1
|
Chen MM, Zhao Y, Yu K, Xu XL, Zhang XS, Zhang JL, Wu SJ, Liu ZM, Yuan YM, Guo XF, Qi SY, Yi G, Wang SQ, Li HX, Wu AW, Liu GS, Deng SL, Han HB, Lv FH, Lian D, Lian ZX. A MSTNDel73C mutation with FGF5 knockout sheep by CRISPR/Cas9 promotes skeletal muscle myofiber hyperplasia. eLife 2024; 12:RP86827. [PMID: 39365728 PMCID: PMC11452178 DOI: 10.7554/elife.86827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024] Open
Abstract
Mutations in the well-known Myostatin (MSTN) produce a 'double-muscle' phenotype, which makes it commercially invaluable for improving livestock meat production and providing high-quality protein for humans. However, mutations at different loci of the MSTN often produce a variety of different phenotypes. In the current study, we increased the delivery ratio of Cas9 mRNA to sgRNA from the traditional 1:2 to 1:10, which improves the efficiency of the homozygous mutation of biallelic gene. Here, a MSTNDel73C mutation with FGF5 knockout sheep, in which the MSTN and FGF5 dual-gene biallelic homozygous mutations were produced via the deletion of 3-base pairs of AGC in the third exon of MSTN, resulting in cysteine-depleted at amino acid position 73, and the FGF5 double allele mutation led to inactivation of FGF5 gene. The MSTNDel73C mutation with FGF5 knockout sheep highlights a dominant 'double-muscle' phenotype, which can be stably inherited. Both F0 and F1 generation mutants highlight the excellent trait of high-yield meat with a smaller cross-sectional area and higher number of muscle fibers per unit area. Mechanistically, the MSTNDel73C mutation with FGF5 knockout mediated the activation of FOSL1 via the MEK-ERK-FOSL1 axis. The activated FOSL1 promotes skeletal muscle satellite cell proliferation and inhibits myogenic differentiation by inhibiting the expression of MyoD1, and resulting in smaller myotubes. In addition, activated ERK1/2 may inhibit the secondary fusion of myotubes by Ca2+-dependent CaMKII activation pathway, leading to myoblasts fusion to form smaller myotubes.
Collapse
Affiliation(s)
- Ming-Ming Chen
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural UniversityBeijingChina
| | - Yue Zhao
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural UniversityBeijingChina
| | - Kun Yu
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural UniversityBeijingChina
| | - Xue-Ling Xu
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural UniversityBeijingChina
| | - Xiao-Sheng Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural SciencesTianjinChina
| | - Jin-Long Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural SciencesTianjinChina
| | - Su-Jun Wu
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural UniversityBeijingChina
| | - Zhi-Mei Liu
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural UniversityBeijingChina
| | - Yi-Ming Yuan
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural UniversityBeijingChina
| | - Xiao-Fei Guo
- Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural SciencesTianjinChina
| | - Shi-Yu Qi
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural UniversityBeijingChina
| | - Guang Yi
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural UniversityBeijingChina
| | - Shu-Qi Wang
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural UniversityBeijingChina
| | - Huang-Xiang Li
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural UniversityBeijingChina
| | - Ao-Wu Wu
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural UniversityBeijingChina
| | - Guo-Shi Liu
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural UniversityBeijingChina
| | - Shou-Long Deng
- National Center of Technology Innovation for animal model, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical CollegeBeijingChina
| | - Hong-Bing Han
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural UniversityBeijingChina
| | - Feng-Hua Lv
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural UniversityBeijingChina
| | - Di Lian
- College of Pulmonary and Critical Care Medicine, Chinese PLA General HospitalBeijingChina
| | - Zheng-Xing Lian
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural UniversityBeijingChina
| |
Collapse
|
2
|
Lee DH, Yoon SB, Jo YJ, Mo JW, Kwon J, Lee SI, Kwon J, Kim JS. Comparative analysis of superovulated versus uterine-embryo synchronized recipients for embryo transfer in cynomolgus monkeys ( Macaca fascicularis). Front Vet Sci 2024; 11:1452631. [PMID: 39346953 PMCID: PMC11427438 DOI: 10.3389/fvets.2024.1452631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Introduction Assisted reproductive technologies (ARTs), such as intracytoplasmic sperm injection and embryo transfer, are essential for generating genetically edited monkeys. Despite their importance, ARTs face challenges in recipient selection in terms of time and the number of animals required. The potential of superovulated monkeys, commonly used as oocyte donors, to serve as surrogate mothers, remains underexplored. The study aimed to compare the efficacy of superovulated and uterine-embryo synchronized recipients of embryo transfer in cynomolgus monkeys (Macaca fascicularis). Methods This study involved 23 cynomolgus monkeys divided into two groups-12 superovulated recipients and 11 synchronized recipients. The evaluation criteria included measuring endometrial thickness on the day of embryo transfer and calculating pregnancy and implantation rates to compare outcomes between groups. Results The study found no statistically significant differences in endometrial thickness (superovulated: 4.48 ± 1.36 mm, synchronized: 5.15 ± 1.58 mm), pregnancy rates (superovulated: 30.8%, synchronized: 41.7%), and implantation rates (superovulated: 14.3%, synchronized: 21.9%) between the groups (p > 0.05). Conclusion The observations indicate that superovulated recipients are as effective as synchronized recipients for embryo transfer in cynomolgus monkeys. This suggests that superovulated recipients can serve as viable options, offering an efficient and practical approach to facilitate the generation of gene-edited models in this species.
Collapse
Affiliation(s)
- Dong-Ho Lee
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - Seung-Bin Yoon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Yu-Jin Jo
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Jun Won Mo
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Jeongwoo Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Sang Il Lee
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Jungkee Kwon
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - Ji-Su Kim
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| |
Collapse
|
3
|
Nix JL, Schettini GP, Speckhart SL, Ealy AD, Biase FH. Ablation of OCT4 function in cattle embryos by double electroporation of CRISPR-Cas for DNA and RNA targeting (CRISPR-DART). PNAS NEXUS 2023; 2:pgad343. [PMID: 37954164 PMCID: PMC10637268 DOI: 10.1093/pnasnexus/pgad343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023]
Abstract
CRISPR-Cas ribonucleoproteins (RNPs) are important tools for gene editing in preimplantation embryos. However, the inefficient production of biallelic deletions in cattle zygotes has hindered mechanistic studies of gene function. In addition, the presence of maternal RNAs that support embryo development until embryonic genome activation may cause confounding phenotypes. Here, we aimed to improve the efficiency of biallelic deletions and deplete specific maternal RNAs in cattle zygotes using CRISPR-Cas editing technology. Two electroporation sessions with Cas9D10A RNPs targeting exon 1 and the promoter of OCT4 produced biallelic deletions in 91% of the embryos tested. In most cases, the deletions were longer than 1,000 nucleotides long. Electroporation of Cas13a RNPs prevents the production of the corresponding proteins. We electroporated Cas9D10A RNPs targeting exon 1, including the promoter region, of OCT4 in two sessions with inclusion of Cas13a RNPs targeting OCT4 mRNAs in the second session to ablate OCT4 function in cattle embryos. A lack of OCT4 resulted in embryos arresting development prior to blastocyst formation at a greater proportion (13%) than controls (31.6%, P < 0.001). The few embryos that developed past the morula stage did not form a normal inner cell mass. Transcriptome analysis of single blastocysts, confirmed to lack exon 1 and promoter region of OCT4, revealed a significant (False Discovery Rate, FDR < 0.1) reduction in transcript abundance of many genes functionally connected to stemness, including markers of pluripotency (CADHD1, DPPA4, GNL3, RRM2). The results confirm that OCT4 is a key regulator of genes that modulate pluripotency and is required to form a functional blastocyst in cattle.
Collapse
Affiliation(s)
- Jada L Nix
- School of Animal Sciences, Virginia Polytechnic Institute and State University, 175 W Campus dr, Blacksburg, VA 24061, USA
| | - Gustavo P Schettini
- School of Animal Sciences, Virginia Polytechnic Institute and State University, 175 W Campus dr, Blacksburg, VA 24061, USA
| | - Savannah L Speckhart
- School of Animal Sciences, Virginia Polytechnic Institute and State University, 175 W Campus dr, Blacksburg, VA 24061, USA
| | - Alan D Ealy
- School of Animal Sciences, Virginia Polytechnic Institute and State University, 175 W Campus dr, Blacksburg, VA 24061, USA
| | - Fernando H Biase
- School of Animal Sciences, Virginia Polytechnic Institute and State University, 175 W Campus dr, Blacksburg, VA 24061, USA
| |
Collapse
|
4
|
Ryu J, Adashi EY, Hennebold JD. The history, use, and challenges of therapeutic somatic cell and germline gene editing. Fertil Steril 2023; 120:528-538. [PMID: 36878350 PMCID: PMC10477338 DOI: 10.1016/j.fertnstert.2023.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023]
Abstract
The advent of directed gene-editing technologies now over 10 years ago ushered in a new era of precision medicine wherein specific disease-causing mutations can be corrected. In parallel with developing new gene-editing platforms, optimizing their efficiency and delivery has been remarkable. With their development, there has been interest in using gene-editing systems for correcting disease mutations in differentiated somatic cells ex vivo or in vivo or for germline gene editing in gametes or 1-cell embryos to potentially limit genetic diseases in the offspring and in future generations. This review details the development and history of the current gene-editing systems and the advantages and challenges in their use for somatic cell and germline gene editing.
