi Liu
- Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, 800 Xiangyin Road, Shanghai, China
| | - Yi Zhang
- Department of Psychiatry, Faculty of Psychology and Mental Health, Second Military Medical University, 800 Xiangyin Road, Shanghai, China
| | - Yong-Jie Lian
- Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, 800 Xiangyin Road, Shanghai, China
| | - Zhi-Yong Cao
- Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, 800 Xiangyin Road, Shanghai, China.,Department of Psychiatry, The 102nd Hospital of PLA, 55 North Heping Road, Changzhou, China
| | - Ran Wu
- Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, 800 Xiangyin Road, Shanghai, China
| | - Lin-Lin Liu
- Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, 800 Xiangyin Road, Shanghai, China
| | - Bo Wang
- Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, 800 Xiangyin Road, Shanghai, China
| | - Yun-Xia Wang
- Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, 800 Xiangyin Road, Shanghai, China
| | - Chun-Lei Jiang
- Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, 800 Xiangyin Road, Shanghai, China.
| |
Collapse
|
13
|
Kim Y, Keogh JB, Clifton PM. Effects of Two Different Dietary Patterns on Inflammatory Markers, Advanced Glycation End Products and Lipids in Subjects without Type 2 Diabetes: A Randomised Crossover Study. Nutrients 2017; 9:nu9040336. [PMID: 28353655 PMCID: PMC5409675 DOI: 10.3390/nu9040336] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/23/2017] [Accepted: 03/26/2017] [Indexed: 01/11/2023] Open
Abstract
Epidemiological studies suggest that consumption of red and processed meat and refined grains are associated with type 2 diabetes and metabolic syndrome and increased inflammatory and fibrinolytic markers. We hypothesised that a diet high in red and processed meat and refined grains (HMD) would increase inflammatory markers and advanced glycation end products (AGEs) compared with a diet high in dairy, whole grains, nuts and legumes (HWD). We performed a randomised crossover study of two four-week interventions in 51 participants without type 2 diabetes (15 men and 36 women aged 35.1 ± 15.6 years; body mass index: 27.7 ± 6.9 kg/m2). No baseline measurements were performed. Plasma fluorescent AGEs, carboxymethyllysine, glucose, insulin, lipids, hs-CRP, interleukin 6 (IL-6) and plasminogen activator inhibitor-1 (PAI-1) were analysed after four weeks on each diet. IL-6, hs-CRP, AGEs and carboxymethyllysine were not different between diets but PAI-1 was higher after the HMD than after HWD ((median and interquartile range) 158, 81 vs. 121, 53 ng/mL p < 0.001). PAI-1 on the HWD diet was inversely correlated with whole grains intake (p = 0.007). PAI-1 was inversely correlated with insulin sensitivity index (r = −0.45; p = 0.001) and positively correlated with serum total cholesterol (r = 0.35; p = 0.012) and serum triglyceride (r = 0.32; p = 0.021) on HMD. This trial was registered with the Australian New Zealand Clinical Trials Registry (ACTRN12614000519651).
Collapse
Affiliation(s)
- Yoona Kim
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide SA 5001, Australia.
| | - Jennifer B Keogh
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide SA 5001, Australia.
| | - Peter M Clifton
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide SA 5001, Australia.
| |
Collapse
|
14
|
Herder C, Færch K, Carstensen-Kirberg M, Lowe GD, Haapakoski R, Witte DR, Brunner EJ, Roden M, Tabák AG, Kivimäki M, Vistisen D. Biomarkers of subclinical inflammation and increases in glycaemia, insulin resistance and beta-cell function in non-diabetic individuals: the Whitehall II study. Eur J Endocrinol 2016; 175:367-77. [PMID: 27491375 DOI: 10.1530/eje-16-0528] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/04/2016] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Higher systemic levels of pro-inflammatory biomarkers and low adiponectin are associated with increased risk of type 2 diabetes, but their associations with changes in glycaemic deterioration before onset of diabetes are poorly understood. We aimed to study whether inflammation-related biomarkers are associated with 5-year changes in glucose and insulin, HbA1c, insulin sensitivity and beta-cell function before the diagnosis of type 2 diabetes and whether these associations may be bidirectional. DESIGN AND METHODS We used multiple repeat measures (17 891 person-examinations from 7683 non-diabetic participants) from the Whitehall II study to assess whether circulating high-sensitivity C-reactive protein (hsCRP), interleukin-6 (IL6), IL1 receptor antagonist (IL1Ra) and adiponectin are associated with subsequent changes in glycaemia, insulin, insulin resistance and beta-cell function (based on oral glucose tolerance tests). We examined bidirectionality by testing if parameters of glucose metabolism at baseline are associated with changes in inflammation-related biomarkers. RESULTS Higher hsCRP and IL6 were associated with increases in fasting insulin, insulin resistance and, for IL6, with beta-cell function after adjustment for confounders. Higher adiponectin was associated with decreases in fasting glucose, HbA1c, fasting insulin, insulin resistance and beta-cell function. The reverse approach showed that 2-h glucose and insulin sensitivity were associated with changes in IL1Ra. Fasting insulin and insulin resistance showed inverse associations with changes in adiponectin. CONCLUSIONS Subclinical inflammation is associated with development of increased glycaemia, insulin resistance and beta-cell function in non-diabetic individuals. These findings are consistent with the hypothesis that inflammation-related processes may increase insulin resistance and lead to a compensatory upregulation of beta-cell function.
