1
|
Zhang Z, Yu Z, Liang D, Song K, Kong X, He M, Liao X, Huang Z, Kang A, Bai R, Ren Y. Roles of lipid droplets and related proteins in metabolic diseases. Lipids Health Dis 2024; 23:218. [PMID: 39030618 PMCID: PMC11264848 DOI: 10.1186/s12944-024-02212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024] Open
Abstract
Lipid droplets (LDs), which are active organelles, derive from the monolayer membrane of the endoplasmic reticulum and encapsulate neutral lipids internally. LD-associated proteins like RAB, those in the PLIN family, and those in the CIDE family participate in LD formation and development, and they are active players in various diseases, organelles, and metabolic processes (i.e., obesity, non-alcoholic fatty liver disease, and autophagy). Our synthesis on existing research includes insights from the formation of LDs to their mechanisms of action, to provide an overview needed for advancing research into metabolic diseases and lipid metabolism.
Collapse
Affiliation(s)
- Zhongyang Zhang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Zhenghang Yu
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Dianyuan Liang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Ke Song
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Xiangxin Kong
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Ming He
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
| | - Xinxin Liao
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Ziyan Huang
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Aijia Kang
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Rubing Bai
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China.
| | - Yixing Ren
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China.
- General Surgery, Chengdu XinHua Hospital Affiliated to North Sichuan Medical College, Chengdu, 610000, China.
| |
Collapse
|
2
|
Langer HT, Rohm M, Goncalves MD, Sylow L. AMPK as a mediator of tissue preservation: time for a shift in dogma? Nat Rev Endocrinol 2024:10.1038/s41574-024-00992-y. [PMID: 38760482 DOI: 10.1038/s41574-024-00992-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/19/2024] [Indexed: 05/19/2024]
Abstract
Ground-breaking discoveries have established 5'-AMP-activated protein kinase (AMPK) as a central sensor of metabolic stress in cells and tissues. AMPK is activated through cellular starvation, exercise and drugs by either directly or indirectly affecting the intracellular AMP (or ADP) to ATP ratio. In turn, AMPK regulates multiple processes of cell metabolism, such as the maintenance of cellular ATP levels, via the regulation of fatty acid oxidation, glucose uptake, glycolysis, autophagy, mitochondrial biogenesis and degradation, and insulin sensitivity. Moreover, AMPK inhibits anabolic processes, such as lipogenesis and protein synthesis. These findings support the notion that AMPK is a crucial regulator of cell catabolism. However, studies have revealed that AMPK's role in cell homeostasis might not be as unidirectional as originally thought. This Review explores emerging evidence for AMPK as a promoter of cell survival and an enhancer of anabolic capacity in skeletal muscle and adipose tissue during catabolic crises. We discuss AMPK-activating interventions for tissue preservation during tissue wasting in cancer-associated cachexia and explore the clinical potential of AMPK activation in wasting conditions. Overall, we provide arguments that call for a shift in the current dogma of AMPK as a mere regulator of cell catabolism, concluding that AMPK has an unexpected role in tissue preservation.
Collapse
Affiliation(s)
- Henning Tim Langer
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany.
| | - Maria Rohm
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Marcus DaSilva Goncalves
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lykke Sylow
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Ji H, Englmaier F, Morigny P, Giroud M, Gräsle P, Brings S, Szendrödi J, Berriel Diaz M, Plettenburg O, Herzig S, Rohm M. Development of a peptide drug restoring AMPK and adipose tissue functionality in cancer cachexia. Mol Ther 2023; 31:2408-2421. [PMID: 37408309 PMCID: PMC10422018 DOI: 10.1016/j.ymthe.2023.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/01/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023] Open
Abstract
Cancer cachexia is a severe systemic wasting disease that negatively affects quality of life and survival in patients with cancer. To date, treating cancer cachexia is still a major unmet clinical need. We recently discovered the destabilization of the AMP-activated protein kinase (AMPK) complex in adipose tissue as a key event in cachexia-related adipose tissue dysfunction and developed an adeno-associated virus (AAV)-based approach to prevent AMPK degradation and prolong cachexia-free survival. Here, we show the development and optimization of a prototypic peptide, Pen-X-ACIP, where the AMPK-stabilizing peptide ACIP is fused to the cell-penetrating peptide moiety penetratin via a propargylic glycine linker to enable late-stage functionalization using click chemistry. Pen-X-ACIP was efficiently taken up by adipocytes, inhibited lipolysis, and restored AMPK signaling. Tissue uptake assays showed a favorable uptake profile into adipose tissue upon intraperitoneal injection. Systemic delivery of Pen-X-ACIP into tumor-bearing animals prevented the progression of cancer cachexia without affecting tumor growth and preserved body weight and adipose tissue mass with no discernable side effects in other peripheral organs, thereby achieving proof of concept. As Pen-X-ACIP also exerted its anti-lipolytic activity in human adipocytes, it now provides a promising platform for further (pre)clinical development toward a novel, first-in-class approach against cancer cachexia.
Collapse
Affiliation(s)
- Honglei Ji
- Institute for Diabetes and Cancer, Helmholtz Diabetes Center, Helmholtz Center Munich, 85764 Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Unit, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Felix Englmaier
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Institute of Medicinal Chemistry, Molecular Targets and Therapeutics Center, Helmholtz Center Munich, 85764 Neuherberg, Germany; Institute of Organic Chemistry, Center of Biomolecular Research, Leibniz University Hannover, 30167 Hannover, Germany
| | - Pauline Morigny
- Institute for Diabetes and Cancer, Helmholtz Diabetes Center, Helmholtz Center Munich, 85764 Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Unit, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Maude Giroud
- Institute for Diabetes and Cancer, Helmholtz Diabetes Center, Helmholtz Center Munich, 85764 Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Unit, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Pamina Gräsle
- Institute for Diabetes and Cancer, Helmholtz Diabetes Center, Helmholtz Center Munich, 85764 Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Unit, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Sebastian Brings
- Department of Internal Medicine I and Clinical Chemistry, Joint Heidelberg-IDC Translational Diabetes Unit, Heidelberg University Hospital, 69120 Heidelberg, Germany; Department of Nuclear Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Julia Szendrödi
- Department of Internal Medicine I and Clinical Chemistry, Joint Heidelberg-IDC Translational Diabetes Unit, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Mauricio Berriel Diaz
- Institute for Diabetes and Cancer, Helmholtz Diabetes Center, Helmholtz Center Munich, 85764 Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Unit, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Oliver Plettenburg
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Institute of Medicinal Chemistry, Molecular Targets and Therapeutics Center, Helmholtz Center Munich, 85764 Neuherberg, Germany; Institute of Organic Chemistry, Center of Biomolecular Research, Leibniz University Hannover, 30167 Hannover, Germany; Laboratory of Nano- and Quantum Engineering (LNQE), Leibniz University Hannover, 30167 Hanover, Germany; Institute of Lung Health (ILH), 35392 Gießen, Germany.
| | - Stephan Herzig
- Institute for Diabetes and Cancer, Helmholtz Diabetes Center, Helmholtz Center Munich, 85764 Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Unit, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Chair Molecular Metabolic Control, Technical University Munich, 81675 Munich, Germany.
| | - Maria Rohm
- Institute for Diabetes and Cancer, Helmholtz Diabetes Center, Helmholtz Center Munich, 85764 Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Unit, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.
| |
Collapse
|
4
|
Hammoudeh N, Soukkarieh C, Murphy DJ, Hanano A. Mammalian lipid droplets: structural, pathological, immunological and anti-toxicological roles. Prog Lipid Res 2023; 91:101233. [PMID: 37156444 DOI: 10.1016/j.plipres.2023.101233] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Mammalian lipid droplets (LDs) are specialized cytosolic organelles consisting of a neutral lipid core surrounded by a membrane made up of a phospholipid monolayer and a specific population of proteins that varies according to the location and function of each LD. Over the past decade, there have been significant advances in the understanding of LD biogenesis and functions. LDs are now recognized as dynamic organelles that participate in many aspects of cellular homeostasis plus other vital functions. LD biogenesis is a complex, highly-regulated process with assembly occurring on the endoplasmic reticulum although aspects of the underpinning molecular mechanisms remain elusive. For example, it is unclear how many enzymes participate in the biosynthesis of the neutral lipid components of LDs and how this process is coordinated in response to different metabolic cues to promote or suppress LD formation and turnover. In addition to enzymes involved in the biosynthesis of neutral lipids, various scaffolding proteins play roles in coordinating LD formation. Despite their lack of ultrastructural diversity, LDs in different mammalian cell types are involved in a wide range of biological functions. These include roles in membrane homeostasis, regulation of hypoxia, neoplastic inflammatory responses, cellular oxidative status, lipid peroxidation, and protection against potentially toxic intracellular fatty acids and lipophilic xenobiotics. Herein, the roles of mammalian LDs and their associated proteins are reviewed with a particular focus on their roles in pathological, immunological and anti-toxicological processes.
Collapse
Affiliation(s)
- Nour Hammoudeh
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Chadi Soukkarieh
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Denis J Murphy
- School of Applied Sciences, University of South Wales, Pontypridd, CF37 1DL, Wales, United Kingdom..
| | - Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria..
| |
Collapse
|
5
|
Blocking AMPK β1 myristoylation enhances AMPK activity and protects mice from high-fat diet-induced obesity and hepatic steatosis. Cell Rep 2022; 41:111862. [PMID: 36543129 DOI: 10.1016/j.celrep.2022.111862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 10/07/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is a master regulator of cellular energy homeostasis and a therapeutic target for metabolic diseases. Co/post-translational N-myristoylation of glycine-2 (Gly2) of the AMPK β subunit has been suggested to regulate the distribution of the kinase between the cytosol and membranes through a "myristoyl switch" mechanism. However, the relevance of AMPK myristoylation for metabolic signaling in cells and in vivo is unclear. Here, we generated knockin mice with a Gly2-to-alanine point mutation of AMPKβ1 (β1-G2A). We demonstrate that non-myristoylated AMPKβ1 has reduced stability but is associated with increased kinase activity and phosphorylation of the Thr172 activation site in the AMPK α subunit. Using proximity ligation assays, we show that loss of β1 myristoylation impedes colocalization of the phosphatase PPM1A/B with AMPK in cells. Mice carrying the β1-G2A mutation have improved metabolic health with reduced adiposity, hepatic lipid accumulation, and insulin resistance under conditions of high-fat diet-induced obesity.