Collapse
Affiliation(s)
- Junghyun Ryu
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon
| | - Eli Y Adashi
- Department of Medical Science, The Warren Alpert Medical School, Brown University, Providence, Rhode Island
| | - Jon D Hennebold
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon; Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon.
| |
Collapse
|
5
|
Chen H, Liu X, Li L, Tan Q, Li S, Li L, Li C, Fu J, Lu Y, Wang Y, Sun Y, Luo ZG, Lu Z, Sun Q, Liu Z. CATI: an efficient gene integration method for rodent and primate embryos by MMEJ suppression. Genome Biol 2023; 24:146. [PMID: 37353834 PMCID: PMC10288798 DOI: 10.1186/s13059-023-02987-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 06/13/2023] [Indexed: 06/25/2023] Open
Abstract
The efficiency of homology-directed repair (HDR) plays a crucial role in the development of animal models and gene therapy. We demonstrate that microhomology-mediated end-joining (MMEJ) constitutes a substantial proportion of DNA repair during CRISPR-mediated gene editing. Using CasRx to downregulate a key MMEJ factor, Polymerase Q (Polq), we improve the targeted integration efficiency of linearized DNA fragments and single-strand oligonucleotides (ssODN) in mouse embryos and offspring. CasRX-assisted targeted integration (CATI) also leads to substantial improvements in HDR efficiency during the CRISPR/Cas9 editing of monkey embryos. We present a promising tool for generating monkey models and developing gene therapies for clinical trials.
Collapse
Affiliation(s)
- Hongyu Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
| | - Xingchen Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
- University of Chinese Academy of Sciences, 19A Yu-Quan Road, Beijing, 100049, China
| | - Lanxin Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Qingtong Tan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
- University of Chinese Academy of Sciences, 19A Yu-Quan Road, Beijing, 100049, China
| | - Shiyan Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
- University of Chinese Academy of Sciences, 19A Yu-Quan Road, Beijing, 100049, China
| | - Li Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
| | - Chunyang Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
| | - Jiqiang Fu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
| | - Yong Lu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
| | - Yan Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
| | - Yidi Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 201210, China
| | - Zhen-Ge Luo
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Zongyang Lu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 201210, China.
| | - Qiang Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 201210, China.
| | - Zhen Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 201210, China.
| |
Collapse
|
6
|
Choi KE, Cha S, Yun C, Ahn J, Hwang S, Kim YJ, Jung H, Eom H, Shin D, Oh J, Goo YS, Kim SW. Outer retinal degeneration in a non-human primate model using temporary intravitreal tamponade with N-methyl-N-nitrosourea in cynomolgus monkeys. J Neural Eng 2023; 20. [PMID: 36603218 DOI: 10.1088/1741-2552/acb085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 01/05/2023] [Indexed: 01/06/2023]
Abstract
Objective:The main objective of this study was to induce and evaluate drug-dose-dependent outer retinal degeneration in cynomolgus monkeys by application of N-methyl-N-nitrosourea (MNU).Approach:Intravitreal temporary tamponade induced outer retinal degeneration with MNU solutions (2-3 mg ml-1) after vitrectomy in five cynomolgus monkeys. Optical coherence tomography (OCT), fundus autofluorescence (FAF), full-field electroretinography (ffERG), and visual evoked potentials (VEP) were performed at baseline and weeks 2, 6, and 12 postoperatively. At week 12, OCT angiography, histology, and immunohistochemistry were performed.Main results:Outer retinal degeneration was observed in four monkeys, especially in the peripheral retina. Anatomical and functional changes occurred at week 2 and persisted until week 12. FAF images showed hypoautofluorescence dots, similar to AF patterns seen in human retinitis pigmentosa. Hyperautofluorescent lesions in the pericentral area were also observed, which corresponded to the loss of the ellipsoid zone on OCT images. OCT revealed thinning of the outer retinal layer adding to the loss of the ellipsoid zone outside the vascular arcade. Histological findings confirmed that the abovementioned changes resulted from a gradual loss of photoreceptors from the perifovea to the peripheral retina. In contrast, the inner retina, including ganglion cell layers, was preserved. Functionally, a decrease or extinction of scotopic ffERGs was observed, which indicated rod-dominant loss. Nevertheless, VEPs were relatively preserved.Significance:Therefore, we can conclude that temporary exposure to intravitreal MNU tamponade after vitrectomy induces rod-dominant outer retinal degeneration in cynomolgus monkeys, especially in the peripheral retina.
Collapse
Affiliation(s)
- Kwang-Eon Choi
- Department of Ophthalmology, Korea University College of Medicine, Seoul 08373, Republic of Korea
| | - Seongkwang Cha
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju 28644, Republic of Korea
| | - Cheolmin Yun
- Department of Ophthalmology, Korea University College of Medicine, Seoul 08373, Republic of Korea
| | - Jungryul Ahn
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju 28644, Republic of Korea
| | - Seil Hwang
- Department of Ophthalmology, Korea University College of Medicine, Seoul 08373, Republic of Korea
| | - Young-Jin Kim
- Medical Device Development Center, Osong Medical Innovation Foundation, Cheongju 28160, Chungbuk, Republic of Korea
| | - Hachul Jung
- Medical Device Development Center, Osong Medical Innovation Foundation, Cheongju 28160, Chungbuk, Republic of Korea
| | - Heejong Eom
- Laboratory Animal Center, Osong Medical Innovation Foundation, Cheongju 28160, Chungbuk, Republic of Korea
| | - Dongkwan Shin
- Laboratory Animal Center, Osong Medical Innovation Foundation, Cheongju 28160, Chungbuk, Republic of Korea
| | - Jaeryung Oh
- Department of Ophthalmology, Korea University College of Medicine, Seoul 08373, Republic of Korea
| | - Yong Sook Goo
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju 28644, Republic of Korea
| | - Seong-Woo Kim
- Department of Ophthalmology, Korea University College of Medicine, Seoul 08373, Republic of Korea
| |
Collapse
|
7
|
Zhang S, Wang G, Lyu Y, Tian H, Shu C, Chen B, Fan W, Xu W, Shan Y, He J, Yang YG, Hu Z, Sun L. Human growth hormone supplement promotes human lymphohematopoietic cell reconstitution in immunodeficient mice. Immunotherapy 2022; 14:1383-1392. [PMID: 36468406 DOI: 10.2217/imt-2021-0278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: To investigate the potential of human growth hormone (hGH) to improve human hematopoietic reconstitution in humanized mice. Materials & methods: Immunodeficient mice were conditioned by total body irradiation and transplanted with human CD34+ fetal liver cells. Peripheral blood, spleen and bone marrow were harvested, and levels of human lymphohematopoietic cells were determined by flow cytometry. Results: Supplementation with hGH elevated human lymphohematopoietic chimerism by more than twofold. Treatment with hGH resulted in significantly increased reconstitution of human B cells and myeloid cells in lymphoid organs, enhanced human erythropoiesis in the bone morrow, and improved engraftment of human hematopoietic stem cells. Conclusion: hGH supplementation promotes human lymphohematopoietic reconstitution in humanized mice.
Collapse
Affiliation(s)
- Siwen Zhang
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, & Department of Endocrinology & Metabolism, The First Hospital of Jilin University, Changchun, 130061, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130061, China
| | - Guixia Wang
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, & Department of Endocrinology & Metabolism, The First Hospital of Jilin University, Changchun, 130061, China
| | - Yanan Lyu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, & Department of Endocrinology & Metabolism, The First Hospital of Jilin University, Changchun, 130061, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130061, China
| | - Huimin Tian
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, & Department of Endocrinology & Metabolism, The First Hospital of Jilin University, Changchun, 130061, China
| | - Chang Shu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, & Department of Endocrinology & Metabolism, The First Hospital of Jilin University, Changchun, 130061, China
| | - Bing Chen
- China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Wei Fan
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, & Department of Endocrinology & Metabolism, The First Hospital of Jilin University, Changchun, 130061, China
| | - Wenshu Xu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, & Department of Endocrinology & Metabolism, The First Hospital of Jilin University, Changchun, 130061, China
| | - Yanhong Shan
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, & Department of Endocrinology & Metabolism, The First Hospital of Jilin University, Changchun, 130061, China
| | - Jin He
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, & Department of Endocrinology & Metabolism, The First Hospital of Jilin University, Changchun, 130061, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, & Department of Endocrinology & Metabolism, The First Hospital of Jilin University, Changchun, 130061, China.,International Center of Future Science, Jilin University, Changchun, 130012, China
| | - Zheng Hu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, & Department of Endocrinology & Metabolism, The First Hospital of Jilin University, Changchun, 130061, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130061, China
| | - Liguang Sun
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, & Department of Endocrinology & Metabolism, The First Hospital of Jilin University, Changchun, 130061, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130061, China
| |
Collapse
|
8
|
Liang W, He J, Mao C, Yu C, Meng Q, Xue J, Wu X, Li S, Wang Y, Yi H. Gene editing monkeys: Retrospect and outlook. Front Cell Dev Biol 2022; 10:913996. [PMID: 36158194 PMCID: PMC9493099 DOI: 10.3389/fcell.2022.913996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Animal models play a key role in life science research, especially in the study of human disease pathogenesis and drug screening. Because of the closer proximity to humans in terms of genetic evolution, physiology, immunology, biochemistry, and pathology, nonhuman primates (NHPs) have outstanding advantages in model construction for disease mechanism study and drug development. In terms of animal model construction, gene editing technology has been widely applied to this area in recent years. This review summarizes the current progress in the establishment of NHPs using gene editing technology, which mainly focuses on rhesus and cynomolgus monkeys. In addition, we discuss the limiting factors in the applications of genetically modified NHP models as well as the possible solutions and improvements. Furthermore, we highlight the prospects and challenges of the gene-edited NHP models.