Collapse
Affiliation(s)
- Christian Herder
- Institute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany German Center for Diabetes ResearchMünchen-Neuherberg, Germany
| | | | - Maren Carstensen-Kirberg
- Institute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany German Center for Diabetes ResearchMünchen-Neuherberg, Germany
| | - Gordon D Lowe
- Institute of Cardiovascular and Medical SciencesUniversity of Glasgow, Glasgow, UK
| | - Rita Haapakoski
- Department of Epidemiology and Public HealthUniversity College London, London, UK
| | - Daniel R Witte
- Department of Public HealthAarhus University, Aarhus, Denmark Danish Diabetes AcademyOdense, Denmark
| | - Eric J Brunner
- Department of Epidemiology and Public HealthUniversity College London, London, UK
| | - Michael Roden
- Institute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany German Center for Diabetes ResearchMünchen-Neuherberg, Germany Department of Endocrinology and DiabetologyMedical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Adam G Tabák
- Department of Epidemiology and Public HealthUniversity College London, London, UK First Department of MedicineFaculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Mika Kivimäki
- Department of Epidemiology and Public HealthUniversity College London, London, UK
| | | |
Collapse
|
15
|
Palmér R, Nyman E, Penney M, Marley A, Cedersund G, Agoram B. Effects of IL-1β-Blocking Therapies in Type 2 Diabetes Mellitus: A Quantitative Systems Pharmacology Modeling Approach to Explore Underlying Mechanisms. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2014; 3:e118. [PMID: 24918743 PMCID: PMC4076803 DOI: 10.1038/psp.2014.16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 04/03/2014] [Indexed: 01/09/2023]
Abstract
Recent clinical studies suggest sustained treatment effects of interleukin-1β (IL-1β)–blocking therapies in type 2 diabetes mellitus. The underlying mechanisms of these effects, however, remain underexplored. Using a quantitative systems pharmacology modeling approach, we combined ex vivo data of IL-1β effects on β-cell function and turnover with a disease progression model of the long-term interactions between insulin, glucose, and β-cell mass in type 2 diabetes mellitus. We then simulated treatment effects of the IL-1 receptor antagonist anakinra. The result was a substantial and partly sustained symptomatic improvement in β-cell function, and hence also in HbA1C, fasting plasma glucose, and proinsulin–insulin ratio, and a small increase in β-cell mass. We propose that improved β-cell function, rather than mass, is likely to explain the main IL-1β–blocking effects seen in current clinical data, but that improved β-cell mass might result in disease-modifying effects not clearly distinguishable until >1 year after treatment.