Collapse
|
6
|
Zhang X, Young C, Morishita Y, Kim K, Kabil OO, Clarke OB, Di Jeso B, Arvan P. Defective Thyroglobulin: Cell Biology of Disease. Int J Mol Sci 2022; 23:13605. [PMID: 36362390 PMCID: PMC9657758 DOI: 10.3390/ijms232113605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
The primary functional units of the thyroid gland are follicles of various sizes comprised of a monolayer of epithelial cells (thyrocytes) surrounding an apical extracellular cavity known as the follicle lumen. In the normal thyroid gland, the follicle lumen is filled with secreted protein (referred to as colloid), comprised nearly exclusively of thyroglobulin with a half-life ranging from days to weeks. At the cellular boundary of the follicle lumen, secreted thyroglobulin becomes iodinated, resulting from the coordinated activities of enzymes localized to the thyrocyte apical plasma membrane. Thyroglobulin appearance in evolution is essentially synchronous with the appearance of the follicular architecture of the vertebrate thyroid gland. Thyroglobulin is the most highly expressed thyroid gene and represents the most abundantly expressed thyroid protein. Wildtype thyroglobulin protein is a large and complex glycoprotein that folds in the endoplasmic reticulum, leading to homodimerization and export via the classical secretory pathway to the follicle lumen. However, of the hundreds of human thyroglobulin genetic variants, most exhibit increased susceptibility to misfolding with defective export from the endoplasmic reticulum, triggering hypothyroidism as well as thyroidal endoplasmic reticulum stress. The human disease of hypothyroidism with defective thyroglobulin (either homozygous, or compound heterozygous) can be experimentally modeled in thyrocyte cell culture, or in whole animals, such as mice that are readily amenable to genetic manipulation. From a combination of approaches, it can be demonstrated that in the setting of thyroglobulin misfolding, thyrocytes under chronic continuous ER stress exhibit increased susceptibility to cell death, with interesting cell biological and pathophysiological consequences.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI 48105, USA
| | - Crystal Young
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48105, USA
| | - Yoshiaki Morishita
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University, Nagakute 480-1195, Japan
| | - Kookjoo Kim
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Omer O. Kabil
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Natural Sciences, Lindenwood University, Saint Charles, MO 63301, USA
| | - Oliver B. Clarke
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Bruno Di Jeso
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
7
|
Hsu CC, Peng D, Cai Z, Lin HK. AMPK signaling and its targeting in cancer progression and treatment. Semin Cancer Biol 2022; 85:52-68. [PMID: 33862221 PMCID: PMC9768867 DOI: 10.1016/j.semcancer.2021.04.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/24/2022]
Abstract
The intrinsic mechanisms sensing the imbalance of energy in cells are pivotal for cell survival under various environmental insults. AMP-activated protein kinase (AMPK) serves as a central guardian maintaining energy homeostasis by orchestrating diverse cellular processes, such as lipogenesis, glycolysis, TCA cycle, cell cycle progression and mitochondrial dynamics. Given that AMPK plays an essential role in the maintenance of energy balance and metabolism, managing AMPK activation is considered as a promising strategy for the treatment of metabolic disorders such as type 2 diabetes and obesity. Since AMPK has been attributed to aberrant activation of metabolic pathways, mitochondrial dynamics and functions, and epigenetic regulation, which are hallmarks of cancer, targeting AMPK may open up a new avenue for cancer therapies. Although AMPK is previously thought to be involved in tumor suppression, several recent studies have unraveled its tumor promoting activity. The double-edged sword characteristics for AMPK as a tumor suppressor or an oncogene are determined by distinct cellular contexts. In this review, we will summarize recent progress in dissecting the upstream regulators and downstream effectors for AMPK, discuss the distinct roles of AMPK in cancer regulation and finally offer potential strategies with AMPK targeting in cancer therapy.
Collapse
Affiliation(s)
- Che-Chia Hsu
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC, 27101, USA
| | - Danni Peng
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC, 27101, USA
| | - Zhen Cai
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC, 27101, USA.
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC, 27101, USA.
| |
Collapse
|
8
|
Cheng J, Xu D, Chen L, Guo W, Hu G, Liu J, Fu S. CIDEA Regulates De Novo Fatty Acid Synthesis in Bovine Mammary Epithelial Cells by Targeting the AMPK/PPARγ Axis and Regulating SREBP1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11324-11335. [PMID: 36040348 DOI: 10.1021/acs.jafc.2c05226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cell-death-inducing DNA fragmentation factor-α-like effector A (CIDEA) is a lipid-droplet-associated protein that helps to promote lipid metabolism in adipocytes of mice and humans. However, studies on the regulatory mechanism of CIDEA on lipid metabolism in the mammary glands of dairy cows are rare. Therefore, the role of CIDEA in bovine mammary epithelial cells (bMECs) was investigated in this study. The CIDEA expression levels in the mammary glands of high-fat-milk-producing cows were significantly higher compared to those in low-fat-milk-producing cows. Results of in vitro studies in bMECs showed that the inhibition of CIDEA inhibited the expression of fatty acid synthesis-related genes and triglyceride (TAG) synthesis-related genes. Conversely, the overexpression of CIDEA leads to an increase in the content of TAG and fatty acid. The results of mechanistic studies indicated that the overexpression of CIDEA inhibits AMP-activated protein kinase (AMPK) activity, which enhances the expression of peroxisome proliferator-activated receptor-γ (PPARγ) and consequently increases the TAG content. Furthermore, the overexpression of CIDEA promoted the nuclear translocation of sterol regulatory element-binding protein 1 (SREBP1). Therefore, a theoretical framework is provided by this study for the regulation of lipid metabolism in dairy cows by means of nutrition and the hormone targeting of CIDEA.
Collapse
Affiliation(s)
- Ji Cheng
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin130062, China
| | - Dianwen Xu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin130062, China
| | - Lisha Chen
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin130062, China
| | - Wenjin Guo
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin130062, China
| | - Guiqiu Hu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin130062, China
| | - Juxiong Liu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin130062, China
| | - Shoupeng Fu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin130062, China
| |
Collapse
|
9
|
Zhou N, Qi H, Liu J, Zhang G, Liu J, Liu N, Zhu M, Zhao X, Song C, Zhou Z, Gong J, Li R, Bai X, Jin Y, Song Y, Yin Y. Deubiquitinase OTUD3 regulates metabolism homeostasis in response to nutritional stresses. Cell Metab 2022; 34:1023-1041.e8. [PMID: 35675826 DOI: 10.1016/j.cmet.2022.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/01/2022] [Accepted: 05/16/2022] [Indexed: 11/20/2022]
Abstract
The ovarian-tumor-domain-containing deubiquitinases (OTUDs) block ubiquitin-dependent protein degradation and are involved in diverse signaling pathways. We discovered a rare OTUD3 c.863G>A mutation in a family with an early age of onset of diabetes. This mutation reduces the stability and catalytic activity of OTUD3. We next constructed an experiment with Otud3-/- mice and found that they developed worse obesity, dyslipidemia, and insulin resistance than wild-type mice when challenged with a high-fat diet (HFD). We further found that glucose and fatty acids stimulate CREB-binding-protein-dependent OTUD3 acetylation, promoting its nuclear translocation, where OTUD3 regulates various genes involved in glucose and lipid metabolism and oxidative phosphorylation by stabilizing peroxisome-proliferator-activated receptor delta (PPARδ). Moreover, targeting PPARδ using a specific agonist can partially rescue the phenotype of HFD-fed Otud3-/- mice. We propose that OTUD3 is an important regulator of energy metabolism and that the OTUD3 c.863G>A is associated with obesity and a higher risk of diabetes.
Collapse
Affiliation(s)
- Na Zhou
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Hailong Qi
- Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Junjun Liu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Institute of Endocrine & Metabolic Diseases, Shandong First Medical University, Jinan, Shandong 250021, China
| | - Guangze Zhang
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jianping Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Ning Liu
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Minglu Zhu
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xuyang Zhao
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Chang Song
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Zhe Zhou
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jingjing Gong
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Ridong Li
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xinyu Bai
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yan Jin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yongfeng Song
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Institute of Endocrine & Metabolic Diseases, Shandong First Medical University, Jinan, Shandong 250021, China; Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China.
| | - Yuxin Yin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, China; Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, China.
| |
Collapse
|
10
|
Saurav S, Manna SK. Profilin upregulation induces autophagy through stabilization of AMP-activated protein kinase. FEBS Lett 2022; 596:1765-1777. [PMID: 35532157 DOI: 10.1002/1873-3468.14372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 11/10/2022]
Abstract
Profilin regulates actin polymerization, and its balanced expression is required for cellular growth and development. Most tumors have compromised profilin expression, and its overexpression in MDA MB-231 breast cancer cells has been reported to activate AMP-activated protein kinase α (AMPKα), an energy-sensing molecule that affects various cellular processes including autophagy. The present study aims to explore the role of profilin in inducing autophagy. We employed all-trans retinoic acid (ATRA) as an inducer of profilin expression and showed that profilin induces autophagy through mTOR inhibition, autophagy-activating kinase ULK1 upregulation, and AMPK stabilization as well as its activation. Furthermore, evidence from our study indicates physical interaction between profilin and AMPK, which results in AMPK stabilization and induction of prolonged autophagy, thereby leading to apoptosis. This study uncovers a novel mechanism that induces autophagy in triple-negative breast cancer cells.
Collapse
Affiliation(s)
- Shashank Saurav
- Laboratory of Immunology, Centre for DNA Fingerprinting & Diagnostics, Uppal, Hyderabad, 500 039, Telangana, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sunil Kumar Manna
- Laboratory of Immunology, Centre for DNA Fingerprinting & Diagnostics, Uppal, Hyderabad, 500 039, Telangana, India
| |
Collapse
|
11
|
The New Role of AMP-Activated Protein Kinase in Regulating Fat Metabolism and Energy Expenditure in Adipose Tissue. Biomolecules 2021; 11:biom11121757. [PMID: 34944402 PMCID: PMC8698496 DOI: 10.3390/biom11121757] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity is characterized by excessive accumulation of fat in the body, which is triggered by a body energy intake larger than body energy consumption. Due to complications such as cardiovascular diseases, type 2 diabetes (T2DM), obstructive pneumonia and arthritis, as well as high mortality, morbidity and economic cost, obesity has become a major health problem. The global prevalence of obesity, and its comorbidities is escalating at alarming rates, demanding the development of additional classes of therapeutics to reduce the burden of disease further. As a central energy sensor, the AMP-activated protein kinase (AMPK) has recently been elucidated to play a paramount role in fat synthesis and catabolism, especially in regulating the energy expenditure of brown/beige adipose tissue and the browning of white adipose tissue (WAT). This review discussed the role of AMPK in fat metabolism in adipose tissue, emphasizing its role in the energy expenditure of brown/beige adipose tissue and browning of WAT. A deeper understanding of the role of AMPK in regulating fat metabolism and energy expenditure can provide new insights into obesity research and treatment.
Collapse
|
12
|
Abstract
Lipid droplets (LDs) are endoplasmic reticulum-derived organelles that consist of a core of neutral lipids encircled by a phospholipid monolayer decorated with proteins. As hubs of cellular lipid and energy metabolism, LDs are inherently involved in the etiology of prevalent metabolic diseases such as obesity and nonalcoholic fatty liver disease. The functions of LDs are regulated by a unique set of associated proteins, the LD proteome, which includes integral membrane and peripheral proteins. These proteins control key activities of LDs such as triacylglycerol synthesis and breakdown, nutrient sensing and signal integration, and interactions with other organelles. Here we review the mechanisms that regulate the composition of the LD proteome, such as pathways that mediate selective and bulk LD protein degradation and potential connections between LDs and cellular protein quality control.
Collapse
Affiliation(s)
- Melissa A Roberts
- Department of Molecular and Cell Biology and Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720, USA;
| | - James A Olzmann
- Department of Molecular and Cell Biology and Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720, USA; .,Chan Zuckerberg Biohub, San Francisco, California 94158, USA
| |
Collapse
|
13
|
Rodríguez C, Muñoz M, Contreras C, Prieto D. AMPK, metabolism, and vascular function. FEBS J 2021; 288:3746-3771. [PMID: 33825330 DOI: 10.1111/febs.15863] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/04/2021] [Accepted: 04/04/2021] [Indexed: 12/12/2022]
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) is a cellular energy sensor activated during energy stress that plays a key role in maintaining energy homeostasis. This ubiquitous signaling pathway has been implicated in multiple functions including mitochondrial biogenesis, redox regulation, cell growth and proliferation, cell autophagy and inflammation. The protective role of AMPK in cardiovascular function and the involvement of dysfunctional AMPK in the pathogenesis of cardiovascular disease have been highlighted in recent years. In this review, we summarize and discuss the role of AMPK in the regulation of blood flow in response to metabolic demand and the basis of the AMPK physiological anticontractile, antioxidant, anti-inflammatory, and antiatherogenic actions in the vascular system. Investigations by others and us have demonstrated the key role of vascular AMPK in the regulation of endothelial function, redox homeostasis, and inflammation, in addition to its protective role in the hypoxia and ischemia/reperfusion injury. The pathophysiological implications of AMPK involvement in vascular function with regard to the vascular complications of metabolic disease and the therapeutic potential of AMPK activators are also discussed.