Collapse
Affiliation(s)
- Weizheng Liang
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
- *Correspondence: Weizheng Liang, ; Shanliang Li, ; Yukai Wang, ; Hongyang Yi,
| | - Junli He
- Department of Pediatrics, Shenzhen University General Hospital, Shenzhen, China
| | - Chenyu Mao
- University of Pennsylvania, Philadelphia, PA, United States
| | - Chengwei Yu
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Qingxue Meng
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Jun Xue
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Xueliang Wu
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Shanliang Li
- Department of Pharmacology, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- *Correspondence: Weizheng Liang, ; Shanliang Li, ; Yukai Wang, ; Hongyang Yi,
| | - Yukai Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Weizheng Liang, ; Shanliang Li, ; Yukai Wang, ; Hongyang Yi,
| | - Hongyang Yi
- National Clinical Research Centre for Infectious Diseases, The Third People’s Hospital of Shenzhen and The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- *Correspondence: Weizheng Liang, ; Shanliang Li, ; Yukai Wang, ; Hongyang Yi,
| |
Collapse
|
9
|
CRISPR/Cas9 system: a reliable and facile genome editing tool in modern biology. Mol Biol Rep 2022; 49:12133-12150. [PMID: 36030476 PMCID: PMC9420241 DOI: 10.1007/s11033-022-07880-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/17/2022] [Indexed: 11/10/2022]
Abstract
Genome engineering has always been a versatile technique in biological research and medicine, with several applications. In the last several years, the discovery of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 technology has swept the scientific community and revolutionised the speed of modern biology, heralding a new era of disease detection and rapid biotechnology discoveries. It enables successful gene editing by producing targeted double-strand breaks in virtually any organism or cell type. So, this review presents a comprehensive knowledge about the mechanism and structure of Cas9-mediated RNA-guided DNA targeting and cleavage. In addition, genome editing via CRISPR-Cas9 technology in various animals which are being used as models in scientific research including Non-Human Primates Pigs, Dogs, Zebra, fish and Drosophila has been discussed in this review. This review also aims to understand the applications, serious concerns and future perspective of CRISPR/Cas9-mediated genome editing.
Collapse
|
10
|
Schmidt JK, Reynolds MR, Golos TG, Slukvin II. CRISPR/Cas9 genome editing to create nonhuman primate models for studying stem cell therapies for HIV infection. Retrovirology 2022; 19:17. [PMID: 35948929 PMCID: PMC9363854 DOI: 10.1186/s12977-022-00604-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/28/2022] [Indexed: 12/13/2022] Open
Abstract
Nonhuman primates (NHPs) are well-established basic and translational research models for human immunodeficiency virus (HIV) infections and pathophysiology, hematopoietic stem cell (HSC) transplantation, and assisted reproductive technologies. Recent advances in CRISPR/Cas9 gene editing technologies present opportunities to refine NHP HIV models for investigating genetic factors that affect HIV replication and designing cellular therapies that exploit genetic barriers to HIV infections, including engineering mutations into CCR5 and conferring resistance to HIV/simian immunodeficiency virus (SIV) infections. In this report, we provide an overview of recent advances and challenges in gene editing NHP embryos and discuss the value of genetically engineered animal models for developing novel stem cell-based therapies for curing HIV.
Collapse
Affiliation(s)
- Jenna Kropp Schmidt
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Matthew R Reynolds
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Thaddeus G Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, USA
| | - Igor I Slukvin
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Pathology and Laboratory Medicine, Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1220 Capitol Court, Madison, WI, 53715, USA.
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
11
|
Zhou Q. Progress in modern reproductive biology research in China. Biol Reprod 2022; 107:3-11. [PMID: 35699410 DOI: 10.1093/biolre/ioac122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/31/2022] [Indexed: 11/12/2022] Open
Abstract
Reproductive biology is closely associated with human health and social progress. Modern reproductive biology research in China began in the 1930s. Advances in science, technology, government support and international collaborations spawned the rapid growth of reproductive biology research in China. While the development of reproductive biology has provided both theoretical knowledge and applicable technologies, it has also generated new social and ethical concerns. This review summarizes and highlights the contributions of modern reproductive biology research in China, with a specific focus on aspects that are most related to human reproduction and health.
Collapse
Affiliation(s)
- Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| |
Collapse
|
12
|
Lin Y, Li J, Li C, Tu Z, Li S, Li XJ, Yan S. Application of CRISPR/Cas9 System in Establishing Large Animal Models. Front Cell Dev Biol 2022; 10:919155. [PMID: 35656550 PMCID: PMC9152178 DOI: 10.3389/fcell.2022.919155] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
The foundation for investigating the mechanisms of human diseases is the establishment of animal models, which are also widely used in agricultural industry, pharmaceutical applications, and clinical research. However, small animals such as rodents, which have been extensively used to create disease models, do not often fully mimic the key pathological changes and/or important symptoms of human disease. As a result, there is an emerging need to establish suitable large animal models that can recapitulate important phenotypes of human diseases for investigating pathogenesis and developing effective therapeutics. However, traditional genetic modification technologies used in establishing small animal models are difficultly applied for generating large animal models of human diseases. This difficulty has been overcome to a great extent by the recent development of gene editing technology, especially the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9). In this review, we focus on the applications of CRISPR/Cas9 system to establishment of large animal models, including nonhuman primates, pigs, sheep, goats and dogs, for investigating disease pathogenesis and treatment. We also discuss the limitations of large animal models and possible solutions according to our current knowledge. Finally, we sum up the applications of the novel genome editing tool Base Editors (BEs) and its great potential for gene editing in large animals.
Collapse
|
13
|
Schmidt JK, Jones KM, Van Vleck T, Emborg ME. Modeling genetic diseases in nonhuman primates through embryonic and germline modification: Considerations and challenges. Sci Transl Med 2022; 14:eabf4879. [PMID: 35235338 PMCID: PMC9373237 DOI: 10.1126/scitranslmed.abf4879] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Genetic modification of the embryo or germ line of nonhuman primates is envisioned as a method to develop improved models of human disease, yet the promise of such animal models remains unfulfilled. Here, we discuss current methods and their limitations for producing nonhuman primate genetic models that faithfully genocopy and phenocopy human disease. We reflect on how to ethically maximize the translational relevance of such models in the search for new therapeutic strategies to treat human disease.
Collapse
Affiliation(s)
- Jenna K. Schmidt
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Kathryn M. Jones
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Trevor Van Vleck
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Marina E. Emborg
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
14
|
Terada K, Kondo K, Ishigaki H, Nagashima A, Satooka H, Nagano S, Masuda K, Kawamura T, Hirata T, Ogasawara K, Itoh Y, Kawamoto H, Agata Y. Isolation of TCR genes with tumor-killing activity from tumor-infiltrating and circulating lymphocytes in a tumor rejection cynomolgus macaque model. Mol Ther Oncolytics 2022; 24:77-86. [PMID: 35024435 PMCID: PMC8717465 DOI: 10.1016/j.omto.2021.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/04/2021] [Indexed: 11/24/2022] Open
Abstract
To develop effective adoptive cell transfer therapy using T cell receptor (TCR)-engineered T cells, it is critical to isolate tumor-reactive TCRs that have potent anti-tumor activity. In humans, tumor-infiltrating lymphocytes (TILs) have been reported to contain CD8+PD-1+ T cells that express tumor-reactive TCRs. Characterization of tumor reactivity of TILs from non-human primate tumors could improve anti-tumor activity of TCR-engineered T cells in preclinical research. In this study, we sought to isolate TCR genes from CD8+PD-1+ T cells among TILs in a cynomolgus macaque model of tumor transplantation in which the tumors were infiltrated with CD8+ T cells and were eventually rejected. We analyzed the repertoire of TCRα and β pairs obtained from single CD8+PD-1+ T cells in TILs and circulating lymphocytes and identified multiple TCR pairs with high frequency, suggesting that T cells expressing these recurrent TCRs were clonally expanded in response to tumor cells. We further showed that the recurrent TCRs exhibited cytotoxic activity to tumor cells in vitro and potent anti-tumor activity in mice transplanted with tumor cells. These results imply that this tumor transplantation macaque model recapitulates key features of human TILs and can serve as a platform toward preclinical studies of non-human primate tumor models.
Collapse
|
15
|
Liao B, Chen X, Zhou X, Zhou Y, Shi Y, Ye X, Liao M, Zhou Z, Cheng L, Ren B. Applications of CRISPR/Cas gene-editing technology in yeast and fungi. Arch Microbiol 2021; 204:79. [DOI: 10.1007/s00203-021-02723-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/20/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022]
|
16
|
Gao M, Zhu X, Yang G, Bao J, Bu H. CRISPR/Cas9-Mediated Gene Editing in Porcine Models for Medical Research. DNA Cell Biol 2021; 40:1462-1475. [PMID: 34847741 DOI: 10.1089/dna.2020.6474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Pigs have been extensively used as the research models for human disease pathogenesis and gene therapy. They are also the optimal source of cells, tissues, and organs for xenotransplantation due to anatomical and physiological similarities to humans. Several breakthroughs in gene-editing technologies, including the advent of clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated 9 (Cas9), have greatly improved the efficiency of genetic manipulation and significantly broadened the application of gene-edited large animal models. In this review, we have not only outlined the important applications of the CRISPR/Cas9 system in pigs as a means to study human diseases but also discussed the potential challenges of the use of CRISPR/Cas9 in large animals.