Collapse
Affiliation(s)
- R Palmér
- Wolfram MathCore AB, Linköping, Sweden
| | - E Nyman
- 1] Wolfram MathCore AB, Linköping, Sweden [2] Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - M Penney
- Department of Clinical Pharmacology, Drug Metabolism, and Pharmacokinetics, MedImmune, Cambridge, UK
| | - A Marley
- Bioscience, Astra Zeneca, Alderley Park, UK
| | - G Cedersund
- 1] Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden [2] Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - B Agoram
- Department of Clinical Pharmacology, Drug Metabolism, and Pharmacokinetics, MedImmune, Cambridge, UK
| |
Collapse
|
16
|
Zhang QY, Pan Y, Wang R, Kang LL, Xue QC, Wang XN, Kong LD. Quercetin inhibits AMPK/TXNIP activation and reduces inflammatory lesions to improve insulin signaling defect in the hypothalamus of high fructose-fed rats. J Nutr Biochem 2013; 25:420-8. [PMID: 24491314 DOI: 10.1016/j.jnutbio.2013.11.014] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 11/17/2013] [Accepted: 11/27/2013] [Indexed: 12/18/2022]
Abstract
Fructose is a nutritional composition of fruits and honey. Its excess consumption induces insulin resistance-associated metabolic diseases. Hypothalamic insulin signaling plays a pivotal role in controlling whole-body insulin sensitivity and energy homeostasis. Quercetin, a natural flavonoid, has been reported to ameliorate high fructose-induced rat insulin resistance and hyperlipidemia. In this study, we investigated its regulatory effects on the hypothalamus of high fructose-fed rats. Rats were fed 10% fructose in drinking water for 10 weeks. After 4 weeks, these animals were orally treated with quercetin (50 and 100 mg/kg), allopurinol (5 mg/kg) and water daily for the next 6 weeks, respectively. Quercetin effectively restored high fructose-induced hypothalamic insulin signaling defect by up-regulating the phosphorylation of insulin receptor and protein kinase B. Furthermore, quercetin was found to reduce metabolic nutrient sensors adenosine monophosphate-activated protein kinase (AMPK) activation and thioredoxin-interacting protein (TXNIP) overexpression, as well as the glutamine-glutamate cycle dysfunction in the hypothalamus of high fructose-fed rats. Subsequently, it ameliorated high fructose-caused hypothalamic inflammatory lesions in rats by suppressing the activation of hypothalamic nuclear factor κB (NF-κB) pathway and NOD-like receptor 3 (NLRP3) inflammasome with interleukin 1β maturation. Allopurinol had similar effects. These results provide in vivo evidence that quercetin-mediated down-regulation of AMPK/TXNIP and subsequent inhibition of NF-κB pathway/NLRP3 inflammasome activation in the hypothalamus of rats may be associated with the reduction of hypothalamic inflammatory lesions, contributing to the improvement of hypothalamic insulin signaling defect in this model. Thus, quercetin with the central activity may be a therapeutic for high fructose-induced insulin resistance and hyperlipidemia in humans.
Collapse
Affiliation(s)
- Qing-Yu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, PR China
| | - Ying Pan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, PR China.
| | - Rong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, PR China
| | - Lin-Lin Kang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, PR China
| | - Qiao-Chu Xue
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, PR China
| | - Xiao-Ning Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, PR China
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, PR China.
| |
Collapse
|
17
|
Muktabhant B, Duangjinda M, Sanchaisuriya P, Kananit S, Schelp FP. Association of the polymorphism of interleukin-1B (−511C/T) with type 2 diabetes mellitus patients with and without family history of a first degree relative with diabetes mellitus. Int J Diabetes Dev Ctries 2013. [DOI: 10.1007/s13410-013-0155-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
18
|
IL-1β, RAGE and FABP4: targeting the dynamic trio in metabolic inflammation and related pathologies. Future Med Chem 2013; 5:1089-108. [PMID: 23795967 DOI: 10.4155/fmc.13.90] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Within the past decade, inflammatory and lipid mediators, such as IL-1β, FABP4 and RAGE, have emerged as important contributors to metabolic dysfunction. As growing experimental and clinical evidence continues to tie obesity-induced chronic inflammation with dysregulated lipid, insulin signaling and related pathologies, IL-1β, FABP4 and RAGE each are being independently implicated as culprits in these events. There are also convincing data that molecular pathways driven by these molecules are interconnected in exacerbating metabolic consequences of obesity. This article highlights the roles of IL-1β, FABP4 and RAGE in normal physiology as well as focusing specifically on their contribution to inflammation, insulin resistance, atherosclerosis, Type 2 diabetes and cancer. Studies implicating the interconnection between these pathways, current and emerging therapeutics, and their use as potential biomarkers are also discussed. Evidence of impact of IL-1β, FABP4 and RAGE pathways on severity of metabolic dysfunction underlines the strong links between inflammatory events, lipid metabolism and insulin regulation, and offers new intriguing approaches for future therapies of obesity-driven pathologies.