Collapse
Affiliation(s)
- Claudia Rodríguez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Mercedes Muñoz
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Cristina Contreras
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Dolores Prieto
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| |
Collapse
|
14
|
Morishita Y, Kellogg AP, Larkin D, Chen W, Vadrevu S, Satin L, Liu M, Arvan P. Cell death-associated lipid droplet protein CIDE-A is a noncanonical marker of endoplasmic reticulum stress. JCI Insight 2021; 6:143980. [PMID: 33661766 PMCID: PMC8119190 DOI: 10.1172/jci.insight.143980] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/02/2021] [Indexed: 01/05/2023] Open
Abstract
Secretory protein misfolding has been linked to ER stress and cell death. We expressed a TGrdw transgene encoding TG-G(2298)R, a misfolded mutant thyroglobulin reported to be linked to thyroid cell death. When the TGrdw transgene was expressed at low level in thyrocytes of TGcog/cog mice that experienced severe ER stress, we observed increased thyrocyte cell death and increased expression of CIDE-A (cell death-inducing DFFA-like effector-A, a protein of lipid droplets) in whole thyroid gland. Here we demonstrate that acute ER stress in cultured PCCL3 thyrocytes increases Cidea mRNA levels, maintained at least in part by increased mRNA stability, while being negatively regulated by activating transcription factor 6 - with similar observations that ER stress increases Cidea mRNA levels in other cell types. CIDE-A protein is sensitive to proteasomal degradation yet is stabilized by ER stress, and elevated expression levels accompany increased cell death. Unlike acute ER stress, PCCL3 cells adapted and surviving chronic ER stress maintained a disproportionately lower relative mRNA level of Cidea compared with that of other, classical ER stress markers, as well as a blunted Cidea mRNA response to a new, unrelated acute ER stress challenge. We suggest that CIDE-A is a novel marker linked to a noncanonical ER stress response program, with implications for cell death and survival.
Collapse
Affiliation(s)
- Yoshiaki Morishita
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University, Aichi, Japan
| | - Aaron P. Kellogg
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Dennis Larkin
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Wei Chen
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Suryakiran Vadrevu
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Leslie Satin
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Ming Liu
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Endocrinology & Diabetes, Tianjin Medical University, Tianjin, China
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
15
|
Ren Y, Chen J, Chen P, Hao Q, Cheong LK, Tang M, Hong LL, Hu XY, Celestial T Yap, Bay BH, Ling ZQ, Shen HM. Oxidative stress-mediated AMPK inactivation determines the high susceptibility of LKB1-mutant NSCLC cells to glucose starvation. Free Radic Biol Med 2021; 166:128-139. [PMID: 33636336 DOI: 10.1016/j.freeradbiomed.2021.02.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 12/16/2022]
Abstract
The liver kinase B1 (LKB1) is an important tumor suppressor and its loss-of-function mutations are observed in around 16% of non-small cell lung cancer (NSCLC) cases. One of the main functions of LKB1 is to activate AMP-activated protein kinase (AMPK) via direct phosphorylation. Under metabolic or energy stress conditions, the LKB1-AMPK axis inhibits the anabolic pathways and activates the catabolic pathways to maintain metabolic homeostasis for cell survival. In this study, we found that LKB1-mutant NSCLC cells are particularly susceptible to cell death induced by glucose starvation, but not by other forms of starvation such as amino acid starvation or serum starvation. Reconstitution of LKB1 in LKB1-mutant cells or LKB1 knockout in LKB1-wild type cells highlighted the importance of the LKB1-AMPK axis for cell survival under glucose starvation. Mechanistically, in LKB1-mutant cells, glucose starvation elicits oxidative stress, which causes AMPK protein oxidation and inactivation, and eventually cell death. Importantly, this process could be effectively reversed and rescued by 2DG (a glucose analog capable of producing NADPH, a key antioxidant), A769662 (an allosteric AMPK activator), and N-acetyl cysteine (NAC) (a ROS scavenger), indicating the presence of a vicious circle between AMPK inactivation and ROS in LKB1-mutant NSCLC cells under glucose starvation. Our study thus elucidates the critical role of redox balance in determining the susceptibility to cell death under glucose starvation in LKB1-mutant NSCLC cells. The findings from this study reveal important clues in search of novel therapeutic strategies for LKB1-mutant NSCLC by targeting glucose metabolism and redox balance.
Collapse
Affiliation(s)
- Yi Ren
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jiaqing Chen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Peishi Chen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Qi Hao
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Leng-Kuan Cheong
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Mingzhu Tang
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Lian-Lian Hong
- Experimental Research Centre, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Xuan-Yu Hu
- Experimental Research Centre, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China; Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Celestial T Yap
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Boon-Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Zhi-Qiang Ling
- Experimental Research Centre, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Han-Ming Shen
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
16
|
Kim Y, Lee S, Yoo J, Kim E, Nam MS, Kim KK. Effects of Gouda cheese and Allium hookeri on thermogenesis in mice. Food Sci Nutr 2021; 9:1232-1239. [PMID: 33598207 PMCID: PMC7866615 DOI: 10.1002/fsn3.2115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/26/2020] [Indexed: 11/25/2022] Open
Abstract
Cheese contains various beneficial nutrients, including calcium and whey protein, as well as large amounts of saturated fatty acids. Thus, intake of cheese increases the production of low-density lipoprotein-cholesterol (LDL-C), a well-defined risk factor for cardiovascular disease. Therefore, identification of natural products that inhibit LDL-C production following cheese intake and verification of the efficacy of such products in animal models are essential. Here, we evaluated the effects of Allium hookeri, a well-known traditional herbal remedy, on metabolism and thermogenesis in mice consuming a cheese-containing diet. Intake of A. hookeri extracts significantly blocked increases in body weight and fat mass caused by intake of Gouda cheese in mice. Additionally, increases in blood triglyceride levels following intake of Gouda cheese were alleviated by A. hookeri. Moreover, intake of Gouda cheese enhanced thermogenesis efficiency. Thus, A. hookeri may have applications as an important additive for reducing the risk of metabolic disease resulting from cheese consumption.
Collapse
Affiliation(s)
- Yong‐An Kim
- Department of BiochemistryChungnam National UniversityDaejeonKorea
| | - Sang‐Soo Lee
- Department of BiochemistryChungnam National UniversityDaejeonKorea
| | - Jayeon Yoo
- National Institute of Animal ScienceRDAWanju‐gunJeolabuk‐doKorea
| | - Eun‐Mi Kim
- Department of Predictive ToxicologyKorea Institute of ToxicologyDaejeonKorea
| | - Myoung Soo Nam
- Division of Animal Resource ScienceChungnam National UniversityDaejeonKorea
| | - Kee K. Kim
- Department of BiochemistryChungnam National UniversityDaejeonKorea
| |
Collapse
|
17
|
Ovens AJ, Scott JW, Langendorf CG, Kemp BE, Oakhill JS, Smiles WJ. Post-Translational Modifications of the Energy Guardian AMP-Activated Protein Kinase. Int J Mol Sci 2021; 22:ijms22031229. [PMID: 33513781 PMCID: PMC7866021 DOI: 10.3390/ijms22031229] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 01/13/2023] Open
Abstract
Physical exercise elicits physiological metabolic perturbations such as energetic and oxidative stress; however, a diverse range of cellular processes are stimulated in response to combat these challenges and maintain cellular energy homeostasis. AMP-activated protein kinase (AMPK) is a highly conserved enzyme that acts as a metabolic fuel sensor and is central to this adaptive response to exercise. The complexity of AMPK’s role in modulating a range of cellular signalling cascades is well documented, yet aside from its well-characterised regulation by activation loop phosphorylation, AMPK is further subject to a multitude of additional regulatory stimuli. Therefore, in this review we comprehensively outline current knowledge around the post-translational modifications of AMPK, including novel phosphorylation sites, as well as underappreciated roles for ubiquitination, sumoylation, acetylation, methylation and oxidation. We provide insight into the physiological ramifications of these AMPK modifications, which not only affect its activity, but also subcellular localisation, nutrient interactions and protein stability. Lastly, we highlight the current knowledge gaps in this area of AMPK research and provide perspectives on how the field can apply greater rigour to the characterisation of novel AMPK regulatory modifications.
Collapse
Affiliation(s)
- Ashley J. Ovens
- Metabolic Signalling Laboratory, St Vincent’s Institute of Medical Research, School of Medicine, University of Melbourne, Fitzroy, VIC 3065, Australia; (A.J.O.); (J.S.O.)
- Mary MacKillop Institute for Health Research, Australian Catholic University, Fitzroy, VIC 3000, Australia; (J.W.S.); (B.E.K.)
| | - John W. Scott
- Mary MacKillop Institute for Health Research, Australian Catholic University, Fitzroy, VIC 3000, Australia; (J.W.S.); (B.E.K.)
- Protein Chemistry & Metabolism, St Vincent’s Institute of Medical Research, School of Medicine, University of Melbourne, Fitzroy, VIC 3065, Australia;
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia
| | - Christopher G. Langendorf
- Protein Chemistry & Metabolism, St Vincent’s Institute of Medical Research, School of Medicine, University of Melbourne, Fitzroy, VIC 3065, Australia;
| | - Bruce E. Kemp
- Mary MacKillop Institute for Health Research, Australian Catholic University, Fitzroy, VIC 3000, Australia; (J.W.S.); (B.E.K.)
- Protein Chemistry & Metabolism, St Vincent’s Institute of Medical Research, School of Medicine, University of Melbourne, Fitzroy, VIC 3065, Australia;
| | - Jonathan S. Oakhill
- Metabolic Signalling Laboratory, St Vincent’s Institute of Medical Research, School of Medicine, University of Melbourne, Fitzroy, VIC 3065, Australia; (A.J.O.); (J.S.O.)
- Mary MacKillop Institute for Health Research, Australian Catholic University, Fitzroy, VIC 3000, Australia; (J.W.S.); (B.E.K.)
| | - William J. Smiles
- Metabolic Signalling Laboratory, St Vincent’s Institute of Medical Research, School of Medicine, University of Melbourne, Fitzroy, VIC 3065, Australia; (A.J.O.); (J.S.O.)
- Correspondence:
| |
Collapse
|
18
|
Yang SJ, Jeon SJ, Van Nguyen T, Deshaies RJ, Park CS, Lee KM. Ubiquitin-dependent proteasomal degradation of AMPK gamma subunit by Cereblon inhibits AMPK activity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118729. [PMID: 32333926 DOI: 10.1016/j.bbamcr.2020.118729] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 04/12/2020] [Accepted: 04/19/2020] [Indexed: 01/25/2023]
Abstract
Cereblon (CRBN), a substrate receptor for Cullin-ring E3 ubiquitin ligase (CRL), is a major target protein of immunomodulatory drugs. An earlier study demonstrated that CRBN directly interacts with the catalytic α subunit of AMP-activated protein kinase (AMPK), a master regulator of energy homeostasis, down-regulating the enzymatic activity of AMPK. However, it is not clear how CRBN modulates AMPK activity. To investigate the mechanism of CRBN-dependent AMPK inhibition, we measured protein levels of each AMPK subunit in brains, livers, lungs, hearts, spleens, skeletal muscles, testes, kidneys, and embryonic fibroblasts from wild-type and Crbn-/- mice. Protein levels and stability of the regulatory AMPKγ subunit were increased in Crbn-/- mice. Increased stability of AMPKγ in Crbn-/- MEFs was dramatically reduced by exogenous expression of Crbn. In wild-type MEFs, the proteasomal inhibitor MG132 blocked degradation of AMPKγ. We also found that CRL4CRBN directly ubiquitinated AMPKγ. Taken together, these findings suggest that CRL4CRBN regulates AMPK through ubiquitin-dependent proteasomal degradation of AMPKγ.