Collapse
Affiliation(s)
- Mengyu Gao
- Department of Pathology, West China Hospital, Sichuan University, Chendu, P.R. China.,Key Laboratory of Transplant Engineering and Immunology, Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xinglong Zhu
- Key Laboratory of Transplant Engineering and Immunology, Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Guang Yang
- Experimental Animal Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Ji Bao
- Key Laboratory of Transplant Engineering and Immunology, Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Hong Bu
- Department of Pathology, West China Hospital, Sichuan University, Chendu, P.R. China.,Key Laboratory of Transplant Engineering and Immunology, Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
17
|
Kakui H, Yamazaki M, Shimizu KK. PRIMA: a rapid and cost-effective genotyping method to detect single-nucleotide differences using probe-induced heteroduplexes. Sci Rep 2021; 11:20741. [PMID: 34689172 PMCID: PMC8542037 DOI: 10.1038/s41598-021-99641-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 09/29/2021] [Indexed: 12/30/2022] Open
Abstract
Targeted mutagenesis by programmable site-specific nucleases like CRISPR typically produce 1-base pair (bp) insertion or deletion (indel) mutations. Although several methods have been developed to detect such 1-bp indels, each method has pros and cons in terms of cost and/or resolution. Heteroduplex mobility assay (HMA) is a traditional technique detecting small base pair differences but it has a limited resolution of mutation size and the band patterns are often complex. Here, we developed a new method called PRIMA (Probe-Induced HMA) using a short single-stranded DNA molecule as a probe in HMA. By utilizing a 40-mer probe containing a 5-nucleotide deletion, we assessed the mobility of a heteroduplex with a target DNA fragment from a plant, bacterium, and human. This method allowed us to detect a 1-bp indel mutation consistently. We also showed that SNPs can be detected using PRIMA. PRIMA provides a rapid and cost-effective solution for the genotyping.
Collapse
Affiliation(s)
- Hiroyuki Kakui
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zurich, Switzerland.,Kihara Institute of Biological Research, Yokohama City University, Yokohama, 244-0813, Japan
| | - Misako Yamazaki
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zurich, Switzerland
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zurich, Switzerland. .,Kihara Institute of Biological Research, Yokohama City University, Yokohama, 244-0813, Japan.
| |
Collapse
|
18
|
Huang M, Yang J, Li P, Chen Y. Embryo-Engineered Nonhuman Primate Models: Progress and Gap to Translational Medicine. RESEARCH (WASHINGTON, D.C.) 2021; 2021:9898769. [PMID: 34549187 PMCID: PMC8404551 DOI: 10.34133/2021/9898769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/01/2021] [Indexed: 12/17/2022]
Abstract
Animal models of human diseases are vital in better understanding the mechanism of pathogenesis and essential for evaluating and validating potential therapeutic interventions. As close relatives of humans, nonhuman primates (NHPs) play an increasingly indispensable role in advancing translational medicine research. In this review, we summarized the progress of NHP models generated by embryo engineering, analyzed their unique advantages in mimicking clinical patients, and discussed the remaining gap between basic research of NHP models to translational medicine.
Collapse
Affiliation(s)
- Mei Huang
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- State Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Jiao Yang
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- State Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Peng Li
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- State Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Yongchang Chen
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- State Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| |
Collapse
|
19
|
Drummer C, Vogt EJ, Heistermann M, Roshani B, Becker T, Mätz-Rensing K, Kues WA, Kügler S, Behr R. Generation and Breeding of EGFP-Transgenic Marmoset Monkeys: Cell Chimerism and Implications for Disease Modeling. Cells 2021; 10:505. [PMID: 33673402 PMCID: PMC7996964 DOI: 10.3390/cells10030505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Genetic modification of non-human primates (NHP) paves the way for realistic disease models. The common marmoset is a NHP species increasingly used in biomedical research. Despite the invention of RNA-guided nucleases, one strategy for protein overexpression in NHP is still lentiviral transduction. We generated three male and one female enhanced green fluorescent protein (EGFP)-transgenic founder marmosets via lentiviral transduction of natural preimplantation embryos. All founders accomplished germline transmission of the transgene by natural mating, yielding 20 transgenic offspring together (in total, 45 pups; 44% transgenic). This demonstrates that the transgenic gametes are capable of natural fertilization even when in competition with wildtype gametes. Importantly, 90% of the transgenic offspring showed transgene silencing, which is in sharp contrast to rodents, where the identical transgene facilitated robust EGFP expression. Furthermore, we consistently discovered somatic, but so far, no germ cell chimerism in mixed wildtype/transgenic litters. Somatic cell chimerism resulted in false-positive genotyping of the respective wildtype littermates. For the discrimination of transgenic from transgene-chimeric animals by polymerase chain reaction on skin samples, a chimeric cell depletion protocol was established. In summary, it is possible to establish a cohort of genetically modified marmosets by natural mating, but specific requirements including careful promoter selection are essential.
Collapse
Affiliation(s)
- Charis Drummer
- Platform Degenerative Diseases, German Primate Center–Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany;
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37099 Göttingen, Germany
| | - Edgar-John Vogt
- Platform Degenerative Diseases, German Primate Center–Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany;
| | - Michael Heistermann
- Endocrinology Laboratory, German Primate Center–Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany;
| | - Berit Roshani
- Unit of Infection Models, German Primate Center–Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany;
| | - Tamara Becker
- Primate Husbandry, German Primate Center–Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany;
| | - Kerstin Mätz-Rensing
- Pathology Unit, German Primate Center–Leibniz-Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany;
| | - Wilfried A. Kues
- Friedrich-Loeffler-Institut, Institut für Nutztiergenetik, Mariensee, 31535 Neustadt, Germany;
| | - Sebastian Kügler
- Center for Nanoscale Microscopy and Physiology of the Brain (CNMPB) at Department of Neurology, University of Göttingen, Waldweg 33, 37073 Göttingen, Germany;
| | - Rüdiger Behr
- Platform Degenerative Diseases, German Primate Center–Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany;
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37099 Göttingen, Germany
| |
Collapse
|
20
|
Li S, Hu Y, Li Y, Hu M, Wang W, Ma Y, Cai Y, Wei M, Yao Y, Wang Y, Dong K, Gu Y, Zhao H, Bao J, Qiu Z, Zhang M, Hu X, Xue T. Generation of nonhuman primate retinitis pigmentosa model by in situ knockout of RHO in rhesus macaque retina. Sci Bull (Beijing) 2021; 66:374-385. [PMID: 36654417 DOI: 10.1016/j.scib.2020.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/11/2020] [Accepted: 07/15/2020] [Indexed: 01/20/2023]
Abstract
Retinitis pigmentosa (RP) is a form of inherited retinal degenerative diseases that ultimately involves the macula, which is present in primates but not in the rodents. Therefore, creating nonhuman primate (NHP) models of RP is of critical importance to study its mechanism of pathogenesis and to evaluate potential therapeutic options in the future. Here we applied adeno-associated virus (AAV)-delivered CRISPR/SaCas9 technology to knockout the RHO gene in the retinae of the adult rhesus macaque (Macaca mulatta) to investigate the hypothesis whether non-germline mutation of the RHO gene is sufficient to recapitulate RP. Through a series of studies, we were able to demonstrate successful somatic editing of the RHO gene and reduced RHO protein expression. More importantly, the mutant macaque retinae displayed clinical RP phenotypes, including photoreceptor degeneration, retinal thinning, abnormal rod subcellular structures, and reduced photoresponse. Therefore, we suggest somatic editing of the RHO gene is able to phenocopy RP, and the reduced time span in generating NHP mutant accelerates RP research and expands the utility of NHP model for human disease study.
Collapse
Affiliation(s)
- Shouzhen Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Eye Center at The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Yingzhou Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
| | - Yunqin Li
- Second People's Hospital of Yunnan Province, Yunnan Eye Institute, Key Laboratory of Yunnan Province for the Prevention and Treatment of Ophthalmology, Kunming 650223, China
| | - Min Hu
- Second People's Hospital of Yunnan Province, Yunnan Eye Institute, Key Laboratory of Yunnan Province for the Prevention and Treatment of Ophthalmology, Kunming 650223, China
| | - Wenchao Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yuqian Ma
- Hefei National Laboratory for Physical Sciences at the Microscale, Eye Center at The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Yuan Cai
- Hefei National Laboratory for Physical Sciences at the Microscale, Eye Center at The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Min Wei
- Hefei National Laboratory for Physical Sciences at the Microscale, Eye Center at The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Yichuan Yao
- Hefei National Laboratory for Physical Sciences at the Microscale, Eye Center at The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Yun Wang
- Kunming Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Kai Dong
- Hefei National Laboratory for Physical Sciences at the Microscale, Eye Center at The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Yonghao Gu
- Hefei National Laboratory for Physical Sciences at the Microscale, Eye Center at The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Huan Zhao
- Department of Biological and Environmental Engineering, Hefei University, Hefei 230601, China
| | - Jin Bao
- Hefei National Laboratory for Physical Sciences at the Microscale, Eye Center at The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Zilong Qiu
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mei Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Eye Center at The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei 230026, China.
| | - Xintian Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China.
| | - Tian Xue
- Hefei National Laboratory for Physical Sciences at the Microscale, Eye Center at The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
21
|
Aida T, Feng G. The dawn of non-human primate models for neurodevelopmental disorders. Curr Opin Genet Dev 2020; 65:160-168. [PMID: 32693220 PMCID: PMC7955645 DOI: 10.1016/j.gde.2020.05.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/12/2020] [Accepted: 05/31/2020] [Indexed: 12/12/2022]
Abstract
Non-human primates (NHPs) have been proposed as good models for neurodevelopmental disorders due to close similarities to humans in terms of brain structure and cognitive function. The recent development of genome editing technologies has opened new avenues to generate and investigate genetically modified NHPs as models for human disorders. Here, we review the early successes of genetic NHP models for neurodevelopmental disorders and further discuss the technological challenges and opportunities to create next generation NHP models with more sophisticated genetic manipulation and faithful representations of the human genetic mutations. Taken together, the field is now poised to usher in a new era of research using genetically modified NHP models to empower a more rapid translation of basic research and maximize the preclinical potential for biomarker discovery and therapeutic development.