Collapse
|
19
|
Böni-Schnetzler M, Donath MY. How biologics targeting the IL-1 system are being considered for the treatment of type 2 diabetes. Br J Clin Pharmacol 2013; 76:263-8. [PMID: 22506644 PMCID: PMC3731600 DOI: 10.1111/j.1365-2125.2012.04297.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 04/05/2012] [Indexed: 12/22/2022] Open
Abstract
Metabolic diseases are associated with activation of the innate immune system in various tissues and characterized by elevated inflammatory factors and the presence of immune cells. Type 2 diabetes develops when islet beta cells are deficient in producing sufficient insulin to overcome peripheral insulin resistance. Intra-islet IL-1β activity diminishes beta cell function and survival and governs islet inflammation. Targeting the IL-1 system with the IL-1 receptor antagonist IL1Ra improved insulin secretion, glycaemia and reduced systemic inflammation in a proof of concept study with patients with type 2 diabetes. Currently, long lasting and specific IL-1β blocking antibodies are being evaluated in clinical trials and this may lead to a novel cytokine-based treatment for type 2 diabetes.
Collapse
Affiliation(s)
- Marianne Böni-Schnetzler
- Clinic for Endocrinology, Diabetes and Metabolism and Department of Biomedicine, University Hospital of Basel, Basel, Switzerland.
| | | |
Collapse
|
20
|
Brain-derived neurotrophic factor-dependent synaptic plasticity is suppressed by interleukin-1β via p38 mitogen-activated protein kinase. J Neurosci 2013; 32:17714-24. [PMID: 23223292 DOI: 10.1523/jneurosci.1253-12.2012] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Evolving evidence suggests that brain inflammation and the buildup of proinflammatory cytokine increases the risk for cognitive decline and cognitive dysfunction. Interleukin-1β (IL-1β), acting via poorly understood mechanisms, appears to be a key cytokine in causing these deleterious effects along with a presumably related loss of long-term potentiation (LTP)-type synaptic plasticity. We hypothesized that IL-1β disrupts brain-derived neurotrophic factor (BDNF) signaling cascades and thereby impairs the formation of filamentous actin (F-actin) in dendritic spines, an event that is essential for the stabilization of LTP. Actin polymerization in spines requires phosphorylation of the filament severing protein cofilin and is modulated by expression of the immediate early gene product Arc. Using rat organotypic hippocampal cultures, we found that IL-1β suppressed BDNF-dependent regulation of Arc and phosphorylation of cofilin and cAMP response element-binding protein (CREB), a transcription factor regulating Arc expression. IL-1β appears to act on BDNF signal transduction by impairing the phosphorylation of insulin receptor substrate 1, a protein that couples activation of the BDNF receptor TrkB to downstream signaling pathways regulating CREB, Arc, and cofilin. IL-1β upregulated p38 mitogen-activated protein kinase (MAPK), and inhibiting p38 MAPK prevented IL-1β from disrupting BDNF signaling. IL-1β also prevented the formation of F-actin in spines and impaired the consolidation, but not the induction, of BDNF-dependent LTP in acute hippocampal slices. The suppressive effect of IL-1β on F-actin and LTP was prevented by inhibiting p38 MAPK. These findings define a new mechanism for the action of IL-1β on LTP and point to a potential therapeutic target to restore synaptic plasticity.
Collapse
|
21
|
Kaiser N, Cerasi E, Leibowitz G. Diet-induced diabetes in the sand rat (Psammomys obesus). Methods Mol Biol 2012; 933:89-102. [PMID: 22893403 DOI: 10.1007/978-1-62703-068-7_7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Insulin deficiency is the underlying cause of hyperglycemia in type 2 diabetes. The gerbil Psammomys obesus (P. obesus) is a naturally insulin resistant rodent with tendency to develop diet-induced hyperglycemia associated with obesity. P. obesus does not exhibit hyperglycemia in its natural desert habitat, feeding on low caloric vegetation. However, when fed regular laboratory chow containing higher caloric density, the animals develop moderate obesity and hyperglycemia. Diabetes development and progression is very fast in P. obesus. The animals reach the irreversible hypoinsulinemic stage of the disease, in which a marked reduction of β-cell mass is apparent, within 4-6 weeks of high caloric diet. The present review describes the P. obesus of the Hebrew University colony, with emphasis on its use for the study of β-cell dysfunction in type 2 diabetes.
Collapse
Affiliation(s)
- Nurit Kaiser
- Endocrinology and Metabolism Service, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| | | | | |
Collapse
|