Collapse
Affiliation(s)
- Seung-Joo Yang
- School of Life Sciences and Aging Research Institute, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Seung-Je Jeon
- School of Life Sciences and Aging Research Institute, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Thang Van Nguyen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Raymond J Deshaies
- Division of Biology and Biological Engineering, and Howard Hughes Medical Institute, California Institute of Technology, Box 114-96, Pasadena, CA 91125, USA
| | - Chul-Seung Park
- School of Life Sciences and Aging Research Institute, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| | - Kwang Min Lee
- Department of Life Science and Environmental Biochemistry, Pusan National University, Miryang 50463, Republic of Korea.
| |
Collapse
|
19
|
Zhang XM, Li YC, Chen P, Ye S, Xie SH, Xia WJ, Yang JH. MG-132 attenuates cardiac deterioration of viral myocarditis via AMPK pathway. Biomed Pharmacother 2020; 126:110091. [PMID: 32278272 DOI: 10.1016/j.biopha.2020.110091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Coxsackievirus B3 (CVB3) is the primary cause of infectious myocarditis. Aggressive immunological activation and apoptosis of myocytes contributes to progressive dysfunction of cardiac contraction and poor prognosis. MG-132, a proteasome inhibitor, regulates mitochondrial-mediated intrinsic myocardial apoptosis and downregulates NF-κB-mediated inflammation. Here, we determined whether AMPK pathway participates in MG-132-mediated myocardial protection in viral-induced myocarditis. METHODS AND RESULTS Acute viral myocarditis models were established by intraperitoneal inoculation of CVB3 in male BALB/c mice. Myocarditis and age-matched control mice were administered MG-132 and/or BML-275 dihydrochloride (BML) (AMPK antagonist) intraperitoneally daily from the day following CVB3 inoculation. MG-132 improved hemodynamics and inhibited the structural remodeling of the ventricle in mice with myocarditis, while BML largely blunted these effects. TUNEL staining and immunochemistry suggested that MG-132 exerts anti-apoptotic and anti-inflammatory effects against CVB3-induced myocardial injuries. BML attenuated the effects of MG-132 on anti-apoptosis and anti-inflammation. CONCLUSION MG-132 modulated apoptosis and inflammation, improved hemodynamics, and inhibited the structural remodeling of ventricles in a myocarditis mouse model via regulation of the AMPK signal pathway.
Collapse
Affiliation(s)
- Xin-Min Zhang
- The First Affiliated Hospital of Soochow University, Suzhou, 215006, China; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yue-Chun Li
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Peng Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Sheng Ye
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Shang-He Xie
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Wu-Jie Xia
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Jun-Hua Yang
- The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
20
|
Biswas AK, Acharyya S. Cancer-Associated Cachexia: A Systemic Consequence of Cancer Progression. ANNUAL REVIEW OF CANCER BIOLOGY 2020. [DOI: 10.1146/annurev-cancerbio-030419-033642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cancer is a life-threatening disease that has plagued humans for centuries. The vast majority of cancer-related mortality results from metastasis. Indeed, the invasive growth of metastatic cancer cells in vital organs causes fatal organ dysfunction, but metastasis-related deaths also result from cachexia, a debilitating wasting syndrome characterized by an involuntary loss of skeletal muscle mass and function. In fact, about 80% of metastatic cancer patients suffer from cachexia, which often renders them too weak to tolerate standard doses of anticancer therapies and makes them susceptible to death from cardiac and respiratory failure. The goals of this review are to highlight important findings that help explain how cancer-induced systemic changes drive the development of cachexia and to discuss unmet challenges and potential therapeutic strategies targeting cachexia to improve the quality of life and survival of cancer patients.
Collapse
Affiliation(s)
- Anup K. Biswas
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Swarnali Acharyya
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Pathology and Cell Biology and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
21
|
Chauhan AS, Zhuang L, Gan B. Spatial control of AMPK signaling at subcellular compartments. Crit Rev Biochem Mol Biol 2020; 55:17-32. [PMID: 32069425 DOI: 10.1080/10409238.2020.1727840] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AMP-activated protein kinase (AMPK) is a master regulator of energy homeostasis that functions to restore the energy balance by phosphorylating its substrates during altered metabolic conditions. AMPK activity is tightly controlled by diverse regulators including its upstream kinases LKB1 and CaMKK2. Recent studies have also identified the localization of AMPK at different intracellular compartments as another key mechanism for regulating AMPK signaling in response to specific stimuli. This review discusses the AMPK signaling associated with different subcellular compartments, including lysosomes, endoplasmic reticulum, mitochondria, Golgi apparatus, nucleus, and cell junctions. Because altered AMPK signaling is associated with various pathologic conditions including cancer, targeting AMPK signaling in different subcellular compartments may present attractive therapeutic approaches for treatment of disease.
Collapse
Affiliation(s)
- Anoop Singh Chauhan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Li Zhuang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Health Graduate School of Biomedical Sciences, The University of Texas MD Anderson UT, Houston, TX, USA
| |
Collapse
|
22
|
Steinberg GR, Carling D. AMP-activated protein kinase: the current landscape for drug development. Nat Rev Drug Discov 2020; 18:527-551. [PMID: 30867601 DOI: 10.1038/s41573-019-0019-2] [Citation(s) in RCA: 401] [Impact Index Per Article: 100.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the discovery of AMP-activated protein kinase (AMPK) as a central regulator of energy homeostasis, many exciting insights into its structure, regulation and physiological roles have been revealed. While exercise, caloric restriction, metformin and many natural products increase AMPK activity and exert a multitude of health benefits, developing direct activators of AMPK to elicit beneficial effects has been challenging. However, in recent years, direct AMPK activators have been identified and tested in preclinical models, and a small number have entered clinical trials. Despite these advances, which disease(s) represent the best indications for therapeutic AMPK activation and the long-term safety of such approaches remain to be established.
Collapse
Affiliation(s)
- Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| | - David Carling
- Cellular Stress Group, Medical Research Council London Institute of Medical Sciences, Hammersmith Hospital, Imperial College, London, UK
| |
Collapse
|
23
|
Vila IK, Park MK, Setijono SR, Yao Y, Kim H, Badin PM, Choi S, Narkar V, Choi SW, Chung J, Moro C, Song SJ, Song MS. A muscle-specific UBE2O/AMPKα2 axis promotes insulin resistance and metabolic syndrome in obesity. JCI Insight 2019; 4:128269. [PMID: 31292296 DOI: 10.1172/jci.insight.128269] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/24/2019] [Indexed: 02/06/2023] Open
Abstract
Ubiquitin-conjugating enzyme E2O (UBE2O) is expressed preferentially in metabolic tissues, but its role in regulating energy homeostasis has yet to be defined. Here we find that UBE2O is markedly upregulated in obese subjects with type 2 diabetes and show that whole-body disruption of Ube2o in mouse models in vivo results in improved metabolic profiles and resistance to high-fat diet-induced (HFD-induced) obesity and metabolic syndrome. With no difference in nutrient intake, Ube2o-/- mice were leaner and expended more energy than WT mice. In addition, hyperinsulinemic-euglycemic clamp studies revealed that Ube2o-/- mice were profoundly insulin sensitive. Through phenotype analysis of HFD mice with muscle-, fat-, or liver-specific knockout of Ube2o, we further identified UBE2O as an essential regulator of glucose and lipid metabolism programs in skeletal muscle, but not in adipose or liver tissue. Mechanistically, UBE2O acted as a ubiquitin ligase and targeted AMPKα2 for ubiquitin-dependent degradation in skeletal muscle; further, muscle-specific heterozygous knockout of Prkaa2 ablated UBE2O-controlled metabolic processes. These results identify the UBE2O/AMPKα2 axis as both a potent regulator of metabolic homeostasis in skeletal muscle and a therapeutic target in the treatment of diabetes and metabolic disorders.
Collapse
Affiliation(s)
- Isabelle K Vila
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mi Kyung Park
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Yixin Yao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hyejin Kim
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Pierre-Marie Badin
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Sekyu Choi
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Vihang Narkar
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Sung-Woo Choi
- Department of Orthopedic Surgery, Soonchunhyang University College of Medicine, Seoul, South Korea
| | - Jongkyeong Chung
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Cedric Moro
- Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, UMR 1048, Inserm, Toulouse, France
| | - Su Jung Song
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan-si, South Korea
| | - Min Sup Song
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
24
|
Li Q, Wang Y, Wu S, Zhou Z, Ding X, Shi R, Thorne RF, Zhang XD, Hu W, Wu M. CircACC1 Regulates Assembly and Activation of AMPK Complex under Metabolic Stress. Cell Metab 2019; 30:157-173.e7. [PMID: 31155494 DOI: 10.1016/j.cmet.2019.05.009] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/11/2019] [Accepted: 05/06/2019] [Indexed: 12/15/2022]
Abstract
We report that circACC1, a circular RNA derived from human ACC1, plays a critical role in cellular responses to metabolic stress. CircACC1 is preferentially produced over ACC1 in response to serum deprivation by the transcription factor c-Jun. It functions to stabilize and promote the enzymatic activity of the AMPK holoenzyme by forming a ternary complex with the regulatory β and γ subunits. The cellular levels of circACC1 modulate both fatty acid β-oxidation and glycolysis, resulting in profound changes in cellular lipid storage. In a tumor xenograft model, silencing or enforced expression of circACC1 resulted in growth inhibition and enhancement, respectively. Moreover, increased AMPK activation in colorectal cancer tissues was frequently associated with elevated circACC1 expression. We conclude that circACC1 serves as an economic means to elicit AMPK activation and moreover propose that cancer cells exploit circACC1 during metabolic reprogramming.
Collapse
Affiliation(s)
- Qidong Li
- The Chinese Academy of Sciences (CAS), Key Laboratory of Innate Immunity & Chronic Disease, CAS Center for Excellence in Cell & Molecular Biology, School of Life Sciences, University of Science & Technology of China, Hefei 230026, China
| | - Yichun Wang
- The Chinese Academy of Sciences (CAS), Key Laboratory of Innate Immunity & Chronic Disease, CAS Center for Excellence in Cell & Molecular Biology, School of Life Sciences, University of Science & Technology of China, Hefei 230026, China
| | - Shuang Wu
- Department of Immunology, Anhui Medical University, Hefei 230027, China
| | - Zhong Zhou
- The Chinese Academy of Sciences (CAS), Key Laboratory of Innate Immunity & Chronic Disease, CAS Center for Excellence in Cell & Molecular Biology, School of Life Sciences, University of Science & Technology of China, Hefei 230026, China
| | - Xiaojuan Ding
- Department of Immunology, Anhui Medical University, Hefei 230027, China
| | - Ronghua Shi
- The Chinese Academy of Sciences (CAS), Key Laboratory of Innate Immunity & Chronic Disease, CAS Center for Excellence in Cell & Molecular Biology, School of Life Sciences, University of Science & Technology of China, Hefei 230026, China
| | - Rick F Thorne
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou 450003, China; Key Laboratory of Stem Cell Differentiation & Modification, School of Clinical Medicine, Henan University, Zhengzhou 450003, China; School of Environmental & Life Sciences, University of Newcastle, Newcastle, NSW 2258, Australia
| | - Xu Dong Zhang
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou 450003, China; Key Laboratory of Stem Cell Differentiation & Modification, School of Clinical Medicine, Henan University, Zhengzhou 450003, China; School of Biomedical Sciences & Pharmacy, University of Newcastle, Newcastle, NSW 2308, Australia
| | - Wanglai Hu
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou 450003, China; Key Laboratory of Stem Cell Differentiation & Modification, School of Clinical Medicine, Henan University, Zhengzhou 450003, China; Department of Immunology, Anhui Medical University, Hefei 230027, China.
| | - Mian Wu
- The Chinese Academy of Sciences (CAS), Key Laboratory of Innate Immunity & Chronic Disease, CAS Center for Excellence in Cell & Molecular Biology, School of Life Sciences, University of Science & Technology of China, Hefei 230026, China; Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou 450003, China; Key Laboratory of Stem Cell Differentiation & Modification, School of Clinical Medicine, Henan University, Zhengzhou 450003, China.
| |
Collapse
|
25
|
Slayton M, Gupta A, Balakrishnan B, Puri V. CIDE Proteins in Human Health and Disease. Cells 2019; 8:cells8030238. [PMID: 30871156 PMCID: PMC6468517 DOI: 10.3390/cells8030238] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/07/2019] [Accepted: 03/09/2019] [Indexed: 12/14/2022] Open
Abstract
Cell death-Inducing DNA Fragmentation Factor Alpha (DFFA)-like Effector (CIDE) proteins have emerged as lipid droplet-associated proteins that regulate fat metabolism. There are three members in the CIDE protein family—CIDEA, CIDEB, and CIDEC (also known as fat-specific protein 27 (FSP27)). CIDEA and FSP27 are primarily expressed in adipose tissue, while CIDEB is expressed in the liver. Originally, based upon their homology with DNA fragmentation factors, these proteins were identified as apoptotic proteins. However, recent studies have changed the perception of these proteins, redefining them as regulators of lipid droplet dynamics and fat metabolism, which contribute to a healthy metabolic phenotype in humans. Despite various studies in humans and gene-targeting studies in mice, the physiological roles of CIDE proteins remains elusive. This review will summarize the known physiological role and metabolic pathways regulated by the CIDE proteins in human health and disease.