Collapse
Affiliation(s)
- Tomomi Aida
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Guoping Feng
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
22
|
Reddy P, Shao Y, Hernandez-Benitez R, Nuñez Delicado E, Izpisua Belmonte JC. First progeria monkey model generated using base editor. Protein Cell 2020; 11:862-865. [PMID: 32729023 PMCID: PMC7719124 DOI: 10.1007/s13238-020-00765-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Affiliation(s)
- Pradeep Reddy
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Yanjiao Shao
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Reyna Hernandez-Benitez
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Estrella Nuñez Delicado
- Universidad Católica San Antonio de Murcia (UCAM), Campus de los Jerónimos, Nº 135 12, Guadalupe, 30107, Spain
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
23
|
Stokes JV, Walker DH, Varela-Stokes AS. The guinea pig model for tick-borne spotted fever rickettsioses: A second look. Ticks Tick Borne Dis 2020; 11:101538. [PMID: 32993947 PMCID: PMC7530330 DOI: 10.1016/j.ttbdis.2020.101538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/22/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
The guinea pig (Cavia porcellus) has an established track record as an animal model, with its utility in rickettsial research documented as early as the turn of the 20th century. From identifying Rickettsia rickettsii as the agent of Rocky Mountain spotted fever and ticks as the natural transmission route to evaluating protective immunity and treatment for tick-borne rickettsiae, guinea pigs have been essential for advances in our understanding of spotted fever rickettsioses (SFR). Tick feeding on guinea pigs is feasible and results in transmission of tick-borne rickettsiae. The resulting infection leads to the recapitulation of SFR as defined by clinical signs that include fever, unthrift, and in the case of transmission by a Rickettsia parkeri-infected Amblyomma maculatum tick, a characteristic eschar at the site of the bite. No other small animal model recapitulates SFR, is large enough to collect multiple blood and skin samples for longitudinal studies, and has an immune system as similar to the human immune system. In the 1980s, the use of the guinea pig was significantly reduced due to advances made to the more reproductively prolific and inexpensive murine model. These advances included the development of genetically modified murine strains, which resulted in the expansion of murine-specific reagents and assays. Still, the advantages of the guinea pig as a model for SFR persist, novel assays are being developed to better monitor guinea pig immune responses, and tools, like CRISPR/Cas9, are now available. These technical advances allow guinea pigs to again contribute to our understanding of SFR. Importantly, returning to the guinea pig model with enhanced tools will enable rickettsial researchers to corroborate and potentially refine results acquired using mice. This minireview summarizes Cavia porcellus as an animal model for human tick-borne rickettsial diseases.
Collapse
Affiliation(s)
- John V Stokes
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - David H Walker
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Andrea S Varela-Stokes
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA.
| |
Collapse
|
24
|
Genome editing of CCR5 by CRISPR-Cas9 in Mauritian cynomolgus macaque embryos. Sci Rep 2020; 10:18457. [PMID: 33116147 PMCID: PMC7595107 DOI: 10.1038/s41598-020-75295-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
The discovery that CCR5 serves as an R5-HIV-1 co-receptor, coupled with findings of protection from HIV infection in individuals lacking CCR5, led to the exploration of novel therapeutic strategies for HIV infection based on genome editing of CCR5. Advancing translation of CCR5-mutant-based cellular therapies for HIV requires development of novel physiologically relevant animal models. Mauritian cynomolgus macaques (MCMs), with high degree of MHC allele sharing, are valuable models for HIV-1 research and stem cell therapies. To facilitate the generation of a CCR5-mutant MHC-defined MCM model, we explored editing the CCR5 gene in MCM embryos via CRISPR-Cas9. We refined ovarian stimulation and in vitro fertilization (IVF) methods established for Chinese cynomolgus macaques to generate in vitro MCM embryos. Time-lapse embryo imaging was performed to assess the timing of MCM embryonic developmental events in control and CRISPR-Cas9 microinjected embryos. Using a dual-guide gene targeting approach, biallelic deletions in the CCR5 gene were introduced into ~ 23–37% of MCM embryos. In addition, single blastomere PCR analysis revealed mosaicism in CCR5 editing within the same embryo. Successful development of IVF and CCR5 editing protocols in MCM embryos lays a foundation for the creation of CCR5-mutant MCMs to assess novel stem cell-based HIV therapeutics.
Collapse
|
25
|
Precise allele-specific genome editing by spatiotemporal control of CRISPR-Cas9 via pronuclear transplantation. Nat Commun 2020; 11:4593. [PMID: 32929070 PMCID: PMC7490392 DOI: 10.1038/s41467-020-18391-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 08/13/2020] [Indexed: 01/04/2023] Open
Abstract
Gene-targeted animal models that are generated by injecting Cas9 and sgRNAs into zygotes are often accompanied by undesired double-strand break (DSB)-induced byproducts and random biallelic targeting due to uncontrollable Cas9 targeting activity. Here, we establish a parental allele-specific gene-targeting (Past-CRISPR) method, based on the detailed observation that pronuclear transfer-mediated cytoplasmic dilution can effectively terminate Cas9 activity. We apply this method in embryos to efficiently target the given parental alleles of a gene of interest and observed little genomic mosaicism because of the spatiotemporal control of Cas9 activity. This method allows us to rapidly explore the function of individual parent-of-origin effects and to construct animal models with a single genomic change. More importantly, Past-CRISPR could also be used for therapeutic applications or disease model construction. Injecting Cas9 and gRNA into an animal zygote often produces mosaicism and random biallelic targeting. Here, the authors use pronuclear transfer to reduce mosaicism and selectively target parental alleles.
Collapse
|
26
|
Xu Y, Li Z. CRISPR-Cas systems: Overview, innovations and applications in human disease research and gene therapy. Comput Struct Biotechnol J 2020; 18:2401-2415. [PMID: 33005303 PMCID: PMC7508700 DOI: 10.1016/j.csbj.2020.08.031] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 02/08/2023] Open
Abstract
Genome editing is the modification of genomic DNA at a specific target site in a wide variety of cell types and organisms, including insertion, deletion and replacement of DNA, resulting in inactivation of target genes, acquisition of novel genetic traits and correction of pathogenic gene mutations. Due to the advantages of simple design, low cost, high efficiency, good repeatability and short-cycle, CRISPR-Cas systems have become the most widely used genome editing technology in molecular biology laboratories all around the world. In this review, an overview of the CRISPR-Cas systems will be introduced, including the innovations, the applications in human disease research and gene therapy, as well as the challenges and opportunities that will be faced in the practical application of CRISPR-Cas systems.
Collapse
Affiliation(s)
- Yuanyuan Xu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun 130062, China
| | - Zhanjun Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun 130062, China
| |
Collapse
|
27
|
Fu R, Fang M, Xu K, Ren J, Zou J, Su L, Chen X, An P, Yu D, Ka M, Hai T, Li Z, Li W, Yang Y, Zhou Q, Hu Z. Generation of GGTA1-/-β2M-/-CIITA-/- Pigs Using CRISPR/Cas9 Technology to Alleviate Xenogeneic Immune Reactions. Transplantation 2020; 104:1566-1573. [PMID: 32732833 DOI: 10.1097/tp.0000000000003205] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Xenogeneic organ transplantation has been proposed as a potential approach to fundamentally solve organ shortage problem. Xenogeneic immune responses across species is one of the major obstacles for clinic application of xeno-organ transplantation. The generation of glycoprotein galactosyltransferase α 1, 3 (GGTA1) knockout pigs has greatly contributed to the reduction of hyperacute xenograft rejection. However, severe xenograft rejection can still be induced by xenoimmune responses to the porcine major histocompatibility complex antigens swine leukocyte antigen class I and class II. METHODS We simultaneously depleted GGTA1, β2-microglobulin (β2M), and major histocompatibility complex class II transactivator (CIITA) genes using clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins technology in Bamma pig fibroblast cells, which were further used to generate GGTA1β2MCIITA triple knockout (GBC-3KO) pigs by nuclear transfer. RESULTS The genotype of GBC-3KO pigs was confirmed by polymerase chain reaction and Sanger sequencing, and the loss of expression of α-1,3-galactose, SLA-I, and SLA-II was demonstrated by flow cytometric analysis using fluorescent-conjugated lectin from bandeiraea simplicifolia, anti-β2-microglobulin, and swine leukocyte antigen class II DR antibodies. Furthermore, mixed lymphocyte reaction assay revealed that peripheral blood mononuclear cells from GBC-3KO pigs were significantly less effective than (WT) pig peripheral blood mononuclear cells in inducing human CD3CD4 and CD3CD8 T-cell activation and proliferation. In addition, GBC-3KO pig skin grafts showed a significantly prolonged survival in immunocompetent C57BL/6 mice, when compared with wild-type pig skin grafts. CONCLUSIONS Taken together, these results demonstrate that elimination of GGTA1, β2M, and CIITA genes in pigs can effectively alleviate xenogeneic immune responses and prolong pig organ survival in xenogenesis. We believe that this work will facilitate future research in xenotransplantation.
Collapse
Affiliation(s)
- Rui Fu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Minghui Fang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital, Jilin University, Changchun 10061, China
| | - Kai Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Jilong Ren
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Zou
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital, Jilin University, Changchun 10061, China
| | - Long Su
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital, Jilin University, Changchun 10061, China
| | - Xinxin Chen
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital, Jilin University, Changchun 10061, China
| | - PeiPei An
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital, Jilin University, Changchun 10061, China
| | - Dawei Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Meina Ka
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tang Hai
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Ziyi Li
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital, Jilin University, Changchun 10061, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongguang Yang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital, Jilin University, Changchun 10061, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Hu
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital, Jilin University, Changchun 10061, China
| |
Collapse
|
28
|
Abstract
Common polygenic diseases result from compounded risk contributed by multiple genetic variants, meaning that simultaneous correction or introduction of single nucleotide variants is required for disease modeling and gene therapy. Here, we show precise, efficient, and simultaneous multiplex base editing of up to three target sites across 11 genes/loci in cynomolgus monkey embryos using CRISPR-based cytidine- and adenine-base editors. Unbiased whole genome sequencing demonstrates high specificity of base editing in monkey embryos. Our data demonstrate feasibility of multiplex base editing for polygenic disease modeling in primate zygotes. Due to the polygenic nature of most diseases, simultaneous correction or introduction of single nucleotide variants is needed. Here, the authors demonstrated the feasibility of multiplex base editing for polygenes disease modeling in cynomolgus monkey embryos with high specificity.