Collapse
Affiliation(s)
- Mark Slayton
- Department of Biomedical Sciences and Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH 45701, USA.
| | - Abhishek Gupta
- Department of Biomedical Sciences and Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH 45701, USA.
| | - Bijinu Balakrishnan
- Department of Biomedical Sciences and Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH 45701, USA.
| | - Vishwajeet Puri
- Department of Biomedical Sciences and Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH 45701, USA.
| |
Collapse
|
26
|
Kwon E, Li X, Deng Y, Chang HW, Kim DY. AMPK is down-regulated by the CRL4A-CRBN axis through the polyubiquitination of AMPKα isoforms. FASEB J 2019; 33:6539-6550. [PMID: 30807229 DOI: 10.1096/fj.201801766rrr] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
As a master regulator for metabolic and energy homeostasis, AMPK controls the activity of metabolic enzymes and transcription factors in response to cellular ATP status. AMPK has been thus recognized as a main target for the regulation of cellular energy metabolism. Here, we report that AMPK can be down-regulated by the cullin-RING ubiquitin E3 ligase 4A (CRL4A) with cereblon (CRBN). CRL4A interacted with AMPK holoenzymes and mediated AMPKα-specific polyubiquitination for its proteasomal degradation through non-K48 polyubiquitin linkages. In the ubiquitination system, CRBN was required for efficient polyubiquitination of AMPKα subunits. Consistently, polyubiquitination of AMPKα subunits was reduced by inhibitors of CRL4A-CRBN. Physiologic function of AMPK down-regulation by CRL4-CRBN was also confirmed using mouse bone marrow-derived mast cells (BMMCs). The inactivation of CRL4A-CRBN in BMMC increased AMPK stability and suppressed secretion of allergic mediators via AMPK activation followed by MAPK inhibition. In addition, CRBN knockout of BMMC also decreased allergic responses in mice. Our results suggest that the CRL4A-CRBN axis could be a target for the regulation of AMPK-dependent responses.-Kwon, E., Li, X., Deng, Y., Chang, H. W., Kim, D. Y. AMPK is down-regulated by the CRL4A-CRBN axis through the polyubiquitination of AMPKα isoforms.
Collapse
Affiliation(s)
- Eunju Kwon
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | - Xian Li
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | - Yifeng Deng
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | - Hyeun Wook Chang
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | - Dong Young Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
27
|
Sun X, Wang Y, Loor JJ, Bucktrout R, Shu X, Jia H, Dong J, Zuo R, Liu G, Li X, Li X. High expression of cell death-inducing DFFA-like effector a (CIDEA) promotes milk fat content in dairy cows with clinical ketosis. J Dairy Sci 2018; 102:1682-1692. [PMID: 30594378 DOI: 10.3168/jds.2018-15439] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/22/2018] [Indexed: 01/11/2023]
Abstract
High blood concentrations of nonesterified fatty acids (NEFA) during ketosis represent a source of fatty acids for milk fat synthesis and explain the increase in milk fat content in ketotic cows. Cell death-inducing DFFA-like effector a (CIDEA) is a lipid droplet coat protein with important roles in the regulation of milk fat synthesis and secretion in mice. Whether ketosis alters the expression of CIDEA in mammary gland tissue and the extent to which it may contribute to regulation of milk fat synthesis and secretion are unknown. Mammary gland tissue and blood samples were collected from healthy (n = 15) and clinically ketotic (n = 15) cows. Mammary epithelial cells isolated from cows were infected with CIDEA overexpression adenovirus for 48 h, treated with 0, 0.3, 0.6, or 1.2 mM NEFA for 24 h, or infected with CIDEA-silencing adenovirus for 48 h and treated with 1.2 mM NEFA for 24 h. Serum concentrations of NEFA and β-hydroxybutyrate were greater in cows with clinical ketosis, and milk production and dry matter intake were lower in cows with clinical ketosis. However, compared with healthy cows, the content of milk fat of cows with clinical ketosis was greater. Compared with healthy cows, abundance of mRNA and protein of CIDEA, fatty acid synthase (FASN), acetyl-coA carboxylase 1 (ACACA), butyrophilin (BTN1A1), and xanthine dehydrogenase (XDH) was greater in mammary tissue of cows with clinical ketosis. Overexpression of CIDEA in cultured mammary epithelial cells increased the abundance of FASN, ACACA, XDH, and BTN1A1, and increased triacylglycerol (TAG) content in mammary epithelial cells. Exogenous NEFA increased the abundance of CIDEA, FASN, ACACA, XDH, and BTN1A1, and increased TAG content in mammary epithelial cells. Importantly, knockdown of CIDEA reversed the upregulation of FASN, ACACA, XDH, and BTN1A1 abundance and TAG content induced by NEFA treatment. Overall, these data suggest that high levels of NEFA stimulate the expression of CIDEA and enhance de novo fatty acid synthesis and milk fat secretion. As such, these mechanisms explain in part the elevation of milk fat content in dairy cows with clinical ketosis.
Collapse
Affiliation(s)
- Xudong Sun
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Yazhe Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Ryan Bucktrout
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Xin Shu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Hongdou Jia
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Jihong Dong
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Rankun Zuo
- College of Veterinary Medicine, Qingdao Agriculture University, Qingdao, 266109, Shandong, China
| | - Guowen Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Xiaobing Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Xinwei Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China.
| |
Collapse
|
28
|
Yan Y, Zhou XE, Xu HE, Melcher K. Structure and Physiological Regulation of AMPK. Int J Mol Sci 2018; 19:ijms19113534. [PMID: 30423971 PMCID: PMC6274893 DOI: 10.3390/ijms19113534] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 01/26/2023] Open
Abstract
Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a heterotrimeric αβγ complex that functions as a central regulator of energy homeostasis. Energy stress manifests as a drop in the ratio of adenosine triphosphate (ATP) to AMP/ADP, which activates AMPK’s kinase activity, allowing it to upregulate ATP-generating catabolic pathways and to reduce energy-consuming catabolic pathways and cellular programs. AMPK senses the cellular energy state by competitive binding of the three adenine nucleotides AMP, ADP, and ATP to three sites in its γ subunit, each, which in turn modulates the activity of AMPK’s kinase domain in its α subunit. Our current understanding of adenine nucleotide binding and the mechanisms by which differential adenine nucleotide occupancies activate or inhibit AMPK activity has been largely informed by crystal structures of AMPK in different activity states. Here we provide an overview of AMPK structures, and how these structures, in combination with biochemical, biophysical, and mutational analyses provide insights into the mechanisms of adenine nucleotide binding and AMPK activity modulation.
Collapse
Affiliation(s)
- Yan Yan
- Center for Cancer and Cell Biology, Van Andel Research Institute, 333 Bostwick Ave. N.E., Grand Rapids, MI 49503, USA.
- VARI/SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - X Edward Zhou
- Center for Cancer and Cell Biology, Van Andel Research Institute, 333 Bostwick Ave. N.E., Grand Rapids, MI 49503, USA.
| | - H Eric Xu
- Center for Cancer and Cell Biology, Van Andel Research Institute, 333 Bostwick Ave. N.E., Grand Rapids, MI 49503, USA.
- VARI/SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Karsten Melcher
- Center for Cancer and Cell Biology, Van Andel Research Institute, 333 Bostwick Ave. N.E., Grand Rapids, MI 49503, USA.
| |
Collapse
|
29
|
Zhou L, Yu M, Arshad M, Wang W, Lu Y, Gong J, Gu Y, Li P, Xu L. Coordination Among Lipid Droplets, Peroxisomes, and Mitochondria Regulates Energy Expenditure Through the CIDE-ATGL-PPARα Pathway in Adipocytes. Diabetes 2018; 67:1935-1948. [PMID: 29986925 DOI: 10.2337/db17-1452] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 06/29/2018] [Indexed: 11/13/2022]
Abstract
Metabolic homeostasis is maintained by an interplay among tissues, organs, intracellular organelles, and molecules. Cidea and Cidec are lipid droplet (LD)-associated proteins that promote lipid storage in brown adipose tissue (BAT) and white adipose tissue (WAT). Using ob/ob/Cidea-/- , ob/ob/Cidec-/- , and ob/ob/Cidea-/-/Cidec-/- mouse models and CIDE-deficient cells, we studied metabolic regulation during severe obesity to identify ways to maintain metabolic homeostasis and promote antiobesity effects. The phenotype of ob/ob/Cidea-/- mice was similar to that of ob/ob mice in terms of serum parameters, adipose tissues, lipid storage, and gene expression. Typical lipodystrophy accompanied by insulin resistance occurred in ob/ob/Cidec-/- mice, with ectopic storage of lipids in the BAT and liver. Interestingly, double deficiency of Cidea and Cidec activated both WAT and BAT to consume more energy and to increase insulin sensitivity compared with their behavior in the other three mouse models. Increased lipolysis, which occurred on the LD surfaces and released fatty acids, led to activated β-oxidation and oxidative phosphorylation in peroxisomes and mitochondria in CIDE-deficient adipocytes. The coordination among LDs, peroxisomes, and mitochondria was regulated by adipocyte triglyceride lipase (ATGL)-peroxisome proliferator-activated receptor α (PPARα). Double deficiency of Cidea and Cidec activated energy consumption in both WAT and BAT, which provided new insights into therapeutic approaches for obesity and diabetes.
Collapse
Affiliation(s)
- Linkang Zhou
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Miao Yu
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Muhammad Arshad
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan
| | - Wenmin Wang
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Ye Lu
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Jingyi Gong
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Yangnan Gu
- Center for Plant Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Peng Li
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Li Xu
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
| |
Collapse
|
30
|
Abstract
AMP-activated protein kinase (AMPK) is the main cellular energy sensor. Activated following a depletion of cellular energy stores, AMPK will restore the energy homoeostasis by increasing energy production and limiting energy waste. At a central level, the AMPK pathway will integrate peripheral signals (mostly hormones and metabolites) through neuronal networks. Hypothalamic AMPK is directly implicated in feeding behaviour, brown adipose tissue (BAT) thermogenesis and browning of white adipose tissue (WAT). It also participates in other metabolic functions: glucose and muscle metabolisms, as well as hepatic function. Numerous anti-obesity and/or antidiabetic agents, such as nicotine, metformin and liraglutide, are known to induce their effects through a modulation of AMPK pathway, either at central or at peripheral levels. Moreover, the weight-gaining side effects of antipsychotic drugs, such as olanzapine, are also mediated by hypothalamic AMPK. Therefore, considering hypothalamic AMPK as a therapeutic target in metabolic diseases appears as an interesting strategy due to its implication in feeding and energy expenditure, the two sides of the energy balance equation.
Collapse
Affiliation(s)
- Miguel López
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| |
Collapse
|
31
|
Lee MS, Han HJ, Han SY, Kim IY, Chae S, Lee CS, Kim SE, Yoon SG, Park JW, Kim JH, Shin S, Jeong M, Ko A, Lee HY, Oh KJ, Lee YH, Bae KH, Koo SH, Kim JW, Seong JK, Hwang D, Song J. Loss of the E3 ubiquitin ligase MKRN1 represses diet-induced metabolic syndrome through AMPK activation. Nat Commun 2018; 9:3404. [PMID: 30143610 PMCID: PMC6109074 DOI: 10.1038/s41467-018-05721-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 07/19/2018] [Indexed: 01/05/2023] Open
Abstract
AMP-activated protein kinase (AMPK) plays a key role in controlling energy metabolism in response to physiological and nutritional status. Although AMPK activation has been proposed as a promising molecular target for treating obesity and its related comorbidities, the use of pharmacological AMPK activators has been met with contradictory therapeutic challenges. Here we show a regulatory mechanism for AMPK through its ubiquitination and degradation by the E3 ubiquitin ligase makorin ring finger protein 1 (MKRN1). MKRN1 depletion promotes glucose consumption and suppresses lipid accumulation due to AMPK stabilisation and activation. Accordingly, MKRN1-null mice show chronic AMPK activation in both liver and adipose tissue, resulting in significant suppression of diet-induced metabolic syndrome. We demonstrate also its therapeutic effect by administering shRNA targeting MKRN1 into obese mice that reverses non-alcoholic fatty liver disease. We suggest that ubiquitin-dependent AMPK degradation represents a target therapeutic strategy for metabolic disorders. AMPK activation has been suggested as treatment for obesity and its complications. Here the authors show that the ubiquitin ligase MKRN1 binds to AMPK and mediates its ubiquitination and degradation. Loss of MKRN1 leads to AMPK activation, increased glucose consumption and decreased lipid accumulation.
Collapse
Affiliation(s)
- Min-Sik Lee
- Harvard Medical School, Boston Children's Hospital, 3 Blackfan Circle CLS-16060.2, Boston, MA, 02115, USA
| | - Hyun-Ji Han
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Su Yeon Han
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Il Young Kim
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science and BK21 Program for Creative Veterinary Science and Research, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.,Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, 08826, Republic of Korea
| | - Sehyun Chae
- Center for Plant Aging Research, Institute for Basic Science, and Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Choong-Sil Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sung Eun Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seul Gi Yoon
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, 08826, Republic of Korea
| | - Jun-Won Park
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, 08826, Republic of Korea
| | - Jung-Hoon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Soyeon Shin
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Manhyung Jeong
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Aram Ko
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Ho-Young Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Yun-Hee Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Seung-Hoi Koo
- Division of Life Sciences, College of Life Sciences & Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Jea-Woo Kim
- Department of Biochemistry and Molecular Biology, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science and BK21 Program for Creative Veterinary Science and Research, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.,Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, 08826, Republic of Korea
| | - Daehee Hwang
- Center for Plant Aging Research, Institute for Basic Science, and Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Jaewhan Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
32
|
Desjardins EM, Steinberg GR. Emerging Role of AMPK in Brown and Beige Adipose Tissue (BAT): Implications for Obesity, Insulin Resistance, and Type 2 Diabetes. Curr Diab Rep 2018; 18:80. [PMID: 30120579 DOI: 10.1007/s11892-018-1049-6] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The global prevalence of type 2 diabetes (T2D) is escalating at alarming rates, demanding the development of additional classes of therapeutics to further reduce the burden of disease. Recent studies have indicated that increasing the metabolic activity of brown and beige adipose tissue may represent a novel means to reduce circulating glucose and lipids in people with T2D. The AMP-activated protein kinase (AMPK) is a cellular energy sensor that has recently been demonstrated to be important in potentially regulating the metabolic activity of brown and beige adipose tissue. The goal of this review is to summarize recent work describing the role of AMPK in brown and beige adipose tissue, focusing on its role in adipogenesis and non-shivering thermogenesis. RECENT FINDINGS Ablation of AMPK in mouse adipocytes results in cold intolerance, a reduction in non-shivering thermogenesis in brown adipose tissue (BAT), and the development of non-alcoholic fatty liver disease (NAFLD) and insulin resistance; effects associated with a defect in mitochondrial specific autophagy (mitophagy) within BAT. The effects of a β3-adrenergic agonist on the induction of BAT thermogenesis and the browning of white adipose tissue (WAT) are also blunted in mice lacking adipose tissue AMPK. A specific AMPK activator, A-769662, also results in the activation of BAT and the browning of WAT, effects which may involve demethylation of the PR domain containing 16 (Prdm16) promoter region, which is important for BAT development. AMPK plays an important role in the development and maintenance of brown and beige adipose tissue. Adipose tissue AMPK is reduced in people with insulin resistance, consistent with findings that mice lacking adipocyte AMPK develop greater NAFLD and insulin resistance. These data suggest that pharmacologically targeting adipose tissue AMPK may represent a promising strategy to enhance energy expenditure and reduce circulating glucose and lipids, which may be effective for the treatment of NAFLD and T2D.
Collapse
Affiliation(s)
- Eric M Desjardins
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8N 3Z5, Canada
| | - Gregory R Steinberg
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8N 3Z5, Canada.
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8N 3Z5, Canada.
| |
Collapse
|
33
|
Cha JH, Yang WH, Xia W, Wei Y, Chan LC, Lim SO, Li CW, Kim T, Chang SS, Lee HH, Hsu JL, Wang HL, Kuo CW, Chang WC, Hadad S, Purdie CA, McCoy AM, Cai S, Tu Y, Litton JK, Mittendorf EA, Moulder SL, Symmans WF, Thompson AM, Piwnica-Worms H, Chen CH, Khoo KH, Hung MC. Metformin Promotes Antitumor Immunity via Endoplasmic-Reticulum-Associated Degradation of PD-L1. Mol Cell 2018; 71:606-620.e7. [PMID: 30118680 PMCID: PMC6786495 DOI: 10.1016/j.molcel.2018.07.030] [Citation(s) in RCA: 497] [Impact Index Per Article: 82.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/26/2018] [Accepted: 07/23/2018] [Indexed: 11/17/2022]
Abstract
Metformin has been reported to possess antitumor activity and maintain high cytotoxic T lymphocyte (CTL) immune surveillance. However, the functions and detailed mechanisms of metformin's role in cancer immunity are not fully understood. Here, we show that metformin increases CTL activity by reducing the stability and membrane localization of programmed death ligand-1 (PD-L1). Furthermore, we discover that AMP-activated protein kinase (AMPK) activated by metformin directly phosphorylates S195 of PD-L1. S195 phosphorylation induces abnormal PD-L1 glycosylation, resulting in its ER accumulation and ER-associated protein degradation (ERAD). Consistently, tumor tissues from metformin-treated breast cancer patients exhibit reduced PD-L1 levels with AMPK activation. Blocking the inhibitory signal of PD-L1 by metformin enhances CTL activity against cancer cells. Our findings identify a new regulatory mechanism of PD-L1 expression through the ERAD pathway and suggest that the metformin-CTLA4 blockade combination has the potential to increase the efficacy of immunotherapy.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/genetics
- AMP-Activated Protein Kinases/immunology
- Animals
- Antineoplastic Agents/pharmacology
- B7-H1 Antigen/genetics
- B7-H1 Antigen/immunology
- CTLA-4 Antigen/genetics
- CTLA-4 Antigen/immunology
- Cell Line, Tumor
- Endoplasmic Reticulum/drug effects
- Endoplasmic Reticulum/genetics
- Endoplasmic Reticulum/metabolism
- Endoplasmic Reticulum-Associated Degradation
- Epithelial Cells/cytology
- Epithelial Cells/drug effects
- Epithelial Cells/immunology
- Female
- Gene Expression Regulation, Neoplastic
- Glycosylation
- Humans
- Hypoglycemic Agents/pharmacology
- Mammary Glands, Human/cytology
- Mammary Glands, Human/drug effects
- Mammary Glands, Human/immunology
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/genetics
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Metformin/pharmacology
- Mice
- Mice, Inbred NOD
- Phosphorylation
- Serine/metabolism
- T-Lymphocytes, Cytotoxic/cytology
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Jong-Ho Cha
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Wen-Hao Yang
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Weiya Xia
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yongkun Wei
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Li-Chuan Chan
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Seung-Oe Lim
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chia-Wei Li
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Taewan Kim
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shih-Shin Chang
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Heng-Huan Lee
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jennifer L Hsu
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan; Department of Biotechnology, Asia University, Taichung 413, Taiwan
| | - Hung-Ling Wang
- Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan
| | - Chu-Wei Kuo
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Wei-Chao Chang
- Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan; Genomics Research Center, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Sirwan Hadad
- Department of Surgery, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Colin A Purdie
- Department of Pathology, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Aaron M McCoy
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shirong Cai
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yizheng Tu
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jennifer K Litton
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elizabeth A Mittendorf
- Department of Breast Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Stacy L Moulder
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - William F Symmans
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alastair M Thompson
- Department of Breast Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Helen Piwnica-Worms
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Chung-Hsuan Chen
- Genomics Research Center, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Kay-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, TX 77030, USA; Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan; Department of Biotechnology, Asia University, Taichung 413, Taiwan.
| |
Collapse
|
34
|
Sui D, Zhou H, Wang F, Zhong M, Zhang W, Ti Y. Cell death-inducing DFF45-like effector C gene silencing alleviates pulmonary vascular remodeling in a type 2 diabetic rat model. J Diabetes Investig 2018; 9:741-752. [PMID: 29078040 PMCID: PMC6031506 DOI: 10.1111/jdi.12768] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/06/2017] [Accepted: 10/23/2017] [Indexed: 12/18/2022] Open
Abstract
AIMS/INTRODUCTION Cell death-inducing DFF45-like effector C (CIDEC) was proven to be closely associated with the development of insulin resistance and metabolic syndrome. We aimed to investigate whether CIDEC gene silencing could alleviate pulmonary vascular remodeling in a type 2 diabetes rat model. MATERIALS AND METHODS We built a type 2 diabetes rat model. An adenovirus harboring CIDEC small interfering ribonucleic acid was then injected into the jugular vein to silence the CIDEC gene. After hematoxylin-eosin and Sirius red staining, we detected indexes of the pulmonary arterioles remodeling. Immunohistochemical staining of proliferating cell nuclear antigen was used to evaluate the pulmonary arterial smooth muscle cell proliferation. Apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling reaction and western blotting. The levels of signaling pathway proteins expression were measured by western blotting analyses. RESULTS Histological analysis of the pulmonary artery showed that the thickness of the adventitia and medial layer increased notably in type 2 diabetes rats. Immunohistochemistry showed that more proliferating cell nuclear antigen-positive pulmonary arterial smooth muscle cells could be seen in type 2 diabetes rats; and after CIDEC gene silencing, proliferating cell nuclear antigen positive cells decreased accordingly. Cleaved caspase-3 and cleaved poly (adenosine diphosphate-ribose) polymerase measured by western blotting showed increased apoptosis with overexpressed CIDEC in diabetes. Terminal deoxynucleotidyl transferase dUTP nick end labeling reaction showed that the apoptosis mainly occurred in endothelial cells. Western blotting analysis showed CIDEC overexpression in rats with diabetes, and phosphorylated adenosine 5' monophosphate-activated protein kinase-α expression was significantly decreased. After CIDEC gene silencing, the expression of phosphorylated adenosine 5' monophosphate-activated protein kinase-α was upregulated. CONCLUSIONS The CIDEC/5' monophosphate-activated protein kinase signaling pathway could be a potential therapeutic candidate against pulmonary vascular diseases in type 2 diabetes patients.
Collapse
Affiliation(s)
- Dong‐xin Sui
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of Education and Chinese Ministry of Health, and The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineDepartment of CardiologyQilu Hospital of Shandong UniversityJinanShandongChina
- Department of Respirationthe Second Hospital of Shandong UniversityJinanShandongChina
| | - Hui‐min Zhou
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of Education and Chinese Ministry of Health, and The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineDepartment of CardiologyQilu Hospital of Shandong UniversityJinanShandongChina
| | - Feng Wang
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of Education and Chinese Ministry of Health, and The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineDepartment of CardiologyQilu Hospital of Shandong UniversityJinanShandongChina
| | - Ming Zhong
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of Education and Chinese Ministry of Health, and The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineDepartment of CardiologyQilu Hospital of Shandong UniversityJinanShandongChina
| | - Wei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of Education and Chinese Ministry of Health, and The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineDepartment of CardiologyQilu Hospital of Shandong UniversityJinanShandongChina
| | - Yun Ti
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of Education and Chinese Ministry of Health, and The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineDepartment of CardiologyQilu Hospital of Shandong UniversityJinanShandongChina
| |
Collapse
|
35
|
Jamsheer K M, Shukla BN, Jindal S, Gopan N, Mannully CT, Laxmi A. The FCS-like zinc finger scaffold of the kinase SnRK1 is formed by the coordinated actions of the FLZ domain and intrinsically disordered regions. J Biol Chem 2018; 293:13134-13150. [PMID: 29945970 DOI: 10.1074/jbc.ra118.002073] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/05/2018] [Indexed: 11/06/2022] Open
Abstract
The SNF1-related protein kinase 1 (SnRK1) is a heterotrimeric eukaryotic kinase that interacts with diverse proteins and regulates their activity in response to starvation and stress signals. Recently, the FCS-like zinc finger (FLZ) proteins were identified as a potential scaffold for SnRK1 in plants. However, the evolutionary and mechanistic aspect of this complex formation is currently unknown. Here, in silico analyses predicted that FLZ proteins possess conserved intrinsically disordered regions (IDRs) with a propensity for protein binding in the N and C termini across the plant lineage. We observed that the Arabidopsis FLZ proteins promiscuously interact with SnRK1 subunits, which formed different isoenzyme complexes. The FLZ domain was essential for mediating the interaction with SnRK1α subunits, whereas the IDRs in the N termini facilitated interactions with the β and βγ subunits of SnRK1. Furthermore, the IDRs in the N termini were important for mediating dimerization of different FLZ proteins. Of note, the interaction of FLZ with SnRK1 was confined to cytoplasmic foci, which colocalized with the endoplasmic reticulum. An evolutionary analysis revealed that in general, the IDR-rich regions are under more relaxed selection than the FLZ domain. In summary, the findings in our study reveal the structural details, origin, and evolution of a land plant-specific scaffold of SnRK1 formed by the coordinated actions of IDRs and structured regions in the FLZ proteins. We propose that the FLZ protein complex might be involved in providing flexibility, thus enhancing the binding repertoire of the SnRK1 hub in land plants.