Collapse
|
29
|
Abstract
Owing to their high similarity to humans, non-human primates (NHPs) provide an exceedingly suitable model for the study of human disease. In this Review, we summarize the history of transgenic NHP models and the progress of CRISPR/Cas9-mediated genome editing in NHPs, from the first proof-of-principle green fluorescent protein-expressing monkeys to sophisticated NHP models of human neurodegenerative disease that accurately phenocopy several complex disease features. We discuss not only the breakthroughs and advantages, but also the potential shortcomings of the application of the CRISPR/Cas9 system to NHPs that have emerged from the expanded understanding of this technology in recent years. Although off-target and mosaic mutations are the main concerns in CRISPR/Cas9-mediated NHP modeling, recent progress in genome editing techniques make it likely that these technical limitations will be overcome soon, bringing excellent prospects to human disease studies.
Collapse
Affiliation(s)
- Yu Kang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Chu Chu
- Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedicine Research, Kunming, Yunnan 650223, China
| | - Fang Wang
- Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedicine Research, Kunming, Yunnan 650223, China
| | - Yuyu Niu
- Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedicine Research, Kunming, Yunnan 650223, China
| |
Collapse
|
30
|
Abstract
Abstract
The development of clustered regularly interspaced short-palindromic repeat (CRISPR)-Cas systems for genome editing has transformed the way life science research is conducted and holds enormous potential for the treatment of disease as well as for many aspects of biotechnology. Here, I provide a personal perspective on the development of CRISPR-Cas9 for genome editing within the broader context of the field and discuss our work to discover novel Cas effectors and develop them into additional molecular tools. The initial demonstration of Cas9-mediated genome editing launched the development of many other technologies, enabled new lines of biological inquiry, and motivated a deeper examination of natural CRISPR-Cas systems, including the discovery of new types of CRISPR-Cas systems. These new discoveries in turn spurred further technological developments. I review these exciting discoveries and technologies as well as provide an overview of the broad array of applications of these technologies in basic research and in the improvement of human health. It is clear that we are only just beginning to unravel the potential within microbial diversity, and it is quite likely that we will continue to discover other exciting phenomena, some of which it may be possible to repurpose as molecular technologies. The transformation of mysterious natural phenomena to powerful tools, however, takes a collective effort to discover, characterize, and engineer them, and it has been a privilege to join the numerous researchers who have contributed to this transformation of CRISPR-Cas systems.
Collapse
|
31
|
Zhao J, Lai L, Ji W, Zhou Q. Genome editing in large animals: current status and future prospects. Natl Sci Rev 2019; 6:402-420. [PMID: 34691891 PMCID: PMC8291540 DOI: 10.1093/nsr/nwz013] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/09/2019] [Accepted: 01/30/2019] [Indexed: 12/14/2022] Open
Abstract
Large animals (non-human primates, livestock and dogs) are playing important roles in biomedical research, and large livestock animals serve as important sources of meat and milk. The recently developed programmable DNA nucleases have revolutionized the generation of gene-modified large animals that are used for biological and biomedical research. In this review, we briefly introduce the recent advances in nuclease-meditated gene editing tools, and we outline these editing tools' applications in human disease modeling, regenerative medicine and agriculture. Additionally, we provide perspectives regarding the challenges and prospects of the new genome editing technology.
Collapse
Affiliation(s)
- Jianguo Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Liangxue Lai
- South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Weizhi Ji
- Yunnan Key Laboratory of Primate Biomedicine Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Shanghai 200031, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
32
|
Chansel‐Debordeaux L, Bezard E. Local transgene expression and whole-body transgenesis to model brain diseases in nonhuman primate. Animal Model Exp Med 2019; 2:9-17. [PMID: 31016282 PMCID: PMC6431118 DOI: 10.1002/ame2.12055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/10/2018] [Indexed: 12/26/2022] Open
Abstract
Animal model is an essential tool in the life sciences research, notably in understanding the pathogenesis of the diseases and for further therapeutic intervention success. Rodents have been the most frequently used animals to model human disease since the establishment of gene manipulation technique. However, they remain inadequate to fully mimic the pathophysiology of human brain disease, partially due to huge differences between rodents and humans in terms of anatomy, brain function, and social behaviors. Nonhuman primates are more suitable in translational perspective. Thus, genetically modified animals have been generated to investigate neurologic and psychiatric disorders. The classical transgenesis technique is not efficient in that model; so, viral vector-mediated transgene delivery and the new genome-editing technologies have been promoted. In this review, we summarize some of the technical progress in the generation of an ad hoc animal model of brain diseases by gene delivery and real transgenic nonhuman primate.
Collapse
Affiliation(s)
- Lucie Chansel‐Debordeaux
- Institut des Maladies NeurodégénérativesUniversity of BordeauxUMR 5293BordeauxFrance
- CNRSInstitut des Maladies NeurodégénérativesUMR 5293BordeauxFrance
- CHU BordeauxService de Biologie de la reproduction‐CECOSBordeauxFrance
| | - Erwan Bezard
- Institut des Maladies NeurodégénérativesUniversity of BordeauxUMR 5293BordeauxFrance
- CNRSInstitut des Maladies NeurodégénérativesUMR 5293BordeauxFrance
| |
Collapse
|
33
|
Mehravar M, Shirazi A, Nazari M, Banan M. Mosaicism in CRISPR/Cas9-mediated genome editing. Dev Biol 2019; 445:156-162. [DOI: 10.1016/j.ydbio.2018.10.008] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 10/09/2018] [Accepted: 10/15/2018] [Indexed: 12/26/2022]
|
34
|
Lee NS, Beery AK. Neural Circuits Underlying Rodent Sociality: A Comparative Approach. Curr Top Behav Neurosci 2019; 43:211-238. [PMID: 30710222 DOI: 10.1007/7854_2018_77] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
All mammals begin life in social groups, but for some species, social relationships persist and develop throughout the course of an individual's life. Research in multiple rodent species provides evidence of relatively conserved circuitry underlying social behaviors and processes such as social recognition and memory, social reward, and social approach/avoidance. Species exhibiting different complex social behaviors and social systems (such as social monogamy or familiarity preferences) can be characterized in part by when and how they display specific social behaviors. Prairie and meadow voles are closely related species that exhibit similarly selective peer preferences but different mating systems, aiding direct comparison of the mechanisms underlying affiliative behavior. This chapter draws on research in voles as well as other rodents to explore the mechanisms involved in individual social behavior processes, as well as specific complex social patterns. Contrasts between vole species exemplify how the laboratory study of diverse species improves our understanding of the mechanisms underlying social behavior. We identify several additional rodent species whose interesting social structures and available ecological and behavioral field data make them good candidates for study. New techniques and integration across laboratory and field settings will provide exciting opportunities for future mechanistic work in non-model species.
Collapse
Affiliation(s)
- Nicole S Lee
- Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA, USA.
| | - Annaliese K Beery
- Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA, USA. .,Department of Psychology, Smith College, Northampton, MA, USA. .,Neuroscience Program, Smith College, Northampton, MA, USA.
| |
Collapse
|
35
|
Park JE, Silva AC. Generation of genetically engineered non-human primate models of brain function and neurological disorders. Am J Primatol 2018; 81:e22931. [PMID: 30585654 DOI: 10.1002/ajp.22931] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/18/2018] [Accepted: 09/23/2018] [Indexed: 12/26/2022]
Abstract
Research with non-human primates (NHP) has been essential and effective in increasing our ability to find cures for a large number of diseases that cause human suffering and death. Extending the availability and use of genetic engineering techniques to NHP will allow the creation and study of NHP models of human disease, as well as broaden our understanding of neural circuits in the primate brain. With the recent development of efficient genetic engineering techniques that can be used for NHP, there's increased hope that NHP will significantly accelerate our understanding of the etiology of human neurological and neuropsychiatric disorders. In this article, we review the present state of genetic engineering tools used in NHP, from the early efforts to induce exogeneous gene expression in macaques and marmosets, to the latest results in producing germline transmission of different transgenes and the establishment of knockout lines of specific genes. We conclude with future perspectives on the further development and employment of these tools to generate genetically engineered NHP.
Collapse
Affiliation(s)
- Jung Eun Park
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Afonso C Silva
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
36
|
Memi F, Ntokou A, Papangeli I. CRISPR/Cas9 gene-editing: Research technologies, clinical applications and ethical considerations. Semin Perinatol 2018; 42:487-500. [PMID: 30482590 DOI: 10.1053/j.semperi.2018.09.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gene therapy carries the potential to treat more than 10,000 human monogenic diseases and benefit an even greater number of complex polygenic conditions. The repurposing of CRISPR/Cas9, an ancient bacterial immune defense system, into a gene-editing technology has armed researchers with a revolutionary tool for gene therapy. However, as the breadth of research and clinical applications of this technology continues to expand, outstanding technical challenges and ethical considerations will need to be addressed before clinical applications become commonplace. Here, we review CRISPR/Cas9 technology and discuss its benefits and limitations in research and the clinical context, as well as ethical considerations surrounding the use of CRISPR gene editing.