Collapse
Affiliation(s)
- Muhammed Jamsheer K
- From the National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067 and
| | - Brihaspati N Shukla
- From the National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067 and
| | - Sunita Jindal
- From the National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067 and
| | - Nandu Gopan
- the Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru-560064, India
| | | | - Ashverya Laxmi
- From the National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067 and
| |
Collapse
|
36
|
Mishra R, Upadhyay A, Prajapati VK, Mishra A. Proteasome-mediated proteostasis: Novel medicinal and pharmacological strategies for diseases. Med Res Rev 2018; 38:1916-1973. [DOI: 10.1002/med.21502] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/13/2018] [Accepted: 04/04/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Ribhav Mishra
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan India
| | - Arun Upadhyay
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan India
| | - Vijay Kumar Prajapati
- Department of Biochemistry; School of Life Sciences; Central University of Rajasthan; Rajasthan India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan India
| |
Collapse
|
37
|
Abstract
Mammalian AMP-activated protein kinase (AMPK) is a Ser/Thr protein kinase that acts as a crucial energy sensor in the cell. Since AMPK plays a key role in a multitude of different pathways in the cell, major efforts have been concentrated to elucidate its signaling network, mainly by the identification of AMPK downstream targets. In this chapter we describe a yeast two-hybrid method for the direct evaluation of the interaction between an AMPK subunit and putative substrates.
Collapse
Affiliation(s)
- Pascual Sanz
- Instituto de Biomedicina de Valencia, CSIC and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain.
| | - Rosa Viana
- Instituto de Biomedicina de Valencia, CSIC and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Maria Adelaida Garcia-Gimeno
- Department of Biotecnología, Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural (ETSIAMN), University of Politécnica de Valencia, Valencia, Spain
| |
Collapse
|
38
|
Gao G, Chen FJ, Zhou L, Su L, Xu D, Xu L, Li P. Control of lipid droplet fusion and growth by CIDE family proteins. Biochim Biophys Acta Mol Cell Biol Lipids 2017. [DOI: 10.1016/j.bbalip.2017.06.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
39
|
Niopek K, Üstünel BE, Seitz S, Sakurai M, Zota A, Mattijssen F, Wang X, Sijmonsma T, Feuchter Y, Gail AM, Leuchs B, Niopek D, Staufer O, Brune M, Sticht C, Gretz N, Müller-Decker K, Hammes HP, Nawroth P, Fleming T, Conkright MD, Blüher M, Zeigerer A, Herzig S, Berriel Diaz M. A Hepatic GAbp-AMPK Axis Links Inflammatory Signaling to Systemic Vascular Damage. Cell Rep 2017; 20:1422-1434. [PMID: 28793265 DOI: 10.1016/j.celrep.2017.07.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/24/2017] [Accepted: 07/12/2017] [Indexed: 02/06/2023] Open
Abstract
Increased pro-inflammatory signaling is a hallmark of metabolic dysfunction in obesity and diabetes. Although both inflammatory and energy substrate handling processes represent critical layers of metabolic control, their molecular integration sites remain largely unknown. Here, we identify the heterodimerization interface between the α and β subunits of transcription factor GA-binding protein (GAbp) as a negative target of tumor necrosis factor alpha (TNF-α) signaling. TNF-α prevented GAbpα and β complex formation via reactive oxygen species (ROS), leading to the non-energy-dependent transcriptional inactivation of AMP-activated kinase (AMPK) β1, which was identified as a direct hepatic GAbp target. Impairment of AMPKβ1, in turn, elevated downstream cellular cholesterol biosynthesis, and hepatocyte-specific ablation of GAbpα induced systemic hypercholesterolemia and early macro-vascular lesion formation in mice. As GAbpα and AMPKβ1 levels were also found to correlate in obese human patients, the ROS-GAbp-AMPK pathway may represent a key component of a hepato-vascular axis in diabetic long-term complications.
Collapse
Affiliation(s)
- Katharina Niopek
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich and Technical University Munich, 85764 Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Bilgen Ekim Üstünel
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich and Technical University Munich, 85764 Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Susanne Seitz
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich and Technical University Munich, 85764 Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Minako Sakurai
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich and Technical University Munich, 85764 Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Annika Zota
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich and Technical University Munich, 85764 Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Frits Mattijssen
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich and Technical University Munich, 85764 Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Xiaoyue Wang
- Joint Division Molecular Metabolic Control, DKFZ-ZMBH Alliance and Network Aging Research, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Tjeerd Sijmonsma
- Joint Division Molecular Metabolic Control, DKFZ-ZMBH Alliance and Network Aging Research, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Yvonne Feuchter
- Joint Division Molecular Metabolic Control, DKFZ-ZMBH Alliance and Network Aging Research, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Anna M Gail
- Joint Division Molecular Metabolic Control, DKFZ-ZMBH Alliance and Network Aging Research, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Barbara Leuchs
- Division of Tumor Virology, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Dominik Niopek
- Division of Theoretical Bioinformatics (B080), German Cancer Research Center, 69120 Heidelberg, Germany; Department of Bioinformatics and Functional Genomics, Institute for Pharmacy and Biotechnology and BioQuant, University of Heidelberg, 69120 Heidelberg, Germany
| | - Oskar Staufer
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich and Technical University Munich, 85764 Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Maik Brune
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich and Technical University Munich, 85764 Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Carsten Sticht
- Medical Research Center, Klinikum Mannheim, 68167 Mannheim, Germany
| | - Norbert Gretz
- Medical Research Center, Klinikum Mannheim, 68167 Mannheim, Germany
| | - Karin Müller-Decker
- Core Facility Tumor Models, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Hans-Peter Hammes
- 5th Medical Department, University Medicine Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Peter Nawroth
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich and Technical University Munich, 85764 Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, 69120 Heidelberg, Germany; Department of Internal Medicine I and Clinical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany
| | - Thomas Fleming
- Department of Internal Medicine I and Clinical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany
| | - Michael D Conkright
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Anja Zeigerer
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich and Technical University Munich, 85764 Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich and Technical University Munich, 85764 Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, 69120 Heidelberg, Germany.
| | - Mauricio Berriel Diaz
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich and Technical University Munich, 85764 Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, 69120 Heidelberg, Germany.
| |
Collapse
|
40
|
Molecular mechanisms of appetite and obesity: a role for brain AMPK. Clin Sci (Lond) 2017; 130:1697-709. [PMID: 27555613 DOI: 10.1042/cs20160048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 07/07/2016] [Indexed: 01/15/2023]
Abstract
Feeding behaviour and energy storage are both crucial aspects of survival. Thus, it is of fundamental importance to understand the molecular mechanisms regulating these basic processes. The AMP-activated protein kinase (AMPK) has been revealed as one of the key molecules modulating energy homoeostasis. Indeed, AMPK appears to be essential for translating nutritional and energy requirements into generation of an adequate neuronal response, particularly in two areas of the brain, the hypothalamus and the hindbrain. Failure of this physiological response can lead to energy imbalance, ultimately with extreme consequences, such as leanness or obesity. Here, we will review the data that put brain AMPK in the spotlight as a regulator of appetite.
Collapse
|
41
|
Abstract
Adipose tissue represents a critical component in healthy energy homeostasis. It fulfills important roles in whole-body lipid handling, serves as the body's major energy storage compartment and insulation barrier, and secretes numerous endocrine mediators such as adipokines or lipokines. As a consequence, dysfunction of these processes in adipose tissue compartments is tightly linked to severe metabolic disorders, including obesity, metabolic syndrome, lipodystrophy, and cachexia. While numerous studies have addressed causes and consequences of obesity-related adipose tissue hypertrophy and hyperplasia for health, critical pathways and mechanisms in (involuntary) adipose tissue loss as well as its systemic metabolic consequences are far less understood. In this review, we discuss the current understanding of conditions of adipose tissue wasting and review microenvironmental determinants of adipocyte (dys)function in related pathophysiologies.
Collapse
Affiliation(s)
- Alexandros Vegiopoulos
- Junior Group Metabolism and Stem Cell Plasticity, German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
| | - Maria Rohm
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Stephan Herzig
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Joint Heidelberg-IDC Translational Diabetes Program Inner Medicine I, Neuherberg, Germany
| |
Collapse
|
42
|
López M. EJE PRIZE 2017: Hypothalamic AMPK: a golden target against obesity? Eur J Endocrinol 2017; 176:R235-R246. [PMID: 28232370 PMCID: PMC5425938 DOI: 10.1530/eje-16-0927] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/26/2017] [Accepted: 02/22/2017] [Indexed: 12/16/2022]
Abstract
AMP-activated protein kinase (AMPK) is a cellular gauge that is activated under conditions, such as low energy, increasing energy production and reducing energy waste. Centrally, the AMPK pathway is a canonical route regulating energy homeostasis, by integrating peripheral signals, such as hormones and metabolites, with neuronal networks. Current evidence links hypothalamic AMPK with feeding, brown adipose tissue (BAT) thermogenesis and browning of white adipose tissue (WAT), as well as muscle metabolism, hepatic function and glucose homeostasis. The relevance of these data is interesting from a therapeutic point of view as several agents with potential anti-obesity and/or antidiabetic effects, some currently in clinical use, such as nicotine, metformin and liraglutide are known to act through AMPK, either peripherally or centrally. Furthermore, the orexigenic and weight-gaining effects of the worldwide use of antipsychotic drugs (APDs), such as olanzapine, are also mediated by hypothalamic AMPK. Overall, this evidence makes hypothalamic AMPK signaling an interesting target for the drug development, with its potential for controlling both sides of the energy balance equation, namely feeding and energy expenditure through defined metabolic pathways.
Collapse
Affiliation(s)
- Miguel López
- Department of PhysiologyNeurObesity Group, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria and CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
- Correspondence should be addressed to M López;
| |
Collapse
|
43
|
He X, Li C, Ke R, Luo L, Huang D. Down-regulation of adenosine monophosphate–activated protein kinase activity: A driver of cancer. Tumour Biol 2017; 39:1010428317697576. [PMID: 28381161 DOI: 10.1177/1010428317697576] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adenosine monophosphate–activated protein kinase (AMPK), a serine/threonine protein kinase, is known as “intracellular energy sensor and regulator.” AMPK regulates multiple cellular processes including protein and lipid synthesis, cell proliferation, invasion, migration, and apoptosis. Moreover, AMPK plays a key role in the regulation of “Warburg effect” in cancer cells. AMPK activity is down-regulated in most tumor tissues compared with the corresponding adjacent paracancerous or normal tissues, indicating that the decline in AMPK activity is closely associated with the development and progression of cancer. Therefore, understanding the mechanism of AMPK deactivation during cancer progression is of pivotal importance as it may identify AMPK as a valid therapeutic target for cancer treatment. Here, we review the mechanisms by which AMPK is down-regulated in cancer.
Collapse
Affiliation(s)
- Xiaoling He
- Department of Gastroenterology and Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Cong Li
- Department of Gastroenterology and Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Rong Ke
- Department of Gastroenterology and Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lingyu Luo
- Department of Gastroenterology and Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Deqiang Huang
- Department of Gastroenterology and Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
44
|
Perdikari A, Kulenkampff E, Rudigier C, Neubauer H, Luippold G, Redemann N, Wolfrum C. A high-throughput, image-based screen to identify kinases involved in brown adipocyte development. Sci Signal 2017; 10:10/466/eaaf5357. [DOI: 10.1126/scisignal.aaf5357] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
45
|
Vila IK, Yao Y, Kim G, Xia W, Kim H, Kim SJ, Park MK, Hwang JP, González-Billalabeitia E, Hung MC, Song SJ, Song MS. A UBE2O-AMPKα2 Axis that Promotes Tumor Initiation and Progression Offers Opportunities for Therapy. Cancer Cell 2017; 31:208-224. [PMID: 28162974 PMCID: PMC5463996 DOI: 10.1016/j.ccell.2017.01.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 10/10/2016] [Accepted: 01/05/2017] [Indexed: 01/06/2023]
Abstract
UBE2O is localized in the 17q25 locus, which is known to be amplified in human cancers, but its role in tumorigenesis remains undefined. Here we show that Ube2o deletion in MMTV-PyVT or TRAMP mice profoundly impairs tumor initiation, growth, and metastasis, while switching off the metabolic reprogramming of tumor cells. Mechanistically, UBE2O specifically targets AMPKα2 for ubiquitination and degradation, and thereby promotes activation of the mTOR-HIF1α pathway. Notably, inactivation of AMPKα2, but not AMPKα1, abrogates the tumor attenuation caused by UBE2O loss, while treatment with rapamycin or inhibition of HIF1α ablates UBE2O-dependent tumor biology. Finally, pharmacological blockade of UBE2O inhibits tumorigenesis through the restoration of AMPKα2, suggesting the UBE2O-AMPKα2 axis as a potential cancer therapeutic target.
Collapse
Affiliation(s)
- Isabelle K Vila
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yixin Yao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Goeun Kim
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Republic of Korea
| | - Weiya Xia
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hyejin Kim
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sun-Joong Kim
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mi-Kyung Park
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - James P Hwang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung 404, Taiwan
| | - Su Jung Song
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Republic of Korea.
| | - Min Sup Song
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
46
|
van den Berg SM, van Dam AD, Rensen PCN, de Winther MPJ, Lutgens E. Immune Modulation of Brown(ing) Adipose Tissue in Obesity. Endocr Rev 2017; 38:46-68. [PMID: 27849358 DOI: 10.1210/er.2016-1066] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 11/14/2016] [Indexed: 12/13/2022]
Abstract
Obesity is associated with a variety of medical conditions such as type 2 diabetes and cardiovascular diseases and is therefore responsible for high morbidity and mortality rates. Increasing energy expenditure by brown adipose tissue (BAT) is a current novel strategy to reduce the excessive energy stores in obesity. Brown adipocytes burn energy to generate heat and are mainly activated upon cold exposure. As prolonged cold exposure is not a realistic therapy, researchers worldwide are searching for novel ways to activate BAT and/or induce beiging of white adipose tissue. Recently, the contribution of immune cells in the regulation of brown adipocyte activity and beiging of white adipose tissue has gained increased attention, with a prominent role for eosinophils and alternatively activated macrophages. This review discusses the rediscovery of BAT, presents an overview of modes of activation and differentiation of beige and brown adipocytes, and describes the recently discovered immunological pathways that are key in mediating brown/beige adipocyte development and function. Interventions in immunological pathways harbor the potential to provide novel strategies to increase beige and brown adipose tissue activity as a therapeutic target for obesity.
Collapse
Affiliation(s)
- Susan M van den Berg
- Department of Medical Biochemistry, Subdivision of Experimental Vascular Biology, Academic Medical Centre, University of Amsterdam, 1105AZ The Netherlands
| | - Andrea D van Dam
- Department of Medicine, Division of Endocrinology, and.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333ZA Leiden, The Netherlands; and
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, and.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333ZA Leiden, The Netherlands; and
| | - Menno P J de Winther
- Department of Medical Biochemistry, Subdivision of Experimental Vascular Biology, Academic Medical Centre, University of Amsterdam, 1105AZ The Netherlands.,Institute for Cardiovascular Prevention, Ludwig Maximilians University of Munich, 80539 Munich, Germany
| | - Esther Lutgens
- Department of Medical Biochemistry, Subdivision of Experimental Vascular Biology, Academic Medical Centre, University of Amsterdam, 1105AZ The Netherlands.,Institute for Cardiovascular Prevention, Ludwig Maximilians University of Munich, 80539 Munich, Germany
| |
Collapse
|
47
|
Profile of Peng Li. SCIENCE CHINA. LIFE SCIENCES 2017; 60:44-45. [PMID: 27975163 DOI: 10.1007/s11427-016-0323-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
|
48
|
Fischer AW, Shabalina IG, Mattsson CL, Abreu-Vieira G, Cannon B, Nedergaard J, Petrovic N. UCP1 inhibition in Cidea-overexpressing mice is physiologically counteracted by brown adipose tissue hyperrecruitment. Am J Physiol Endocrinol Metab 2017; 312:E72-E87. [PMID: 27923808 DOI: 10.1152/ajpendo.00284.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 12/21/2022]
Abstract
Cidea is a gene highly expressed in thermogenesis-competent (UCP1-containing) adipose cells, both brown and brite/beige. Here, we initially demonstrate a remarkable adipose-depot specific regulation of Cidea expression. In classical brown fat, Cidea mRNA is expressed continuously and invariably, irrespective of tissue recruitment. However, Cidea protein levels are regulated posttranscriptionally, being conspicuously induced in the thermogenically recruited state. In contrast, in brite fat, Cidea protein levels are regulated at the transcriptional level, and Cidea mRNA and protein levels are proportional to tissue "briteness." Although routinely followed as a thermogenic molecular marker, Cidea function is not clarified. Here, we employed a gain-of-function approach to examine a possible role of Cidea in the regulation of thermogenesis. We utilized transgenic aP2-hCidea mice that overexpress human Cidea in all adipose tissues. We demonstrate that UCP1 activity is markedly suppressed in brown-fat mitochondria isolated from aP2-hCidea mice. However, mitochondrial UCP1 protein levels were identical in wild-type and transgenic mice. This implies a regulatory effect of Cidea on UCP1 activity, but as we demonstrate that Cidea itself is not localized to mitochondria, we propose an indirect inhibitory effect. The Cidea-induced inhibition of UCP1 activity (observed in isolated mitochondria) is physiologically relevant since the mice, through an appropriate homeostatic compensatory mechanism, increased the total amount of UCP1 in the tissue to exactly match the diminished thermogenic capacity of the UCP1 protein and retain unaltered nonshivering thermogenic capacity. Thus, we verified Cidea as being a marker of thermogenesis-competent adipose tissues, but we conclude that Cidea, unexpectedly, functions molecularly as an indirect inhibitor of thermogenesis.
Collapse
Affiliation(s)
- Alexander W Fischer
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and
| | - Irina G Shabalina
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Charlotte L Mattsson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Gustavo Abreu-Vieira
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Barbara Cannon
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jan Nedergaard
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Natasa Petrovic
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden;
| |
Collapse
|
49
|
Kopsiaftis S, Hegde P, Taylor JA, Claffey KP. AMPKα Is Suppressed in Bladder Cancer through Macrophage-Mediated Mechanisms. Transl Oncol 2016; 9:606-616. [PMID: 27916296 PMCID: PMC5143351 DOI: 10.1016/j.tranon.2016.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 07/18/2016] [Accepted: 07/18/2016] [Indexed: 12/24/2022] Open
Abstract
Bladder cancer presents as either low- or high-grade disease, each with distinct mutational profiles; however, both display prominent mTORC1 activation. One major negative regulator of mTORC1 is AMPK, which is a critical metabolic regulator that suppresses cellular growth in response to metabolic stress by negatively regulating mTORC1. Alterations in the activation and protein levels of AMPK have been reported in breast, gastric, and hepatocellular carcinoma. To investigate whether AMPK suppression is responsible for mTOR activation in bladder cancer, the levels of AMPKα were quantified in a cohort of primary human bladder cancers and adjacent nontumor tissues. The levels of p-AMPKα, AMPKα1, AMPKα2, and total AMPKα were significantly suppressed in both low- and high-grade disease when compared with nontumor tissue. To elucidate the AMPKα suppression mechanism, we focused on inflammation, particularly tumor-infiltrating macrophages, due to their reported role in regulating AMPK expression. Treatment of HTB2 cancer cells with varying doses of differentiated U937 macrophage conditioned medium (CM) demonstrated a dose-dependent reduction of AMPKα protein. Additionally, macrophage CM treatment of HTB2 and HT1376 bladder cells for various times also reduced AMPKα protein but not mRNA levels. Direct TNFα treatment also suppressed AMPKα at the protein but not RNA level. Finally, staining of the human cohort for CD68, a macrophage marker, revealed that CD68+ cell counts correlated with reduced AMPKα levels. In summary, these data demonstrate the potential role for inflammation and inflammatory cytokines in regulating the levels of AMPKα and promoting mTORC1 activation in bladder cancer.
Collapse
Affiliation(s)
- Stavros Kopsiaftis
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT, USA; Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Poornima Hegde
- Department of Pathology, University of Connecticut Health Center, Farmington, CT, USA
| | - John A Taylor
- Department of Surgery, University of Connecticut Health Center, Farmington, CT, USA
| | - Kevin P Claffey
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT, USA; Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA; Neag Comprehensive Cancer Center, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
50
|
Xu L, Ren H, Gao G, Zhou L, Malik MA, Li P. The progress and challenges in metabolic research in China. IUBMB Life 2016; 68:847-853. [PMID: 27650434 DOI: 10.1002/iub.1563] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 09/07/2016] [Indexed: 12/19/2022]
Abstract
Metabolism refers to a chain of chemical reactions converting food/fuel into energy to conduct cellular processes, including the synthesis of the building blocks of the body, such as proteins, lipids, nucleic acids, and carbohydrates, and the elimination of nitrogenous wastes. Metabolic chain reactions are catalyzed by various enzymes that are orchestrated in specific pathways. Metabolic pathways are important for organisms to grow and reproduce, maintain their structures, and respond to their environments. The coordinated regulation of metabolic pathways is important for maintaining metabolic homeostasis. The key steps and crucial enzymes in these pathways have been well investigated. However, the crucial regulatory factors and feedback (or feedforward) mechanisms of nutrients and intermediate metabolites of these biochemical processes remain to be fully elucidated. In addition, the roles of these enzymes and regulatory factors in controlling metabolism under physiological and pathological conditions are largely unknown. In particular, metabolic dysregulation is closely linked to the development of many diseases, including obesity, fatty liver, diabetes, cancer, cardiovascular, cerebrovascular, and neurodegenerative diseases. Therefore, metabolism, an old area of biochemistry, has attracted much attention in the last decade. With substantially increased government funding, the involvement of talented researchers, an improved infrastructure and scientific environment over the last ten years, the basic research in the field of metabolism in China has dramatically advanced. Here, we have summarized the major discoveries of scientists in China in the last decade in the area of metabolism. Due to the vast amount of information, we focused this review on specific aspects of metabolism, particularly metabolic regulation and lipid metabolism in vertebrates. © 2016 IUBMB Life, 68(11):847-853, 2016.
Collapse
Affiliation(s)
- Li Xu
- MOE Key Laboratory of Bioinformatics and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.,Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hao Ren
- MOE Key Laboratory of Bioinformatics and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Guangang Gao
- MOE Key Laboratory of Bioinformatics and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Linkang Zhou
- MOE Key Laboratory of Bioinformatics and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Muhammad Arshad Malik
- Department of Bioinformatics & Biotechnology, International Islamic University Islamabad, Pakistan
| | - Peng Li
- MOE Key Laboratory of Bioinformatics and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|