Collapse
Affiliation(s)
- Fani Memi
- Department of Cell and Developmental Biology, University College London, 21 University Street, WC1E 6DE London, UK.
| | - Aglaia Ntokou
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale School of Medicine, 300 George, 7(th) Floor, New Haven, CT 06511, United States.
| | - Irinna Papangeli
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale School of Medicine, 300 George, 7(th) Floor, New Haven, CT 06511, United States.
| |
Collapse
|
37
|
Abstract
Myriads of genetic mutations, including base substitutions, deletions, and insertions as well as chromosome structural variations, have been detected in many human diseases. Although current combination of genomics and bioinformatics has contributed greatly to understanding the genetics of these disorders, it remains challenging to ensure the causal functions of each mutation, and then to further investigate the underlying mechanism and to develop therapeutic strategies. Animal models generated by genome engineering are the key to address these issues. In this review, we will first revisit the limitation of conventional gene editing tools and mouse models generated in the past. We will then introduce a novel tool, base editors (BEs), which present a new promising approach to establish pathogenically relevant animal models. Finally, we will discuss the application of BEs in non-human primates and share our perspectives on future development of base-editing techniques.
Collapse
Affiliation(s)
- Zongyang Lu
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Rd., Pudong New Area, Shanghai 201210, China.,University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Rd., Pudong New Area, Shanghai 201210, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| |
Collapse
|
38
|
Zhang W, Wan H, Feng G, Qu J, Wang J, Jing Y, Ren R, Liu Z, Zhang L, Chen Z, Wang S, Zhao Y, Wang Z, Yuan Y, Zhou Q, Li W, Liu GH, Hu B. SIRT6 deficiency results in developmental retardation in cynomolgus monkeys. Nature 2018; 560:661-665. [PMID: 30135584 DOI: 10.1038/s41586-018-0437-z] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 07/16/2018] [Indexed: 12/18/2022]
Abstract
SIRT6 acts as a longevity protein in rodents1,2. However, its biological function in primates remains largely unknown. Here we generate a SIRT6-null cynomolgus monkey (Macaca fascicularis) model using a CRISPR-Cas9-based approach. SIRT6-deficient monkeys die hours after birth and exhibit severe prenatal developmental retardation. SIRT6 loss delays neuronal differentiation by transcriptionally activating the long non-coding RNA H19 (a developmental repressor), and we were able to recapitulate this process in a human neural progenitor cell differentiation system. SIRT6 deficiency results in histone hyperacetylation at the imprinting control region of H19, CTCF recruitment and upregulation of H19. Our results suggest that SIRT6 is involved in regulating development in non-human primates, and may provide mechanistic insight into human perinatal lethality syndrome.
Collapse
Affiliation(s)
- Weiqi Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute of Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Haifeng Wan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute of Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Guihai Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute of Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute of Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Jiaqiang Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute of Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Yaobin Jing
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ruotong Ren
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute of Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Linlin Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhiguo Chen
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Cell Therapy Center, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Shuyan Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Cell Therapy Center, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Yong Zhao
- Key Laboratory of Gene Engineering of the Ministry of Education, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute of Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China. .,Institute of Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
| | - Guang-Hui Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China. .,Institute of Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, China. .,Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Cell Therapy Center, Xuanwu Hospital Capital Medical University, Beijing, China.
| | - Baoyang Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China. .,Institute of Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
39
|
Vesikansa A. Unraveling of Central Nervous System Disease Mechanisms Using CRISPR Genome Manipulation. J Cent Nerv Syst Dis 2018; 10:1179573518787469. [PMID: 30013417 PMCID: PMC6043941 DOI: 10.1177/1179573518787469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 06/09/2018] [Indexed: 12/26/2022] Open
Abstract
The complex structure and highly variable gene expression profile of the brain makes it among the most challenging fields to study in both basic and translational biological research. Most of the brain diseases are multifactorial and despite the rapidly increasing genomic data, molecular pathways and causal links between genes and central nervous system (CNS) diseases are largely unknown. The advent of an easy and flexible CRISPR-Cas genome editing technology has rapidly revolutionized the field of functional genomics and opened unprecedented possibilities to dissect the mechanisms of CNS disease. CRISPR-Cas allows a plenitude of applications for both gene-focused and genome-wide approaches, ranging from original “gene scissors” making permanent modifications in the genome to the regulation of gene expression and epigenetics. CRISPR technology provides a unique opportunity to establish new cellular and animal models of CNS diseases and holds potential for breakthroughs in the CNS research and drug development.
Collapse
Affiliation(s)
- Aino Vesikansa
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.,Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
40
|
Kropp J, Di Marzo A, Golos T. Assisted reproductive technologies in the common marmoset: an integral species for developing nonhuman primate models of human diseases. Biol Reprod 2018; 96:277-287. [PMID: 28203717 DOI: 10.1095/biolreprod.116.146514] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/03/2017] [Accepted: 01/05/2017] [Indexed: 12/31/2022] Open
Abstract
Generation of nonhuman primate models of human disease conditions will foster the development of novel therapeutic strategies. Callithrix jacchus, or the common marmoset, is a New World, nonhuman primate species that exhibits great reproductive fitness in captivity with an ovarian cycle that can be easily managed with pharmacological agents. This characteristic, among others, provides an opportunity to employ assisted reproductive technologies to generate embryos that can be genetically manipulated to create a variety of nonhuman primate models for human disease. Here, we review methods to synchronize the marmoset ovarian cycle and stimulate oocyte donors, and compare various protocols for in vitro production of embryos. In light of advances in genomic editing, recent approaches used to generate transgenic or genetically edited embryos in the marmoset and also future perspective are reviewed.
Collapse
Affiliation(s)
- Jenna Kropp
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Andrea Di Marzo
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Thaddeus Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
41
|
Immortalized common marmoset ( Callithrix jacchus) hepatic progenitor cells possess bipotentiality in vitro and in vivo. Cell Discov 2018; 4:23. [PMID: 29796307 PMCID: PMC5951880 DOI: 10.1038/s41421-018-0020-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/09/2018] [Accepted: 02/10/2018] [Indexed: 12/20/2022] Open
Abstract
Common marmoset (Callithrix jacchus) is emerging as a clinically relevant nonhuman primate model for various diseases, but is hindered by the availability of marmoset cell lines, which are critical for understanding the disease pathogenesis and drug/toxicological screening prior to animal testing. Here we describe the generation of immortalized marmoset hepatic progenitor cells (MHPCs) by lentivirus-mediated transfer of the simian virus 40 large T antigen gene in fetal liver polygonal cells. MHPCs proliferate indefinitely in vitro without chromosomal alteration and telomere shortening. These cells possess hepatic progenitor cell-specific gene expression profiles with potential to differentiate into both hepatocytic and cholangiocytic lineages in vitro and in vivo and also can be genetically modified. Importantly, injected MHPCs repopulated the injured liver of fumarylacetoacetate hydrolase (Fah)-deficient mice with hepatocyte-like cells. MHPCs also engraft as cholangiocytes into bile ducts of 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-induced bile ductular injured mice. MHPCs provide a tool to enable efficient derivation and genetic modification of both hepatocytes and cholangiocytes for use in disease modeling, tissue engineering, and drug screening.
Collapse
|
42
|
Liang P, Zhang X, Chen Y, Huang J. Developmental history and application of CRISPR in human disease. J Gene Med 2018. [PMID: 28623876 DOI: 10.1002/jgm.2963] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Genome-editing tools are programmable artificial nucleases, mainly including zinc-finger nucleases, transcription activator-like effector nucleases and clustered regularly interspaced short palindromic repeat (CRISPR). By recognizing and cleaving specific DNA sequences, genome-editing tools make it possible to generate site-specific DNA double-strand breaks (DSBs) in the genome. DSBs will then be repaired by either error-prone nonhomologous end joining or high-fidelity homologous recombination mechanisms. Through these two different mechanisms, endogenous genes can be knocked out or precisely repaired/modified. Rapid developments in genome-editing tools, especially CRISPR, have revolutionized human disease models generation, for example, various zebrafish, mouse, rat, pig, monkey and human cell lines have been constructed. Here, we review the developmental history of CRISPR and its application in studies of human diseases. In addition, we also briefly discussed the therapeutic application of CRISPR in the near future.
Collapse
Affiliation(s)
- Puping Liang
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Reproductive Medicine of G uangdong Province, The Third Affiliated Hospital, Guangzhou Medical University and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiya Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuxi Chen
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Junjiu Huang
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Reproductive Medicine of G uangdong Province, The Third Affiliated Hospital, Guangzhou Medical University and School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
43
|
Affiliation(s)
- Andrea Ventura
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lukas E. Dow
- Department of Medicine, Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
44
|
Yao X, Liu Z, Wang X, Wang Y, Nie YH, Lai L, Sun R, Shi L, Sun Q, Yang H. Generation of knock-in cynomolgus monkey via CRISPR/Cas9 editing. Cell Res 2018; 28:379-382. [PMID: 29327726 PMCID: PMC5835779 DOI: 10.1038/cr.2018.9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Xuan Yao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhen Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xing Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan-Hong Nie
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Liang Lai
- Shanghai Model Organisms Center, Inc., Shanghai, China
| | - Ruilin Sun
- Shanghai Model Organisms Center, Inc., Shanghai, China
| | - Linyu Shi
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qiang Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
45
|
Midic U, Hung PH, Vincent KA, Goheen B, Schupp PG, Chen DD, Bauer DE, VandeVoort CA, Latham KE. Quantitative assessment of timing, efficiency, specificity and genetic mosaicism of CRISPR/Cas9-mediated gene editing of hemoglobin beta gene in rhesus monkey embryos. Hum Mol Genet 2018; 26:2678-2689. [PMID: 28444193 DOI: 10.1093/hmg/ddx154] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/19/2017] [Indexed: 12/26/2022] Open
Abstract
Gene editing technologies offer new options for developing novel biomedical research models and for gene and stem cell based therapies. However, applications in many species demand high efficiencies, specificity, and a thorough understanding of likely editing outcomes. To date, overall efficiencies, rates of off-targeting and degree of genetic mosaicism have not been well-characterized for most species, limiting our ability to optimize methods. As a model gene for measuring these parameters of the CRISPR/Cas9 application in a primate species (rhesus monkey), we selected the β-hemoglobin gene (HBB), which also has high relevance to the potential application of gene editing and stem-cell technologies for treating human disease. Our data demonstrate an ability to achieve a high efficiency of gene editing in rhesus monkey zygotes, with no detected off-target effects at selected off-target loci. Considerable genetic mosaicism and variation in the fraction of embryonic cells bearing targeted alleles are observed, and the timing of editing events is revealed using a new model. The uses of Cas9-WT protein combined with optimized concentrations of sgRNAs are two likely areas for further refinement to enhance efficiency while limiting unfavorable outcomes that can be exceedingly costly for application of gene editing in primate species.
Collapse
Affiliation(s)
- Uros Midic
- Department of Animal Science, and Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI 48824, USA
| | - Pei-Hsuan Hung
- California National Primate Research Center and Department of Obstetrics and Gynecology, University of California, Davis, Davis, CA 95616, USA
| | - Kailey A Vincent
- Department of Animal Science, and Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI 48824, USA
| | - Benjamin Goheen
- Department of Animal Science, and Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI 48824, USA
| | - Patrick G Schupp
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Diane D Chen
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Daniel E Bauer
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School and Harvard Stem Cell Institute, Harvard University, Boston, MA, USA
| | - Catherine A VandeVoort
- California National Primate Research Center and Department of Obstetrics and Gynecology, University of California, Davis, Davis, CA 95616, USA
| | - Keith E Latham
- Department of Animal Science, and Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
46
|
Stouffer RL, Woodruff TK. Nonhuman Primates: A Vital Model for Basic and Applied Research on Female Reproduction, Prenatal Development, and Women's Health. ILAR J 2017; 58:281-294. [PMID: 28985318 PMCID: PMC5886348 DOI: 10.1093/ilar/ilx027] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 06/30/2017] [Indexed: 12/20/2022] Open
Abstract
The comparative biology of reproduction and development in mammalian species is remarkable. Hence, because of similarities in environmental and neuroendocrine control of the reproductive axis, the cyclic function of the ovary and reproductive tract, establishment and control of the maternal-fetal-placental unit during pregnancy, and reproductive aging from puberty through menopause, nonhuman primates (NHPs) are valuable models for research related to women's reproductive health and its disorders. This chapter provides examples of research over the past 10+ years using Old World monkeys (notably macaque species), baboons, and to a lesser extent New World monkeys (especially marmosets) that contributed to our understanding of the etiology and therapies or prevention of: (1) ovarian disorders, e.g., polycystic ovary syndrome, mitochondrial DNA-based diseases from the oocyte; (2) uterine disorders, for example, endometriosis and uterine transplantation; and (3) pregnancy disorders, for example, preterm labor and delivery, environmental factors. Also, emerging opportunities such as viral (e.g., Zika) induced fetal defects and germline genomic editing to generate valuable primate models of human diseases (e.g., Huntington and muscular dystrophy) are addressed. Although the high costs, specialized resources, and ethical debate challenge the use of primates in biomedical research, their inclusion in fertility and infertility research is vital for continued improvements in women's reproductive health.
Collapse
Affiliation(s)
- Richard L Stouffer
- Richard L. Stouffer, Ph.D., is Professor in the Division of Reproductive and Developmental Sciences at the Oregon National Primate Research Center in Beaverton, Oregon and Professor in the Department of Obstetrics and Gynecology at Oregon Health & Sciences University in Portland, Oregon. Teresa K. Woodruff, Ph.D., is Thomas J. Watkins Professor of Obstetrics and Gynecology, Vice Chair of Research (OB/GYN), and Chief of the Division of Reproductive Science in Medicine at the Feinberg School of Medicine, and Professor of Molecular Biosciences at Weinberg College of Arts and Sciences, Northwestern University in Chicago, Illinois.
| | - Teresa K Woodruff
- Richard L. Stouffer, Ph.D., is Professor in the Division of Reproductive and Developmental Sciences at the Oregon National Primate Research Center in Beaverton, Oregon and Professor in the Department of Obstetrics and Gynecology at Oregon Health & Sciences University in Portland, Oregon. Teresa K. Woodruff, Ph.D., is Thomas J. Watkins Professor of Obstetrics and Gynecology, Vice Chair of Research (OB/GYN), and Chief of the Division of Reproductive Science in Medicine at the Feinberg School of Medicine, and Professor of Molecular Biosciences at Weinberg College of Arts and Sciences, Northwestern University in Chicago, Illinois.
| |
Collapse
|
47
|
Wang K, Jin Q, Ruan D, Yang Y, Liu Q, Wu H, Zhou Z, Ouyang Z, Liu Z, Zhao Y, Zhao B, Zhang Q, Peng J, Lai C, Fan N, Liang Y, Lan T, Li N, Wang X, Wang X, Fan Y, Doevendans PA, Sluijter JPG, Liu P, Li X, Lai L. Cre-dependent Cas9-expressing pigs enable efficient in vivo genome editing. Genome Res 2017; 27:2061-2071. [PMID: 29146772 PMCID: PMC5741047 DOI: 10.1101/gr.222521.117] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 10/26/2017] [Indexed: 12/12/2022]
Abstract
Despite being time-consuming and costly, generating genome-edited pigs holds great promise for agricultural, biomedical, and pharmaceutical applications. To further facilitate genome editing in pigs, we report here establishment of a pig line with Cre-inducible Cas9 expression that allows a variety of ex vivo genome editing in fibroblast cells including single- and multigene modifications, chromosome rearrangements, and efficient in vivo genetic modifications. As a proof of principle, we were able to simultaneously inactivate five tumor suppressor genes (TP53, PTEN, APC, BRCA1, and BRCA2) and activate one oncogene (KRAS), achieved by delivering Cre recombinase and sgRNAs, which caused rapid lung tumor development. The efficient genome editing shown here demonstrates that these pigs can serve as a powerful tool for dissecting in vivo gene functions and biological processes in a temporal manner and for streamlining the production of genome-edited pigs for disease modeling.
Collapse
Affiliation(s)
- Kepin Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Qin Jin
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Degong Ruan
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yi Yang
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Qishuai Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Han Wu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Zhiwei Zhou
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Zhen Ouyang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Zhaoming Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yu Zhao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Bentian Zhao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Quanjun Zhang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jiangyun Peng
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Chengdan Lai
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Nana Fan
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yanhui Liang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Ting Lan
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Nan Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Xiaoshan Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Xinlu Wang
- Department of Nuclear Medicine, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou 510010, China
| | - Yong Fan
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Pieter A Doevendans
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht 3584CX, the Netherlands.,Netherlands Heart Institute, Utrecht 3584CX, the Netherlands
| | - Joost P G Sluijter
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht 3584CX, the Netherlands.,Netherlands Heart Institute, Utrecht 3584CX, the Netherlands
| | - Pentao Liu
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus Hinxton, Cambridge CB10 1HH, United Kingdom
| | - Xiaoping Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Liangxue Lai
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Jilin Provincial Key Laboratory of Animal Embryo Engineering, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|
48
|
CRISPR editing in biological and biomedical investigation. J Cell Physiol 2017; 233:3875-3891. [DOI: 10.1002/jcp.26141] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 08/07/2017] [Indexed: 12/23/2022]
|
49
|
Niu Y, Li T, Ji W. Paving the road for biomedicine: genome editing and stem cells in primates. Natl Sci Rev 2017. [DOI: 10.1093/nsr/nwx094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Yuyu Niu
- Yunnan Key Laboratory of Primate Biomedicine Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Tianqing Li
- Yunnan Key Laboratory of Primate Biomedicine Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Weizhi Ji
- Yunnan Key Laboratory of Primate Biomedicine Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
50
|
Jennings CG, Landman R, Zhou Y, Sharma J, Hyman J, Movshon JA, Qiu Z, Roberts AC, Roe AW, Wang X, Zhou H, Wang L, Zhang F, Desimone R, Feng G. Opportunities and challenges in modeling human brain disorders in transgenic primates. Nat Neurosci 2017; 19:1123-30. [PMID: 27571191 DOI: 10.1038/nn.4362] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/19/2016] [Indexed: 12/15/2022]
Abstract
Molecular genetic tools have had a profound impact on neuroscience, but until recently their application has largely been confined to a few model species, most notably mouse, zebrafish, Drosophila melanogaster and Caenorhabditis elegans. With the development of new genome engineering technologies such as CRISPR, it is becoming increasingly feasible to apply these molecular tools in a wider range of species, including nonhuman primates. This will lead to many opportunities for brain research, but it will also pose challenges. Here we identify some of these opportunities and challenges in light of recent and foreseeable technological advances and offer some suggestions. Our main focus is on the creation of new primate disease models for understanding the pathological mechanisms of brain disorders and for developing new approaches to effective treatment. However, we also emphasize that primate genetic models have great potential to address many fundamental questions about brain function, providing an essential foundation for future progress in disease research.
Collapse
Affiliation(s)
- Charles G Jennings
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Rogier Landman
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Yang Zhou
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jitendra Sharma
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Julia Hyman
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - J Anthony Movshon
- Center for Neural Science, New York University, New York, New York, USA
| | - Zilong Qiu
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Angela C Roberts
- Department of Physiology, Development and Neuroscience, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Anna Wang Roe
- Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, Hangzhou, China
| | - Xiaoqin Wang
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Huihui Zhou
- The Brain Cognition and Brain Disease Institute (BCBDI) for Collaboration Research of SIAT at CAS and McGovern Institute at MIT, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Science, Shenzhen, China
| | - Liping Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute (BCBDI) for Collaboration Research of SIAT at CAS and McGovern Institute at MIT, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Science, Shenzhen, China
| | - Feng Zhang
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Robert Desimone
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Guoping Feng
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|